

Beam length
Distance between left hand end of beam and first support

Distance between left hand end of beam and second support

$$
b:=2.9 m-a
$$

Distance between right hand end

$$
c:=L-(a+b)=2.1 \mathrm{~m}
$$

of beam and second support

Uniformly distributed load along beam length

Reaction force at first support

$$
w:=10 \frac{\mathrm{~N}}{\mathrm{~mm}}
$$

Reaction force at second support

$$
R_{1}:=\frac{w \cdot(a+b) \cdot\left(\frac{a+b}{2}\right)-w \cdot c \cdot \frac{c}{2}}{b}=10.526 \mathrm{kN}
$$

Shear Force Function

$$
R_{2}:=w \cdot L-R_{1}=39.474 \mathrm{kN}
$$

$$
\begin{aligned}
& V(x):=(w \cdot x)-\left(R_{1} \cdot(x \geq a)\right)-\left(R_{2} \cdot(x \geq(a+b))\right) \\
& x:=0,0.001 m . . L
\end{aligned}
$$

Bending moment function

$$
M(x):=\left(\frac{w \cdot x^{2}}{2}\right)-\left\langle R_{1} \cdot(x \geq a) \cdot(x-a)\right\rangle-\left\langle R_{2} \cdot(x \geq(a+b)) \cdot(x-(a+b))\right)
$$

$$
\begin{aligned}
& M(1.0 \mathrm{~m})=5 \mathrm{kN} \cdot \mathrm{~m} \\
& M(2.9 \mathrm{~m})=22.05 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Guess Value
Point along beam where maximum bending moment occurs
Maximum Bending Moment

$$
x_{\text {max_guess }}:=1.5 \mathrm{~m}
$$

$$
x_{\text {max }}:=\operatorname{maximize~}\left(M, x_{\text {max_guess }}\right)=\text { ? }
$$

$$
M_{\max }:=M\left(x_{\max }\right)=? N \cdot m
$$

