This file was created to check simple FEAdynamic response models.

$\mathrm{meq}:=\mathrm{m} 1+\mathrm{m} 2=1.5 \mathrm{~kg}$

The FEA models I made use various tricks, depending upon the limitations of the software.

One trick involves using two spring elements in series. m 1 is zero, while m 2 is the mass that sets the resonance frequency. m 2 is located at the end of the second spring element. This method will only produce one resonance frequency. This method will also calculate the first resonance value, when m 1 is very near zero. In this case, m 1 is located at the end of the first spring element. However, there will be a second resonance that this method can't calculate.

In other cases, two point masses and two springs are used in series. m 1 is located at the end of the first spring element. m 2 is located at the end of the second spring element. This case has two resonance values. However, only the first one is of interest.

The last situation is where the FEA software has no spring elements. Thus you have two beam elements with a continous mass distribution. You need to use a continous mass matrix to model this. This case also has two resoance values. As with before, only the first one is of interest.

So, below, you have three different types of physics. The model in the last position is used for the resonance calculations near the end of the document.

Two springs in series:
$\mathrm{keq}:=\frac{\mathrm{k} 1 \cdot \mathrm{k} 2}{\mathrm{k} 1+\mathrm{k} 2}=0.454545 \frac{\mathrm{~kg}}{\mathrm{~s}^{2}}$
$\mathrm{keq}=0.454545 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}$
$\mathrm{m} 1=0.5 \mathrm{~kg} \quad \mathrm{~m} 2=1 \mathrm{~kg} \quad \mathrm{meq}=1.5 \mathrm{~kg}$
If $m 1$ is not equal to or near zero, this model shouldn't be used. Moreover, meq should be equal to or very close to m 2 .
$\omega_{\mathrm{eq}}:=\sqrt{\frac{\mathrm{keq}}{\mathrm{meq}}}=0.550482 \cdot \frac{\mathrm{rad}}{\mathrm{s}}$
Note; this method only has one resonace value
$\omega_{\mathrm{eq}}=0.087612 \cdot \mathrm{~Hz}$

2 Beam Elements that use a continous mass matrix:
$\mathrm{K} 3:=\left(\begin{array}{cc}\mathrm{k} 1+\mathrm{k} 2 & -\mathrm{k} 2 \\ -\mathrm{k} 2 & \mathrm{k} 2\end{array}\right)$

M3 $:=\left(\begin{array}{cc}\frac{\text { meq }}{3} & \frac{\text { meq }}{6} \\ \frac{\text { meq }}{6} & \frac{\text { meq }}{3}\end{array}\right)$
$\mathrm{mla}:=\frac{\mathrm{meq}}{3}+\frac{\mathrm{meq}}{6}=0.75 \mathrm{~kg}$

This is for 2 beam elements, where the first element has a near zero mass. The second element's mass is split $(50 / 50)$. So $m 1$ is very close to $m 2$.

This will also work if the first element is a spring element (which has no mass) and the second element uses a continous mass matrix. In this case, the mass $(\mathrm{m} 2)$ is split $50 / 50$. Moreover, m 1 exactly equals m 2 .

This method will have two resonance values. Only the first one (lowest frequency of the two) is of interest.

$$
\mathrm{m} 2 \mathrm{a}:=\frac{\mathrm{meq}}{6}+\frac{\mathrm{meq}}{3}=0.75 \mathrm{~kg}
$$

$\mathrm{K} 3:=\left(\begin{array}{cc}\mathrm{k} 1+\mathrm{k} 2 & -\mathrm{k} 2 \\ -\mathrm{k} 2 & \mathrm{k} 2\end{array}\right)$
$\mathrm{M} 3:=\left(\begin{array}{cc}\mathrm{m} 1 & 0 \\ 0 & \mathrm{~m} 2\end{array}\right)$
This is similar to the two springs in series method. However, this will work for any value of m 1 . It also produces two resonance values. Whereas, the two springs in series method will only produce one resonace value. Only the first resonance (lowest frequency of the two) is of interest.

Start of the eigenvalue and eigenvector calculations:
$\mathrm{F}=\mathrm{k} \cdot \mathrm{x}=\mathrm{m} \cdot \mathrm{a}$

$$
\mathrm{a}=\frac{\mathrm{F}}{\mathrm{~m}}=\left(\frac{\mathrm{k}}{\mathrm{~m}}\right) \cdot \mathrm{x} \quad \mathrm{~A} 1=\frac{\mathrm{k}}{\mathrm{~m}}
$$

$\mathrm{A} 1:=\frac{\mathrm{K} 3}{\mathrm{M} 3}=\left(\begin{array}{cc}11 & -5 \\ -10 & 5\end{array}\right) \frac{1}{\mathrm{~s}^{2}} \quad \begin{aligned} & \mathrm{K} 3 \text { is the stiffness } \\ & \text { matrix } \\ & \mathrm{M} 3 \text { is the mass matrix }\end{aligned}$
Note this is the same as a more common notation;
$\mathrm{K} 3 \cdot \mathrm{M3}^{-1}=\left(\begin{array}{cc}11 & -5 \\ -10 & 5\end{array}\right) \frac{1}{\mathrm{~s}^{2}}$
$\frac{\mathrm{K} 3}{\mathrm{M} 3}-\mathrm{K} 3 \cdot \mathrm{M} 3^{-1}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \frac{1}{\mathrm{~s}^{2}} \quad \begin{aligned} & \text { This check should also equal } \\ & \text { zero }\end{aligned}$
freq $:=\sqrt{\text { eigenvals(A1) }}=\binom{3.959943}{0.564672} \frac{1}{\mathrm{~s}} \quad \quad$ Eigenvalues $(\mathrm{rad} / \mathrm{s})$
$\phi:=\operatorname{eigenvecs}(\mathrm{A} 1)=\left(\begin{array}{cc}0.73 & 0.423962 \\ -0.683447 & 0.90568\end{array}\right) \quad$ Eigenvectors (non-dim)

Note; Mathcad's version of eigenvalues are the square of what FEA resonance values are. Therefore, you need to take the square root of the Mathcad version. Also, the units of Mathcad are erroneous. They list the units as $1 / \mathrm{s}$, which is meaningless. 1 what, should be asked. Mathcad has taken the liberty of thinking this means 1 rad $/ \mathrm{s}$. Another problem is they seem to think $\mathrm{Hz}=1 \mathrm{rad} / \mathrm{s}$, when in reality it is $1 \mathrm{rev} / \mathrm{s}$. I have corrected the the definition of Hz . So the results shown in Hz, in this document, are revolutions per second.

FEA software has always reported the natural frequencies from lowest to highest. Unfortunately, Mathcad will randomly output them. Sometimes, they will be in order and other times they won't be. This section is meant to correct this, so that Mathcad will report what FEA software does.
i1 := 0 .. (length(freq) -1)
$\operatorname{order}^{1}{ }_{\mathrm{i} 1}:=\operatorname{order}(\text { freq } \cdot \mathrm{s})_{\mathrm{i} 1}$

Freq $_{\mathrm{i} 1}:=\operatorname{freq}_{\text {order1 }_{\mathrm{i} 1}} \quad$ Eigenvalues (rad/s) - Sorted
${ }_{\text {eig }}{ }^{\langle\mathrm{i} 1\rangle}:=\phi^{\left\langle{ }^{\text {order }} 1_{\mathrm{i} 1}\right\rangle} \quad$ Eigenvectors (non-dim) - Sorted

Freq $=\mathbf{I} \cdot \frac{\mathrm{rad}}{\mathrm{s}} \quad$ Freq $=\mathbf{I} \cdot \mathrm{Hz} \quad$ eig $=\mathbf{I}$
mode1 $:=\operatorname{eig}^{\langle 0\rangle}=\mathbf{m o d e} 2:=\operatorname{eig}{ }^{\langle 1\rangle}=\mathbf{I}$
modela $:=$ mode $1+\binom{0}{0} j$
mode $2 \mathrm{a}:=\operatorname{mode} 2+\binom{0}{0} \mathrm{j}$

These plots show non-dimensional node displacement. They are consistent with the plots you get from FEA software.

Note, in my testing; genvals, genvecs, and eigenvec can fail sometimes. Whereas, eigenvals and eigenvecs always seem to give the correct result. Therefore, I recommend using eigenvals and eigenvecs.

