
Windchill REST Services
User’s Guide

1.0

Copyright © 2018 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
"PTC") are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes. Information described herein is
furnished for general information only, is subject to change without notice, and should not be construed as a
warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the
piracy of PTC software products, and we pursue (both civilly and criminally) those who do so using all legal
means available, including public and private surveillance resources. As part of these efforts, PTC uses data
monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our software.
This data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection and
transmission of such data (including to the United States), cease using the illegal version, and contact PTC to
obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Contents

Windchill REST Services Overview...4
REST...5
OData..5
Windchill REST Services...5

Installing Windchill REST Services ...7
Installation Prerequisites ...8
Installation Process...8

Windchill REST Services Framework Capabilities..9
Overview..10
Support for OData...10
PTC Annotations ..13
Domain Configuration ...14
Processing HTTP Requests for OData URLs ..26
Processing Batch Requests...31

Windchill REST Services Domain Capabilities ...33
PTC Domains...34
Examples for Performing Basic REST Operations ...46
Customizing Domains ...56
Examples for Customizing Domains ...63

Index..70

3

1
Windchill REST Services Overview
REST ...5
OData ..5
Windchill REST Services ...5

This section explains the basics of REST, OData, and Windchill REST Services.

4 Windchill REST Services User’s Guide

REST
Representational state transfer or REST is an architectural pattern for web
services. In this architecture, business objects on the server are represented as web
resources, which are acted upon by clients using HTTP verbs such as, GET,
POST, PATCH, and DELETE.
For example, consider a RESTful web service for parts that exposes a web
resource /Parts. To get a list of parts, the clients of this web service send an
HTTP GET request to /Parts. To create a part, the clients send a POST request
to /Parts and specify a payload of the attribute values needed to create the part.

OData
OData (Open Data Protocol) is an ISO/IEC approved, OASIS standard for
building and consuming RESTful web services. OData enables exchange of data
across web clients using HTTP messages.
The OData protocol mandates that a compliant web service must:
• declare an Entity Data Model (EDM) at a well-known URL.
• provide a uniform way to form URLs for entities and entity sets defined in the

EDM.
• enable clients to send HTTP requests POST, GET, PATCH, and DELETE on

entity and entity set URLs for creating, reading, updating and deleting entities.
• support request headers and query parameters for client interaction as defined

in the standard.

Please refer to the following resources for more information on OData, version
4.0:
• OData.org—Documentation on basics of OData.
• OData Protocol—Documentation of the protocol.
• Common Schema Definition Language (CSDL)—Documentation of the

format used to document the EDM of a service.
• URL Conventions—Documentation of how to form URLs for entities and

entity sets of an OData service.

Windchill REST Services
Windchill REST Services is a Windchill module that enables developers to
configure OData services on Windchill data. This module is installed on top of the
supported Windchill versions. The module comprises of a framework and a set of
PTC domains. The domains are configured using the functionality available in the
framework.

Windchill REST Services Overview 5

www.odata.org
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

Framework
The framework is designed to read a set of configuration files which is used to set
up domains. Domains are OData services and entities. After the framework is set
up, it uses the configuration files to build the EDM of the domain. The
configuration files are used to show the entities and entity sets available in a
domain. While setting up the entity configurations, you can map entities to
Windchill persistables.
The framework processes the HTTP requests POST, GET, PATCH and DELETE
made to entities. It creates, reads, updates and deletes Windchill persistables
mapped to entities.
The framework allows you to configure your own domains. You can also extend
the domains provided by PTC.

PTC Domains
Windchill REST Services include a set of domain configurations for specific
functional areas of Windchill. The following domain configurations are available:
• PTC Product Management Domain
• PTC Document Management Domain
• PTC Data Administration Domain
• PTC Principal Management Domain
• PTC Common Domain

6 Windchill REST Services User’s Guide

2
Installing Windchill REST Services
Installation Prerequisites..8
Installation Process ...8

7

Installation Prerequisites
Windchill REST Services require the supported version of Windchill to be
installed on your system. Windchill REST Services 1.0 is supported on Windchill
11.0 M020 and Windchill 11.0 M030.

Installation Process
From Windchill 11.1 F000 onward, Windchill REST Services is a mandatory
component of PTC Solution Installer (PSI).
Windchill REST Services 1.0 will also be bundled with future CPS of Windchill
11.0 M020 and Windchill 11.0 M030. Windchill REST Services will be
automatically installed when you install the CPS.

When installing the CPS, select Install Critical Patch Set option to include
Windchill REST Services in the installation.
If Windchill REST Services 1.0 is already installed, and you want to update it to
the next version, perform the following steps:
1. Copy the new Windchill REST Services CD to your staging area.
2. Launch the CPS installer.
3. Select Install Re-released Components option.
Windchill REST Services are updated to the new version.

8 Windchill REST Services User’s Guide

3
Windchill REST Services
Framework Capabilities

Overview ..10
Support for OData ...10
PTC Annotations ...13
Domain Configuration ..14
Processing HTTP Requests for OData URLs...26
Processing Batch Requests ...31

9

Overview
Windchill REST Services framework enables configuration of RESTful services
based on the OData protocol. The services allow clients to create, read, update and
delete entities that are Windchill persistables. The framework provides default
processing logic for HTTP requests made to OData URLs of the domains, entities,
entity sets, functions and actions.
The framework provides hooks in the default processing logic for customizers to
introduce their own custom code. Using these hooks, customizers can override or
enhance the default processing available in the framework.
In this release, the complete OData protocol has not been implemented by the
framework. The OData protocol supported by the framework are explained in this
section.
The framework allows customizers to configure domains, which are OData
services. The EDM of a domain defines entities, relationships, entity sets,
functions and actions.
The framework supports Windchill capabilities that apply to a class of persistable
entities. For example, persistables that implement Workable can all be checked
out. Customizers can inherit Windchill behaviors for entities that are being
configured.

Support for OData
The framework is designed to support OData Protocol V4. All aspects of OData
standard are not currently supported by Windchill REST Services 1.0. PTC
intends to support minimum OData V4 compliance in subsequent releases of
Windchill REST Services.
The key features of OData that are supported in the framework are discussed in
the subsequent sections.

OData Services as Domains
The framework enables you to set up domains which contain entities that are
mapped to Windchill types. Domains are equivalent to OData services.
Similar to an OData web service, a domain can be accessed at the Domain Root
URL, which is of the form https://<Windchill server>/<Windchill
App Context>/servlet/odata/[<Domain Version>}/<Domain
Identifier>/

10 Windchill REST Services User’s Guide

where,
• <Windchill App Context> is Windchill in a standard installation
• <Domain Version> is the version of the domain API and can be v1, v2,

and so on. <Domain Version> is optional in the URL and must be
specified only if the client needs a specific version of the domain.
○ If <Domain Version> is not specified in the URL, the framework

checks if the domain version is specified in the Accept header.
○ If <Domain Version> is not specified in the URL or in the Accept

header, then the default configured version is used by the framework.
• <Domain Identifier> is the identifier for the domain. For example, the

identifier for Product Management domain is ProdMgmt.
The URL is called the Domain Root, which is equivalent to OData service root
URL. A GET request to this URL returns the list of entity sets that are available in
a domain.
For example:
• The Domain Root URL of the Product Management domain for version 1 is:

https://windchill.ptc.com/Windchill/servlet/odata/v1/ProdMgmt/

• The Domain Root URL of the Product Management domain for the default
version is:
https://windchill.ptc.com/Windchill/servlet/odata/ProdMgmt/

Entity Data Model of a Domain
An Entity Data Model (EDM) is the specification of entities that are available for
a domain. Each entity is further defined by its structural and navigation properties.
Structural properties have values. Navigation properties are references to other
entities in the domain.
The EDM of a domain is defined in Common Schema Definition Language
(CSDL). CSDL defines the entity model as an XML representation. The EDM of
a domain can be accessed by adding $metadata at the end of the Domain Root
URL. For example, the URL for EDM of the Product Management domain is:
https://windchill.ptc.com/Windchill/servlet/odata/ProdMgmt/$metadata

Clients can send an HTTP GET request to this URL to get the EDM of the
Product Management domain. The EDM enables clients to get more information
about the entities, relationships, functions, and actions provided by the domain.

OData Primitives
OData primitives are the data types supported by the OData standard.

Windchill REST Services Framework Capabilities 11

The following table lists the OData primitives that are supported by the
framework. It also shows the recommended mapping of OData primitives to
Windchill and Java types.

Framework Type OData Type Windchill/Java Type
SByte Edm.SByte byte, java.lang.Byte
String Edm.String char, java.lang.Character
Int16 Edm.Int16 short, java.lang.Short
Int32 Edm.Int32 int, java.lang.Integer
Int64 Edm.Int64 long, java.lang.Long
Single Edm.Single float, java.lang.Float
Double Edm.Double double, java.lang.Double
Boolean Edm.Boolean Boolean, java.lang.

Boolean
String Edm.String String
DateTimeOffset Edm.DateTimeOffset Timestamp

OData Query Parameters
Windchill REST Services supports the following query options from the OData
standard:
• $filter—Query criteria to filter the results. OData calls support filter

expressions for a broad range of primitives. The framework supports the
following expressions:
○ Expressions that use String, Int16, Int32, Int64, Single and Double types
○ Expressions that use comparison operators EQ, NE, GT, LT, GE, LE
○ Expressions that use logical operators AND, OR
○ Expressions that use unary operator NOT
○ Expressions that use the methods startswith, endswith and

contains

12 Windchill REST Services User’s Guide

Note
○ Support for types such as DateTimeOffset and additional operators

will be provided in a future release of Windchill REST Services.
○ The $filter expressions are only supported for entity level collections.

The expressions are not supported for filtering navigations and expansions.

• $select—Comma separated list of entity properties that must be returned as
a part of the response. For example, in the URL you can list the Document
attributes such as, Name and CheckoutState, to display the name of the
document and its checkout status in the response.

• $top—Returns a set of entities from the top, that is, the first N entities, in a
collection. When $top is not specified, by default, a maximum of 25 entities
in a collection are returned in the first set of a response. When $top is
specified, the specified number of entities are returned. The maximum limit
for $top is 200. If the number of entities returned for a response is more than
the $top value, then the response includes the URL to the next set.

• $skip—Skips a set of entities from the top in a collection, and displays the
next set of entities, N+1 entity onward.

PTC Annotations
The OData protocol supports marking elements in EDM with custom annotations
that provide additional information to the clients. The Windchill REST Services
framework uses two custom annotations to specify operations supported on an
entity set and to specify properties of an entity that are read-only. The annotations
are:
• PTC.Operations
• PTC.ReadOnly

PTC.Operations
This annotation is used to mark entities with a list of supported operations. In the
example below, the annotation is applied to the Part entity in the Product
Management domain:
<EntityType Name=”Part>
<Key>

<PropertyRef Name=”ID”/>
</Key>
<Property Name=”ID” Type=”EDM.String”>
…
<Annotation Term="PTC.Operations">
<String>READ, CREATE, UPDATE, DELETE</String>

Windchill REST Services Framework Capabilities 13

</Annotation>
</EntityType>

The annotation indicates that the framework supports reading, creating, updating,
and deleting parts.

PTC.ReadOnly
This annotation is used to mark entity properties that are read-only. In the example
below, an annotation from the EDM of the Part Management domain is shown:
<EntityType Name=”Part”>
<Key>

<PropertyRef Name=”ID”/>
</Key>
<Property Name=”ID” Type=”EDM.String”>

…
<Property Name=”State” Type=”PTC.EnumType”>

<Annotation Term="PTC.ReadOnly"/>
</Property>
…
</EntityType>

The annotation indicates that the property State on the Part entity is read-only.

Domain Configuration
This section describes how to configure a domain in Windchill REST Services.
The folder structure and files that are required to configure a domain are explained
in detail.

Configuration Paths and Files
Windchill REST Services reads domain and entity configurations from two
locations. It consolidates the configuration files from both these locations to
generate a single set of domains and its entities that can be used by clients. The
two locations are:
• PTC configuration path—<Windchill>/codebase/rest/ptc/

domain/, where <Windchill> is the Windchill installation directory.
○ This path is reserved for domain configurations that are provided by PTC.

The domains and entities are installed at this path.
○ Do not modify the files located at this path.
○ You must not create any new configuration files at this location as future

updates from PTC will delete and recreate files in this path.
• Custom configuration path—<Windchill>/codebase/rest/custom/

domain/, where <Windchill> is the Windchill installation directory.
○ This path is provided for custom configuration files.

14 Windchill REST Services User’s Guide

○ By creating custom configuration files at this location, customizers can
extend PTC provided domains, or create new custom domains.

Configuring a Domain
To configure a domain create the following folder structure along with the
required JSON files at the custom configuration path:
<Windchill>/codebase/rest/custom/domain

• <Domain Folder>

○ <Version Folder>

◆ complexType

◆ entity

◆ import.json

◆ import.js

• <Domain JSON File>

While configuring a domain, create the <Domain Folder>. The name of folder
is the name of the domain identifier. The domain identifier of the domain is the
name specified by customizers in the id property in the <Domain JSON File>.
The <Version Folder> is the name for the version of the domain API. There
can be multiple version folders under the domain folders, each representing the
domain configuration for that version. These folders are named v1, v2, v3 and so
on. The <Version Folder> contains subfolders that contain the configuration
files for entities, complex types, and configuration for domain imports.
The folder complexType contains configuration files for OData complex types.
If your domain contains complex types, this folder will contain a .json file for
each complex type defined in the domain. In OData, complex types are structures
of primitive types, and are used to combine related properties. For example, the
PTC domain defines a complex type called EnumType that combines two string
properties, Value and Display. The EnumType complex type is used to
represent a Windchill enumeration type. Value represents the property value
persisted in the database. Display represents the localized property value used
for display.
The entity folder contains two configuration files, a .json and a .js file, for
each entity in the domain. The .json file specifies the properties of the entity
being configured and the .js file contains its hook implementations.
The import.json file specifies the other domains that are imported into the
domain being configured. Importing other domains in a domain is an OData
capability that allows EDM of the imported domains to be used in the referencing

Windchill REST Services Framework Capabilities 15

domain. For example, PTC Common domain, which is a domain provided by PTC
in Windchill REST Services, is imported by all other domains. It contains
common constructs, such as, common complex types EnumType.
The import.js file contains implementations for unbound functions and
actions. This file is needed only if unbound actions and functions are defined in
the domain.
The <Domain JSON File> is a JSON file with the same name as the domain
identifier of the domain, and has .json specified as extension in its file name. For
example, for the Product Management domain, this file is called
ProdMgmt.json. The <Domain JSON File> contains the metadata
configuration for the domain. This file contains properties such as, domain name,
domain identifier, and so on.

Domain JSON File
The <Domain JSON File> is a JSON file with the same name as the domain
identifier, and has .json specified as extension in its file name. For example, for
domain identifier ProdMgmt, the <Domain JSON File> file name is
ProdMgmt.json. The file contains configuration metadata for the domain. The
configuration metadata is specified in a JSON object with the following
properties:
• name—Name of the domain. For example, Product Management.
• id—An unique identifier of the domain in camel case. For example,

ProdMgmt for Product Management domain.
• description—Description of the domain.
• namespace—An OData identifier that appears in the domain EDM as a

namespace qualifier for a domain. For example, PTC.ProdMgmt.
• containerName—An OData identifier that appears in the domain EDM as a

container for the entity sets of the domain.
• defaultVersion—Default version of the domain API that is returned to the

clients if they do not request a specific version of the domain API. The values
for this property are specified as 1, 2, 3 and so on in the JSON file. The
framework interprets the value of 1 as v1. It searches for the <Domain
Folder>/v1 folder for entity configurations that must be used for
processing requests. Similarly, a value of 2 is interpreted as v2, and so on.

For example, the ProdMgmt.json file from the Product Management domain is
as shown below:
{

"name":"Product Management Domain",

"id":"ProdMgmt",

"description":"PTC Product Management Domain",

"namespace":"PTC.ProdMgmt",

16 Windchill REST Services User’s Guide

"containerName":"Windchill",

"defaultVersion":"1",

}

Importing JSON File
The import.json file is used to specify the domains that are imported by the
domain being configured. The imported domains are specified in the imports
property, which is a collection of JSON objects. Each object is of the form:
{name=”<domain name>”, version=”<domain version>”}

where,
• <domain name> is the name of the domain being imported
• <domain version> is the version of the domain being imported
An example of import.json for the Product Management domain. The file
shows that the domains PTC, DataAdmin, DocMgmt and PrincipalMgmt with
version 1 are being imported into the Product Management domain:
{

"imports":[

{name="PTC", version="1"},

{name="DataAdmin", version="1"},

{name="DocMgmt", version="1"},

{name="PrincipalMgmt", version="1"},

],

"functions":[],

"actions":[],

}

Versioning of the Domain API
Windchill REST Services supports versioning of the APIs provided by a domain.
The domain configurations are defined in version specific folders, such as, v1,
v2, v3, and so on.
Clients can request a specific version of a domain resource in the URL. For
example, the URL to request version 1 of the Product Management domain is:
https://windchill.ptc.com/Windchill/servlet/odata/v1/ProdMgmt/

Alternately, the version can be specified in the Accept header of the HTTP
request. For example, to request version 1 of the Product Management domain use
the URL:
https://windchill.ptc.com/Windchill/servlet/odata/ ProdMgmt/

Specify the version in the Accept header as:
application/vnd.ptc.api+json;version=3

Windchill REST Services Framework Capabilities 17

You must specify the version only if clients need a specific version for backward
compatibility. If not, it is recommended that version must not be specified in the
URL or Accept header. The server must send the default version of the API.

Configuring Unbound Functions
The framework supports configuring unbound functions in a domain. In OData
protocol an unbound function is considered to be an operation that does not
change the state of a service. The framework treats an unbound function as a read-
only operation available in a domain. After the unbound function is configured, it
is invoked by a GET request to the URL:
<Domain Root>/<Unbound Function Name>(<param1>=<value1>, <param2>=<value2>)

To configure an unbound function, perform the following steps:
1. Specify the properties of the function: name, input parameters, and return type.
2. Define the implementation logic for the function.
The properties of an unbound function are specified in the import.json file of
the domain. In the file, under functions, specify the following properties:
• name—Name of the unbound function. The function is invoked from the URL

with this name.
• importName—Name of the import operation.
• description—Description of the function.
• includeInServiceDocument—This is applicable for unbound functions.

Defines if the function can be requested as a service in the container. The
default value is set to false.

• parameters—A collection of parameters to be passed to the function. You can
specify multiple parameters separated by commas. Specify the following
parameters for a function:
○ name—Name of the parameter.
○ type—Type of the parameter. The parameter can be a primitive or an entity

type. If the parameter is an entity type, the value is specified in the URL to
the entity.

○ isNullable—Specifies if a property can be set as null. The default value is
set to false.

○ isCollection—Specifies if the property represents a collection. The default
value is set to false.

• returnType—Information about what the function returns. Specify the
following properties for the return types:
○ type—Type of object that is returned. The return type can be a primitive or

an entity type.

18 Windchill REST Services User’s Guide

○ isNullable—Specifies if a property can be set as null. The default value is
set to false.

○ isCollection—Specifies if the property represents a collection of objects or
entities. The default value is set to false.

For example, consider a configuration file import.json for an unbound
function GetEndItems. The function returns a collection of Part entities, and
takes no input parameters:
{

"imports:[

{name="PTC", version="1"},

{name="DataAdmin", version="1"},

],

"functions":[{

"name": "GetEndItems",

"description": "Gets a list of end items parts",

"parameters": [],

"returnType": {

"type": "Part",

"isCollection": true,

}

}]

"actions":[]

}

An unbound function is implemented in the import.js file. The function is
implemented as below:
• The function name starts with function_, followed by the name of the

function that is defined in the import.json file.
• The function takes two input parameters:

○ data—The parameter is of type FunctionProcessorData, which is a
data structure, that contains information about the processing logic of the
framework. This information can be used while implementing the
function.

○ params—The parameter is of type Map<String, Parameter> and it
contains the hashmap of input parameter names and values passed by the
client to the function. The name of the input parameter is the key in the
map and the parameter value passed by the client is the value for the key.

Configuring Unbound Actions
The framework supports configuring unbound actions in a domain similar to
unbound functions. An unbound action is considered as an operation that can
change the state of a service. Due to this, the framework supports calling an action

Windchill REST Services Framework Capabilities 19

with a POST request. After the unbound action is configured, it is invoked by a
POST request to the URL <Domain Root>/<Domain
Namespace>.<Unbound Action Name>. The body of the POST request
contains the parameters that will be passed to the action.
An unbound action is configured in the import.json file in the same way as an
unbound function except the following differences:
• An unbound action is specified in the actions collection property in the

import.json file.
• While specifying the action in the import.json file, the property

includeInServiceDocument is not applicable to actions. This is
because actions cannot be included in the service document available at the
domain root.

• The action names defined in the import.json file start with action_.

Configuring Entities in a Domain
Entities available in domains are configured by creating the following two files in
the entity folder:
• <Entity JSON>

• <Entity JS>

The name of the <Entity JSON> file is the plural of the entity name, and has
.json specified as extension in its file name. For example, Parts.json
contains the configuration of the entity Part. Similarly, <Entity JS> file is the
plural of the entity name, and has .js specified as extension in its file name.
The .json file specifies the structural properties, navigation properties,
inheritance of Windchill functionality, bound functions, and bound actions of an
entity. The .js file contains JavaScript implementation of the bound actions and
functions of an entity, and also contains implementation of hooks provided by
customizers to override or enhance framework processing logic for the entity.

Basic Information for Configuring Entities
To configure an entity, the framework requires information on the following entity
properties:
• name—Name of the entity. For example, Part.
• collectionName—Name of the entity collection. For example, Parts.
• type—Type of entity. Set the value as wcType for entities that are backed by

Windchill types. For other entities specify the value as basic.
• wcType—This property must be set if type property is specified as wcType.

The entity type is backed by Windchill types. For example,
wt.part.WTPart.

20 Windchill REST Services User’s Guide

• description—Description of the entity type.
• operations—List of CRUD operations that are permitted on the entity. For

example, CREATE, READ, UPDATE, and DELETE are permitted by default.

Configuring Structural Properties
Structural properties in OData are the attributes that define a business object or
entity. Windchill REST Services reads the properties of attributes, which is a
JSON array, from the <Entity JSON> file. Each entry in the attribute defines
one structural property for the entity being configured. The structural property
comprises of the following parameters:
• name—Name of the structural property.
• internalName—Internal name of the Windchill property that corresponds to

the structural property being configured.
• type—Framework data type for the structural property being configured.

Framework data type is same as the OData primitive type without the Edm
prefix. For example, the framework data type corresponding to OData
Edm.Double is Double.

Configuring Navigation Properties
Navigation properties in OData are the reference attributes of an entity that points
to another entity. By default, navigation properties are not available on an entity
representation when it is accessed by an OData client. The OData client must
expand these properties explicitly if they want the associated entities to be
available when the entity is being accessed. Windchill REST Services reads the
navigation property, which is a JSON array, from the <Entity JSON> file. Each
entry in the navigations section defines one navigation property for the entity
being configured. The navigation property consists of the following parameters:
• name—Name of the navigation property.
• target—OData entity set which is the target of this navigation. The entity

being configured is the source entity. The entity set to which the navigation is
being configured is the target entity.

• type—OData type of the target entity set.
• isCollection—Boolean which checks if the navigation to the target entity

results in an entity set.
• containsTarget—Boolean which checks if the navigation property is a

containment navigation property. A containment navigation property in OData
enables the read URL of a navigation property to be implicitly treated as an
entity set.

Windchill REST Services Framework Capabilities 21

Configuring Bound Functions
The framework supports configuring functions that are bound to entities. A
function bound to an entity is invoked on an instance of the entity. In OData
protocol, an unbound function is considered to be an operation that does not
change the state of an entity instance on which it is invoked. After the bound
function is configured, it is invoked by a GET request to the URL:
<Domain Root>/<Entity Set>(<key>)/<Bound Function Name>(<param1>=<value1>, <param2>=<value2>)

A bound function is configured in the same way as an unbound function except
the following differences:
• A bound function is specified in the functions collection property in the

<Entity JSON> file.
• While specifying the function in the <Entity JSON> file, the property

includeInServiceDocument is not applicable to bound functions. This
is because bound functions cannot be included in the service document
available at the domain root.

• The first parameter in the function specification is called the binding
parameter. The parameter must be of the same type as the entity that is bound
to the function.

• The function names defined in the import.js file start with function_.

Configuring Bound Actions
The framework supports configuring actions that are bound to entities. An action
bound to an entity is invoked on an instance of the entity. OData protocol
considers a bound action to be an operation that changes the state of an entity
instance on which it is invoked. After the bound action is configured, it is invoked
by a POST request to the URL:
<Domain Root>/<Entity Set>(<key>)/<Domain Namespace>.<Bound Action Name>

The body of the POST request contains the parameters that must be passed to the
action.
A bound action is configured in the same way as an unbound action except the
following differences:
• A bound action is specified in the actions collection property in the

<Entity JSON> file.
• While specifying the action in the <Entity JSON> file, the property

includeInServiceDocument is not applicable to bound actions. This is
because bound actions cannot be included in the service document available at
the domain root.

22 Windchill REST Services User’s Guide

• The first parameter in the action specification is called the binding parameter.
The parameter must be of the same type as the entity that is bound to the
action.

• The action names defined in the import.js start with action_.

Inheriting Windchill Capabilities
Windchill provides a capability called Workable for its business objects. Windchill
persistables which implement this capability have certain attributes such as
CheckoutState. Further, persistables which implement Workable can be
checked out and checked in.
The framework supports the Workable capability of Windchill and allows entities
being configured to inherit this capability. An entity that inherits Workable
automatically inherits the structural property CheckoutState without having
to explicitly configure it in the <Entity JSON> file. Also, the entity inheriting
Workable automatically gets bound actions such as, CheckIn, CheckOut, and
UndoCheckOut without having to explicitly define them.
Workable is one of the capabilities supported by the framework. The complete list
of Windchill capabilities supported by the framework is shown in the following
table:
Windchill Capability Inheriting Entity Behavior
versioned Entity properties are automatically

enabled:
• VersionID—Version identifier of

the entity
• Revision—Revision of the entity
• Version—Version of the entity
• Latest—Checks if the entity is the

latest version
Entity navigation properties are
automatically enabled:
• Versions—Collection of all entity

versions
• Revisions—Collection of latest

iteration of each entity revision
Bound actions are automatically
enabled:
• Revise—Revises the entity when

called
contextManaged Entity navigation properties are

automatically enabled:

Windchill REST Services Framework Capabilities 23

Windchill Capability Inheriting Entity Behavior
• Context—Supports navigation to a

Container
lifecycleManaged Entity properties are automatically

enabled:
• LifeCycleTemplateName
• State

viewManageable Entity properties are automatically
enabled:
• View

workable Bound actions are automatically
enabled:
• CheckOut—Checks out the entity
• CheckIn—Checks in the entity
• UndoCheckOut—Undo an entity

checkout
• IsCheckoutAllowed—Checks if

checkout is allowed on an entity
representable Entity navigation properties are

automatically enabled:
• Representations—Supports

navigation to a viewable
representation from the entity

24 Windchill REST Services User’s Guide

Windchill Capability Inheriting Entity Behavior
organizationOwned Entity navigation properties are

automatically enabled:
• Organization—Supports navigation

to the organization principal of the
entity

foldered Entity properties are automatically
enabled:
• FolderName—Folder where the

entity is located
• CabinetName—The cabinet where

the folder lives
• FolderLocation—The path to the

folder
Entity navigation properties are
automatically enabled:
• Folder—Supports navigation to the

folder of the entity

For an entity to inherit one of these capabilities, edit the <Entity JSON> file
and add the following entry in the collection for inherits property:
{“name”: “<Windchill Capability>”}

An example showing an entity inheriting versioned and workable
capabilities is shown below:
{

…
“inherits”: [

{

“name”: “versioned”
}, {

“name”: “workable”
}

]

…
}

Excluding Subtypes of Enabled Windchill Types
When an entity is configured with a Windchill type, any subtypes of the Windchill
type are also included in the output of the entity queries. The framework enables
you to exclude Windchill subtypes from being mapped to entities. To do this, add
the following entry in the <Entity JSON> file:

Windchill REST Services Framework Capabilities 25

"wcExcludedTypes":[“<Windchill Subtype 1>”, “<Windchill Subtype 2>”, …]

For example, consider a WTDocument with subtypes Agenda and Plan. If you
want to exclude these subtypes when the Document entity is created, add the
following entry in the JSON file:
“wcExcludedTypes”: [“org.rnd.Agenda”, “org.rnd.Plan”]

Disabling Entity Set for an Entity in the Service
Document
When an entity is configured, by default the entity set of that entity is available in
the service document of the domain. Customizers can choose to remove the entity
set from the service document. To do this, set the property
includeInServiceDocument to false in the <Entity JSON> file.
When you remove an entity set from the service document, the entity set is hidden
from the clients that use the service document.

Processing HTTP Requests for OData
URLs
The framework provides the default processing for HTTP requests made by
clients to OData URLs.
OData URLs for EDM such as, https://windchill.ptc.com/
Windchill/servlet/odata/ProdMgmt/$metadata, are processed by
Domain Provider, Entity Provider, and Entity Delegate classes. The Domain
Provider and Entity Provider classes read and process the configuration files. The
Entity Delegate classes create the metadata response for entities in the domain.
OData URLs for entities and entity sets are processed by entity processor classes.
The framework provides two types of processor classes,
BasicEntityProcessor and PersistableEntityProcessor.
The BasicEntityProcessor class is used to process requests for entities and
entity sets that are not mapped to Windchill persistables.
The PersistableEntityProcessor class is used to process requests made
to entities and entity sets that are mapped to Windchill persistables.
A GET request to the URL for an entity set is processed by the
PersistableEntityProcessor class. For example, consider a GET
request to the URL https://windchill.ptc.com/Windchill/
servlet/odata/ProdMgmt/Parts, which is processed by the
PersistableEntityProcessor. While processing a GET request, the
default processing logic of the framework reads the persistable objects of the

26 Windchill REST Services User’s Guide

mapped type, in this case WTParts from Windchill. Each object is converted into
relevant OData entity. The framework then returns the entity set in the format
requested by the client.
A GET request to the URL for an entity is also processed by the
PersistableEntityProcessor class. For example, consider a GET
request to the URL https://windchill.ptc.com/Windchill/
servlet/odata/ProdMgmt/Parts(‘OR:wt.part.WTPart:87676’),
which is processed by the PersistableEntityProcessor. In this case, the
default processing in the framework reads the specific persistable object identified
by the object reference in the URL, converts it to an entity, and then returns the
entity representation in the requested format.
While processing a POST request on an entity set URL, the framework takes the
entity representation provided in the POST body in the specified format, converts
it into a Windchill persistable, and saves it to Windchill.
PATCH request to an entity URL reads the persistable, changes it, and then sends
the updated representation in the response based on the requested format.
DELETE request works similar to the PATCH request.
The framework enables customizers to override or enhance the default processing.
When processing entity requests the framework searches for JavaScript
implementation of hooks in the <Entity JS> file of the entity being processed.
If hooks are found, then the framework executes the code they contain. Depending
on the value returned from the hooks, the framework either continues its default
processing or abandons it.
The hooks available in the framework are explained below:

Object readEntityData(EntityProcessorData)

The framework calls this hook while reading the backing persistent object for the
given id of an entity. The id for the entity can be obtained from
EntityProcessorData. If the hook implementation sets continue processing
the flag in EntityProcessorData, the framework continues with the default
processing. Otherwise, the framework abandons the default processing.

Collection readEntitySetData(EntityProcessorData)

The framework calls this hook while reading the backing persistent objects for the
given type of persistent objects. It returns a collection of persistent objects. The
given type can be obtained from EntityProcessorData. If the hook
implementation sets continue processing the flag in EntityProcessorData,
the framework continues with the default processing. Otherwise, the framework
abandons the default processing.

Windchill REST Services Framework Capabilities 27

Map<Object, Collection>
getRelatedEntityCollection(NavigationProcessorData)

The framework calls this hook while navigating from source to target entities. It
returns a map, the keys of which are the source objects, and the value of each key
is a collection of target persistables obtained by navigating from the source. This
hook must be implemented for any navigation specified in the JSON entity
configuration file. If the hook implementation sets continue processing the flag in
EntityProcessorData, the framework continues with the default
processing. Otherwise, the framework abandons the default processing

Entity createEntityData(Entity, EntityProcessorData)

The framework calls this hook while creating a persistent object for the given
entity that is passed in the POST request. This hook is the main hook that calls
other hooks such as, operationPreProcess, storeNewObject, and
operationPostProcess at various stages of the create process. If the hook
implementation sets continue processing the flag in EntityProcessorData,
the framework continues with the default processing. Otherwise, the framework
abandons the default processing.

Entity updateEntityData(Entity, EntityProcessorData)

The framework calls this hook while updating a persistent object for the given
entity that is passed in the PATCH request. This hook is the main hook that calls
other hooks such as, operationPreProcess, storeNewObject, and
operationPostProcess at various stages of the create process. If the hook
implementation sets continue processing the flag in EntityProcessorData,
the framework continues with the default processing. Otherwise, the framework
abandons the default processing.

void deleteEntityData(Entity, EntityProcessorData)

The framework calls this hook when deleting the persistent object specified by the
entity on the DELETE request. If the hook implementation sets continue
processing the flag in EntityProcessorData, the framework continues with
the default processing. Otherwise, the framework abandons the default processing.

Object readMediaEntity(Entity)

The framework calls this hook while reading the given media entity. The hook
must be implemented to return an object that is the binary media for the given
entity. If the hook implementation sets continue processing the flag in
EntityProcessorData, the framework continues with the default
processing. Otherwise, the framework abandons the default processing.

28 Windchill REST Services User’s Guide

Entity createMediaEntity(Entity, EntityProcessorData,
ContentType)

The framework calls this hook while creating a media entity for the entity and
contentType is passed to the POST request. If the hook implementation sets
continue processing the flag in EntityProcessorData, the framework
continues with the default processing. Otherwise, the framework abandons the
default processing.

Entity updateMediaEntity(Entity, EntityProcessorData,
ContentType)

The framework calls this hook while updating a media entity for the entity and
contentType is passed to the PUT request. If the hook implementation sets
continue processing the flag in EntityProcessorData, the framework
continues with the default processing. Otherwise, the framework abandons the
default processing.

Map<Entity, Object> toObjects(EntityCollection,
EntityProcessorData)

The framework calls this hook when it is converting entities to objects. For
example, during create, update, and delete requests. This hook must be
implemented to return a map. The keys of the map are entities, and the value for
each key is the persistable object that corresponds to the key entity. You can use
this hook to process additional entity attributes that need special processing. If the
hook implementation sets continue processing the flag in
EntityProcessorData, the framework continues with the default
processing. Otherwise, the framework abandons the default processing.

Map<Object, Entity> toEntities(Collection,
EntityProcessorData)

The framework calls this hook when it is converting persistable objects to entities.
For example, during read requests. This hook must be implemented to return a
map. The keys of the map are persistable objects, and the value for each key is the
entity that corresponds to the key object. You can use this hook to process
additional object attributes that need special processing, and are not converted by
the framework. If the hook implementation sets continue processing the flag in
EntityProcessorData, the framework continues with the default
processing. Otherwise, the framework abandons the default processing.

boolean isValidEntityKey(String, EntityProcessorData)

The framework calls this hook to check if the Windchill object reference string,
which is used as a primary key for entities in the ID attribute is valid. Customizers
should implement this hook if they are changing the entity key or need to do
additional validations on the Windchill object reference. If the hook

Windchill REST Services Framework Capabilities 29

implementation sets continue processing the flag in EntityProcessorData,
the framework continues with the default processing. Otherwise, the framework
abandons the default processing.

boolean isValidNavigation(String name, Object sourceObj,
String id, EntityProcessorData processorData)

The framework calls this hook when navigating from source to target entities. The
implementation of this hook should check if the navigation from a source object to
a target is a valid. The implementation must return true if the navigation is valid,
return false if the navigation is invalid, and return null if the navigation is not
defined in the JSON file. This hook must be implemented for any navigation
specified in the JSON entity configuration file. If the hook implementation sets
continue processing the flag in EntityProcessorData, the framework
continues with the default processing. Otherwise, the framework abandons the
default processing.

Object operationPreProcess(Object object, Entity entity,
EntityProcessorData processorData,
PersistableEntityProcessor)

The framework calls this hook from the createEntityData and
updateEntityData hooks. This hook is called before the start of the
transaction to create or update the persistable object. The implementation of the
hook creates and returns a persistable object from the new or existing entity,
which is passed as an argument to this hook. This method can be overridden to
introduce special processing of the object before it is created or updated

Object storeNewObject(Object, Entity,
EntityProcessorData)

The framework calls this hook from the createEntityData hook. This hook
is called after the start of the transaction to create the persistable object but before
the actual store operation for persistence. The implementation of the hook creates
and returns a persistable object from the new entity, which is passed as an
argument to this hook. This method can be overridden to introduce special
processing of the object before it is created.

Object saveObject(Object entityObject, Entity entity,
EntityProcessorData processorData)

The framework calls this hook from the updateEntityData hook. This hook
is called after the start of the transaction to update the persistable object but before
the actual save operation for persistence. The implementation of the hook creates
and returns a persistable object from the existing entity, which is passed as an
argument to this hook. This method can be overridden to introduce special
processing of the object before it is updated.

30 Windchill REST Services User’s Guide

void operationPostProcess(Object object, Entity entity,
EntityProcessorData processorData,
PersistableEntityProcessor)

The framework calls this hook from the createEntityData and
updateEntityData hooks. This hook is called after the store or save
operations for persistence but before the end of the transaction commit for
creating or updating the persistable object. The implementation of the hook can be
used to introduce special processing of the object after it has been created or
updated but before the transaction is committed. For example, this hook can be
overridden to add associations on the persistable.

Collection<AttributeData>
processAdditionalAttributes(Entity entity, Object
entityObject, EntityProcessorData processorData,
PersistableEntityProcessor)

The framework calls this hook while processing additional attributes on an entity.
These additional attributes are not defined in the JSON file explicitly but can exist
on entities as a result of inheritance. The hook must be implemented to determine
the additional attributes, create and return a collection of AttributeData
objects.

Processing Batch Requests
Using batch requests, you can group multiple operations in a single HTTP request.
Use the $batch attribute to request the data.
For example, run the batch request as below:
https://windchill.ptc.com/Windchill/servlet/odata/<domain>/$batch

In a batch request, you can specify a series of individual batch requests or create
change sets. Batch requests are represented as multipart MIME message. Specify
the batch requests and change sets in relevant Content-Type header as distinct
MIME parts. The requests are processed sequentially.
Individual batch requests support the following types of requests:
• Getting data
• Modifying data
• Invoking an action
• Invoking a function
If any of the individual batch requests from the series fail, the other batch requests
are processed.

Windchill REST Services Framework Capabilities 31

Change set is an atomic unit inside which you can define a set of requests. In a
change set, you define series of individual batch requests. However, if one or
more individual batch requests from the series fail, the entire change set fails. In a
change set, if batch requests had modified any data before encountering a failed
request, then all the data changes are rolled back. A change set has been
implemented as a Windchill transaction.
Change set supports the following types of requests:
• Modifying data
• Invoking an action
Change sets do not support the GET operation.
After execution, batch requests return the appropriate HTTP response codes. The
HTTP response body lists the response in the same order as the individual
requests in the HTTP request body. However, the requests inside a change set may
not be executed in the order specified in the change set.

32 Windchill REST Services User’s Guide

4
Windchill REST Services Domain

Capabilities
PTC Domains ...34
Examples for Performing Basic REST Operations..46
Customizing Domains..56
Examples for Customizing Domains..63

33

PTC Domains
This section explains the domains provided by PTC in Windchill REST Services.
When you install Windchill REST Services, some domains defined by PTC are
also installed. These domains enable you to work with Windchill types in the
REST architecture. You can also create new custom domains, or extend an
existing domain to enable more entities.
A domain in Windchill REST Services represents a RESTful web service, which
follows the OData standard. A domain describes its Entity Data Model (EDM) by
defining the entity sets, relationships, entity types, and operations.

Overview
This section explains the domains provided by PTC in Windchill REST Services.
The following domains are provided as a part of Windchill REST Services:
• ProdMgmt—PTC Product Management Domain exposes entities representing

parts and BOMs –Windchill objects that are most frequently used while
developing products. See the section PTC Product Management Domain on
page 34, for more information on the domain.

• DocMgmt—PTC Document Management Domain provides entities that enable
users to manage Windchill documents (WTDocuments). See the section PTC
Document Management Domain on page 36, for more information on the
domain.

• DataAdmin—PTC Data Administration Domain provides entities that enable
users to manage data containers such as, organizations, products, libraries and
projects in Windchill. See the section PTC Data Administration Domain on
page 37, for more information on the domain.

• PrincipalMgmt—PTC Principal Management Domain provides entities that
work with Windchill groups and users. See the section PTC Principal
Management Domain on page 38, for more information on the domain.

• PTC—PTC Common Domain provides some utility entity types that are
commonly used. See the section PTC Common Domain on page 39, for more
information on the domain.

PTC Product Management Domain
The Product Management domain provides access to the product management
capabilities of Windchill. It provides OData entities that represent business objects
like Part and BOM. The following table shows the Windchill items that are
enabled with OData entities in the Product Management domain. The Product
Management domain references the PTC Document Management domain to
provide navigations to reference and describe documents.

34 Windchill REST Services User’s Guide

The following table lists the significant OData entities available in the Product
Management domain. To see all the available OData entities in the Product
Management domain, please refer to its EDM available at the metadata URL.

Items OData Entities Description
Part Part,

ElectricalPart
The Part entity
represents a part version.
In Windchill, the
WTPart and
WTPartMaster classes
are used to work with part
versions.
ElectricalPart is
derived from Part and
represents the soft type
that is available in
Windchill.

Bill of material Bom, PartUse,
PartOccurrence

BOM entity represents the
part structure expanded to
a certain number of
levels.
PartUse is an OData
entity that represents the
association between
parent and child parts. It
has attributes such as,
quantity, unit, line
number, and so on. These
attributes of entity models
are also available in the
WTPartUsageLink
class.
The PartOccurrence
entity represents the
reference designator
when a component is
used multiple times in a
BOM.

Part that resides in a
Windchill folder

PartContent This entity is derived
from FolderContent
entity that is available in
the DataAdmin domain.
The entity represents a
part residing in a folder.

Windchill REST Services Domain Capabilities 35

PTC Document Management Domain
The Document Management domain provides access to the document
management capabilities of Windchill. It enables you to create documents. You
can also upload and download content from documents.
The following table lists the significant OData entities available in the Document
Management domain. To see all the available OData entities in the Document
Management domain, please refer to its EDM available at the metadata URL.

Items OData Entities Description
Business document Document The Document entity

represents a document
version. In Windchill, the
WTDocument and
WTDocumentMaster
classes are used to work
with document versions.

Content file associated to
a business document

ContentItem The ContentItem
entity provides a generic
view of the content that is
associated to a business
document. More
specialized entities
derived from
ContentItem are
URLData,
ApplicationData,
ExternalStoredDa
ta.

A URL that is stored in a
business document

URLData The URLData entity
provides a specialized
view of the URL
ContentItem that is
stored in a document

36 Windchill REST Services User’s Guide

Items OData Entities Description
Content stored in an
external location

ExternalStoredDa
ta

The
ExternalStoredDa
ta entity provides a
specialized view of an
externally stored
ContentItem, which is
stored in a document

Content stored in
Windchill application

ApplicationData The
ApplicationData
entity provides a
specialized view of the
content stored by the
Windchill application.

PTC Data Administration Domain
The Data Administration domain provides access to data administration
capabilities of Windchill. The domain includes entities that represent Windchill
containers such as, site, organization, product, libraries, project containers, and so
on. It also includes entities that represent the folder hierarchy in these containers.
This domain contains an entity set called Containers that enables clients to
read the containers available in their Windchill system.

Note
Containers entity set is read-only, and does not support update, delete and
create operations.

The following table lists the significant OData entities available in the Data
Administration domain. To see all the available OData entities in the Data
Administration domain, please refer to its EDM available at the metadata URL.

Items OData Entities Description
Windchill container Container The Container entity

represents a Windchill
container. This entity
exposes only those
attributes that are
common across all types
of containers.

Site container Site The Site entity
represents the site
container and is derived

Windchill REST Services Domain Capabilities 37

Items OData Entities Description
from the Container
entity.

Organization container OrganizationCon
tainer

The
OrganizationCon
tainer entity represents
the organization container
and is derived from the
Container entity.

Product container ProductContainer The
ProductContainer
entity represents the
product container and is
derived from the
Container entity.

Library container LibraryContainer The
LibraryContainer
entity represents the
library container.

Project container ProjectContainer The
ProjectContainer
entity represents the
project container.

Generic item that resides
in the Windchill folder

FolderContent The FolderContent
entity represents the
generic view of an item
that resides in a folder.
Other domain entities can
derive from this entity to
create more specific
views. For example, in
the Product Management
domain, the
PartContent entities
derive from
FolderContent.

PTC Principal Management Domain
The Principal Management domain provides read access to the information related
to principals in Windchill. The Windchill principals can be users, groups, or
organization principals.

38 Windchill REST Services User’s Guide

The following table lists the significant OData entities available in the Principal
Management domain. To see all the available OData entities in the Principal
Management domain, please refer to its EDM available at the metadata URL.

Items OData Entities Description
Windchill principal Principal The Principal entity

represents the generic
view of a Windchill
principal.

Windchill user User The User entity
represents a principal who
is the user. In Windchill,
the WTUser class is used
to work with users.

Windchill group Group The Group entity
represents a principal who
is the group. In Windchill,
the WTGroup class is
used to work with groups.

Windchill organization
principal

Organization The Organization
entity represents a
Windchill group that is an
organization principal. In
Windchill, the
WTOrganization
class is used to work with
organization principals.

PTC Common Domain
PTC Common domain provides access to entities that are common to multiple
domains. It is recommended to store common entities in this domain. The domain
also provides complex types and functions that are used in other domains.
The following table lists the significant OData entities available in the PTC
Common domain. To see all the available OData entities in the PTC Common
domain, please refer to its EDM available at the metadata URL.

Windchill REST Services Domain Capabilities 39

Items OData Entities Description
Windchill representation Representation The Representation

entity is a lightweight
representation of CAD
data that is stored in
Windchill, and is
associated with parts and
documents.

In addition to the entities, this domain also contains the following complex types:
• QuantityOfMeasureType—Used to represent Real number with unit

data type in Windchill.
• Hyperlink—Used to represent a URL data type in Windchill.
• Icon—Used to represent an icon in Windchill.
• EnumType—Used to represent attributes that are enumerated types in

Windchill or attributes that have type constraints defined.
This domain also provides a function GetEnumTypeConstraint. This
function is used to query the valid values for a property, which are represented as
EnumType. These values are used for implementing validations on client side.

Accessing Domains
This section describes how clients work with domains. The information in this
section applies to all the domains installed with Windchill REST Services.
When Windchill REST Services is installed, the servlet WcRestServlet is
enabled in the Windchill installation. All requests to the domain resources, which
are enabled by Windchill REST Services, pass through this servlet. The root URL
to access this servlet is https://<Windchill server>/Windchill/
servlet/odata/. When an HTTP GET request is sent to this URL, the servlet
responds back with a list of domains available on the server.
From the servlet response, clients can select a domain, and send a GET request to
the root URL of the domain to get a list of available entity sets. Clients can send
GET, POST, PUT, and DELETE requests to the URLs of the entity sets.
The following URLs are used to interact with Windchill REST Services:
• REST Root URL—https://<Windchill server>/Windchill/

servlet/odata/

A GET request to this URL lists the domains available on the Windchill
server. Clients can use this URL to get the list of services that are available on
a Windchill server.

For example, the output for the following request is as shown below:

40 Windchill REST Services User’s Guide

Request URL:

GET https://windchill.ptc.com/Windchill/servlet/odata

Output:

[

{

"path": "https://windchill.ptc.com/Windchill/servlet/odata/v1/PrincipalMgmt",

"name": "PTC Principal Management Domain",

"description": "PTC Principal Management Domain",

"id": "PrincipalMgmt"

},

{

"path": "https://windchill.ptc.com/Windchill/servlet/odata/v1/DataAdmin",

"name": "PTC Data Administration Domain",

"description": "PTC Data Administration domain",

"id": "DataAdmin"

},

{

"path": "https://windchill.ptc.com/Windchill/servlet/odata/v1/ProdMgmt",

"name": "PTC Product Management Domain",

"description": "PTC Product Management Domain",

"id": "ProdMgmt"

},

{

"path": "https://windchill.ptc.com/Windchill/servlet/odata/v1/DocMgmt",

"name": "PTC Document Management Domain",

"description": "PTC Document Management Domain",

"id": "DocMgmt"

},

{

"path": "https://windchill.ptc.com/Windchill/servlet/odata/v1/PTC",

"name": "PTC Common Domain",

"description": "PTC Common Domain",

"id": "PTC"

}

]

• Domain Root URL—https://<Windchill server>/Windchill/
servlet/odata/<Domain>

A GET request to this URL returns the information about the entity sets
available in the domain. This request is same as that defined in OData protocol
for the Service Root URL. The <Domain> in the URL refers to the domain
identifier id, which is returned by the REST Root URL in the list of domains.

Windchill REST Services Domain Capabilities 41

For example, the output for a GET request to the Domain Root URL of the
ProdMgmt domain is as shown below. The output shows that the ProdMgmt
domain contains entity sets such as, Parts, Containers and so on.

Request URL:

GET https://windchill.ptc.com/Windchill/servlet/odata/ProdMgmt/

Output:

{

"@odata.context": "$metadata",

"value": [

{

"name": "Parts",

"url": "Parts"

},

{

"name": "Containers",

"url": "Containers"

},

{

"name": "Representations",

"url": "Representations"

},

{

"name": "Documents",

"url": "Documents"

}

]

}

• Domain Metadata URL—https://<Windchill server>/
Windchill/servlet/odata/<Domain>/$metadata

A GET request to this URL returns the entity data model for the domain
defined in the Common Schema Definition Language (CSDL). In the OData
protocol, this is called the Metadata Document URL.

For example, the output from a GET request to this URL for the
PrincipalMgmt domain is as shown below. This URL is used to get
information about the entity sets, entities, and entity relations provided by the
service. For more information on entity sets, entities, and entity relations,
please refer to the OData protocol documentation.

Request URL:

GET https://windchill.ptc.com/Windchill/servlet/odata/PrincipalMgmt/$metadata

42 Windchill REST Services User’s Guide

http://www.odata.org/documentation

Output:

<?xml version='1.0' encoding='UTF-8'?>

<edmx:Edmx Version="4.0" xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx">

<edmx:Reference Uri="https://windchill.ptc.com/Windchill/servlet/odata/v1/PTC">

<edmx:Include Namespace="PTC"/>

</edmx:Reference>

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="PTC.PrincipalMgmt">

<EntityType Name="Group" BaseType="PTC.PrincipalMgmt.Principal">

<Property Name="Description" Type="Edm.String">

<Annotation Term="PTC.ReadOnly"/>

</Property>

<Property Name="DomainName" Type="Edm.String">

<Annotation Term="PTC.ReadOnly"/>

</Property>

<Annotation Term="Core.Description">

<String>Groups</String>

</Annotation>

<Annotation Term="PTC.Operations">

<String>READ</String>

</Annotation>

</EntityType>

<EntityType Name="User" BaseType="PTC.PrincipalMgmt.Principal">

<Property Name="LastName" Type="Edm.String"/>

<Property Name="FullName" Type="Edm.String"/>

<Property Name="EMail" Type="Edm.String"/>

<Property Name="UserDomain" Type="Edm.String"/>

<Annotation Term="Core.Description">

<String>Users</String>

</Annotation>

<Annotation Term="PTC.Operations">

<String>READ</String>

</Annotation>

</EntityType>

<ComplexType Name="OrgId">

<Property Name="CodingSystem" Type="Edm.String"/>

<Property Name="UniqueIdentifier" Type="Edm.String"/>

<Annotation Term="Core.Description">

<String>Organization identifier</String>

</Annotation>

</ComplexType>

<EntityContainer Name="Windchill">

<EntitySet Name="Representations" EntityType="PTC.Representation"/>

Windchill REST Services Domain Capabilities 43

<EntitySet Name="Groups" EntityType="PTC.PrincipalMgmt.Group"/>

<EntitySet Name="Users" EntityType="PTC.PrincipalMgmt.User"/>

<EntitySet Name="Principals" EntityType="PTC.PrincipalMgmt.Principal"/>

</EntityContainer>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

Entity Set URL—https://<Windchill server>/Windchill/
servlet/odata/<Domain>/<EntitySetURL>

An Entity Set URL references an entity set, which is available in the response
of a domain, to a GET request by the Domain Root URL.

In the Domain Root URL example above, you can see that there is an entity
set named Parts that also has a url for Parts. The Entity Set URL is
https://windchill.ptc.com/Windchill/servlet/odata/
ProdMgmt/Parts. A GET request to this URL returns a set of entities as
shown below:

Request URL:

GET https://windchill.ptc.com/Windchill/servlet/odata/ProdMgmt/Parts

Output:

{

"@odata.context": "https://windchill.ptc.com/Windchill/servlet/odata/v1/ProdMgmt/

$metadata#Parts",

"value": [

{

"ID": "OR:wt.part.WTPart:62850",

"Name": "LOWER_SUPPORT",

"Number": "GC000019",

"EndItem": false,

"TypeIcon": {

"Path": "https://windchill.ptc.com/Windchill/wtcore/images/part.gif",

"Tooltip": "Part"

},

"Identity": "GC000019, LOWER_SUPPORT, A (Design)",

"GeneralStatus": null,

"ShareStatus": null,

"ChangeStatus": null,

"Superseded": null,

"AssemblyMode": {

"Value": "separable",

"Display": "Separable"

44 Windchill REST Services User’s Guide

},

"DefaultUnit": "ea",

"DefaultTraceCode": "0",

"Source": "make",

"ConfigurableModule": "standard",

"GatheringPart": false,

"PhantomManufacturingPart": false,

"OwningDesignCenter": null,

"OwningBusinessUnit": null,

"view": "Design",

"CheckoutState": "Checked in",

"Comments": null,

"State": {

"Value": "INWORK",

"Display": "In Work"

},

"LifeCycleTemplateName": "Basic",

"VersionID": "VR:wt.part.WTPart:62849",

"Revision": "A",

"Version": "A.1 (Design)",

"Latest": true,

"CreatedOn": "2017-04-08T03:47:23Z",

"LastModified": "2017-04-08T03:47:23Z"

}

]

}

Entity Set URL is the main endpoint to perform create, read, update, and
delete operations using the HTTP requests POST, GET, PATCH and DELETE
respectively.

Let us continue using the above example. To create a part the client sends a POST
request to the URL https://windchill.ptc.com/Windchill/
servlet/odata/ProdMgmt/Parts. The body of the request contains a set
of property names and values specified in a format that is acceptable to the server.
Some of the acceptable formats are JSON, XML, and so on.
To update the part, clients send a PATCH request on the same URL. The body of
the PATCH request contains a set of property names and values that will be
modified.
To delete a part, clients send a DELETE request to the URL https://
windchill.ptc.com/Windchill/servlet/odata/ProdMgmt/
Parts(‘<key>’). In this URL, key is the unique identifier for the part in the
entity set. The object reference string in Windchill is treated as the key. To delete

Windchill REST Services Domain Capabilities 45

a part with object reference ‘OR:wt.part.WTPart:668899’, the DELETE
request is https://windchill.ptc.com/Windchill/servlet/
odata/ProdMgmt/Parts(‘OR:wt.part.WTPart:668899’).
Clients usually interact with the RESTAPIs using the Entity Set URL. All the
entities in a domain may not have entity sets. Therefore, some entities in the
domain are available using navigations. For example, a specific PartUse entity
in the ProdMgmt domain is accessed by https://windchill.ptc.com/
Windchill/servlet/odata/ProdMgmt/Parts(<part_key>)/
Uses(<uses_key>). Here <part_key> and <uses_key> are object
reference strings that uniquely identify a part and a usage link.

Examples for Performing Basic REST
Operations

Fetching a NONCE Token from a Service
This example shows you how to fetch a NONCE token from a service. Use the
following GET request.

URI
GET /Windchill/servlet/odata/ HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: Fetch

The NONCE token is returned in the response header CSRF_NONCE. The value
of CSRF_NONCE returned from this request must be passed as request header in
all the examples provided in this User’s Guide to create (POST requests), modify
(PUT and PATCH requests), or delete (DELETE request) entities.

Creating a Part
This example shows you how to create a part. Use the following POST URI with
the request body.

URI
POST /Windchill/servlet/odata/v1/ProdMgmt/Parts HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{
"Name":"TestWTPart_001",

46 Windchill REST Services User’s Guide

"DefaultUnit" : "ea",
"AssemblyMode": {
"Value": "separable",
"Display": "Separable"
},

"DefaultTraceCode": "0",
"Source": "make",
"PhantomManufacturingPart" : false,

"Context@odata.bind": "Containers('OR:wt.pdmlink.PDMLinkProduct:48507000')"
}

Create a Part Usage Link with Occurrences
This example shows you how to create a part usage link with occurrences. Use the
following POST URI with the request body.

URI
POST /Windchill/servlet/odata/v1/ProdMgmt/Parts('VR:wt.part.WTPart:48796525')/Uses HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{
"Quantity" : 2,
"Unit" : {
"Value": "ea",

"Display": "Each"
},
"FindNumber" : "100",
"LineNumber" : 100,
"TraceCode": {
"Value": "0",

"Display": "Untraced"
},
"Uses@odata.bind" : "Parts('OR:wt.part.WTPart:48796415')",

"Occurrences": [
{

"ReferenceDesignator": "R1",
"Location": {

"PointX": 0,
"PointY": 1,
"PointZ": 1,
"PointUnit": "m",
"AngleX": 1.04,
"AngleY": 1.04,
"AngleZ": 1.04,
"AngleUnit": "r"

}
},
{

"ReferenceDesignator": "R2",
"Location": {

"PointX": 1,
"PointY": 1,

Windchill REST Services Domain Capabilities 47

"PointZ": 0,
"PointUnit": "m",
"AngleX": 3.14,
"AngleY": 3.14,
"AngleZ": 3.14,
"AngleUnit": "r"

}
}

]

}

Deleting a Part Usage Link
This example shows you how to delete a part usage link. Use the following
DELETE request.

URI
DELETE /Windchill/servlet/odata/v1/ProdMgmt/Parts('OR:wt.part.WTPart:48796526')/

Uses('OR:wt.part.WTPartUsageLink:48796528') HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Reading the Bill of Material (BOM)
This example shows you how to read the bill of material (BOM) for a product
structure. Use the following POST URI with the request body.

URI
POST /Windchill/servlet/odata/v1/ProdMgmt/Parts('OR:wt.part.WTPart:44148884')/

PTC.ProdMgmt.GetBOM?$expand=Components($expand=Part($select=Name,Number),
PartUse,Occurrences;$levels=max) HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{
"navigationCriteriaId" : "OR:wt.filter.NavigationCriteria:48796407"
}

Querying the Part Using a Filter
This example shows you how to query a part using a filter. Use the following GET
request.

URI for Filter Based on Soft Attribute
GET /Windchill/servlet/odata/v1/ProdMgmt/Parts?$filter=contains(CustomAttribute,'value') HTTP/1.1

48 Windchill REST Services User’s Guide

URI for Filter Based on Part Name
GET /Windchill/servlet/odata/v1/ProdMgmt/Parts?$filter=Name eq 'TestWTPart_001' HTTP/1.1

Reading a Part by ID with Expanded Navigation
This example shows you how to read a part with its ID with expanded navigation.
Use the following GET request.

URI for Part Uses Link with Expand Filter
GET /Windchill/servlet/odata/v1/ProdMgmt/Parts('OR:wt.part.WTPart:48796184')?$expand=Uses HTTP/1.1

URI for Part Uses Link and Its Occurrences with Expand Filter
GET /Windchill/servlet/odata/v1/ProdMgmt/Parts('OR:wt.part.WTPart:48796184')
?$expand=Uses($expand=Occurrences) HTTP/1.1

Checking Out a Part
This example shows you how to check out a part. Use the following POST URI
with the request body.

URI
POST /Windchill/servlet/odata/v1/ProdMgmt/Parts('OR:wt.part.WTPart:48796184')/PTC.CheckOut HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{
"CheckOutNote" : "This is checkout note."
}

Checking In a Part
This example shows you how to check in a part. Use the following POST URI
with the request body.

URI
POST /Windchill/servlet/odata/v1/ProdMgmt/Parts('OR:wt.part.WTPart:48796184')/PTC.CheckIn HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{
"CheckInNote" : "This is checkin note."
}

Windchill REST Services Domain Capabilities 49

Creating a Document
This example shows you how to create a document. Use the following POST URI
with the request body.

URI
POST /Windchill/servlet/odata/v1/DocMgmt/Documents HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{
"Name": "TestDoc1",
"Description": "TestDoc1_Description",
"Title": "TestDoc1_Title",
"Context@odata.bind": "Containers('OR:wt.pdmlink.PDMLinkProduct:48788507')"
}

Checking Out a Document
This example shows you how to check out a document. Use the following POST
URI with the request body.

URI
POST /Windchill/servlet/odata/v1/DocMgmt/Documents HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{
"CheckOutNote" : "This is checkout note."
}

Updating a Document
This example shows you how to update a document. Use the following PATCH
URI with the request body.

URI
PATCH /Windchill/servlet/odata/v1/DocMgmt/Documents('VR:wt.doc.WTDocument:48796553') HTTP/1.1

Request Headers
Content-Type: application/json
CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{

50 Windchill REST Services User’s Guide

"Description": "TestDoc1_Description_Update",
"CustomAttribute" : "This is Test Attribute"
}

Uploading Content for a Document
This example shows you how to upload content for a document in the following
cases:
• Using a local file
• Using URL data
• Using external data
Use the following POST URI with the request body.

Using a Local File
The content can be uploaded in the following stages:
• Stage1—POST URI

POST /Windchill/servlet/odata/v1/DocMgmt/Documents('OR:wt.doc.WTDocument:48796581')/

PTC.DocMgmt.uploadStage1Action HTTP/1.1

Stage 1—Request Headers

Content-Type: application/json

CSRF_NONCE: <Use the value from Fetch NONCE example>

Stage1—Request Body
{

"noOfFiles":3

}

Stage1—Sample Output

{

"@odata.context": "$metadata#CacheDescriptor",

"value": [

{

"ID": null,

"ReplicaUrl": "https://i7752.ptcnet.ptc.com:9090/Windchill/servlet/WindchillGW/

wt.fv.uploadtocache.DoUploadToCache_Server/doUploadToChache_Master?mk=

wt.fv.uploadtocache.DoUploadToCache_Server&VaultId=150301&FolderId=150329&

CheckSum=456186&sT=1507542170&sign=Ca4ouGGOZiopnqbd4mbUVg%3D%3D&site=

http%3A%2F%2Fi7752.ptcnet.ptc.com%3A9090%2FWindchill%2Fservlet%2F

WindchillGW&AUTH_CODE=HmacMD5&isProxy=true&delegate=

wt.fv.uploadtocache.DefaultRestFormGeneratorDelegate",

"MasterUrl": "https://i7752.ptcnet.ptc.com:9090/Windchill/servlet/WindchillGW",

"VaultId": 150301,

Windchill REST Services Domain Capabilities 51

"FolderId": 150329,

"StreamIds": [

76030,

76032,

76031

],

"FileNames": [

76030,

76032,

76031

]

}

]

}

• Stage2—The HTTP request for Stage2 must be constructed from
ReplicaUrl attribute which is retrieved from Stage1.

Stage2—POST URI

https://i7752.ptcnet.ptc.com:9090/Windchill/servlet/WindchillGW/

wt.fv.uploadtocache.DoUploadToCache_Server/doUploadToChache_Master?

mk=wt.fv.uploadtocache.DoUploadToCache_Server&VaultId=150301

&FolderId=150329&CheckSum=456186&sT=1507542170&sign=

Ca4ouGGOZiopnqbd4mbUVg%3D%3D&site=http%3A%2F%2F

i7752.ptcnet.ptc.com%3A9090%2FWindchill%2Fservlet%2F

WindchillGW&AUTH_CODE=HmacMD5&isProxy=true&delegate=

wt.fv.uploadtocache.DefaultRestFormGeneratorDelegate

Stage 2—Request Headers

Content-Type: application/json

CSRF_NONCE: <Use the value from Fetch NONCE example>

Stage2—Request Body

-----------------------------boundary

Content-Disposition: form-data; name="Master_URL"

http://i7752.ptcnet.ptc.com:9090/Windchill/servlet/WindchillGW

-----------------------------boundary

Content-Disposition: form-data; name="CacheDescriptor_array"

76030: 76030: 76030: 3743; 76032: 76032: 76032: 2735; 76031: 76031: 76031:

2735;.....

-----------------------------boundary

Content-Disposition: form-data; name="76030"; filename="TestFile1.txt"

This is content of test file 1.

-----------------------------boundary

52 Windchill REST Services User’s Guide

Content-Disposition: form-data; name="76032"; filename="TestFile2.txt"

This is content of test file 2.

-----------------------------boundary

Content-Disposition: form-data; name="76031"; filename="TestFile3.txt"

This is content of test file 2.

-----------------------------boundary

Note
The CacheDescriptor_array contains the following information
<streamid>:<filename>:<contentid>:<filesize> where,

○ streamid—Specifies the unique content ID from the Stage1
response.

○ filename—Specifies the name of the file from the Stage1 response.
○ contentid—Same as streamid.
○ filesize—Specifies size of the file to be uploaded in bytes

(Optional).

The response from Stage2 contains information about the streamId, size of
the file created, and encoded CachedContentDescriptor, which is used
in Stage3 for uploading content to the document.

Stage2—Sample Output
{

"contentInfos": [

{

"streamId": 76035,

"fileSize": 2,

"encodedInfo": "76035%3A2%3A150329%3A76035"

},

{

"streamId": 76034,

"fileSize": 2,

"encodedInfo": "76034%3A2%3A150329%3A76034"

},

{

"streamId": 76033,

"fileSize": 2,

"encodedInfo": "76033%3A2%3A150329%3A76033"

}

]

Windchill REST Services Domain Capabilities 53

}

• Stage3—POST URI
POST /Windchill/servlet/odata/v1/DocMgmt/Documents('OR:wt.doc.WTDocument:48796581')/

PTC.DocMgmt.uploadStage3Action HTTP/1.1

Stage 3—Request Headers

Content-Type: application/json

CSRF_NONCE: <Use the value from Fetch NONCE example>

Stage3—Request body
{

"contentInfo" : [

{

"StreamId" :76033,

"EncodedInfo" : "76033%3A2%3A150329%3A76033",

"FileName" : "DesignSpec.doc",

"PrimaryContent" : true,

"MimeType" : "application/vnd.openxmlformats-officedocument.wordprocessingml.

document",

"FileSize" : 2

},

{

"StreamId" :76035,

"EncodedInfo" : "76035%3A2%3A150329%3A76035",

"FileName" : "ReferenceDoc1.doc",

"PrimaryContent" : false,

"MimeType" : "application/vnd.openxmlformats-officedocument.wordprocessingml.

document",

"FileSize" : 2

},

{

"StreamId" :76034,

"EncodedInfo" : "76034%3A2%3A150329%3A76034",

"FileName" : "ReferenceDoc2.doc",

"PrimaryContent" : false,

"MimeType" : "application/vnd.openxmlformats-officedocument.wordprocessingml.

document",

"FileSize" : 2

}

]

}

Using a URL Data
To create or update primary content from URL data, use the following PUT URI
with the request body.

54 Windchill REST Services User’s Guide

URI
PUT /Windchill/servlet/odata/v1/DocMgmt/Documents('OR:wt.doc.WTDocument:2626068')/

PrimaryContent HTTP/1.1

Request Headers
Content-Type: application/json

CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{

"UrlLocation" :"https://www.ptc.com",

"DisplayName" : "Test_PrimaryContent"

}

Using External Storage
To create or update the primary content from external storage, use the following
PUT URI with the request body.
URI
PUT /Windchill/servlet/odata/v1/DocMgmt/Documents('OR:wt.doc.WTDocument:2626068')/

PrimaryContent HTTP/1.1

Request Headers
Content-Type: application/json

CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{

"ExternalLocation" :"TestExternalLocation",

"DisplayName" : "TestExternalLocation_DisplayName"

}

To create new attachments, use the following POST URI with the request body.
URI
POST /Windchill/servlet/odata/v1/DocMgmt/Documents('OR:wt.doc.WTDocument:2626099')/

Attachments HTTP/1.1

Request Headers
Content-Type: application/json

CSRF_NONCE: <Use the value from Fetch NONCE example>

Request Body
{

"ExternalLocation" :"TestExternalLocation",

"DisplayName" : "TestExternalLocation"

}

Windchill REST Services Domain Capabilities 55

To update existing attachments, use the following PUT URI with the request body.
URI
PUT /Windchill/servlet/odata/v1/DocMgmt/Documents('OR:wt.doc.WTDocument:2626099')/

Attachments('OR:wt.content.ExternalStoredData:2626811') HTTP/1.1

Request Body
{

"ExternalLocation" :"TestExternalLocation_Update",

"DisplayName" : "TestExternalLocation_Update"

}

Customizing Domains
Windchill REST Services enables you to customize domains provided by PTC.
You can also add new domains. For customizing existing domains and creating
new domains, new configuration files must be created in the custom configuration
path <Windchill>/codebase/rest/custom/domain. The
configurations from the custom configuration path are merged with the
customizations in the PTC configuration path <Windchill>/codebase/
rest/ptc/domain.

Note
Changes made in the PTC configuration path are not supported. The changes
made here will be overwritten in the next update.

Extending Domains
To extend a PTC domain, mirror the domain folder structure from the PTC
configuration path to the custom configuration path. Only the folder structure is
mirrored. Copies of .json or .js files are not created. After the folder structure
is mirrored, customizers decide what do they want to extend in the PTC domain,
and create the required .json and .js files to extend domain definitions.
Windchill REST Services supports the following types of domain extensions:
• Adding type extensions of Windchill types to PTC Domains
• Adding custom properties to entities in PTC Domains
• Adding custom navigation between entities in PTC Domains
• Adding new functions to PTC Domains
• Adding new actions to PTC Domains

56 Windchill REST Services User’s Guide

Adding Type Extensions of Windchill Types to PTC
Domains
A PTC domain can be extended to add an OData entity that corresponds to a
custom soft type created in Windchill. Customizers often create a custom soft type
extension in Windchill to add a new behavior to Windchill. For example, consider
the case where customizers have created a subclass WTPart. A soft type
com.custom.PurchasePart is created for WTPart. Further an additional
string attribute called SupplierName on PurchasePart is also added.
To enable this soft type in Product Management domain, customizers first mirror
the ProdMgmt domain folder structure in the custom configuration path. Then,
create the PurchasePart.json file. Perform the following steps to enable a
soft type:
1. In the custom configuration path, create the following folder structure for the

Product Management domain at <Windchill>/codebase/rest/
custom/domain/:
• ProdMgmt

○ v1

◆ entity

2. Create the PurchaseParts.json file at <Windchill>/codebase/
rest/custom/domain/ProdMgmt/v1/entity and add the following
content in the file:
{

"name": "PurchasePart",

“type”: “wcType”,
“wcType”: “com.custom.PurchasePart”,
“collectionName”: “PurchaseParts”,
“includeInServiceDocument”: “false”,
"parent": {

“name”: "Part"

},

"attributes": [

{
"name": "SupplierName",

"internalName": "SupplierName",

"type": "String"

}

]

}

Windchill REST Services Domain Capabilities 57

After the configuration, when you visit the metadata URL for Product
Management domain, the new entity PurchasePart, which is derived from the
part entity is available. The PurchasePart entity also has the
SupplierName property. Since the PurchasePart entity is now in the EDM,
standard OData URLs can be used to access PurchasePart.

Adding Custom Properties to Entities in PTC Domains
A PTC domain can be extended to have custom properties which have been added
to Windchill types by customizers. Customizers add new properties for Windchill
types such as, WTParts, WTDocuments, and so on. WTParts and
WTDocuments are available as Part and Document entities in the Product
Management and Document Management domains respectively. You can add new
attributes as properties for these entities. To add OwningBusinessUnit and
DesignCost attributes to the Part entity from the Product Management domain,
the customizers mirror the ProdMgmt domain folder structure in the custom
configuration path. Then, create the PartsExt.json file to add custom
configuration. In the JSON file, under extends property, add the PTC domain
entity which you want to extend. In the attributes property, add the new
attributes. Perform the following steps to add custom properties to entities:
1. In the custom configuration path, create the following folder structure for the

Product Management domain at <Windchill>/codebase/rest/
custom/domain/:
• ProdMgmt

○ v1

◆ entity

2. Create the PartsExt.json file at <Windchill>/codebase/rest/
custom/domain/ProdMgmt/v1/entity and add the following content
in the file:
{

"extends": "Parts",

"attributes": [

{
"name": "OwningBusinessUnit",

"internalName": "OwningBusinessUnit",

"type": "String"

},

{
"name": "DesignCost",

"internalName": "DesignCost",

"type": "Double"

}

]

}

58 Windchill REST Services User’s Guide

After the configuration, when you visit the metadata URL for Product
Management domain, it shows the new properties OwningBusinessUnit and
DesignCost on the Part entity for ProdMgmt domain. Since the Part entity has
additional attributes, they can be used in standard OData URLs.

Adding Custom Navigation Between Entities in PTC
Domains
A PTC domain can be extended to have new navigation between entities in a PTC
domain. For example, the Product Management domain, does not provide any
navigation between Part entities to show parts that are alternates of each other. To
provide this navigation, customizers must extend the Product Management
domain. To add Alternates navigation between Part entities in the Product
Management domain, the customizers mirror the ProdMgmt domain folder
structure in the custom configuration path. Then create the PartsExt.json file
to add custom configuration. In the JSON file, under extends property, add the
PTC domain entity which you want to extend. In the navigations property,
add the new navigation. Apart from providing the configurations in the .json
file, customizers must also provide the programming logic to create the target
entity set while navigating from the source to target entity. This is done in the .js
file corresponding to the entity, in this case, PartsExt.js file. Perform the
following steps to add custom navigation between entities:
1. In the custom configuration path, create the following folder structure for the

Product Management domain at <Windchill>/codebase/rest/
custom/domain/:
• ProdMgmt

○ v1

◆ entity

2. Create the PartsExt.json file at <Windchill>/codebase/rest/
custom/domain/ProdMgmt/v1/entity and add the following content
in the file:
{

"extends": "Parts",

"navigations": [

{

"name": "Alternates",

"target": "Parts",

"type": "Part",

"isCollection": true,

"containsTarget": true,

}

]

Windchill REST Services Domain Capabilities 59

}

3. Create the PartsExt.js file at <Windchill>/codebase/rest/
custom/domain/ProdMgmt/v1/entity and implement the following
hooks:
• getRelatedEntityCollection—The hook returns the following

information:
a. Gets the alternate part entities from the source entities.
b. Puts the alternate part entities in an entity collection.
c. Returns the entity collection in a map.

• isValidNavigation—The hook returns the following information:
a. Checks if the navigation being carried out is Alternates. If not, it

returns null so that the framework can continue processing other
navigations.

b. Gets the source part.
c. Navigates to the target part.
d. Verifies that the target part is the same as specified in the input.
e. Returns true or false to indicate the success of the validation.

Many of the hooks have been implemented in PTC provided domains. For code
examples of hook implementations, you can see their implementations in any of
PTC provided domains.
After the configuration, when you visit the metadata URL for Product
Management domain, the Alternates navigation is available for the Part
entity. You can navigate from a part to get its alternate parts.

Adding New Functions to PTC Domains
A PTC domain can be extended to add both bound and unbound OData functions.
OData functions appear in the EDM of a domain. They are invoked with a GET
request to the Odata URL of the function. For example, consider a case where you
want to add a bound function to the Product Management domain that identifies
costly parts within an entity set Parts. Perform the following steps to add a bound
function:
1. In the custom configuration path, create the following folder structure for the

Product Management domain at <Windchill>/codebase/rest/
custom/domain/:
• ProdMgmt

○ v1

60 Windchill REST Services User’s Guide

◆ entity

2. Create the PartsExt.json file at <Windchill>/codebase/rest/
custom/domain/ProdMgmt/v1/entity and add the following content
in the file:
{

"extends": "Parts",

"functions": [

{

"name": "GetCostlyParts",

"description": "Return expensive parts",

"isComposable": false,

"parameters": [

"name": "PartSet",

"type": "Part",

"isCollection": true,

"isNullable": false

],

"returnType": {

"type": "Part",

"isCollection": true

}

]

}

3. Create the PartsExt.js file at <Windchill>/codebase/rest/
custom/domain/ProdMgmt/v1/entity and implement the function.
Ensure that the Part entity has a numeric property DevelopmentCost.
function function_GetCostlyParts(data, params) {

var ArrayList = Java.type('java.util.ArrayList');

var EntityCollection = Java.type('org.apache.olingo.commons.api.data.EntityCollection');

var parts = data.getProcessor().readEntitySetData(data);

var partEntityMap = data.getProcessor().toEntities(parts, data);

var partEntities = new ArrayList(partEntityMap.values());

var entityCollection = new EntityCollection();

for(var i = 0; i < partEntities.size(); i++) {

var partEntity = partEntities.get(i);

var partCostProperty = partEntity.getProperty('DevelopmentCost');

if(partCostProperty) {

var partCost = partCostProperty.getValue();

if(partCost && partCost > 0.10) {

entityCollection.getEntities().add(partEntity);

}

}

}

Windchill REST Services Domain Capabilities 61

return entityCollection;

}

After the configuration, when you visit the metadata URL for Product
Management domain, the GetCostlyParts function is available for the Part
entity. You can call the function on the Parts entity set and get a list of the costly
parts.

Adding New Actions to PTC Domains
OData actions change the state of the entities and are called with a POST request.
These are the basic differences between actions and functions.
In terms of definition, actions are similar to functions. However, there are some
differences in definition between actions and functions:
• Actions are defined in the actions property of imports and entity JSON

files.
• Actions are named with a prefix of action_.

Creating New Domains
Windchill REST Services enables you to create new domains. The new domains
are created in the custom configuration path.
To create a new domain, perform the following steps:
1. Decide a domain identifier and the domain version. Create the domain folder

<Windchill>/codebase/rest/custom/domain/<Domain
Identifier>/<Domain Version>

2. Create the <Windchill>/codebase/rest/custom/domain
/<Domain Identifier>.json file and provide values for domain
metadata attributes.

3. Decide which other domains to import and set up the <Windchill>/
codebase/rest/custom/domain/<Domain Identifier>/
<Domain Version>/import.json file.

4. Decide if the domain must have unbound actions or functions and set up the
<Windchill>/codebase/rest/custom/domain/<Domain
Identifier>/<Domain Version>/import.json and
<Windchill>/codebase/rest/custom/domain/<Domain
Identifier>/<Domain Version>/import.js files.

5. If complexTypes are required then set up the complex type JSON files at
<Windchill>/codebase/rest/custom/domain/<Domain
Identifier>/<Domain Version>/complexType.

6. Configure entities and entity relations at <Windchill>/codebase/
rest/custom/domain/<Domain Identifier>/<Domain
Version>/entity.

62 Windchill REST Services User’s Guide

After these files are setup, the domain is available at the REST root URL and can
be accessed by OData URLs.
These are generic instructions to create a domain. You have to create and
configure files depending on the entities of the domain. In this User’s Guide, we
have provided an example, that shows how to create a domain. The example helps
you understand which files to create while configuring a domain.

Examples for Customizing Domains

Creating a New Domain
This example shows you how to create a new domain.
Consider an example, where a new domain Reporting must be created for building
a reporting application. The Windchill types, WTChangeIssue and
Changeable2 must be exposed as ProblemReport and ChangeableItem
entities respectively. Further, the ReportedAgainst relationship between
ProblemReport and ChangeItem entities must also be exposed. The version
v1 must also be set up for the Reporting domain. For the reporting purpose,
information can only be read from Windchill. The following properties of the two
entities of the domain are exposed:
• ProblemReport

○ Number
○ Name
○ Occurrence date
○ Need date
○ Priority
○ Category
○ State

• ChangeableItem
○ Number
○ Name
○ Revision
○ State

Windchill REST Services Domain Capabilities 63

To configure a domain for all the criteria mentioned in the example, perform the
following steps:
1. Create the folder <Windchill>/codebase/rest/custom/domain/

Reporting.
2. Create the file <Windchill>/codebase/rest/custom/domain/

Reporting.json with the following content:
{

"name": "Reporting",

"id": "Reporting",

"description": "Reporting Domain",

"nameSpace": "Custom.Reporting",

"containerName": "Windchill",

"defaultVersion": "1"

}

3. Create the folder <Windchill>/codebase/rest/custom/domain/
Reporting/v1.

4. Create the file <Windchill>/codebase/rest/custom/domain/
Reporting/v1/import.json with the following content:
{

"imports": [

{"name": "PTC", "version": "1"}

]

}

5. Create the folder <Windchill>/codebase/rest/custom/domain/
Reporting/v1/entity.

6. Create the file <Windchill>/codebase/rest/custom/domain/
Reporting/v1/entity/ChangeableItems.json with the
following content:
{

"name": "ChangeableItem",

"collectionName": "ChangeableItems",

"type": "wcType",

"wcType": "wt.change2.Changeable2",

"description": "Changeable Item",

"operations": "READ",

"attributes": [

{"name": "Name", "internalName": "name", "type": "String"},

{"name": "Number", "internalName": "number", "type": "String"}

],

"inherits": [

{"name": "lifecycleManaged"},

{"name": "versioned"}

64 Windchill REST Services User’s Guide

]

}

7. Create the file <Windchill>/codebase/rest/custom/domain/
Reporting/v1/entity/ProblemReports.json with the following
content:
{

"name": "ProblemReport",

"collectionName": "ProblemReports",

"type": "wcType",

"wcType": "wt.change2.WTChangeIssue",

"description": "Problem Report",

"operations": "READ",

"attributes": [

{"name": "Name", "internalName": "name", "type": "String"},

{"name": "Number", "internalName": "number", "type": "String"},

{"name": "Priority", "internalName": "theIssuePriority", "type": "String"},

{"name": "Category", "internalName": "theCategory", "type": "String"},

{"name": "OccurrenceDate", "internalName": "occurrenceDate", "type": "DateTimeOffset"},

{"name": "NeedDate", "internalName": "needDate", "type": "DateTimeOffset"}

],

"navigations": [

{"name": "ReportedAgainst", "target": "ChangeableItems", "type": "ChangeableItem",

"containsTarget": true, "isCollection": true}

],

"inherits": [

{"name": "lifecycleManaged"}

]

}

8. Create the file <Windchill>/codebase/rest/custom/domain/
Reporting/v1/entity/ProblemReports.js with the following
content:
function getRelatedEntityCollection(navProcessorData) {

var HashMap = Java.type('java.util.HashMap');

var ArrayList = Java.type('java.util.ArrayList');

var WTArrayList = Java.type('wt.fc.collections.WTArrayList');

var ChangeHelper2 = Java.type('wt.change2.ChangeHelper2');

var targetName = navProcessorData.getTargetSetName();

var map = new HashMap();

var sourcePRs = new WTArrayList(navProcessorData.getSourceObjects());

if("ReportedAgainst".equals(targetName)) {

for(var i = 0; i < sourcePRs.size(); i++) {

var sourcePR = sourcePRs.getPersistable(i);

var reportedAgainstItems = ChangeHelper2.service.getChangeables(sourcePR, true);

var list = new ArrayList();

while(reportedAgainstItems.hasMoreElements()) {

Windchill REST Services Domain Capabilities 65

list.add(reportedAgainstItems.nextElement());

}

map.put(sourcePR, list);

}

}

return map;

}

This creates a new domain called Reporting with all the entities and relationships
described in the example. To test the domain, use the following URLs:
• To see the EDM for the Reporting domain, use the URL:

https://<Windchill server>/Windchill/servlet/odata/Reporting/$metadata

• To see the list of ProblemReports, use the URL:
https://<Windchill server>/Windchill/servlet/odata/Reporting/ProblemReports

• To see the list of ProblemReport with ChangeableItems, use the
URL:
https://<Windchill server>/Windchill/servlet/odata/Reporting/ProblemReports?$expand=ReportedAgainst

Extending Product Management Domain to Add A
Soft Type
This example shows you how to extend the Product Management domain to add a
soft type of an existing part. Consider a case where you want to create WTPart of
soft type Capacitor which has its parent soft type as Electrical Part.
To extend the domain to add the soft type, create a custom configuration file
Capacitors.json at <Windchill>/codebase/rest/custom/
domain/ProdMgmt/v1/entity.
wcType property must have the same Internal Name as defined for the soft type in
Type Management.

{

"name": "Capacitor",

66 Windchill REST Services User’s Guide

"collectionName": "Capacitors",

"wcType": "com.ptc.ptcnet.Capacitor",

"description": "This part extends ElectricalParts entity.",

"parent": {

"name": "ElectricalParts"

},

"attributes": [

{

"name":"Capacitance",

"internalName":"Capacitance",

"type":"String"

}

]

}

Sample request to create WTPart with soft type ‘Capacitor’:
{

"@odata.type": "PTC.ProdMgmt.Capacitor",

"Name":"TestWTPart_002",

"Number":"TestWTPart_002",

"DefaultUnit" : "ea",

"AssemblyMode": {

"Value": "component",

"Display": "Component"

},

"Source": "buy",

"PhantomManufacturingPart" : false,

"Context@odata.bind": "Containers('OR:wt.pdmlink.PDMLinkProduct:48788507')"

}

Extending Document Management Domain to Add a
Soft Attribute
This example shows you how to extend the Document Management domain to
add a soft attribute on a WTDocument soft type.
To extend the domain to add the soft attribute, create a custom configuration file
DocumentsExt.json at <Windchill>/codebase/rest/custom/
domain/DocMgmt/v1/entity.
{

"extends”: "Document",

"description”: "This config extends Documents.json.”,
"attributes”: [

Windchill REST Services Domain Capabilities 67

{

"name":"ODATASTR1",

"internalName":"ODATASTR1",

"type":"String"

},

{

"name":"ODATAINT1",

"internalName":"ODATAINT1",

"type":"Int16"

},

{

"name":"ODATAFPN1",

"internalName":"ODATAFPN1",

"type":"Double"

},

{

"name":"ODATABOOL1",

"internalName":"ODATABOOL1",

"type":"Boolean"

},

{

"name":"ODATADATE1",

"internalName":"ODATADATE1",

"type":"DateTimeOffset"

}

]

}

To create a WTDocument with these extended soft attributes use the following
request:
POST /Windchill/servlet/odata/v1/DocMgmt/Documents HTTP/1.1

{

"Name": "Test1",

"Description": "Test1_Desc",

"Title": "Test1_Title",

"ODATASTR1": "This is String attribute",

"ODATAINT1": 1,

"ODATAFPN1": 1.555,

"ODATABOOL1": true,

"ODATADATE1": "2017-10-09T09:42:39Z",

68 Windchill REST Services User’s Guide

"Context@odata.bind":

"Containers('OR:wt.pdmlink.PDMLinkProduct:48788507')"

}

Windchill REST Services Domain Capabilities 69

Index

A
Adding custom navigations, 59
Adding custom properties, 58
Adding new actions, 62
Adding new functions, 60

B
Bound actions, 22
Bound functions, 22

C
Configuration a domain, 15
Configuration basic information for
entities, 20
Configuration entities in a domain, 20
Configuration paths and files, 14
Configuring
bound actions, 22
bound functions, 22
unbound actions, 19
unbound functions, 18

Configuring navigation properties for
entities, 21
Configuring structural properties for
entities, 21
Creating new domains, 62
Customizing domains, 56
Customizing example
adding soft attribute, 66-67
creating a new domain, 63

D
Disabling

entity set for an entity, 26
Disabling entity set for an entity, 26
Domain
configuring, 15
configuring entities, 20
versioning, 17

Domain configuration, 14
Domain JSON File, 16
Domains, 34

E
Entities
configuring basic information, 20
configuring navigation properties,
21
configuring structural properties, 21

Entity Data Model (EDM), 11
Examples
checking in a part, 49
checking out a document, 50
checking out a part, 49
creating a document, 50
creating a part, 46
creating a part usage link, 47
deleting a part usage link, 48
fetching a NONCE token, 46
querying a part, 48
reading a part by ID, 49
reading the bill of material (BOM),
48
updating a document, 50
uploading content for a document,
51

Excluding

70 Windchill REST Services User’s Guide

subtypes of enabled Windchill types,
25

Excluding subtypes, 25
Extending domains, 56

H
HTTP requests
processing, 26

I
Importing
JSON file, 17

Inheriting
Windchill capabilities, 23

J
JSON file
importing, 17

O
OData
entity data model (EDM), 11
overview, 4-5, 10
primitives, 11
query parameters, 12
support, 10

OData Services
domains, 10

P
Primitives, 11
Processing
HTTP requests, 26

PTC annotations, 13
PTC Common Domain, 39
PTC Data Administration Domain, 37
PTC Document Management Domain,
36

PTC Principal Management Domain,
38
PTC Product Management Domain, 34

Q
Query parameters, 12

R
REST
overview, 5

T
Type extensions, 57

U
Unbound actions, 19
Unbound functions, 18

V
Versioning
domains, 17

W
Windchill REST Services
adding custom navigations, 59
adding custom properties, 58
adding new actions, 62
adding new functions, 60
creating new domains, 62
customizing domains, 56
domains, 34
domains overview, 34
extending domains, 56
extending Windchill types, 57
installation, 8
installation prerequisites, 8
overview, 5

Index 71

PTC Common Domain, 39
PTC Data Administration Domain,
37
PTC Document Management
Domain, 36
PTC Principal Management
Domain, 38
PTC Product Management domain,
34

72 Windchill REST Services User’s Guide

	Windchill REST Services Overview
	REST
	OData
	Windchill REST Services

	Installing Windchill REST Services
	Installation Prerequisites
	Installation Process

	Windchill REST Services Framework Capabilities
	Overview
	Support for OData
	OData Services as Domains
	Entity Data Model of a Domain
	OData Primitives
	OData Query Parameters

	PTC Annotations
	Domain Configuration
	Configuration Paths and Files
	Configuring a Domain
	Domain JSON File
	Importing JSON File
	Versioning of the Domain API
	Configuring Unbound Functions
	Configuring Unbound Actions

	Configuring Entities in a Domain
	Basic Information for Configuring Entities
	Configuring Structural Properties
	Configuring Navigation Properties
	Configuring Bound Functions
	Configuring Bound Actions
	Inheriting Windchill Capabilities
	Excluding Subtypes of Enabled Windchill Types

	Disabling Entity Set for an Entity in the Service Document

	Processing HTTP Requests for OData URLs
	Processing Batch Requests

	Windchill REST Services Domain Capabilities
	PTC Domains
	Overview
	PTC Product Management Domain
	PTC Document Management Domain
	PTC Data Administration Domain
	PTC Principal Management Domain
	PTC Common Domain
	Accessing Domains

	Examples for Performing Basic REST Operations
	Fetching a NONCE Token from a Service
	Creating a Part
	Create a Part Usage Link with Occurrences
	Deleting a Part Usage Link
	Reading the Bill of Material (BOM)
	Querying the Part Using a Filter
	Reading a Part by ID with Expanded Navigation
	Checking Out a Part
	Checking In a Part
	Creating a Document
	Checking Out a Document
	Updating a Document
	Uploading Content for a Document

	Customizing Domains
	Extending Domains
	Adding Type Extensions of Windchill Types to PTC Domains
	Adding Custom Properties to Entities in PTC Domains
	Adding Custom Navigation Between Entities in PTC Domains
	Adding New Functions to PTC Domains
	Adding New Actions to PTC Domains

	Creating New Domains

	Examples for Customizing Domains
	Creating a New Domain
	Extending Product Management Domain to Add A Soft Type
	Extending Document Management Domain to Add a Soft Attribute

	Index

