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1. REVIEW OF REPORT [1] 

The report “Multiple Degrees of Freedom Structural Dynamics” by Luis E. Garcia and Mete 

Sozen presents the principles of structural dynamics applied to systems having several 

degrees of freedom. It is organized in seven sections with a corresponding example. 

Modal Analysis & Mass Normalization  

On Section 1, the classical method for solving the equations of motion of multi degree of 

freedom systems (MDOF) is presented.  For free vibration we have the following system of 𝑛 

differential simultaneous equilibrium equation: 

[𝑀]{𝑈̈} + [𝐾]{𝑈} = {0}        (1)  

Where, [𝑀] and [𝐾] correspond to the mass and stiffness matrixes, respectively. Then, we 

propose the following solution of the simultaneous differential equations: 

{𝑈𝑖(𝑡)} = {𝛷(𝑖)}𝑓𝑖(𝑡)         (2)  

This is a solution that is separable into an amplitude vector, {Φ(i)} and a time dependent 

function, fi(t). Substituting (2) in (1) we obtain. 

[𝑀]{𝛷(𝑖)}𝑓𝑖̈ + [𝐾]{𝛷(𝑖)}𝑓𝑖(𝑡) = {0}       (3)  

By using classical differential equation solution of separation of variable, equation (3) can be 
converted into two equation: one of them being dependent on time and the other dependent 

of {Φ(i)}; and both, in turn, equal to the constant ωi
2 (natural frequency). The values that ωi 

can take are obtained from: 
 

[[𝐾] − 𝜔𝑖
2[𝑀]]{𝛷(𝑖)} = {0}        (4)  

We solve equation (4) by taking the determinant of the coefficient matrix equal to zero. The 𝑛 

roots are the natural frequencies of the system, or eigenvalues; and the smaller frequency, ω1 

is called fundamental frequency. Now, by replacing the values of ωi
2 in equation (4), we get 𝑛 

systems of simultaneous equation of the type:  

[[𝐾] − 𝜔𝑟
2[𝑀]]{𝛷(𝑟)} = {0}        𝑟 = 1, 2, … , 𝑛      (5)  

Where {Φ(r)} is the characteristic vector, vibration mode or "eigenvector". Each vector has a 

definite shape, but arbitrary amplitude. So we can normalize the eigenvector in different ways, 

but it is convenient to normalize the modes with respect to the mass matrix [𝑀], as follows: 

{𝛷(𝑟)}
𝑇

[𝑀]{𝛷(𝑟)} = 1         (6)  

The different modes are collected in a single matrix, called modal matrix, [Φ] having 

dimensions of 𝑛 𝑥 𝑛, and in which each column corresponds to a mode. 

Uncoupling of the Dynamic Equilibrium Equation 

On this section, the author shows how to uncouple the dynamic MDOF system. Given the 

orthogonality property of the mass normalized eigenvectors. the total response can be 

described using a set of new degrees of freedom, [𝜂i]. 

{𝑈(𝑡)} = [𝛷]{𝜂(𝑡)}         (7)  
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Through this procedure, the MDOF system is transformed into the summation of 𝑛 

independent single-degree of freedom.  

{𝑈} = [𝛷]{𝜂} = ∑ ({𝛷(𝑖)}𝜂𝑖(𝑡))𝑛
𝑖=1 = {𝛷(1)}𝜂1(𝑡) + ⋯ + {𝛷(𝑛)}𝜂𝑛(𝑡)   (8)  

Free Vibration 

For free vibration, each of the terms of vector {𝜂(𝑡)} have the following form: 

𝜂𝑖(𝑡) = 𝐴𝑖 𝑠𝑖𝑛(𝜔𝑖𝑡) + 𝐵𝑖 𝑐𝑜𝑠(𝜔𝑖𝑡)       (9)  

Equation (10) presents the solution of the MDOF system with initial conditions using a 

superposition of the response of the uncoupled degrees of freedom. 

{𝑈(𝑡)} = ∑ (𝛷(𝑖) 𝐴𝑖 𝑠𝑖𝑛(𝜔𝑖𝑡))𝑛
𝑖=1 + ∑ (𝛷(𝑖) 𝐵𝑖 𝑠𝑖𝑛(𝜔𝑖𝑡))𝑛

𝑖=1     (10)  

We also can get the response of the structure in an easier way by doing the superposition of 
the individual contribution from each mode. To do that, first, we have to obtain the response 
in time of each one of the generalized degrees of freedom, 𝜂i, and replace the values on 
equation (8). 
 

Damped Modal Analysis and Forced Vibration  

So far, the inherent damping of the system have not been considered in the equations. On 

this section, the damped modal analysis is presented, as follows: 

[𝑀]{𝑈̈} + [𝐶]{𝑈̇} + [𝐾]{𝑈} = {0}       (11)  

Then, the equations to uncouple a MDOF system with viscous damping is derived based on 

previous sections, as follows: 

𝜂𝑖̈ + 2𝜉𝑖𝜔𝑖𝜂𝑖̇ + 𝜔𝑖
2𝜂𝑖 = 0        (12)  

Where 𝜉i is the viscous damping associated with mode 𝑖. This type of damping in which the 

damping matrix is uncoupled by the vibration modes obtained only from mass and stiffness 

matrices is known as classic damping. 

In addition, in this section we deal with MDOF systems subjected to forced vibration, which 

can be described in the following manner: 

[𝑀]{𝑈̈} + [𝐶]{𝑈̇} + [𝐾]{𝑈} = {𝑃(𝑡)}       (13)  

Uncoupling the problem by using the modes and frequencies of the structure obtained for free 

vibration and the transformation presented in equation (7), we obtain: 

𝜂𝑖̈ + 2𝜉𝑖𝜔𝑖𝜂𝑖̇ + 𝜔𝑖
2𝜂𝑖 = ∑ ( 𝛷𝑖

(𝑖) 𝑝𝑗(𝑡))𝑛
𝑗=1       (14)  

With this, it is easy to derive the solutions for harmonic and transient forced vibration, which 

are presented in detail in the reference and illustrated through examples later on Section 3.4. 

Base Excitation 

We also study the base excitation of a MDOF system, which can be expressed in the following 

manner (assuming damping): 

[𝑀]{𝑈̈} + [𝐶]{𝑈̇} + [𝐾]{𝑈} = −[𝑀][𝛾]{𝑥̈0}      (15)  

The equations to solve this problem are derived by using the uncoupling procedure explained 

previously, then we get: 
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𝜂𝑖̈ + 2𝜉𝑖𝜔𝑖𝜂𝑖̇ + 𝜔𝑖
2𝜂𝑖 = −{∝𝑖}{𝑥̈0}       (16)  

Where {∝i} is the participation coefficient and corresponds to row 𝑖 of matrix [∝] obtained from: 

[∝] = [𝛷]𝑇[𝑀][𝛾]         (17)  

Knowing that the solution for displacement [U] can be calculated with equation (7), now we 

can get the forces imposed by the ground motion for each mode by multiplying the 

displacements caused by each mode by the stiffness matrix of the structure:  

{𝐹(𝑖)} = [𝐾]{𝑈(𝑖)}         (18)  

Likewise, the base shear, Vi and overturning moment, Mi of mode 𝑖 at instant 𝑡 are: 

𝑉𝑖 = {1}𝑇{𝐹(𝑖)}          (19)  

𝑀𝑖 = {ℎ}𝑇{𝐹(𝑖)}         (20)  

Where: {1} is a column vector with 𝑛 rows with unitary value; and {h} is column vector that 

contains the height of the 𝑛 stories measured from the base of the structure. 

Modal Spectral Analysis 

The author presents the modal spectral analysis as a practical alternative to get the response 

of the MDOF system subjected to an earthquake. First, we have to develop the displacement 

response spectrum, S𝑑(𝑇, ξ), which is the collection of maximum displacements obtained by 

single degree of freedom systems having period 𝑇 and damping coefficient ξ, when subjected 

to the ground motion record. 

Then, the maximum displacement that an uncoupled degree of freedom of the structure can 

have can be obtained as follows: 

(𝜂𝑖)𝑚𝑎𝑥 = |∝𝑖 . 𝑆𝑑(𝑇𝑖 , 𝜉𝑖)|        (21)  

Substituting (21) in (7) we obtain the values of maximum displacements that the structure can 

have for each individual mode. Similarly, substituting (22) in (18), we can get the maximum 

lateral forces for each individual mode 𝑖. 

{𝑈𝑚𝑜𝑑
(𝑖)} = {𝛷(𝑖)}. (𝜂𝑖)𝑚𝑎𝑥 = {𝛷(𝑖)}. |∝𝑖 . 𝑆𝑑(𝑇𝑖 , 𝜉𝑖 )|     (22)  

{𝐹𝑚𝑜𝑑
(𝑖)} = [𝐾]{𝑈𝑚𝑜𝑑

(𝑖)} = [𝐾]{𝛷(𝑖)}. |∝𝑖 . 𝑆𝑑(𝑇𝑖 , 𝜉𝑖)|     (23)  

Modal Combination (SRSS) 

It is important to notice that the parameters calculated by the response spectral analysis do 

not occur at the same time. Then we have to come up with a method to combine the 

contribution of each uncoupled mode. The most widely known method of modal spectral 

combination is called Square Root of the Sum of the Squares (SRSS), and it can be calculated, 

for the response parameter 𝑟i, with the following formula: 

𝑟̅ ≈ √∑  𝑟𝑖
2𝑛

𝑖=1           (24)  

We use this technique to estimate the maximum response of a MDOF system in terms of 

lateral displacement, base shear, overturning moment, story drift, etc. As a conclusion, the 

author notes that this procedure is a reasonable good estimation if we compare with the results 

obtained from the time-history analysis (step-by-step procedure).  
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2. STRUCTURAL MODEL 

In this section, we present a structural model developed in order to conduct the same type of 

dynamic analyses described in examples 1 to 7 of the reference report [1]. 

2.1. Building data 

In this study, we select a 5-story reinforced concrete moment resisting frame building. The 

frame has two spans of 5.5 m and a total height of 16.0m. The height of the first floor is 4.0m 

while of the other floors are 3.0m. Damping of the structure is estimated to be ξ = 5% of critical. 

All girders have width b = 0.40 m and depth h = 0.50 m. All columns are square with a section 

side dimension of h = 0.40 m. The modulus of elasticity of the concrete is E = 25 GPa. The 

building has loads only due to its self-weight.  

 5-story concrete moment-resisting frame building 

 Typical beam span: 5.5m 

 Typical Story height: 3.0m 

 Total mass: 42.9. ton 

 Fixed supports at base 

We are going to neglect the contribution of axial deformation in the calculation of stiffness, and 

consider that beams are very rigid elements. To do that, we apply a very high stiffness 

modifiers to the Shear Area in 2 direction, and to the Cross-section (axial) Area. 

 

Figure 1. ETABS 2D structural model. 

2.2. Modal Analysis 

By running a modal analysis on ETABS, we get the modal shapes of the structure, as well as 

the dynamic properties presented in Table 1. We evidence that we reach an effective mass 

participation of 100.0% (minimum recommended equals 90%). We also find that the 

fundamental period of the building, 𝑇1 equals 0.359s. 
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Table 1. Periods of Vibration and Mode Shapes 

Vibration 
Mode 

Frequency 
(Hz) 

Period T 
(s) 

Effective 
Mass (%) 

1 2.786 0.359 91.06 

2 8.746 0.114 7.10 

3 15.62 0.064 1.43 

4 23.26 0.043 0.34 

5 30.24 0.033 0.06 

 100.00 

 

      

(a)    (b)    (c) 

      

(d)    (e) 

Figure 2. Modal Shapes obtained from ETABS. 

The dynamic properties are also calculated by solving the Eigenvalue problem (Equation 4) 

with MATLAB. In Table 2, we compare the modal analysis results from ETABS with the hand 

calculations results (MATLAB). Note that the values are pretty close due to the assumptions 

made on the model. The little differences might be because of the approximation of the 

stiffness matrix calculation (Muto Method). 

Table 2. Periods of Vibration and Mode Shapes 

Vibration 
Mode 

Period (s) 

ETABS MATHCAD 
1 0.359 0.354 

2 0.114 0.123 

3 0.064 0.080 

4 0.043 0.063 

5 0.033 0.056 
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3. GROUND MOTION (NONLIN) 

The seismic record: ‘NGA1787_HectorMine_Hector_00’ at California, in October 16 of 1999 

is selected from NONLIN [2] database. Specifically, in Sections 4.5, 4.6 and 4.7, we study the 

response of the building subjected to this earthquake. 

 

Table 3. Selected Ground Motion (Source: NONLIN). 

ID Earthquake Event Comp. PGA (g) 
Time 

Step (s) 
Duration 

(s) 

NGA1787 
Hector Mine 

(California, USA) 
E-W 0.266 0.01 45.31 

 

 

Figure 3. Hector-Mine accelerograms (Source: SeismoSignal). 

 

 



 
Multiple degrees of freedom structural dynamics with MATHCAD  

 

Page 9 of 39 

4. DYNAMIC RESPONSE OF SIMPLIFIED FE MODEL 

Using the model developed in Section 2, we conduct the same type of analyses described in 

examples 1 to 7 of the reference report. To do that, we must first find the stiffness 

characteristics of the building. The frame stiffness is obtained using Muto Method. We 

estimate the stiffness of each floor and construct the 5x5 stiffness matrix as follows:  

𝑘1 = 4382.37 𝑡𝑜𝑛/𝑚   𝑘2 = 𝑘3 = 𝑘4 = 𝑘5 = 2926.89 𝑡𝑜𝑛/𝑚 

 

 

 

Given the concrete density  𝛾𝑐 = 2.4 t/𝑚3, we calculate the mass for each floor. Then, the 

mass matrix of the building is: 

 

 

Now, with the mass and stiffness matrix as an input data we can replicate the examples of the 

reference report. For the calculations, we will use MATHCAD 15 software.  For example 5, we 

will use the “NGA1787_HectorMine_Hector_00” record from database of ground motions 

included in the NONLIN software. 

 

4.1. Example 1: Modal Analysis & Mass Normalization 

For the building presented in Section 2, we solve the eigenvalue problem by using MATHCAD 

spreadsheet. The mode shapes are shown in Figure 4. We also notice that the periods are 

pretty close to the ones calculated with ETABS (See Table 2). For instance the fundamental 

period, 𝑇1 equals 0.354s.  
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Corresponding, graphically, to: 

 

Figure 4. Modal Shapes obtained (MATHCAD 15). 

Finally, we mass normalize the modal matrix as follows: 

 

 

Then: 
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4.2. Example 2: Uncoupling of the Dynamic Equilibrium Equation 

Uncouple the dynamic system of Example 1 using the modal matrix [Φ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Example 3: Free Vibration 

Case (a) – Find the free vibration response given a unit displacement at each story of 

the building at time = 0, without any initial velocity.  
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Then, assuming that there is no damping, the uncouple equations are: 

 

Or seen as three independent differential equations: 
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Mode 1 response:   

 

Figure 5. Mode 1 Response to initial displacement conditions. Case (a). 
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Then, the response of the system is described by the following equation: 
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Mode 2 response:   

 

Figure 6. Mode 2 Response to initial displacement conditions. Case (a). 

 

Mode 3 response:   

 

Figure 7. Mode 3 Response to initial displacement conditions. Case (a). 
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Mode 4 response:   

 

Figure 8. Mode 4 Response to initial displacement conditions. Case (a). 

 

Mode 5 response:   

 

Figure 9. Mode 5 Response to initial displacement conditions. Case (a). 
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Total Response: 

 

 

Figure 10. Total Response to initial displacement conditions. Case (a). 

Figures 5 to 9, and 10 show the response for each mode and the total response of the building, 

respectively. We notice that the response of the system corresponds to the superposition of 

the individual responses from each mode. Supposing that at some instant in time the five 

responses are in phase, 83% would be contributed by the first mode, 11% by the second, 4% 

by the third, and 2% by the rest. 

Case (b) – Find the free vibration response given a displacement condition in the shape 

of the first mode, without any initial velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

The initial displacement vector is: 
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Therefore, the total response is dominated by the response of the first mode:  

  

Case (c) – Find the free vibration response given a displacement condition in the shape 

of the second mode, without any initial velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

     

Then, the response of the system is described by the following equation: 
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Therefore, the total response is dominated by the response of the second mode:  

 

Conclusion: We can continue trying an initial displacement that follows the n th mode shape, 

and will get that only the nth mode contributes with a 100% of the response. 

 

4.4. Example 4: Forced Vibration (Impulse) 

In this example, the building shown in Section 2 is subjected to an explosion. The air pressure 

wave caused by the explosion varies in the form shown in Figure 11. Damping of the structure 

is estimated to be ξ = 5% of critical. 

 

 

Figure 11. Impact Load (Pressure in kPa). 

The explosion occurred far away, therefore we can assume that the pressure applied to the 

building doesn’t vary with height and is applied uniformly to the building façade. Then the 

forces at each level can be determined as follows: 

 

 

 

 

 

 

Then, the response of the system is described by the following equation: 
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Figure 12.Mathcad Algorithm to solve Example 4. 

In these five equations ξ = 0.05. The response of each of the uncoupled equations was 

obtained employing Ordinary Differential Equation Solver of Mathcad (Figure 12). The first 

2.5s of response for each mode are shown in Figure 13: 

 

 

 

Then, the uncouple equations are obtained as follows: 
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Figure 13. Response in time for the uncoupled degrees of freedom. 

 

The response at some instants are presented below: 
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The structure displacements are obtained from:  

For example, for instant t=0.2873 s, displacements in m for each mode and total values are: 

 

 

 

 

 

 

 

 

 

To obtain the forces caused by the explosion at the same instant for all the structure, the 

structure stiffness matrix is multiplied by the displacements obtained: 

 

 

 

 

 

 

This operation can be made for each mode independently in order to obtain displacements 

of the structure for each mode: 

 

 

 

 
 

The contribution to the applied force caused by each mode, in kN, at instant t=0.2873 s, is: 
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4.5. Example 5: Base Excitation 

In this section, we study the response of the building to the recorded accelerations 

‘NGA1787_HectorMine_Hector_00’ at California, in October 16 of 1999 (See Section 3 for 

details). We are going to use mass and stiffness matrixes calculated before, as well as the 

resulting matrixes due to the mass normalization. 

 

  Base dynamic excitation equilibrium equations have the following form: 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Mass Participation Ratios per mode. 

 
Now we modify the dynamic equilibrium equations by pre-multiplying by [Φ]T as we have 
done in the former examples. Then, the uncoupled vibration equations are: 
 

 

 

 

 

 

 

The modal participation factors are obtained from: 

 

The total effective mass is computed as α 2i 

   

Then:  
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Built time and force vector from Excel Spreadsheet of “NGA1787_HectorMine” record. 

 

 

 

 

 

Figure 15. Newmark-Beta Method – Mathcad Algorithm for example 5. 

In the five equations shown before, ξ = 0.05. The response of each of the uncoupled equations 

was obtained employing the Newmark-Beta Method (Figure 15). Then, the first 20 seconds of 

response are shown in the following graphs. 
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Figure 16. Response of the uncoupled coordinates. 

The following table contains the response at selected instants, and the extreme values 
obtained for each uncoupled degree of freedom during the first 20 s of response. 
 

Table 4. Maximum and Minimum Displacement Response of the uncouple coordinates 

t n1 n2 n3 n4 n5 
(s) (m) (m) (m) (m) (m) 

5.09 -0.1357 -0.0338 -0.0193 -0.0068 -0.0023 

5.10 -0.2800 -0.0545 -0.0189 -0.0069 -0.0024 

5.50 -0.5484 -0.0190 0.0079 0.0020 0.0009 

5.99 1.1679 0.0695 0.0200 0.0079 0.0027 

6.00 1.2599 0.0628 0.0192 0.0084 0.0025 

6.37 0.5746 -0.1127 -0.0085 -0.0057 -0.0019 

6.50 -0.6482 -0.0977 -0.0107 -0.0021 -0.0008 

7.00 -0.0166 0.0544 0.0195 0.0061 0.0021 

7.50 0.6831 -0.0034 -0.0035 -0.0011 -0.0005 

8.00 -0.8049 0.0309 0.0034 0.0012 0.0003 

8.34 -0.1372 0.0860 0.0021 0.0028 0.0001 

8.50 0.6018 -0.0386 -0.0033 -0.0012 0.0003 

9.00 -1.1298 0.0138 -0.0031 -0.0001 0.0001 

9.50 1.7025 0.0263 0.0032 0.0019 0.0004 

10.00 1.3255 -0.0361 0.0028 -0.0001 -0.0001 

10.99 3.1146 0.0116 0.0053 0.0021 0.0008 

11.51 -2.5363 -0.0323 -0.0007 -0.0013 -0.0005 

max 3.1146 0.0860 0.0200 0.0084 0.0027 

min -2.5363 -0.1127 -0.0193 -0.0069 -0.0024 

t(max) 10.99 s 8.34 s 5.99 s 6.00 s 5.99 s 

t(min) 11.51 s 6.37 s 5.09 s 5.10 s 5.10 s 
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The structure displacements are obtained from:  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Also, forces are calculated as follows:  
 

 

 

 

 

 

 

 

 

 
 

Total forces in kN for instant t = 3.08 s, are: 

 

 

 

 

 

 

   

  

 

For example, for instant t = 3.08 s (step=308), displacements in meters contributed by each mode are: 

 

This operation can be made for each mode independently, thus obtaining the contribution of the total 
internal forces caused by each one: 

   

  

Then, the force contribution in kN for each mode at instant t = 3.08 s, is: 
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Base shear contributed by each mode, also in kN, at instant t = 3.08 s, is obtained from: 
 

 

 

 

 

 

Likewise, the overturning moment contributed by each mode, is obtained from: 

 

 

 

 

 

 

The same procedures can be used to obtain the response at any instant. If this is performed 

systematically, results such as shown in Figure 17 are obtained. There the displacement 

response for the roof of the building is shown for the first 20 sec. of the EW component of 

Hector-Mine record. From this figure, it is evident that the significant portion of the response 

is contributed solely by the first two modes, with thee second contributing marginally. 

 

 

   

 

The total base shear in kN at instant t = 3.08 s, is obtained as: 

 

  

 

The total overturning moment in kN · m at instant t = 3.08 s, is obtained from: 

 

Roof Displacements 

one
1 j

1 V
t

one F
t



V308 one Fmod308 11.787 0.408 0.523 0.181 0.046( ) kN

V
308

12.129 kN

h 16 13 10 7 4( ) mt Moment
t

h F
t



Moment 308 h Fmod308 138.3 0.4 1.9 0.2 0.1( ) kN mt

Moment
308

140.867 kN mt



 
Multiple degrees of freedom structural dynamics with MATHCAD  

 

Page 26 of 39 

 

 

Figure 17. Roof displacements from each mode and total response. 

 

Figure 18 shows the variation of the base shear of the building during the first 20 sec. of 

response to the EW component of Hector-Mine record. 

Base Shear 

 

Figure 18. Base shear of the structure. 
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Figure 19 shows the variation of overturning moment for the first 20 sec. of response to the 

EW component of El Centro record. 

Overturning Moment 

 

Figure 19. Overturning moment of the structure 

 

4.6. Example 6: Modal Spectral Analysis 

In this section, we rework Example 5 using the displacement response spectra of the 
Hector-Mine record. The results are the same up to the point where the dynamic 
equilibrium equations were uncoupled. 
 

 

 

 

 

 

 

 

The response for each of the uncoupled equations is obtained using the displacement 

response spectra for the EW component of the Hector-Mine record. Figure 20 shows the 

Displacement Response Spectrum for the record of interest obtained using SeismoSignal 

software. Table 5 shows the period for each mode and the displacement read from the 

spectrum for each period.  

 

Figure 20. Displacement response spectrum for Hector-Mine NS record. 
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Table 5. Values read from the Displacement Spectrum. 

Mode 
Period T 

(s) 
Sd (Ti, ξi) 

(m) 

1 0.359 0.015850 

2 0.114 0.001684 

3 0.064 0.000646 

4 0.043 0.000383 

5 0.033 0.000274 

 
With this information, it is possible to compute the maximum displacement that the 
uncoupled degrees of freedom can attain: 
 

Table 6. Maximum displacement values for the uncoupled degrees of freedom. 

Mode αi 
Sd (Ti, ξi) 

(m) 
(ηi)max= αi xSd (Ti, ξi) 

(m) 

1 188.968 0.015850 2.9951 

2 67.437 0.001684 0.1136 

3 42.599 0.000646 0.0275 

4 26.418 0.000383 0.0101 

5 11.954 0.000274 0.0033 

 
Maximum modal displacements (m) 

The maximum displacements for each mode are obtained from: 

 

 

 

 

 

 

Then, the values for [Umod] are: 

 

 

 

 

 

 

Figure 21 shows the maximum lateral displacements for each mode. 
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Figure 21. Maximum lateral displacements for each mode. 

 

Maximum story drift as a percentage of story height (%h) 

Using the displacements just computed the story drift for each story and mode could be 

computed as the algebraic difference of the displacement of two consecutive stories. Drift is 

usually expressed as percentage of the inter-story height. Table 7 and Figure 22 show the 

story drifts for each mode. 

Table 7. Maximum displacement values for the uncoupled degrees of freedom. 

Story Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

5 0.0613 -0.0173 0.0080 -0.0033 0.0007 

4 0.1170 -0.0214 0.0016 0.0029 -0.0013 

3 0.1620 -0.0094 -0.0076 0.0008 0.0014 

2 0.1922 0.0098 -0.0031 -0.0036 -0.0010 

1 0.1379 0.0155 0.0056 0.0020 0.0004 
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Figure 22. Maximum story drift (%h) for each mode. 

 

Maximum modal lateral forces (kN) 

To obtain the maximum modal lateral forces imposed on the structure by the ground motions 

the stiffness matrix of the structure is multiplied by the modal lateral displacements. Results 

are obtained in kN. 

 

 

Figure 23. Maximum modal forces for each mode (kN). 
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Maximum modal story shear (kN) 

The maximum modal story shear is obtained from:  

 

Table 8. Maximum modal values for story shear. 

Story 
V1

mod 
(kN) 

V2
mod 

(kN) 
V3

mod 

(kN) 
V4

mod 

(kN) 
V5

mod 

(kN) 

5 52.789 -14.870 6.856 -2.853 0.640 

4 100.752 -18.466 1.365 2.461 -1.077 

3 139.502 -8.061 -6.584 0.730 1.170 

2 165.496 8.456 -2.675 -3.091 -0.891 

1 177.855 19.955 7.255 2.630 0.495 

0 177.855 19.955 7.255 2.630 0.495 

 

 

Figure 24. Maximum story shear for each mode (kN). 

 

Base shear (kN) 

 

 

 

 

 

 

Overturning moment (kN · m) 

The overturning moment for each story is obtained from:  

 

 

 

 

The base shear in kN for each mode is obtained from: 

 

 

It is the same value obtained for the first story when the story shears were computed. 

one
1 j

1

Vmod one Fmod 177.9 20.0 7.3 2.6 0.5( ) kN
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Table 9. Maximum story modal overturning moment. 

Story 
M1

mod 
(kN·m) 

M2
mod 

(kN·m) 
M3

mod 

(kN·m) 
M4

mod 

(kN·m) 
M5

mod 

(kN·m) 

5 0.0 0.0 0.0 0.0 0.0 

4 316.7 -89.2 41.1 -17.1 3.8 

3 762.9 -155.4 28.8 6.2 -4.5 

2 1297.6 -148.4 -14.8 3.2 5.7 

1 1872.1 -73.5 -11.1 -17.5 -3.1 

0 2442.7 20.9 40.4 7.5 2.5 

 

 

Figure 25. Overturning moment for each mode (kN·m). 

 

 

 

 

In Example 5 the step-by-step response of the building was obtained for the same earthquake 

record used to compute the spectrum in this example, it is interesting to make some 

comparisons of the results obtained in both cases. Table 10 lists the values obtained in 

Example 5 and Example 6 for each of the uncoupled degrees of freedom. 

 

 

 

 

 

 

The maximum overturning moment at the base, in kN · m, contributed by each mode can be obtained 
from: 

 

 

This is the same result obtained for the overturning moment previously. 

h 16 13 10 7 4( ) mt

M_base mod h Fmod 2087.0 19.0 25.9 2.3 1.5( ) kN mt
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Table 10. Comparison of values obtained in Examples 5 and 6. 

Uncoupled 
degree of 
freedom 

Example 5 Example 6 

  
ηi 

(m)  
t 

(s)  
(ηi)max= αi xSd (Ti, ξi) 

(m) 

η1 
max 2.53626 10.99 

2.99514 
min -3.11463 11.51 

η2 
max 0.11266 8.34 

0.11356 
min -0.08605 6.37 

η3 
max 0.01932 5.99 

0.02752 
min -0.01998 5.09 

η4 
max 0.00688 6.00 

0.01012 
min -0.00841 5.10 

η5 
max 0.00239 5.99 

0.00328 
min -0.00266 5.10 

 

In Table 10, we observe that the results are essentially the same, and the differences obey to 

precision rounding in the numerical procedures because the algorithm employed to obtain the 

response is different from the one used to compute the spectrum.  

It is important to notice that the maximum values for each uncoupled degree of freedom in 

Example 5 were obtained at different time instants. Also, note that the maximum value 

obtained from the spectrum in some cases correspond to the maximum value and in some to 

the minimum obtained in the step-by-step procedure (Example 5), this is because the value 

carried by the spectrum is the absolute value. 

The maximum lateral displacement of the roof obtained in Example 5 was 0.017 m. The 

algebraic sum of the values obtained for the MDOF system in Example 6 is 0.020 m, and the 

sum of the absolute values is 0.021 m. The algebraic sum of the modal response usually 

underestimates the value obtained using a time step-by-step procedure and the sum of the 

absolute modal values overestimate it. In this case, we observe that both values are 

overestimating the displacements, this is probably because the displacement response 

spectrum is very sensitive to small periods, like for this example. 

The maximum value for the base shear of the building obtained in Example 5 using a time 

step-by-step procedure was 157 kN. The sum of the maximum modal base shears obtained 

in Example 6 was 208 kN. This value overestimates the time step value by a factor of 1.3. In 

the time step procedure of Example 5 the base shear is controlled by the first mode with the 

other modes contributing very little when the first mode peak occurs. For the overturning 

moment at the base in Example 5 a value of 1,763 kN · m was obtained In Example 6 the 

algebraic sum of the maximum modal values is 2,098 kN · m, and the sum of the absolute 

values is 2,136 kN · m. For the overturning moment, the contribution of the higher modes is 

small in both examples. 
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4.7. Example 7: Modal Combination (SRSS) 

In this section, we apply the square root of the sum of the squares SRSS procedure to the 

results obtained in Example 6. The use of the SRSS technique produces the following results: 

Maximum credible lateral displacements (m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum credible story drift 

The modal spectral story drifts are computed from the values shown in [Umod]. The following 

result are obtained: 

 

 

 

 

 

 

 

 

 Maximum credible lateral displacements (m) 

 

We now apply the SRSS procedure to each of the row of previous matrix. 

 

 

This value compares fairly well with the values obtained from the 
step-by-step procedure in Example 6.  

 

 

 

 

Umod

0.020114

0.018275

0.014764

0.009904

0.004138

0.000683

0.000165

0.000478

0.000759

0.000464

0.000133

0.000106

0.000154

0.000076

0.000169

0.000035

0.000065

0.000021

0.000047

0.000061

0.000000

0.000016

0.000021

0.000020

0.000012

















m

USRSS

USRSS
i

0

USRSS
i

USRSS
i

Umod
i j 

2


j 1 Nfor

i 1 Nfor

USRSS
0.5

return



Drift

Drift
i j

Umod
i j

Umod
i 1 j



j 1 Nfor

i 1 N 1for

Drift
N k

Umod
N k



k 1 Nfor

Driftreturn



Drift

0.0018

0.0035

0.0049

0.0058

0.0041

0.0005

0.0006

0.0003

0.0003

0.0005

0.0002

0.0000

0.0002

0.0001

0.0002

0.0001

0.0001

0.0000

0.0001

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

















mt

DriftSRSS

DriftSRSS
i

0

DriftSRSS
i

DriftSRSS
i

Drift
i j 

2


j 1 Nfor

i 1 Nfor

DriftSRSS
0.5

return



max U6( ) 0.01684m
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Now, for the sake of discussion, lets compute erroneously the story drift from lateral 

displacements already combined, {USRRS}. The following are the results for story drift as a 

percentage of the story height (%h) thus computed: 

 

 

 

 

 

 

Maximum credible story forces (kN) 

The maximum modal spectral forces were obtained for each mode in Example 6 multiplying 

the stiffness matrix by the modal spectral displacements of each mode, obtaining there the 

following forces in kN: 

 

A sensible recommendation is to keep these modal forces separated by mode and never 

combine them using SRSS. This way the danger of using the combined forces in the 

computation of story shears and overturning moments is avoided. 

Maximum credible story shear (kN) 

 

 

 

 

 

 

 

 

 

 

 

 

Story shear modal spectral values: 

 

Applying the SRSS procedure we obtain: 

 

 

Wrong_  SRSS

DriftSRSS
i

USRSS
i
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i 1


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

i 1 N 1for
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N
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N
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

DriftSRSSreturn


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5.491

7.949

3.909

9.931

2.853

5.315

1.731
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
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
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8.456
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6.584

2.675

7.255
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2.853

2.461
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i j 

2


j 1 Nfor

i 1 Nfor
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0.5

return


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Maximum credible base shear  
 

 

 

 

 

Maximum credible overturning moment  

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum credible base overturning moment  
 

 

 

 

 

Static equivalent lateral forces 

 

 

 

 

 

 

 

 

  

Modal story overturning moments: 

 

Applying the SRSS procedure we obtain: 

 

 

 

 

These forces, in kN, are computed using the story shears obtained by using the SRSS 
procedure: 

 

 

Vmod 177.855 19.955 7.255 2.630 0.495( ) kN
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
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i
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i j 

2


j 1 Nfor

i 1 N 1for
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0.5

return



M_base mod 2087.0 19.0 25.9 2.3 1.5( ) kN mt
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N

i

M_base mod
i  
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
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The overturning moment, in kN·m, computed for these equivalent lateral loads is: 

 

 

The overturning moment, in this case, is slightly larger than 
the one obtained using the SRSS procedure with the modal 
spectral overturning moments. 

  

FStatic FStatic
1

VShearSRSS
1



FStatic
i

VShearSRSS
i

VShearSRSS
i 1



i 2 Nfor

FStaticreturn



h 16.000 13.000 10.000 7.000 4.000( ) m

MStatic h FStatic 2107.0kN mt

M_base SRSS 2087.287( ) kN mt
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5. COMMENTS 

In Example 5 the step-by-step response of the system to the Hector-Mine record was 

computed, in Example 6 the individual modal spectral responses were computed for the 

spectrum of the same record — thus permitting the computation of the absolute maximum 

spectral response —, and in Example 7 the SRSS procedure was applied to the results 

obtained in Example 6. Now some comparisons can be made between the results of the three 

examples. 

Table 11. Comparison of the results from Examples 5, 6, and 7. 

Parameter 
Example 5 

Step-by-step 
Analysis 

Example 6 
Modal Spectral 
Absolute value 

Example 7 
Modal Spectral 

SRSS 

Roof lateral 
displacement 

0.017 m 0.021 m 0.020 m 

Base Shear 157 kN 208 kN 179 kN 

Overturning 
Moment 

1763 kN·m 2136 kN·m 2087 kN·m 

 

In this case, we observe that both the modal spectral absolute and SRSS value are 

overestimating the displacements, base shear and overturning moment. This is probably 

because the displacement response spectrum, as mentioned before, is very sensitive to small 

periods. However, we can say that, for this case the match between the step-by step analysis 

values and the values obtained using the SRSS procedure is reasonable good. 

If we compare our results with the examples presented in the reference report we find that the 

response in terms of displacements, forces and moments, are very small. This is because the 

structure selected for this case is very stiff and has a small mass (only self-weight has been 

considered). Then, the fundamental period is small 𝑇1 = 0.354𝑠, and so the response. For 

instance, the spectral displacement for a structure with period of 1.0 and 0.35s are 1.6cm and 

8.5cm respectively (5.3 times greater). This is a reason why we got small response values. 

Therefore, we recommend to replicate the example with a less stiff structure, or increase the 

mass to have a fundamental period greater than 1 second; so that the response contribution 

of each mode will be more significant, and the comparisons between the step-by-step 

analyses and modal spectral analysis would be more reliable. 

An additional recommended exercise, would be to perform the time history analysis of the 

model in ETABS. So we can compare the results and accuracy of the theorical time stepping 

method called Newmark’s Beta Method with the linear modal time history analysis performed 

using ETABS software. 
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