
Solving Boundary Value Problems in MathCad 

(Dr. Tom Co 11/3/2008) 

Introduction 

There are problems defined by differential equations known as boundary value problems 

(BVP), where some conditions are specified at the initial point while the rest are specified 

at the end point.   

Example: 
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(1)

�
0� � 1      and           �
2� � 2 

 
(2)

 

Unfortunately, most numerical methods such as Runge-Kutta solve only initial value 

problems (IVP), where all the conditions are given at the initial point.  Thus, to be able to 

use the ODE-IVP solvers, we need to change the problem by first finding the missing 

initial conditions.  One such method is known as the “shooting method” which tries 

different values for the missing initial conditions until the prescribed end conditions are 

satisfied.  Other methods include finite difference methods. 
1
  In MathCad, the function 

sbval( )  is tasked with finding the missing initial values. 

MathCad Procedure: 

In the steps below, the discussion will proceed using the example given by (1) and (2):  

1. Put the differential equation into the “state space” formulation, i.e. a set of first-order 

ODEs in which each first-order derivatives are in the left-hand sides and the right-hand 

sides contain only the state-variables (variables having derivatives) and process 

parameters. 

  

                                                 
1
  Not all boundary value problems have solutions.  In some cases, there can even be 

multiple solutions. The conditions for the existence and/or uniqueness of the solutions of 

BVP are beyond the scope of this brief lecture. 
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2. Collect the right hand side elements into a vector 

 

 
Remarks: 

a) Include the independent variable ( � in our case ) as the first argument of �
 �, even if 

it does not appear in the vector of equations 

b) Use the index-subscript for �, i.e. use ( ctrl  [ ). 

 

3. Define the vector of initial conditions as a function of the start value of the independent 

variable, e.g. ������, and a vector of unknown initial conditions, e.g. � 

 

Remarks: 

c) � is required to be a vector, including a 1 � 1 vector.  

d) You can choose any other name instead of ������. However, it has to be the first 

argument of the initial vector function, �����
 �. 

e) Later, the vector of initial conditions needed by RkAdapt( ) will be a vector of 

constants, not a function such as in �����
 � above. 

 

4. Define the vector of end conditions as a function of the end values of the independent 

variable, e.g. ��� , and the state vector.  The entries of this vector contain conditions that 

needed to be zeroed. 

 

  



Remark: 

f) The right hand side must be a vector, including the case of a 1 � 1 vector as in the 

example above.  

5. Implement the sbval( ) function.  The syntax is given by 

 

!"#$ % !&'(#
 �)*���, ������, ��� , �, ,$-�./$0120, 3$�4"$�120� 

 

where  �)*��� is a vector of initial guesses for the unknown initial values. ������ and ���  

are scalar values for start and end values of the independent variables, respectively. � is 

the vector defined earlier, ,$-�./$0120 and 3$�4"$�120 are vectors of initial functions 

and end conditions, respectively. For the example above, 

 

 
 

Remark: 

g) � as before is required to be a vector, including the case of a 1 � 1 vector. 

 

6. Using the results from sbval( ), define the constant vector of initial conditions to be 

applied with Rkadapt( ) and simulate as before. 

 

 



 

Alternative MathCad procedure:   

1. Instead of sbval( ), one could use the (Given…Find) block to perform a “shooting 

method” to find the missing initial conditions. 

 

2. After the missing initial conditions are found, solve the ODE once more to obtain the 

desired solution. 

 

 
 


