EXAMPLE 3-2

Strasses on Oblique Plones The members of the truss in Fig. 3-8 have equal cross-sectional areas A =400 mm². The suspended mass is m = 3400 kg. What are the normal stresses

| FIGURE 3-8

Strategy

We can use the method of joints to determine the axial force in each member and divide by A to determine the normal stress.

Solution

In Fig. (a) we draw the free-body diagram of joint B of the truss. The angle $\theta = \arctan(4/8) = 26.6^{\circ}$.

(a) Joint B.

From the equilibrium equations

$$\Sigma F_x = -P_{BC} - P_{BD} \cos \theta = 0,$$

$$\Sigma F_y = -P_{BD} \sin \theta - mg = 0,$$

we obtain $P_{BC} = 2mg$, $P_{BD} = -2.24mg$. Continuing in this way, we obtain

Member:
$$BC$$
 BD CD CE DE
Axial force: $2mg$ $-2.24mg$ $-1.33mg$ $2.40mg$ $-2mg$

Distituting the values $m = 3400 \text{ kg}$ and

Substituting the values m = 3400 kg and $g = 9.81 \text{ m/s}^2$ and dividing by A = 400×10^{-6} m², the stresses are

Member: BCBDCDNormal stress (MPa): 167 -186-111200

e bar to

4 kip.

e bar to

t B is

r freeg. (c)].

by#2