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Sketch 3.1 Area of contact, forces and stresses

GENERAL DESCRIPTION OF THE CALCULATIONS

These calculations were obtained from Derivations 10 to 13 inclusive, but some modifications and
simplications have been made.

For the purposes of the calculations, spatial coordinates are rendered non-dimensional by dividing them by
the major semi-axis of the ellipse of contact:

x, = x/a; Yy = yla; z; = zla.

For the special case of line contacts, when , @ — o the dimensional coordinates are divided by the
half-width b:

xy, = x/b = x,/B; Yy = ylb = y/B; zy = z/b = z,/B;

where 3 = b/a isthe axisratio of the ellipse,and B — 0 for aline contact. It will normally be convenient
to express the results for the general case in terms of (x,, y,, z,) rather than of (x5 ¥15 29)-
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The stress components are rendered non-dimensional by dividing them by the maximum compressive stress
pO ’
fi = filpgs 9 = 44/Pos etc, ik = x,y,z2

Three sets of components are given, corresponding with the effects of the three loading cases assumed:

12
1. Normal loading: f, = —po(l - (x/a) (y/b) ) @.1)
/2
2. Tangential loading parallel Ay = — upo(l - (x_/a) - (y/b) ) cosy 4.2)
to short dimension:
/2
3. Tangential loading parallel to q9,, = — upo(l — (x/a)2 - (y/b)z) siny (4.3)

long dimension:

The forces of friction are in the positive directions of the x- and y-axes. The three sets are distinguished by
numerical subscripts, e.g. ([‘_)1 , (qu)2 , efc. Sets 1 and 3 have been obtained directly from the Derivations,
with [ replaced by | siny, while set 2 has been obtained from set 3 by interchanging x and y, @ and b,
and 1/B, siny and cos?y and by reversing the direction of x, i.e. reversing the sign of (g, ) and (g, )
The justification for this procedure is shown in Sketch 4.1,

The general elliptical case is considered first, and is followed by the simpler cases of circular and line
contacts. The general case requires the evaluation of three numerical integrals, either directly or by
conversion to the standard forms of the elliptic integrals, for which a recursive method of evaluation is
provided.

Simplified forms are given for use with points which are either on the surface (z = 0) or on the axis
(x = 0, y = 0). Unless these special forms are used, it is recommended that any zeros in the
dimensionless space coordinates be replaced by small numbers, e.g. 107 These should be small compared
with 3, but their squares should be large compared with the smallest digit retained by the calculator or
computer. In this way, trouble with infinities and indeterminate numbers may be avoided. The signs of
square roots may be taken as positive unless otherwise indicated.

Many of the quantities are defined in different ways in the different sections, e.g. s] is defined in Section
5.2 as the root of the equation

x2 y2 2

z
12+212+_;=1’
L+s; B +s] s

but in Section 9.2 as the root of

2 2
) z
1+s; s
The second version is derived from the first as the special case B = 1, but because of the large number

of symbols needed, the same symbol s, has been employed in both cases.

-~
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1

Ny

(a) Loading Cose 3. Configuration used in Derivation 12

(b) Interchange x and y, a and b

An
\

*h

(¢) Rotote 90° anticlockwise

(d) Reverse direction of x . This is now the configuration required for loading Case 2

Sketch 4.1 Transformation from loading Case 3 to loading Case 2
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This example is an obvious one, but in the case of the function J and its partial derivatives, the definitions
for the circular case in Sections 9.3, 9.6 and 9.7 are apparently unrelated to those for the general elliptical
case in Sections 5.18 to 5.20. However, the special case may be shown to be derived from the general case
inthelimit B - 1, n — 0.

In many cases, some checks on the working have been provided. These involve the sums of the three direct
stresses for each of the three loading stresses given by Equations (4.1) to (4.3).

5. THE GENERAL ELLIPTICAL CONTACT: POINTS WITHIN THE CONTACT
OR ON THE SURFACE AND OUTSIDE THE CONTACT ELLIPSE

5.1  Establish dimensionless coordinates based on the major semi-axis of the ellipse of contact:
x, = x/a; y, = yla; z{ = zla.

52 Find s% as the highest root of the equation:
2 2 2

xy »1 zy
: AR 1 2 _; =1
I+ B+, 5]
where B = b/a, the axis ratio of the ellipse of contact (B < 1).

Notes on the procedure for solving this equation are given in Section 6. If the point (x, y, z) is both on the

surface and on or within the ellipse of contact, s; = 0 and the special forms provided for this case should

be used (Section 7). If = 1 the forms provided Tor the special case of circular contact should be used
(Sections 9 to 12).

1/2 —1/2
2 2 2 ot
53 ryo= (sl + 1) (sl B ) g

Q
I

5.4

e,
5.6 L = z,/(s;HG) o
-
1/2 |
5.7 n = (l —BZ)
( \ f
oo dw
1
5.8 I = J.
% 3/2 172 G eanea (age
1\(1 +w%) (Bz + wf) ) S\ # Q
3\
oo dw
1
5.9 I, = f
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o0 dw
1
5.10 I3 =J , 5, #0.

s| 2 A20 NG
i) (8]

A note on the evaluation of the integrals /|, I, and I5 is given in Section 8.

5.11 N = Gzls,
2

5.12 C=s+1+N
2 2

5.13 D=s+p +N

5.14 E = (2Ns‘1‘+zf(s‘:—BZ))/(NHSTGZ),forthecaseole = 0-,E = 2/(HG2)

2 2

5.15 F = C+D-x;-y

5.16 0, = tan‘l(nyl/D), m2 <8, <2

5.17 0, = tanh—l(nxl/C)

Notes: (2)  These definitions of 6, and 8, may be shown to be equivalent to those given in the
Derivations, with a change of sign.
(b)  If the inverse tangent is expressed in degrees, it must be multiplied by (x/180) to
convert it to radians.

+
© tanklz = %ln(i_g)_

1
5.18 J = —3-(x191—y192)
n
r 32
ny,C nx, yE
5.19 §Q{=-13el—21 —21’]
*1 n” | (s)+ DF  (s)+ )F
r 3 2
nx,D nx,y E
5.20 2 o Ly A
3y, 3 2., a2 2 .2
nL (sy +BOF  (s; +POF

10
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1
5.21 K = —3(y19] +x,0, - n)
n
= *151 2 2
5.22 1 = B|:2(1 ~6)z 0y - 26z, - o L+ (1-20)[K+z/(n rlsl)]}
5.23 3 LI - J(n?
. Sy = B[Z(l -0)z,1, - 20z,1, - (T) L-(1-20)[K+zr/(n sl)]:l
i 2 )
5.24 (L = - [321 L/sy
N 2 2
5.25 (3,); = (1-20)BJ - (Bx,y;sy L/G")
5.26 (3,,); = - ByzLr/G
5.27 (4,.), = —Bzyx,L/(Gr))
r 2
. 1 ¥1 9 9J
5.28 (fy)2 = upcosy —2(11 -1,) - 5 20y, + (1 - 20')218—-
X
| n rHG 1
= r 2y oJ
2 2 1
5.29 (fy)Z = uBcosy _— ((n -of )12 + 611)7 - (1 -20) Zla—x1
y 22 r 20x2y s
s 12 31 n 1 141}
HG 51 rHG
2
- »zn
5.30 (f2), = —MBeosy | 5——>—
sy GH
206x y2 r.s
2 2. \*1 dJ 1Y1 715
5.31 (g.), = — 1Pcosy [(20(1 -B°L)-n"I )— +(1-20)z,— — —]
xy’2 1 2 1 nz layl HG4
2 2
- 1 17
5.32 (qyz)2 = uPcosy 2.y = I3) - s
s HG
(7,), = 1B [x'y'z‘)
5.33 q = Hpcosy
gl 5, HG®

11
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5.34

5.35

5.36

5.37

5.38

5.39

5.40

2x
upsiny [— ((nz +t o)l - 05212)_21 -(1- 20)21;7']
n 1

(f—x)s

2 2(5xy2sr
Xz
n 1“1 i 1111:|

HGrys) HG'

2 s
_ _ 18y aJ
(fy)3 = WPsiny [(5_2(11 -1,) - l ]4])2Gx1 +(1- 26)218—}

n HG Y1

= ) xlzf
~ uPsiny 3 2.
slG Hr1

~~

o

A
W
Il

2
_ . 2 2. V1 aJ  20x; s
()5 = wpsiny [(25(11 - BL)-n 12)—2 +(1-20)z5 - ""_Z_”}
n *1 HG "

(q,,) ufsiny e
9yz)3 — —HBSM 3
.s*lHG

_ : %4 5
(qzx)3 = WPsiny 21(11_13)_7
s HG ry

= (U + (S + (£
= (S, + ([, + (f));
(S )+ (F)y+ (F)y

Ty = (T)1 * @)y * (31,

MY RO NI Y|
|

ayz = (‘_Iyz)l + (‘_]yz)z * (ayz)3

azx = (azx)l + (‘—sz)z + (azx)3

Note that a useful check on the working is obtained by taking the sums of the three direct stresses for each
of the three loading stresses:

I

for1+ (F1+ (o
(f2+ (f,2+ (f)2 = —2uBeosy (1 +0)y,1,
(f3+ ([ 3+ (f)3 = —2uBsiny (1 +0)x ;.

- 2B(1 + 0)z,1,

i2
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6.

6.2

6.3

6.4

SOLVING THE EQUATION FOR si

The equation is

2
fop = = 2L LTy
*1 272 2 2 '
1+s; B +s; s

In general, this last equation will have three real roots, of which only one, the required largest root, is
positive. The equation may be re-written as

3, 4 = e .
s?+3b25?+3blsf—3b0 =0, 5 %3S "‘{“L\S‘S +g=.3b.\1313 3he
i ) L
C‘oQ,(F/‘ao/its (A Ma*’n&oé,
1 2 5 s o
O (R -
= B 2
152 _g2,2_ 2 2.2 Lo,
by = 5(B - 5]+ B0 __
1 .
3 1 1 1 UO‘ . \ (r{
1,22
by = §B Zq- bOO 5 gl
The following expressions are now calculated
2
q = b, —b

3 3
ro= E(blbz ¥ bo) b

1 -1 —3/2
y = gcos (rq )

In general g will be positive and its square root may also be taken as positive, while r may be positive, zero
or negative. The inverse cosine should be placed in the first quadrant (0 < y < 7/2) if ris positive and
in the second quadrant (n/2 < y < 1) if r is negative.

The required largest root is
2 172
§] = 2q “cosy - b,

The other roots may be obtained by increasing y by 21t/3 (120 deg) and 47/3 (240 deg) respectively.

If B< 1072 the above procedure may give inaccurate results. The value of the function /i (sy) should
always be checked, and if it differs significantly from zero, corrections may be made by Newton’s method.
The value of s; found by the method of Section 6.3 may be used as a starting value of (sq) 0’ subsequent
corrections being made by

f[(sl)i]
G = 00" 36, H(s) 1’

[—
(SN}

o
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18.1.1

WORKED EXAMPLES

Example 1

Example 1 of Data Item No. 78035 (Reference 1) describes two cylinders, of diameters 50 mm (2 in) and
150 mm (6 in) crossed at an angle of 40 degrees and subject to a normal load of 1.25 kN (281 1bf). The

properties of the contact, estimated by the methods given in Reference 1, are reproduced in Table 18.1.

TABLE 18.1 Contact stresses and dimensions — Example 1

Maximum compressive stress | Py 0.783 GPa 113600 Ibf in~2
Major semi-axis a 1.896 mm 0.0746 in
Minor semi-axis b 0.404 mm 0.0159 in

Axis ratio B 0.213

The material has a Poisson’s ratio of 0.3, and shear stresses with a coefficient of friction, [, of 0.45 will
be imposed at an angle, v, of 30 deg. with the minor axis of the ellipse. It is required to find the stress field

at the point given by the dimensional coordinates: 2 N
i, T
x = 1.0 mm, & & > 2
y = 0.5 mm, -“-1‘"
z = 0.2 mm.

The number at the beginning of each line in the following working refers to the section and line number in
the main text.

Preliminaries ) =
|
5.1 x, = 1.0/1.896 = 0.5274 f /
o404
y, = 05/1.896 = 0.2637 22 o
. (e
z, = 02/1.896 = 0.1055 b
2 2
5.7 n = (1—0.213) = 0.954631
y
1 2 2 2 2
6.1 by = 5(1 +0.213° - 0.5274” - 02637 —0.1055) = 02288501
2

b, = %(0.2132 _ (0.213 X 0.5274) — 02637% - 0.1055%(1 + 0.2132))

= -0.01614111

2

1 -
by = 5(0.213 X 0.1055) = 1.683228 x 10 i

32

‘.‘-\ ( 10, 0-5" o.g)
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18.1.2

6.2

6.3

6.4

g = 0.2288501% + 0.01614111 = 0.06851348
ro= %((—0.01614111 x 0.2288501) + 1.683228 x 10‘4) — 0.2288501°

= —0.01727378

01727378

— -1 —
v = 3o ( _ m) ~ 54.803742 deg.
006851348

sT = 2 x (0.06851348)""% cos (54.803742°) — 0.2288501 = 0.0728852
s, = 0.26997

0.5274° . 0.2637° N 0.1055>
10728852 4,132 1 0072885y  0-0728852

1 = —678x10°

f(sl) =

The value of 5y will therefore be taken as 0.2700.

Calculation of the integrals I, , I, and I;

Three alternative methods will be given.

Method A. Direct numerical integration.

This method is recommended when the number of points to be calculated is small, and when a sub-routine

for numerical integration is available. The substitution 4 = puts the integrals into the forms:
5 32 5 V2
11='[ (u(l+u) (1+Bu) )du
0
-1/2 5 T2
12=j ((l-l-u) (1+Bu) )du
-1/2 -1/2
2 2
I3=J. ((1+u) (1+[3u) )du

Numerical integration by Simpson’s rule gives the results shown in Table 18.2.

TABLE 18.2 Results of numerical integration — Example 1

Nt I, I, I

10 0.963458 4.112769 5321722
20 0.962983 4.112683 5.321650
50 0.962983 4.112682 5.321650

T N; = number of divisions into which the integration interval is subdivided

(V]
5]



