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Abstract: This paper presents the design of fuzzy logic controllers (FLC’s) for nonlinear 
systems. Fuzzy logic control systems consist of a plant and a fuzzy logic controller. The 
output of the FLC is made by defuzzification method. So, the output of the FLC is a function 
of the degrees of membership of the fuzzy rules, and these degrees of membership are 
function of input variables that are the system states. Therefore, the control system become 
highly non-linear and the analysis of system stability for this system are very difficult. In 
this paper, it is proved that if each fuzzy logic control systems consist of a plant and each 
fuzzy logic rule is stable in the sense of Lyapunov under common Lyapunov function, the 
overall system is also stable in the sense of Lyapunov. 
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1 Introduction 

Conventional automatic control system design methods involve the construction 
of mathematical models describing the dynamic system to be controlled and the 
application of analytical techniques to the model to derive control laws. These 
models work well provided the system does meet the requirements and 
assumptions of synthesis techniques. Although application of fuzzy logic to 
industrial problems has often produced results superior to classical control, the 
design procedures are limited by the heuristic rules of the system. This implicit 
assumption limits the application of fuzzy logic controller. Moreover, the majority 
of FLCs to date have been static and based upon knowledge derived from 
imprecise heuristic knowledge of experienced operators. The fuzzy logic-based 
approach to solving problems in control has been found to excel in those systems 
which are very complex, highly nonlinear and with parameter uncertainty. We 
may view a fuzzy logic controller as a real time expert system that employs fuzzy 
logic to analyse input to output performance. Indeed, they provide a means of 
converting a linguistic control strategy derived from expert knowledge into 



automatic control strategies and give us a means of interrogating the control 
system evolution and system performance. 

A fuzzy logic system consist of a plant and a fuzzy logic controller (FLC) as 
shown in Fig. 1. 

Figure 1 
Fuzzy logic control system 

Tanaka and Sugeno proposed a stability design approach [1] and [8] which first 
modelled the plant by a Takagi–Sugeno (TS) fuzzy model. This fuzzy model 
represents the plant as a weighted sum of a set of linear state equations. An FLC is 
designed based on this fuzzy plant model. Then, Lyapunov’s direct method can be 
applied to each fuzzy subsystem that is formed by each rule of the fuzzy plant 
model and the FLC. The stability of the whole system can be ensured if a required 
positive-definite matrix exists. Other stability design approaches related to this 
fuzzy-model-based approach can also be found in [1]–[8]. 

2 Fuzzy Logic Control System 

Let X be a universe of discourse. Consider a single-input nth-order nonlinear 
system of the following form: 

( ) ( )uxbxfx +=&  (1) 

where Xx∈ , [ ]Tnxxxx ,...,, 21= , is the state vector, 

( ) ( ) ( ) ( )[ ]Txnfxfxfxf ,...,2,1= , ( ) ( ) ( ) ( )[ ]Txnbxbxbxb ,...,2,1= are functions describing the 

dynamics of the plant. 

u - is the control input of which the value is determined by an FLC. 



The i-th IF–THEN rule in the fuzzy rule base of the FLC is of the following form: 

Rule i: 

IF xi is Xi1 AND x2 is Xi2 AND … AND xn is Xin THEN ( )xiuu = , ri ,1=  (2) 

were Xi1, Xi2 … Xin are fuzzy sets which describe the linguistics terms (LT) of 
input variables, and ui describes the linguistics terms of output variables. 

Each fuzzy rule generate an activation degree: [ ] ,,...,2,1,1,0 rii =∈α  

( )( ) ( )( ) ( )( ) ( )( )( )tnxnitxitxitxi ,22,,11,min μμμα K= . iu can be a single value or a 

function of states vector, x(t). It is assumed that for any Xx ∈  in the input 
universe of discourse X, there exists at least one [ ] ,,...,2,1,1,0 rii =∈α  among all 
rules that is not equal to zero. The control signal u, which must be applied to PC, 
is a function of iα and iu . By applying the weighted sum defuzzification method, 
the output of the FLC is given by: 

∑
=

∑
== r

i i

r

i iui
u

1

1

α

α

 (3) 

where r is the total number of rules. 

Property 1: For any input Xx ∈0 , exist two rules qp,  such that 

( ) ( ) ( ) ( ) ( )0max0000min xuxquxuxpuxu =≤≤= . 

Proof: 

Let Xx ∈0 than among all rules, can be found two rules p and q such that 

( ) ( )0min0 xuxpu = and ( ) ( )0max0 xuxqu = , where ( ) ( )( )0..1
min0min xiu
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and ( ) ( ) ( ) ( ) ( ) ( ) Xxxuxuxuxuxuxu ∈∀≤≤⇒≤≤ ,maxmin0max00min . (4) 

In conclusion, for all RG-F of type Takagi- Sugeno, release 4 hold. 



2 Design of Stable Fuzzy Logic Controllers 

The method for stability analysis proposed in this paper is based on the following 
theorem. Each subsystem consist from one fuzzy rule and the process described by 
equation (1). It is proved that if each subsystem is stable in the sense of Lyapunov, 
under a common Lyapunov function, the overall system is also stable in sense of 
Lyapunov. 

Theorem 1 [4 pag. 431]: If exist a quadric and positive-definite P matrix and: 

1 ( ) ∞→= PxxxV T  as ∞→x , ( ) 00 =V , 

2 ( ) 0,0 ≠∀< xxV& , ( ) 00 =V& in respect with any rule, 

then the system composes by FLC of type Takagi-Sugeno and the process 
described by equation (1), is globally asymptotically stable in at the origin. 

Based on this theorem we can be found the algorithm for designed stable fuzzy 
logic controllers. In the next paragraph we show this. 

Definition 1: A fuzzy subsystem associated with fuzzy rule i is a system with a 
plant of form (1) controlled by only ui , which is the output of fuzzy rule i of the 
form (2). 

2.1 The Algorithm for Designed Stable Fuzzy Logic 
Controllers 

The idea of the proposed stability analysis algorithm is to break down the problem 
of analyzing the stability of the whole fuzzy logic control system into analyzing 
the stability of the fuzzy subsystems individually. The complexity of the analysis 
is drastically decreased as it is easier to check whether every fuzzy subsystem can 
give a negative-definite V&  for a given Lyapunov function V. 

The steps of the algorithm are: 

Step 1: is given the equation of the dynamics of the plant; 

Step 2: we given the membership functions of the input linguistics terms; 

Step 3: we given fuzzy rules database; 

Step 4: define the Lyapunov function and we find the derivative of this; 

Step 5: analyzing the stability of the fuzzy subsystems individually, and determine 

             the control signal ui such that each fuzzy subsystems to be stabilising. 

Next, from the theorem 2 results that the whole fuzzy logic control system is 
stable. The stability proof of fuzzy logic control systems can be carried out by first 



applying Lyapunov direct method to each rule. If every rule individually applying 
to the plant of (1) results in a stable sub-system in the sense of Lyapunov subject 
to a common Lyapunov function, the whole fuzzy logic control system is stable. 

3 Illustrative Example 

Consider a nonlinear inverted pendulum system (Fig. 2) in the form of (1): 

( ) ( ) ( ) uglMmlMm =⋅⋅⋅++⋅⋅+− θθ sin2 && , (5) 

Figure 2 
A car-pole inverted pendulum 

where: 

m – the mass of the pendulum; 

M – the mass of the cart; 

l – the length of the pendulum; 

g – the acceleration due to gravity; 

θ – the angle of the pendulum from 
the vertical; 

u – is the force applied to the cart (in 
N). 

Step 1: We choice as the state variables (input linguistics terms), the angle of the 
pendulum from the vertical θ=1x (in grade) and the angular velocity θ&=2x  (in 

grade/s). The system to be controlled by: 
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, [ ]80,801 −∈x , [ ]30,302 −∈x  (6) 



Step 2: The membership functions of the input linguistics terms, are: 

 

 

 

 

 

 

 

Figure 3 
Membership function of the input linguistics term x1 

 

 

 

 

 

 

 

 

Figure 4 
Membership function of the input linguistics term x2 

Step 3: We given fuzzy rules database in table 1: 

x1             
x2 P N Z 

P ? ? ? 
N ? ? ? 
Z ? ? ? 

Table 1 

The control signals ui must be determinate by applying the theorem 2. 

Step 4: The Lyapunov function is: ( ) ( )2
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Step 5: analyzing the stability of the fuzzy subsystems individually, and determine 

             the control signals ui such that each fuzzy subsystems to be stabilising. 

Rule 1: x1 is P and x2 is P, that is [ ]80,01∈x , [ ]30,02 ∈x . Then 
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gx for 0≠x . Therefore the control variable must 

be satisfying the next condition: ( ) ( )( )1sin1 xglxlMmu ⋅+⋅⋅⋅+> . We take 

( ) ( ) ( ) ( )( )1sin11 xglxlMmglxlMmu ⋅+⋅⋅⋅+>+⋅⋅⋅+= . 

Rule 2: x1 is N and x2 is N, that is [ ]0,801 −∈x , [ ]0,302 −∈x . Then 
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be satisfying the next condition: ( ) ( )( )1sin1 xglxlMmu ⋅+⋅⋅⋅+< . We take 

( ) ( ) ( ) ( )( )1sin11 xglxlMmglxlMmu ⋅+⋅⋅⋅+<−⋅⋅⋅+= . 

Rule 3: x1 is P and x2 is N, that is [ ]80,01 ∈x , [ ]0,302 −∈x . Then 
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Therefore the control variable must be satisfying the next condition: 
( ) ( )( )1sin1 xglxlMmu ⋅+⋅⋅⋅+< . 

We take ( ) ( ) ( ) ( )( )1sin11 xglxlMmglxlMmu ⋅+⋅⋅⋅+<−⋅⋅⋅+= . 



Rule 4: x1 is N and x2 is P, that is [ ]0,801 −∈x , [ ]30,02 ∈x . Then 
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We take ( ) ( ) ( ) ( )( )1sin11 xglxlMmglxlMmu ⋅+⋅⋅⋅+>+⋅⋅⋅+= . 

Rule 5: x1 is P and x2 is Z, that is [ ]80,01∈x , [ ]5,52 −∈x . A solution would be 
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Rule 6: x1 is N and x2 is Z, that is [ ]0,801 −∈x , [ ]5,52 −∈x . The result, in this 

case, is identically with result from rule 5. 

Rule 7: x1 is Z and x2 is P, that is [ ]10,101 −∈x , [ ]30,02 ∈x . Then 
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 We take ( ) ( ) ( ) ( )( )1sin11 xglxlMmglxlMmu ⋅+⋅⋅⋅+>+⋅⋅⋅+= . 

Rule 8: x1 is Z and x2 is N, that is [ ]10,101 −∈x , [ ]0,302 −∈x . Then 
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Rule 9: x1 is Z and x2 is Z, that is [ ] [ ]5,52,10,101 −∈−∈ xx . The result, in this 

case, is identically with result from rule 5. 

Finally, after analysing all rules, we get now the fuzzy rules database in table 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

3.1 The Simulation Example 

The designed FLC is applied to the process described by equation (6), for m=0.5 
kg, M=9 kg, l=5 m, g=9.8 m/s-1. The initial state is ( ) ,1001 =x  ( ) 302 −=x . The 

response of 1x  and 2x  are shown in Fig. 5. 

 

 

 

 

 

Rule Premise Consequently 

 x1 x2 u 

1 P P ( ) ( )glxlMm +⋅⋅⋅+ 1  

2 N N ( ) ( )glxlMm −⋅⋅⋅+ 1  

3 P N ( ) ( )glxlMm −⋅⋅⋅+ 1  

4 N P ( ) ( )glxlMm +⋅⋅⋅+ 1  

5 P Z ( ) ( ) 2
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l
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8 Z N ( ) ( )glxlMm −⋅⋅⋅+ 1  

9 Z Z ( ) ( ) 2
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Figure 5 
Response of x1 and x2 in the illustrated example, with FLC 

The designed FLC is applied to the plant of (6), and simulation results of system 
responses are obtained. The stability of fuzzy logic control system is verified. 

Conclusions 

An approach for designing stable heuristic FLC's has been proposed in this paper. 
It has been shown that a fuzzy logic control system is stable in the sense of 
Lyapunov, if every individual rule applying to the plant gives a stable subsystem 
in the sense of Lyapunov under a common Lyapunov function. Therefore, the 
stability of the fuzzy logic control systems can be guaranteed by examining each 
individual rule in the FLC, which is much simpler than the existing approaches. 
The stability of a nonlinear car-pole inverted pendulum system controlled by an 
FLC has been analyzed based on the proposed approach as an illustrative example. 

The algorithm for designed stable fuzzy logic controllers assures sufficient 
conditions of stability for the systems of automatic control with fuzzy FLC of 
Takagi-Sugeno type. The method has advantages because it needs to verify one 
condition: the derivate of Lyapunov function should be negative in respect to each 
fuzzy rule. 

By using the proposed design approach, adding of new fuzzy rules become very 
easy because this needs only the fulfilment of the stability criterion, given by 
theorem 1. This stability analysis can be applied to other types of defuzzyfication. 

The disadvantage of this type of analysis consists in the heavy calculus of the 
Lyapunov function. 
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