
CALCULUS AND DIFFERENTIAL EQUATIONS

quicksheets
State Space Solver

This QuickSheet illustrates how to use the solver statespace to solve a
state space representation of a system of first-order ordinary differential
equations (ODEs). State space representations are often used to describe
problems in control theory and dynamical systems.
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State Space Representations 

A state space representation is a system of linear, first-order ODEs of
the form

τ

x τ( )
d

d
A τ( ) x τ( ) B τ( ) u τ( )=

where

•   τ (tau) is the independent variable representing time.
•   x(τ) is a vector of n states.
•   A(τ) is an n-by-n state matrix. 
•   B(τ) is an n-by-k input matrix.
•   u(τ) is an k-by-1 input, or control, vector.

In control theory, the input matrix and vector usually represent external
forces that can be applied to the system to control its behavior. This
QuickSheet gives an example in which the input matrix and vector represent
the driving force in a forced harmonic oscillator.
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State Space Representations for Higher Order ODEs 

There is a standard method for writing a higher-order ODE as a system
of first-order ODEs. You can use this method to write a state space
representation for any higher order ODE. As an example, the following
explains how to write a state space representation for damped harmonic
oscillation, such as occurs when a mass, attached to a spring, has an
external force, of the form F0 cos ωF τ  , applied to it. 

m
2

τ

x τ( )
d

d

2
 b

τ

x τ( )
d

d
 k x τ( ) F0 cos ωF τ =

Here m is the mass of the object, b is the damping constant, k is the
spring constant, and F0 cos ωF τ   represents an external force driving

the system with forcing frequency ωF.

You can simplify the above equation by dividing through by m and
making the following substitutions: 

ω0 2 k

m
= A0

F0

m
=

2
τ

x τ( )
d

d

2 b

m τ

x τ( )
d

d
 ω0 2

x τ( ) A0 cos ωF τ =

Here, ω0
k

m
=   is the natural, or resonant, frequency of the system.

To write the state space representation for this second-order ODE,
introduce new variables, x0, x1, and x2 , corresponding to x and its

first and second derivatives. 

x0 x=

x1
τ

x0
d

d
=

x2
τ

x1
d

d
=
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The following vector equation describes the relationships between the
variables:

τ

x0

x1







d

d

x1

x2







=

Note that x2 is the second derivative of x0. You can rewrite
the original equation in terms of these variables as

x2
b

m
x1 ω0 2

x0 A0 cos ωF τ =

Solve for x2 and substitute the result in the right-hand side of the

preceding vector equation:

sol x2
b

m
x1 ω0 2

x0 A0 cos ωF τ = solve x2 A0 cos τ ωF  x0 ω0 2
b x1

m
 A0

x1

x2







substitute x2 sol=

x1

m x0 ω0 2 b x1 A0 m cos τ ωF 

m
















You can then write the ODE in matrix form by setting

x
x0

x1







= A τ( )

0

ω0 2

1

b
m











=

B τ( )
0

1








 u τ( ) A0 cos ωF τ =

The state space representation of the original ODE is the following:

τ

x τ( )
d

d
A τ( ) x τ( ) B τ( ) u τ( )=

Note that the product of the input matrix and input vector, B τ( ) u τ( ) ,
represent the driving force in the system.
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Using the statespace Solver 

You can solve the state space representation of the forced harmonic oscillator
using the solver statespace, which has the following syntax: 

statespace(init, t1, t2, npoints, A, B, u)

where

•   init is a vector of initial conditions, whose length is the number of states.
•   t1 is a starting point of the integration interval.
•   t2 is an ending point of the integration interval.
•   npoints is the number of points at which to return results.
•   A is an n-by-n state matrix, where n is the number of states.
•   B is an optional n-by-k input matrix.
•   u is an optional k-by-1 the input vector.

To illustrate statespace, start with the case of unforced harmonic
oscillator, in which B and u are not present, and the right-hand side of the
harmonic oscillation equation is 0:

x2
b

m
x1 ω0 2

x0 0=

There are three cases for the solutions: 

Overdamped:
b

m






2

4 ω0 2 0

Critically damped:
b

m






2

4 ω0 2 0=

Underdamped:
b

m






2

4 ω0 2 0
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The following examples illustrate these three cases:

m 2 b 1

init
0

1








 t1 0 npoints 5000

Overdamped Solution

ω0
1

6
 b

m






2

4 ω0 2 0.139 t2 30

A t( )

0

ω0 2

1

b
m













sol1 statespace init t1 t2 500 A( )

0 10 20
2

1

0

1

2

sol1
1 

sol1
0 
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Critically Damped Solution

ω0
1

4


b

m






2

4 ω0 2 0

A t( )

0

ω0 2

1

b
m













sol2 statespace init t1 t2 npoints A( )

0 10 20 30
2

1

0

1

2

sol2
1 

sol2
0 
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Underdamped Solution

ω0 1
b

m






2

4 ω0 2 3.75 t2 20

A t( )

0

ω0 2

1

b
m













sol3 statespace init t1 t2 npoints A( )

0 5 10 15 20
1

0.5

0

0.5

1

sol3
1 

sol3
0 
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Forced Harmonic Oscillation

This section describes forced harmonic oscillation, in which the input matrix B
and input vector u, corresponding to the external force, are present. The
examples show the undamped case, in which the damping coefficient b = 0.
The nature of the solutions depends on whether the forcing frequency ωF  is

less than, equal to, or greater than the resonant frequency ω0 . The following
examples illustrate the differences:

Case 1: Forcing frequency less than resonant frequency - ωF ω0

ωF 1.5 ω0 2

b 0 A t( )

0

ω0 2

1

b
m













A0 1 t2 40

B τ( )
0

1








 u τ( ) A0 cos ωF τ 

sol4 statespace init t1 t2 npoints A B u( )

0 10 20 30 40
2

1

0

1

2

sol4
1 

sol4
0 
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Case 2: Forcing frequency equal to resonant frequency - ωF ω0=  

ωF 2 ω0 2

A t( )

0

ω0 2

1

b
m













A0 1 t2 40 u τ( ) A0 cos ωF τ 

sol5 statespace init t1 t2 npoints A B u( )

0 10 20 30 40
10

5

0

5

10

sol5
1 

sol5
0 
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Case 3: Forcing frequency greater than resonant frequency ωF ω0:

ωF 2.6 ω0 2 u τ( ) A0 cos ωF τ 

u τ( ) A0 cos ωF τ  t2 40

u τ( ) A0 cos ωF τ 

sol6 statespace init t1 t2 npoints A B u( )

0 10 20 30 40
2

1

0

1

2

sol6
1 

sol6
0 
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