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WITH MATHCAD
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1. REVIEW OF REPORT

The report “Multiple Degrees of Freedom Structural Dynamics” by Luis E. Garcia and Mete
Sozen presents the principles of structural dynamics applied to systems having several
degrees of freedom. It is organized in seven sections with a corresponding example.

Modal Analysis & Mass Normalization

On Section 1, the classical method for solving the equations of motion of multi degree of
freedom systems (MDOF) is presented. For free vibration we have the following system of n
differential simultaneous equilibrium equation:

[MI{U} + [K]{U} = {0} (1)

Where, [M] and [K] correspond to the mass and stiffness matrixes, respectively. Then, we
propose the following solution of the simultaneous differential equations:

{U; 0} = {2D}f®) ()

This is a solution that is separable into an amplitude vector, {®#®} and a time dependent
function, f;(t). Substituting (2) in (1) we obtain.

[M{@®}f, + [KI{oO}f(t) = {0} (3)

By using classical differential equation solution of separation of variable, equation (3) can be
converted into two equation: one of them being dependent on time and the other dependent
of {CD(D}; and both, in turn, equal to the constant w;? (natural frequency). The values that w;
can take are obtained from:

[[K] — w2 [M]){@©D} = {0} (4)

We solve equation (4) by taking the determinant of the coefficient matrix equal to zero. The n
roots are the natural frequencies of the system, or eigenvalues; and the smaller frequency, w,
is called fundamental frequency. Now, by replacing the values of w;? in equation (4), we get n
systems of simultaneous equation of the type:

[[K] - w2 M][{e™} = {0} r=12.,n (5)

Where {®®} is the characteristic vector, vibration mode or "eigenvector". Each vector has a
definite shape, but arbitrary amplitude. So we can normalize the eigenvector in different ways,
but it is convenient to normalize the modes with respect to the mass matrix [M], as follows:

(o} (M{o™} =1 (6)

The different modes are collected in a single matrix, called modal matrix, [®] having
dimensions of n x n, and in which each column corresponds to a mode.

Uncoupling of the Dynamic Equilibrium Equation

On this section, the author shows how to uncouple the dynamic MDOF system. Given the
orthogonality property of the mass normalized eigenvectors. the total response can be
described using a set of new degrees of freedom, [n;].

{U®} = [2l{n(®)} (7)
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Through this procedure, the MDOF system is transformed into the summation of n
independent single-degree of freedom.

U3 = (21} = L. (@Phm(©) = {2} (0 + - + {2 ™}, (©) ®)
Free Vibration
For free vibration, each of the terms of vector {n(t)} have the following form:

n;(t) = A; sin(w;t) + B; cos(w;t) 9)

Equation (10) presents the solution of the MDOF system with initial conditions using a
superposition of the response of the uncoupled degrees of freedom.

U®)}=2L, (@D 4;sin(w;t)) + X, (@D B; sin(w;t)) (10)

We also can get the response of the structure in an easier way by doing the superposition of
the individual contribution from each mode. To do that, first, we have to obtain the response
in time of each one of the generalized degrees of freedom, n;, and replace the values on
equation (8).

Damped Modal Analysis and Forced Vibration

So far, the inherent damping of the system have not been considered in the equations. On
this section, the damped modal analysis is presented, as follows:

[MI{U} + [€1{U} + [K]{U} = {0} (11)

Then, the equations to uncouple a MDOF system with viscous damping is derived based on
previous sections, as follows:

1, + 2& w1, + w*n; =0 (12)

Where ¢; is the viscous damping associated with mode i. This type of damping in which the
damping matrix is uncoupled by the vibration modes obtained only from mass and stiffness
matrices is known as classic damping.

In addition, in this section we deal with MDOF systems subjected to forced vibration, which
can be described in the following manner:

[MI{U} + [C1{U} + [K]{U} = {P(t)} (13)

Uncoupling the problem by using the modes and frequencies of the structure obtained for free
vibration and the transformation presented in equation (7), we obtain:

i, + 2801, + w2 = X1 (0,7 pi()) (14)

With this, it is easy to derive the solutions for harmonic and transient forced vibration, which
are presented in detail in the reference and illustrated through examples later on Section 3.4.

Base Excitation

We also study the base excitation of a MDOF system, which can be expressed in the following
manner (assuming damping):

[M{U} + [C){U} + [K1{U} = —=[M][y]{¥o} (15)

The equations to solve this problem are derived by using the uncoupling procedure explained
previously, then we get:
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i, + 2& w1, + wi?n; = —{oc; 3o} (16)
Where {;} is the participation coefficient and corresponds to row i of matrix [e<] obtained from:
[x] = [@]"[M][y] (17)

Knowing that the solution for displacement [U] can be calculated with equation (7), now we
can get the forces imposed by the ground motion for each mode by multiplying the
displacements caused by each mode by the stiffness matrix of the structure:

{FO} = k) V} (18)
Likewise, the base shear, V; and overturning moment, M; of mode i at instant t are:

v, = ()7 {F®} (19)

M; = {n}"{F®} (20)

Where: {1} is a column vector with n rows with unitary value; and {h} is column vector that
contains the height of the n stories measured from the base of the structure.

Modal Spectral Analysis

The author presents the modal spectral analysis as a practical alternative to get the response
of the MDOF system subjected to an earthquake. First, we have to develop the displacement
response spectrum, S;(T, %), which is the collection of maximum displacements obtained by
single degree of freedom systems having period T and damping coefficient €, when subjected
to the ground motion record.

Then, the maximum displacement that an uncoupled degree of freedom of the structure can
have can be obtained as follows:

(ni)max = |°<i-5d(Tirfi)| (21)

Substituting (21) in (7) we obtain the values of maximum displacements that the structure can
have for each individual mode. Similarly, substituting (22) in (18), we can get the maximum
lateral forces for each individual mode i.

{Umoa®} = {2D}. 1) max = (@@} o<1 S4 (T3, €D (22)
{Finoa®} = [K){Unmoa @} = [KI{@®}. ;. S4 (T3, &) (23)
Modal Combination (SRSS)

It is important to notice that the parameters calculated by the response spectral analysis do
not occur at the same time. Then we have to come up with a method to combine the
contribution of each uncoupled mode. The most widely known method of modal spectral
combination is called Square Root of the Sum of the Squares (SRSS), and it can be calculated,
for the response parameter r;, with the following formula:

7 XL, 12 (24)

We use this technique to estimate the maximum response of a MDOF system in terms of
lateral displacement, base shear, overturning moment, story drift, etc. As a conclusion, the
author notes that this procedure is a reasonable good estimation if we compare with the results
obtained from the time-history analysis (step-by-step procedure).
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2. STRUCTURAL MODEL

In this section, we present a structural model developed in order to conduct the same type of
dynamic analyses described in examples 1 to 7 of the reference report ™.

2.1. Building data

In this study, we select a 5-story reinforced concrete moment resisting frame building. The
frame has two spans of 5.5 m and a total height of 16.0m. The height of the first floor is 4.0m
while of the other floors are 3.0m. Damping of the structure is estimated to be § = 5% of critical.
All girders have width b = 0.40 m and depth h = 0.50 m. All columns are square with a section
side dimension of h = 0.40 m. The modulus of elasticity of the concrete isE = 25 GPa. The
building has loads only due to its self-weight.

= 5-story concrete moment-resisting frame building
= Typical beam span: 5.5m

= Typical Story height: 3.0m

= Total mass: 42.9. ton

= Fixed supports at base

We are going to neglect the contribution of axial deformation in the calculation of stiffness, and
consider that beams are very rigid elements. To do that, we apply a very high stiffness
modifiers to the Shear Area in 2 direction, and to the Cross-section (axial) Area.

P P Pl
1) [ 1] 1)
\ o p—

() (ﬂﬂ-ﬁ_j (c)

B40X50 B40X50 Story5
=] =] =
el el =+
- et -
= = =
- - =t
3] 3] 3]

B40x50 B40x50 Story4
=] =] =
el el =+
= = =
= = =
= -+ =t
w w [+

B40x50 B40x50 Story3
[=] [=] [=]
-t -t -t
- - -
(=] = =
=F =x =+
3] 3] 2]

B40x50 B40x50 Story2
(=] (=] [=]
-t -t -t
- - -
= = =
= -+ =+
3] 3] 2]

B40x50 B40x50 Story1
(=] (=] [=]
-t -t -t
= = -
= = =
=+ =+ -+
& &) [&]

Base
m m m

Figure 1. ETABS 2D structural model.

2.2. Modal Analysis

By running a modal analysis on ETABS, we get the modal shapes of the structure, as well as
the dynamic properties presented in Table 1. We evidence that we reach an effective mass
participation of 100.0% (minimum recommended equals 90%). We also find that the
fundamental period of the building, T; equals 0.359s.
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Table 1. Periods of Vibration and Mode Shapes

Vibration Frequency Period T Effective
Mode (Hz) Mass (%)
1 2.786 0.359 91.06
2 8.746 0.114 7.10
3 15.62 0.064 1.43
4 23.26 0.043 0.34
5 30.24 0.033 0.06
100.00
| _
|
[++] m (5] [+ ] [54] (=2 o =+ m
(@ (b) (©)
m m [=s] &: [s+] (53]
(d) (e)

Figure 2. Modal Shapes obtained from ETABS.

The dynamic properties are also calculated by solving the Eigenvalue problem (Equation 4)
with MATLAB. In Table 2, we compare the modal analysis results from ETABS with the hand
calculations results (MATLAB). Note that the values are pretty close due to the assumptions
made on the model. The little differences might be because of the approximation of the
stiffness matrix calculation (Muto Method).

Table 2. Periods of Vibration and Mode Shapes

Vibration Period (s)
Mode ETABS MATHCAD
1 0.359 0.354
2 0.114 0.123
3 0.064 0.080
4 0.043 0.063
5 0.033 0.056
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3. GROUND MOTION (NONLIN)

The seismic record: ‘NGA1787_HectorMine_Hector_00’ at California, in October 16 of 1999
is selected from NONLIN @ database. Specifically, in Sections 4.5, 4.6 and 4.7, we study the
response of the building subjected to this earthquake.

Table 3. Selected Ground Motion (Source: NONLIN).

Earthquake Event ~ Comp. PGA (g) Time  Duration

Step (s) (S)

NGA1787 Hector Mine E-W 0.266 0.01 45.31

(California, USA)

0.25
0.2
015
01-
005 F----a----JHIL AL il - B LR e L e e o e S

b ; ;i'.;'::.; ’M’W"‘N‘WWWWM ____

-0.15 1
-0.24

.....................................................................

Acceleration (g)

...................................................................................

' ' '
....................................................................................................................

B e B P T e e e e e
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Figure 3. Hector-Mine accelerograms (Source: SeismoSignal).
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4. DYNAMIC RESPONSE OF SIMPLIFIED FE MODEL

Using the model developed in Section 2, we conduct the same type of analyses described in
examples 1 to 7 of the reference report. To do that, we must first find the stiffness
characteristics of the building. The frame stiffness is obtained using Muto Method. We
estimate the stiffness of each floor and construct the 5x5 stiffness matrix as follows:

k1 = 4382.37 ton/m k2 = k3 = k4 = k5 = 2926.89 ton/m
ks k5 0 0 0 2870 -2870 0.00 0.00 0.00
—Kk5 k4 + ks —kd 0 0 -28.70 5741 -2870 0.00 0.00
K:=| 0 k4 k3+kd k3 0 =| 0.00 -28.70 5741 -28.70 0.00 ~103oﬁ
0 0 k3 k2+k3 k2 0.00 0.00 -28.70 57.41 -28.70 m
0 0 0 k2  kl+k2 0.00 0.00 0.00 -2870 7168

Given the concrete density y. = 2.4 t/m3, we calculate the mass for each floor. Then, the
mass matrix of the building is:

m5 0 0 0 O 8.352 0.000 0.000 0.000 0.000
0 m 0 0 O 0.000 8.352 0.000 0.000 0.000
M= 0 0 m3 0 O |[m=|0.000 0.000 8.352 0.000 0.000 103-kg
0 0 0 m2 O 0.000 0.000 0.000 8.352 0.000
0 0 0 0 m 0.000 0.000 0.000 0.000 9.504

Now, with the mass and stiffness matrix as an input data we can replicate the examples of the
reference report. For the calculations, we will use MATHCAD 15 software. For example 5, we
will use the “NGA1787_HectorMine_Hector_00” record from database of ground motions
included in the NONLIN software.

4.1. Example 1: Modal Analysis & Mass Normalization

For the building presented in Section 2, we solve the eigenvalue problem by using MATHCAD
spreadsheet. The mode shapes are shown in Figure 4. We also notice that the periods are
pretty close to the ones calculated with ETABS (See Table 2). For instance the fundamental
period, T; equals 0.354s.

Dynamic Matrix: D:=M 1-K L = sort(eigenvals (D)) X<j> := eigenvec (D,kj)

(i

Normalized Mode Shapes: ) G X
zlj:zO i=1.N+1 |
ol <7
E—
Frequencies and Eigenvalues: f := Zi-ﬁ
T
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314.2 17.7
2605.7 510

o? =| 61893 |s~ 2 o=| 787 [s 10
0837.7 99.2
12651.7 1125

Modal Matrix:

1.000 —0.900 0.786 -0.537 0.285
0.909 -0.218 -0.629 1.000 -0.764
y =|0.734 0.630 -0.911 -0.326 1.000
0.492 1.000 0.448 -0.719 -0.917
0.206 0.612 1.000 0.946 0.542

Corresponding, graphically, to:

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
5 5 5 \i 3/
| N Ve
4 I N 4 4 \
3 3\ \3 "3 3
Wi ~ L ,

/ \\ N

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
T, =0354s T,=0123s T, =0.080s T, =0.063s T, =0.056s
1 2 3 4 5
‘E‘1 = 1821 Hz ‘E‘2 = 8.124.Hz ‘E‘3 =12521Hz f4 = 15786 Hz ‘E‘5 = 17902 Hz

Figure 4. Modal Shapes obtained (MATHCAD 15).

Finally, we mass normalize the modal matrix as follows:

(\
i:=1.N o=

Then:

6.715469 —6.016821 4.819509 -3.432287 1.850373
6.101420 —1.454833 —3.860190 6.392929 —4.961586
@ =| 4929470 4210218 -5.587877 —2.082162 6.492028 |-10 3-kg_ &
3306779 6.683058 2.747927 —4.596886 —5.954099
1.381723 4.088765 6.134849 6.047370 3.519182
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4.2. Example 2: Uncoupling of the Dynamic Equilibrium Equation
Uncouple the dynamic system of Example 1 using the modal matrix [®].

1.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000
¢ -M-® =| 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 1.000

0.314 0.000 0.000 0.000 0.000 0.314
0.000 2.606 0.000 0.000 0.000 2.606

®"-K-® =| 0.000 0.000 6.189 0,000 0.000 |-10% 2% => % =| 6189 |-10% 29%
0.000 0.000 0.000 9.838 0.000 9.838
0.000 0.000 0.000 0.000 12,652 12652

Then, assuming that there is no damping, the uncouple equations are:

1.000 0.000 0.000 0.000 0.000 nul 0.314 0.000 0.000 0.000 0.000 " 0
0.000 1.000 0.000 0.000 0.000 M2 0.000 2.606 0.000 0.000 0.000 2 0
0.000 0.000 1.000 0.000 0.000 |- n"3 +| 0.000 0.000 6.189 0.000 0.000 |-| N4 -10_3: 0
0.000 0.000 0.000 1.000 0.000 T]"4 0.000 0.000 0.000 9.838 0.000 n, 0
0.000 0.000 0.000 0.000 1.000 T]"5 0.000 0.000 0.000 0.000 12.652 g 0

Or seen as three independent differential equations:

11} - 3 —
n", + 031410 “m = C
11} - 3 —
", + 2.60610 “m, = C
" - 3 —
N, + 6.18910 “my=C

3

n", +9.83810 “m,=C

g + 12.65210 Smg = O

4.3. Example 3: Free Vibration

Case (a) — Find the free vibration response given a unit displacement at each story of
the building at time = 0, without any initial velocity.

The initial displacement vector is: U :=

s
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Multiple degrees of freedom structural dynamics with MATHCAD

Constants bi are obtained from:

188.968
67.437
B:=d -M-Up=| 42599 kg% w
26.418
11.954
1.269 ~0.406
1.153 -0.098
CD<1>~81: 0.932 <D<2>-BZ: 0284 | o
0.625 0.451
0.261 0.276

Then, the response of the system is described by the following equation:

-B

17.727
51.046
78.672 |s
99.185
112.480

0.205
-0.164
—0.238

0.117

0.261

(@
-B4

3

1.269 -0.406 0.205
1.153 -0.098 -0.164
0.932 -cos(wl-t) +| 0.284 -cos(wz-t) +|-0.238 -cos(w3-t) +
0.625 0.451 0.117
0.261 0.276 0.261
response: (1) = &Y B, -cos(w, t
' T 1 ( 1 )
o
0o oz o4  os 0% )
_at
5
0 2 04 06 0% 7
_
.
0 —a1 P p— 0% 1
_at
5
0 a7 04 16 T 1
7
.
0 oz 02 16 T 1

—1.000

-0.091 0.022
0.169 ~0.059

~| —0.085 c1><5>-|35= 0.078
-0.121 -0.071
0.160 0.042

~0.091 0.022

0.169 -0.059

~0.055 -cos(w4-t)+ 0.078 -cos(ws-t)

-0.121 -0.071

0.160 0.042

Mode | Response

T

= Tnitial displacement
= Displacement at 0.18s

Figure 5. Mode 1 Response to initial displacement conditions. Case (a).
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Mode 2 response:  f(t) := <D<2>~Bz-cos(wz-t)
5
T02 04 0.6 0.8
_
5
— = P ;
0.2 04 0.6 0.8
__}'
.
T2 04 0.6 08
__'}'
.
0.2 0.4 0.6 0.8
_
5
0.2 04 06 0.8
-
Figure 6.

Mode 2 Response to initial displacement conditions. Case (a).

Mode 3 response:  f(t) .= @ 3>-Bs~cos(wg-t)
e
02 04 06 038
-
e
02 0.4 0.6 08
_a
5
02 04 06 08
_2'
a
02 0.4 0.6 0.8
_2'
e
02 0.4 0.6 038

Figure 7. Mode 3 Response to initial displacement conditions. Case (a).

Mode 2 Response
5

-2 0

= Initial displacement
e Diisplacement at 0.13s

Mode 3 Response

(V

-2 0

—— Initial displacement
s Displacement at 0.18s
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Mode 4 response:  f(t) := <D<4>~B4-cos(w4-t)

i Mode 4 Response
0 Cll 2 CT:P Eﬁ ? 8 1
-2
2
0 HD 2 —6_4 0.6 0 8 1
_
7
0 0.2 0.4 0.6 0.8 1
_
a7
0 0.2 0.4 0.6 0.8 1
_
a7
0 ?2 H‘U_:i- 0.6 d 8 1
_
-2 0 2

. Tiitial Displacement
s, Thisplacement at 0.13s

Figure 8. Mode 4 Response to initial displacement conditions. Case (a).

Mode 5 response:  f(t) := cD<5>-BS~cos(W5-t)
a Mode 5 Response
} 5
0 02 04 06 08 1
—3
-
0 02 04 06 08 1
—
-
0 02 04 0.6 08 1
_a
-
0 02 04 0.6 0.8 1
_a
-
} T
0 02 04 06 08 1
_at
2 0 2
s Tniitial displacement

s Displacement at 0.18s

Figure 9. Mode 5 Response to initial displacement conditions. Case (a).
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Total Response:

D ©) (3 (4 (5)
f(t) =0 -Bl~cos (w1~t) + O ~Bz~cos (wz-t) + O ~B3~oos(w3-t) + @ -B4-cos(w4~t) + @ -Bs~cos(w5~t)
g Total Response
NP - - ST
0 e 04 7 06 0.8 1
_
-
} t — t
0 2 04 06 0% 1
_
.
t t ‘.’“—F/f\ + |
0 g7 04 06 0 — 1
_
.
0 e 04 7% 08— 1
_
.
0 ez 04 \/\ﬁ/ﬁ e 1
_al

a7

-2

0

e, Triitial displacement
s, Displacement at 0.18s

Figure 10. Total Response to initial displacement conditions. Case (a).

Figures 5to0 9, and 10 show the response for each mode and the total response of the building,
respectively. We notice that the response of the system corresponds to the superposition of
the individual responses from each mode. Supposing that at some instant in time the five
responses are in phase, 83% would be contributed by the first mode, 11% by the second, 4%

by the third, and 2% by the rest.

Case (b) — Find the free vibration response given a displacement condition in the shape
of the first mode, without any initial velocity.

The initial displacement vector is:

Constants bi are obtained from:

148.910
0.000
0.000
0.000
0.000

B = MU = 0.500

1.000
0.909
0.734
0.492
0.206

17.727
51.046
78672 |5~ 100
99.185
112.480
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1.000 0.000 0.000 0.000
0.909 0.000 0.000 0.000
q><1>-|31= 0.734 q><2>-52: 0.000 q><3>-|33= 0.000 c1><4>~|34= 0.000
0.492 0.000 0.000 0.000
0.206 0.000 0.000 0.000

Then, the response of the system is described by the following equation:

U5
1.269
u
41 |1153
U, | = : :
3 |=1]0932 cos(wlt)
0.625
U2
0.261
Ul

Therefore, the total response is dominated by the response of the first mode:

)

f(t) = Q>< -Bl~cos(wl~tj

0.000
0.000
& -B. =|0.000
0.000
0.000

Case (c) — Find the free vibration response given a displacement condition in the shape

of the second mode, without any initial velocity.

—0.900
o _ -0.218
The initial displacement vector is: Uy = \v<2> _| 0630
1.000
0.612
Constants bi are obtained from:
0.000 17.727
149.632 51.046
Bi=d -MUy=| 0000 [kg”® w=y7 =| 78672 |5~ 10%
0.000 99.185
0.000 112.480
0.000 -0.900 0.000 0.000
0.000 -0.218 0.000 0.000
(D<1>~Bl ={ 0.000 ®<2>~BZ =| 0.630 q><3>.53 =| 0.000 CI><4>~B4 ={ 0.000
0.000 1.000 0.000 0.000
0.000 0.612 0.000 0.000

0.000
0.000
@ -B. =| 0.000
0.000
0.000
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Then, the response of the system is described by the following equation:

Us
~0.900
U
4| |-0.218
Us | =| 0630 -cos(w2~t)
U, 1.000
0.612
U

Therefore, the total response is dominated by the response of the second mode:
2

f(t) == o -Bz.cos(w ~tj

2

Conclusion: We can continue trying an initial displacement that follows the n'" mode shape,
and will get that only the n'" mode contributes with a 100% of the response.

4.4. Example 4: Forced Vibration (Impulse)

In this example, the building shown in Section 2 is subjected to an explosion. The air pressure
wave caused by the explosion varies in the form shown in Figure 11. Damping of the structure
is estimated to be ¢ = 5% of critical.

t=0,01s..08s 6 T T T T

q() = |50t £ t<0.1s
7s— 20t f O.ls<t<04s
St—3s f 04s<t<06s
0 i t>06s

©

Figure 11. Impact Load (Pressure in kPa).

The explosion occurred far away, therefore we can assume that the pressure applied to the
building doesn’t vary with height and is applied uniformly to the building fagade. Then the
forces at each level can be determined as follows:

force5(t) := (5.52)-(1.5 q(t) 165 0637
forced (t) := (5.52)-(3) q(t) 33 0.370
force3 (t) = (5.52)-(3) q(t) force := @' | 33 |-kg™> =] 0.005| *q(t)
force2(t) := (5.52)-(3) q(t) 33 0.167
forcel (t) := (5.52)-(3.5 q(t) 385 0.020
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Then, the uncouple equations are obtained as follows:

'y + 280 + 6012'ﬂ1 = force;-q(t)
', + 2&0pM', + 0322'712 = force,-q(t)
Ny + 28031’y + 6032'Tl3 = forcez-q(t)
', + 2804m, + 6042'T14 = force,-q(t)

" . 2
n's + 2:&- 051 5t 05 M= force;-q(t)

&

dy

noy=0 M0=20

function(v) = |50y f v < 0.1
T—-20y f 01=y=04
Sy—-3 if 04<v=06
0if y=06

,;T](}') + E-E-wl-(d—T](}')J + wlz-l](}') = forcel function (y)
- d

\

M := Odesolve(y,¥f)

Figure 12.Mathcad Algorithm to solve Example 4.

In these five equations ¢ = 0.05. The response of each of the uncoupled equations was
obtained employing Ordinary Differential Equation Solver of Mathcad (Figure 12). The first
2.5s of response for each mode are shown in Figure 13:

(D) — T, = 03545

0.02

l}_l}l-/\
My (®) A A AN NN

—0.01

-0.02
Mo — T, = 01235

-

1x10° T
5107 %
Thit
D() o 0 'ﬁ'vnu"? } t( )
0 v"lur' wd 1 5 SeC
_se10 2
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m3(t) — T, = 0.080s

510 °F

() t(sec)

—5x10” *

ni(®) — T, = 0.063s

11075
5107 f
() YOS " .
0 ‘Ul(-f‘ 1 5 t(sec)
“se107 L
5(t) T, = 0.036s
1107
5210 %
ns(t) ] LA
0 WUU“VUW” | > t{sec)
“se0 2

Figure 13. Response in time for the uncoupled degrees of freedom.

The response at some instants are presented below:

t:=0,0025.04

t= M) = (D) = ns(t) = ne(t) = ns(t) =
0.000 0.00-100 0.00-100 0.00°100 0.00°100 0.00-100
0.025 8.15°10-5 4.30-10-5 0.00°100 1.49:10-5 0.00-100
0.050 6.24-10-4 2.62-104 4.23-105 4.83-105 0.00-100
0.075 1.98:10-3 5.82-104 5.99-10-5 5.73:10-5 0.00-100
0.100 4.35-10-3 8.00-104 6.85°10-5 8.61-10-5 0.00-100
0.125 7.59-10-3 8.13-10-4 8.30°105 8.53'10-5 0.00°100
0.150 1.10-10-2 5.91-104 5.90°10-5 5.49-10-5 0.00-100
0.175 1.37°1072 3.61-104 437105 7.13-10°5 0.00-100
0.200 1.50-102 3.38-104 5.57-10°5 4.55-10-5 0.00-100
0.225 1.46°10-2 4.33-10-4 3.99-10-5 4.14-10-5 0.00-100
0.250 1.24:10-2 4.10-10-4 2.18'105 4.05'10-5 0.00-100
0.275 8.73-10-3 2.20-104 2.92°10-5 1.80°10-5 0.00-100
0.300 4.13-10-3 4.27-10-5 1.92-10-5 2.33:10-5 0.00-100
0.325 -6.69-104 1.77-10°5 0.00-100 0.00-100 0.00-100
0.350 -4.94:10-3 6.49-10-5 0.00°100 0.00-100 0.00-100
0.375 -8.10-10-3 1.78-10-5 0.00-100 0.00-100 0.00-100
0.400 -9.78-10-3 -1.43-10-4 -2.04-10-5 -2.06°10-5 0.00-100
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The structure displacements are obtained from:  {U} =[®]{n}

For example, for instant t=0.2873 s, displacements in m for each mode and total values are:

ti :=0.287: n, = 14 (ti)-mi n,:= no (ti)-mi ng = M3 (ti)-mi n, = M4 (ti)-mi ng = s (ti)-mi

6.715 —6.017 4.820 —3.432 1.850 6.537947
6.101 —1.455 —3.860 6.393 —4.962 0.117964
@ —| 4929 4210 5588 —2.082 6.492 |10 ° n = 0.028124]10 .
3307 6.683 2.748 —4.597 —5.954 0.020149
1382 4.089 6.135 6.047 3.519 0.002970
4.327 4.327
3.972 3.972
U:=d.n=|3255|10 >mi OF U, := <D<1>~n1 ; CD<2>-n2 ; cD<3>-n3+ <D<4>~n4+ <D<5>-n5 —| 3255 |10
2237 2237
0.982 0.982

To obtain the forces caused by the explosion at the same instant for all the structure, the
structure stiffness matrix is multiplied by the displacements obtained: {F}= [KE]{[}

101.690 28.703 -28.703 0.000 0.000 0.000

104.374 -28.703 57.406 -28.703 0.000 0.000
F=K.-U=| 8586l 10_3-1(1\' K=| 0.000 -28.703 57.406 -28.703 0.000 103-w

68.414 0.000 0.000 -28.703 57.406 -28.703

61.722 0.000 0.000 0.000 -28.703 71.679

This operation can be made for each mode independently in order to obtain displacements
of the structure for each mode:

o =6V Um0, U@ 6, Um0, U 0.
4,3905379 —0.0709768 0.0135543 -0.0069157 0.0005496
3.9890760 -0.0171618 —0.0108563 0.0128810 —-0.0014738
Unod =| 3.2228612 0.0496654 —0.0157152 —-0.0041953 0.0019284 10 5-m1
2.1619546 0.0788360 0.0077282 -0.0092622 —0.0017686
0.9033632 0.0482327 0.0172535 0.0121847 0.0010453

The contribution to the applied force caused by each mode, in kN, at instant t=0.2873 s, is:

115231 —15.447 7.007 -5.682 0.581
104.695 —3.735 —5.612 10.584 —1.557

Fpoq = K-Upoq = | 84.585 10.809 —8.124 —3.447 2.038 |-107 *-kN
56.741 17.157 3.995 -7.610 —1.869
26979 11.945 10.149 11392 1257
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4.5. Example 5: Base Excitation

In this section, we study the response of the building to the recorded accelerations
‘NGA1787_HectorMine_Hector_00’ at California, in October 16 of 1999 (See Section 3 for
details). We are going to use mass and stiffness matrixes calculated before, as well as the
resulting matrixes due to the mass normalization.

Base dynamic excitation equilibrium equations have the following form:
[M]{T}+ [K]{T} = - [M][y]{%.}
The modal participation factors are obtained from:

—-188.968
—67.437
—42.599
—26.418
-11.954

o= (@T-M-r)kg_ 0.500 _

The total effective mass is computed as a 2i

0.8321 ~1.2690
(az)j 0.1060 17197
== r=|00423 Teum = | —1.9810
2 0.0163 2.1499
0.0033 22275
Then:
2 oMyt
Mode oy oy oMot accumulated
1 188.968 35708.793 0.8321 0.8321
2 67.437 4547749 0.1060 0.9381
3 42.599 1814640 0.0423 0.9804
4 26418 697915 0.0163 0.9967
5 11954 142,904 0.0033 1.0000

Figure 14. Mass Participation Ratios per mode.

Now we modify the dynamic equilibrium equations by pre-multiplying by [®]" as we have
done in the former examples. Then, the uncoupled vibration equations are:

0’ + 2800 + 0 m, = ~188.968X(1)

) 17.727
n"2 + 2-§-c02~n'2 + 0y M, = —67.437x(t) 51.046
N+ 2809y + 05 My = 4250X(1) © = [he =| 78672
) 99.185
n"4 + 2-§'m4~n'4 oM, = —26.418x(t) 112.480

n"5 + 2-§~m5~n'5 + 0)52~n5 = —11.954x(t)
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Built time and force vector from Excel Spreadsheet of “NGA1787 _HectorMine” record.

At = Time2 =0.010

(Time] _
= g
Ntimes = mex( Time)

=4531
At
Worksheet
i = 1 Ntimes
Set Newmark-Beta method parameters:
1 1
o= ,_-’ ['} = E
1 ~ 1 .
apg = ——-o a) = a = —— a3 = — —
') / f 2
8ol B-At B-At B
7 “
=< - = At — -1 = At(1 -~ = At
aq 5 as [2[_} J ag ( i a |
For mode 1:
2
m=1 c=2£w k=w Force = -0y -gravity-Acc

ke =k + ap-m + ajc = 40668 778
=20 Mp=10 N = -m~ ! {kmo+cmp- 0] = 0.000

Step by step numerical integration:

Disp1 = 1]<1> “— 1

S} .
T] — T]D

(0

Nt <N
for i€ 2. Nypes + 1

]<i—1> . T].<1'—1> i T]..<i—1>] . C-(ﬂ1-ﬂ<i_1> G- ..<i—1>]

Feff « Forcei +m -(_a.D-T +agm + a5

n(l) kg | Feff

D ﬂo'(T]G) B T]<i—1> ) _ ﬁ2_”.<i—1> B

a- 3

Ji-1)
n 3]
2 -1 Ji-1 )

N« + agn +a; 1"

return 1)

Figure 15. Newmark-Beta Method — Mathcad Algorithm for example 5.

In the five equations shown before, { = 0.05. The response of each of the uncoupled equations
was obtained employing the Newmark-Beta Method (Figure 15). Then, the first 20 seconds of
response are shown in the following graphs.

Page 22 of 39



Multiple degrees of freedom structural dynamics with MATHCAD

T T T T T T

0.02[- N 0.01 1
. T . T
Disps 0 Disps 0

—0.021 N -0.01 T

| 1 1 | | |

0 5 10 15 20 ] 5 10 15 20
Tme Tme

—-0.01 T

Time
Figure 16. Response of the uncoupled coordinates.

The following table contains the response at selected instants, and the extreme values
obtained for each uncoupled degree of freedom during the first 20 s of response.

Table 4. Maximum and Minimum Displacement Response of the uncouple coordinates

n2
(m) (m) (m)
5.09 -0.1357 -0.0338 -0.0193 -0.0068 -0.0023
5.10 -0.2800 -0.0545 -0.0189 -0.0069 -0.0024
5.50 -0.5484 -0.0190 0.0079 0.0020 0.0009
5.99 1.1679 0.0695 0.0200 0.0079 0.0027
6.00 1.2599 0.0628 0.0192 0.0084 0.0025
6.37 0.5746 -0.1127 -0.0085 -0.0057 -0.0019
6.50 -0.6482 -0.0977 -0.0107 -0.0021 -0.0008
7.00 -0.0166 0.0544 0.0195 0.0061 0.0021
7.50 0.6831 -0.0034 -0.0035 -0.0011 -0.0005
8.00 -0.8049 0.0309 0.0034 0.0012 0.0003
8.34 -0.1372 0.0860 0.0021 0.0028 0.0001
8.50 0.6018 -0.0386 -0.0033 -0.0012 0.0003
9.00 -1.1298 0.0138 -0.0031 -0.0001 0.0001
9.50 1.7025 0.0263 0.0032 0.0019 0.0004
10.00 1.3255 -0.0361 0.0028 -0.0001 -0.0001
10.99 3.1146 0.0116 0.0053 0.0021 0.0008
11.51 -2.5363 -0.0323 -0.0007 -0.0013 -0.0005
max 3.1146 0.0860 0.0200 0.0084 0.0027
min -2.5363 -0.1127 -0.0193 -0.0069 -0.0024
t(max) 10.99 s 8.34s 5.99s 6.00 s 5.99s
t(min) 1151s 6.37 s 5.09s 5.10s 5.10s
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The structure displacements are obtained from: ~ {U} =[®]{n}

0.00672 —0.00602 0.00482 —0.00343 0.00185
0.00610 —0.00145 —0.00386 0.00639 —0.00496
@ =| 0.00493 0.00421 -0.00559 —-0.00208 0.00649
0.00331 0.00668 0.00275 —0.00460 —0.00595
0.00138 0.00409 0.00613 0.00605 0.00352

t = l Ntimes
mod1, := cI><1>-(Disp T) mod2, := <D<2>-(Disp T) mod3, := ®<3>-(Disp T)
t 1 t t 2 t t 3 t
m0d4t = <I><4>-(Disp4T) mod5t = d)<5> -(DispST)
t t

U := (modl + mod2 + mod3 + mod4 + mods)-mt

For example, for instant t = 3.08 s (step=308), displacements in meters contributed by each mode are:

—0.00135
-0.00121
—0.00096|m
—0.00064
—0.00028

step

Also, forces are calculated as follows: F; := K-U,

This operation can be made for each mode independently, thus obtaining the contribution of the total
internal forces caused by each one:

(Fmodl)t = K~modlt-m1 (Fmodz)t = K~mod2t-m1 (Fmod3)t = K~mod3t-m1
(Fmod4)t = K-mod4t-m1 (Fmods)t = K-mod5t-m1

Then, the force contribution in kN for each mode at instant t = 3.08 s, is:

-3.499 -0.304 -0.494 0.197 -0.059
-3.179 -0.074 0.396 -0.366 0.158
Fmodggg = | —2.568 0.213 0.573 0.119 -0.207 |-kN
-1.723 0.338 -0.282 0.263 0.189
-0.819 0.235 -0.716 -0.394 -0.127

Total forces in kN for instant t = 3.08 s, are:

—4.159
-3.064
F308 =| -1.869 |-kN
-1.214
-1.822
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Base shear contributed by each mode, also in kN, at instant t = 3.08 s, is obtained from:

(V)=o) (=)

=1 V.

onel7j : t

= one-Ft

V30 := One-FModzgg = (—11.787 0.408 —0.523 —0.181 —0.046)-kN

The total base shear in kN at instant t = 3.08 s, is obtained as:

V —

208 = —12.129kN

Likewise, the overturning moment contributed by each mode, is obtained from:
{p}={n}" {7}

h:=(16 13 10 7 4)-mi Momentt:zh-F

t
MOl’TEnt:gog = h'Fm0d308 = (—1383 -04 -19 0.2 —Ol)kNmi

The total overturning moment in KN - m at instant t = 3.08 s, is obtained from:

Moment 308 = —140.867kN-mi

The same procedures can be used to obtain the response at any instant. If this is performed
systematically, results such as shown in Figure 17 are obtained. There the displacement
response for the roof of the building is shown for the first 20 sec. of the EW component of
Hector-Mine record. From this figure, it is evident that the significant portion of the response
is contributed solely by the first two modes, with thee second contributing marginally.

Roof Displacements

n.02F T T -]
0.01F .
Mode 1 Usg 0 .
—0.011 .
—0.02 I ! | -
0 5 10 15 20

Time
[} [}? (. T T T —]
0.01F .

Mode2 U& 0 ~

—0.01 .
-0.02C I ' ' —
0 5 10 15 20

Time

max( U6 ) = 0.01703m

min( U6y ) = —0.02092m

max(U6,) = 0.00052m

min( U6, | = —0.00068 m
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0.02

0.01

Total U6 0

—0.01

—0.02e

Lh

(=1
w [

Ln

Lh

Time

L

max(U6;) = 0.00009 m

min( U6; ) = —0.00010m

max(U6y) = 0.00003 m

min( Uy ) = —0.00002m

max(U6s) = 0.00000m

min( U6s ) = 0.00000m

max(U6) = 0.01684 m

min(U6) = —0.02087 m

Figure 17. Roof displacements from each mode and total response.

Figure 18 shows the variation of the base shear of the building during the first 20 sec. of
response to the EW component of Hector-Mine record.

Base Shear
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Figure 18.

Base shear of the structure.

max(V) = 156.9.-kN

min(V) = —189.1 kN
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Figure 19 shows the variation of overturning moment for the first 20 sec. of response to the
EW component of El Centro record.

Overturning Moment

2x1[]3_ -
tomer 10T 4 max(M) = 1763.0kN-mt
Vipmen!
(1N m) 0 7 min(M) = -2174.2-kN mt
— 1107 —
3— —
~2x10 | | |
0 5 10 15 20

Time

Figure 19. Overturning moment of the structure

4.6. Example 6: Modal Spectral Analysis

In this section, we rework Example 5 using the displacement response spectra of the
Hector-Mine record. The results are the same up to the point where the dynamic
equilibrium equations were uncoupled.

0"+ 280pm' + @pon, = ~188.968X(1)

, 17.727
1’]"2 + 2&"3211'2 + 9 nz = —67437X'(t) 51.046
rIII3 + 2~§'0)3'11I3 + c032'113 = —42.599x(t) O = Mabe =| 78672

, 99.185
n"4 + 2.&.0)4.1/]'4 + oy n4 = —26418)('(1:) 112.480

" . 2 .
n'g + 2:&-m5M 5+ 05 Mg = —11.954X (1)

The response for each of the uncoupled equations is obtained using the displacement
response spectra for the EW component of the Hector-Mine record. Figure 20 shows the
Displacement Response Spectrum for the record of interest obtained using SeismoSignal
software. Table 5 shows the period for each mode and the displacement read from the
spectrum for each period.

Displacement Response Spectrum - Hector Mine
st L et L I

| PRl R G R N s R fe e A
o e

il e w0 Sl ) e——

...................................................................................

Response Displacement [cm)

0 : : :
0 1 2 3
Feriod [zec]

Figure 20. Displacement response spectrum for Hector-Mine NS record.
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Table 5. Values read from the Displacement Spectrum.

Vode Period T sd (Ti, &) ‘
(s) (m)
1 0.359 0.015850
2 0.114 0.001684
3 0.064 0.000646
4 0.043 0.000383
5 0.033 0.000274

With this information, it is possible to compute the maximum displacement that the
uncoupled degrees of freedom can attain:

Table 6. Maximum displacement values for the uncoupled degrees of freedom.

Sd (Ti, &i) (Ni)max= @i xSd (Ti, &i)
(m) (m)
1 188.968 0.015850 2.9951
2 67.437 0.001684 0.1136
3 42.599 0.000646 0.0275
4 26.418 0.000383 0.0101
5 11.954 0.000274 0.0033

Maximum modal displacements (m)

The maximum displacements for each mode are obtained from:

[Uumd]: [m][Hmod]: [{Ufﬁd} ‘ {Uﬁgd} ‘ ‘ {I‘Tf:jd }:I

2.995 0.000 0.000 0.000 0.000
0.000 0.114 0.000 0.000 0.000
Hmod. . ™= Nmax. Hmog =| 0.000 0.000 0.028 0.000 0.000 | m
0.000 0.000 0.000 0.010 0.000
0.000 0.000 0.000 0.000 0.003

Then, the values for [Umod] are:

0.020114 —0.000683 0.000133 —0.000035 0.000000
0.018275 —0.000165 —0.000106 0.000065 —0.000016

Unod = ©-Hiog = | 0.014764 0.000478 —0.000154 —0.000021 0.000021 |m
0.009904 0.000759 0.000076 —0.000047 —0.000020
0.004138 0.000464 0.000169 0.000061 0.000012

Figure 21 shows the maximum lateral displacements for each mode.
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Mode 1 Mode 2 Mode 3
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Figure 21. Maximum lateral displacements for each mode.

Maximum story drift as a percentage of story height (%h)

Using the displacements just computed the story drift for each story and mode could be
computed as the algebraic difference of the displacement of two consecutive stories. Drift is
usually expressed as percentage of the inter-story height. Table 7 and Figure 22 show the
story drifts for each mode.

Table 7. Maximum displacement values for the uncoupled degrees of freedom.

Story Mode 1 Mode 2 Mode 3 Mode 4 ‘ Mode 5
5 0.0613 -0.0173 0.0080 -0.0033 0.0007
4 0.1170 -0.0214 0.0016 0.0029 -0.0013
3 0.1620 -0.0094 -0.0076 0.0008 0.0014
2 0.1922 0.0098 -0.0031 -0.0036 -0.0010
1 0.1379 0.0155 0.0056 0.0020 0.0004
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
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Figure 22. Maximum story drift (%h) for each mode.

Maximum modal lateral forces (kN)

To obtain the maximum modal lateral forces imposed on the structure by the ground motions
the stiffness matrix of the structure is multiplied by the modal lateral displacements. Results
are obtained in kN.

[Fmod]:[KE][Ug?:d | U:o}d | | Ufﬁd]:[Fxfﬁd | F:E:?d | F.L?d

528 -149 69 -29 06
480 -36 -55 53 -1.7

Fmod := K-Upoq =| 387 104 -79 -1.7 2.2 |-kN
260 165 39 -38 -21
124 115 99 57 14

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

P

|/ | \ {
I/ | 1\ N |
/ . .

0 50 100 =50 0 50 =15 0 25 -15 0 15 -13 0 15

Modal Forces(kIN) Modal Forces(kIN) Modal Forces(kN) Modal Forces(kN) Modal Forces(kIN)

Figure 23. Maximum modal forces for each mode (kN).
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Maximum modal story shear (kN)

The maximum modal story shear is obtained from: v =3FR’
k=i

Table 8. Maximum modal values for story shear.

Story Vlmod Vzmod Vsmod V4mod VSmod
(KN) (KN) (KN) (kN) (kN)
5 52.789 -14.870 6.856 -2.853 0.640
4 100.752 -18.466 1.365 2.461 -1.077
3 139.502 -8.061 -6.584 0.730 1.170
2 165.496 8.456 -2.675 -3.091 -0.891
1 177.855 19.955 7.255 2.630 0.495
0 177.855 19.955 7.255 2.630 0.495
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

3

1\ f f )

\

1] 125 250 —30 0 30 —-25 1] 25 -13 1] 15 -15 o 15
Story_shear(kIN) Story_shean(kIN) Story_shear(kIN') Story_shear(kIN) Story_shean(kIN)

Figure 24. Maximum story shear for each mode (kN).

Base shear (kN)

- T
The base shear in kN for each mode is obtained from: {‘m} = il} [Fnud]

onel’j =1
Vmod :=one-Fmod = (177.9 200 7.3 2.6 0.5)-kN

It is the same value obtained for the first story when the story shears were computed.

Overturning moment (kN - m)

n

The overturning moment for each story is obtained from: M =3 (b, —h;)-F?

k=it
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Table 9. Maximum story modal overturning moment.

M4mod
(kN-m)
5 0.0 0.0 0.0 0.0 0.0
4 316.7 -89.2 41.1 -17.1 3.8
3 762.9 -155.4 28.8 6.2 -4.5
2 1297.6 -148.4 -14.8 3.2 5.7
1 1872.1 -73.5 -11.1 -17.5 -3.1
0 2442.7 20.9 40.4 7.5 2.5
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
5 5 5
. F, ] . ] ]
4 \ 4 % \ %
3 \ 3 3 3\
I \ i <
N , N |
0 1250 2500 -200 -75 50 —100 ] 100 - 50 0 50 - 50 0 50
Overturning Moment Overturning Moment Overturning Moment Overturning Moment Overturning Moment
(kN m) (kN m) (kN m) (kN m) (kN m)

Figure 25. Overturning moment for each mode (kN-m).

The maximum overturning moment at the base, in kN - m, contributed by each mode can be obtained

from:

h:=(16 13 10 7 4)-mi

M_base mog := h-Fmod = (2087.0 —~19.0 259 2.3 1.5)-kN-mi

This is the same result obtained for the overturning moment previously.

In Example 5 the step-by-step response of the building was obtained for the same earthquake
record used to compute the spectrum in this example, it is interesting to make some
comparisons of the results obtained in both cases. Table 10 lists the values obtained in

Example 5 and Example 6 for each of the uncoupled degrees of freedom.
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Table 10. Comparison of values obtained in Examples 5 and 6.

Uncoupled Example 5 Example 6
degree of N (Mmax= 0 xSd (Ti, &)
freedom (m) (m)
max 2.53626 10.99
n1 . 2.99514
min -3.11463 11.51
max 0.11266 8.34
n2 : 0.11356
min -0.08605 6.37
max 0.01932 5.99
n3 : 0.02752
min -0.01998 5.09
max 0.00688 6.00
n4 ; 0.01012
min -0.00841 5.10
max 0.00239 5.99
nod ; 0.00328
min -0.00266 5.10

In Table 10, we observe that the results are essentially the same, and the differences obey to
precision rounding in the numerical procedures because the algorithm employed to obtain the
response is different from the one used to compute the spectrum.

It is important to notice that the maximum values for each uncoupled degree of freedom in
Example 5 were obtained at different time instants. Also, note that the maximum value
obtained from the spectrum in some cases correspond to the maximum value and in some to
the minimum obtained in the step-by-step procedure (Example 5), this is because the value
carried by the spectrum is the absolute value.

The maximum lateral displacement of the roof obtained in Example 5 was 0.017 m. The
algebraic sum of the values obtained for the MDOF system in Example 6 is 0.020 m, and the
sum of the absolute values is 0.021 m. The algebraic sum of the modal response usually
underestimates the value obtained using a time step-by-step procedure and the sum of the
absolute modal values overestimate it. In this case, we observe that both values are
overestimating the displacements, this is probably because the displacement response
spectrum is very sensitive to small periods, like for this example.

The maximum value for the base shear of the building obtained in Example 5 using a time
step-by-step procedure was 157 kN. The sum of the maximum modal base shears obtained
in Example 6 was 208 kN. This value overestimates the time step value by a factor of 1.3. In
the time step procedure of Example 5 the base shear is controlled by the first mode with the
other modes contributing very little when the first mode peak occurs. For the overturning
moment at the base in Example 5 a value of 1,763 kN - m was obtained In Example 6 the
algebraic sum of the maximum modal values is 2,098 kN - m, and the sum of the absolute
values is 2,136 kN - m. For the overturning moment, the contribution of the higher modes is
small in both examples.
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4.7. Example 7: Modal Combination (SRSS)

In this section, we apply the square root of the sum of the squares SRSS procedure to the
results obtained in Example 6. The use of the SRSS technique produces the following results:

Maximum credible lateral displacements (m)

Maximum credible lateral displacements (m) (U2} ={¢"} (),

0.020114 —0.000683 0.000133 —0.000035 0.000000
0.018275 —0.000165 —0.000106 0.000065 —0.000016
Umog =| 0.014764 0.000478 —0.000154 —0.000021 0.000021 |m
0.009904 0.000759 0.000076 —0.000047 —0.000020
0.004138 0.000464 0.000169 0.000061 0.000012

We now apply the SRSS procedure to each of the row of previous matrix.

USRSS = |for iel.N
Usrss . <= 0 0.02013
]
. 0.01828
for j el.N
[JSRSS = 0.01477 m
Usrss, < Usrss, + (Umodi j) 0.00993
0.00417
return Ugrss 05
This value compares fairly well with the values obtained from the
step-by-step procedure in Example 6. max(U6) = 0.01684m

Maximum credible story drift

The modal spectral story drifts are computed from the values shown in [Umed]. The following
result are obtained:

Drift:= |for iel.N -1
for j e1..N 0.0018 -0.0005 0.0002 -0.0001 0.0000
Driﬂi,j « Um"di,j - U”‘Odi+1,j 0.0035 —-0.0006 0.0000 0.0001 -0.0000
Drift = | 0.0049 —0.0003 —-0.0002 0.0000 0.0000 |-mt
0.0058 0.0003 -0.0001 —0.0001 —0.0000
0.0041 0.0005 0.0002 0.0001 0.0000

for kel..N
D”ﬂN,k “— UmOdN,k

return Drift
DriﬂSRSS = |for iel.N
DriﬁSRss_ «0 0.06
1
for j e1l.N Drifig 012
e l. Tiikpec
) Aspss = —— _| 0.16-%
DriﬁSRss_ — DriﬁSRss_ + (Drlftl ]) H 0.19
1 1 5 °
0.14
return Driftgrsg 05
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Now, for the sake of discussion, lets compute erroneously the story drift from lateral
displacements already combined, {Usrrs}. The following are the results for story drift as a
percentage of the story height (%h) thus computed:

Wrong_Agrgs == |for iel.N -1
_ USRssi - USRssi+l 0.06
DrlftSRSSi <— H 0.12
Wrong_ASRss =|0.16 |- %
USRSSN

DriﬂSRSSN <« 0.19
0.14

return Driftgrsg

Maximum credible story forces (kN)

The maximum modal spectral forces were obtained for each mode in Example 6 multiplying
the stiffness matrix by the modal spectral displacements of each mode, obtaining there the
following forces in kN:

52.789 -14.870 6.856 -2.853 0.640
47962 -3.596 -5.491 5315 -1.717
Fmod =| 38.750 10.405 -7.949 -1.731 2.247 |-kN
25994 16.517 3.909 -3.822 -2.061
12360 11499 9931 5.721 1.386

A sensible recommendation is to keep these modal forces separated by mode and never
combine them using SRSS. This way the danger of using the combined forces in the
computation of story shears and overturning moments is avoided.

Maximum credible story shear (kN)

P

i) _ (i)

Story shear modal spectral values: ~ Vi" = 2K
Z

52789 -14.870 6.856 —2.853 0.640
100.752 -18.466 1.365 2.461 -1.077
139.502 -8.061 -6.584 0.730 1.170
VShear = -kN
165.496 8.456 -2.675 —3.091 -0.891
177.855 19.955 7.255 2.630 0.495

177.855 19.955 7.255 2.630 0.495

Applying the SRSS procedure we obtain:

VSheargrgs = | for i e 1..N

VShearsgss . < 0 55.348
1
for j e1..N 102.474
2 VShC'dTSRSS =| 139.896 k]\
VShearSRSSi « VShearSRSSi + (VSheari’j) 165.765
179.138

return VShearggss 05
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Maximum credible base shear (v, }={1}"[F...]

Vmod = (177.855 19.955 7.255 2.630 0.495)-kN
0.5

N
Varss 1= Z (Vmo <i>)2 = (179.138)-kN
i=1

Maximum credible overturning moment

Modal story overturning moments: My = RZI[(hk ~h;)- ij]
=
0.000 0.000 0.000 0.000 0.000
316.736 —89.222 41.135 -17.121 3.843
762.879 —155.407 28.755 6.208 —4.540
Mmod = -KN-mi
1297.634 -148.372 -14.844 3.206 5.712
1872.104 —-73.452 -11.143 -17.533 -3.143
2442.749 20.912 40416 7.519 2.502
Applying the SRSS procedure we obtain:
M = |foriel.N+1
SRSS € + 0.0
Msrss; « 0 332.1
for j el.N 779.1 .
Mggrss = m-kN
MSRSS. < MSRSS. + (MmOdI J)Z 1306.2
: ! ’ 1873.7
0.5
return Mgrss 24432

Maximum credible base overturning moment Mo} = {0} [Fou]

M_base noq = (2087.0 —19.0 259 2.3 1.5)-kN-m
0.5

N A2
M_base grgg := Z (M_base m0d<'>) =(2087.3) mkN
i=1

Static equivalent lateral forces

These forces, in kN, are computed using the story shears obtained by using the SRSS

procedure:
55.348
. 102.474
Fr ={:_L,,_‘_m, ;Zi j::: VShearspss = | 139.896 |-kN
i i 165.765
179.138
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Fstate = |Fstate | < VShearggss L 55.348
. 47.126
for ie2..N ‘ )
Ferare < VShear — VShear Fsie = | 37422 |-kN
Statc | SRSS | SRSS | 55 868
return Fseatic 13.374

The overturning moment, in KN-m, computed for these equivalent lateral loads is:
h =(16.000 13.000 10.000 7.000 4.000) m
MStatic = h'FStatic = 2107.0kN-mi

The overturning moment, in this case, is slightly larger than

the one obtained using the SRSS procedure with the modal M_base grgs = (2087.287)-kN-mi
spectral overturning moments.
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5. COMMENTS

In Example 5 the step-by-step response of the system to the Hector-Mine record was
computed, in Example 6 the individual modal spectral responses were computed for the
spectrum of the same record — thus permitting the computation of the absolute maximum
spectral response —, and in Example 7 the SRSS procedure was applied to the results
obtained in Example 6. Now some comparisons can be made between the results of the three
examples.

Table 11. Comparison of the results from Examples 5, 6, and 7.

Example 5 Example 6 Example 7
Parameter Step-by-step  Modal Spectral = Modal Spectral
Analysis Absolute value SRSS
Roof lateral 0.017 m 0.021m 0.020 m
displacement
Base Shear 157 kN 208 kN 179 kN
Overturning 1763 kN-m 2136 kN-m 2087 kN-m
Moment

In this case, we observe that both the modal spectral absolute and SRSS value are
overestimating the displacements, base shear and overturning moment. This is probably
because the displacement response spectrum, as mentioned before, is very sensitive to small
periods. However, we can say that, for this case the match between the step-by step analysis
values and the values obtained using the SRSS procedure is reasonable good.

If we compare our results with the examples presented in the reference report we find that the
response in terms of displacements, forces and moments, are very small. This is because the
structure selected for this case is very stiff and has a small mass (only self-weight has been
considered). Then, the fundamental period is small T; = 0.354s, and so the response. For
instance, the spectral displacement for a structure with period of 1.0 and 0.35s are 1.6¢cm and
8.5cm respectively (5.3 times greater). This is a reason why we got small response values.

Therefore, we recommend to replicate the example with a less stiff structure, or increase the
mass to have a fundamental period greater than 1 second; so that the response contribution
of each mode will be more significant, and the comparisons between the step-by-step
analyses and modal spectral analysis would be more reliable.

An additional recommended exercise, would be to perform the time history analysis of the
model in ETABS. So we can compare the results and accuracy of the theorical time stepping
method called Newmark’s Beta Method with the linear modal time history analysis performed
using ETABS software.
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