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Abstract

This paper defines and discusses the complex Hermite and Laguerre polynomials associ-
ated with the complex matrix-variate normal and Wishart distributions, respectively. Various
properties of these polynomials are investigated, including generating functions, Rodrigues
formulae (differential and integral versions), and series expressions. These polynomials are
also discussed from the viewpoint of the multivariate complex Meixner distributions. We pres-
ent applications in asymptotic distribution theory on the complex Stiefel manifold. The theory
of complex zonal polynomials is of great use in the derivations.
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1. Introduction and preliminary results

Statistical analysis on the complex matrix spaces is useful, in particular, in time
series analysis. In this paper, we define and investigate the complex Hermite poly-
nomials with Hermitian and complex matrix argument and the complex Laguerre
polynomials with Hermitian matrix argument, which are associated with the Hermi-
tian and complex matrix-variate normal distributions and the complex Wishart dis-
tribution, respectively. These unitary polynomials play important roles particularly
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in asymptotic complex distribution theory. This paper extends the results of Chikuse
[4–6], in which Hermite and Laguerre polynomials with real matrix arguments were
thoroughly investigated.

In Section 2, we define the (standard) complex normal Ñmm(0, Im) distribution
(see (2.1)) on the space of m × m Hermitian matrices

S̃m = {S(m × m); S = S∗}, (1.1)

where S∗ indicates the conjugate transpose of an m × m complex matrix S; the con-
dition S = S∗, i.e., S1 + iS2 = S′

1 − iS′
2, indicates that S1 and S2 are m × m symmet-

ric and skew-symmetric, respectively. Now, let Õ(m) denote the unitary group, i.e.,
Õ(m) = {H(m × m); H ∗H = Im}. Here, we note that the complex notions Hermi-
tian and unitary correspond to the real symmetric and orthogonal, respectively, and
that we will put ˜ on real notations to denote the complex counterparts in this paper.
A Hermitian matrix S ∈ S̃m can be expressed as S = H ∗DH , where H ∈ Õ(m) and
D = diag(d1, . . . , dm) with dis real latent roots of S. When all dis are positive, S is
positive definite, and we let S̃+

m denote the set of all m × m positive definite Hermi-
tian matrices. The inverse matrix S−1 and the determinant |S| are defined similarly
to those for the real case.

The complex Hermite polynomials H̃
(m)
λ (S), λ � l = 0, 1, . . ., are defined as a

complete system of unitary polynomials associated with the normal Ñmm(0, Im)

distribution. Here λ � l denotes that λ is an ordered partition of an integer l into
not more than m parts; λ = (l1, l2, . . . , lm), l1 � l2 � · · · � lm � 0,

∑m
i=1 li = l.

We discuss various properties of the polynomials H̃
(m)
λ (S), i.e., generating function

(g.f.), Fourier transform, Rodrigues formulae, and series expressions for H̃
(m)
λ (S)

and for its differentials. In particular, the integral version of Rodrigues formulae is of
great use in asymptotic distribution theory for complex matrix variates; see Section
6 for applications.

Section 3 is concerned with the (standard) complex normal Ñm,k(0; Im, Ik) dis-
tribution (see (3.1)) on the space of m × k complex matrices

R̃m,k = {Z(m × k) = Z1 + iZ2; Z1 and Z2 m × k real matrices}. (1.2)

The complex Hermite polynomials H̃
(mk)
λ (Z), λ � l = 0, 1, . . ., constitute a com-

plete system of unitary polynomials associated with the normal Ñm,k(0; Im, Ik) dis-
tribution. A similar line of discussion on the properties of the polynomials H̃

(mk)
λ (Z)

is carried out.
The complex Laguerre polynomials L̃u

λ(W), λ � l = 0, 1, . . ., are defined as a
complete system of unitary polynomials associated with the complex Wishart dis-
tribution. Section 4 gives a discussion on the properties of the polynomials L̃u

λ(W),
including a limit normal Ñmm(0, Im) property of the Wishart distribution and a rela-
tionship of L̃u

λ(Z
∗Z) with H̃

(mk)
λ (Z) polynomials.

Here we note that Andersen et al. [1] gave a thorough discussion of the complex
matrix-variate normal Ñm,k and Wishart W̃m distributions.
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Section 5 gives a brief discussion of the multivariate complex Meixner classes of
invariant distributions, which include the two kinds of normal and Wishart distribu-
tions considered in the previous sections.

In Section 6, we present applications of the previous results on the complex Stie-
fel manifold Ṽk,m. We define the complex matrix Langevin distribution on Ṽk,m,
and derive large sample asymptotic distributions for the sample mean matrix using
Rodrigues formulae.

In the rest of this section, we present some results, which are relevant for the
derivations throughout this paper.

1.1. Theory of complex zonal polynomials

We give a brief discussion of the theory of complex zonal polynomials (mainly
due to James [13]), which play important roles in the multivariate complex distribu-
tion theory, corresponding to the more familiar one of real zonal polynomials (e.g.,
[10,13]).

The complex zonal polynomials C̃λ(S) are defined by the theory of group repre-
sentation of the full linear group Gl(m, C) of all m × m nonsingular complex matri-
ces under the congruence transformation,

S → LSL∗ for L ∈ Gl(m, C),

in the vector space of homogeneous polynomials of degree l in a matrix S ∈ S̃m,
where λ corresponds to the irreducible representation indexed by [2λ], λ � l =
0, 1, . . .. The C̃λ(S), λ � l = 0, 1, . . ., constitute a basis of all homogeneous sym-
metric polynomials in the latent roots of S, having the property of invariance under
the transformation S → HSH ∗, H ∈ Õ(m).

The basic property is∫
Õ(m)

C̃λ(HSH ∗T )[dH ] = C̃λ(S)C̃λ(T )

C̃λ(Im)
, (1.3)

where [dH ] denotes the normalized invariant measure (i.e.,
∫
Õ(m)

[dH ] = 1) on

Õ(m). Chikuse [8] investigates the (normalized) invariant measures on the complex
Stiefel manifold Ṽk,m, which includes Õ(m) = Ṽm,m as a special case and will be
treated in Section 6.

The Laplace transform is∫
S̃+

m

etr(−S)|S|a−mC̃λ(AS)(dS) = �̃m(a)[a]λC̃λ(A), (1.4)

where etr A = exp(tr A), the Lebesgue measure (dS) is defined by (1.19), and we
define the complex multivariate gamma function

�̃m(a) =
∫

S̃+
m

etr(−S)|S|a−m(dS) = πm(m−1)/2
m∏

i=1

�(a − i + 1), (1.5)
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and the complex multivariate hypergeometric coefficient

[a]λ =
p∏

i=1

(a − i + 1)li for λ = (l1, l2, . . . , lp),

with (a)l = a(a + 1) · · · (a + l − 1).

Following a similar argument to that due to e.g., Davis and coworkers [9,11], we
can express

C̃σ (S)C̃φ(S) =
∑

λ∗∈σ ·φ
g̃λ∗

σ,φC̃λ∗(S), (1.6)

and

C̃ν(S
2) =

∑
φ∈ν·ν

η̃ν,φC̃φ(S), (1.7)

for suitably defined coefficients g̃ and η̃. Here, λ ∈ σ · φ indicates that the irreducible
representation indexed by [2λ] occurs in the decomposition of the Kronecker prod-
uct [2σ ] ⊗ [2φ] of irreducible representations indexed by [2σ ] and [2φ], and �λ∗
denotes the summation ignoring the multiplicity. The generalized binomial coeffi-
cients b̃ are defined by

C̃λ(S + Im)

C̃λ(Im)
=

l∑
s=0

∑
σ�s

b̃λ,σ

C̃σ (S)

C̃σ (Im)
. (1.8)

We can readily show that

b̃λ,σ =
∑

φ�(l−s)
(λ∈σ ·φ)

l!
s!f ! g̃

λ
σ,φ, for g̃ defined by (1.6), (1.9)

and ∑
s�n�l

∑
ν�n

(−1)n+s b̃λ,ν b̃ν,σ = δλ,σ , for Kronecker’s delta δ. (1.10)

The complex hypergeometric functions with Hermitian matrix arguments are
defined by

pF̃q(a1, . . . , ap; b1, . . . , bq; S) =
∞∑
l=0

∑
λ�l

[a1]λ · · · [ap]λ
[b1]λ · · · [bq ]λ

C̃λ(S)

l! , (1.11)

and

pF̃q(a1, . . . , ap; b1, . . . , bq; S, T )

=
∫

Õ(m)
pF̃q(a1, . . . , ap; b1, . . . , bq; HSH ∗T )[dH ]

=
∞∑
l=0

∑
λ�l

[a1]λ · · · [ap]λ
[b1]λ · · · [bq ]λ

C̃λ(S)C̃λ(T )

l!C̃λ(Im)
, (1.12)



Y. Chikuse / Linear Algebra and its Applications 388 (2004) 91–105 95

for a1, . . . , ap, b1, . . . , bq complex constants. The special cases are

0F̃0(S) = etr(S), (1.13)

and

0F̃1

(
m; 1

4
Z∗Z

)
=

∫
Õ(m)

etr[Re(ZH)][dH ], (1.14)

where Re(A) = A1, the real part of A for A = A1 + iA2.

1.2. Differentials and measures

Let us define the complex matrices of differential operators

�S = �S1 + i�S2, for S = S1 + iS2 ∈ S̃m, (1.15)

where


�S1 =
(

1

2
(1 + δij )

�

�s
(1)
ij

)
, with S1 = (

s
(1)
ij

)
symmetric,

�S2 =
(

1

2
(1 − δij )

�

�s
(2)
ij

)
, with S2 = (

s
(2)
ij

)
skew-symmetric,

and

�Z = �Z1 + i�Z2, for Z = Z1 + iZ2 ∈ R̃m,k, (1.16)

where

�Zl =
(

�

�z
(l)
ij

)
, with Zl = (

z
(l)
ij

)
, l = 1, 2.

We can show the following properties for suitable analytic functions f (·):

(i)




f (�S) etr(T S) = f (T ) etr(T S), for S, T ∈ S̃m,

f (�Z) etr[Re(T ∗Z)] = f (T ) etr[Re(T ∗Z)],
for Z, T ∈ R̃m,k.

(1.17)

(ii) Taylor’s expansions:

f (S + T ) = etr(T �S)f (S), for S, T ∈ S̃m, (1.18)

f (Z + T ) = etr[Re(T ∗�Z)]f (Z), for Z, T ∈ R̃m,k.

The Lebesgue measures on S̃m and R̃m,k are

(dS) =
∧m

1
i�j

ds
(1)
ij ·

∧m

1
i<j

ds
(2)
ij , for S = S1 + iS2,

with Sl = (
s
(l)
ij

)
, l = 1, 2,
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and

(dZ) =
2∧

l=1

k∧
j=1

m∧
i=1

dz
(l)
ij , for Z = Z1 + iZ2, with Zl = (

z
(l)
ij

)
, l = 1, 2,

(1.19)

respectively, where we use the symbol ∧ to indicate the exterior product of differ-
entials. Throughout this paper, the probability density functions (p.d.f.’s) of distribu-
tions on S̃m and R̃m,k are expressed with respect to these Lebesgue measures.

2. Hermite polynomials with Hermitian matrix argument

2.1. Associated normal distributions

An m × m random Hermitian matrix S = S1 + iS2 is said to have the m × m

Hermitian matrix-variate normal Ñmm(0, Im) distribution if the p.d.f. is

ϕ̃(m)(S) = ãm etr(−S2) = ãm etr(−S′
1S1 − S′

2S2),

with ãm = 2m(m−1)/2/πm2/2. (2.1)

That is, s(1)
ii , s(1)

ij and s
(2)
ij (i, j = 1, . . . , m, i < j ) are all independently distributed as

normal N(0, 1
2 ), N(0, 1

4 ) and N(0, 1
4 ), respectively. The moment generating function

(m.g.f.) is given by

M̃S(T ) = E etr(T S) = E etr(S1T1 − S2T2) = etr

(
1

4
T 2

)
, (2.2)

for a Hermitian matrix T = T1 + iT2.
The normal Ñmm(0, Im) distribution is obtained as a limit of the complex Wishart

distribution, which will be discussed in Section 4.
In general, for m × m matrices � ∈ S̃+

m and M ∈ S̃m, and an m × m random Her-
mitian matrix V distributed as normal Ñmm(0, Im), the random matrix

S = �1/2V �1/2 + M

may be said to have the m × m Hermitian matrix-variate normal Ñmm(M, �) distri-
bution, whose p.d.f. is

ãm|�|−m etr[−(S − M)�−1(S − M)�−1].
Here, A1/2 denotes the unique square root of a matrix A ∈ S̃+

m .

2.2. Complex Hermite polynomials H̃
(m)
λ (S)

The complex Hermite polynomials H̃
(m)
λ (S), λ � l = 0, 1, . . ., constitute the com-

plete system of unitary polynomials associated with the normal Ñmm(0, Im) distri-
bution.
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Generating function
The g.f. for the H̃

(m)
λ (S) is

∞∑
l=0

∑
λ�l

H̃
(m)
λ (S)C̃λ(T )

l!C̃λ(Im)
= etr

(
−1

4
T 2

) ∫
Õ(m)

etr(HSH ∗T )[dH ]. (2.3)

Now, various properties can be derived from (2.3).

Fourier transform
On multiplying by etr(iYS)ϕ̃(m)(S), for Y ∈ S̃m, and integrating over S ∈ S̃m both

sides of (2.3), we can evaluate the right-hand side of the resulting equation as

etr

(
−1

4
Y 2

)∫
Õ(m)

etr

(
1

2
iHYH ∗T

)
[dH ] = etr

(
−1

4
Y 2

)
0
F̃0

(
1

2
iY, T

)
,

from (1.12) and (1.13).

Expanding the 0F̃0 function in terms of complex zonal polynomials using (1.12) and
comparing the coefficients of C̃λ(T ) in the resulting equation, we obtain the Fourier
transform∫

S̃m

etr(iYS)ϕ̃(m)(S)H̃
(m)
λ (S)(dS) = etr

(
−1

4
Y 2

)
C̃λ

(
1

2
iY

)
. (2.4)

Rodrigues formulae
On multiplying both sides of (2.3) by ϕ̃(m)(S), we can evaluate the right-hand side

of the resulting equation as∫
Õ(m)

ϕ̃(m)

(
1

2
H ∗T H − S

)
[dH ]

=
∫

Õ(m)

etr

(
−1

2
H ∗T H�S

)
ϕ̃(m)(S)[dH ], from (1.18),

= 0F̃0

(
−1

2
�S, T

)
ϕ̃(m)(S), from (1.12),

which, on comparing the coefficients of C̃λ(T ), gives the differential version of Ro-
drigues formulae

H̃
(m)
λ (S)ϕ̃(m)(S) = C̃λ

(
−1

2
�S

)
ϕ̃(m)(S). (2.5)

Inverting (2.4) gives the integral version of Rodrigues formulae (inverse Fourier
transform)

H̃
(m)
λ (S)ϕ̃(m)(S) = 2m(m−1)

(2π)m
2

∫
S̃m

etr

(
−iST − 1

4
T 2

)
C̃λ

(
1

2
iT

)
(dT ).

(2.6)
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Series expression for H̃
(m)
λ (S) in terms of the C̃σ (S) and vice versa

Expanding the right-hand side of (2.3), that is, etr(− 1
4T 2)0F̃0(S, T ), in terms of

complex zonal polynomials using (1.12) and (1.13), then the formulae (1.6) and (1.7)
for the coefficients g̃ and η̃, respectively, and comparing the coefficients of C̃λ(T ),
we obtain

H̃
(m)
λ (S)

l!C̃λ(Im)
=

l∑
s=0

∑
σ�s

[ ∑
ν�n

∑
φ∈ν·ν

(λ∈σ ·φ)

η̃ν,φg̃λ
σ,φ

(−4)nn!

]
C̃σ (S)

s!C̃σ (Im)
. (2.7)

Hence, the term of the highest degree of H̃
(m)
λ (S) is C̃λ(S), and for l even (odd) only

the terms of even (odd) degree in S appear in the expansion.
Next, we multiply both sides of (2.3) by etr( 1

4T 2) and carry out a similar pro-
cedure. We obtain the series expression of C̃λ(S)/ l!C̃λ(Im) which is given by the
right-hand side of (2.7) with 4n and H̃

(m)
σ (S) replacing (−4)n and C̃σ (S), respec-

tively.

Series expression for the differential
Applying C̃ν(�S) on both sides of (2.3), the resulting right-hand side becomes

C̃ν(T ) × [the left-hand side of (2.3)], where (1.17) is used. Comparing the coeffi-
cients of C̃λ(T ), we obtain

C̃ν(�S)H̃
(m)
λ (S)

l!C̃λ(Im)
=

∑
σ�(l−n)
(λ∈ν·σ)

g̃λ
ν,σ

(l − n)!C̃σ (Im)
H̃

(m)
λ (S). (2.8)

3. Hermite polynomials with complex matrix argument

3.1. Associated normal distributions

An m × k random complex matrix Z = Z1 + iZ2 is said to have the m × k com-
plex matrix-variate normal Ñm,k(0; Im, Ik) distribution if the p.d.f. is

ϕ̃(mk)(Z) = π−km etr(−Z∗Z) = π−km etr(−Z′
1Z1 − Z′

2Z2). (3.1)

For T ∈ R̃m,k , the m.g.f. is given by

M̃Z(T ) = E etr[Re(T ∗Z)] = etr

(
1

4
T ∗T

)
. (3.2)

In general, for �1 ∈ S̃+
m , �2 ∈ S̃+

k and M ∈ R̃m,k , and an m × k random complex
matrix Y distributed as normal Ñm,k(0; Im, Ik), the random matrix

Z = �1/2
1 Y�1/2

2 + M

may be said to have the m × k complex matrix-variate normal Ñm,k(M; �1, �2) dis-
tribution.



Y. Chikuse / Linear Algebra and its Applications 388 (2004) 91–105 99

3.2. Complex Hermite polynomials H̃
(mk)
λ (Z)

The complex Hermite polynomials H̃
(mk)
λ (Z), λ � l = 0, 1, . . ., constitute the

complete system of unitary polynomials associated with the normal Ñm,k(0; Im, Ik)

distribution.

Generating function
The g.f. for the H̃

(mk)
λ (Z) is

∞∑
l=0

∑
λ�l

H̃
(mk)
λ (Z)C̃λ(T

∗T )

4l[k]λl!C̃λ(Im)

= etr

(
−1

4
T ∗T

)∫
Õ(m)

∫
Õ(k)

etr[Re(HZQ∗T ∗)][dQ][dH ]. (3.3)

As in Section 2.2, we can obtain from (3.3) the following results, where the dis-
cussions involving the 0F̃0 functions carried out in Section 2.2 are replaced by those
involving the 1F̃1 functions in this section.

Fourier transform∫
R̃m,k

etr[i Re(Y ∗Z)]ϕ̃(mk)(Z)H̃
(mk)
λ (Z)(dZ)

= etr

(
−1

4
Y ∗Y

)
C̃λ

(
−1

4
Y ∗Y

)
. (3.4)

Rodrigues formulae

H̃
(mk)
λ (Z)ϕ̃(mk)(Z)

= C̃λ

(
1

4
�Z∗�Z

)
ϕ̃(mk)(Z) (3.5)

= 1

(2π)2km

∫
R̃m,k

etr

[
−i Re(Z∗T ) − 1

4
T ∗T

]
C̃λ

(
−1

4
T ∗T

)
(dT ). (3.6)

Series expression for H̃
(mk)
λ (Z)

H̃
(mk)
λ (Z)

[k]λC̃λ(Im)
=

l∑
s=0

∑
σ�s

(−1)l−s b̃λ,σ

C̃σ (Z∗Z)

[k]σ C̃σ (Im)
, (3.7)

where the coefficients b̃ are defined by (1.8).
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Series expression for the differential

C̃ν(�Z∗�Z)H̃
(mk)
λ (Z)

4l[k]λl!C̃λ(Im)
=

∑
σ�(l−n)
(λ∈ν·σ)

g̃λ
ν,σ H̃

(mk)
σ (Z)

4l−n[k]σ (l − n)!C̃σ (Im)
. (3.8)

4. Laguerre polynomials

4.1. Complex Wishart distributions

The following lemma is useful.

Lemma 4.1 (Chikuse [8]). Let the unique complex polar decomposition of Z ∈ R̃m,k

be

Z = H̃ZT̃
1/2
Z , with H̃Z = Z(Z∗Z)−1/2 ∈ Ṽk,m and T̃Z = Z∗Z ∈ S̃+

m.

(4.1)

Then the Lebesgue measure (dZ) is decomposed as

(dZ) = [πkm/�̃k(m)]|T̃Z|m−k(dT̃Z)[dH̃Z]. (4.2)

Letting the n × m complex matrix Z be distributed as normal Ñn,m(0; In, �) with
� ∈ S̃+

m and using Lemma 4.1, W = Z∗Z has the complex Wishart W̃m(n, �) distri-
bution having the p.d.f.

w̃m(W ; n, �) = [�̃m(n)|�|n]−1 etr(−�−1W)|W |n−m. (4.3)

The m.g.f. is given by

E etr(T W) = |Im − �T |−n, for T ∈ S̃m. (4.4)

If Z is distributed as normal Ñn,m(M; In, �), W = Z∗Z has the noncentral com-
plex Wishart W̃ (n, �; �) distribution, with noncentrality matrix � = �−1M∗M , hav-
ing the p.d.f.

w̃m(W ; n, �; �)

= [�̃m(n)|�|n]−1 etr(−�) etr(−�−1W)|W |n−m
0F̃1(n; ��−1W). (4.5)

4.2. Complex Laguerre polynomials L̃u
λ(W )

The complex Laguerre polynomials L̃u
λ(W), λ � l = 0, 1, . . . , constitute the com-

plete system of unitary polynomials associated with the Wishart W̃m(2u + m, 1
2Im)

distribution. We give some results on the polynomials L̃u
λ(W) in the following.
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Generating function

∞∑
l=0

∑
λ�l

L̃u
λ(W)C̃λ(T )

l!C̃λ(Im)

=
∣∣∣∣Im − 1

2
T

∣∣∣∣
−2u−m ∫

Õ(m)

etr

[
−HWH ∗T

(
Im − 1

2
T

)−1
]

[dH ]. (4.6)

Laplace transform∫
S̃+

m

etr(−YW)|W |2uL̃u
λ(W)(dW)

= �̃m(2u + m)[2u + m]λ|Y |−2u−mC̃λ(Im − Y−1). (4.7)

We may define the polynomials L̃u
λ(W) by

L̃u
λ(W) = etr(W)

∫
S̃+

m

etr(−R)|R|2uC̃λ(R)Ãu(WR)(dR), (4.8)

where the complex Bessel function Ãu is defined by

Ãu(R) = 0F̃1(2u + m; −R)/�̃m(2u + m). (4.9)

Rodrigues formulae
The inverse Laplace transform (integral version of Rodrigues formulae) of L̃u

λ(W)

is given by

L̃u
λ(W)w̃m(W ; n, Im)

[n]λ
= 2m(m−1)

(2π)m
2

∫
S̃m

etr(−iWT )|Im − iT |−nC̃λ(Im − (Im − iT )−1)(dT ),

with u = 1

2
(n − m), (4.10)

noting that |Im − iT |−n is the characteristic function of the Wishart W̃m(n, Im) dis-
tribution.

From (4.10), the property (1.17), and the uniqueness of the Laplace transform, we
obtain the differential version of Rodrigues formulae

gλ(�W)w̃m(W ; 2u + 2l + m, Im) = L̃u
λ(W)w̃m(W ; 2u + m, Im), (4.11)

where we have the differential operator

gλ(�W) = [2u + m]λ|I + �W |2l C̃λ(Im − (Im + �W)−1), (4.12)

and �W is defined by (1.15).
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Limit normal property
The p.d.f. (2.1) of the Ñmm(0, Im) distribution and the g.f. (2.3) for the H̃

(m)
λ (S)

are obtained by letting

W → u1/2S + uIm and T → −u−1/2T , and then u → ∞,

in the p.d.f. (see (4.3)) of the W̃m(2u + m, 1
2Im) distribution and the g.f. (4.6) for the

L̃u
λ(W), respectively. So we have

H̃
(m)
λ (S) = lim

u→∞ u−l/2L̃u
λ(u

1/2S + uIm). (4.13)

Series expression for L̃u
λ(W)

As for the case of the H̃
(m)
λ (S) polynomials, we can obtain the series expres-

sion for L̃u
λ(W) based on the g.f. (4.6), and, in view of (3.7), we can establish the

relationship

H̃
(mk)
λ (Z) = (−1)lL̃u

λ(Z
∗Z), with u = 1

2
[max(m, k) − min(m, k)]. (4.14)

It is seen from (1.8) in conjunction with the property (1.10) that, if we write the
series expression for L̃u

λ(W) as L̃u
λ(W) = �̃

u

λ[C̃σ (W)], then we can express C̃λ(W)

as �̃
u

λ[L̃u
σ (W)].

5. Multivariate complex Meixner classes of invariant distributions

We define the multivariate invariant (biinvariant) Meixner distributions of random
complex matrices, extending the real ones discussed by Chikuse [2]; the Meixner
distributions were first characterized by Meixner [16]. The distribution of an m × m

Hermitian (m × k complex) random matrix S is defined to be invariant (biinvari-
ant) if the distribution of S is invariant under the transformation S → HSH ∗, for
H ∈ Õ(m) (S → HSQ∗, for H ∈ Õ(m) and Q ∈ Õ(k)). Here we confine our dis-
cussion to continuous random complex matrices; a similar argument can be applied
to the case of discrete random complex matrices, which is omitted in this paper
though.

A random matrix S ∈ S̃m is said to belong to the class of invariant complex Meix-
ner distributions defined by U(T ) if the g.f. for the associated unitary polynomials
{P̃ (m)

λ (S)} is of the from

∞∑
l=0

∑
λ�l

P̃
(m)
λ (S)C̃λ(T )

l!Cλ(Im)
=

∫
Õ(m)

etr[HSH ∗U(T )]
M̃S(U(T ))

[dH ], (5.1)

for T ∈ S̃m and the m.g.f. M̃S(·) of S. Here U(T ) is an analytic m × m Hermitian
matrix-valued function of T with U(0) = 0.
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A random matrix Z ∈ R̃m,k is said to belong to the class of biinvariant complex
Meixner distributions defined by U(T ) if the g.f. for the associated unitary polyno-
mials {P̃ (mk)

λ (Z)} is of the form

∞∑
l=0

∑
λ�l

P̃
(mk)
λ (Z)C̃λ(T

∗T )

l!C̃λ(Im)
=

∫
Õ(m)

∫
Õ(k)

etr[Re(HZQ∗U∗(T ))]
M̃Z(U(T ))

[dQ][dH ],

(5.2)

for T ∈ R̃m,k and the m.g.f. M̃Z(·) of Z. Here U(T ) is an analytic m × k complex
matrix-valued function of T with U(0) = 0.

Thus, we see from (2.3), (3.3), and (4.6) that our distributions Ñmm(0, Im),
Ñm,k(0; Im, Ik), and W̃m(n, 1

2Im) are the invariant (biinvariant) complex Meixner

distributions with the associated unitary polynomials H̃
(m)
λ (S), H̃

(mk)
λ (Z)

(or H̃
(mk)
λ (Z)/4l[k]λ), and L̃u

λ(W) (n = 2u + m), defined by U(T ) = T ∈ S̃m, T ∈
R̃m,k , and −T (Im − 1

2T )−1 for T ∈ S̃m, respectively.

6. Applications

We define the complex Stiefel manifold Ṽk,m (m � k) as being represented by
the space of all m × k complex matrices Z satisfying Z∗Z = Ik , that is, X′X +
Y ′Y = Ik and X′Y − Y ′X = 0 for Z = X + iY . It is known that the most commonly
used and tractable distribution defined on the (real) Stiefel manifold Vk,m = {X(m ×
k) real; X′X = Im} is the matrix Langevin distribution; see e.g., [3,7,12,14,15], for
discussions and statistical analyses of the matrix Langevin distributions on Vk,m.
We introduce the complex matrix Langevin distribution on Ṽk,m whose p.d.f. with
respect to the normalized invariant measure is given by

etr[Re(F ∗Z)]/0F̃1

(
m; 1

4
F ∗F

)
, (6.1)

where F is an m × k complex matrix. The distribution (6.1) has properties similar to
the (real) matrix Langevin distribution. Putting F = 0 gives the uniform distribution
on Ṽk,m.

We are now interested in testing the null hypothesis H0 of uniformity, against a
sequence of local alternative hypotheses H1 : F = n−1/2F0 for an m × k constant
complex matrix F0, indicating a slight departure from the uniformity as n becomes
large.

Given a random sample Z1, . . . , Zn of size n from the complex matrix Langevin
distribution (6.1), we define the standardized sample mean matrix as

U = (nm)1/2Z̄, with Z̄ =
n∑

i=1

Zi/n.
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The statistic U may play important roles in the above mentioned test of uniformity,
but the exact distribution of U is only given in an integral form which is difficult
to evaluate. We will derive asymptotic expansions for the distributions of U and
W = U∗U , under the hypotheses H0 and H1, for large n.

The inversion of the characteristic function E etr[i Re(T ∗U)] of U leads to the
p.d.f. of U under the hypothesis H1

fU(U) = etr[m−1/2 Re(F ∗
0 U)][

0F̃1

(
m; 1

4n
F ∗

0 F0

)]n

∫
R̃m,k

1

(2π)2km
etr[−i Re(U∗Z)]

×
[

0F̃1

(
m; − m

4n
Z∗Z

)]n

(dZ). (6.2)

We expand the 0F̃1 functions in (6.2) in view of (1.11) and (1.6), for large n. Then
the integral with respect to (dZ) in (6.2) becomes

1

(2π)2km

∫
R̃m,k

etr

[
−i Re(U∗Z) − 1

4
Z∗Z

]

×
[

1 + 1

n

∑
λ�2

cλC̃

(
−1

4
Z∗Z

)
+ O(n−2)

]
(dZ),

with cλ = 1

2

(
m2

[m]λ − gλ
(1),(1)

)
, (6.3)

and using the Rodrigues formula (3.6) in (6.3) yields an asymptotic expansion for
the p.d.f. of U in the form

fU(U) = ϕ̃(mk)

(
U − F0

2m1/2

)

×
{

1 + 1

n

∑
λ�2

cλ

[
H̃

(mk)
λ (U) − C̃λ(�)

] + O(n−2)

}
,

with � = (4m)−1F ∗
0 F0, (6.4)

in terms of the normal Ñm,k((2m1/2)−1F0; Im, Ik) distribution and the associated
complex Hermite polynomials H̃

(mk)
λ (U).

The p.d.f. of W = U∗U is expanded, using Lemma 4.1 in (6.4), as

fW(W) = w̃k(W ; m, Ik; �)

×
{

1 + 1

n

∑
λ�2

cλ

[
L̃

(m−k)/2
λ (W) − C̃λ(�)

] + O(n−2)

}
, (6.5)

in terms of the noncentral Wishart W̃m(m, Ik; �) distribution and the associated com-
plex Laguerre polynomials L̃

(m−k)/2
λ (W).
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Putting F0 = 0 in (6.4) and (6.6) gives the asymptotic expansions under the null
hypothesis of uniformity.
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