

•1–33. The bar has a cross-sectional area A and is subjected to the axial load P. Determine the average normal and average shear stresses acting over the shaded section, which is oriented at θ from the horizontal. Plot the variation of these stresses as a function of θ ($0 \le \theta \le 90^{\circ}$).

Equations of Equilibrium:

$$\searrow + \Sigma F_x = 0;$$
 $V - P \cos \theta = 0$ $V = P \cos \theta$

$$\nearrow + \Sigma F_{v} = 0;$$
 $N - P \sin \theta = 0$ $N = P \sin \theta$

Average Normal Stress and Shear Stress: Area at θ plane, $A' = \frac{A}{\sin \theta}$

$$\sigma = \frac{N}{A'} = \frac{P\sin\theta}{\frac{A}{\sin\theta}} = \frac{P}{A}\sin^2\theta$$

$$\tau_{\rm avg} = \frac{V}{A'} = \frac{P\cos\theta}{\frac{A}{\sin\theta}}$$

$$= \frac{P}{A}\sin\theta\cos\theta = \frac{P}{2A}\sin 2\theta$$

hibbeler sterkteleer 8th, opgave 1-33 (page 38)

P 15 **N**

 θ deg

A 100 mm

$$\sigma(\theta) = \frac{P \sin \theta}{\frac{A}{\sin \theta}}$$

 $\theta = (30 \ deg)$

 θ 90 deg,85 deg..0 deg

 $\theta = 1$

