Second-order differential equation to model the system behavior F_{SPRING} F_{damper} R $+^{R}$ θ" Mass J2 mertia Inertia c3θ' k3θ c10' k10 FG FG FG FG

Second-order differential equation Newton rotational law drive 1

For the rotation of the first motor (drive 1) according to Newton's laws with damping and stiffness:

$$\theta_{1}''(t) = \frac{-c_{1} \cdot \theta_{1}'(t) - k_{1} \cdot \theta_{1}(t) + k_{2} \cdot \left(\frac{x_{2}(t)}{R_{1}} - \theta_{1}(t)\right) + c_{2} \cdot \left(\frac{x_{2}'}{R_{2}}(t) - \theta_{1}'(t)\right) + T_{brake1} + \frac{m_{rack} \cdot g}{2} \cdot R_{1}}{J_{1} + J_{1gear} \left(\frac{R_{1}}{R_{2}}\right)^{2}}$$

Mass of inertia 1 pinion	$J_1 := 0.01$
Mass of inertia 1 gearbox	$J_{1gear}\!\coloneqq\!0.02$
Pitch diameter pinion 1	$R_1 := 100$
Radial Damping Coefficient drive 1	$c_1 = 22590$
Radial Stiffness Coefficient drive 1	$k_1 \coloneqq 1 \cdot 5.7 \cdot 10^7$
Brake	$T_{brake1} = 10$

Second-order differential equation Newton rotational law rack

For the rack (mass-spring-damper system) according to Newton's laws with damping and stiffness:

$$x_{2}^{\prime\prime}\!\left(t\right) = \frac{-k_{2}\boldsymbol{\cdot}\left(x_{2}\left(t\right) - \theta_{1}\!\left(t\right)\boldsymbol{\cdot}R_{1}\right) - c_{2}\boldsymbol{\cdot}\left(x_{2}^{\prime}\left(t\right) - \theta_{1}^{\prime}\!\left(t\right)\boldsymbol{\cdot}R_{1}\right) + k_{2}\boldsymbol{\cdot}\left(\theta_{2}\!\left(t\right)\boldsymbol{\cdot}R_{2} - x_{2}\left(t\right)\right) + c_{2}}{m_{rack}}$$

Mass rack $m_{rack} = 5$

Radial Damping Coefficient gear-pinion 1 $c_2 = 22590$

Radial Stiffness Coefficient gear-pinion 1 $k_2 = 1 \cdot 5.7 \cdot 10^7$

Second-order differential equation Newton rotational law drive 2

For the rotation of the second motor (drive 2) according to Newton's laws with damping and stiffness:

$$\theta_{2}''(t) = \frac{-k_{2} \cdot \left(\theta_{3}(t) - \frac{x_{2}}{R_{2}}(t)\right) - c_{2} \cdot \left(\theta_{3}'(t) - \frac{x_{2}}{R_{2}}'(t)\right) + \frac{m_{rack} \cdot g}{2} \cdot R_{2} - k_{3} \cdot \theta_{2}(t) - c_{3} \cdot \theta_{2}'(t)}{J_{2} + J_{2gear} \left(\frac{R_{1}}{R_{2}}\right)^{2}}$$

$$J_2 + J_{2gear} \left(rac{R_1}{R_2}
ight)^2$$

Mass of inertia 2 pinion $J_2 = 250$

 $J_{2qear}\!\coloneqq\!250$ Mass of inertia 2 gearbox

 $R_2 = 100$ Pitch diameter pinion 2

Radial Damping Coefficient damper 2 $c_3 = 22590$

 $k_3 = 1 \cdot 5.7 \cdot 10^7$ Radial Stiffness Coefficient 2

$$T_{brake2} \coloneqq 20$$

$$g_1 = 9.81$$

