INSTITUTO TECNOLÓGICO DE AERONÁUTICA

MP-288 - Exercises on Conjugate Gradient Method

Prof.: <u>Rafael</u> T. L. Ferreira

1) Consider the function $f(\mathbf{x}) = f(x_1, x_2) = 10x_1^4 - 20x_1^2x_2 + 10x_2^2 - 2x_1 + 5$.

Starting from $\mathbf{x}^0 = (-1.5, 3)$, use both the steepest descent and conjugate gradient methods to find a minimum point of $f(\mathbf{x})$. Perform exact line search (use $df/d\alpha = 0$ at \mathbf{x}_k to find all the α^{*k}). Plot a graph showing $f(\mathbf{x})$ and the $\alpha^{*k}\mathbf{d}^k$ directions used over iterations of both methods.

2) Consider the function

$$f(\mathbf{x}) = f(x_1, x_2) = 4 \left[\sqrt{x_1^2 + (10 - x_2)^2} - 10 \right]^2 + \frac{1}{2} \left[\sqrt{x_1^2 + (10 + x_2)^2} - 10 \right]^2 - 5(x_1 + x_2).$$

Starting from $\mathbf{x}^0 = (-4, 4)$, use the conjugate gradient method to find a minimum point of $f(\mathbf{x})$. Perform numerical line search by the golden section method. Use the routine to be developed in Problem 3. Plot a graph showing $f(\mathbf{x})$ and the $\alpha^{*k} \mathbf{d}^k$ directions used over iterations.

3) Implement a Matlab routine called conjugate_gradient.m based on the conjugate gradient method. Solve Problem 2 with that and optionally Problem 1. Define it as [xo]=conjugate_gradient(f,x0,tol).

In other words, define a routine in which the inputs are the function f, the initial point x0 and the tolerance for zero gradient tol; the output is xo, a local minimum of f(x). Use your previously implemented routine golden_section.m as line search.