$$
\mathbf{P}=\left[\begin{array}{cccc}
-0.4747 i & 0.4747 i & 0.3077 & 0.3077 \\
0.1067 i & -0.1067 i & 0.6846 & 0.6846 \\
0.8524 & 0.8524 & 0.2709 i & -0.2709 i \\
-0.1916 & -0.1916 & 0.6027 i & -0.6027 i
\end{array}\right]
$$

In order to uncouple the system of differential equations, we transform the problem according to (recall that \mathbf{A} is non-symmetric with distinct eigenvalues)

$$
\overline{\mathbf{x}}(t)=\mathbf{P} \mathbf{y}(t)
$$

With respect to $\mathbf{y}(t)$, the solution is

$$
y_{1}(t)=c_{1} e^{1.7958 i t}, y_{2}(t)=c_{2} e^{-1.7958 i t}, y_{3}(t)=c_{3} e^{0.8805 i t}, y_{4}(t)=c_{4} e^{-0.8805 i t}
$$

