Advanced Mechanical Engineering Solutions

HOMEPAGE CALCULATORS EXAMPLES GUIDELINES

SECTIONAL PROPERTIES CALCULATOR - SOLID RECTANGULAR BAR

stainless steel rebar

 for a longer lifetime and lower maintenance costsRectangular bars (including square bar) are solid flats) with rectangle cross section. They are 〔 produced from stainless steel, carbon steel, alloy s aluminum. Manufacturing method for rectangular I cold/hot rolling and drawing. Rectangular bars are of manufacturers in variety of sizes. Steel rectangular covered by ASTM A108 "Standard Specification f Bar, Carbon and Alloy, Cold-Finished", A36/A36m " 5 Specification for Carbon Structural Steel" and AST "Standard Specification for Stainless Steel Bars and standards.

The following calculator has been developed to calc
sectional properties of rectangular solid bar.

Calculator:

Density	p	0	$\mathrm{g} / \mathrm{cm}^{\wedge} 3$
Calculate			

OUTPUT PARAMETERS			
Parameter	Symbol	Value	Unit
Cross section area	A	9600	$\mathrm{mm} \wedge 2$
Mass	M	0	kg
Second moment of area	I_{xx}	32000000	
Second moment of area	I_{yy}	1843200	
Section modulus	$S_{x x}$	320000	
Section modulus	S_{yy}	76800	
Radius of gyration	r_{x}	57.735	
Radius of gyration	r_{y}	13.856	
CoG distance in x direction	$\mathrm{x}_{\text {cog }}$	24	
CoG distance in y direction	$\mathrm{y}_{\text {cog }}$	100	

Note: Use dot "." as decimal separator.

Definitions:

Second Moment of Area: The capacity of a cross-section to resist bending.
Radius of Gyration (Area): The distance from an axis at which the area of a body may be assume concentrated and the second moment area of this configuration equal to the second moment area of the act about the same axis.

Section Modulus: The moment of inertia of the area of the cross section of a structural member divider distance from the center of gravity to the farthest point of the section; a measure of the flexural strength of thi

Supplements:

Link	Usage

Simply Supported Beam Deflection Calculation Example

Rectangular Beam Design for Strength

An example on calculation of max. deflection, max. shear force, max. bending moment and mid-span slope/deflection of a simply supported beam under multiple point loads and a distributed load.

This calculator has been developed to calculate normal stress, she stress and Von Mises stress on a given cross section of a rectangular sol beam.

List Of Equations:

SOLID RECTANGLE			
		$\left\{\begin{array}{l} \pi_{\text {sog }} \\ \mathbb{R}_{2} \\ \ldots \end{array}\right.$	
Step	Parameter/Condition	Symbol	Equation
1	Cross section area	A	$\mathrm{A}=\mathrm{BH}$
2	Area moment of inertia	$I_{\text {xx }}$	$\mathrm{I}_{\mathrm{xx}}=\mathrm{BH}^{3} / 12$
3	Area moment of inertia	$l_{y y}$	$\mathrm{l}_{\mathrm{yy}}=\mathrm{HB}^{3} / 12$
4	Section modulus	$S_{x x}$	$S_{x x}=I_{x x} / y_{\text {cog }}$
5	Section modulus	S_{yy}	$S_{y y}=I_{y y} / x_{\text {cog }}$
6	Center of gravity	$\mathrm{x}_{\text {cog }}$	$\mathrm{x}_{\mathrm{cog}}=\mathrm{B} / 2$
7	Center of gravity	$y_{\text {cog }}$	$y_{\text {cog }}=\mathrm{H} / 2$
8	Mass	M	$\mathrm{M}=\mathrm{AL} \rho$
9	Radius of gyration	r	$r=(1 / \mathrm{A})^{\wedge} 0.5$
10	Polar moment of inertia	J	$J=I_{x x}+I_{y y}$

Reference:

- Oberg.E , Jones.D.J., Holbrook L.H, Ryffel H.H., (2012) . Machinery's Handbook . 29th edition. Industrial Press 234-256

Copyright © 2013-2016 | About us | Contact us | Disclaimer | Privacy Policy

