R1
R2
$$\Delta = \frac{\left[P \cdot x^2 \cdot (3 \cdot L - x)\right]}{6EI}$$
Need to get 6 ec
This will give me

R3 $\delta = \frac{Px^2 \cdot (3a - x)}{6EI}$

R4

R5

 $\Delta_{1p} := \mathbf{P} \cdot \mathbf{L}_1$

Need to get 6 equations for Δ where x = L_{.1} to L_{.6}. This will give me Δ ._{p1} to Δ ._{p6}

Need 6 equations for P= R_{.1}, a=L_{.1}, and x=L_{.1} to L_{.6}. This will give me $\delta_{.11}$ to $\delta_{.61}$

Need 5 equations for P = R_{.2}, a = L_{.2} and x=L_{.2} to L_{.6} . This will give me $\delta_{.22}$ to $\delta_{.62}$

Need 4 equations for P = R_{.3}, a = L_{.3} and x=L_{.3} to L_{.6}. This will give me $\delta_{.33}$ to $\delta_{.63}$

Need 3 equations for P = R_{.4}, a = L_{.4} and x=L_{.4} to L_{.6}. This will give me $\delta_{.44}$ to $\delta_{.64}$

Need 2 equations for P = R_{.5} , a = L_{.5} and x=L_{.5} to L_{.6} . This will give me $\delta_{.55}$ to $\delta_{.65}$

Need 1 equations for P = R_{.6}, a = L_{.6} and x= L_{.6} . This will give me $\delta_{.66}$.

$$\delta = \frac{\mathrm{Pa}^2 \cdot (3\mathrm{x} - \mathrm{a})}{6\mathrm{EI}}$$

Need 1 equations for P=R_2, a=L_2 and x=L_1 .This will give me $\delta_{.12}$

Need 2 equations for P=R_3, a=L_3 and x=L_1 to L_2 .This will give me $\delta_{.13}$ to $\delta_{.23}$

Need 3 equations for P=R_4, a=L_4 and x=L_1 to L_3 .This will give me $\delta_{.14}$ to $\delta_{.34}$

Need 4 equations for P=R_5, a=L_5 and x=L_1 to L_4 .This will give me $\delta_{.15}$ to $\delta_{.45}$

Need 5 equations for P=R_6, a=L_6 and x=L_1 to L_5 .This will give me $\delta_{.16}$ to $\delta_{.56}$

$\Delta_{.1p}$ + $\delta_{.11}$ + $\delta_{.12}$ + $\delta_{.13}$ + $\delta_{.14}$ + $\delta_{.15}$ + $\delta_{.16}$ =0	Solve for R _{.1} to R _{.6}
$\Delta_{.2p}$ + $\delta_{.21}$ + $\delta_{.22}$ + $\delta_{.23}$ + $\delta_{.24}$ + $\delta_{.25}$ + $\delta_{.26}$ =0	
$\Delta_{.3p} + \delta_{.31} + \delta_{.32} + \delta_{.33} + \delta_{.34} + \delta_{.35} + \delta_{.36} = 0$	
$\Delta_{.4p} + \delta_{.41} + \delta_{.42} + \delta_{.43} + \delta_{.44} + \delta_{.45} + \delta_{.46} = 0$	
$\Delta_{.5p}$ + $\delta_{.51}$ + $\delta_{.52}$ + $\delta_{.53}$ + $\delta_{.54}$ + $\delta_{.55}$ + $\delta_{.56}$ =0	
$\Delta_{.6p}$ + $\delta_{.61}$ + $\delta_{.62}$ + $\delta_{.63}$ + $\delta_{.64}$ + $\delta_{.65}$ + $\delta_{.66}$ =0	