R1	$\left[P \cdot x^2 \cdot (3 \cdot L - x)\right]$	Need to get 6 equations for Δ where $x = L_{.1}$ to $L_{.6}$.
R2	$\Delta = \frac{\left[P \cdot x^2 \cdot (3 \cdot L - x)\right]}{6EI}$	This will give me Δ_{p1} to Δ_{p6}
R3	$\delta = \frac{Px^2 \cdot (3a - x)}{6EI}$	Need 6 equations for P= R $_{.1}$, a=L $_{.1}$, and x=L $_{.1}$ to L $_{.6}$. This will give me $\delta_{.11}$ to $\delta_{.61}$
R4		
		Need 5 equations for $P = R_{.2}$, $a = L_{.2}$ and $x=L_{.2}$ to
R5		$L_{.6}$. This will give me $\delta_{.22}$ to $\delta_{.62}$
		Need 4 equations for $P = R_{.3}$, $a = L_{.3}$ and $x=L_{.3}$ to
		$L_{.6}$. This will give me $\delta_{.33}$ to $\delta_{.63}$
		Need 3 equations for $P = R_{.4}$, $a = L_{.4}$ and $x=L_{.4}$ to
		$L_{.6}$. This will give me $\delta_{.44}$ to $\delta_{.64}$
		Need 2 equations for $P = R_{.5}$, $a = L_{.5}$ and $x=L_{.5}$ to

$$\delta = \frac{\text{Pa}^2 \cdot (3x - a)}{6\text{EI}}$$
 Need 1 equations for P=R_{.2}, a=L_{.2} and x=L_{.1} .This will give me $\delta_{.12}$

This will give me δ_{66} .

 $L_{.6}$. This will give me $\delta_{.55}$ to $\delta_{.65}$

Need 2 equations for P=R $_{\!.3},$ a=L $_{\!.3}$ and x=L $_{\!.1}$ to L $_{\!.2}$.This will give me $\delta_{.13}$ to $\delta_{.23}$

Need 1 equations for $P = R_{.6}$, $a = L_{.6}$ and $x = L_{.6}$.

Need 3 equations for P=R $_4$, a=L $_4$ and x=L $_1$ to L $_3$.This will give me $\delta_{.14}$ to $\delta_{.34}$

Need 4 equations for P=R.5, a=L.5 and x=L.1 to L.4 .This will give me $\delta_{.15}$ to $\delta_{.45}$

Need 5 equations for P=R $_{.6},$ a=L $_{.6}$ and x=L $_{.1}$ to L $_{.5}$.This will give me $\delta_{.16}$ to $\delta_{.56}$

$$\begin{array}{lll} \Delta_{.1p} + \delta_{.11} + \delta_{.12} + \delta_{.13} + \delta_{.14} + \delta_{.15} + \delta_{.16} = 0 & \text{Solve for R}_{.1} \text{ to R}_{.6} \\ \Delta_{.2p} + \delta_{.21} + \delta_{.22} + \delta_{.23} + \delta_{.24} + \delta_{.25} + \delta_{.26} = 0 \\ \Delta_{.3p} + \delta_{.31} + \delta_{.32} + \delta_{.33} + \delta_{.34} + \delta_{.35} + \delta_{.36} = 0 \\ \Delta_{.4p} + \delta_{.41} + \delta_{.42} + \delta_{.43} + \delta_{.44} + \delta_{.45} + \delta_{.46} = 0 \\ \Delta_{.5p} + \delta_{.51} + \delta_{.52} + \delta_{.53} + \delta_{.54} + \delta_{.55} + \delta_{.56} = 0 \\ \Delta_{.6p} + \delta_{.61} + \delta_{.62} + \delta_{.63} + \delta_{.64} + \delta_{.65} + \delta_{.66} = 0 \end{array}$$

;

;

;

3