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Optical-resonator modes and optical-beam-propagation problems have been conventionally analyzed using
as the basis set the hermite-gaussian eigenfunctions tJn (x , z )consisting of a hermite polynomial of real
argument Hn [V2x 1w (z)] times the complex gaussian function exp[-jkx 2 /2q (z )], in which q (z) is a
complex quantity. This note shows that an alternative and in some ways more-elegant set of eigensolutions
to the same basic wave equation is a hermite-gaussian set $n(x, z) of the form Hn [V/cx]exp [-c x2 ],
in which the hermite polynomial and the gaussian function now have the same complex argument
VC cx=3 'kI2q)' '2 x. The conventional functions 'Pn are orthogonal in x in the usual fashion. The new
eigenfunctions Vn, however, are not solutions of a hermitian operator in x and hence form a biorthogonal
set with a conjugate set of functions An (VCx). The new eigenfunctions Xnare not by themselves
eigenfunctions of conventional spherical-mirror optical resonators, because the wave fronts of the "%
functions are not spherical for n > 1. However, they
resonator and beam-propagation problems.

Index Heading: Resonant modes.

An optical beam traveling in the z direction may be
written in the scalar approximation in the form

u(xyz) = ,4(xyz)eAkz. (1)

Under the usual assumption that V/(x,y,z) is slowly
varying compared to a wavelength, the paraxial wave
equation as given by Kogelnik and Li' reduces to the
form

+--2k-=0, (2)
ax2  ay2  az

where a a24t/az2 term has been ignored. The eigensolu-
tions to this equation are most commonly given as
the hermite-gaussian set yznm(xyz)=,nXZ),Im(yZ)
where

\6n(X H) ( WW e7 [jA;12q(z) 1 X2ej(n+D0(), 3

and similarly for the y coordinate. The z dependence is
given by dq(z)/dz= 1, w2(z)=-X/r m[1/q(z)], and
+k(z) is the Guoy phase-shift factor.' A similar Laguerre-
gaussian expansion in cylindrical coordinates is also
possible.

These conventional solutions show a somewhat
inelegant lack of symmetry between the complex
argument of the gaussian function and the purely real
argument of the hermite function. There is a similar
lack of elegance in the way in which the complex
parameter q(z) appears in one part of the solution,
whereas only the real spot size w(z) appears in other
parts. This note points out that it is possible to obtain
an alternative set of eigensolutions Vnm(x,y,z)=n(XZ)

XVm(y,z) that satisfy exactly the same differential
Eq. (2), but that have the more-symmetric form

/n (xz) = A (q)Hn{ V(jk/2q)x} e(jk/2q)X2
. (4)

The z dependence is now entirely contained in the
complex parameter q(z), which has the same form as
before. The complex amplitude A (q), which is the
analog of the [1/w(z)11 exp~j(n+2)0(z)] factor in the
usual expansion, also has a particularly simple form.

ANALYSIS

Since we expect the usual gaussian-mode factor
exp[- (jk/2q)x2] to be a basic part of the eigenf unction
in any case, we write our proposed alternative solutions
in the form

C/ (xz) = A (q)Hn (x\/cx)ec 2
(5)

where c is the complex parameter c= c(z) = jk/2q(z) and
the functional form of H.(V/cx) is initially undeter-
mined. Putting Eq. (5) into the wave Eq. (2) and
making use of the usual condition dq(z)/dz= 1 imme-
diately leads to the two separated equations

H."(v\'cx)-2V\cxH.'(VIcx) +2nI(J/(cx) =0, (6a)

q dA n+1

A dq 2
(6b)

The function Hn(x/cx) is evidently a Hermite poly-
nomial of complex argument V/cx, whereas the ampli-
tude factor A(q) becomes a simple function of q(z)
only. From Eqs. (6a) and (6b), the resulting complex-
argument hermite-gaussian normal modes are

{ff(xz) = (qo/q) (n+l)I2Hn(Vcx)ec 2 , (7)

where ca jk/2q. This is certainly an at least superficially
neater alternative set of hermite-gaussian eigensolutions
to the basic wave Eq. (2).
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may still be useful as a basis set for other optical
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DISCUSSION

The new eigensolutions Eqs. (4) or (7) are not the
same as the conventional eigensolutions Eq. (3) on
any one-to-one basis. For example, at a waist where
q= jvrW2/X, the conventional solutions are

V2\
(x) = en()z 2W2, (8)

while the new solutions reduce to

in (x) =Hn()e /w'. (9)

As functions of x, only the conventional hermite-
gaussian functions satisfy the differential equation

(10)
d2Qn

+ (2,n+ 1 -X
2
X)'n = 0,

dx
2

The eigensolutions to the adjoint equation are

<An(x) = H. (v/c*x),

ylon= -2 (n+ 1 )c*.
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As expected, jin= XAn*. There is, however, no gaussian
factor associated with the adjoint functions 4. The
original solutions {/ and the adjoint solutions d form
a biorthogonal set, with the orthogonality relationship

J &n*(x)im(x)dx= f .(t\Ic)H.(+\Ix)e-cx'dx
co o

= Kn 8 nm* (17)

This orthogonality relation checks for the case c purely
real, which also provides a convenient method for
evaluating the normalization coefficient Kn. If a given
wave function u(x) is to be expanded in the new
complex-argument eigenfunctions {,n in the form

u(x) =E a&n(x)X (18)

whereas the new complex-argument hermite-gaussian
functions are solutions of the equation

d2f n din
-+2cx-+2(n+1)Con =0-
dx2 dx

n

then the coefficients an, assuming proper normalization
of in, will be given by

(11)

This equation may written in operator form as

4'n= Ann (12)

where the differential operator £ and its eigenvalues
Xn are

-d 2  d
£2 I -+2cx- , X A=-2(n+1)c. (13)

Ld2 dxJ

This operator
eigenfunctions
The hermitian
operator is

is not a hermitian operator, and its
JUn do not form an orthonormal set.
adjoint operator £+ conjugate to this

[d2  d -
C+= -- (2c*X) J

-dX2 dx

The eigenfunctions & of the adjoint operator are the
solutions of the adjoint equation £+&=ufn&, which
reduces to

d2& dqn
d 2 c*Xd-(2c*+A.)&=0. (15)

an= J n*(x)u(X)dx. (19)

Note, however, that the adjoint functions & cannot be
normalized, because, without any gaussian factor,
their areas diverge.

These more-elegant eigenfunctions in are not the
appropriate basis set for analyzing stable spherical-
mirror optical resonators because the wave fronts of
the higher-order modes (n> 1) are not spherical. The
complex argument V\cx in the hermite polynomials
gives an additional phase variation in Hln(v\CX) that
modifies the usual gaussian spherical-phase variation.
However, the new eigenfunctions with their greater
simplicity may be useful in other sorts of optical-beam
propagation and optical-resonator problems, in free
space or where more-general phase variations are
involved.
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