

Example: Finding Local Min/Max of Vectors

1. Write a program, using a combination of conditional statements and loops, to find the local minimums of data sets:

$$
\begin{aligned}
& \operatorname{locmin}(v):=\| \begin{array}{l}
j \leftarrow 0 \\
\text { if } v_{0} \leq v_{1}
\end{array} \\
& \| m_{j} \leftarrow\left[\begin{array}{l}
0 \\
v_{0}
\end{array}\right] \\
& \mid j \leftarrow j+1 \\
& n \leftarrow \operatorname{rows}(v)-1 \\
& \text { for } k \in 1 . . n-1 \\
& \| \text { if }\left(v_{k-1} \geq v_{k}\right) \wedge\left(v_{k} \leq v_{k+1}\right) \\
& \| m_{j} \leftarrow\left[\begin{array}{c}
k \\
v_{k}
\end{array}\right] \\
& \text { if } v_{n-1} \geq v_{n} \\
& \| m_{j} \leftarrow\left[\begin{array}{l}
n \\
v_{n}
\end{array}\right]
\end{aligned}
$$

Function locmin scans input vector v and compares each element with its two neighbors. If element k is smaller than the element before it and the element following it, then it is a local minimum and its value and index are added to output vector m.
2. Utilize the above program to write a second program to find the maximums of the same data set:

```
\(\operatorname{locmax}(v):=\| \begin{aligned} & m_{M} \leftarrow \operatorname{locmin}(-v) \\ & \text { for } j \in 0 . \operatorname{rows}(m)-1 \\ & M_{j} \leftarrow\left[\begin{array}{c}\left(\begin{array}{c}m_{j}\end{array}\right)_{0} \\ -\left(m_{j}\right)_{1}\end{array}\right]\end{aligned}\)
```

Function locmax uses the results received from calling locmin with $-v$. A local minimum of $-v$ is a mirror image of a local maximum at the same index. Therefore, each value of a local minimum is multiplied by -1 . The index-value pair is saved as a single element in output vector M.
3. Define function f that uses the built-in function dbinom that returns the probability density for value k :
$n:=10$
$N:=30$
$q:=0.5$
$k:=0 . .30$
$f(k):=\operatorname{dbinom}(k, 30, q)$
$g(k, n):=f(k)+f(n+k)$
4. Plot the above two functions:

5. Save the elements of $g(k, n)$ into an array so it can be passed to the programs that you defined

$$
u_{k}:=g(k, n)
$$

6. Use the built-in length function to see how many locmin and locmax points were found by your programs:
$\operatorname{length}(\operatorname{locmin}(u))=3$
length $(\operatorname{locmax}(u))=2$
7. Use your programs to find the three local minimum points for the function:
$\operatorname{locmin}(u)_{0}=\left[\begin{array}{l}0.000 \\ 0.028\end{array}\right]$
$\left(\operatorname{locmin}(u)_{0}\right)_{0}=0$
$\left(\operatorname{locmin}(u)_{0}\right)_{1}=0.028$
$\operatorname{locmin}(u)_{1}=\left[\begin{array}{r}10.000 \\ 0.056\end{array}\right]$
$\left(\operatorname{locmin}(u)_{1}\right)_{0}=10$
$\left(\operatorname{locmin}(u)_{1}\right)_{1}=0.056$
$\operatorname{locmin}(u)_{2}=\left[\begin{array}{l}30.000 \\ 9.313 \cdot 10^{-10}\end{array}\right]$
$\left(\operatorname{locmin}(u)_{2}\right)_{0}=30$
$\left(\operatorname{locmin}(u)_{2}\right)_{1}=9.313 \cdot 10^{-10}$
8. Use your programs to find the two local maximum points for the function:
$\operatorname{locmax}(u)_{0}=\left[\begin{array}{l}5.000 \\ 0.145\end{array}\right]$
$\left(\operatorname{locmax}(u)_{0}\right)_{0}=5$
$\left(\operatorname{locmax}(u)_{0}\right)_{1}=0.145$

$$
\begin{aligned}
& \operatorname{locmax}(u)_{1}=\left[\begin{array}{r}
15.000 \\
0.145
\end{array}\right] \\
& \left(\operatorname{locmax}(u)_{1}\right)_{0}=15 \\
& \left(\operatorname{locmax}(u)_{1}\right)_{1}=0.145
\end{aligned}
$$

9. Plot the function and show its three local minimum and two local maximum points:

10. Compare the obtained results using your programs with those obtained using the built-in functions localmin and localmax (which require as input an $n \times 2$ matrix):
a. Build the $n \times 2$ input matrix:

$$
\begin{aligned}
& C 0_{k}:=k \\
& C 1_{k}:=u_{k} \\
& A:=\operatorname{augment}(C 0, C 1)
\end{aligned}
$$

b. Use the built-in functions to obtain the local minimum and maximum points:

$$
\begin{aligned}
& \operatorname{localmin}(A)=\left[\begin{array}{rl}
0 & 0.028 \\
10 & 0.056 \\
30 & 9.313 \cdot 10^{-10}
\end{array}\right] \\
& \operatorname{localmax}(A)=\left[\begin{array}{rl}
5 & 0.145 \\
15 & 0.145
\end{array}\right]
\end{aligned}
$$

The results agree.

Note

Always check the availability of built-in functions before writing new programs.

Related Links

About Programs
Local Maximum and Minimum
Binomial Distribution

