Potential Energy of mass m_{b} at height h :
Kinetic Energy of mass m_{b} at height h :

Velocity at height h :

$$
\mathrm{W}_{\mathrm{pot}}\left(\mathrm{~h}, \mathrm{~m}_{\mathrm{b}}\right):=\mathrm{m}_{\mathrm{b}} \cdot \mathrm{~g} \cdot \mathrm{~h}
$$

$$
\begin{aligned}
& \mathrm{W}_{\text {kin }}\left(\mathrm{h}, \mathrm{~h}_{0}, \mathrm{~m}_{\mathrm{b}}\right):=\mathrm{W}_{\text {pot }}\left(\mathrm{h}_{0}, \mathrm{~m}_{\mathrm{b}}\right)-\mathrm{W}_{\text {pot }}\left(\mathrm{h}, \mathrm{~m}_{\mathrm{b}}\right) \text { simplify } \rightarrow-\mathrm{g} \cdot \mathrm{~m}_{\mathrm{b}} \cdot\left(\mathrm{~h}-\mathrm{h}_{0}\right) \\
& \mathrm{v}\left(\mathrm{~h}, \mathrm{~h}_{0}\right):=\sqrt{\frac{2 \cdot \mathrm{~W}_{\text {kin }}\left(\mathrm{h}, \mathrm{~h}_{0}, \mathrm{~m}_{\text {ball }}\right)}{\mathrm{m}_{\text {ball }}}} \text { simplify } \rightarrow \sqrt{-2 \cdot \mathrm{~g} \cdot\left(\mathrm{~h}-\mathrm{h}_{0}\right)}
\end{aligned}
$$

Speed of ball when it leaves the ramp:

$$
\mathrm{v}\left(\mathrm{~h}_{1}, \mathrm{~h}_{0}\right) \rightarrow \sqrt{2 \cdot \mathrm{~g} \cdot\left(\mathrm{~h}_{0}-\mathrm{h}_{1}\right)}
$$

Horizontal distance after leaving the ramp:

$$
\mathrm{s}_{\mathrm{x}}\left(\mathrm{t}, \mathrm{~h}_{1}, \mathrm{~h}_{0}, \varphi\right):=\mathrm{v}\left(\mathrm{~h}_{1}, \mathrm{~h}_{0}\right) \cdot \cos (\varphi) \cdot \mathrm{t}
$$

$$
\mathrm{s}_{\mathrm{y}}\left(\mathrm{t}, \mathrm{~h}_{1}, \mathrm{~h}_{0}, \varphi\right):=\mathrm{h}_{1}+\mathrm{v}\left(\mathrm{~h}_{1}, \mathrm{~h}_{0}\right) \cdot \sin (\varphi) \cdot \mathrm{t}-\frac{\mathrm{g}}{2} \cdot \mathrm{t}^{2}
$$

Time after which the ball ands on ground

$$
\mathrm{t}_{2}\left(\mathrm{~h}_{1}, \mathrm{~h}_{0}, \varphi\right):=\operatorname{root}\left(\mathrm{s}_{\mathrm{y}}\left(\mathrm{t}, \mathrm{~h}_{1}, \mathrm{~h}_{0}, \varphi\right), \mathrm{t}, 0 \mathrm{~s}, 1 \mathrm{~min}\right)
$$

$$
\operatorname{dist}\left(\mathrm{h}_{1}, \mathrm{~h}_{0}, \varphi\right):=\mathrm{s}_{\mathrm{x}}\left(\mathrm{t}_{2}\left(\mathrm{~h}_{1}, \mathrm{~h}_{0}, \varphi\right), \mathrm{h}_{1}, \mathrm{~h}_{0}, \varphi\right)
$$

Point mass of "ball":

$$
\mathrm{m}_{\text {ball }}:=1 \mathrm{~kg}
$$

Intiial height:

$$
\mathrm{h} 0:=10 \mathrm{~m}
$$

Final ramp angle:

$$
\begin{aligned}
& \varphi_{\text {ramp }}:=30^{\circ} \\
& \text { h1 }:=2 \mathrm{~m}
\end{aligned}
$$

Final ramp height:

$$
\operatorname{dist}\left(\mathrm{h} 1, \mathrm{~h} 0, \varphi_{\mathrm{ramp}}\right)=16.726 \mathrm{~m}
$$

Optimal launch ramp angle

$$
\begin{gathered}
\varphi_{\mathrm{opt}}:=\operatorname{Maximize}\left(\operatorname{dist}(\mathrm{h} 1, \mathrm{~h} 0), \varphi_{\mathrm{ramp}}\right) \\
\varphi_{\mathrm{opt}}=41.81 \cdot^{\circ}
\end{gathered}
$$

The horizontal distance where the ball touches the floor the first time is independent on gravity (as long as
its not zero). It would be necessary to change the functions above, making them dependent on g as well and solving symbolically to make Mathcad show that gravity cancels out in the distance function.
Couldn't be bothered doing so.
But you could set $g:=\frac{\mathrm{g}}{6}=1.634 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ at the top of the sheet to see the same distance will be calculated. BTW, the symbolic function would be

$$
\operatorname{dist}\left(\mathrm{h}_{1}, \mathrm{~h}_{0}, \varphi\right):=\left(\mathrm{h}_{0}-\mathrm{h}_{1}\right) \cdot \sin (2 \cdot \varphi)+2 \cdot \cos (\varphi) \cdot \sqrt{\mathrm{h}_{0}-\mathrm{h}_{1}} \cdot \sqrt{\mathrm{~h}_{0}-\left(\mathrm{h}_{0}-\mathrm{h}_{1}\right) \cdot \cos (\varphi)^{2}}
$$

Landing distance as a function of ramp angle

$\operatorname{dist} 2\left(\mathrm{~h}_{1}, \varphi\right):=\operatorname{dist}\left(\mathrm{h}_{1} \cdot \mathrm{~m}, 10 \mathrm{~m}, \varphi \cdot \operatorname{deg}\right) \cdot \frac{1}{\mathrm{~m}}$
$\mathrm{D}:=$ CreateMesh(dist $2,0,10,0,90,50,45)$

The lower the launch height, the higher the speed (because no kinetic energy is lost for rolling (slinding) up the launch ramp

