
Creating Simple Windchill

Admin Tools Using

Info*Engine

Dennis G. Kapatos

Cory Skradski

J.D. Felkins (FELCO Solutions, Inc.)

Date: June 6

2

 The Engineering Services Contract (ESC) at Kennedy Space Center

provides services to NASA for the design and development of flight and

ground systems in support of manned space flight. The ESC process

support team provides for efficient optimized design and development

processes through development, configuration, and implementation of

software tools, training, documentation and standards. The team supports

over 200 engineers and design specialists using Windchill, Pro-E, NX,

AutoCAD, and other design and analysis tools.

ESC Design Development Process Support Team

3

Agenda

 Common Business Needs

 The Info*Engine and JSP Solution

 Process Overview

 Creating Info* Engine Tasks

 Creating JSP Pages

 Resources and Help

4

 Getting Information Out of Windchill
– Generate reports

– Export Windchill object information automatically to a third

party application

– Query Windchill for information and return it in a webpage

– Create a simple webpage for non-technical users to

perform specific actions

 Creating, Updating, or Performing Actions on

Many Objects At Once
– Duplicate or rename objects

– Update object contents, attributes, lifecycle states, etc.

 Performing Administrative Tasks
– Checkin or undo checkout all users’ objects at once

– Correct or update Windchill Object links

– Change teams, domain polices, etc….

Common Business Needs

5

The Info*Engine and JSP Solution

Function of Each Tool

 Info*Engine
– Perform Windchill actions

 JSP Pages
– Provide a web-based UI

6

The Info*Engine and JSP Solution

Use Cases

 How can they be used?
– Frequently or occasionally

– Automated or manual

 Who can use them?
– Windchill administrators

– Specific groups

– All users

7

Demonstration

KSC Developed Info*Engine Example

 Renaming many objects

8

1. Write Info*Engine Task (XML)

2. Add XML files to Windchill

codebase

3. Write JSP page (HTML and

JavaScript)

4. Add JSP files to Windchill

codebase

Process Overview

Steps to Implement Info*Engine and JSP

9

 Info*Engine - Provides a flexible, standard base foundation to automate

specific tasks and transfers information to other third party applications.

Info* Engine takes advantage of Service-Oriented Architecture (SOA) with

the support for SOAP (Simple Object Access Protocol) and WSDL (Web

Service Definition Language). Info*Engine tasks are in written in XML and

do not require experience with Java.

 Info*Engine is the glue or underlying foundation of Windchill

Creating Info*Engine Tasks

What is Info*Engine?

10

 Info*Engine is installed in every Windchill installation and is free to use

within the PTC products.

 No additional licenses are required unless using Info*Engine to connect

with third party applications.

 PTC supports Info*Engine

 Does not require a skilled programmer or Java experience

 Easy to implement

Creating Info*Engine Tasks

Additional Information

11

Creating Info*Engine Tasks

Info*Engine Architecture

Info*Engine Server

VDB- Virtual Database

Task Processor

Webject Processor

Adapter

Windchill Adapter

JDBC Adapter

JNDI Adapter

holds temporary results sets

processes tasks

processes webjects

(There are many more Adapters.)

talks to Windchill

talks to JDBC data source
*Requires Info*Engine user licenses

talks to any LDAP

12

Creating Info*Engine Tasks

 Info*Engine tasks are text-based xml files. They can control the retrieval

and manipulation of data within the Info*Engine environment. Instead of

developing a Java application or a JSP, a task can perform many of the

same operations as Java applications can.

 A task includes Webjects to perform Windchill operations

Understanding Tasks and Webjects

Webject

13

 The Info*Task compiler parses Info*Engine tasks and produces Java

classes. This improves the performance of executing tasks by eliminating

the need to parse and interpret a task each time it is called. It also

facilitates embedding tasks in standalone Java applications and JSP

pages.

 The task compiler produces the executable Java classes in three basic

steps:

1. Parses task sources and generates Java code that implements the task.

2. Calls a Java compiler to produce an executable class from the generated Java

source.

3. Calls a class loader to load and instantiate the classes produced by the Java compiler.

Creating Info*Engine Tasks

Understanding Tasks and Webjects

14

Creating Info*Engine Tasks

 Webjects are the basic form to do most significant actions in Info*Engine.

They are custom tag libs. Webjects supported by the Windchill adapter

accept parameters that specify database user credentials and query

criteria.

Structure of a Webject

A. Webject Name B. Webject Adapter Type

C. Instance

D. User Name and Password

E. Type

F. Where

G. Attribute

H. group_out

15

Creating Info*Engine Tasks

 Webjects are the basic form to do most significant actions in Info*Engine.

They are custom tag libs. Webjects supported by the Windchill adapter

accept parameters that specify database user credentials and query

criteria.

Webject Adapters

M
o

s
t

C
o

m
m

o
n

T
y
p

e
s

Type Webjects Description

ACT Action Performs actions on data

OBJ Object or Query Query the system

GRP Group Manipulate Virtual Data Base (VDB)

DSP Display
Use data in VDB to display in HTML. This cannot be used in a

standalone task but can be used in a JSP.

IMG IMG Use data in VDB to create a JPEG image

MGT Management
Perform special activates such as throwing exceptions or getting

properties

WES Web Event Service Subscribe to and manipulate messaging topics

MSG Messaging Subscribe to and manipulate message queues

ADM Administrative Perform I*E admin tasks, such as reloading cached properties

16

Creating Info*Engine Tasks

 The output of an Info*Engine task is in the form of XML. When running a

task from the browser, the URL must include the host name and

application URL prefix specified where I*E was installed. It also includes

the /servlet/IE/tasks prefix, which directs the servlet to the task processor.

And specifying the path where the xml task is located.

Running a Info*Engine Task

Host Name Prefix Servlet Prefix XML Path

http://ptc-training.ptc.com /Windchill /serverlet/IE/tasks /Ext/test/queryObjects.xml

17

Demonstration

Demonstration of Info*Engine Task

 Update a objects attribute

 Modify Revisions of many CAD Document

 Updating Links between WTParts to CAD Documents.

18

 Java Server Pages (JSP) is a core technology of J2EE (the Java 2

Platform, Enterprise Edition) and solutions based upon EJB (Enterprise

Java Beans).

 Info*Engine supports the development of enterprise custom Java

applications and provides a JSP processor as an extension of the

Info*Engine servlet engine. The JSP processor dynamically translates JSP

pages into servlets.

 Usually, a JSP page is an HTML page with some additional JSP tags and

some embedded Java code. However, inclusion of JSP tags or embedded

Java is not mandatory, so a page containing only HTML is a legitimate

JSP page.

 JSP pages that interact with Info*Engine usually contain a simple set of

JSP tags and a set of custom Info*Engine tags that define the Webjects

that are then executed when the page is accessed.

Creating JSP Pages

What is a JSP?

19

Creating JSP Pages

 JSP pages can include HTML, Java Classes, Java Scripts, Scriptlets, and

Info*Engine code (Webjects).

 JSP pages are resided on a server

 A very simple example of a JSP page is shown below.

What is a JSP?

HTML>

<BODY>

<%

 //This is a scriptlet.

 System.out.println("Evaluating date now");

 java.util.Date date = new java.util.Date();

%>

Hello! The time is now <%= date %>

</BODY>

</HTML>

20

 When Info*Engine is installed, the installer specifies an Info*Engine

installation directory which determines where JSP pages must be stored.

All Info*Engine JSP pages must reside under the codebase directory

where Info*Engine is installed.

 All JSP pages are saved on the Windchill server at the below location.

 <Windchill>\codebase\infoengine\jsp\

Creating JSP Pages

Location of a Windchill JSP

21

 The URL to execute a JSP page includes the host name and Windchill

application URL with “infoengine/jsp/” and the path to the JSP page.

Example of executing a JSP page URL is below.

http://train.ptc.com/Windchill/infoengine/jsp/examples/My_Simple.jsp

When the file is executed, the Web Server passes the URL to the JSP

processor.

Creating JSP Pages

Executing a Windchill JSP

22

 There are many IDE

that help develop JSP

pages. Some

examples are Coffer

Cup, Eclipse, and Net

Beans or a developer

could use a good text

editor like Notepad++.

 To the right is a simple

JSP page with two

Webjects.

Creating JSP Pages

Creating a Simple JSP Webjects

HTML Section

23

Demonstration

Demonstration of Running a JSP

 Running the My_Simple.jsp

24

Creating JSP Pages

 The previous demonstration displays a table output of the Webjects results,

but the table display is not what you want. The below images displays a

HTML table to control the display.

Using HTML and Webjects in a JSP

JSP File

Webjects are

located at the top

of the page

Page Results

25

Demonstration

Demonstration of HTML and Info*Engine in a JSP

 Displaying information using HTML elements

 Showing PTC JSP examples

26

 Adapter Guide:

WCAdapterGuide.pdf

 User Guide:

IEUsersGuide.pdf

 Java Adapter Development Kit:

IEJADKGuide.pdf

 Java Naming Directory Interface

Adapter Guide:

JNDIAdapterGuide.pdf

 Felco Solutions Website:

http://www.felcosolutions.com

Resources and Help

