Given

$$
\begin{aligned}
& \quad y^{\prime \prime}(t)+6 \cdot y^{\prime}(t)+13 y(t)=0 \\
& y^{\prime}(0)=3 \quad y(0)=1 \\
& y:=\text { Odesolve }(t, 50)
\end{aligned}
$$

You can get an analytical solution with the help of Mathcad's symbolic Laplace transform here, as follows:

Step 1

$$
\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}} \mathrm{Y}(\mathrm{t})+6 \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{Y}(\mathrm{t})+13 \cdot \mathrm{Y}(\mathrm{t}) \text { laplace } \rightarrow 6 \cdot \mathrm{~s} \cdot \operatorname{laplace}(\mathrm{Y}(\mathrm{t}), \mathrm{t}, \mathrm{~s})-\left\lvert\, \begin{array}{ll}
\mathrm{x} 0 \leftarrow 0 & -6 \cdot \mathrm{Y}(0)+\mathrm{s}^{2} \cdot \text { lap } \\
\frac{\mathrm{d}}{\mathrm{dx} 0} \mathrm{Y}(\mathrm{x} 0)
\end{array}\right.
$$

Step 2

Rewrite the RHS of the above using, say L, for laplace $(Y(t), t, s)$ and noting that $\left\lvert\, \begin{aligned} & \mathrm{x} 0 \leftarrow 0 \\ & \frac{\mathrm{~d}}{\mathrm{dx} 0} \mathrm{Y}(\mathrm{x} 0)\end{aligned} \quad\right.$ is just $\mathrm{y}^{\prime}(0)$ ((unfortunately this has to be done by hand (at least, I can't find a way of getting Mathcad to do it automatically), set the result equal to zero, solve using symbolic "solve", and assign the result to function $\mathrm{L}(\mathrm{s})$, say.

$$
\mathrm{LW}_{\mathrm{M}}(\mathrm{~s}):=6 \cdot \mathrm{~s} \cdot \mathrm{~L}-3-6+\mathrm{s}^{2} \cdot \mathrm{~L}-\mathrm{s}+13 \cdot \mathrm{~L}=0 \text { solve, } \mathrm{L} \rightarrow \frac{\mathrm{~s}+9}{\mathrm{~s}^{2}+6 \cdot \mathrm{~s}+13}
$$

Step 3

$$
\mathrm{Y}(\mathrm{t}):=\mathrm{L}(\mathrm{~s}) \text { invlaplace } \rightarrow \mathrm{e}^{-3 \cdot \mathrm{t}} \cdot(\cos (2 \cdot \mathrm{t})+3 \cdot \sin (2 \cdot \mathrm{t}))
$$

Step $4 \quad$ Plot $\mathrm{Y}(\mathrm{t})$ (compare with numerical $\mathrm{y}(\mathrm{t})$ above)
(You should also differentiate $Y(t)$ as necessary to see that you recover your original ODE)

$\operatorname{lace}(\mathrm{Y}(\mathrm{t}), \mathrm{t}, \mathrm{s})-\mathrm{s} \cdot \mathrm{Y}(0)+13 \cdot \operatorname{laplace}(\mathrm{Y}(\mathrm{t}), \mathrm{t}, \mathrm{s})$

