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Summary: A computer-based method of system identification and estimation of parameter variance for two-com-
partment models matched to dynamic sinistrin concentration profiles for the determination of glomeruiar filtration
rate is described. Thereby a procedure for the judgment of the optimal sampling time horizon is presented. Since
single-injection techniques are suspected of yielding systematic overestimation of the glomerular filtration rate, a
method is demonstrated confirming that such a technique employing sinistrin kinetics can be used to correctly
determine the glomerular filtration rate.

The validation of the system parameters gained by the single-injection method is made through prediction of the
concentration contour under a constant infusion regimen in the same subject on a different occasion. This was
performed in healthy controls and in patients with various degrees of renal insufficiency. Upon consideration of the
dependence of the clearance estimates and their variances on the protocol duration in test subjects examined from
four to ten hours, an adaptive design of the protocol length is developed.

Introduction reliable enough for individual function testing. Rapid re-
peated testing aimed at the investigation of factors influ-
encing renal function can eliminate camy-over biases
only by parameter estimation of kinetic models suffi-
cient to take iato account marker amounts still contained
in the distribution spaces from preceding experiments.
Long-term surveillance of renal function requires the de-
termination of some accuracy measures of such quanti-
ties as the glomerular filtration rate in addition to the
parameter estimates themselves for well-founded con-
clusions; such measures derived from kinetic test data
of the individua! patients can only be achieved with
computer-based systern identification methods.

Optimization of validated measurement techniques for

ers suitable for practicable clinical tests and analytical
assay procedures can be achieved nowadays in combina-
tion with computer-based system identification methods
for the assessment of kinetic experiments. Develop-
ments of such methods together with pertinent software
could contribute to progress in nephrological research
and practice especially in situations where traditional
routine diagnostics involving merely statistical indices,
such as the average stationary endogenous creatinine
production rate or population-derived anthropometric
constants for distribution volume estimates fail. Such  Kinetic experiments for glomerular filtration rate deter-
diagnostics are too general in nature to be considered mination require markers fulfilling some well-known
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criteria, such as those of exclusive elimination by glo-
merular filtration and distribution in extra-cellular space
without storage or metabolization in the tissues, One
such marker, which could well replace radioisotopes as
well as tracer substances requiring intractable clinical
preparatory manipulations such as the heating and cool-
ing stipulations for the traditionally used inulin, is an
inulin-like polyfructosan called sinistrin (1). This clear-
ance-marker has the property of being water-soluble at
room-temperatures (2, 3). It may therefore be applied in
constant-infusion and single-injection experiments di-
rectly (4, 5). Although the chemically and clinically rele-
vant properties of sinistrin are already well established,
there still are open questions concerning the kinetic
methodology. Thus, there is the frequent objection that
single-injection methods lead to systematic overestima-
tion of the glomerular filtration rate {6) compared to
so-called steady-state methods, although single-injection
methods based on compartmental analysis are regarded
as well-founded mathematically {7) and physiologically
(8). Single-injection experiments evaluated solely by
means of mono-exponential functions have been shown
to overestimate the glomerular filtration rate systemati-
cally, but bi-exponential models have been generally
found 1o yield satisfactory results, although less so in
cases of expanded distribution volumes, at least when
the experimental protocols used are too short (8). Thus,
for correct parameter estimation there seen: to be some
essential preconditions for both the kind of models as
well as the duration and the temporal density of the re-
quired sampling protocols (9—15). The goals of this
study is therefore two-fold. The first point is to un-
cover the sources of discrepancies between single-
injection and constant-infusion clearance values and to
put forward arguments against considering the tradi-
tionally practiced constant-infusion method recipes as
a ‘gold standard’. The second ‘aim is to demonstrate
a way to determine optimal experimental protocol
lengths. This two-fold object requires computer-based
systern identification of the constants of two-compart-
ment models from experimental marker concentration
profiles. For this purpose a generalized solution of the
dynamic problem compiising both single-injection and
constant-infusion experiments and a computational
method for assessing the accuracy of the estimates of
the system constants are developed. These estimates,
derived from short-term data of an experiment, are
validated by either predicting the concentration contour
in the later part or in another experiment done on the
same respective test subject. Thus it is obvious that the
question of correctness cannot be decided by statistical
correlations of clearance values gained by different
methods however large the numbers of test subjects
investigated may be. Therefore the arguments to be

put forward are based on exemplary cases whose indi-
vidual kinetics will be studied in foli.

Patients and Methods
Clinical methods

Both single-injection and constant-infusion clearance experiments
with and without urine sampling were performed on 11 healthy
male subjects of age 20—26 years on two occasions within two
months and in 8 patients with various kinds of renal insufficiency.
Informed consent was obtamed in all cases and the studies were
approved by the local ethics committee.

Single-infection technigue

The fasting subjects drank 3G0—600 ml of water at least 30 min-
utes before the study began and remained supine over the time of
the investigation. They were kept on a diet with 1 g of protein per
ke body weight and 200 mmol of sodium on the previous day.
After drawing 1 ml of blood for baseline value determination, a
dose of 2500 mg of siniswrin (Inutest®, Laevosan, Linz, Austria)
corresponding to one half ampoule of Inutest® was injected within
about a minute. Blood was subsequently withdrawn at intervals of
5 minutes during the first and in intervals of 15 minutes during the
second hour; later on larger miervals were chosen. The experiments
lasied from two to ten hours.

Constant-infusion technique

The test subjects were prepared in the same way as described
above, Afier the initial drawing of blood and urne samples for
bass-vaiue determinations. a priming dose of 50 mg per kg body
weight sinistrin was injected within one minute. Immediately after
the injection, stnistrin was tafused continuously at a rate deter-
mined by the product of the wanted marker level of 230 mg/l and
the clearance estimated from the serum creatinine concentration by
means of the Cockcrofi-Gaudt formula (16). Sixty minutes after
the beginning of the experiment the subjects emptied their urinary
bladders by spontaneous voiding. Three clearance periods of 30
minutes each followed. In the middle of each clearance period 1.5
ml of blood was drawn for determination of sinistrin concentration,
Urine was sampled at the respective ends of the three clearance
peniods. Plasma and wrine clearances were calculated as the quo-
tients of infusion or excretion rates and the average of the marker
plasma levels regarded as sufficiently close to the respective
steady-state value,

Labharatory methods

The sinistrin concentrations in serum, plasma, supernatant, and di-
juted urine were measured by 2 fully enzymatic technique which
aliows the quantitative estimarion of sinistrin in samples containing
up 10 8.3 mrmol/l (1500 mg1} of combined fructose {17}. The quan-
tification is carried out after the removal of native glucose by enzy-
manic oxidation grade H glucose oxidase?!) exhibiting some catalase
activity in combination with hvdrogen peroxide {18). Both the glu-
cosz oxidation and the hydrolysis?) of sinistrin are performed at
36 *C within 15 minutes. The hydrolysate is generally processed
on a Cobas-Bio (Hoffmann La-Roche, Basel, Switzerland). Alter-
nattvely, a fully automated method developed in our laboratory can
be used; thereby the native serum is incubated for 5 minutes at

1} Glucose oxidase grade 11 (EC 1.1.3.4), Boehringer Mannheim,
Mannheim, Germany
2) Inulinase (EC 3.2.1.7) Novozym 230, Novo Nordisk A/S 2880,
Bagsvaerd, Denmark
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Fig.1 Schematic diagram of two-compartment system.

56 °C in order to inactivate the endogenous D-glucose-6-phospho-
ketol isomerase®), which would otherwise interfere with the exoge-
nously added D-glucose-6-phospho-ketol isomerase in the fully
automated enzymatic sinistrin assay when using a Cobas-Fara
(Hoffimann La-Roche, Basel, Switzerland).

Extremely lipaemic samples causing high primary absorbance and
reduction of the linear assay range are subjected to a preparatory
treatment {19) whereby lipoproteins rich in triacylglycerols and
cholesterol are precipitated by means of MgCl; and dextran-sul-
phate. Dextran-sulphate®) (3, 50.000, 20 g/1) and magnesium-chio-
ride-hexahydrate®) (2.0 mol/l) are mixed in equal volumes. Ten pl
of this precipitation reagent are added to 100 ul serum, mixed and
centrifuged. The supernatant is used in the assay corrected for dilu-
tion. The inter- and intra-day variabilitics of the analytical methods
were 3.2% and 1%, respectively. The sinistrin control concentration
was 500 mg/l.

Pharmacokinetic system identification

In order to find ways for validation and protocol optimization of
single-injection experiments assessed by means of parameter iden-
uification of two-compartment models, the parameter-dependent so-
lution of the mode} assumed as underlying the organismic marker
distribution and elimination processes involved in kinetic experi-
ments is developed. Figure I schematically depicts the system
studied. Therein the extracellular space is considered to be com-
posed of two functionally separated spaces, a well perfused central
volume and a less perfused peripheral compartment. The marker
kinetics, represented by the temporal courses of the marker
amounts in the two compartments, is the result of the infusion strat-
egy, the exchange transports between the twe compartments, and
finally the renal elimination process (20—23).

The model can be formulated by a set of two simultaneous dif-
ferential equations describing the rates of change of the marker
amounts in the two respective compartments:

dxy/fdt = ) — (ko + Ka)xi + kizXz
dxa/dt = ko x; — kiaxa

{Eq. 1)
{Eq. 2}

Equations | and 2 can be stated verbally in the following way:
Firstly, the rate of change of the marker amount in the central com-
partment, dx,/dt, is determined by the input strategy chosen, the
loss of marker from the central to the peripheral compartment, its

Yy D-Glucose-6-phospho-ketol isomerase (EC 5.3.1.9), Bochringer
Mannheim, Mannheim, Germany

¥ Dextran-sulphate (Code no. 17-0320-01 Pharmacia Biotechno-
logy AB 3-751 82 Uppsala, Sweden)

%y Magnesiumchloride-hexahydrate (Code no. 5833 Merck Darm-
stadt, Germany)
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gain by the central from the peripheral volume, and its elimnination
through the renal excretion mechanism. Secondly, the rate or
change of the marker amount in the peripheral space, dx,/dl, is due
to gain from and loss to the central pool. These transport processes
are assumed to be proportional to the marker amounts mormentarily
contained in the respective distribution volumes. The input func-
tion of an experiment consisting of a bolus injection followed by
constant infusion is given by Equations 3 and 4:

fl =D/, ifo=t<1 (Eq. 3)

f(ty = p- fr=t<T, (Eq. 4)
The initial marker amounts are given by

x(0) = & (0)V'; = X0 {(Eq. 5)

%60) = c2(0)V2 = {0V i(kar/Ki2) = Xz {Eq. 6)

The fitting of the solution of the model defined by Equations 1 to
6 to the experimental plasma concentration data measured over a
sufficiently long time horizon can be done by a method for the
search of the minimum of a criterion of the sort:

E = Z(¢)() = Corplt)), =1 ... 1) (Ea. 7

The ideritification of the model is most efficiently done with the
Levenberg-Marquard: algorithm (24, 25) allowing one to estimate
the optimal values of the independent system parameters ko, Kop,
ki, and V; as well as of dependent parameters such as Vs, the
clearance Cpguy = ko;Vy. the permeability time constant
ty; = In(2)k% ete.

Since there is always “noise’ in the experimental data consisting
of random and systematic fluctvations around the ideal behaviour
of the system, the accuracy of the parameters has to be ascertained.
This can be done by means of a Monte-Carlo technique for the
generation of atificial protocols by superposition of Gaussian Tan-
dom numbers 0T the optimal trajectory. The random numbers are
taken from a distribution with a rhean of zero and a standard devia-
tion given by the following expression (26):

s = (E/(n — 4))** (Eq. 8)

About 100 artificial protocols created in this way and themselves
subject to the identification procedure suffice for the estimation
parameter variance. The resulting parameter constellations are
evaluated statistically for the determination of the means of the
parameters and their standard deviations. These standard deviations
are equivalent to the standard errors of the parameters derived by
means of the so-called Fisher’s information matrix method (27).
As this classical technique has as a necessary condition a Gaussian
distribution of the residuals superposed to the solutions of strictly
linear models, the computer-oriented procedure outlined is more
universally applicable (28). The exact solution of the model for-
mally described by Equations 1 to 6 generalized to both single-
injection and constant-infusion inputs is given by a superposition
of the solution of the eigenvalue problem posed by the comrespond-
ing homogeneous system and the particular solution of the inhomeo-
geneous problem which can be found by the method of underdeter-
mined coefficients (29).

Results

The explicit solution of the dynamic problem and the
nomenclature are given in the Appendix. Figure 2 il-
lustrates an application of the methodology to non-equi-
librium data originating from a constant-infusion experi-
ment. The estimates of the system constants are derived
from the full protocol of ten hours. Nevertheless, con-
sidering the spread of these values due to the noise in
the experimental data, practically the same parameters
can be gained from the initial two-hours protocol in this
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Fig.2 Constant-infusion experiment.

Measured sinistrin plasma concentration values (@) and fitted con-
centration profiles in central compartment (—) and in peripheral
compartment {-—-} for a renal patient (MK). Dose = 4000 mg, in-
jection-time = 30 s, infusion rate = 10 mg/min. System constants:
clearance = 45.2 =0.8mlmin, V;=6.1 =011, V,=59
+0.11 5y = 14.5 * 0.9 min.

case as1s illustrated by the glomerular filtration rate esti-
maies of table 1 for patient MK. The curve describing

the concentration profile in the central compartment dur-

ing the test exemplifies the frequently extremely slow
approach to the asymptotic equilibrium, in contrast to
the traditional belief of an equilibration process within
two hours. Thus, although there is a practical equaliza-
tion of the marker level in the total distribution space
within less than one hour affer the start of the experi-

ment, the steady state is not approximated before ten
hours.

In order to check the assertion that single-injection ex-
periments evaluated by two-compartment modeling
overestimate the remal clearance, comparisons of the
outcomes of single-injection and constant-infusion ex-
periments with and without urine collection are made.
The clinical tests had been done in healthy and renally
impaired test subjects on two occasions. The statistical
means of the values for the estimated clearances in 11
male healthy controls of mean age 25 were 146 = 19
ml/min for the single-injection method, 132 *+ 13 ml/
min for the infusion-method without urine collection,
and 133 % 20 ml/min for the infusion method with urine
collection. The corresponding mean distribution volume
estimate gained by the single-injection meéthod wag 12,0
* 2.41 as compared to a weight-related inulin distribu-
tion space of 12.9 = 1.11(30).

As the correspondence of the distribution volumes cal-
culated by model-firung on the one hand and the inulin
‘distribution space derived by a gencral proportionality
to body weight on the other hand suggests, sinistrin like
inulin is obviously distributed only in the extracellular
space. Furthermore, the mean clearance estimates of the
two infusion methods with and without urine collection,
respectively are also almost equal.

The findings in the normal persons exclude extrarenal
routes of elimination of sinistrin as shown before for

Tab.1 Dependence of clearance estimates and variances on protocol length

Subject Height Body Vet Vs t. GFR 3 GFR’ s’
weight
{cm) (kg) (6] ) (h) {ml/min} {mi/min) {ml/min) (ml/min)
WR* 184 82 12.3 11.3 25 142.5 42 146.2 5.0
PP* 194 87 S 13.0 14§ 25 157.0 34 1613 3.7
Lu* 180 80 12.0 11.7 25 174.4 33 1753 4.0
TI* 180 80 12.0 14.9 25 166.5 259 159.9 37.0
w§* 187 90 135 13.7 25 137.9 32 124.4 38.2
PH* 176 74 11.1 12.3 25 . 176.3 6.2 182.5 5.9
LAA* 189 80 12.0 11.9 25 142.9 4.8 142.6 6.2
GA* 178 74 I.1 13.0 25 131.3 3. 131.9 55
EG* 186 75 (13 10.4 25 146.9 4.9 150.2 5.1
FT* 178 64 9.6 14.6 2.5 108.6 223 83.5 35.2
VR* 183 76 14 9.8 25 116.2 32 116.6 4.0
MH** i72 32 12.3 i24 4.0 102.6 6.7 121.9 6.0
FI*+ 183 100 15.0 320 10.0 722 7.3 1345 56.4
LA** 160 98 147 12.4 35 513 1.2 57.1 2.0
MK *=* 179 20 12.0 i2.0 10.0 45.2 0.8 47.0 2.7
TA** 139 64 9.6 11.9 4.0 304 24 42,6 3.5
KK** 156 58 8.7 7.9 4.0 253 0.9 29.2 18
PK** 178 78 117 14.2 8.0 24.6 0.3 347 2.1
FA** 175 70 10.5 239 8.0 29 23 29.5 17.8
¥ normnal controls, ¥¥ renal patients GFR  clearance based on full protocol
Vea  estimated distribution volume (15% of body weight) ] standard deviation of GFR
Ve steady state distribution volume GFR’ clearance based on protocol of 2 hours
. length of protocol s’ standard deviation of GFR’

Eur J Clin Chem Chin Biochem 1995; 33 (No 4)
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inulin (31), but apparently confirm the suspicion of
clearance overestimation by the single-injection method.
Therefore synoptic views of the single-injection and
constant-infusion concentration curves in individual
cases are studied. The system parameters gained in the
single-injection experiments are thereby employed in the
prediction of the outcomes of the constant-infusion ex-
periments. These model-predicted curves are contrasted
with the given measurement poinis.

Model validation in typical examples

Figure 3 illustrates the model-adapted and the model-
predicted concentration curves together with their re-
spective experimental -data points for a representative
normal test subject. The diagram reflects the results of
fitting of the model curve to non-equilibrium data of a
single-injection experiment. The single-injection and the
steady-state techniques are obviously in close agreement
in their clearance estimates achieved within the usual
clearance-periods of about two hours in this and the
other normal test subjects investigated.

Figure 4 shows the comparison of model-adapted and
model-predicted curves for a renal patient. It depicts the
results of fitting of the model to the data of a single-
injection experiment. Evidently no steady state is
reached within the commonly used clearance periods
due to a chosen infusion rate which is obviously toe low
on the basis of the creatinine level registered. As can be
seen, an approximate steady-state would not be attained
before two days, whereas the correct system constants

—_ — R —
0 18 30 45 80 75 g0 105 120 135 150

Time [min}

Fig. 3 Comparison of single-injection with constant-infusion ex-
periment.

Measured sinistrin plasma concentration values (@) with fitted
curve {—) of single-injection experiment and predicted contour
{--*Y of constant-infusion experiment for a healthy subject (WR).
Single-injection experiment: dose = 2500 mg, injection-time
= 5 min. Constant-infusion experiment: dose = 4000 mg, injec-
tion-time = 1 min, mfusion rate = 30 mg/min, System constants:
clearance = 1425 = 42mlmin, V; =71 =031, V,=42

041 1, = 239 = 5.0 min.

Fur J Clin Chem Clin Biochem 1995; 33 (No 4)
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Fig. 4 Comparison of single-injection with constant-infusion ex-
periment.

Measured sinistrin piasma concentration values (#) with fitted
curve (—) of single-injection experiment and predicted contour
(- ) of constant-infusion experiment for a renal patient (PK). Sin-
gle-injection experiment: dose = 2500 mg, injection-time = 30s.
Constant-infusion experiment: dose = 3900 mg, injection-time

- = 1 min, infusion rate = 3.75 mg/min. System constants: clearance

=246 *(0S5mlmin, V,=75 £02], V,=67 =x02]

i) = 17.5 = 1.6 min.

can be gained by system identification within 4 to 5
hours as shown in figure 6.

Real versus ideal two-compartment kinetics

Despite the evidence in favour of the non-equilibrium
methods the possibility of an overestimation problem
inherent in such technigues cannot be ruled out due
to possible deviations of the real from the ideal two-
compartment kinetics. Therefore, single-injection ex-
periments were investigated in two extremely overhy-
drated patients. One of these patients had an extreme
renal insufficiency, whereas the other had only a mod-
erately depressed clearance value (fig. 5). As a closer
scritiny of the concentration contours in figure 5 re-
veals, there seems to be a systematic excess of actual
versus theoretical concentration during the first hour
followed by a deficit in actual versus theoretical con-
ceniration during the second hour. Such a time course
would imply a too steep descent of the concentration
profile of the first two hours resulting in an overly
high clearance estimate. Similar systematic fluctuations
of the residuals around the ideal course are notable
more or less in all the pauents studied. Expressed real
kinetic ‘deviations from the theoretical two-compart-
ment response as a consequence of the eminent non-
equilibrium conditions in the initial phase are revealed
in edematous patients generally even without extreme
renal insufficiency as e. g. in the concentration contour
of patient FJ in figure 5.
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Fig. 5 Single-injection experiments for two overhydrated renal
patients.

Measured-sinistrin plasma concentrationt values (@) in single-injec-
tion experiment together with fitted curves (-} for a moderately
insufficient patient (FI} and for a patient with an extreme renal
insufficiency (FA, upper-curve). Single-injection experiments: dose
= 2500 mg, injection-time = 30 s. System constants for FA: clear-
ance =29 * 23mlmin, V; =82 £ 031, V, =157 > 061,
t2; = 12.6 = 1.0 min. System constants for FJ; clearance = 72.2
+ 73 mlmin, V), = 108 %031, V, =213 %291 &, =310
* 2.6 min. .

Optimal protocol-length

Intuitively, a systematic deviation of real kinetics from
the ideal two-compartment response should be most ob-
vious in the initial phase. Therefore, statistical differ-
ences of the individual clearance estimates gained with
different experiment time horizons should be clearly ap-

_ parent in the early part of the concentration profile.

Since the observation time horizons in the experiments
depicted in figures 4 and 5 are 8 hours or more, the
model calculations can be repeated with shorter pieces
of the given protocols in these cases. Figure 6 shows the

DL IR )

Cléearance-estimate [mi/fmin]
8

X AR

LB Casleelo 0 0i0 0T0 0 000

o
e
P s aea eieie
wn
*
L 1

Protocal fength [k

Fig. ¢ Dependence of clearance estimates and standard devia

" tions on protocol duration,

# Clearance estimate for patient PK, ® clearance estimate for pa-
tient FJ, O clearance estimate for patient FA.

clearance estimates associated with different protocol
lengths together with their respective standard devia-
tions as derived from the 100 simulation runs done for
each of the protocols. As can be seen, there are two
common characteristics in the graphs: first, all three sep-
araie series of clearance estimates converge towards
their respective hmit values either from the beginning
or at least finally; second, there is also a decrease in
the respective variances of the three respective clearance
estimates with increasing protocol lengths. These clear-
ance and .variance estimate limits are reached by 4 to 5
hours in the case of figure 4 and by 8 to 9 hours in the
case of figure 5.

A similar analysis of the dependence of the clearance
estimate on protocol length was done in other test sub-
jects with validated clearance estimates. Table 1 lists the
inulin distribution volumes refated to body weight, the
steady-state distribution volumes derived from the con-
centration profiles, the clearance-values estimated from
sufficiently long protocols and the clearance-values esti-
mated from two-hour protocols together with the respec-
five standard deviation estimates for 11 normal controls
and 8 renal patients.

Discussion

This paper has demonstrated in typical examples that the

estimation of clearance by constant-infusion techniques, '

the evaluation poriion of which consists in the elemen-
tary arithmetics of dividing infusion or excretion rates
by the means of concentration values cbserved after an
hour or so of constant infusion, is principally incorrect.
The reason for this shoricoming of the traditional clear-
ance assessment technique is that it is based on the con-
dition of reaching a stationary state. For this purpose the
system constants have to be estimated beforehand. Since
this can be done only crudely and unreliably, the final
marker level is unknown and it is reached with an un-
known rate at the time of the experiment. But even af-
terwards the deficiency of the classical methods is com-
ouflaged without complete kinetic data reproduction.
Therefore this study has shown ways to determine the
parameter estimates and their accuracy measures from
non-equilibrium concentration data of single-injection or
constant-infusion experiments in individual cases and to
specify the required protocol lengths from the depen-
dence of the clearance value estimates on the experi-
mental time horizons. Such a dependence has been ob-
served previously, but without any reference to the con-
vergence of the clearance estimates towards their Limit
values for protocol-length optimization (32). Classical
parameter accuracy determination methods based on the
covariance matrnix and the so-called Cramer-Rao in-

Eur J Clin Chem Clin Biochem 1993; 33 {(No 4)
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equality (33, 34) appear to be inappropriate for this pur-
pose, since there are deviations of the renal kinetics from
the ideal two-compartment kinetics expressed in a non-
Gaussian distribution of the residual. Therefore an intu-
itive heuristic strategy is suggested for the determination
of the optimal protocol length. By performing single-
injection experiments of long duration and high tempo-
ral density, experimental protocols consisting of mea-
suremeents sampled at the time-points 3, 10, 15, 30, 60,
90, and 120 minutes after the beginning and, depending
on the relative size of the distribution pool, hourly after
that up to ten hours proved to be optimal in the examples
presented. In patients with ascites or edema longer times
and more data points are generally needed. Heuristically,
but also analogously to adaptive schemes used for
parameter determination of metabolic systems (35), the
following adaptive procedure can be used for the deter-
mination of the minimal protocol duration. After a two-
hours initial sampling period additional samples are
taken hourly until firstly, the coefficients of variation of
the clearance estimates become of the order of magni-
tude of those of the residuals of the experimental over
the model-fitted concentration data and secondly, the
difference between the successor and the respective im-
mediate predecessor clearance estimate becomes statis-
tically insignificant at some preset error probability
level. Speaking broadly the difference between the last
two clearance estimates in such a series should be less
than the standard deviation of the preceding clearance
estimate. In this way it should be possible to work out
a functional relationship of the optimal protocol length
in dependence on the extent of overhydration and the
degree of renal insufficiency, especially in edematous
renal patients.

As has been demonstrated and as was reported recently
(36, 37), steady-state techniques generally need much
more time for the establishment of stationary concentra-
tion values than is suggested by traditional recipes. This
is due to the difficulty in estimating the glomerular
filtration rate from endogenous creatinine levels via a
general statistical regression refation in the individual
case {38). This semiquantitative empirical test function
derived from population data is subject to an extremely
large spread, which is often generously overlooked in
routine practice; thus, at an endogenous creatinine level
of 442 pmol/l {30 mg/1) as measured in the case of fig-
ure 3 (patient PK) the estimates for the glomerular filtra-
tion rate range from 7 to 35 ml/min (39). Therefore cre-
atinine is discredited as a marker of the glomerular
filtration rate to an increasing extent (6, 40, 41). There
is also a systematic bias to underestimate the glomerular
filtration rate by means of the hyperbolic relation be-
tween the endogenous creatinine concentration and the
elomerular filtration rate. Because it is gencrally impos-
p

tur J Clin Chem Clin Biochem 1995; 33 (No 4}

sible to guarantee the achievement of a balance between
infusion and excretion rates within two hours, in com-
mon practice the required steady-state concentration
level is tacitly replaced by the average of the actually
measured values (42). This is prone to entail underesti-
mation of the glomerular filtration rate by constant-infu-
sion methods as a consequence of overly short experi-
ment horizons. Once started, this tradition of clearance
underestimation has a tendency towards self-perpetua-
tion.

As demonstrated, the protocols needed for system identi-
fication methods may be shorter than those of correctly
performed steady-state techniques. This is also true in
comparison to curve-stripping methods based on se-
quential decomposition of the concentration profiles into
their constituent exponential functions (43). Since mod-
ern.system - identification methods allow the parameters
of a model to be determined simultaneously, principalty
the initial short-term data of a c.gncentration profile are
used for parameter determination (44). This reduces the
relevance of the objection that the distribution volume

- and the clearance value might not be constant (6, 45).

Finally, since no concentration-dependence as €. g. due
to marker reabsorption is deductible from our data, the
resulting linearity of the model bears the practical bene-
fit that any physiologically tolerable sinistrin dose will
lead to the same parameier estimates.

'

Appendix: Modei Selution and Nomenclature

Equations 9 to 28 constitute the exact solution of the
modet described.

A = — Y2 ((kgy + k2 + Ky2)
~ ((ko1 + ka1 + ki2)® — 4korki2)*)(Eq. 9)

Az = — Y2 (ko) + ko + ki)

+ ((koy + ka1 + ki2)? — 4ko1k12)") (Eq. 10)
a = (ko + ko + A)kp2 (Eq. 11)
b = ko /(2 + A2) (Eq. 12)

T x5 = (Dl (Eg- 13)

Xzs = Xis(kai/Kiz) {Eq. 14)
Yis = plkos (Eq. 15)
¥2s = Yis(kai/kyz) (Eq. 16)
M, = ({(x10 — %15)b

~ (%20 ~ x2))/(b - 2) (Eq. 17)
M = ((X20 — Xas) )

— (x30 — x15)2)/(b — a) (Eq. 18)
Xy = M, exp(hit)

+ Mz exp(lzt) + X1s (Eq. 19)
Xar = Ma exp(X 1)

4 Mob exp(Rst) + Xos (Eq. 20)
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Ni = ((x1: — Yi1s)b

= (X2: — y2))(b — a) (Eq. 21)
Ny = {{(%ar = ¥as)
= (%12 — yi5)a)(b — a) (Eq. 22)
fo=t1<
x(t) = M; exp(h,t)
+ M, exp(hot) + x4 (Eq. 23)
x2() = M; a exp(A1)
+ M,b exp(Ast) + Xo (Eq. 24)
fr=t<T:
x)(t) = Ny exp(d(t — 7))
+ N; exp(Raft — 1)) + vy, - (Eq. 25)
Xa(t) = Nya exp(A{t = 1))
+ Nob exp(a(t — T} + yos (Eq. 26)

The temporal profiles of the concentrations c¢(t) and
cx(t) in their respective compartments are. defined by
Egs. 27 and 28:

¢t = x{(tVy
cot) = %V,

(Eq. 27)
(Eq. 28)

The symbols in the expressions have the following
meanings:
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