The Mathcad Challenge

Overview

At the conclusion of each of the three conference sessions, the presenter will provide a clue to the audience. Collect all three clues, answer the problem statement below using Mathcad Prime 1.0, and email your worksheet to mathcadchallenge@ptc.com.

Prize: 5 people will each win a $\mathbf{\$ 1 0 0}$ AMEX gift card!

Solution

The winners will be chosen based on the accuracy of solution; Mathcad Prime 1.0 must be used to calculate the solution. Out of all correct answers, 5 winners will be selected at random. The deadline for submission is Monday, April 18 at 11:59PM EDT.

The Challenge Problem Statement

A train leaves New York at 9:45am EDT, heading for San Francisco...
The train system consists of a straight-line tunnel connecting the two cities. The train uses a MAGLEV (magnetic levitation) system consisting of permanent magnets in the tracks and superconductive electromagnets in the train. To accelerate it uses a combination of electromagnetic force and gravitational pull of the Earth. The deceleration comes also from the gravitational pull of the Earth, as well as aerodynamic drag of the train.

Problem: Compute the arrival time in San Francisco assuming constant propulsion force.

Simplifying assumptions:

- We are ignoring the cost, or the feasibility, of building such a system
- We are assuming that the gravitational pull of the Earth is constant throughout the tunnel
- We are assuming the air in the tunnel is at standard atmospheric conditions (see simplified formula on next page)
- We assume that the resistance of the tracks is zero, so that all of the energy loss comes from the aerodynamic drag
- Use the constants provided on the next page to solve the problem

Constants:

$$
\begin{array}{l|l|}
\hline \rho_{0}:=1.225 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \text { Density of air under standard conditions (1) } \\
\hline R_{\text {earth }}:=6371.0 \mathrm{~km} & \text { Mean radius of the Earth (1) } \\
\hline
\end{array}
$$

$L a t_{N . Y}:=40.75339^{\circ} \quad$ Latitude and longitude of the N.Y. train station (2)

$$
\operatorname{Lon}_{N . Y}:=-73.97715^{\circ}
$$

$$
L a t_{S . F .}:=37.77643^{\circ} \quad \text { Latitude and longitude of the S.F. train station (2) }
$$

$$
\operatorname{Lon}_{S . F:}:=-122.39433^{\circ}
$$

$$
g=9.807 \frac{m}{s^{2}} \quad \text { Gravitational constant (as defined in Mathcad) }
$$

Formulas:

$$
F_{d}(v):=\frac{1}{2} \cdot A_{\text {train }} \cdot \rho_{0} \cdot v^{2} \cdot C_{d} \quad \text { Force required to overcome air resistance }
$$

References: (1) Wikipedia (2) Google Maps

Three Clues (Input Parameters)

The 3 Input parameters will be revealed as "clues." One clue will be revealed after each conference session at PlanetPTC Virtual - Mathcad. 1:00 pm - 5:00 pm EDT on April 14 ${ }^{\mathrm{th}}$.

1. Mass of the train $\left(\mathrm{m}_{\text {train }}\right)=165$ metric tons
2. Effective drag coefficient of the train $\left(\mathrm{C}_{\mathrm{d}}\right)=0.09$
3. Effective frontal area of the train $\left(\mathrm{A}_{\text {train }}\right)$ is $=10 \mathrm{~m}^{2}$

Submission

Email your worksheet to mathcadchallenge@ptc.com
Official Sweepstakes Rules

