Instituto TECNOLÓGICO DE AERONÁUTICA

MP-288 - Exercises on Conjugate Gradient Method

Prof.: Rafael T. L. Ferreira

1) Consider the function $f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=10 x_{1}^{4}-20 x_{1}^{2} x_{2}+10 x_{2}^{2}-2 x_{1}+5$.

Starting from $\mathbf{x}^{0}=(-1.5,3)$, use both the steepest descent and conjugate gradient methods to find a minimum point of $f(\mathbf{x})$. Perform exact line search (use $d f / d \alpha=0$ at \mathbf{x}_{k} to find all the $\left.\alpha^{* k}\right)$. Plot a graph showing $f(\mathbf{x})$ and the $\alpha^{* k} \mathbf{d}^{k}$ directions used over iterations of both methods.
2) Consider the function

$$
f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=4\left[\sqrt{x_{1}^{2}+\left(10-x_{2}\right)^{2}}-10\right]^{2}+\frac{1}{2}\left[\sqrt{x_{1}^{2}+\left(10+x_{2}\right)^{2}}-10\right]^{2}-5\left(x_{1}+\right.
$$ x_{2}).

Starting from $\mathbf{x}^{0}=(-4,4)$, use the conjugate gradient method to find a minimum point of $f(\mathbf{x})$. Perform numerical line search by the golden section method. Use the routine to be developed in Problem 3. Plot a graph showing $f(\mathbf{x})$ and the $\alpha^{* k} \mathbf{d}^{k}$ directions used over iterations.
3) Implement a Matlab routine called conjugate_gradient.m based on the conjugate gradient method. Solve Problem 2 with that and optionally Problem 1. Define it as [$x \mathrm{o}$]=conjugate_gradient ($\mathrm{f}, \mathrm{x} 0$, tol).

In other words, define a routine in which the inputs are the function f, the initial point x 0 and the tolerance for zero gradient tol; the output is xo , a local minimum of $f(\mathrm{x})$. Use your previously implemented routine golden_section.m as line search.

