
Solving Boundary Value Problems in MathCad

(Dr. Tom Co 11/3/2008)

Introduction

There are problems defined by differential equations known as boundary value problems

(BVP), where some conditions are specified at the initial point while the rest are specified

at the end point.

Example:

���

���
�
1

2

��

��
� � � 5

(1)

�
0� � 1 and �
2� � 2

(2)

Unfortunately, most numerical methods such as Runge-Kutta solve only initial value

problems (IVP), where all the conditions are given at the initial point. Thus, to be able to

use the ODE-IVP solvers, we need to change the problem by first finding the missing

initial conditions. One such method is known as the “shooting method” which tries

different values for the missing initial conditions until the prescribed end conditions are

satisfied. Other methods include finite difference methods.
1
 In MathCad, the function

sbval() is tasked with finding the missing initial values.

MathCad Procedure:

In the steps below, the discussion will proceed using the example given by (1) and (2):

1. Put the differential equation into the “state space” formulation, i.e. a set of first-order

ODEs in which each first-order derivatives are in the left-hand sides and the right-hand

sides contain only the state-variables (variables having derivatives) and process

parameters.

1
 Not all boundary value problems have solutions. In some cases, there can even be

multiple solutions. The conditions for the existence and/or uniqueness of the solutions of

BVP are beyond the scope of this brief lecture.

���

��
� ��

���

��
� �

1

2
�� � �� � 5

2. Collect the right hand side elements into a vector

Remarks:

a) Include the independent variable (� in our case) as the first argument of �
 �, even if

it does not appear in the vector of equations

b) Use the index-subscript for �, i.e. use (ctrl [).

3. Define the vector of initial conditions as a function of the start value of the independent

variable, e.g. ������, and a vector of unknown initial conditions, e.g. �

Remarks:

c) � is required to be a vector, including a 1 � 1 vector.

d) You can choose any other name instead of ������. However, it has to be the first

argument of the initial vector function, �����
 �.

e) Later, the vector of initial conditions needed by RkAdapt() will be a vector of

constants, not a function such as in �����
 � above.

4. Define the vector of end conditions as a function of the end values of the independent

variable, e.g. ��� , and the state vector. The entries of this vector contain conditions that

needed to be zeroed.

Remark:

f) The right hand side must be a vector, including the case of a 1 � 1 vector as in the

example above.

5. Implement the sbval() function. The syntax is given by

!"#$ % !&'(#
 �)*���, ������, ��� , �, ,$-�./$0120, 3$�4"$�120�

where �)*��� is a vector of initial guesses for the unknown initial values. ������ and ���

are scalar values for start and end values of the independent variables, respectively. � is

the vector defined earlier, ,$-�./$0120 and 3$�4"$�120 are vectors of initial functions

and end conditions, respectively. For the example above,

Remark:

g) � as before is required to be a vector, including the case of a 1 � 1 vector.

6. Using the results from sbval(), define the constant vector of initial conditions to be

applied with Rkadapt() and simulate as before.

Alternative MathCad procedure:

1. Instead of sbval(), one could use the (Given…Find) block to perform a “shooting

method” to find the missing initial conditions.

2. After the missing initial conditions are found, solve the ODE once more to obtain the

desired solution.

