Problem specification

The data used in this exercise are taken from the literature (Colburn [1983]), and show
how to discriminate between five different models that incorporate a bi-phasic decline.

A 100 pg intravenous bolus dose of compound X was given and plasma concentrations
were measured at the time points shown by the concentration-time data presented in
Figure 8.1 and in the program output. The distribution model is shown in F igure 8.2.

- 10.00
—_ Figure 8.1 Semi-logarithmic
S plot of observed concentration-
< 1.00 time data following a 100 ug
2 ° o intravenous bolus dose of
»E ° o compound X,
g 0.10 e o
3
001 1 ¥ L | I}
0§ 10 15 20 25 30 35 40 945 50
Time (h)

V=Vc V=%Vz V=Vss
[=0 t=0.69%k, t= e

Here, we demonstrate and use the simple relationship between distribution volume and
time that was originally proposed by Takada and Asada [1981] and Colburn {1983].
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Note that the volume increases as a function of time, starting at the central volure,
and ncreasing to 7. ¥, is estimated as Dy/(4 UC-A,) and corresponds to Vg in a two-
compartment system, which is caleulated as D.,//4UC 5). The true volume of distribution
at steady state Vi, is somewhat lower than ¥, since the terminal slope also influences V;.

One may consider the volume of distribution ¥ as a function of time. Immediately
after a bolus dose drug is assumed to distribute momentarily into the central volume.
After one distribution half-life (i.e., f150 = 0. 693/ks) drug has equilibrated into 50% of the
distribution volume. At infinite time (¢ = ) drug has distributed into the whole body
space.

The five models we wish to discriminate between are as follows. The first approach is
to specify the model as the traditional bi-exponential model

C=Ad-¢* +B.¢” (8:1)

The second method is to specify the volume of distribution as a function of time as in
; Takada's distribution model

Cot_. g (8:2)

T/t = e i (8:3)

D,
C=—"E .o (8:4)
V.+V, |
where V; is defined as
V, =V - [1— 7] (8:5)

Fourthly, one may reparameterize the bi-exponential model with Dy, and CI, and fit
this model to the data. The model in Equation 8:6 derives from Equation 8:1

D,
Cr=—o o (8:6)
m+ J—

a

which when rearranged yields

i

Div ___B_ ) | . i
a-[a ﬂ} | (8:7)
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and re-inserted nto Equation 8:1 yields

r

C:“'LD. B

n

Do B e g R:8
o ﬁj( (3:8)

Finally, the model may be specified in terms of differential equations. A general
diagram showing the two-compartment model is drawn in Figure 8.3.

Input

Figure 8.3 Schematic diagram of the two-
compariment (bi-exponential) model. The
Jour parameters are V,, CL Clyand V.,

Elimination
Cf

The physiological model parameters are then CI, V,, Cl,, and V;, which correspond to

- plasma clearance, the volume of the central compartment, inter-compartmental diffusion,

and the volume of the peripheral compartment, respectively. In is the input function,
which corresponds to the bolus dose in this example. The equation for the central
compartment is

v 9C m_ci.c-c .C+Cl,-C (8:9)
c dt d !

The equation for the peripheral compartment is

dc
v, —t=Cl,-C~Cl,-C, - (8:10)
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initial parameter estimates
Bi-exponential modei

A =2.0 (pg/L)

o =2.0(h")

B = 1.0 (ug/L)

i =0.1 (Y
Takada's model

Vi =100 (L)

Y =0.1 (k™)

Viar =140 (L)

ke =100
Differential equation model

V. =50(L)

cl =7(Lhh

Cly  =50(L/h)

Vi =60(L)

Cotburn's mode

Vi =100(L)
g =01
v,  =140(L)
ke =107

Reparameterized Cl-model
Cl =6.0(L/h)

a =2.0("

B = 1.0 (ug/L)

Jij =0.1 (")

Interpretation of results and conclusions

Observed and predicted (Equation 8:1) data are shown in Figure 8.4.
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Five different structural models have been fit to the data. The Poisson etror model
could either be specified as WT = I/F in the model file or with the REWEIGHT —1
command. Both weighting schemes are equivalent to an iterative reweighted least

squares IRLS approach.

In this exercise there is a marginal difference between the quality of fits, and all
models generated a low correlation between parameters, and high parameter precision.
- The difference was in the precision of some of the parameters. Observe that Takada's
model gave the lowest WRSS, while the differential equation model showed the lowest

condition number,
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Fable B.I  Final parameter cstimates
SE7iE .2 TINal parameter csimates

.. Model | WRSS  Cond #
Brexponentislmodel | 00437 | 1252
Tekadg'smodel | 00169 | 3188
Colbur'smodel | 0.0294 | 2243
Reparameterized model i 0.0435 ! 2306

Diffsrentiel oqn. mogel | 0043 | 2989
Thus the Takada model would appear to provide the best fit amongst the five models.

However, this should be confirmed by an analysis of the residuals. This indicates that

the Takada and Colburn models show fewer runs in the residuals than the other models.

In conclusion, in this example we have elaborated a clear bi-exponential system that
included enough information (number of observations) during each phase in order to
accurately estimate all parameters. One often comes across datasets where the initial
phase is hardly discernible, yet it cannot be excluded from analysis. In such a case we
would propose the non-compartmental approach (NC4), as one does not need to make
any asswmptions about the number of compartments,

Data were generated with a Poisson error model. This implies that one should use a
weighting function according to the formula below, where the exponent A is equal to
unity (1).

v~

C

Ideally, to compare the WRSS, a weighting scheme with constant weights should
“have been applied. When this is done, the Takada model is still the model of choice for
this dataset.
You have
analyzed a typical two-compartment (bi-exponential) system
applied different parameterizations of the two-compartment system
learned to derive the initial parameter estimates
characterized the pharmacokinetics after a single bolus dose administration to one
subject

N O

The next step in the characterization of kinetics would be to give multiple doses via
the intended route of administration.

Solutjon I - Bi-exponential model

TITLE 1
Ordinary bi-exponential model
- MODEL

COMM

NPARM 4

"NSEC 6

NCON 1

PNAMES 'A', 'ALPHA', 'B’ . "BETA!

SNAMES ‘CL’,'VC','AUC','AUMC','MRT',‘VdSS' i
END :
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an]

TEMP
DIV=CON {1}
T=X
END
FUNC1
F=A*DEXP (-ALPHA*T) + B*DEXP (-BETA*T)
D WT=1/(F)
END
SECO
10: AUC=A/ALPRA + B/BETA
11: S(1)y=DIV/ (AUC)
12: S(2y=DIV/ (A + B)
13: S(3}=AUC
14: S(4)y=pA/(ALPHA**2) + B/(BETA**2)
15: S(5)=8(4)/5{3}
16: S(6)=S{1l)*5({5)
17: END
18: EOM
NVARIABLES 2
NPOINTS 100

Lo B B N S o I A

el

XNUMBER 1

YNUMBER 2

CONSTANTS 100

METHOD 2 ‘'Gauss-Newton (Levenberg and Hartley)
REWEIGHT -1

ITERATIONS 50

INITIAL 2,2,1,.1

LOWER BOUNDS .1,.1,.1,.01

UPPER BOUNDS 10,5,2,1

NOBSERVATIONS 19

DATA 'WINNLIN.DAT'

BEGI¥
PARAMETER ESTIMATE STANDARD CV% UNIVARIATE C.I.
PLANAR C.I.
ERROR
A 1.035902 .081171 7.84 .862890 1.208914
ALPHA 1.891659 .260222 13.76 1.337012 2.446307
B .840451 .026039 3.10 . 784950 .895952
' BETA .057496 .002808 4.88 .051510 .063481
k%% CORRELATION MATRIX OF THE ESTIMATES ***
PARAMETER A ALPHA B BETA
A 1.00000
ALPHA .525278 1.00000
B -.728035E-01 .600041 1.00000
BETA ~.774795E-01 .339257 .652658 1.00000
Condition number= 125.2
X OBSERVED  PREDICTED  RESIDUAL WEIGHT  SE-PRED STANDARDIZ
Y Y ’ RESIDU
.8000E-01 1.810 1.727 .8298E-01 .5790 .6067E-01  2.262

.2500 - 1.400 1.474 -.7401E-01 .6784
.5000 1.170 . l.218 -.4893E-01 .8204
L1500 '1.010 1.056 -.4569E-01 .9473
1.000C . 9700 . 94987 .20278-01 1.053

1.330 .9580 .8623 .9573E~-01 1.1860

.3561E-01. -1.346
.3072E-01 -.9589
.2940E-01 -.9721
.2528E-01 L4397
.1946E-01 2.074
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PK9 - Two-compartment model discrimination

Problem specification

The aim of this exercise is to characterize the pharmacokinetics of compound B in a
human volunteer. The following plasma concentration-time data are taken from a male
volunteer during the 6 h period following an intravenous bolus dose of 100 mg of
substance B, Observed data are shown in Figure 9.1 and the program output.
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We will fit a bi-exponential and three—exponehtial model to this dataset and analyze
the results of the two fits. First, we will therefore implement and fit Equations 9:1 and
9:2. '

C,=4-¢e* +B-e# 9:1)

C =A-e™+B-e?" +C.e™ (9:2)

We will observe the weighted residual sum of squares (WRSS) and the correlation
coefficient and search for trends in the residual plots. Then we will apply the Akaike
[1978} and F-tests for the bi- and three-exponential models. The Akaike Information
Criterion (41C) attempts to represent the information content of a given set of parameter
estimates by relating the WRSS to the number of parameters that were required to
obtain the fit. When comparing two models with different numbers of parameters, this
criterion places the burden on the model with more parameters to not only have a lower
WRSS, but also to quantify how much better it must be for the model to be deemed the
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more appropriate.

AIC= N, -In(WRSS) +2- N, (9:3)

The 4/C, as defined above, is dependent on the magnitude of residuals as well as on
the number of observations. The most appropriate model is the one with the smallest
value of AIC. The Schwarz criterion (SC) is used in very much the same manner as the
AIC.

SC=N,, In(WRSS)+ N, -In(N,,,) (9:4)

Note: Cne must be careful when interpreting the result of a fit from only A/C and SC.
Never judge the goodness-of-fit without a battery of statistical tools. We show you the
application of these tests in more detail eisewhere in the book (see e.g., PD3).

Initial parameter estimates

A =11 (ug/L)
o =1.0 (min™)
B =02 (ug/L)

£ =0.01 (min'")

4 =1.0(ug/L)
& = 1.0 (min™)
B =0.7 (ng/L)
B =0.1 (min™)
C =02 (ug/L)

7 =0.001 (min™")

Interpretation of results and conclusions

Let us first compare the fit of the bi- and three-exponential models Figure 9.2 shows
observed and predicted data from the two models. The difference is barely visible
within the present concentration and time range. A Iarger dose and time range would be
needed to separate these two models.
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For simplicity, we will only use the two runs with constant weight (weight equal to 1
or constant weight). In this case we may apply the F-test. F(a, Adf, df), where @ df;
and Adf are the level of significance, degrees of freedom (Nyss — Npar) for the three-
exponential model and difference in degrees of freedom between the models,
respectively. Adf corresponds to the column numbers in Table 9.1 and dfs.y is the row
number. Fyp. is indicated by the arrows.

Table 9.1 F-table
F distribution v,, v, degrees of freedom P = 0.05

Wy Adf-> 1 2 3 4

v, 1 161.45 199.50 215.71 224.58
2 18.513 19000 19.164 19.247
3 10.128 9.5621 9.2766 9.1172
4 7.7086 6.91443 6.5914 6.3882
5 6.6079 5.7861 5.4095 5.1922
6 5.9874 5.1433 47571 4.5337
7 5.5814 4.%74 - 4.3868 4.1203
8 5377 B 44590 4.0662 3.8379
9 5.1174 4.2565 3.8626 3.6331
10 4.5646 4.1028 3.7083 3.4780

One approach to testing for the significance of the parameter in any model relates to
the following question. Does the model that includes the new parameter tell us
significantly more about the outcome (or response) variable than a model that lacks
that parameter? 1f we apply an F-test as a measure of whether the three-exponential
model is superior to the bi-exponential model we obtain

[WRSS, —~ WRSS,|
Idfl - df 2’
- = :
F WRSS, 3.05<F,, (9:5)
df;

Note that F~ is smaller than Fiapie (= 4.459 from éolumn number equal to Adf =2
and row equal to dfz = 8, P = 0.05). This suggests that the thre¢-exponential model does
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not provide a better fit to the data than the br-exponential model. It does not. however.
ensure thal the two-compartment model provides an adequate fit.

it is usually a good rule of thumb to choose the simplest model that adequately
describes the data. The bi-exponential fit shows a trend in the residuals. The three-
cxponential fit does not show the same trend in the residuals. However, a high
correlation s found between several parameters and the standard errors are generally
high for the three-exponential model.

Note: The F-test is not appropriate when using non-constant weights such as when
weight (W7) is equal to J/F . Therefore, only the two unweighted runs were used in the
example of the F-test above.

You have
| 0 practised model discrimination
U learned to use the F-test
| U learned to derive the initial estimates

The next step would be to practice this kind of analysis on your own data. See also
PK4 for a discussion on model discrimination.

Solution I - Bi-exponential model

TITLE 1
Bi-exponential model
MODEL
COMM
NPARM 4
PNAMES 'A', '"Alpha', 'B', 'Beta’
END
1: TEMP
2: T=X
3: END
4: FUNC1
5: F= A*DEXP (-ALPHA*T) + B*DEXP (-BETA*T)
6: END
7: ECM

NVARIABLES 2

NPOINTS 100

XNUMBER 1

YNUMBER 2 _
METHOD 2° ‘'Gauss-Newton {Levenberg and Hartley)
ITERATIONS 50

INITIAL 1.1,1,.2,.01

LOWER BOUNDS 0,0,0,0

UPPER BOUNDS 10,5,1.5,1
NOBSERVATIONS 14
' DATA 'WINNLIN.DAT

BEGIN

PARAMETER ESTIMATE STANDARD cvs UNIVARIATE C.I.
ERROR

a 1.056916 044977 4.26 .956701 1.157131

ALPHA .047973 .004700 9.80 .037500 058447

B .784751 . .042500 5.42 690054 .879448

BETA - .003308 .000306 9.24 .002626 ' .003989
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**% CORRELATION MATRIX OF THE ESTTIMATES #++
PARAMETER A ALPHA 5 BETA
A 1.000600
ALPHA ~.5202578-01 1.00000
B -.553873 .813638 1.00000
BETA ~.550489 .681080 .909699 1.006000
Condition number= 447 .2
FUNCTION 1
X OBSERVED PREDICTED RESIDUAL WEIGHT SE-PRED STANDARDI
¥ Y RESIDUAL
5.000 1.625 - 1.603 .2161E-01 1.000 .2179E~-01 1.638
10.00 1.384 1.413 -.294CE~01 1.000 .13235-01 -1.351
15.00 1.280 1.261 L1857E-01  1.000 L12828-01 .8374
20.00 1.105 1.13¢9 ~.3442E-01 1.000 .13648-01 -1.600
30.00 .9730 L9612 L1177E-01 1,000 .1382E-01 .5500
45.00 .8060 .7983 .7739E-02 1.000 L.1209E-01 .3453
60.00 L7400 .7029 .3708E-01 1.000 .1231E-01 1.663
80.00 .5820 -59468 -.1480E-01 1.000 L1352E-01 -.6856
120.0 .5300 .5310 -,1007E-02 1.00¢ .1222E-03  -.0450
150.0 L4580 .4786 -.2061E-01 1.000 .1056E-01 =~.88094
180.C L4160 L4329 -.1687E-01 1.000 .999%E-02 -~.7203
240.0 .3420 .3548 ~.1281E~01 1.000 .116%E-01 ~-.5662
300.0 .3210 .2909 .3006E-01 1.000 .1396E-01 1.411
360.0 . 2460 .2386 .7432E-02 1.000 .1545E-01 .3670

CORRECTED SUM OF SQUARED OBSERVATIONS = 2.49866
- WEIGHTED CORRECTED SUM OF SQUARED OBSERVATIONS = 2.49866

SUM OF SQUARED RESIDUALS = .648679E-02
SUM QF WEIGHTED SQUARED RESIDUALS = .648679E-02
S = ,254692E-01 WITH 10 DEGREES OF FREEDOM
CORRELATION {OBSERVED, PREDICTED) = ,9987

AIC criteria = -62.53182

SC criteria = -58.97559

Solution Il - Three-exponential model
TITLE 1
Tri-exponential model
MODEL
COoMM
- NPARM 6
PNAMES 'A', 'Alpha', 'B','Beta’,’'C', 'Gam'
END
TEMP
T=X
END
FUNC1
F = A*DEXP (-ALPHA*T) + B*DEXP(-BETA*T} + C*DEXP {-GAM*T)
: END ’
7: EOM
NVARIABLES 2
NPOINTS 100
XNUMBER 1
YNUMBER 2 ‘
METHOD 2 ‘'Gauss~Newton (Levenberg and Hartley}
INITIAL 1,%,.7,.1,.2,.001
LOWER BOUNDS 0,0,0,0,0,0

Gy N o N =




