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SUMMARY

This study deals with a special method for the solution of fInite element problems. This method,
often referred to as p-version or p-method, is based on big, high order elements, in comparison
to the traditional h-method, which is based on smal~ low order elements. The p-method has

some advantages with respect to the h-method. The p-method is implemented in the software
package ProlMECHANICA STRUCTURETM.

The primary target of this research is to gain more insight into the solving routines used, the so
called adaptive p-method. The secondary target is to determine the influence of some important
settings in the program on the quality and accuracy of the results, as well as on calculation
times and disk storage. This is done in order to try to find settings to decrease the calculation
times and disk storage.

Conclusions regarding the primary target are easily summarised. The theory behind the p
method, as it is implemented in STRUCTURE, is well described within this report. It was
found that not all the advantages of the p-method, as described in literature, are used in

STRUCTURE.

Finding a FE-model to determine the right settings with respect to the secondary target, was
very difficult. With the models used in this study, the secondary target could not be fulfilled.
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1. INTRODUCTION

Daf SP (Special Products) is active in the field of vehicle and aerospace systems. The major
part of their operations is in the design and development of new products as well as production
and maintenance primarily for the defence industry. Examples of production programs in
operation are for the F-16 landing gear and the Leopard II t:ank, own development includes a
light reconnaissance vehicle, and the landing gear and intennediate gearbox for the NH-90

helicopter.

Within the department T&O Aero of Daf SP the finite element program ProlMECHANICA

STRUCTURETM (abb. STRUCTURE) is used. The program is part of a suite of programs
which also includes the multibody program MOTION and the program for heat calculations
THERMAL. There is a direct interface between all these programs and the corresponding
CAD-program, ProlENGINEER This interface and the set-up of STRUCTURE make it very
user-friendly.

A finite element solution is always an approximation to the exact solution. When the accuracy
of this approximation is asked for, the discretisation has to be refmed and a new solution has to
be calculated. This can be compared with the previous one and then it can be seen if the
solution has converged or not. STRUCTURE uses the locally adaptive p-method to perform
this, which is not as common as the 'standard' method, the h-method, used in most of the finite
element programs. The h-method uses mesh refining where as the p-method uses higher order
polynomials to describe the solution field.

Very long calculation times for big models make it sometimes necessary to abort an analysis
before the fmal results are reached. STRUCTURE reports in a summary file the relative error
reached, which sometimes after aborting, is still at 80%. When actual fmal values are
detennined, it is found that the results from the aborted run are within 5% of the fmal results.
Such contradictions together with the long calculation times and the big temporary files, made
it necessary to gain a better insight in the analysis methods used within STRUCTURE. The
intention of the developer of STRUCTURE, is to make the program a design tool for engineers,
instead of a tool for analysts. This also is a reason for gaining more insight to keep
understanding the analysis methods in the more automised future versions.

In chapter 2 a general review of the finite element method is given and the different methods
with their properties are discussed. The p-method is discussed more theoretically in chapter 3
where as chapter 4 deals with the different convergence algorithms as they are implemented in
STRUCTURE. Practical models are tested in chapter 5 in order to extrapolate them towards
bigger models and in chapter 6 the fmal conclusions and recommendations are given.
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2. FINITE ELEMENT METHOD

2.1 General theory ofFEM

The limitations of the human mind are such that it cannot grasp the behaviour of its complex

surroundings and variations in one operation. Thus the process of subdividing all systems into
their individual components or 'elements', whose behaviour is readily understood, and then
rebuilding the original system from such components to study its behaviour is a natural way in
which the engineer proceeds. This process is lmown as the element method. The elements used
have a finite dimension and this property has led to the 'Finite Element Method', which is

normally abbreviated to FEM [5].

figure 2.1: SolVing scheme
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For systems whose behaviour is not exactly
lmown, mathematical models have to be
formulated. These models are idealised
representations of reality. When the
mathematical model is very simple, an exact
solution is possible. But most of the time the
mathematical models are so complex that they
do not permit exact solutions, thus out of
necessity, the solutions are approximate.
Correct interpretation of these approximate
solutions is possible only if one is aware of the
assumptions incorporated in the mathematical
model and the associated limitations. This
sequence of steps in the process of solving problems is illustrated schematically in figure 2.1.

Because of the availability and cost of computational resources, mathematical models need to
be simplified based on engineering experience and intuition. Most important is to determine
which are the essential and nonessential factors with respect to the points of interest. For
instance, in case of symmetry only half of the problem needs to be taken in account, with a set
of accompanying boundary conditions of course.

The finite element method should be understood as a method for finding an approximate
solution for a simplified model. Numerical treatment reduces the simplified model to a form
which is solvable by a finite number of numerical operations. This means that the approximate
solution has to be characterised by a finite number of parameters, called degrees of freedom.
Such a reduction of the problem, so that representation by a finite number of parameters is
possible, is called discretisation.

6
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2.2 Different methods in FEM

The theory of the different methods in FEM are described according to the deftnitions in Szabo

& BabtiSka [4].

The finite element method selects a solution Un from the ftnite element space of admissible

functions S which minimises the energy norm or the error:

SP

(1)

in which E(O) is the set of all functions which have ftnite strain energy on the domain (0) and

is called energy space. E(O) endowed with the norm 11·11 E(n) is a normed linear space as

described in reference [4].

This relationship indicates that the error depends on the exact solution UEX and the space S
which is determined by the mesh, the polynomial degrees of elements, and the mapping
functions, collectively called the already mentioned discretisation. Discretisation is controlled
by the users of finite element computer programs, either directly or through procedures
designed to select or modifY certain discretisation parameters automatically on the basis of data
generated in the course of the solution process.

Engineering computations are performed for the purpose of obtaining information concerning
the expected response ofphysical systems to certain imposed conditions, generally called loads.
This information is then used in making engineering decisions. Obviously, the computed data
must be of such quality that decisions based on them will be substantially the same as if the
exact solution were known. Therefore, we wish to select the discretisation so that Un is close to

UEX, in some sense.

In general, we wish to determine functionals 'f',{UFE) (i = 1, 2, ...), such as displacements,
stresses, reactions, stress intensity factors, etc.. so that:

(i = 1,2, ... ) (2)

where 'ti represents a specifIc tolerance.

The numerical solution for the functionals, 'f',{ UFE), has to be close to the exact solution for the

functionals, 'f'i( UEX). It is difftcult to say how close these two are because we don't know the
exact solution UEX. The way to determine this is by performing extensions and certain tests on
the finite element solutions. Both the estimation and control of the errors of discretisation are
based on extensions.

2.2.1 Extensions

Extensions are systematic changes of discretisation so that the number of degrees of freedom is
increased at each change. More precisely, a sequence of ftnite element spaces 81, 82, 83 ... with
progressively improved approximation properties is created and the corresponding solutions
obtained. If extension is based on mesh refmement, then the process is called h-method. If
extension is based on increasing the polynomial degree ofelements, then the process is called p-

7
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method. If extension is based on a combination of concurrent mesh refinement and increase in
the polynomial degree of elements, then it is called hp-method. Extensions provide information
on the basis of which we can draw conclusions concerning the overall quality of the finite
element solution UFE and the accuracy of functionals computed from UFE. When convergence of
the finite element solutions corresponding to spaces St, S2, ... is of interest, then we refer to h-,
p-, or hp-convergence.

An extension can be submitted manually or automatically. It is called adaptive if the extension
is submitted automatically. When a specific convergence is wanted, a convergence criteria is
needed to test if that convergence is achieved or not. If convergence is not achieved, the
extension will be submitted and this solution will be tested again, using the convergence
criteria. Examples of such criteria, as they are used in STRUCTURE, are edge displacement
and element strain energy.

With edge displacement for convergence, the functionals 'P.{UFE) in equation (2) will be edge
displacements. Equation (2) has to be fulfilled for displacement along every edge before

convergence is achieved.

If element strain energy is used as a convergence criteria, the functionals 'Pi(UFE) in equation
(2) are the strain energies of each element independently. A definition for strain energy is [7]:

'Mechanical energy stored up in stressed material. Stress within the elastic limit is
implied; therefore, the strain energy is equal to the work done by the external forces
in producing the stress and is 100% recoverable.'

A basic fonnula to calculate the strain energy of an element is in equation (3) taken from
reference [4],

SP

(3)

in which Of; are the variations of the strains, (J are the stresses and V is the domain of the
element.

2.2.1.1 h-method

Most of the finite element codes rely on the h-method, in which a defonnable mechanical
structure is analysed by subdividing it into elements within which the field variables are
approximated by low order polynomial functions, often linear, and sometimes quadratic or
cubic. The accuracy of the analysis is increased by refining the element mesh, decreasing the
size of the elements (h).

An example with three linear elements is shown in figure 2.2. The exact solution is visualised
by the solid line and the approximating finite element solution by the dashed line. In figure 2.3
the same problem with a fmer mesh of five linear elements is shown. It is clearly visible that the
mesh refmement makes it possible to approximate the exact solution more accurate.
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_ Exact solution

SP

- Exact solution
- FE solution

figure 2.2: Coarse mesh, h-method

FE solution

figure 2.3: Fine mesh, h-method

(4)

The FE-solutions shown in figure 2.2 and figure 2.3 are determined with a variational method

and not with a collocation method. With the variational method the energy of the solution is
minimised over an element. Therefore the solutions on the nodal points are not necessarily the

exact solutions. With a collocation method the solution is only calculated on the nodal points.

2.2.1.2 p-method

In the p-method, the basis functions for representing the field variables are high-order

polynomials, and convergence towards an exact solution is obtained by increasing the order of

approximation within each element, increasing the order of the polynomial functions (P). Mesh

refinement is therefore not required for convergence.

When the examples of figure 2.2 and figure 2.3 again are used, the p-method uses for its first

approximation the same mesh with the three linear elements. When the p-order is increased in
order to get a better approximation the coarse mesh will still be the same, but the

approximation between the nodal points can be described with an quadratic solution field

instead of a linear. So the FE-solution will consist of three quadratic polynomials between the

nodal points and it is obvious that this will describe the exact solution better than the linear FE

solution. In order to make a comparison between the h-, and p-method an example with a
simply supported beam is shown in figure 2.3.

The analytical solution for the deflection in the y-direction alongside of the beam is taken from

literature [7]. It is a third order polynomial function, see equation (4).

y(x) = -F .x3

3·E·J

When only one linear element is used with the h-method, it is obvious that this deflection can
not be calculated exactly. When the size of the elements is decreased, more elements will be
generated alongside of the beam. The FE-solution will converge in the direction of the
analytical solution with this mesh refmement. With the p-method one linear element can not

describe the deflection accurate, this is the same as with the h-method and one element. When

the polynomial order is increased, the FE-solution will approximate the analytical solution

better. With polynomial order three, the analytical solution will be the same as the exact
solution.

9
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figure 2.4: Representation o/the h-, and p-method with a simply supported beam

In figure 2.4 it is shown that a good solution, in this case the exact solution, can be obtained
with the p-method, using only one element This illustrates the large elements which are
possible with the p-method. The possibility of large elements in the p-method is also available
in STRUCTURE. The default value for the aspect ratio within STRUCTURE for instance is
30, where as in the h-method maximum aspect ratios of 6 are advised

Further details of the p-method will be discussed extensively in chapter 3.

2.2.1.3 hp-method

As the name already suggests, the hp-method is a mixture of the h-, and p-method. It is a
combination of concurrent mesh refinement and increase in the polynomial degree of elements.
This method is proven to converge faster than the h-, or p-method. The hp-method is not yet
available in commercial FE-codes.

2.2.2 Convergence

The convergence rates of the three different methods (h-, p-, and hp-method) are very different
It has been proven that the convergence of the h-method is slower than the p-method and that
the p-method again is slower than the hp-method [3]. To illustrate the difference in rate of
convergence schematically, the relative error of a random criteria is plotted against the number
of degrees of freedom for the three different methods in figure 2.5. This particular form of the
figure would occur for the relative error of every other criteria as well.
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figure 2.5: Schematic illustration ofthe convergence rate ofh-, p-, and hp-method

3

In figure 2.5 the convergence rates of the three different methods are clearly visible.
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3. THE P-METHOD IN STRUCTURE

3.1 General theory

ProlMECHANICA STRUCTURETM is based on the p-version of the finite element method, or
p-method, which has been treated in the research literature for about 25 years. The flISt
theoretical discussions were done by Zienkiewicz and Taylor [5]. Further theoretical
foundations of the p-method are discussed by BabuSka, Szabo, and Katz [2], and Babuska, and
Szabo [3].

In the p-method, the basis functions for representing the field variables are high-order
polynomials, and convergence is obtained by increasing the order of approximation within each
element. Mesh refmement is therefore not required for convergence.

In practice, it is not possible to increase the order of the elements indefmitely. The elements in
STRUCTURE use polynomial basis functions up to ninth order, which is sufficient for
accurate representation of the physical behaviour of most structures in regions where
displacements and stresses are smoothly varying. In the neighbourhood of cracks, re-entrant
comers, and concentrated loads, however, stresses can be singular (theoretically infmite);
elements must be further subdivided near such local zones in order to obtain more accurate
results.

3.2 Implementation of the p-Method in STRUCTURE

STRUCTURE uses a displacement formulation, in which stiffness matrices and load vectors
are derived by minimising the structure's potential energy expressed in terms of displacements
and rotations. As in other finite element programs, displacements within each element are
represented by a linear combination of basis functions N, known as shape functions, multiplied
with coefficients ai, see equation (5).

(5)

In the h-method the coefficients are nodal displacements. In the p-method, however, the
primary variables are not nodal displacements, but are coefficients of linear, quadratic, cubic,
and higher order polynomial basis functions, up to order nine in STRUCTURE. Once the finite
element equations are solved for these coefficients, physical displacement and stress results are
calculated over a grid as a post-processing step. During the pre-processing a value for the
plotting grid has to be given. This number for the plotting grid is the number ofpoints on which
the physical values have to be calculated by solving an equation as in (5).

The shape functions are hierarchical and are based on the integrals of the Legendre
polynomials. Hierarchical shape functions are a special kind of shape function which give
certain advantages over the 'standard' shape functions. The hierarchical and standard shape
functions will be discussed in later sections. Shape functions based on the integrals of Legendre
polynomials are recommended by BabuSka, Szabo, and Katz [2] because they have some
orthogonality properties which result in well conditioned stiffness matrices.

12
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The shape functions are generated by taking products of the polynomials in the different natural
coordinate directions, and can be separated into four types:

1. Linear nodal functions (vertex modes), which vanish at all but one node in an element. These
are identical to the conventional shape functions in h-elements.

2. Edge functions (side modes), which are non-zero along a particular element edge and adjacent
element faces and volumes.

3. Face functions (internal modes), which are non-zero along a particular element face and
adjacent element volumes.

4. Volume functions, which are non-zero within a solid element, but vanish on the faces.

To visualise the different types of functions, in figure 3.1 [4] the hierarchical shape functions
for quadrilateral elements are shown. A quadrilateral element is a two dimensional element so
only the vertex, side, and the internal modes are illustrated. For the volume functions the
graphical representation is only possible with three dimensional elements and is somewhat more
difficult, so this is left to the imagination of the reader.

Block A contains the vertex modes for the four nodes. The numbers 1 to 4 above block A are
the numbers of the node at which the shape function below belongs. In block B the side modes
are represented. The numbers on the left are the polynomial orders of the shape functions (P).
Block C shows the internal modes for the face of the quadrilateral element It is clearly visible
that for the higher order shape functions (block B and C) there still only are four nodal points.
For the higher order functions no extra nodal points have to be inserted. This is a specific
property for the hierarchical shape functions and will be explained in a later section.

13
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figure 3.1: Hierarchic shape junctions jar quadrilateral elements

Conventional h-element formulations usually rely exclusively on functions of type I above, the
vertex modes. Occasionally second order functions of type 2, side modes, are employed to
transition between shell elements of different order. Second order functions of type 3 or 4,
internal modes or volume functions, are sometimes included as "bubble" modes for shells of
solids.

3.3 Element formulation

The displacement and rotation field variables are expressed in terms ofpolynomial series:

(6)

where u and ~ are the displacement and rotation vectors, the functions NO are the hierarchical

polynomial basis functions given by [2J, ux
i, uyi, u/, ~/, ~yi, ~/ are the coefficients in the

expansion for the Cartesian components, and n is the number of terms in the series, which
include polynomials up to order p. For the implementation of the elements, polynomial basis
functions up to ninth order (p=9) are used. Further details regarding the formulations for the
different elements are given in chapter 3 of [lJ.
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3.4 Shape functions

The essence of the finite element method is in approximating the unknown variable field by an
expansion like in the previous paragraph, see equation (5). This for a scalar variable (u) can be
written as in equation (7).

n

u~u="' N.a.L..J I I

1=1

where al are the unknown parameters to be determined,
the previously mentioned coefficients, it is the FE
approximation for the scalar variable u and N/ are the
shape functions. For each element shape functions are
generated for each node independently, and are
described with so called iso-parametric coordinates.

This is illustrated in figure 3.2 for a two dimensional
element. Shape functions should be defmed in such a
way that the value of the function is one in the
corresponding nodal point and zero in every other nodal

points. The exact description of the functions is free to
chose.

(7)

figure 3.2: 2-D iso-parametric
coordinates

It is possible to choose to identify the coefficients a/ with the values of the unknown function at
element nodes, the nodal value becomes the coefficient value, thus making

(8)

When you are for instance looking at displacements as the unknown variable field, the
coefficients are the nodal displacements. The shape functions so defmed that equation (8) is
valid, will be referred to as the already mentioned 'standard' ones and are the basis of most
fmite element programs.

When element refinement is made with standard shape functions, extra nodal points are placed

along the element edges and totally new shape functions have to be generated for these extra
nodal points. Hence all calculations have to be repeated.

Element refinement with hierarchic shape functions does not produce new nodal points. This
means that the old set of shape functions can be used again when a polynomial order update is
submitted. The coefficients belonging to the new shape functions no longer have an obvious
physical meaning but are mathematical coefficients, equation (8) is not valid in this case. The
hierarchic and standard shape functions are schematically illustrated in figure 3.3 by a one
dimensional element.
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figure 3.3: Schematic representation of the standard and hierarchic shape functions for a
one dimensional element

The four plots show the hierarchic and standard shape functions for a fIrst and second order
description. On the horizontal axis the iso-parametric x-coordinate is shown and on the vertical
axis the value of the shape functions. For the hierarchic shape functions it is clearly visible that

the two linear shape function (p=l), also appear when a quadratic description (p=2) for the
element is used. A quadratic function also appears, but it is not actually connected to a nodal
point. With the standard shape functions the two linear functions disappear when the quadratic
fonn is used. This is obvious because an extra nodal point is placed in the middle of the

element, 1;=0. At this nodal point the shape functions for the points 1;=-1 and 1;=1 have to be
zero, so the old linear shape is false.

Especially the building of the stiffness matrix in a finite element program is a time consuming
activity. Every time new shape functions are generated, that matrix has to be calculated again.

It would be of advantage to avoid this difficulty by considering equation (7) as a series in
which the shape functions (Ni) do not depend on the number of nodes in the mesh (n). This

indeed is achieved with hierarchic shape functions.
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3.5 Hierarchic shape functions
As discussed in the previous section the unknown variable field can be approximated with an
expansion like in equation (7). Already it was mentioned that two types of shape functions are
possible, the standard and the hierarchic. The advantage in using hierarchic shape functions is
in the fact that the old set of functions can be used in a new set after a polynomial update has
been done. If the variables are properly numbered, then the stiffness matrix (resp. load vector)
corresponding to polynomial order p is embedded in the stiffness matrix (resp. load vector)
corresponding to order p+l, which again is embedded in the stiffness matrix (resp. load
vector) corresponding to order p+2, etc. This is schematically illustrated in figure 3.4 [4].

flIN(P)

N(P+I)_~_

N(p+2) L 1-- ----' _

~
(P)--l ·UI

. N(P+I)--l

N(p+2)

figure 3.4: Schematic representation of the hierarchic structure of
stijfrzess matrices and load vectors in p-extension

The hierarchic structure of stiffness matrices and load vectors can be exploited in the solution
phase. For instance: having performed Gaussian elimination and obtained a fmite element
solution corresponding to order p, that solution can be used again and elimination can be
continued to obtain the finite element solution corresponding to order p+1.

When a higher order shape function is added to the old set of shape functions, the stiffness
matrix and load vector will be expanded as is schematically illustrated in figure 3.4. These
new matrix and vector give a new set of equations. Solving this new set of equations means
that the already calculated lower order coefficients will change. In equation (9) a possible set
of equations is given.

k ll k l2 k 13 k j4 a j f l

k 21 k 22 k 23 k 24 a 2 f2=
k 31 k 32 k 33 k 34 a 3 f3

k 41 k 42 k 43 k 44 a 4 f4

The first equation from this set is in equation (10).

kllal + k 12 a 2 + k 13a 3 + k l4a 4 = f l

(9)

(10)

17



Adaptive p-method in ProlMECHANICA STRUCTURETM

When the set of shape functions is expanded, equation (9) will be expanded as well. The fIrst
equation from this new set ofequations will become:

SP

(11)

When equation (11) is solved, the coefficients al· until 3.4. will be different from the coefficients
at until a4, which can be solved from equation (10).

The fIrst two coefficients al and a2 are belonging to the linear shape functions and are equal to
the nodal values, for whatever functional is solved. With the variational method used here, it is
possible that when these fIrst two coefficients are calculated, they do not represent the exact
nodal value, see fIgure 2.2. The value of the already calculated coefficients will change when
the polynomial order is increased; when the set of shape functions is expanded, as previously
discussed. This makes it possible that the first two coefficients can represent the exact nodal
values better.

3.6 Hierarchic polynomials in one dimension

In the previous sections the general ideas of hierarchic approximation are introduced. The idea
of generating higher order hierarchic fOImS is simple. To show this, a one-dimensional
expansion is given in this paragraph. This provides a basis for generation of two- and three
dimensional forms.

To generate a polynomial of order p along an element side we do not need to introduce nodes
but can instead use parameters without an obvious physical meaning, known in dynamics as a
Ritz approach. We could use here a linear expansion specifIed by the two linear 'standard'
functions No and Nl and add to this a series ofpolynomials always so designed as to have zero
values at the ends of the range (i.e., points 0 and I). Hierarchical shape functions (N2...Nn)

always have a value of zero at the ends of the element edge in order to make the compatibility
between different elements accurate, see reference [4]. In fIgure 3.5 [5] the different
hierarchical shape functions are illustrated.

18



SP
Adaptive p-method in ProlMECHANICA STRUCTURETM ~

-----------------------=-~

Element
nodes IE

dNf
d~

0

0 dN~

d~

dN2
d~

dN~

d~

figure 3.5: Hierarchical element shape functions ofnearly orthogonalform and their derivatives

Thus for a cubic approximation, over the typical one-dimensional element, the approximating
function would be the linear expansion in the following equation (12):

(12)

The linear functions No and N} are the same for whatever the shape functions are. The higher
order shape functions can be defined in various ways as long as the value of the functions is
zero at the points 0 and 1 (~=-1 and ~=1). The coefficients Uo and u} are the nodal values and
the coefficients a2 and a3 are mathematical coefficients.

The first two coefficients Since STRUCTURE is working with a variational method, the first

3.7 Optimal form of the shape functions
An optimal form of the hierarchic functions is one that results in a diagonal equation system.
Such an equation system means that the off-diagonal terms in an element stiffness matrix
should be zero. For such a system orthogonality in the shape functions is needed. With
orthogonality the coupling between successive solutions disappears. A diagonal equation
system is easier to solve than a system with full matrices.

Within STRUCTURE the integrals of Legendre polynomials are used as shape functions. The
set of Legendre polynomials PiC) possesses the orthogonality property over the range -1 ~ ~

~ 1, where ~ is the iso-parametric x-coordinate along the element edge in an one dimensional
problem as in figure 3.5. Also the integrals of the Legendre polynomials posses this property.
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The reason for choosing the integrals of the Legendre polynomials and not the Legendre
polynomials themselves, was not found during this research. Some important properties of
Legendre polynomials are listed in appendix A.

The integrals of the Legendre polynomial, the shape functions in STRUCTURE, of degree p,
are defined by equation (11):

(11)

As mentioned before the shape functions No and N] are the same as with every other choice for
the shape functions

N e __ ~-1
o - 2

N' _ ~ +1
1- 2

(12)

Evaluation of equation (12) for each p in tum gives:

N; =2(~ 3 _~) etc. (13)

The shape functions plotted in figure 3.5 are the integrals of the Legendre polynomials as they
are used in STRUCTURE.

A completely diagonal equation system is obviously not possible, the different coefficients
would not be connected and so the different element would not be connected. A matrix with a
diagonal band is possible and this also leads to numerical advantages over a fully filled matrix.

From literature [5J it is found that hierarchical shape functions should lead to a more diagonal
system as with standard shape functions. However, when large models were analysed with
STRUCTURE, it was found that the bandwidth of the stiffness matrix was relatively small in
the beginning of an analysis (low p-Ievels). For higher polynomial orders the maximum
bandwidth becomes nearly the same as the number of equations, the width of the matrix itself.
The average bandwidth stays considerably small in comparison with the number of equations,
indicating that the maximum bandwidth is caused by only a few tenus in the matrix which are
spread throughout the matrix. What causes this large spreading of the terms, is not found.

After a model is analysed, several properties of the stiffness matrices are summarised in a
output file. For instance the maximum bandwidth and the average bandwidth. After checking
these files for a few large models as they were analysed within SP, it seems that the speed of
solving the equation systems with STRUCTURE is dependent of the maximum bandwidth and
not the average bandwidth. This probably is a reason for the large calculation times. According
to information from the supplier of STRUCTURE, there will be a sparse solver in future
releases. This sparse solver should detect the zero terms in the matrix and solve the equations
more efficiently. The maximum bandwidth will be of less importance then.
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4. CONVERGENCE ALGORITHMS

4.1 Different algorithms

Within STRUCTURE two convergence algorithms are possible: multi-pass and single-pass.

With multi-pass the solution is obtained by successively increasing the polynomial order from
the minimum specified order until convergence or the maximum order is reached. Single-pass
only does two calculations in which the FE analysis is solved. The first calculation is solved
with a fixed polynomial order and then an error is determined with which the polynomial order

update is done. The second calculation is solved with this updated model. The descriptions of
these two algorithms are described in the next two sections.

4.2 Multi-pass

Within multi-pass STRUCTURE uses a locally adaptive polynomial order update scheme. In
this scheme the updating of the polynomial order is done automatically (adaptive) and a
polynomial order, one through nine, can be assigned independently to each element edge
(locally). The convergence algorithm is based on an iterative procedure in which the analysis is
solved for successively higher polynomial order. The user can choose a criteria for which the
convergence will be checked. This criteria can be all sort of quantities, for instance
displacements, stresses or moments. If the convergence check shows that the demanded

convergence was not reached, the polynomial order has to be updated. The algorithm which
drives the polynomial order update is based only on edge displacements and element strain
energies, according to reference [1]. The criteria edge displacements and element strain energies
are already discussed in chapter 2.

4.2.1 Convergence check
To check the convergence, STRUCTURE offers several possibilities. There are two standard
convergence criteria and there is the possibility to choose a self defmed measure, for instance
stress, displacement or moment. The two standard criteria are:

1. Local displacement & local strain energy

When local displacement & local strain energy (LD&SE) is used for convergence,
STRUCTURE calculates until convergence is reached for the two convergence criteria,
for the displacements along each edge and for the strain energy of each element.

According to the manual [8], this option should be used if the overall displacement
solution is important. Stresses however, may not converge using this option.

2. Local displacement & local strain energy & RMS stress

With this option, STRUCTURE calculates until reaching convergence for the RMS
stress for the entire model, in addition to edge displacement and strain energy.
According to the manual [8], STRUCTURE uses a more conservative method for
converging on RMS stress in comparison to the previous option. This implicates that
this choice for convergence criteria, is likely to yield accurate results for most
quantities, although it also increases the computation time for most runs.
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4.2.2 Multi-pass convergence algorithm
The convergence algorithm consists ofthe following steps [1]:

1. At the start of the calculation the polynomial order of all edges is set to the minimum
polynomial order specified by the user. The default minimum polynomial order is 1.

2. A finite element solution is carried out.

3. Point displacements and rotations over a grid of sample points along each element edges are
calculated and stored. Also the total strain energy of each element is calculated and stored.

4. If this is the first iteration, all the edges are updated by one polynomial order, and steps (2) and
(3) are repeated. A minimum of two successive iterations is required in order to proceed with
the convergence check devised in the subsequent steps.

5. The total strain energy of the model is calculated and stored, and the error in the global energy
norm (an RMS stress measure) is estimated from the three point extrapolation formula given by
SzabO and Babuska [4]. If this is the second iteration, the error is estimated from the strain
energy change relative to the first iteration, without extrapolating. This calculated quantity is
only used for convergence checking when 'Local displacement & local strain energy & RMS
stress' is used as a convergence criteria.

6. The local edge displacements and element strain energies are compared with the values from
the previous iteration. When local displacement and strain energy are selected for convergence,
the local displacement and strain energy percent differences have to be less than the user input
tolerance, to consider the results to be converged and stop the iteration. When the RMS stress
is taken in account for convergence as well, the percent difference in estimated error in the
global energy norm also has to be less than the user input tolerance. The iteration also stops if
the user has selected a particular response quantity for convergence control, a measure, and the
change in that quantity is less than the tolerance.

7. If the percent differences between the current results and the results of the previous iteration are
greater than the user input tolerance, the polynomial orders of the edges are updated.

8. The following rules determine which edges are updated:

a) Edges for which the differences in displacements exceed the tolerance are updated by
one polynomial order. If the coefficients of all odd or all even symmetry functions
along a particular edge are negligible, the edge is updated by two polynomial orders to
account for symmetry. The coefficients of the higher-order shape functions are also
examined. If it is found that the higher-order coefficients are small relative to the lower
order coefficients, the update- is not pe-rformed. This prevents unnecessary updates due
to rigid motion.

b) If the square root of the difference in strain energy of an element relative to the
previous iteration exceeds the tolerance, all edges of the element which have not
already been updated in conjunction with (a) are updated by one polynomial order. The
energy content of the higher-order shape functions is also examined. If it is found that
the higher-order functions contribute negligibly relative to the lower-order functions,
the update is not performed. This prevents updates due to changing strain energy
contributions oflower-order shape functions.
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c) For multiple load sets or modes, the update patterns for each load set or mode are
merged with an 'or' option. The fmal update pattern therefore reflects the combined
effects of all the load sets or modes. Different update patterns, and hence slightly
different results, are obtained if two load sets are run in the same analysis or in two
separate analyses.

9. If the polynomial order update requires that the polynomial order of an edge exceed the
maximum allowable order, the results are considered to be not converged and the iteration
stops. OtheIW'ise, another 'p-loop' iteration is carried out by returning to step (2) and
performing a new analysis with the updated polynomial orders.

In the above iterative procedure, it is possible that the displacements will converge more
rapidly along some edges than others, and that the strain energies of some elements will
converge more rapidly than others. Once convergence is reached for an edge or element, the
local polynomial order update stops, although the polynomial order may continue to be updated
for edges in other parts of the model where stress and displacement gradients are higher. This
often leads to an inhomogeneous distribution of edge orders, which is computationally efficient,
since high-order shape functions are employed only where they are needed.

The above convergence algorithm estimates error by the size of 'the last telTIl in the series', and
does not predict the exact error. Also, the convergence algorithm is driven by displacements
and strain energy, which are lrnown to converge faster than stresses. For stress convergence, a
stress quantity should be selected as a response quantity to control convergence. To interpret
the quality of the results, it is possible to examine convergence curves for specific quantities of
interest. The value of the quantity is then plotted versus the pass number, see figure 4.1.

23

SP



Adaptive p-method in ProlMECHANICA STRUCTURETM

SP

V
1
a
g

-
S
t
r
e
s

V
M

25 - - - - - - - -, - - - - - - - - - - - - - - - - -

,
I I ,

20 -,- - - - - - - - r - - - - - - - -,
, I

I 1

, I

, , 1

15 - - - - - - - -, - - - - - - - - .. - - - - - - - -,, ,
I ,

I

10 - - - - - ... - - - - - - - - .. - - - - - - - -,,
,
,

, I ,

5 - - - - - - - -. - - - - - - - - .. - - - - - - - -I, ,
I,

1 2

P Loop Pass

3 4

figure 4.1: Convergence plot

In figure 4.1 the value of a measure on one point in a model vs. the pass number of an analysis
is plotted. The used measure in figure 4.1 is Von Mises stress. The relative difference between
successive values should be smaller than a user defmed tolerance. In this example the relative
difference between the value of pass 3 and the value of pass 4 is smaller than the specified

tolerance, so the iteration stopped after pass 4.

4.3 Single-pass

4.3.1 General theory ofsingle-pass
For the single-pass adaptive convergence algorithm, the engine first solves the problem at
polynomial order 3, estimates stress errors, raises the polynomial orders of each element to a

higher level based on the magnitude of the local stress errors, and then carries out a second
solution using the updated polynomial orders. The results of this second solution are output as
the fmal results.

. After solving with the updated polynomial orders, the engine calculates a stress error measure
and writes it to the summary file. This provides feedback as to the level of accuracy of the
solution, similar to the convergence data supplied by the multi-pass approach.

According to the European customer support, the new algorithm is expected to deliver results
which are accurate for most engineering purposes, i.e., a comparable level of accuracy to the

multi-pass algorithm with default settings, but with much better perfonnance than the multi
pass algorithm for most models, both in terms of time and disk/memory resources. Although
the new algorithm does not rely on a convergence loop and hence provides no convergence
plots, the new algorithm is adaptive, and is well differentiated with respect to accuracy relative
to h-element discretisation.
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If the user elects to use the iterative solver, the engine fIrst solves the problem at polynomial
order 2 with the block solver, then uses the iterative solver for the uniform polynomial order 3
pass and for the third pass where the edges have been updated to their fmal values. The

polynomial order 2 pass with the block solver is necessary for the engine to compute an
efficient preconditioner for the iterative solver.

In STRUCTURE version 8 the use of single-pass is restricted to solid models with a single
isotropic material. In future releases single-pass will be available for a wider range ofmodels.

4.3.2 Error estimates

The stress error estimates reported in the summary file are calculated by sampling the local
error estimates (the same used to update polynomial orders with single-pass). The local stress
error estimates for the new algorithm are obtained by comparing the superconverged stress
values with the conventionally calculated stress values. This method of improving stress
accuracy and estimating stress error is based on the work by Zienkiewicz and Zhu [6],
sometimes referred to as the Z2-method, for further information the reader is referred to [6].

Superconvergent stress recovery was already implemented in STRUCTURE version 7.1 to
improve stress accuracy, and in STRUCTURE version 8 the same technology is employed as
the basis for the single-pass adaptive convergence algorithm.

4.3.3 Use ofnew algorithm in practice

According to the European customer support, internal tests of the single-pass adaptive
algorithm on typical models in the several thousand element range have shown that results are
within 1% on displacement and 5% on stress, relative to the multi-pass algorithm with default
settings. Those default settings are local displacement and local strain energy with a tolerance
of 10%. For the block solver, they have observed that on average, the engine runs 10 times
faster, and uses 1/4 as much disk space with the single-pass algorithm than with the multi-pass
algorithm with default settings. For the iterative solver, the corresponding fIgures are 3 times
faster with 2/3 disk space usage, in comparison to the multi-pass algorithm with iterative
solver.

In this research it was not possible to investigate these numbers extensively, but with a test on
one model of approximately 5600 solids it was found that the engine ran 3 times faster, 11
hours instead of 33. This seems very promising because it means that within T&0 that
particular model can be analysed overnight instead of during a weekend. The results with
single-pass are not checked on accuracy within this research.
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5. PRACTICAL PROBLEMS

5.1 General
When big models are being analysed with STRUCTURE, long calculation times are to be
expected. The big models within SP contain several thousand elements. An example of such a
model is the drag strut of an Embraer EMB 145, a part of the nose landing gear of an

aeroplane, see figure 5.1.

figure 5.1: FE-model ofa drag strut

This actual model consists of approximately 5600 solid elements (tetrahedrons) and an analysis .
will take about 33 hours. Analysing such models during working hours is not possible since the
network would be loaded to much then. The analyses have to be done overnight or during the.
weekend.

Although the analyses of such models are done mostly outside working hours, sometimes an
analysis has to be stopped. For instance when the engineer needs results at that moment or
when the network is loaded to much. When using the multi-pass algorithm, such a stop means
that the FE-solution has not converged until the specified tolerance. It happened that the
convergence value was still at 80% at the time of aborting the analysis. This seemed to
implicate a very large deviation of the asked convergence tolerance since the convergence value
needs to go from 100% towards the user specified tolerance. When actual fmal values were
determined, using experimental techniques, it was found that the results from the aborted run
were actually within 5% of the experimental results.

Such contradictions together with the long and unpredictable calculation times and the big
temporary ftles, made it necessary to gain a better insight in the analysis methods used within

STRUCTURE as described in the previous chapters. In order to try to determine the influence
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of some important settings in the program on the quality and accuracy of the results, as well as
on calculation times and disk storage, simple models were created and analysed.

5.2 Banner 2-D
A model in the shape of a banner, using shells and beams, was created, see figure 5.2. The
numerical values of the model and the analyses are in appendix B. The surface of the shells
was loaded with a uniformly distributed load in the x-direction. The points at the bottom of the
two vertical poles were fixed. For convergence several different convergence criteria were used
and analysed. Also one analysis was done where the shells were excluded from upgrading after
polynomial order 2. This means that the edge order of all the shells would remain at p=2 in
spite of what the result of the convergence check is. The results for displacement and stresses
for all the different settings are comparably the same and are discussed in appendix B. The size
of global matrix profiles are examined, but calculation times are not examined, because the
analyses are conducted on different work stations.

~

f-

[9~ - ""
~

figure 5.2: FE-model ala 2-D banner

5.2.1 Local displacement & Local strain energy 1%
When local displacement & local strain energy (LD&SE) is used for convergence,
STRUCTURE calculates until convergence is reached for the two convergence criteria, for the
displacements along each edge and for the strain energy of each element. With a tolerance of
I%, the analysis did not converge within the maximum polynomial order (p=9). The maximum
edge order was reached within 2 elements. In figure B.2 in appendix B the p-Ievels of the
different edges are visible. Here it is clearly visible that the shells are all going to edge order 4
or higher. This is not wished for since the block of shells is almost like a rigid body: the
differences in displacement over the block are very small and the stresses within this block are
also small. At the connection of the vertical beams and the shells there is a high gradient in
strain energy which makes it understandable that a higher polynomial order is needed in those
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elements in comparison to the elements in the middle of the banner. The higher order elements
in the middle of the banner are a result of the big displacements for those elements. Since the
upgrading of the elements is based on displacements and strain energies, as discussed in
chapter 4, the edge orders in the middle will go up due to the large displacements. These higher
orders for the shells occur in practice, but according to reference [1], there should not have
been such an increase for the polynomial orders of the shells, since the displacement of the
shells can be seen as a rigid body motion. As described in paragraph 4.2.2 under point 8.a),
unnecessary updates due to rigid body motion should be accounted for. Where this discrepancy
originates from, was not found during this study. The size of the global matrix profile for the
final pass was 862 kb.

A way ofkeeping the edge orders lower in the middle of the banner was looked for. It was tried
with two other convergence criteria: a measure on x-displacement and a measure on Von Mises
stress.

5.2.2 Measure 1: 1% x-displacement
A measure was placed on one of the vertical poles, a measure for the displacement in the x
direction with a tolerance of 1%. The p-Ievels for this analysis are shown in figure B.3. This
time the analysis did convergence. Polynomial order 5 was needed for the shells where the poles
and the banner are connected. Again the high polynomial orders for the rest of the shells was
found (p = 4), even though the measure was placed on a vertical pole. This is possible since the
convergence check and the upgrading are two separate things. The convergence check is
committed on the x-displacement for a point on a vertical pole, but when convergence is not yet
achieved, the upgrading of the element edges is done with local displacement & local strain
energy, as described in chapter 4. The large displacements in the banner still give the high
polynomial orders in that banner. The size of the global matrix proftle for the fmal pass was
413 kb. This is evidently much smaller than with the LD&SE criteria The reason for this is the
lower p-order reached after convergence. With LD&SE order 9 was achieved and here only
order 5 was reached. Lesser shape functions and coefficients had to be used and calculated
which also means that the matrices stay smaller in comparison to the LD&SE criteria

5.2.3 Measure 2: 1% Von Mises stress
At one of the fixed points, a measure for the Von Mises stress was placed with a tolerance of
1%. The same distribution of the p-levels over the different element edges as with measure 1
occurred when an analysis was done. Here again the upgrade scheme as discussed in chapter 4
is responsible for the high p-levels within the banner. The size of the global matrix profIle for
the fmal pass was 413 kb, exactly the same as with measure 1.

5.2.4 Excluded elements
This analysis was done using the LD&SE convergence criteria set to 1%. The shells were
excluded from convergence after polynomial order 2. Obviously the orders in the banner are
low for this analysis, as we tried to accomplish with the previous convergence criteria.
Excluding of elements, however, is dissuaded by the supplier of STRUCTURE. This is
understandable because with excluding the elements from upgrading, you influence the model.
In this particular example the results are comparably the same as when you don't exclude, see
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appendix B. The size of the global matrix profile for the fmal pass was only 58 kb. The small
size of the matrix for this analysis is understandable since only the beams reach high orders,
until order 4. The shells are excluded from convergence after order 2. Therefore there are no
new shape functions needed for the shells and the matrices stay relatively small.

5.3 Banner 3-D
Within T&O of Daf SP most of the models are imported from the CAD-program
ProIENGINEER. The models are build with volumes and when the automatic mesher
(AutoGEM) is used, solid elements (tetrahedrons) are created. This is the reason why a three
dimensional model was created and meshed using AutoGEM, see figure 5.3. For this model
again a banner was used. The two surfaces of the banner in the xy-view are loaded with an
uniformly distributed load in the x-direction. The bottom surfaces of the two vertical poles are
fixed. In appendix C the numerical values of the model and the results are shown. With the 3-D
banner the results in displacement and stresses are comparably the same for all three analysis
and shown in appendix C. Again the calculation times could not be checked because the
analysis are conducted on different work stations.

SP

figure 5.3: FE-model ofa 3-D banner

The model was analysed using both the convergence algorithm's: multi-pass as well as single
pass. With multi-pass different convergence criteria were used: LD&SE at 5% and
LD&SE&RMS at 5%.

5.3.1 LD & SE 5%
For convergence the multi-pass algorithm with the criteria LD&SE was used, with a tolerance
of 5%. The run was completed successfully and the p-Ievel plot after convergence is shown in
appendix C, figure C.3. In this plot it is clearly visible that the edge orders in the banner are
small in comparison to the edge orders in the vertical poles. This is what was expected since the
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high deformations are in the vertical poles and not in the banner. As discussed with the 2-D
banner, the banner can be considered a rigid body in comparison to the vertical poles. At the
connection of the poles and the banner the edge orders are higher as in the rest of the model
This was expected as well since at those points the largest gradients in the stresses and strains
are available. The size of the global matrix profile for the fmal pass was 6.462 Mh.

5.3.2 LD & SE & RMS 5%
Again the multi-pass convergence algorithm was used. For a convergence criteria,
LD&SE&RMS was used. and the run was completed successfully. As mentioned earlier, the
RMS stress over the entire model is now taken into account in addition to local displacement
and local strain energy. The p-Ievel plot in appendix C, figure C.S, shows a similar distribution
of the edge orders as with LD&SE, only for higher levels. Again the vertical poles show higher
p-Ievels than the banner and the highest edge orders are at the connection of the poles with the
banner. The size of the global matrix profIle for the fmal pass was 33.611 Mh. This is much
bigger than the global matrix profIle when LD&SE is used as a convergence criteria. The big
size is originating from the higher edge orders which occur. For instance the edge orders in the
vertical poles. In the vertical poles for the LD&SE criteria, most of the edge orders are p=4,
and for the LD&SE&RMS criteria, the edge orders are p=8. This is clearly visible in appendix
C, the figures C.3 and C.S.

5.3.3 Single-pass
When the single-pass convergence algorithm is used to analyse the 3-D banner, the p-Ievel
distribution over the model is again of the same fonn as with the multi-pass algorithm, see
appendix C, figure C.? The p-levels are lower as with multi-pass. Within the vertical poles the
edge orders only are upgraded there were large stress/strain gradients are present. In the middle
of the poles, where the defonnations are small, the edge orders are staying at order three. The
size of the global matrix profIle for the fmal pass was 11.284 Mb. This is hard to compare with
the two multi-pass analyses. When the matrix sizes are looked at as an indication of the
calculation times, then it should be taken in account that the set of equations with single-pass
does not need to be solved so many times as with multi-pass. Even when the matrices are
bigger then, the calculation times can still be smaller.
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5.4 Conclusions for practical problems
When a model is analysed with a part of it which can be considered as a rigid body, shells seem
to be upgraded more than solids. This upgrading is due to the upgrading scheme that is used
within STRUCTURE, described in chapter 4. The large displacement of the shells delivers the
higher p-levels in those shells. The solid elements do not show such a property, although with
the examined 3-D model there was a rigid body displacement as well. It seems that the
upgrading scheme for solids is different from that of the shells. This also was mentioned as an
idea by the supplier of STRUCTURE. Such a different upgrading scheme was not found in the
manuals or in literature.

The single-pass algorithm also keeps lower p-levels, in the part of the examined 3-D model
which can be looked at as a rigid body. Between the multi-pass and the single-pass analyses of
the 3-D model there could not be found a significant difference in the distribution of the p
levels.
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6. CONCLUSIONS & RECOMMENDATIONS

6.1 Conclusions
As it is claimed by the developer of STRUCTURE, the program is very user-friendly.

The theory of the p-method, as it is implemented in STRUCTURE, is well described within
this report. It is shown that not all the advantages of the p-method, with hierarchical shape
functions based on the integrals of Legendre polynomials, are used. For instance, the expected
diagonality of the stiffness matrix does not occur with large models in practice.

Finding the right models to test settings of the program, is found to be a very difficult subject.
But with the used models a few properties are found:

• Solid elements seem to have a better behaviour in comparison to shells when a 'rigid
body' is analysed.

• Settings for lowering the calculation times and the disk storage capacity for the multi
pass algorithm are not found.

• The single-pass algorithm seems to give a large reduction in calculation times, in
comparison to the multi-pass algorithm.

6.2 Recommendations
In order to get a better understanding of the long calculation times, it should be investigated
why the matrix diagonality does not occur.

Investigate the accuracy of the results of the single-pass algorithm, in order to make more use
of this convergence algorithm. To get a better understanding of this algorithm, the stress error
estimation theory used, the Z2 method of Zienkiewicz and Zhu, should be examined more
theoretically.

To decrease the calculation time of an analysis, it is recommended to perform a calculation
locally. This means that the temporary files as well as the result files should be written to the
local hard disk. This to avoid the data traffic over the network, which is considerably slower
than the data traffic internally in a work station.

The large temporary files in the order of Gigabytes, produced during an analysis, are a
permanent property of STRUCTURE when big models are calculated., and seems
unavoidable.
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8. APPENDIX A: LEGENDRE POLYNOMIALS

This description of the Legendre polynomials is taken from reference [4]. The Legendre
polynomials Pn(x) are solutions of the Legendre differential equation for n = 0,1,2, ... :

SP

(1- Xl )y"-2x;1 +n(n+ l)y = 0, -1~x~1 (A.1)

The fIrst eight Legendre polynomials are:

lri(x) =1

~(x) = x

~(x)= ~(3Xl -1)

~(x)= ~(SX3 -3x)

~(X)= ~ (35x 4 -30xl +3)

~(x)= ~(63x5 -70x3+15x)

~(x)= 1~ (231x 6 -315x4 +105x2 -5)

~(X)= 1~(429X7 -693x5 +315x3-35x)

Legendre polynomials can be generated from Bonnet's recursion formula:

(n +1)Pn+1 (x) =(2n +1)xP,. (x) - np,,-l (x), n = 1,2,...

and Legendre polynomials satisfy the following relationship:

(2n + I)Pn(x) =P n+l (x)- P n-1 (x), n = 1,2,...

(A.2.a)

(A.2.b)

(A.2.c)

(A.2.d)

(A.2.e)

(A.2.f)

(A.2.g)

(A.2.h)

(A.3)

(A.4)

(A.S)

where the primes represent differentiation with respect to x. Legendre polynomials satisfy the
following orthogonality property:

1

{

2 fi"-- orz=)L~ (x )1j (x )dx = 2i +1
1 0 for i:t:- j

All roots ofLegendre polynomials occur in the interval-I < x < +1. The n roots ofPn(x) are the
abscissas Xj for the n-point Gaussian integration:

1 nLl(x)dx ~ I wJ(xi )
i=1

(A.6)

The abscissas Xi and weight factors Wi for Gaussian integration are listed in table A.I.
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Table AA.l. Abscissas and weight factors for
Gaussian integration

n=2

0.5773502691 89626 ooסס1.0 ooססoo0סס0

n=3

ooססoo0ססoo0סס0.0

0.774596669241483
0.88888 88888 88889
0.555555555555556

n=4

0.33998 1043584856
0.861136311594053

0.6521A 51548 62546
0.347854845137454

n=5

ooססoo0ססOO0סס0.0

0.538469310105683
0.90617 98459 38664

0.56888 88888 88889
0.4786286704 99366
0.23692 68850 56189

n=6

0.238619186083197
0.6612093864 66265
0.93246 95142 03152

0.467913934572691
0.360761573048139
0.171324492379170

n=7

ooססoo0ססoo0סס0.0

0.4058451513 77397
0.74153 1185599394
0.949107912342759

0.417959183673469
0.38183 00505 05119
0.279705391489277
0.1294849661 68870

n=8

0.18343 46424 95650
0.525532409916329
0.7966664774 13627
0.9602898564 97536

0.36268 37833 78362
0.31370 66458 77887
0.2223810344 53374
0.101228536290376

n=9

O.QOOOO oo0סס 00000
0.32425 3423403809
0.613371432700590
0.83603 1107326636
0.96816 02395 07626

0.330239355001260
0.312347077040003
0.2606106964 02935
0.180648160694857
0.081274388361574

n = 10

0.148874338981631
0.433395394129247
0.679409568299024
0.865063366688985
0.9739065285 17172

0.2955242247 14753
0.269266719309996
0.219086362515982
0.149451349150581
0.06667 13443 08688

table A.l: Abscissas and weightfactorsfor Gaussian integration
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9. APPENDIX B: BANNER 2-D

The model of the 2-D banner is shown in figure B.1 and in figure 5.2 a FE-model.

C>
C>

a b
5

figure E.l: Model ofa 2-D banner

Properties:

Constraints:

The points a and b are constrained in all degrees of freedom, these points are fixed to the
ground.

Loads:

The surface A is loaded with an uniformly distributed load in the x-direction, FX = 100.

Material:

The material is steel with a young's modulus of 199900 and a poisson's ratio of 0,27.
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Analytical results:

When the surface a is looked as a rigid body, the deflection in the x-direction of the point b on
the one of the vertical poles can be detennined using the Roark's formula [7] for a beam which
is simply supported at the one end and fixed at the other end. This formula is:

F·13

x = (B. 1)
12·E·1

in which:

F: Half of the load due to symmetry, F =: 50

1: Length of the pole, I =100

E: Young's modulus, E = 199900

4

I: Area moment of inertia about the centroidal axis of the beam section, 1 = !!:..-
12

a: Length of the sides of the pole, a = 5

This leads to a deflection of: x = 0,4002

Mesh of elements:

Beams:

Alongside of the vertical poles and the short side of the surface, eighteen beams were placed.
Six beams on each vertical pole and three along each of the short sides of the surface.

Shells:

On surface A eighteen rectangular shells were placed. The long side of the surface was divided
in six sections and the short side in three. The properties of the shells and the beams are shown
in table B.l.

SP

beams

shells

square, length of sides = 5

thickness = 5

table B.1: Properties ofthe elements

Analyses:

Local displacement & local strain energy, 1%

In figure B.2 fringe plots for the p-levels, the Von Mises stress, and the displacements are
visualised.

Measure on x-displacement, 1%

In figure B.3 fringe plots for the p-Ievels, the Von Mises stress, and the displacements are
visualised.

Excluded elements

In figure B.4 fringe plots for the p-Ievels, the Von Mises stress, and the displacements are
visualised.
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10. APPENDIX C: BANNER 3-D

The model of the 3-D banner is shown in figure C.I and in figure 5.3 a FE-model.

SP

c:>
c:>

a b
5

figure C.l: Model ofa 3-D banner

The thickness in the z-direction is 5.

Properties:

Constraints:

The ground surfaces a and b are constrained in all degrees of freedom, these surfaces are fixed
to the ground.

Loads:

Both the front and back surfaces of the banner are loaded with an unifonnly distributed load in
the x-direction. They both are FX =50.

Material:

The material is steel with a young's modulus of 199900 and a poisson's ratio of 0,27.

Mesh of elements:

For generating a mesh of elements, the automatic mesher within STRUCTURE is used. Using
this feature, 44 solid elements were created, all tetrahedrons.
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Analyses:

Local displacement & local strain energy, 5%

In figure C.2 fringe plots for the p-levels, the Von Mises stress, and the displacements are
visualised. Figure C.3 shows a larger plot of the p-levels so every edge is visible.

Measure on x-displacement, 1%

In figure CA fringe plots for the p-levels, the Von Mises stress, and the displacements are
visualised. Figure C.5 shows a larger plot of the p-Ievels so every edge is visible.

Excluded elements

In figure C.6 fringe plots for the p-Ievels, the Von Mises stress, and the displacements are
visualised Figure C.7 shows a larger plot of the p-Ievels so every edge is visible.
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figure C.5: P-level plot ofthe LD&SE&RMS 5% analysis on the 3-D banner
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figure C. 7: P-level plot ofthe single-pass analysis on the 3-D banner
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