
Let’s build a bridge! 

or 

Knowledge is power 
 

“Pride,” said Levin, touched to the quick by his brother’s 

words, “I don’t understand. If at the university they told me 

that others know the catenary, but I don’t know, then pride is 

here. 

Lev Tolstoy. "Anna Karenina" 

Once upon a time, not so long ago, to use sines, cosines, tangents, logarithms, and so 

on, in calculations was problematic. It was necessary to break away from the 

calculation and look into reference books—into the famous tables of Bradis, for 

example, on which several generations of schoolchildren grew up. It was often 

necessary to interpolate using discrete reference data. This was done by making 

calculations on pieces of paper, on adding machines, using a slide rule or a simple 

electronic calculator. Then the so-called scientific (engineering) calculators appeared, 

that, in addition to addition, subtraction, multiplication, division, square root 

extraction and percentage calculations, “learned” to work with the above and other 

similar mathematical functions. 

Now there are so-called computer supercalculators (mathematical programs) that can 

additionally build graphs, work with matrices, find limits, take derivatives and 

integrals (see the epigraph1 and the problem below), solve equations—algebraic and 

differential, optimize and perform other operations associated not with elementary 

(school), but with higher (university) mathematics, with mathematical analysis, for 

example. 

Let's solve one beautiful engineering problem in the Mathcad environment to 

illustrate these features of supercalculators. 

On the two banks of the river at a distance L from each other, two pylons of the future 

bridge with heights h1 and h2 were erected, to which a chain of length S and linear 

mass mC is attached. A load of mass mg is suspended from the chain at a distance x1 

from the left pylon (this, for example, is an element of the future roadway of the 

 
1 In Tolstoy's novel no mention is made of a catenary, but of the integral calculus, which is also directly related to the 
task of this article. 



bridge)2. Figure 1 shows a calculation where the listed variables are assigned 

numerical values with appropriate units. This is another significant difference between 

supercalculators and simple calculators—supercalculators do not just work with 

numbers, but with physical quantities! This speeds up calculations, makes them 

convenient, and eliminates possible errors in the conversion of units of measurement. 

 

Fig. 1. Input of initial data and output of the answer in the form of a graph 

 
2 The task can be simplified—to build a cable car rather than a bridge. 



The table with initial data is followed by a collapsed area of calculations—a plus sign 

in a square with a straight line on the right. Then the answer is given by three variants 

of the hanging chain, namely: a load is suspended from the chain so that sagging of 

the left (index L) and right (index R) sections of the chain are visible; the chain is free 

from the load and its sections merge into one sagging chain and the third option, in 

which the mass of the chain is negligible compared to the mass of the load and it is 

stretched like a string. 

Let's open the collapsed calculation area and see what is written in it. 

Creating and debugging user functions is half the solution! Figure 2 shows the 

functions we need: 

1. Catenary with one argument x and three parameters. 

2. Derivative of catenary with respect to x. 

3. The length of the catenary on the segment from x1 to x2. The variable x1 is 

already used in our calculation, but in the user function it is a local variable 

visible only in the function itself. 

4. The ordinate of the center of gravity of the catenary on the segment from x1 to 

x2. 

5. Abscissa of the center of gravity of the catenary on the segment from x1 to x2. 

6. Potential energy PE of a chain with a load. 

Dependencies 1, 3, 4 and 5 are easy to find on the Internet by searching for the 

corresponding keys. The function of the abscissa of the center of gravity of the chain 

line (item 5) is not involved in the calculation, but it is necessary to show on the graph 

of the sagging chain of the centers of gravity of two sections of the chain (see these 

centers in the graphs of Figure 1). In the third variant of the chain sagging in Figure 1, 

as expected, these centers were in the middle of the straight sections of the chain. One 

of the effective ways to test the created calculation is to set such initial data for which 

the answer is known in advance. 



 

Fig. 2. User functions 

Comments on Figure 1. 

If you ask friends and acquaintances for what function the chain sags, then 99% will 

say that this is a parabola. This answer is prompted by the very appearance of the 

parabola with its apex at the origin, but also by the fact that a stone launched at an 

angle to the ground flies along a parabola. A hanging chain and a flying stone are 

affected by one main force—the force of attraction. Therefore, there is nothing 

surprising in the connection of the chain and the parabola—even the great Galileo 

thought so. True, at the end of his life he admitted that he was mistaken. After Galileo, 

the catenary formula was discovered almost simultaneously and independently by the 

three great mathematicians Bernoulli, Huygens and Leibniz [1]. 

The chain line in Figure 2 in paragraph 1 is given not in the canonical form a 

cosh(x/a), when its vertex is at the point x=0, y=a, but in the form in which this 

vertex will be at the point x=x0, y=h. This is due to the fact that in our problem the 

origin of Cartesian coordinates is located at the base of the left pylon of the bridge—

see Figure 1, and not at the point floating vertically, which is defined by the canonical 



view of the catenary. Therefore, the user function written in point 1 in Figure 2 has 

one argument x and three parameters (a, x0 and h) instead of one (a). Rather so! The 

function named y has four arguments, not two. It is the person (computer user) who 

divides the arguments of the user function into arguments and parameters. For a 

computer (for Mathcad), they are all equal. 

The catenary line derivative (2) is found by means of Mathcad symbolic 

mathematics—using the symbolic transformation operator "→". This means you don’t 

need to do a numerical calculation of the derivative immediately, which in itself is 

considered a rather dubious operation from the standpoint of "pure" mathematics. In 

addition, this transformation—replacing the derivative itself with its expression 

speeds up the calculations. 

It is possible to apply similar transformations to functions with integrals written in 

points 3-5 in Figure 2. Or you need not do this, especially since the expressions 

numbered 4 and 5 are not completely free of integrals. 

The potential energy function of our immobile mechanical system (a chain with a 

load) with seven arguments has three terms, which are written in a column, and not in 

one long line. This can be done in the Mathcad environment. Looking ahead, let's say 

that the solution of our problem will be based on a special case of the d'Alembert-

Lagrange principle, which says that a mechanical system takes a static position in 

which its potential energy will be minimal. 

So, the initial data and user functions are entered—the problem can be solved! 

Figure 3 shows a block of the Mathcad solver with three zones—the zone of first 

approximations of optimization variables, the zone of constraints, where not only 

equalities (as in our case), but also inequalities can be written, and the zone where one 

of four Mathcad built-in functions—Find, MinErr, Maximize and Minimize [2]—

can be written. Our problem of a hanging chain with a load is solved using the last 

function. According to a special numerical algorithm, it changes the values of its last 

seven arguments (the first argument with the name PE is the name of the optimization 

objective function—see item 6 in Figure 2) so that the restrictions are met, and the 

objective function, according to the above principle, takes the minimum value. 



 

Fig. 3. Potential energy minimization 

In the zone of restrictions, the following conditions of the problem are written in the 

language of mathematics: 

1. The left end of the chain is fixed at height h1. 

2. The right end of the chain is fixed at height h2. 

3. Two sections of the chain converge at the point of suspension of the load x1-y1. 

Here, in fact (to save space), not two equations are written, but one. The value of x1 is 

given, and the value of x2 needs to be found. 

4. Chain length S is a constant value. In principle, the chain should lengthen after it is 

suspended from the pylons and the load is attached, and this fact can be taken into 

account. 

The graphs shown in Figure 1 are based on the values found by the Minimize 

function. 



Based on these data, it is also easy to calculate the values of the forces that stretch the 

chain and build the corresponding force diagrams. 

If people who know the law by which the chain sags (see above) are asked what 

physical meaning is inherent in the parameter, a, of the catenary line function, then 

again, virtually 99% will say that they do not know this or will give the wrong 

answer. And the correct answer is…? 

Let's place a chain with a linear mass mC equal to seventy grams per meter in a 

uniform gravitational field with an acceleration of gravity g equal to 9.807 meters 

divided by square seconds (see the first line of the calculation shown in Figure 5). 

And we hang the chain so that it sags, as shown in the graph in Figure 5. The ends of 

the chain are at the points with coordinates -1 m and 1.53 m and 1 m and 1.53 m. The 

length of such a chain is approximately 2.69 meters, and the weight is 188 grams. 

 

Fig. 5. Physical meaning of the parameter a of the catenary 

If we measure the force F, with which our chain will stretch to the left and right at the 

minimum point, then it will be equal to half a newton. This force can be measured in 

the following way—attach a dynamometer horizontally to one of the ends of the chain 

and see what it shows. Force F is the horizontal projection of the force that stretches 

the chain anywhere. It is easy to prove that it is constant along the length of the chain. 

This position is based on the compilation of a differential equation, the solution of 

which will be a chain function. The vertical projection of the tensile force is a variable 

value. It varies from zero at the lowest point of the chain to a value of half the weight 

of the chain at its edges. These three physical quantities (F, g and mC) will determine 

the value of the parameter a included in the catenary formula. But in all reference 

books on mathematics—paper and electronic, this constant is stubbornly considered 

dimensionless. But it has not only the reduced dimension of space (meters), but also 



the full dimension shown in Figure 5, which returns the physical meaning of the 

catenary formula. 

When solving the differential equation, the constants F, g and mC for simplicity were 

combined into one constant (parameter) a. This is the very simplicity, which, 

according to the proverb, turned out to be worse than theft! 

Based on the foregoing, which figuratively speaking only “one percent of one 

percent” knows, we can create another three user functions (Figure 6) that will help us 

build a diagram of the forces acting on individual points of the chain with the load 

(Figure 7). Here it is the knowledge that is equivalent to power—see the second title 

of the article. More specifically, not just a force, but a diagram of forces stretching the 

chain. 

 

Fig. 6. "Power" functions of the user 

The functions in Figure 6 have one limitation—they will erroneously give zero values 

of forces if the chain is weightless (the third graph in Figure 1), and there is a load. 

But this is an extreme case that we can ignore. An error can also occur when the 

weight of the chain is very small compared to the weight of the load. This error is 

related to the accuracy of numerical calculations, which are also called approximate 

calculations. 



 

a) 

 

b) 

Fig. 7. Plot of forces acting on a suspended chain with a load (a) and without load (b) 

By the way, it is possible to hang not only weights, but also a kind of anti-weight on 

the chain—see Figures 8 and 9, which depicts such a situation. A power line (TL) is 

thrown across the river. A ship of oversized height floats along the river. To let it pass, 

the power is turned off, and the wire is temporarily lifted with a crane or a helicopter. 



Another version of this task is to remove a necklace from the neck, attached a balloon 

to it and stretch it between the hands. 

 

Fig. 8. Chain with anti-weight 



 

Fig. 9. Plot of forces acting on a suspended chain with an anti-weight 

Speaking of knowledge equivalent to power, it should also be noted that many people 

forget about the physical essence of the expression parameter not only for an exotic 

catenary, but also for an ordinary school parabola, which, we repeat, is often confused 

with a catenary. The canonical equation of a parabola in a rectangular coordinate 

system is: y2=2p x. The parameter p in this equation also has a clear physical 

meaning. It is equal to the distance from the focus of the parabola to its directrix. 

Many simply have not heard about the focus and directrix of the parabola! But it is a 

parabolic antenna that collects and focusses radio beams. 

Let’s return to the process of building a bridge in this vein. If more and more new 

loads are attached to the suspended chains or cables on the guys – the sections of the 

future carriageway of the bridge—then the load on the chains (cables) will be 

approximately the same in all sections if the sagging is along a parabola, and not 

along a catenary. 



Finally, we can mention one more feature of the catenary, associated with an 

interesting constant—π. If the chain without a load is suspended with its ends at the 

same height, then it is easy to find the ratio S/L, at which the force F will be minimal. 

The approximate value of this constant is 1.26, and it is related to the root of the 

equation coth(x)=x [3, 4]. And one percent of people who know the physical meaning 

of the parameter, a, of the catenary know about this constant. 

The catenary 2.5 cosh(2x/5) shown in Fig. 8 can be called an ideal catenary. 

 

Fig. 8. An ideal catenary 

If you want to enclose a monument with posts with chains suspended between its, 

then remember the ideal catenary Fig. 9. The fence will turn out to be ideal both in the 

aesthetic and in the engineering (power) sense. 

 

Fig. 9. 
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