The problem discussed here (1) involves a network of factories, warehouses and sales outlets. We need to find the least expensive flow of products from
factories to warehouses to stores. One particularity is that each store gets its products from one warehouse.

Mathematical Model
We use the following indices:
* p: products
« f: factories
« w: warehouses

« s: stores
We introduce the following variables:

* &, 5w = 0: shipments of product p from factory f to warehouse w,

o yow € {0,1}: links each store s to a single warehouse w.
The data associated with the model is:

+ pcosty,: unit production cost

+ tcost,: unit transportation cost

« distg,,dist,,,: distances

* pcapyp: factory production capacities
* wcap,,: warehouse capacity

* d,,: demand for product p at store s

s turn,: product turnover rate

The optimization model looks like:

min Z (peosty , + teost, - distsy,) - Tp 0+ Z ds - teosty, - dist, - Ys

pofaw syw,p

Z Tpsw < peapys, Vf,p (production capacity)
w

Z Ly, fw — Z ds,p *Ysw Vp, w (demand)
f 5

d

s,p .
< weapy, VYw (warehouse capacit
Z tm'np Ysw = Pw (p Y}

p!s

Z Ysw = 1 Vs (one warehouse for a store)

w

Ip?f!u" 2 0
Ys,w € {0, 1}

Matlab code

rng(1l) % for reproducibility

N=20; %N from 10 to 30 seems to work. Choose large values with
caution.

N2 = N*N;

f = 0.85; % density of factories

w = 0.085; % density of warehouses

s = ©.1; % density of sales outlets

F = floor(f*N2); % number of factories

W = floor(w*N2); % number of warehouses

S = floor(s*N2); % number of sales outlets

xyloc = randperm(N2,F+W+S); % unique locations of facilities Pick uniaue locations on a arid
[xloc,yloc] = ind2sub([N N],xyloc); q g

P = 28; % 20 products

% Production costs between 20 and 16@
pcost = 8@*rand(F,P) + 20;

% Production capacity between 5@@ and 150 for each product/factory
pcap = 1@e@*rand(F,P) + 500;

% Warehouse capacity between P*48@ and P*88@ for each
product/warehouse
wcap = P*400*rand(W,1) + P*4ee;

% Product turnover rate between 1 and 3 for each product
turn = 2*rand(1,P) + 1;

% Product transport cost per distance between 5 and 18 for each
product
tcost = S5*rand(1,P) + 5;

% Product demand by sales outlet between 200 and 580 for each
% product/outlet
d = 3@e*rand(S,P) + 200;

distfw = zeros(F,W); % Allocate matrix for factory-warehouse
distances
for ii = 1:F

for jj = 1:W

distfw(ii,jj) = abs(xloc(ii) - xloc(F + jj)) +
abs(yloc(ii) - yloc(F + jj));

end

end

distsw = zeros(S,W); % Allocate matrix for sales outlet-warehouse
distances
for ii = 1:S

for jj = 1:W

distsw(ii,jj) = abs(xloc(F + W + ii) - xloc(F + jj))
+ abs(yloc(F + W + 1ii) - yloc(F + jj));

end

end

obj1
obj2

zeros(P,F,W); % Allocate arrays
zeros(S,W);

% Generate the entries of objl and obj2.
for ii = 1:P
for jj = 1:F
for kk = 1:W
obj1(ii,jj,kk) = pcost(jj,ii) +
tcost(ii)*distfw(jj,kk);
end
end
end

for ii = 1:S
for jj = 1:W
obj2(ii,jj) = distsw(ii,jj)*sum(d(ii,:).*tcost);
end
end

% Combine the entries into one vector.
obj = [obj1(:);0bj2(:)]; % obj is the objective function vector

Matrix Aineq holding the coefficients
for the inequality constraints is large
and sparse, so use a sparse matrix
instead of a dense one.

matwid = length(obj);

Aineq
bineq

spalloc(P*F + W,matwid,P*F*W + S*W); % Allocate sparse Aeq
zeros(P*F + W,1); % Allocate bineq as full

% Zero matrices of convenient sizes:
clearerl = zeros(size(objl));
clearerl2 = clearerl(:);

clearer2 = zeros(size(obj2));
clearer22 = clearer2(:);

% First the production capacity constraints
counter = 1;
for ii = 1:F
for jj = 1:P
xtemp = clearerl;
xtemp(jj,ii,:) = 1; % Sum over warehouses for each product
and factory
xtemp = sparse([xtemp(:);clearer22]); % Convert to sparse
Aineg(counter,:) = xtemp'; % Fill in the row
bineq(counter) = pcap(ii,jj);
counter = counter + 1;
end
end

% Now the warehouse capacity constraints
vj = zeros(S,1); % The multipliers
for jj = 1:S
vj(jj) = sum(d(jj,:)./turn); % A sum of P elements
end

for ii = 1:W
xtemp = clearer2;
xtemp(:,1ii) = vj;
xtemp = sparse([clearerl2;xtemp(:)]); % Convert to sparse
Aineq(counter,:) = xtemp'; % Fill in the row
bineq(counter) = wcap(ii);
counter = counter + 1;

end

Matrix Aeq is for the coefficients of
the equality constraints. Also stored as
a sparse matrix

Aeq
beq

zeros(P*W + S,1); % Allocate vectors as full

counter = 1;
% Demand is satisfied:
for ii = 1:P
for jj = 1:W
xtemp = clearerl;
xtemp(ii,:,jj) = 1;
xtemp2 = clearer2;
Xtempz(:.!jj) = 'd(_,ll),
xtemp = sparse([xtemp(:);xtemp2(:)]'); % Change to sparse
row
Aeq(counter,:) = xtemp; % Fill in row
counter = counter + 1;
end
end

% Only one warehouse for each sales outlet:
for ii = 1:S
xtemp = clearer2;
xtemp(ii,:) = 1;
xtemp = sparse([clearerl2;xtemp(:)]'); % Change to sparse row
Aeq(counter,:) = xtemp; % Fill in row
beg(counter) = 1;
counter = counter + 1;
end

intcon = P*F*W+1:length(obj);

1b = zeros(length(obj),1);

ub = Inf(length(obj),1);

ub(P*F*W+l:end) = 1;
[solution,fval,exitflag,output] =
intlinprog(obj,intcon,Aineq,bineq,Aeq,beq,1lb,ub);

spalloc(P*W + S,matwid,P*W*(F+S) + S*W); % Allocate as sparse

