HOMEPAGE CALCULATORS EXAMPLES GUIDELINES

SECTIONAL PROPERTIES CALCULATOR - SOLID RECTANGULAR BAR

stainless steel rebar

for a longer lifetime and lower maintenance costs

Rectangular bars (including square bar) are solid flats) with rectangle cross section. They are g produced from stainless steel, carbon steel, alloy s aluminum. Manufacturing method for rectangular I cold/hot rolling and drawing. Rectangular bars are of manufacturers in variety of sizes. Steel rectangular covered by ASTM A108 "Standard Specification f Bar, Carbon and Alloy, Cold-Finished", A36/A36m "Specification for Carbon Structural Steel" and AST "Standard Specification for Stainless Steel Bars and standards.

The following calculator has been developed to calculator

sectional properties of rectangular solid bar.

Calculator:

INPUT PARAMETERS				
Parameter	Symbol	Value	Unit	
Height	Н	200		
Width	В	48	mm	
Length	L	8000		

Density	р	0	g/cm^3	
Calculate				

OUTPUT PARAMETERS				
Parameter	Symbol	Value	Unit	
Cross section area	А	9600	mm^2	
Mass	М	0	kg	
Second moment of area	I _{xx}	32000000	mm^4	
Second moment of area	l _{yy}	1843200		
Section modulus	S _{xx}	320000 mm^3		
Section modulus	S _{yy}			
Radius of gyration r _x 57.		57.735		
Radius of gyration	r _y	13.856	mm	
CoG distance in x direction	X _{cog}	24	24 mm	
CoG distance in y direction	Усод	100		

Note: Use dot "." as decimal separator.

Definitions:

Second Moment of Area: The capacity of a cross-section to resist bending.

Radius of Gyration (Area): The distance from an axis at which the area of a body may be assume concentrated and the second moment area of this configuration equal to the second moment area of the act about the same axis.

<u>Section Modulus:</u> The moment of inertia of the area of the cross section of a structural member divided distance from the center of gravity to the farthest point of the section; a measure of the flexural strength of the

Supplements:

Link Usage

	An example on calculation of max. deflection, max. shear force, max. bending moment and mid-span slope/deflection of a simply supported beam under multiple point loads and a distributed load.
Rectangular Beam Design for Strength	This calculator has been developed to calculate normal stress, she stress and Von Mises stress on a given cross section of a rectangular solbeam.

List Of Equations:

Reference:

■ Oberg.E , Jones.D.J., Holbrook L.H, Ryffel H.H., (2012) . Machinery's Handbook . 29th edition. Industrial Press 234 - 256

Copyright © 2013-2016 | About us | Contact us | Disclaimer | Privacy Policy