Hermite-gaussian functions of complex argument as optical-beam eigenfunctions

A. E. Siegman
Microwave Laboratory, Stanford University, Stanford, California 94305

(Received 15 February 1973)

Abstract

Optical-resonator modes and optical-beam-propagation problems have been conventionally analyzed using as the basis set the hermite-gaussian eigenfunctions $\psi_{n}(x, z)$ consisting of a hermite polynomial of real argument $H_{n}[\sqrt{ } 2 x / w(z)]$ times the complex gaussian function $\exp \left[-j k x^{2} / 2 q(z)\right]$, in which $q(z)$ is a complex quantity. This note shows that an alternative and in some ways more-elegant set of eigensolutions to the same basic wave equation is a hermite-gaussian set $\widehat{\psi}_{n}(x, z)$ of the form $H_{n}[\sqrt{ } c x] \exp \left[-c x^{2}\right]$, in which the hermite polynomial and the gaussian function now have the same complex argument $\sqrt{ } c x \equiv(j k / 2 q)^{1 / 2} x$. The conventional functions ψ_{n} are orthogonal in x in the usual fashion. The new eigenfunctions $\hat{\psi}_{n}$, however, are not solutions of a hermitian operator in x and hence form a biorthogonal set with a conjugate set of functions $\hat{\phi}_{n}(\sqrt{ } c x)$. The new eigenfunctions $\widehat{\psi}_{n}$ are not by themselves eigenfunctions of conventional spherical-mirror optical resonators, because the wave fronts of the $\hat{\psi}_{n}$ functions are not spherical for $n>1$. However, they may still be useful as a basis set for other optical resonator and beam-propagation problems.

Index Heading: Resonant modes.

An optical beam traveling in the z direction may be written in the scalar approximation in the form

$$
\begin{equation*}
u(x, y, z)=\psi(x, y, z) e^{-j k z} \tag{1}
\end{equation*}
$$

Under the usual assumption that $\psi(x, y, z)$ is slowly varying compared to a wavelength, the paraxial wave equation as given by Kogelnik and Li^{1} reduces to the form

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}-2 k \frac{\partial \psi}{\partial z}=0 \tag{2}
\end{equation*}
$$

where a $\partial^{2} \psi / \partial z^{2}$ term has been ignored. The eigensolutions to this equation are most commonly given as the hermite-gaussian set $\psi_{n m}(x, y, z)=\psi_{n}(x, z) \psi_{m}(y, z)$ where

$$
\begin{equation*}
\psi_{n}(x, z)=\left(\frac{1}{w(z)}\right)^{\frac{1}{2}} H_{n}\left(\frac{\sqrt{2} x}{w(z)}\right) e^{-[j k / 2 q(z)] x^{2}} e^{j\left(n+\frac{1}{2}\right) \phi(z)}, \tag{3}
\end{equation*}
$$

and similarly for the y coordinate. The z dependence is given by $d q(z) / d z=1, w^{2}(z)=-\lambda / \pi \operatorname{Im}[1 / q(z)]$, and $\phi(z)$ is the Guoy phase-shift factor. ${ }^{1}$ A similar Laguerregaussian expansion in cylindrical coordinates is also possible.

These conventional solutions show a somewhat inelegant lack of symmetry between the complex argument of the gaussian function and the purely real argument of the hermite function. There is a similar lack of elegance in the way in which the complex parameter $q(z)$ appears in one part of the solution, whereas only the real spot size $w(z)$ appears in other parts. This note points out that it is possible to obtain an alternative set of eigensolutions $\hat{\psi}_{n m}(x, y, z)=\hat{\psi}_{n}(x, z)$ $\times \hat{\psi}_{m}(y, z)$ that satisfy exactly the same differential Eq. (2), but that have the more-symmetric form

$$
\begin{equation*}
\hat{\psi}_{n}(x, z)=A(q) H_{n}\{\sqrt{ }(j k / 2 q) x\} e^{-(j k / 2 q) x^{2}} \tag{4}
\end{equation*}
$$

The z dependence is now entirely contained in the complex parameter $q(z)$, which has the same form as before. The complex amplitude $A(q)$, which is the analog of the $[1 / w(z)]^{\frac{1}{2}} \exp \left[j\left(n+\frac{1}{2}\right) \phi(z)\right]$ factor in the usual expansion, also has a particularly simple form.

ANALYSIS

Since we expect the usual gaussian-mode factor $\exp \left[-(j k / 2 q) x^{2}\right]$ to be a basic part of the eigenfunction in any case, we write our proposed alternative solutions in the form

$$
\begin{equation*}
\hat{\psi}_{n}(x, z)=A(q) H_{n}(\sqrt{ } c x) e^{-c x^{2}}, \tag{5}
\end{equation*}
$$

where c is the complex parameter $c=c(z)=j k / 2 q(z)$ and the functional form of $H_{n}(\sqrt{ } c x)$ is initially undetermined. Putting Eq. (5) into the wave Eq. (2) and making use of the usual condition $d q(z) / d z=1$ immediately leads to the two separated equations

$$
\begin{gather*}
H_{n}{ }^{\prime \prime}(\sqrt{ } c x)-2 \sqrt{ } c x H_{n}^{\prime}(\sqrt{ } c x)+2 n H_{n}(\sqrt{ } c x)=0 \tag{6a}\\
\frac{q}{A} \frac{d A}{d q}=-\frac{n+1}{2} \tag{6b}
\end{gather*}
$$

The function $H_{n}(\sqrt{ } c x)$ is evidently a Hermite polynomial of complex argument $\sqrt{ } c x$, whereas the amplitude factor $A(q)$ becomes a simple function of $q(z)$ only. From Eqs. (6a) and (6b), the resulting complexargument hermite-gaussian normal modes are

$$
\begin{equation*}
\hat{\psi}_{n}(x, z)=\left(q_{0} / q\right)^{(n+1) / 2} H_{n}(\sqrt{ } c x) e^{-c x^{2}} \tag{7}
\end{equation*}
$$

where $c \equiv j k / 2 q$. This is certainly an at least superficially neater alternative set of hermite-gaussian eigensolutions to the basic wave Eq. (2).

DISCUSSION

The new eigensolutions Eqs. (4) or (7) are not the same as the conventional eigensolutions Eq. (3) on any one-to-one basis. For example, at a waist where $q=j \pi w^{2} / \lambda$, the conventional solutions are

$$
\begin{equation*}
\psi_{n}(x)=H_{n}\left(\frac{\sqrt{2} x}{w}\right) e^{-x^{2} / w^{2}}, \tag{8}
\end{equation*}
$$

while the new solutions reduce to

$$
\begin{equation*}
\hat{\psi}_{n}(x)=H_{n}\left(\frac{x}{w}\right) e^{-x^{3} / w^{3}} . \tag{9}
\end{equation*}
$$

As functions of x, only the conventional hermitegaussian functions satisfy the differential equation

$$
\begin{equation*}
\frac{d^{2} \psi_{n}}{d x^{2}}+\left(2 n+1-x^{2}\right) \psi_{n}=0 \tag{10}
\end{equation*}
$$

whereas the new complex-argument hermite-gaussian functions are solutions of the equation

$$
\begin{equation*}
\frac{d^{2} \hat{\psi}_{n}}{d x^{2}}+2 c x \frac{d \hat{\psi}_{n}}{d x}+2(n+1) c \hat{\psi}_{n}=0 \tag{11}
\end{equation*}
$$

This equation may written in operator form as

$$
\begin{equation*}
\mathcal{L} \hat{\psi}_{n}=\lambda_{n} \hat{\psi}_{n}, \tag{12}
\end{equation*}
$$

where the differential operator \mathcal{L} and its eigenvalues λ_{n} are

$$
\begin{equation*}
\mathcal{L} \equiv\left[\frac{d^{2}}{d x^{2}}+2 c x \frac{d}{d x}\right], \quad \lambda_{n}=-2(n+1) c . \tag{13}
\end{equation*}
$$

This operator is not a hermitian operator, and its eigenfunctions $\hat{\psi}_{n}$ do not form an orthonormal set. The hermitian adjoint operator \mathcal{L}^{+}conjugate to this operator is

$$
\begin{equation*}
\mathcal{L}^{+} \equiv\left[\frac{d^{2}}{d x^{2}}-\frac{d}{d x}\left(2 c^{*} x\right)\right] . \tag{14}
\end{equation*}
$$

The eigenfunctions $\hat{\phi}_{n}$ of the adjoint operator are the solutions of the adjoint equation $\mathcal{L}^{+} \hat{\phi}_{n}=\mu_{n} \hat{\phi}_{n}$, which reduces to

$$
\begin{equation*}
\frac{d^{2} \hat{\phi}_{n}}{d x^{2}}-2 c^{*} x \frac{d \hat{\phi}_{n}}{d x}-\left(2 c^{*}+\mu_{n}\right) \hat{\phi}_{n}=0 . \tag{15}
\end{equation*}
$$

The eigensolutions to the adjoint equation are

$$
\begin{align*}
\hat{\phi}_{n}(x) & =H_{n}\left(\sqrt{ } c^{*} x\right), \tag{16a}\\
\mu_{n} & =-2(n+1) c^{*} . \tag{16b}
\end{align*}
$$

As expected, $\mu_{n}=\lambda_{n}{ }^{*}$. There is, however, no gaussian factor associated with the adjoint functions $\hat{\phi}_{n}$. The original solutions $\hat{\psi}_{n}$ and the adjoint solutions $\hat{\phi}_{n}$ form a biorthogonal set, with the orthogonality relationship

$$
\begin{align*}
\int_{\infty}^{\infty} \hat{\phi}_{n}^{*}(x) \hat{\psi}_{m}(x) d x & =\int_{\infty}^{\infty} H_{n}(\sqrt{ } c x) H_{m}(\sqrt{ } c x) e^{-c x^{3}} d x \\
& =K_{n} \delta_{n m} . \tag{17}
\end{align*}
$$

This orthogonality relation checks for the case c purely real, which also provides a convenient method for evaluating the normalization coefficient K_{n}. If a given wave function $u(x)$ is to be expanded in the new complex-argument eigenfunctions $\hat{\psi}_{n}$, in the form

$$
\begin{equation*}
u(x)=\sum_{n} a_{n} \hat{\psi}_{n}(x), \tag{18}
\end{equation*}
$$

then the coefficients a_{n}, assuming proper normalization of $\hat{\psi}_{n}$, will be given by

$$
\begin{equation*}
a_{n}=\int_{\infty}^{\infty} \hat{\phi}_{n}^{*}(x) u(x) d x \tag{19}
\end{equation*}
$$

Note, however, that the adjoint functions $\hat{\phi}_{n}$ cannot be normalized, because, without any gaussian factor, their areas diverge.

These more-elegant eigenfunctions $\hat{\psi}_{n}$ are not the appropriate basis set for analyzing stable sphericalmirror optical resonators because the wave fronts of the higher-order modes $(n>1)$ are not spherical. The complex argument $\sqrt{ } c x$ in the hermite polynomials gives an additional phase variation in $H_{n}(\sqrt{ } c x)$ that modifies the usual gaussian spherical-phase variation. However, the new eigenfunctions with their greater simplicity may be useful in other sorts of optical-beam propagation and optical-resonator problems, in free space or where more-general phase variations are involved.

ACKNOWLEDGMENT

This work was supported by the Joint Services Electronics Program at Stanford University.

REFERENCES

${ }^{1}$ H. Kogelnik and T. Li, Proc. IEEE 54, 1312 (1966).

