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DirectSearch[Search] - numerically compute minimum or maximum of a function

Calling Sequence

Search(f, constr, options)

Parameters

f - algebraic, procedure; objective function

constr - (optional) list(relation), set(relation); constraints

options - (optional) equation(s) of the form option=value where option is one of  assume, checkexit, checksolution,
evaluationlimit,  initialpoint, maximize, searchpath, step, tolerances, usewarning, or variables; specify options 
for the Search command.

Description

The Search command numerically computes the minimum (maximum) of a real-valued nonlinear multivariate function f with (without) 
constraints constr. The Search is derivative-free direct searching method, i.e. it do not require the objective function f(x1,x2,…,xn) to be 
differentiable and continuous. Generally, a local minimum is returned unless the problem is convex. For global nonlinear optimization of 
multivariable function see GlobalSearch.

The first parameter f is the objective function, which must be an algebraic expression or name of procedure that accepts n floating-point 
parameters representing the problem variables and returns a float.

If the option variables is not specified the problem variables are the indeterminates of type name found in the algebraic expression f. If f is a name 
of procedure the problem variables are the names of procedure formal parameters which can be returned by op(1, eval(f)) command. When the 
option variables is specified the names of procedure formal parameters are ignored and problem variables are the names in variables list.

The second parameter constr is optional and is a set or list of relations (of type `<`, `<=`, `< >` or `=`) involving the problem variables or (and) 
names of procedures. The any procedure in constr must accepts n floating-point parameters representing the problem variables in the same order 
as in the procedure f and returns a float. If objective function f is not a name of procedure and constr includes names of procedures then the option
variables must be specified in order to give the order of problem variables in these procedures explicitly.

Search returns the solution as a list containing the final minimum (or maximum) value, the extremum point and a number of objective function 
evaluations. If the function is a procedure or(and) variables option is provided the extremum point is a Vector with problem variable values, 
otherwise the extremum point is a list of equations varname = value.

Options

The options argument can contain the following equations.

assume = positive, negative, nonpositive, nonnegative -- Assume that all variables are positive, negative, non-positive, or non-negative.

checkexit = posint -- Set the number of exit condition checking before search stoping. The default value is 2. The more is checkexit  the more is 
number of objective function evaluations but also the more are both reliability and accuracy. When checkexit=1 the number of function evaluation
of quadratic and near quadrartic objective functions is very small.

checksolution = nonnegint -- Set the number of randomly distributed new initial points near obtained extremum point for the additional searches, 
starting from the new initial points, in order to verify solution. The default value is 0. The additional search is very time consumed. The number of
objective function evaluations is increased approximately in checksolution times. The more is checksolution the more are both reliability and 
accuracy.

evaluationlimit = posint -- Set the maximum number of objective function evaluations. The default value is 10 000.

initialpoint = Vector(equation), Array(equation), list(equation), set(equation), or Vector(realcons), Array(realcons), list(realcons) --  Use the 
provided initial point, which is a Vector, Array, list or set of equations varname = value (for any form input of the objective function and 
constraints) or a Vector, Array, list of exactly n values (for procedure form input of objective function and constraints or for any form input of the 
objective function and constraints when option variables is specified). Varnames are names of the problem variables. The default value of initial 
point are [0.9,..., 0.9]. If initial point does not satisfy some inequality constraints or a complex value is encountered a new feasible point is 
automatically and randomly searched.

maximize or maximize = truefalse -- Maximize the objective function when equal to true and minimize when equal to false.  The option
'maximize' is equivalent to maximize = true. The default is maximize = false.

searchpath='name' -- If this option is provided name return Matrix of all search points; each column of Matrix correspond to one search point.

step = positive -- Set the initial searching step. The default value is 1.0.

tolerances =[positive, positive], [positive], or positive -- Set the absolute tolerances for the extremum point (tolerances[1]) and minimum (or 
maximum) value (tolerances[2]). The search is stoped when the following exit conditions are met:  ||Xmin-Xold ||<=tolerances[1] and |fmin-fold 

|<=tolerances[2]. The default value is 10
K6

, 10
K6

. When tolerances contains one value this value corresponds to both the extremum point and 
minimum (or maximum) value.

usewarning=truefalse -- Allow or do not allow to use Warnings. The default value is true.

variables=list(name) -- Specify the names of problem variables and its order explicitly.

Notes

The Search solvers are iterative in nature and require an initial point. The quality of the solution can depend greatly on the point chosen, so it is 
recommended that you provide a point using the initialpoint option.

The computation is performed in floating-point. Therefore, all data provided must have type realcons and all returned solutions are floating-point, 
even if the problem is specified with exact values.

When a complex value is encountered during the extremum searching, the Search tries to find a new feasible real point.

The Search command will choose either the hardware floating-point environment or the arbitrary-precision software floating-point environment to
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perform the computations. To maximize efficiency, the solvers attempt to use hardware floats whenever possible. Software floats are used only 
when the environment variable UseHardwareFloats is set to 'false', or when UseHardwareFloats is 'deduced' and Digits is greater than the value of 
evalhf Digits .

By default, Search evaluates the procedure calls using the evalhf command. Procedures that contain any Maple constructs not supported by
evalhf are evaluated using the slower evalf command. For more information on evalhf construct support, see the evalhf and evalhf/procedure help 
pages.

Although the assume option is accepted, general assumptions are not supported.

It is recommended that you try different initial points with each problem to verify that the solution is indeed an extremum.

Method description

The Search optimization algorithm is an original derivative-free direct search algorithm which has the following features. It velocity almost 
matches one of the fastest direct search algorithm, i.e. conjugate direction Powell’s algorithm, and in terms of reliability it outperforms one of the 
most reliable direct search algorithm, Nelder-Meed simplex algorithm. By velocity we mean the number of objective function evaluations.

The Search optimization algorithm was optimized so to minimize the number of function evaluation given high reliability and accuracy. The
Search constructs a set of conjugate directions with orthogonal shift from previous set of conjugate directions. The optimization algorithm is not 
quite greedy, that is, moving on directions that do not contain current extremum point is allowed. If inequality constraints are specified the
Search never computes the function values that do not satisfies the inequality constraints, instead it search feasible point. For equation constraints 
it use a penalty function method.

The method implemented in Search can be referred to as conjugate direction method with orthogonal shift.

Search as well as Powell’s algorithm uses conjugate search directions. Therefore the extremum point of the n-dimensional quadratic function is 
achieved when n conjugate search directions are constructed for the first time.

In constructing of conjugate directions an orthogonal shift from the subset of already constructed conjugate directions is used. The orthogonal 
shift make the algorithm non greedy but greatly increases its reliability.

The algorithm consists of three stages. At stage one the first search direction is defined as being the opposite of quasi-gradient. At stage two the 
first n conjugate directions using the orthogonal shift are constructed. At the third stage the main iteration cycle is carried out. This cycle covers 
the iterative update of the constructed conjugate directions using the orthogonal shift. Below we consider these three stages of minimum search 
for the n-dimensional nonlinear function f x1, x2,..., xn   at n O 1 in more detail.

Stage I. Initial n search directions correspond to coordinate axes: u1 = 1, 0, 0,... , u2 = 0, 1, 0,... , ..., un = 0, 0,..., n . One step is made in each 

direction. The initial step value L is determined by a user. By default it is equal to 1. Function increments for each direction df1,..., dfn  are 

calculated. As the first conjugate direction we select the anti-gradient direction which corresponds to the normalized vector  

u
*

= Normalize Kdf1,...,Kdfn . The first search direction is replaced by the anti-gradient direction u1 = u
*
 and we carry out the one-dimension 

minimum search for this direction. Let  x
min
1

  denote the point of obtained minimum.

Stage II. Initial n search directions at this stage are: u1 = u
*
, u2 = 0, 1, 0,... , ..., un = 0, 0,..., n . The step value L at this stage is the same and 

equal to the initial step value. The orthogonal shift value is Ls = 0.62$L  and is also the same. We shall describe the constructing of the rest of  

nK1 conjugate directions as the following pseudo-code.
for  i  from  2  to  n     # the cycle of creating n-1 conjugate directions 

We make the orthogonal shift from the already available u1, ..., ui KKKK 1  conjugate directions from the current minimum point 

xmin
i KKKK 1

. The orthogonal shift direction can be obtained by means of the Gram-Schmidt orthogonalization process. As a result 

of the  GramSchmidt u
1
, ..., u

 i
 procedure we have u

1
*
, ..., u

 i
*
  orthonormalized vectors. Vectors u

1
*
, ..., u

 i KKKK 1
*

 are not used. The

orthogonal shift direction is defined by vector u i
*
. In this way we have a point corresponding to the orthogonal shift  ymin

i KKKK 1

= xmin
i KKKK 1

CLs$u i
*
 .

for  j  from  1  to  i-1     # repeated movement in i-1 conjugate directions 

     Starting from point y
min
i KKKK 1

 we perform a one-dimensional search for minimum in u
 j
*
 direction.

     If the function value in the obtained point is less than the function value in point ymin
i KKKK 1

, we update point ymin
i KKKK 1

.

end for j.

Direction u i is replaced by a direction connecting points xmin
i KKKK 1

  and  ymin
i KKKK 1

 as follows: ui = Normalize xmin
i KKKK 1

Kymin
i KKKK 1

, if 

f x
min
i KKKK 1

! f y
min
i KKKK 1

, or u
i
= Normalize y

min
i KKKK 1

KKKKx
min
i KKKK 1

 otherwise. This direction will be conjugate to all u
1
, ..., u

i KKKK 1
 

previous conjugate directions. A one-dimensional search for minimum in u i direction is performed starting from point xmin
i KKKK 1

, 

if f xmin
i KKKK 1

! f ymin
i KKKK 1

, or from point ymin
i KKKK 1

 otherwise. The resulting minimum point becomes the current minimum point 

x
min
i

 for the following cycle iteration.

end for i.
If the target function is the n-dimensional quadratic function, its minimum is achieved already at the end of stage II.

Stage III. Initial n search directions at this stage correspond to mutual conjugate directions found at stages II: u1, ..., un. The initial step value  

L = 0.32$$$$ x
min
n
KKKKx

min
n KKKK 1

. If L = 0, then L = tolerances
1
, where tolerances

1
 is a confidence interval for the extremum point. Initial orthogonal shift 

value is Ls = 0.62$L. If Ls = 0, then Ls = L. Let  xmin
1

  denote the current minimum point. We shall describe the main iteration cycle as the following 

pseudo-code.
for  i  from  1  to  infinity      # main iteration cycle

We perform the orthogonal shift from the already available u
n
, ..., u

2
  conjugate directions from the current minimum point 
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xmin
i

. The orthogonal shift direction can be obtained by means of the Gram-Schmidt orthogonalization process. As a result of 

the  GramSchmidt u
n
, ..., u

1
 procedure we have u

n

*
, ..., u

 1
*
  orthonormalized vectors. Vectors u

n

*
, ..., u

 2
*
 are not used. The 

orthogonal shift direction is defined by vector u 1
*
. In this way we have a point corresponding to the orthogonal shift  ymin

i

= xmin
i

CLs$u 1
*
 .

We circularly shift the whole set of conjugate directions u
1
, ..., u

n
 to the left. In other words we re-denote the set of conjugate 

directions as follows: let us denote u2 as u1, u3 as u2,…, un as un KKKK 1 and u1 as un.

for  j  from  1  to  n-1     # repeated movement in n-1 conjugate directions 
     The single-dimensional search for minimum within this cycle shall be performed with a 3$L step.
     This is done because we have deviated from the current minimum.
     Therefore the typical scale of function variation has increased.

     Starting from point ymin
i

 we perform a one-dimensional search for minimum in u j
*
 direction.

     If the function value in the obtained point is less than the function value in point y
min
i

, we update point y
min
i

.

end for j.

Direction u n is replaced by a direction connecting points xmin
i

  and  ymin
i

 as follows: un = Normalize xmin
i

Kymin
i

, if 

f xmin
i

! f ymin
i

, or un = Normalize ymin
i
KKKKxmin

i
 otherwise. This direction will be conjugate to all u1, ..., un KKKK 1 previous 

conjugate directions. A one-dimensional search for minimum in u
 n

 direction with step L is performed starting from point x
min
i

, 

if f xmin
i

! f ymin
i

, or from point ymin
i

 otherwise. The resulting minimum point becomes the current minimum point xmin
i CCCC 1

 

for the following cycle iteration.
The search step and orthogonal shift values are adjusted for the following iteration as follows: 

 L = 0.32$$$$ x
min
i CCCC 1

KKKKx
min
i

C0.091$ L.

If L = 0, then L = tolerances1, where tolerances1 is a confidence interval for the extremum point. The orthogonal shift value is 

Ls = 0.62$L. If Ls = 0, then Ls = L.

We shall now check the following condition of search termination. If the following inequalities are satisfied twice in a row: 

L % tolerances1 and f xmin
i

Kf xmin
i CCCC 1

% tolerances2 , the search is stopped. Here tolerances2 is confidence interval value 

for the extremum value. As a minimum estimate we use f x
min
i CCCC 1

, and as a minimum point we use x
min
i CCCC 1

. Otherwise we 

move on to the next search iteration.

end for i.

A one-dimensional search in case n>1 is carried out as follows. A step is made from the initial point in the search direction. If the step is 
successful, the extremum point is updated, the step is doubled and the search is continued in the same direction until we have the first 
unsuccessful step. Then a single parabolic approximation is performed for the last three points. As a minimum point we take a point where the 
minimum function value is achieved. If the first step is unsuccessful, we change the search direction and repeat this procedure. 

The plot below shows the real path of the following function minimum search f x, y = x
2
Cy

2
K1.5$x$y starting with initial point [x=5, y=3]. An

option checkexit=1 was set because the function is quadratic and its minimum is achieved by the end of stage II. 
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The above plot shows that the quadratic function minimum is achieved by the end of stage II. One iteration of stage III leads to the same minimum
point obtained at stage II.

Optimization with constraints. Non-greedy Search algorithm is well-adapted for search of extremum along the edges of constraints such as 
inequalities. When an unfeasible point is found during the one-dimensional search in some direction, the search step is decreased according to a 
certain rule until a feasible point meeting all constraints is obtained. Therefore the Search algorithm never calculates the function value in the 
unfeasible point. Moreover, if the point meets all the constraints but the function value in this point is not a real value, such point is also 
considered an unfeasible point. 

For equality constraints the Search algorithm uses the penalty function method with a quadratic penalty function.

Examples

with DirectSearch :

When a complex value is encountered, the Search tries to find a new feasible real point

f := x/ x

f := x/ x

Search f

Warning, complex value encountered; trying to find a feasible point

4.224890044617 10
-8

, 1.78496958891038702 10
-15 , 144

but with constraints given explicitly the number of function evaluations is less

Search f, 0 % x

4.224890044617 10
-8

, 1.78496958891038702 10
-15 , 19

To increase reliability and accuracy one can increase checkexit or (and) tolerances

f := xCy Cx
2
Cy

2
; constr := 0 % xCy

f := xCy Cx
2
Cy

2

constr := 0 % xCy

Search f, constr ; Search f, constr, checkexit = 10 ; Search f, constr, tolerances = 10
K14

;

sol := Search f, constr, checkexit = 10, tolerances = 10
K14

0.0000481852771596812, x =K0.00490360808372191162, y = 0.00490360808373084805 , 124

8.32874378229308 10
-9

, x =K0.0000645319447339574692, y = 0.0000645319447339574692 , 377

8.32874378218459 10
-9

, x =K0.0000645319447335371782, y = 0.0000645319447335371782 , 390
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sol := 1.85460307534371 10
-66

, x = 9.62964972193617927 10
-34

, y =K9.62964972193617927 10
-34

, 714

To increase reliability and accuracy one can also repeat search from the last extremum point estimation

sol := Search f, constr, initialpoint = sol2

sol := 1.77025887161799 10
-96

, x = 9.40813177952453019 10
-49

, y =K9.40813177952453019 10
-49

, 29

To verify the solution and increase reliability and accuracy one can also increase checksolution, but this option is very time consumed

Search f, constr, checksolution = 10

1.48095176804396 10
-7

, x = 0.0000891402175732043027, y =K0.0000891402175557266113 , 4262

Minimize Rosenbrock function for different initial points and initial steps and show search pathes

f := x, y /100 x
2
Ky

2
C 1Kx

2

f := x, y /100 x
2
Ky

2
C 1Kx

2

Search f, initialpoint = K1.9, 2 , step = 1, searchpath = 'Path1' ; Search f, initialpoint = 1.5, 2.5 , step = 0.1, searchpath = 'Path2'

2.85062813591897 10
-19

,
0.99999999973711794

0.99999999952070694
, 133

2.341755563227 10
-23

,
0.99999999999524702

0.99999999999058498
, 104

with plots : with LinearAlgebra : p0 := contourplot f x, y , x =K2 ..2, y =K2 ..3, color = magenta, contours = 50 :
p1 := plot Transpose Path1 , style = point, symbolsize = 8, color = red : p11 := plot Transpose Path1 , color = red : p2 :=

plot Transpose Path2 , style = point, symbolsize = 8, color = black : p22 := plot Transpose Path2 , color = black : display p0, p1,
p11, p2, p22

x

K2 K1 0 1 2

y

K2

K1

1

2

3

Increase reliability and accuracy by increasing checkexit

Search f, initialpoint = K1.2, 1 , checkexit = 10

0.,
1.

1.
, 253

When objective function f is a name of procedure the names in constraints must coincide with the procedure formal parameter names

f := x, y /
1

x K1
Cln x K1 CΓ xCy

2
; constr := 0 ! x K1, 0 ! xCy

2

f := x, y /
1

x K1
Cln x K1 CΓ xCy

2

constr := 0 ! x K1, 0 ! xCy
2

Search f, constr, initialpoint = 4, 4
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2.43979073793139,
2.25726463557748992

K8.83149941533719970 10
-10

, 66

When objective function f is an expression the initial point must contain the equations varname = value 

Search f x, y , constr, initialpoint = x = 4, y = 4

2.43979073793139, x = 2.25726463557748992, y =K8.83149941533719970 10
-10

, 66

or one must provides option variables with the names of problem variables and its order

Search f x, y , constr, initialpoint = 4, 4 , variables = x, y

2.43979073793139,
2.25726463557748992

K8.83149941533719970 10
-10

, 66

The constraints can include names of procedures that must accepts n floating-point parameters representing the problem variables

c1 := x, y / x K1; c2 := x, y /xCy
2

c1 := x, y / x K1

c2 := x, y /xCy
2

Search f, 0 ! c1, 0 ! c2 , initialpoint = 4, 4

2.43979073793139,
2.25726463557748992

K8.83149941533719970 10
-10

, 66

The constraits can include both names of procedures and expressions involving the problem variables

c1 := x, y /x; c2 := x, y /y
2

c1 := x, y /x

c2 := x, y /y
2

Search f, 0 ! c1 K1, 0 ! xCc2 , initialpoint = 4, 4

2.43979073793139,
2.25726463557748992

K8.83149941533719970 10
-10

, 66

See Also

 DirectSearch, GlobalSearch, Optimization, NLPSolve


