Prob that Sue wins on her nth turn: $\quad \operatorname{PSn}(\mathrm{n}):=\left(\frac{5}{6}\right)^{\mathrm{n}-1} \cdot\left(\frac{5}{6}\right)^{\mathrm{n}-1} \cdot \frac{1}{6}$

Prob that Bob wins on his nth turn: $\quad \operatorname{PBn}(\mathrm{n}):=\left(\frac{5}{6}\right)^{\mathrm{n}} \cdot\left(\frac{5}{6}\right)^{\mathrm{n}-1} \cdot \frac{1}{6} \quad \operatorname{PBn}(2) \rightarrow \frac{125}{1296}$

Prob that Sue wins: \quad PS $:=\sum_{\mathrm{n}=1}^{\infty} \operatorname{PSn}(\mathrm{n}) \rightarrow \frac{6}{11}$

Prob that Bob wins:

$$
\text { PB }:=\sum_{\mathrm{n}=1}^{\infty} \operatorname{PBn}(\mathrm{n}) \rightarrow \frac{5}{11}
$$

Prob that Bob wins on second turn given that he is the winner is:
$\mathrm{P}(\mathrm{B}=2 \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{B}=2, \mathrm{~B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{B}=2)}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{PBn}(2)}{\mathrm{P}(\mathrm{B})}=\frac{\left(\frac{125}{1296}\right)}{\left(\frac{5}{11}\right)}=\frac{275}{1296}$

