
DESIGN OF BEAM UNDER SEMI-ELLIPSE LOAD, BEAM END SUPPORTS ARE PINNED

Length of beam $L_{beam} := 3 \text{ m}$

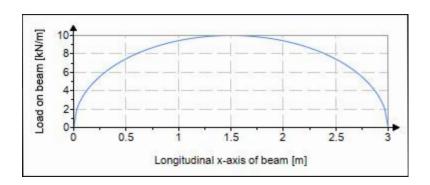
Maximum load on beam $q_{max} = 10 \frac{kN}{m}$

Elastic modulus of steel $E_{steel} = 210 \text{ GPa}$

Moment of inertia of beam $I_{beam} := 25170 \text{ cm}^4$

Calculatiotions for determination of shear, moment, slope and deflection graphs

Amount of points in following graphs


 $Amount_of_steps := 100$

Step_length := $\frac{L_{beam}}{Amount \text{ of steps}}$ Step_length = 0.03 m

All values in x-axis

$$x_{all} := \left\| \begin{array}{l} \text{for } i \in 0 ... Amount_of_steps} \\ \left\| \begin{array}{l} x_{all_i} \leftarrow Step_length \cdot i \end{array} \right\| \right\|$$

$$q_{load} \coloneqq \left\| \begin{array}{l} \text{for } i \in 0 ... Amount_of_steps} \\ \| q_{load_i} \leftarrow \frac{\sqrt{-\left(4 \cdot L_{beam}^2 \cdot q_{max}^2 \cdot x_{all_i}^2\right) + 4 \cdot L_{beam}^3 \cdot q_{max}^2 \cdot x_{all_i}}}{L_{beam}^2} \right\|$$

$$q(x) = \frac{\sqrt{-\left(4 \cdot L^2 \cdot q^2 \cdot x^2\right) + 4 \cdot L^3 \cdot q^2 \cdot x}}{L^2}$$

Shear function is integral of load function

Shear at center of beam is zero, thus integration constant C can be computed with

$$\int q\left(\frac{L}{2}\right) dx + C = 0 \xrightarrow{solve, C} -\left(x \cdot q\left(\frac{L}{2}\right)\right)$$

Shear function

$$V(x) = \int q(x) dx - \left(x \cdot q\left(\frac{L}{2}\right)\right)$$

Moment function is integral of shear function

Moment at end of beam is zero, thus integration constant C can be computed with

$$\int V(0 m) dx + C = 0 \xrightarrow{solve, C} -(V(0) \cdot x)$$

Moment function

$$M(x) = \int V(x) dx - (V(0 m) \cdot x)$$

L = length of beam

q = maximum load

x = longitudinal axix of beam

Slope function is integral of moment function, divided by bending stiffness

Slope at center of beam is zero, thus integration constant is

$$\int M\left(\frac{L}{2}\right) dx + C = 0 \xrightarrow{\text{solve }, C} -\left(x \cdot M\left(\frac{L}{2}\right)\right)$$

Slope function $\theta(x) = \frac{1}{E \cdot I} \cdot \left(\int M(x) \, dx - \left(x \cdot M\left(\frac{L}{2}\right) \right) \right)$

Deflection function is integral of slope function

Deflection at end of beam is zero, thus integration constant is

$$\int \theta (0 m) dx + C = 0 \xrightarrow{solve, C} -(\theta (0) \cdot x)$$

Deflection function

$$y(x) = \int \theta(x) dx - (\theta(0) \cdot x)$$