
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2004; 60:979–993 (DOI: 10.1002/nme.995)

Multi-precision Laplace transform inversion

J. Abate1 and P. P. Valkó2,∗,†

1900 Hammond Road, Ridgewood, NJ 07450-2908, U.S.A.
2Department of Petroleum Engineering, Texas A&M University, U.S.A.

SUMMARY

For the numerical inversion of Laplace transforms we suggest to use multi-precision computing with
the level of precision determined by the algorithm. We present two such procedures. The Gaver–
Wynn–Rho (GWR) algorithm is based on a special sequence acceleration of the Gaver functionals
and requires the evaluation of the transform only on the real line. The fixed Talbot (FT) method is
based on the deformation of the contour of the Bromwich inversion integral and requires complex
arithmetic. Both GWR and FT have only one free parameter: M , which is the number of terms in
the summation. Both algorithms provide increasing accuracy as M increases and can be realized in
a few lines using current Computer Algebra Systems. Copyright � 2004 John Wiley & Sons, Ltd.

KEY WORDS: Laplace transform; numerical inversion; multi-precision

1. INTRODUCTION

Our purpose in this paper is to present two algorithms for the numerical inversion of Laplace
transforms using multi-precision computing. The algorithms are variants of two methods widely
known as Gaver–Stehfest and Talbot. Although our enhancements may seem modest, they
significantly impact the performance of the methods. The key idea is to use multi-precision
computing and have the algorithm determine the level of precision based on the user’s input
of desired accuracy. Further, our algorithms are simple and concise.

The problem of numerically inverting the Laplace transform is to determine approximations
for f (t) when numerical values of the transform function

f̂ (s) =
∫ ∞

0
e−stf (t) dt (1)

can be computed. For our purposes, we add the proviso that values of the transform can be
computed to any desired precision as a function of the complex variable ‘s’. This is easily

∗Correspondence to: P. P. Valkó, 3116 TAMU, College Station, TX, 77843, U.S.A.
†E-mail: p-valko@tamu.edu

Received 3 February 2003
Revised 30 May 2003

Copyright � 2004 John Wiley & Sons, Ltd. Accepted 25 August 2003

980 J. ABATE AND P. P. VALKÓ

accomplished in a multi-precision computational environment such as Mathematica, Maple,
UBASIC, etc.

There are over 100 algorithms available for the numerical inversion of Laplace transforms.
Three important comparative studies of methods have been published. Davies and Martin [1]
surveyed about 20 different methods and selected 14 specific algorithms to analyse and test.
It is a very nice paper. Narayanan and Beskos [2] systematically discussed and tested eight
algorithms. The above two studies considered methods that were developed prior to 1980. Duffy
[3] tested three software packages based on methods developed after 1980. In addition to these
comparative studies, an enormous number of engineering application papers have been written
each investigating the merits of a particular procedure. A bibliography of several hundred such
papers is available on the WEB [4].

Those algorithms that have passed the test of time fall into four categories. The four groupings
of algorithms are according to the basic approach of the method as follows:

(i) Fourier series expansion
(ii) Laguerre function expansion
(iii) Combination of Gaver functionals
(iv) Deform the Bromwich contour

Over the years, there have been about 40 algorithms developed which are based on the Fourier
series method. This is so called because it involves approximating the inversion integral with
an infinite Fourier series. The first paper to consider such a numerical procedure appeared in
1935 by Koizumi [5]. Some of the more popular computing procedures are: Dubner–Abate
(1968), Veillon (1974), Durbin (1974), Crump (1976), Hosono (1981), DeHoog–Knight–Stokes
(1982), Honig–Hirdes (1984), Piessens–Huysmans (1984). For a discussion of these procedures
and their references see the 1992 survey paper of Abate and Whitt [6]. Since then, several
new Fourier series algorithms have been developed. Of notable interest are: D’Amore et al. [7]
and Sakurai [8]. This last paper seems to have an effective method for handling transforms of
functions with discontinuities.

The next most popular approach to numerical inversion is based on the Laguerre function
expansion of f (t) in (1). The first paper to consider such a numerical procedure was evidently
Ward [9] in 1954. Since then about 15 algorithms have been developed based on the Laguerre
approach. Some examples are: Chen (1966), Weeks (1966), Piessens–Branders (1971), Weber
(1981), Lyness–Giunta (1986), Garbow–Giunta–Lyness–Murli (1988). For a discussion of these
algorithms and their references see the 1996 survey paper of Abate et al. [10]. Since then an
important contribution to the Laguerre method was developed by Weideman [11].

Another very good approach to numerical Laplace transform inversion is based on the
sequence of functionals developed by Gaver [12] in 1966. We shall discuss this method in
Section 2.

Finally, one of the best approaches to computing the inverse is to deform the standard
contour in the Bromwich inversion integral. The seminal paper on this approach was published
in 1979 by Talbot [13]. We shall discuss this method in Section 3.

A nice review of the above four methods is given in Chapter 19 of Reference [14]. In fact, we
recommend reading that chapter because it gives a flavour of numerical inversion considerations
in a computing environment with fixed machine precision. In the traditional development of
inversion methods, most of the effort was directed at controlling round-off errors. This is because

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MULTI-PRECISION LAPLACE TRANSFORM INVERSION 981

the process is numerically unstable in a fixed-precision, computing environment. Our approach
is to combat this problem with brute computational force, namely, the application of multi-
precision. Heretofore, inversion algorithms did not have any means to control the accuracy
of the program output. The problem is that as the user tries to increase the accuracy, there
comes a point where round-off propagation causes the error to increase dramatically. That is,
the procedure is numerically unstable when using fixed machine precision. To overcome this
problem, one must have the capability to vary the machine precision at will. This can be
achieved by using multi-precision computing with the level of precision determined by the
algorithm.

Our approach results in a simple procedure. To demonstrate the simplicity of the algorithm
called fixed-Talbot (FT), we display here a prototype implementation in Mathematica, for the
convenience of the reader. All the FT calculations of this work were done using the shown
program.

FT[F_, t_, M_] :=
Module[{np, r, S, theta, sigma},
np = Max[M, $MachinePrecision];
r = SetPrecision[2M/(5t), np];
S = r theta (Cot[theta] + I);
sigma = theta + (theta Cot[theta] - 1) Cot[theta];
(r/M) Plus @@ Append[Table[Re[Exp[t S](1 + I sigma) F[S]],

{theta, Pi/M, (M-1)Pi/M, Pi/M}],
(1/2) Exp[r t] F[r]]

]

Note the program has 10 lines! The user provides the transform function (F []); the value
of t at which the inverse is desired; and the value of the parameter M , which is the number
of terms in the summation. Hence, the algorithm has only one free parameter M , and the
accuracy of the result improves as M increases.

In Section 4, we test the effectiveness of the GWR and FT algorithms. We have selected
27 test transforms which are listed in Tables I, VI, and IX. These test transforms fall into two
classes which are labelled F and G. These classes are defined in Section 4. Among the test
transforms are six transforms that arise in engineering applications.

2. THE GAVER–WYNN–RHO ALGORITHM

The inverse problem of (1) is given the transform f̂ (s), then determine the time function f (t).
An analytic solution to the inverse problem is provided by the celebrated Post-Widder formula

�k(t) = (−1)k

k!
(

k

t

)k+1

f̂ (k)

(
k

t

)
(2)

then �k(t) → f (t) as k → ∞.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

982 J. ABATE AND P. P. VALKÓ

In the 1960s it was difficult to numerically compute high-order derivatives. Therefore, Gaver
[12] presented the discrete analog of (2),

fk(t) = (−1)k�k

t

(
2k

k

)
�kf̂ (k�/t) (3)

where � = log(2) and � is the difference operator, �f̂ (nx) = f̂ ((n + 1)x) − f̂ (nx).
By expanding the difference operator, (3) can be written as

fk(t) = �k

t

(
2k

k

)
k∑

j=0

(−1)j
(

k

j

)
f̂ ((k + j)�/t) (4)

The Gaver functionals can also be computed by a recursive algorithm, as follows:

G
(n)
0 = n�

t
f̂ (n�/t), 1� n � 2M

G
(n)
k = (1 + n

k
)G

(n)
k−1 − (n

k
)G

(n+1)
k−1 , k � 1, n � k

fk(t) = G
(k)
k

(5)

Unfortunately, the Gaver functionals provide a very poor approximation because |f (t) −
fk(t)| ∼ c/k as k → ∞. For example, f1000(t) may yield an estimate to f (t) with only two or
three digits of accuracy. To achieve a good approximation, a convergence acceleration algorithm
is required for the sequence fk(t). A good candidate is Saltzer summation, see pp. 35–38 of
Reference [15]. In fact, this is the scheme proposed by Stehfest [16]. The Gaver–Stehfest
algorithm is widely known.

There are other sequence accelerators that can be used instead; for a study of such alternatives
see Valkó and Abate [17]. In that study, we test six summation methods and found that the
best acceleration scheme for the Gaver functionals is the Wynn rho algorithm which is given
by the recursive algorithm

�(n)
−1 = 0, �(n)

0 = fn(t), n � 0

�(n)
k = �(n+1)

k−2 + k

�(n+1)
k−1 −�(n)

k−1

, k � 1
(6)

see p. 168 of Reference [15]. Then the approximant to f (t) is obtained as

f (t, M) = �(0)
M (7)

Note well, the integer M in (7) must be even.
However, we are not done with the GWR approximation. It is known that the computation of

(4)–(6) are prone to round-off error propagation and hence are unstable. In other words, given
a fixed precision, then as M increases the accuracy of the approximant f (t, M) also increases
but only to a point, thereafter the accuracy quickly decreases. To overcome this problem, the
computing precision must be made larger as M increases. This can be achieved using a multi-
precision computational environment. Hence, to complete the algorithm specification, we need
the computational precision requirement,

number of precision decimal digits = (2.1)M (8)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MULTI-PRECISION LAPLACE TRANSFORM INVERSION 983

The GWR algorithm may therefore be summarized as follows:

GWR Algorithm. Specify the transform f̂ (s) and furnish values for t and M , where
M is an even integer. First set the precision to (2.1)M , then compute the function-
als, f1(t), f2(t), . . . , fM(t) using either (4) or (5). Finally, compute the approximant
f (t, M) from (6) and (7).

A prototype implementation of this algorithm is given as a Mathematica add-on package
posted in the MathSource library on the WEB [18].

In Section 4, we examine the performance of the GWR algorithm. For a large class of
transforms, we find the relative error estimate∣∣∣∣f (t) − f (t, M)

f (t)

∣∣∣∣ ≈ 10−0.8M (9)

that is, the number of significant digits in the approximant f (t, M) is about equal to M .
We conclude this section with computational considerations concerning the Gaver functionals.

Note in (4) and (5) the computation of fk(t) involves real arithmetic. However, we must
remember that the Laplace transform is inherently a function of the complex variable s. For
example, consider the transform f̂ (s) = 1/

√
s − 1 which has the inverse f (t) = exp(t)/

√
�t .

Note in (4) and (5) the transform is calculated at values of s = k log(2)/t for k = 1, 2,
Hence, the sampling interval may contain the singular point s = 1. This situation should be
avoided (e.g. see Table VII). Therefore, the prudent procedure is to apply the transformation
rule s = s + 1 to f̂ (s) that is invert 1/

√
s and multiply the result by exp(t).

Although the test transform F09 in Table I seems to have a singularity at s = 2, analysis
reveals that it is indeed a real function for all s > 0.

3. THE FIXED TALBOT ALGORITHM

In 1979 Talbot [13] pioneered the approach, to numerical Laplace inversion, of deforming the
standard contour in the Bromwich integral

f (t) = 1

2�i

∫
B

exp(ts)f̂ (s) ds (10)

There have been only a few such algorithms developed along these line, see References
[19–21]. It seems surprising how little attention this approach has received in the literature
relative to other methods.

In (10) the contour B, is a vertical line defined by s = r + iy, where −∞ < y < +∞ and
r has a fixed value chosen such that all the singularities of the transform are to the left of it.
The convergence of the integral (10) would be greatly improved if s could take on values with
a large, negative, real component. We can deform the contour B into any open path that wraps
around the negative real axis provided no singularity of f̂ (s) is crossed in the deformation of
B. In other words, the transform is analytic in the region of the complex plain to the right of
the path B. Therefore, by Cauchy’s theorem the deformed contour is valid. Talbot’s brilliant
contribution is the carefully chosen path of the form

s(�) = r�(cot � + i), −� < � < +� (11)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

984 J. ABATE AND P. P. VALKÓ

Table I. Some test transforms in class F and their inverses.

ID f̂ (s) f (t)

F01
1√

s + √
s + 1

1 − e−t

2
√

�t3

F02
1√

s(1 + √
s)

eterfc(
√

t)

F03
s −

√
s2 − 1√

s2 − 1
I1(t)

F04 exp(−2
√

s)
e−1/t

√
�t3

F05
exp(− 1

4s
)

√
s3

2 sin(
√

t)√
�

F06
− log(s)

s
log(t) + �

F07 log(1 + 1

s
)

1 − e−t

t

F08
s − 1

s log(s)
�(t, −1) − �(t, 0)

F09
log(s − 1 +

√
s2 − 2s)√

s2 − 2s
etK0(t)

F10
esK1(s)

s

√
t (t + 2)

F11∗ −√
s

1

2
√

�t3

F12∗ s log(s)
1

t2

∗Pseudotransforms.

where r is a parameter. Our path (11) has one parameter whereas Talbot’s path included
two parameters. Note some points on the path: s(0) = r , s(�/2) = ir�/2 and s(3�/4) =
3�(−1 + i)r/4.

It is of interest to examine the genesis of contour (11). Consider the inversion integral (10)
with the transform f̂ (s) = 1/s� for � > 0; it can be expressed as

f (t) = 1

2�i

∫
B

exp(t (s − a log s)) ds (12)

where a = �/t . In general, the integral (12) is difficult to evaluate numerically because of
the oscillatory behaviour of the integrand. We can circumvent this problem by choosing the

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MULTI-PRECISION LAPLACE TRANSFORM INVERSION 985

so-called steepest descent path which has the property

Im(s − a log s) = 0 (13)

Let s = x + iy, then (13) yields the equation of the steepest descent path

x = y cot(y/a) (14)

which is equivalent to (11) for r = a. However, note that (14) has the property (13) only
for the transform f̂ (s) = 1/s�. Whereas, we propose to use (11) for all transforms. For more
details of the above argument, see Reference [21].

To continue our development of the FT algorithm, we replace the contour B in (10) with
(11), then

f (t) = 1

2�i

∫ �

−�
exp(ts(�))f̂ (s(�))s′(�) d� (15)

Note that s′(�) = ir(1 + i�(�)) where

�(�) = � + (� cot � − 1) cot � (16)

Then we find

f (t) = r

�

∫ �

0
Re[exp(ts(�))f̂ (s(�))(1 + i�(�))] d� (17)

We can approximate the value of the integral in (17) by using the trapesoidal rule with step
size �/M , and �k = k�/M

f (t, M) = r

M

{
1

2
f̂ (r) exp(rt) +

M−1∑
k=1

Re[exp(ts(�k))f̂ (s(�k))(1 + i�(�k))]
}

(18)

Based on numerical experiments we fix the parameter r to the value

r = 2M/(5t) (19)

Then the approximant f (t, M) given by (18) has only one free parameter, M , the number of
terms to be summed. To control the round-off error in the computation of (18), we specify the
precision requirement

number of precision decimal digits = M (20)

Hence, the FT algorithm may be summarized as follows:

FT Algorithm. Specify the transform f̂ (s) and furnish values for t and M . First set
the precision to M , then compute the approximant f (t, M) from (18) and (19).

The word ‘fixed’ in the name of the FT algorithm points to the fact that the path (11) is
fixed because the parameter ‘r’ has the constant value given by (19); whereas, in Reference
[13] the path is not fixed for all transforms. A prototype implementation of this algorithm in
Mathematica was given in Section 1.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

986 J. ABATE AND P. P. VALKÓ

The FT algorithm is a substantial simplification of the original Talbot procedure. Of course,
when Talbot developed his procedure, he did not have access to multi-precision computing
software. And neither did Murli and Rizzardi [19] who implemented a FORTRAN version of
Talbot’s procedure. Their program has a line count of 3090. Also, the FT algorithm is different
from the procedure proposed by Evans and Chung [21]. The functional form of their contour
coincides with our (11). However, their approach to the parameter r is very different from our
value (19), which is independent of the transform to be inverted. Whereas, Evans and Chung
[21] use r = �/t where � is determined from the asymptotic behaviour of the transform. That
is f̂ (s) ∼ c/s� as s → ∞. Indeed, this choice of r furnishes the optimal contour but only
when f̂ (s) = c/s� as shown in (14). However, it is not effective in general, as we shall see
in Section 4 with regard to the transforms F04–F10 of Table I.

In Section 4, we examine the performance of the FT algorithm. For a large class of trans-
forms, we find the relative error estimate∣∣∣∣f (t) − f (t, M)

f (t)

∣∣∣∣ ≈ 10−0.6M (21)

That is, the number of significant digits in the approximant F(t, M) is about equal to 0.6M .
There is a potential computing problem that one may encounter with the software imple-

mentation of FT. It has to do with computing the values of certain transforms. One problem
concerns the location of the branch cut for the square-root function in various software systems.
The problem, and its solution are discussed in detail by Murli and Rizzardi [19]. For example,
consider the transform f̂ (s) = 1/

√
s2 − 1 which has the inverse I0(t). Both Mathematica

and UBASIC have a problem with the transform. The simple solution is to express f̂ (s) as
1/(

√
s − 1

√
s + 1). Also a problem may arise with the function log(s2+1). Again, the solution

is to use the form log(s − i) + log(s + i).

4. PERFORMANCE OF THE ALGORITHMS

It would be nice to provide simple general error bounds that are independent of the transform
under consideration. Unfortunately, this is not possible. Even for a restricted class of transforms,
we are not able to provide rigorous error criteria. However, we have found a simple empirical
error estimate for a large class of transforms which we label F. In fact, these are the error
estimates given by (9) and (21). They seem to be valid even though the theoretical basis for
(9) and (21) is lacking.

A transform is a member of class F if it meets two conditions: (1) the transform has all its
singularities on the real axis to the left of s = a, a � 0; and (2) the inverse f (t) is infinitely
differentiable for t > 0. Some examples of transforms in class F are given in Table I. This
is the first set of test transforms that will be used to demonstrate the effectiveness of the
GWR and FT algorithms. Note, we did not include any rational transforms in Table I; that is,
transforms which are the ratio of two polynomials. It is well known that rational transforms are
easy to invert. However, we do include two pseudotransforms in Table I, namely F11 and F12.
These are not bona fide transform pairs. For example, the forward transform (1) of f (t) = 1/t ,
does not exist. However, there is a sense in which the inverses of F11 and F12 are valid, see
p. 62 of Reference [22]. Pseudotransforms are useful in the fractional calculus. For example,

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MULTI-PRECISION LAPLACE TRANSFORM INVERSION 987

given the unit function h(t) = 1, then the inverse of
√

s represents the three-halves derivative
of h(t). It is reasonable to expect that a good numerical inversion algorithm should be able to
handle these so-called pseudotransforms.

For a class F transform, the number of significant digits of accuracy achieved by the GWR
algorithm is about M whereas for FT it is about (0.6)M , see (9) and (21). Further, the accuracy
is almost constant over a very large time interval. Indeed, Tables II–IV show this to be the
case for the test transforms F06, F04 and F05, respectively. Actually, we generated tables for
all the transforms F01–F12, but to save space we display the results for only three of the
transforms. The results for test transform F06 represent the best case, while those of F05 show
the worst case, and those of F04 are average. Note in Table IV, the error for F05 at M = 20 is
not constant over the entire t-interval. Table V shows these results for the fixed value M = 30.

All the transforms in Table I have inverses in terms of familiar special functions. In fact,
all these inverses can be computed by a function call in Mathematica. Therefore, it is easy
to check the results of the inversions.

In order to further test the algorithms, we consider the more complicated transforms in
Table VI, which do not have inverses in terms of familiar special functions. Most of the test
transforms in Table VI are taken from Duffy [3]. His paper provides integral representations

Table II. The number of significant digits obtained for GWR and FT as a
function of M and t for the transform F06.

GWR Algorithm: M FT Algorithm: M

t 20 40 100 200 20 40 100 200

0.1 17 33 81 161 12 24 59 118
1 16 33 81 161 12 24 59 118
7 18 34 81 161 13 24 60 119
20 19 34 81 161 13 24 60 119
50 18 34 82 162 14 25 60 120
100 18 34 83 162 14 25 61 120
300 18 34 82 162 14 26 61 120
800 17 34 82 162 14 26 61 120

Table III. The number of significant digits obtained for GWR and FT as a
function of M and t for the transform F04.

GWR Algorithm: M FT Algorithm: M

t 20 40 100 200 20 40 100 200

0.1 9 20 51 106 11 25 71 129
1 10 23 60 126 14 28 67 129
7 12 26 72 158 12 24 62 121
20 13 29 79 161 11 23 60 119
50 14 32 80 159 11 23 58 118
100 16 33 79 160 10 22 58 117
300 16 30 80 160 10 22 57 116
800 18 32 80 159 10 21 56 116

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

988 J. ABATE AND P. P. VALKÓ

Table IV. The number of significant digits obtained for GWR and FT as a
function of M and t for the transform F05.

GWR Algorithm: M FT Algorithm: M

t 20 40 100 200 20 40 100 200

0.1 18 34 83 160 14 27 62 120
1 18 34 82 162 14 27 62 120
7 17 33 81 161 13 26 61 120
20 16 33 80 161 13 26 61 120
50 15 32 80 160 13 25 61 119
100 12 31 79 161 12 25 60 119
300 6 26 78 157 12 25 60 119
800 0 15 74 152 3 23 58 117

Table V. The number of significant digits obtained for GWR and FT as
a function of t for each transform and using the constant value M = 30.

GWR Algorithm: t FT Algorithm: t

ID 1 20 100 800 1 20 100 800

F01 25 21 16 20 17 16 16 15
F02 22 25 25 24 18 18 18 18
F07 25 23 16 24 16 17 17 16
F08 24 25 25 25 17 18 18 18
F09 25 25 24 24 17 18 18 18
F10 25 25 26 26 17 17 17 17
F11 23 24 24 24 17 16 16 16
F12 24 24 24 24 17 15 15 15

of the inverses, which we used to calculate the reference solution f (t). Duffy did a nice
job researching the literature to find interesting examples of transforms used in engineering
applications. Transform F14 arises from a problem in the theory of beams. Transform F15
is found in a study of the longitudinal impact on viscoplastic rods. Transform F16 arises in
modeling the transients in an electric transmission line. Transforms F18 and F20 are found in
analytical models of the impulsive displacement of viscoelastic fluids. Transform F21 arises in
a study of telephone traffic congestion. Note that the transform F21 is given implicitly by a
non-linear equation. In this case the transform values are obtained by numerically solving the
non-linear equation using, for example, Newton’s method.

Note in Table VI that the transform F14 is defined as the product of the transforms F03
and F13. Table VII shows the accuracy results for the inversion of F03, F13 and F14. These
transforms all have a singularity at s = +1. The inversion computations are performed directly
and also using the operational rule s = s + 1. Table VII shows that the results are better
using the operational rule. Note the accuracy achieved with transform F14 using s = s + 1
and for the value M = 30, in Table VII. We obtain about 20 significant digits using the FT
algorithm. Now F14 is test transform #5 of Duffy [3]. To test Talbot’s method, Duffy uses
the software implementation by Murli and Rizzardi [19], which is ACM/TOMS Algorithm

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MULTI-PRECISION LAPLACE TRANSFORM INVERSION 989

Table VI. Some class F transforms taken
from engineering applications.

ID f̂ (s)

F13
1√

s2 − s

2

√
s2 − 1

F14 F03 · F13

F15
(100s − 1) sinh(

√
s/2)

s(s sinh(
√

s) + √
s cosh(

√
s))

F16
1

s
exp

(
1

2
(s + 1 −

√
s2 + 6s + 1)

)

F17

√
s + 1

2
√

s
√
1 + 2s/5

F18
1

s
exp(−s · F17)

F19

√
1 + log(100)√

1 + log((100s + 1)/(s + 1))
− 1

F20
1

s
exp(−s · F19)

F21 (2s + 1 − f̂ (s))f̂ (s) = log(2s + 2 − f̂ (s)))

Table VII. The number of significant digits obtained for GWR and FT
as a function of t and using the constant value M = 30. Note, F03(s+1)

is the transform F03 with the substitution s = s + 1.

GWR Algorithm: t FT Algorithm: t

ID 0.3 2 4 9 0.3 2 4 9

F03 27 26 20 10 21 20 20 8
F03(s+1) 26 26 25 23 21 20 20 20
F13 26 24 17 6 18 18 18 8
F13(s+1) 25 24 21 20 18 18 18 16
F14 27 24 18 7 21 21 21 8
F14(s+1) 27 25 25 21 21 21 21 20

#682. Surprisingly, Duffy’s results achieved only a few significant digits of accuracy for this
transform, see his Figure 14. In fact, he tried the program for values of M (which he calls n)
up to 100. Duffy concludes from Figure 14: ‘For all times, the method does rather poorly’.
We find this to be a curious statement. It seems to indicate that Talbot’s method failed because
F14 is a problematic transform. Indeed, it was the program that failed and not Talbot’s method!
Clearly, one should always be cautious with software programs. Recall the potential computing

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

990 J. ABATE AND P. P. VALKÓ

Table VIII. The number of significant digits obtained for GWR and FT as a function
of t for each transform and using the constant value M = 30.

GWR Algorithm: t FT Algorithm: t

ID 0.3 2 4 9 0.3 2 4 9

F15 17 16 15 15 21 19 18 17
F16 25 25 23 20 15 19 19 19
F17 24 24 23 20 14 14 17 18
F18 19 24 21 19 13 14 18 19
F19 26 25 24 24 19 18 18 18
F20 26 25 25 25 19 19 19 19
F21 25 23 21 12 16 17 17 18

Table IX. Some test transforms in class G and their inverses.

ID ĝ(s) g(t)

G1
1

s2 + 1
sin(t)

G2
1√

s2 + 1
J0(t)

G3
1√

s +
√

s2 + 1

sin(t)√
2�t3

G4 arctan(
1

s
)

sin(t)

t

G5 1 − exp(s −
√

s2 + 1)
J1(

√
t (t + 2))√

t (t + 2)

G6∗ − log(s2 + 1)
2 cos(t)

t

∗Pseudotransform.

problems cited at the end of Section 3. Because all methods have limitations, we emphasize
the utilization of more than one algorithm to invert a transform.

Table VIII shows the accuracy results for the inversion of test transforms F15–F21. Note the
results in Table VIII are comparable to the results in Table V. We conclude that the effectiveness
of the algorithms GWR and FT seem to be rather constant across all class F transforms.

We next consider another large class of transforms that we label G. The definition of class G

is the same as F except we remove the restriction of only real singularities. That is, transforms
in class G have singular points lying off the real axis. Examples of such transforms are given
in Table IX.

Table X shows the accuracy of the inversion of transform G2 for the algorithms GWR and
FT. There is a striking difference between Table X and say Table II. For a class G inversion,
if we fix the value of M then the accuracy decreases as t increases. On the other hand, if we

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MULTI-PRECISION LAPLACE TRANSFORM INVERSION 991

Table X. The number of significant digits obtained for GWR and FT as a
function of M and t for the transform G2.

GWR Algorithm: M FT Algorithm: M

t 50 100 200 400 50 100 200 400

0.1 42 82 162 321 30 60 119 237
1 41 81 161 320 30 60 119 237
7 29 75 155 313 30 60 118 236
20 11 47 137 295 14 59 118 236
50 0 15 77 248 0 14 114 236
100 0 0 29 154 0 0 28 228
200 0 0 2 60 0 0 0 57
300 0 0 0 21 0 0 0 0

Table XI. The number of significant digits obtained for GWR and FT as a
function of M and t for the transform G4.

GWR Algorithm: M FT Algorithm: M

t 50 100 200 400 50 100 200 400

0.1 42 83 162 321 31 61 119 237
1 41 81 161 318 31 61 119 237
7 29 75 154 315 30 60 118 236
20 11 47 138 301 15 59 118 236
50 0 15 77 248 0 14 115 235
100 0 1 30 154 0 0 30 229
200 0 0 3 61 0 0 0 57
300 0 0 0 21 0 0 0 0

fix the value of t , then the accuracy improves as M increases. This is demonstrated in Tables
X and XI. We do not have a simple empirical error estimate for class G transforms. However,
this situation is not as bad as it seems. With the aid of multi-precision, we can compute the
inversion by using brute force, that is, continue to increase M until the result converges. A
simple strategy for GWR and FT is to run the program with, for example, M = 20, 40, 80, . . . ,
until two successive values of f (t) agree to, say, 15 significant digits. This brute force approach
may seem to be lacking elegance but it is simple and effective. However, on occasion it may
be time consuming.

The above problem is well known with regard to the Talbot method. Talbot’s approach was to
augment the contour in (11) with one additional parameter that was dependent on the distances
of the singularity from the real axis. His approach was moderately effective but complicated.
Evans [20] introduced an alternative contour which is more effective but the procedure seems
complicated. Evans and Chung [21] have a relatively simple procedure, but it is restricted to
transforms with off-axis singularities that are poles. Hence, their algorithm cannot handle the
test transforms G2–G6 in Table IX.

It can be shown that with our strategy, the required value of M is proportional to t , that is

M = M0 + 	t (22)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

992 J. ABATE AND P. P. VALKÓ

Table XII. The number of significant digits obtained for GWR and FT as
a function of t for each transform and using the value M = 30 + (1.6)t .

GWR Algorithm: t FT Algorithm: t

ID 20 50 100 200 20 50 100 200

G1 18 19 25 39 23 22 21 20
G2 18 19 25 39 24 22 21 20
G3 18 19 25 39 22 22 22 22
G4 18 19 25 40 23 23 22 21
G5 18 19 25 39 22 22 21 21
G6 18 19 25 40 23 23 21 21

Table XII demonstrates this fact and the FT results are about constant for the value 	 = 5/� ≈
1.6 in (22). Note, the transforms G1–G6 all have the same singular point s = +i. Suppose
the transform g(s) has one singularity in the second quadrant at s = −� + i
, where �,
 � 0.
From the geometry of the contour (11) and the value of the parameter r given by (19), then
we determine 	 in (22) to be

	 = 2.5

� − arctan(
/�)
(23)

For example, if � = 0 and
 = 1 then 	 = 5/�.

5. CONCLUSIONS

In this paper, we have investigated two simple and effective algorithms for numerically inverting
Laplace transforms. The results of Section 4 demonstrate that the algorithms GWR and FT
perform well for two large classes of transforms labelled F and G.

From our experience, GWR and FT are the best all-round practical algorithms for inversion
when using multi-precision computing. Further, we consider it important to have two ‘best’
algorithms. It does not seem possible to find a simple algorithm with rigorous error bounds
which are independent of the transform. Therefore, we recommend the use of two algorithms,
each with empirical error estimates to numerically invert a formidable transform.

The FT algorithm is a substantial simplification of the original Talbot procedure. Essentially,
the FT algorithm is defined by the seven equations (11), (15)–(20). In contrast, Talbot [13]
has a rather lengthy algorithm which is described by 48 equations. In fact, the equations in
Reference [13] needed to implement the procedure are: (7)–(9), (24)–(31) and (58)–(94). The
major portion of his algorithm is devoted to estimating values for the parameters used in the
method.

REFERENCES

1. Davies B, Martin B. Numerical inversion of the Laplace transform: a survey and comparison of methods.
Journal of Computational Physics 1979; 33:1–32.

2. Narayanan GV, Beskos DE. Numerical operational methods for time-dependent linear problems. International
Journal for Numerical Methods in Engineering 1982; 18:1829–1854.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MULTI-PRECISION LAPLACE TRANSFORM INVERSION 993

3. Duffy DG. On the numerical inversion of Laplace Transform: comparison of three new methods on
characteristic problems from applications. ACM Transactions on Mathematical Software 1993; 19:333–359.

4. Valkó PP, Vojta BL. The List. 2001; http://pumpjack.tamu.edu/∼valko
5. Koizumi S. A new method of evaluation of the Heaviside operation expression by Fourier series. Philosophical

Magazine 1935; 10:1061–1076.
6. Abate J, Whitt W. The Fourier-series method for inverting transforms of probability distributions. Queueing

Systems 1992; 10:5–88.
7. D’Amore L, Lacetti G, Murli A. An implementation of a Fourier-series method for the numerical inversion

of the Laplace transform. ACM Transactions on Mathematical Software 1999; 25:279–305.
8. Sakurai T. Numerical inversion of the Laplace transform of functions with discontinuities. Queueing Systems,

2004; to appear.
9. Ward EE. The calculation of transients in dynamical systems. Proceedings of the Cambridge Philosophical

Society 1954; 50:49–59.
10. Abate J, Choudhury G, Whitt W. On the Laguerre-method for numerically inverting Laplace transforms.

INFORMS Journal of Computing 1996; 8:413–427.
11. Weideman JAC. Algorithms for parameter selection in the Weeks method for inverting the Laplace transform.

SIAM Journal on Scientific Computing 1999; 21:111–128.
12. Gaver DP Jr. Observing stochastic processes and approximate transform inversion. Operations Research 1966;

14:444–459.
13. Talbot A. The accurate numerical inversion of Laplace transforms. Journal of the Institute of Mathematics

and Its Applications 1979; 23:97–120.
14. Davies B. Integral Transforms and Their Applications (3rd edn). Springer: New York, 2002.
15. Wimp J. Sequence Transformations and Their Applications. Academic Press: New York, 1981.
16. Stehfest H. Algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM 1970;

13:47–49 and 624.
17. Valkó PP, Abate J. Comparison of sequence accelerators for the Gaver method of numerical Laplace transform

inversion. Computational Mathematics and Applications 2004, to appear.
18. Mathematica Information Center, http://library.wolfram.com/database/MathSource/4738/
19. Murli A, Rizzardi M. Algorithm 682. Talbot’s method for the Laplace inversion problem. ACM Transactions

on Mathematical Software 1990; 16:158–168.
20. Evans GA. Numerical inversion of Laplace transforms using optimal contours in the complex plane.

International Journal of Computer Mathematics 1993; 49:93–105.
21. Evans GA, Chung KC. Laplace transforms inversion using optimal contours in the complex plane. International

Journal of Computer Mathematics 2000; 73:531–543.
22. Doetsch G. Introduction to the Theory and Application of Laplace Transformation. Springer: New York,

1974.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:979–993

 10970207, 2004, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.995 by R
utgers U

niversity L
ibraries, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

