I want to solve this equation for $x: \quad \frac{1}{2} \cdot R_{s} \cdot \frac{\ln (x) \cdot x-x-1}{\eta \cdot b \cdot \ln (x)^{2} \cdot x}=0$
$\frac{1}{2} \cdot \mathrm{R}_{\mathrm{s}} \cdot \frac{\ln (\mathrm{x}) \cdot \mathrm{x}-\mathrm{x}-1}{\eta \cdot \mathrm{~b} \cdot \ln (\mathrm{x})^{2} \cdot \mathrm{x}}=0$ solve, $\mathrm{x} \rightarrow$
Hmmmm, this doesn't work. In previous version of MACAD it returned as result in terms of the Lambert function.
$\left.\frac{1}{2} \cdot R_{S} \cdot \frac{\ln (x) \cdot x-x-1}{\eta \cdot b \cdot \ln (x)^{2} \cdot x}=0 \right\rvert\, \begin{aligned} & \text { solve, } x \\ & \text { float, }, \rightarrow\end{aligned}$
And neither does the trick used for the previous version of MCAD. This was the method to get around MACAD returning a result in terms of a Lambert function.

But using the "fully" modifier provides a "result"-
$\frac{1}{2} \cdot R_{s} \cdot \frac{\ln (x) \cdot x-x-1}{\eta \cdot b \cdot \ln (x)^{2} \cdot x}=0$ solve, x, fully $\rightarrow \left\lvert\, \begin{aligned} & \left(\begin{array}{c}3.5911214766686221366 \\ \\ c^{2} 1\end{array}\right) \text { if } R_{s}=0 \wedge _c 1 \in \mathbb{C} \mid \\ & 3.5911214766686221366 \text { if } R_{s} \neq 0\end{aligned}\right.$
and also
$\frac{1}{2} \cdot R_{s} \cdot \frac{\ln (x) \cdot x-x-1}{\eta \cdot b \cdot \ln (x)^{2} \cdot x}=0\left|\begin{array}{l}\text { solve, } x, \text { fully } \\ \text { float, } 6\end{array}\right| \begin{aligned} & \binom{3.59112}{-c 1} \text { if } R_{S}=0 \wedge _c 1 \in \mathbb{C} \\ & 3.59112 \text { if } R_{S} \neq 0\end{aligned}$

But oddly, the following does not produce a result. Why?
$\left.\frac{1}{2} \cdot \mathrm{R}_{\mathrm{S}} \cdot \frac{\ln (\mathrm{x}) \cdot \mathrm{x}-\mathrm{x}-1}{\eta \cdot \mathrm{~b} \cdot \ln (\mathrm{x})^{2} \cdot \mathrm{x}}=0 \right\rvert\, \begin{aligned} & \text { assume, } \mathrm{R}_{\mathrm{S}} \neq 0 \\ & \text { solve, } \mathrm{x}\end{aligned} \rightarrow$

Is there a better way to do this?

