

Suggested Technique for Interpreting Pro/MECHANICA Structure ASCII Output Files

Introduction

This suggested technique describes the contents and format of the output files created by Pro/MECHANICA Structure. By default, these files are created in binary format so they are not directly readable. If the ASCII output file format is selected on the Run Settings form, the Pro/MECHANICA Structure engine will create the result files in ASCII format, which will allow the files to be viewed directly and utilized as input for other applications if desired.

Procedure

1. Begin by selecting the ASCII file format on the Run Settings Form as shown in Figure 1.

Figure 1

2. Once ASCII file format is selected, all the Pro/MECHANICA Structure engine output files will be created in ASCII file format. The content and formatting of these files is explained below:

(1) OUTPUT DIRECTORY TREE

The engine places output files in a directory called STUDY, where STUDY is the name of the design study, and in subdirectories called ANLYS1, ANLYS2, ..., where ANLYS1, ANLYS2, ... are the names of the analyses. For dynamic time and frequency analyses more files may be placed in ANLYS1/STEPn for each time or frequency step with full postprocessing, where n corresponds to the master interval number in the analysis definition. For large deformation static analyses, files will be placed in ANLYS1/STEPn, where n corresponds to the load interval number. For shock response, files will be placed in ANLYS1/SHOCK. For transient thermal analysis, files will be placed in ANLYS1/STEPn, where n corresponds to the master interval number.

A design study has one or more analyses. An analysis has one constraint set and one or more load sets or modes.

A schematic representation of the output tree structure is shown below:

The list of files shown above is the list of all possible output files. Some of these files may not be created depending on the analysis options, analysis type and design study type.

(2) DISPLACEMENT/STRESS, TEMPERATURE/FLUX POST-PROCESSING FILES

A uniform grid is created and laid on top of the geometric element model for the purpose of post-processing. This grid splits up the geometric elements into smaller regions of the same kind: quadrilateral geometric elements are split up into quadrilateral regions, brick geometric elements are split up into brick regions, e.t.c.. The only exception are tetrahedral geometric elements that are split up into tetrahedral and octahedral regions.

In this document the geometric elements are referred to as "p-elements" while the regions defined by the grid are referred to as "h-elements". The nodes that are part of the geometric element model are referred to as "p-nodes" while the nodes of the grid are referred to as "h-nodes". Note that the "h-nodes" that are also "p-nodes" are numbered consistently in both sets.

```
study/study.pnu
"p-nodes" pnod
"p-elements" pnel
iel iej nod1 nod2 nod3 nod4 nod5 nod6 nod7 nod8
iel iej nod1 nod2 nod3 nod4 nod5 nod6 nod7 nod8
iel iej nod1 nod2 nod3 nod4 nod5 nod6 nod7 nod8
```

"

```
Notes: Connectivity of the geometric element model
    pnod: total number of p-nodes
    pnel: total number of p-elements
    iel: p-element number
    iej: total number of edges of this p-element;
       e.g. for a quadrilateral element iej=4
    nod1-nod8: the numbers of the nodes defining this p-element;
           n/a node numbers are set equal to zero;
           e.g. for a quadrilateral element nod5...nod8=0
study/analysis/study.neu
"h-nodes"
               hnod
   inod x y z
    iind inod1 inod2 i nod3 inod4 inod5 inod6 inod7 inod8
    iind inod1 inod2 inod3 inod4 inod5 inod6 inod7 inod8
   inod x y z
    iind inod1 inod2 inod3 inod4 inod5 inod6 inod7 inod8
     "...
"h-elements"
                hnel
  iel iej nod1 nod2 nod3 nod4 nod5 nod6 nod7 nod8
   iel iej nod1 nod2 nod3 nod4 nod5 nod6 nod7 nod8
   iel iej nod1 nod2 nod3 nod4 nod5 nod6 nod7 nod8
   "...
Notes: Connectivity of the grid
    hnod: total number of h-nodes
    inod: h-node number
    x,y,z: coordinates of this h-node in global rectangular system
    iind: indicator categorizing this h-node as follows:
     iind=0: this h-node is a p-node
     iind=1: this h-node is internal to a p-element edge
     iind=2: this h-node is internal to a p-element tri. face
     iind=3: this h-node is internal to a p-element quad. face
     iind=4: this h-node is internal to a tetrahedron p-element
     iind=5: this h-node is internal to a wedge p-element
     iind=6: this h-node is internal to a brick p-element
    inod1-inod8: p-node numbers defining the p-elements, p-
            element faces and p-element edges referred to by
            the indicator iind;
            n/a node numbers are set equal to zero;
    hnel: total number of h-elements
    iel: h-element number
    iej: total number of edges of this h-element;
       e.g. for a quadrilateral element iej=4;
       octahedral h-elements have iej=-12 so that they can be
       distinguished from bricks that also have 12 edges
    nod1-nod8: the numbers of the nodes defining this h-element;
           n/a node numbers are set equal to zero;
           e.g. for a quadrilateral element nod5...nod8=0
study/analysis/study.mor
```

http://support.ptc.com/cs/cs_24/howto/mst1283/mst1283.htm

```
"material_orientations"
    iel inod
    e1_x e1_y e1_z e2_x e2_y e2_z
    iel inod
    e1_x e1_y e1_z e2_x e2_y e2_z
Or in column notation this is:
    mo 01 mo 02 mo 03 mo 04 mo 05 mo 06
Notes: this is the material orientation file
    All quantities are calculated at the h-node locations.
    All quantities are reported with respect to
    the WCS.
    Note that h-nodes that are common to more than one
    p-element will be assigned more than one value set (one
    for each p-element).
    Only h-nodes that belong to elements with material orientations
    (3d solids, 3d shells, 2d solids, 2d plates)
    iel: p-element number
    inod: h-node number
 mo_01-03 e1_x,y,z: WCS components of the first material orientation basis unit vector
 mo_04-05 e2_x,y,z: WCS components of the second material orientation basis unit vector
    The third material orientation basis unit vector is found from e3 = e1 X e2
study/analysis/study.d##
IN STRUCTURAL ANALYSES
"displacements" iset nset nrbm dmax f name
   inod dx dy dz
   inod dx dy dz
   inod dx dy dz
Notes: Displacements in static, modal, dynamic time, dynamic frequency
    shock and buckling analyses. For static, modal, and buckling
    analysis the file is
    placed in ANLYS#. For dynamic time and frequency analysis the
    file is placed in STEP###. For shock analysis it is placed in
    SHOCK.
    ##: load set for static dynamic time and dynamic frequency
      mode number for modal and buckling (two digit format)
      always 01 for shock
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    nrbm: number of rigid body modes
```

dmax: maximum magnitude of displacement in the model

```
f: frequency of this mode if modal analysis,
      buckling load factor if buckling analysis,
      frequency of calculation if dynamic frequency response
      time of calculation if dynamic time response
      0 if static or other dynamic analyses
    name: load set name (not for modal, buckling or shock)
    inod: h-node number
    dx,dy,dz: displacements of this h-node in global rectangular
          system
IN THERMAL ANALYSES
"temperatures" iset nset tmax time name
    inod t
   inod t
   inod t
Notes: Temperatures. For steady-state thermal analysis, the file is
    placed in ANLYS#. For transient thermal analysis the file is
    placed in STEP####.
    ##: load set in two digit format
    iset: load set number; equal to ##
    nset: total number of load sets
    tmax: maximum temperature in the model
    time: time of master interval if transient thermal analysis
        0 if steady-state thermal analysis
    name: load set name
    inod: h-node number
    t: temperature
study/analysis/study.a##
"rotations" iset nset thmax f name
   inod thx thy thz
   inod thx thy thz
   inod thx thy thz
     "...
Notes: Rotations in static, modal, dynamic time, dynamic frequency analysis,
    shock, and buckling analyses. For static, modal, and buckling
    analysis the file is
    placed in ANLYS#. For dynamic time and frequency analysis the
    file is placed in STEP###. For shock analysis it is placed in
    ##: load set for static dynamic time and dynamic frequency
      mode number for modal and buckling (two digit format)
      always 01 for shock
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    thmax: maximum magnitude of rotation in the model
    f: frequency of this mode if modal analysis,
      buckling load factor if buckling analysis,
      frequency of calculation if dynamic frequency response
      time of calculation if dynamic time response
      0 if static or other dynamic analyses
    name: load set name (not for modal, buckling or shock)
    inod: h-node number
    thx,thy,thz: rotations of this h-node in global rectangular
          system
```

study/analysis/study.s##

IN STRUCTURAL ANALYSES

```
"stresses" iset nset name
   iel inod ind nvals
    s1 s2 s3 s4 s5 s6
    s7 s8
           s9 s10 s11 s12
    s13 s14 s15 s16 s17 s18
    s19 s20 s21 s22 s23 s24
    s25 s26 s27 s28 s29 s30
    s31 s32 s33 s34 s35 s36
    s37 s38 s39 s40 s41 s42
    s43 s44 s44 s45 s46 s47
    s48 s49 s50 s51 s52 s53
   iel inod ind nvals
    s1 s2 s3 s4 s5 s6
    s7 s8 s9 s10 s11 s12
    s13 s14 s15 s16 s17 s18
    s19 s20 s21 s22 s23
    s25 s26 s27 s28 s29
    s31 s32 s33 s34 s35 s36
    s37 s38 s39 s40 s41 s42
    s43 s44 s44 s45 s46 s47
    s48 s49 s50 s51 s52 s53
   iel inod ind nvals
    s1 s2 s3 s4 s5 s6
    s7 s8 s9 s10 s11 s12
    s13 s14 s15 s16 s17 s18
    s19 s20 s21 s22 s23 s24
    s31 s32 s33 s34 s35 s36
    s37 s38 s39 s40 s41
                         s42
    s43 s44 s44 s45 s46
    s48 s49 s50 s51 s52 s53
```

Notes: Stress/strain distribution in static, modal, dynamic time,

dynamic frequency, shock, or buckling analysis.

All stresses and strains

are calculated at the h-node locations and are reported with respect to the global rectangular coordinate system with the following exception, shell membrane and bending stresses are reported with respect to the local material coordinate system. Forces and moments for beams are also reported with respect to the local (defined by the p-element's orientation) coordinate system. Note that h-nodes that are common to more than one p-element will be assigned more than one stress/strain value set (one for each p-element). Also note that top and bottom surfaces of plate p-elements are defined by their connectivity using the right-hand-rule.

For static, modal, and buckling analysis file is placed in ANLYS#. For dynamic time and frequency the file is placed in STEP###. For shock analysis it is placed in SHOCK.

##: load set for static dynamic time and dynamic frequency mode number for modal and buckling (two digit format) always 01 for shock

iset: load set or mode number; equal to ##
nset: total number of load sets or modes
name: load set name (not for modal or shock)
iel: p-element number

.

inod: h-node number

ind: =1 if 3-D beams; =2 if 3-D or 2-D shells

=3 if 3-D solids or 2-D solids or plates

nvals: number of values to follow for this record (can vary by element type if desired) minimum == 38, max == 53

s1: global (strain)xx for solids and 2-D surface elements;

global (strain)xx on the top surface for shells and

line 2-D elements;

global (force)x for beams

s2: global (strain)yy for solids and 2-D surface elements;

global (strain)yy on the top surface for shells and

line 2-D elements;

global (force)y for beams

s3: global (strain)xy for solids and 2-D surface elements;

global (strain)xy on the top surface for shells and

line 2-D elements;

global (force)z for beams

s4: global (strain)zz for solids and 2-D surface elements;

global (strain)zz on the top surface for shells and

line 2-D elements:

global (moment)x for beams

s5: global (strain)yz for solids and 2-D surface elements;

global (strain)yz on the top surface for shells and

line 2-D elements;

global (moment)y for beams

s6: global (strain)xz for solids and 2-D surface elements;

global (strain)xz on the top surface for shells and

line 2-D elements;

global (moment)z for beams

s7: zero for solids and 2-D surface elements;

global (strain)xx on the bottom surface for shells and

line 2-D elements;

local (force)x for beams

s8: zero for solids and 2-D surface elements;

global (strain)yy on the bottom surface for shells and

line 2-D elements;

local (force)y for beams

s9: zero for solids and 2-D surface elements;

global (strain)xy on the bottom surface for shells and

line 2-D elements;

local (force)z for beams

s10: zero for solids and 2-D surface elements;

global (strain)zz on the bottom surface for shells and

line 2-D elements;

local (moment)x for beams

s11: zero for solids and 2-D surface elements;

global (strain)yz on the bottom surface for shells and

line 2-D elements;

local (moment)y for beams

s12: zero for solids and 2-D surface elements;

global (strain)xz on the bottom surface for shells and

line 2-D elements;

local (moment)z for beams

s13: global (stress)xx for solids and 2-D surface elements;

global (stress)xx on the top surface for shells and

line 2-D elements;

axial stress at (-1,-1) or point 1 cross-sectional point for beams

s14: global (stress)yy for solids and 2-D surface elements;

global (stress)yy on the top surface for shells and

line 2-D elements:

axial stress at (0,-1) or point 2 cross-sectional point for beams

s15: global (stress)xy for solids and 2-D surface elements;

global (stress)xy on the top surface for shells and

line 2-D elements;

axial stress at (+1,-1) or point 3 cross-sectional point for beams

s16: global (stress)zz for solids and 2-D surface elements;

global (stress)zz on the top surface for shells and

line 2-D elements:

axial stress at (-1,0) or point 4 cross-sectional point for beams

s17: global (stress)yz for solids and 2-D surface elements;

global (stress)yz on the top surface for shells and

line 2-D elements;

axial stress at (0,0) or point 5 cross-sectional point for beams

s18: global (stress)xz for solids and 2-D surface elements;

global (stress)xz on the top surface for shells and

line 2-D elements;

axial stress at (+1,0) or point 6 cross-sectional point for beams

s19: zero for solids and 2-D surface elements;

global (stress)xx on the bottom surface for shells and

line 2-D elements;

axial stress at (-1,+1) or point 7 cross-sectional point for beams

s20: zero for solids and 2-D surface elements;

global (stress)yy on the bottom surface for shells and

line 2-D elements;

axial stress at (0,+1) or point 8 cross-sectional point for beams

s21: zero for solids and 2-D surface elements;

global (stress)xy on the bottom surface for shells and

line 2-D elements;

axial stress at (+1,+1) or point 9 cross-sectional point for beams

s22: zero for solids and 2-D surface elements;

global (stress)zz on the bottom surface for shells and

line 2-D elements;

tensile stress for beams

s23: zero for solids and 2-D surface elements;

global (stress)yz on the bottom surface for shells and

line 2-D elements;

bending stress (most +ve in cross-section) for beams

s24: zero for solids and 2-D surface elements;

global (stress)xz on the bottom surface for shells and

line 2-D elements;

axial force (most +ve in cross-section) for beams

s25: zero for solids and 2-D surface elements;

Von Mises stress on the top surface for shells and

line 2-D elements;

axial force (most -ve in cross-section) for beams

This field contains contact pressure for contact analyses only.

s26: zero for solids and 2-D surface elements;

Von Mises stress on the bottom surface for shells and

line 2-D elements;

torsional shear stress for beams

s27: Von Mises stress for solids and 2-D surface elements;

max. Von Mises stress for shells and line 2-D elements;

von Mises stress (max over cross-section) for beams

s28: zero for solids and 2-D surface elements;

max. Principal stress on the top surface for shells and

line 2-D elements;

bending stress (y) for beams

s29: zero for solids and 2-D surface elements;

max. Principal stress on the bottom surface for shells and

line 2-D elements;

bending stress (z) for beams

s30: max. Principal stress for solids and 2-D surface elements;

max. Principal stress for shells and line 2-D elements;

max. Principal stress (max over cross-section) for beams

s31: zero for solids and 2-D surface elements;

membrane strain energy/unit area for shells and

line 2-D elements;

tensile strain energy per unit length for beams

s32: zero for solids and 2-D surface elements;

bending strain energy/unit area for shells and

line 2-D elements;

bending strain energy per unit length for beams

s33: zero for solids and 2-D surface elements;

shear strain energy/unit area for shells and

line 2-D elements;

shear strain energy per unit length for beams

s34: zero for solids and 2-D surface elements;

membrane/bending strain energy for shells;

zero for line 2-D elements;

torsional strain energy per unit length for beams

s35: Strain Energy/unit volume for solids and 2-D

surface elements:

total strain energy/unit area for shells and

line 2-D elements;

total strain energy per unit length for beams

s36: zero for solids and 2-D surface elements;

minimum principal stress (top) for shells and

line 2D elements;

tensile strain for beams

s37: zero for solids and 2-D surface elements;

minimum principal stress (bottom) for shells and

line 2D elements;

torsional strain for beams

s38: minimum principal stress for solids and 2-D surface elements;

minimum principal stress (minimum of top and bottom)

for shells and line 2D elements;

min. Principal stress (min over cross-section) for beams

s39: zero for solids and 2-D surface elements;

local midsurface stress (xz) for shells

bending strain (y) for beams

s40: zero for solids and 2-D surface elements;

local midsurface stress (yz) for shells

bending strain (z) for beams

s41: zero for solids and 2-D surface elements;

membrane stress (xx) for shells

zero for beams

s42: zero for solids and 2-D surface elements;

membrane stress (yy) for shells

zero for beams

s43: zero for solids and 2-D surface elements;

membrane stress (xy) for shells

zero for beams

s44: zero for solids and 2-D surface elements:

bending stress (xx) for top surface of shells

zero for beams

s45: zero for solids and 2-D surface elements;

bending stress (yy) for top surface of shells

zero for beams

s46: zero for solids and 2-D surface elements;

bending stress (xy) for top surface of shells

zero for beams

s47: zero for solids and 2-D surface elements;

bending stress (xx) for bottom surface of shells

zero for beams

s48: zero for solids and 2-D surface elements;

bending stress (yy) for bottom surface of shells

zero for beams

s49: zero for solids and 2-D surface elements;

bending stress (xy) for bottom surface of shells

zero for beams

s50: zero for solids and 2-D surface elements;

transverse shear shear (x) for top surface of shells

zero for beams

s51: zero for solids and 2-D surface elements;

transverse shear stress (y) for top surface of shells

zero for beams

s52: zero for solids and 2-D surface elements;

transverse shear shear (x) for bottom surface of shells

zero for beams

s53: zero for solids and 2-D surface elements;

transverse shear stress (y) for bottom surface of shells zero for beams

IN THERMAL ANALYSES

```
"fluxes" iset nset name
   iel inod
    s1 s2 s3 s4 s5 s6
   iel inod
    s1 s2 s3 s4 s5 s6
   iel inod
    s1 s2 s3 s4 s5 s6
```

Notes: temperature gradient/heat flux distribution. All gradients and fluxes are calculated at the h-node locations and are reported with respect to the global rectangular coordinate system. Note that h-nodes that are common to more than one p-element will be assigned more than one gradient/flux value set (one for each p-element).

For steady-state thermal analysis the file is placed in ANLYS#. For transient thermal analysis the file is placed in STEP####.

```
##: load set in two digit format
iset: load set; equal to ##
nset: total number of load sets
name: load set name
iel: p-element number
inod: h-node number
s1: dT/dx
s2: dT/dy
s3: dT/dz
s4: (heat flux)x
s5: (heat flux)y
s6: (heat flux)z
```

```
study/analysis/study.p##
"principal_vects"
   iel inod
    s1 ex ey ez
    s2 ex ey ez
    s3 ex ey ez
    s4 ex ey ez
   iel inod
    s1 ex ey ez
    s2 ex ey ez
    s3 ex ey ez
    s4 ex ey ez
   iel inod
    s1 ex ey ez
    s2 ex ey ez
    s3 ex ey ez
    s4 ex ey ez
```

IN THERMAL ANALYSES

```
"fluxes" iset nset name
   iel inod
    s1 s2 s3 s4 s5 s6
   iel inod
     s1 s2 s3 s4 s5 s6
   iel inod
    s1 s2 s3 s4 s5 s6
```

Notes: temperature gradient/heat flux distribution. All gradients and fluxes are calculated at the h-node locations and are reported with respect to the global rectangular coordinate system. Note that h-nodes that are common to more than one p-element will be assigned more than one gradient/flux value set (one for each p-element).

For steady-state thermal analysis the file is placed in ANLYS#. For transient thermal analysis the file is placed in STEP####.

```
##: load set in two digit format
iset: load set; equal to ##
nset: total number of load sets
name: load set name
iel: p-element number
inod: h-node number
s1: dT/dx
s2: dT/dy
s3: dT/dz
s4: (heat flux)x
s5: (heat flux)y
s6: (heat flux)z
```

study/analysis/study.p##

```
"principal vects"
   iel inod
    s1 ex ey ez
    s2 ex ey ez
    s3 ex ey ez
    s4 ex ey ez
   iel inod
    s1 ex ey ez
    s2 ex ey ez
    s3 ex ey ez
    s4 ex ey ez
   iel inod
    s1 ex ey ez
    s2 ex ev ez
    s3 ex ey ez
    s4 ex ey ez
```

Notes: Maximum/minimum principal stress directions in static, modal, dynamic time, dynamic frequency, shock or buckling analysis. All principal stresses are calculated at the h-node locations and their directions are reported with respect to the global rectangular coordinate system. Note that h-nodes that are common to more than one p-element will be assigned more than one principal stress value set (one for each p-element). Only h-nodes that belong to quad or tri elements are included.

For static, modal and buckling analysis file is placed in ANLYS#. For dynamic time and frequency the file is placed in STEP####. For shock analysis it is placed in SHOCK.

##: load set for static dynamic time and dynamic frequency mode number for modal and buckling (two digit format) always 01 for shock

iset: load set or mode number; equal to ##

nset: total number of load sets or modes

name: load set name (not for modal or shock)

iel: p-element number

inod: h-node number

s1: max principal stress on the top surface for 3-D shells; max principal stress for 2-D surface elements

s2: min principal stress on the top surface for 3-D shells; min principal stress for 2-D surface elements

s3: max principal stress on the bottom surface for 3-D shells

s4: min principal stress on the bottom surface for 3-D shells

ex, ey, ez: unit vector w.r.t. global cartesian coordinates

```
study/analysis/study.n##
```

.....

```
"Shell_Results" iset name
```

iel inod

g_xx g_xy g_yy

g_max_prin_val g_max_prin_x g_max_prin_y g_max_prin_z

g_min_prin_val g_min_prin_x g_min_prin_y g_min_prin_z

k_xx k_xy k_yy

 $k_max_prin_val\ k_max_prin_x\ k_max_prin_y\ k_max_prin_z$

k_min_prin_val k_min_prin_x k_min_prin_y k_min_prin_z

N_xx N_xy N_yy

 $N_max_prin_val\ N_max_prin_x\ N_max_prin_y\ N_max_prin_z$

 $N_min_prin_val\ N_min_prin_x\ \ N_min_prin_y\ \ N_min_prin_z$

M_xx M_xy M_yy

M_max_prin_val M_max_prin_x M_max_prin_y M_max_prin_z

M_min_prin_val M_min_prin_x M_min_prin_y M_min_prin_z

Q_x Q_y

iel inod

g_xx g_xy g_yy

 $g_max_prin_val\ g_max_prin_x\ g_max_prin_y\ g_max_prin_z$

g_min_prin_val g_min_prin_x g_min_prin_y g_min_prin_z

.

.

Or in column notation this is:

iel	inod			
	sr_01	sr_02	sr_03	
	sr_04	sr_05	sr_06	sr_07
	sr_08	sr_09	sr_10	sr_11
	sr_12	sr_13	sr_14	
	sr_15	sr_16	sr_17	sr_18
	sr_19	sr_20	sr_21	sr_22
	sr_23	sr_24		
	sr_25	sr_26	sr_27	
	sr_28	sr_29	sr_30	sr_31
	sr_32	sr_33	sr_34	sr_35
	sr_36	sr_37	sr_38	
	sr_39	sr_40	sr_41	sr_42

```
sr_43 sr_44 sr_45 sr_46
sr_47 sr_48
```

Notes: Shell results in static, modal, dynamic time, dynamic frequency, shock or buckling analysis.

All quantities are calculated at the h-node locations.

All tensor quantities except the principal direction vectors are reported with respect to the material orientation basis of the element.

The principal direction vectors are reported with respect to the WCS.

Note that h-nodes that are common to more than one p-element will be assigned more than one value set (one for each p-element).

Only h-nodes that belong to 3d shells are included.

For static, modal and buckling analysis file is placed in ANLYS#. For dynamic time and frequency the file is placed in STEP####. For shock analysis it is placed in SHOCK.

##: load set for static dynamic time and dynamic frequency mode number for modal and buckling (two digit format) always 01 for shock

iel: p-element number inod: h-node number

```
sr 01-03
           g_xx,xy,yy : membrane (midsurface) strain
sr_04
          g_max_prin_val: max principal membrane strain value
sr 05-07
           g_max_prin_x,y,z: max principal membrane strain vector
          g_min_prin_val: min principal membrane strain value
sr_08
sr 09-11
          g_min_prin_x,y,z: min principal membrane strain vector
sr_12-14 k_xx, k_xy, k_yy: curvature change
          k_max_prin_val : max principal curvature change value
sr_15
sr_16-18 k_max_prin_x,y,z: max principal curvature change vector
sr_19
          k_min_prin_val : min principal curvature change value
sr_20-22 k_min_prin_x,y,z: min principal curvature change vector
sr_23-24
                      : transverse shear strain
           o_x,y
          N_xx,xy,yy : membrane resultant force
sr_25-27
sr_28
          N_max_prin_val : max principal membrane resultant force value
sr 29-31
          N_max_prin_x,y,z: max principal membrane resultant force vector
sr 32
          N min prin val : min principal membrane resultant force value
sr_33-35 N_min_prin_x,y,z: min principal membrane resultant force vector
sr_36-38 M_xx, M_xy, M_yy: resultant moment
          M_max_prin_val : max principal resultant moment value
sr_39
sr_40-42 M_max_prin_x,y,z: max principal resultant moment vector
sr_43
          M_min_prin_val: min principal resultant moment value
sr_44-46 M_min_prin_x,y,z: min principal resultant moment vector
sr_47-48 Q_x,y
                       : transverse shear force
```

```
"ply_stresses" iset is_complex maj_vers revision name iel inod n_plies ply_num orientation
```

study/analysis/study.b##

```
s_xx_top_Re s_yy_top_Re s_zz_top_Re s_xy_top_Re s_xz_top_Re s_yz_top_Re s_xx_bot_Re s_yy_bot_Re s_zz_bot_Re s_xy_bot_Re s_xz_bot_Re s_yz_bot_Re e_xx_top_Re e_yy_top_Re g_zz_top_Re e_xy_top_Re g_xz_top_Re g_yz_top_Re e_xx_bot_Re e_yy_bot_Re g_zz_bot_Re e_xy_bot_Re g_xz_bot_Re g_yz_bot_Re s_xx_top_Im s_yy_top_Im s_zz_top_Im s_xy_top_Im s_xz_top_Im s_yy_bot_Im s_zz_bot_Im s_xy_bot_Im s_xz_bot_Im s_yz_bot_Im e_xx_top_Im e_yy_top_Im g_zz_top_Im e_xy_top_Im g_xz_top_Im g_yz_top_Im e_xx_bot_Im e_yy_bot_Im g_zz_bot_Im e_xy_bot_Im g_xz_bot_Im g_yz_bot_Im g_yz_bot_Im g_yz_bot_Im g_yz_bot_Im g_xz_bot_Im g_yz_bot_Im g_yz_bot_Im g_xz_bot_Im g_yz_bot_Im g_yz_bot_Im g_xz_bot_Im g_yz_bot_Im g_yz_b
```

Notes: Laminate stress/strain distribution in static, modal, dynamic time, dynamic frequency, dynamic random, dynamic shock or buckling analysis.

All quantities are calculated at the h-node locations and reported with respect to the global rectangular coordinate system.

For static, modal, and buckling analysis file is placed in ANLYS#. For dynamic time and frequency the file is placed in STEP###. For shock analysis it is placed in SHOCK. For dynamic random the file is placed in RMS.

##: load set for static dynamic time and dynamic frequency mode number for modal and buckling (two digit format) always 01 for shock

iset: load set or mode number; equal to ##.

is_complex: 1 for dynamic frequency and random analyses,

0 for all other analyses.

maj_vers: Pro/Mechanica version #. revision: revision # in maj_vers.

name: load set name (not for modal or shock)

iel: p-element numberinod: h-node number

n_plies: number of plies for element iel.

ply_num: ply number.

orientation: orientation of ply with respect to it's

material 3 direction.

s_(xx,yy,xy,zz,yz,xz)_top_Re: Real components of stress tensor at top of the lamina.

s_(xx,yy,xy,zz,yz,xz)_bot_Re: Real components of stress tensor at bottom of the lamina.

s_(xx,yy,xy,zz,yz,xz)_top_lm: Imag. components of stress tensor at top of the lamina.

Output only if is_complex is 1.

s_(xx,yy,xy,zz,yz,xz)_bop_lm: lmag. components of stress tensor at bottom of the lamina.

Output only if is_complex is 1.

e_xx,e_yy,g_xy,e_zz,g_yz,g_xz_top_Re:

Real components of strain tensor at top of the lamina.

e_xx,e_yy,g_xy,e_zz,g_yz,g_xz_bot_Re:

Real components of strain tensor at

bottom of the lamina.

e_xx,e_yy,g_xy,e_zz,g_yz,g_xz_top_lm:

Real components of strain tensor at

top of the lamina.

Output only if is_complex is 1.

e_xx,e_yy,g_xy,e_zz,g_yz,g_xz_bop_lm:

Real components of strain tensor at

bottom of the lamina.

Output only if is_complex is 1.

study/analysis/study.h##

```
"displacements" iset nset dmax f name
   inod dx dy dz
   inod dx dy dz
   inod dx dy dz
    "...
Notes: Phases of displacement in dynamic frequency analysis.
    The file is placed in STEP###.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    dmax: 0
    f: frequency of calculation
    name: load set name
    inod: h-node number
    dx,dy,dz: phases of displacement of this h-node in global rectangular
          system
study/analysis/study.v##
"velocities" iset nset vmax f name
   inod vx vy vz
   inod vx vy vz
   inod vx vy vz
    "...
Notes: Velocities in dynamic time or dynamic frequency analysis.
    The file is placed in STEP####.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    vmax: maximum magnitude of velocity in the model
    f: frequency of calculation if dynamic frequency response
      time of calculation if dynamic time response
    name: load set name
    inod: h-node number
    vx,vy,vz: velocities of this h-node in global rectangular
          system
study/analysis/study.i##
"velocities" iset nset vmax f name
   inod vx vy vz
   inod vx vy vz
   inod vx vy vz
    "...
Notes: Phases of velocity in dynamic frequency analysis.
    The file is placed in STEP####.
    ##: load set
    iset: load set or mode number; equal to ##
```

http://support.ptc.com/cs/cs_24/howto/mst1283/mst1283.htm

nset: total number of load sets or modes

```
vmax: 0
    f: frequency of calculation
    name: load set name
    inod: h-node number
    vx,vy,vz: phases of velocity of this h-node in global rectangular
          system
study/analysis/study.w##
"accelerations" iset nset amax f name
   inod ax ay az
   inod ax ay az
   inod ax ay az
    "...
Notes: Accelerations in dynamic time or dynamic frequency analysis.
    The file is placed in STEP###.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    amax: maximum magnitude of acceleration in the model
    f: frequency of calculation if dynamic frequency response
     time of calculation if dynamic time response
    name: load set name
    inod: h-node number
    ax,ay,az: accelerations of this h-node in global rectangular
          system
study/analysis/study.j##
"accelerations" iset nset wmax f name
   inod wx wy wz
   inod wx wy wz
   inod wx wy wz
    "...
Notes: Phases of acceleration in dynamic frequency analysis.
    The file is placed in STEP###.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    wmax: 0
    f: frequency of calculation
    name: load set name
    inod: h-node number
    wx,wy,wz: phases of acceleration of this h-node in global rectangular
          system
study/analysis/study.k##
"rotations" iset nset amax f name
```

http://support.ptc.com/cs/cs_24/howto/mst1283/mst1283.htm

```
inod ax ay az
   inod ax ay az
   inod ax ay az
    "...
Notes: Phases of rotation in dynamic frequency analysis.
    The file is placed in STEP###.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    amax: 0
    f: frequency of calculation
    name: load set name
    inod: h-node number
    ax,ay,az: phases of rotation of this h-node in global rectangular
study/analysis/study.x##
"rotat vel" iset nset vmax f name
   inod vx vy vz
   inod vx vy vz
   inod vx vy vz
    "...
Notes: Rotational velocities in dynamic time or dynamic frequency analysis.
    The file is placed in STEP####.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    vmax: maximum magnitude of rotational velocity in the model
    f: frequency of calculation if dynamic frequency response
      time of calculation if dynamic time response
    name: load set name
    inod: h-node number
    vx,vy,vz: rotational velocities of this h-node in global rectangular
          system
study/analysis/study.m##
"rotat vel" iset nset vmax f name
   inod vx vy vz
   inod vx vy vz
   inod vx vy vz
    "...
Notes: Phases of rotational velocity in dynamic frequency analysis.
    The file is placed in STEP####.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    vmax: 0
    f: frequency of calculation
```

```
name: load set name
    inod: h-node number
    vx,vy,vz: phases of rotational velocity of this h-node in
    global rectangular system
study/analysis/study.y##
"rotat accel" iset nset amax f name
   inod ax ay az
   inod ax ay az
   inod ax ay az
Notes: Rotational accelerations in dynamic time or dynamic frequency analysis.
    The file is placed in STEP####.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    amax: maximum magnitude of rotational acceleration in the model
    f: frequency of calculation if dynamic frequency response
      time of calculation if dynamic time response
    name: load set name
    inod: h-node number
    ax,ay,az: rotational accelerations of this h-node in global rectangular
study/analysis/study.q##
"rotat accel" iset nset wmax f name
   inod wx wy wz
   inod wx wy wz
   inod wx wy wz
    "...
Notes: Phases of rotational acceleration in dynamic frequency analysis.
    The file is placed in STEP####.
    ##: load set
    iset: load set or mode number; equal to ##
    nset: total number of load sets or modes
    wmax: 0
    f: frequency of calculation
    name: load set name
    inod: h-node number
    wx,wy,wz: phases of rotational acceleration of this h-node in
    global rectangular system
study/analysis/study.r##
"analysis type" antyp
"reactions" iset nset name
"resultant" rx ry rz
```

```
"nodes"
         nnodr
   inod rx ry rz mx my
                              mz
"edges"
         nedgr nplot "no_curmpc" (or "yes_curmpc")
   nod1 nod2
   nod1 rx
                    mx
                         my
                              mz
           ry
                rz
   nod2 rx
            ry
                rz
                    mx
                         my
                              mz
   nod# rx
            ry
                rz
                    mx
                         my
                              mz
```

Notes: Reactions in static, buckling or modal analysis

antyp: analysis type
iset: load set or mode number; equal to ##
nset: total number of load sets or modes
name: load set name (if static analysis only)
rx,ry,rz,mx,my,mz: real values of reactions at a point
nnodr: number of nodes which have reactions
inod: h-node number
nedgr: number of edges which have reactions
nplot: number of plotting points per edge
"yes_cmpc": mpc's were created because of constraints
in curvilinear coordinates
"no_cmpc": no mpc's due to curvilinear coordinates

nod1, nod2: p-node numbers of edge nod#: h-node numbers on interior of edge

(3) HISTORY FILE

study/study.hst

msg Updating design variables update_parms npar iflag

idv1 par
idv2 par
"
"
npar iflag
idv1 par
idv2 par
"

Notes: Parameter values for major model updates during an optimization or sensitivity design study. Steps for line searches or derivative calculations are not included.

npar: number of updated parameters; equals the number of lines for each update iflag = 1 if final update = 0 if not final update idv1, idv2 ...: parameter dbid par: value of parameter

(4) X-Y PLOTTING FILES

.....

```
study/analysis/study.res
"Measure Convergence Plotting File"
"Analysis:" anname
ncol "columns"
nset "rows"
"col"
        "quantity"
1
       "p-loop pass number"
2
       measname measdbid
"DATA"
ip v1 v2 v3 v4 v5
      v7 v8 v9 ...
  v6
ip
  v1 v2 v3 v4
                    ٧5
  ٧6
      v7 v8 v9
  v1 v2 v3 v4
                    ٧5
ip
  v6 v7 v8 v9
Notes: Values of measures at each iteration of the p-loop for all
   load sets or modes
   anname: analysis name
   ncol: total number of columns
   nset: number of loads sets or modes; equals the number of sets
       of values at each p-level
   measdbid: dbid of the measure
   measname: name of measure
   ip: p-loop iteration
   v1, v2, v3...: values of measures
study/analysis/study.f##
"frequency response"
"Analysis:" anname
ncol "columns"
nset "rows"
"col"
        "quantity"
       "frequency value"
1
2
       measname measdbid
"DATA"
fre v1 v2 v3 v4 v5
  v6 v7 v8 v9 ...
fre v1 v2 v3 v4 v5
```

```
v6 v7 v8 v9 ...
fre v1 v2 v3 v4 v5
  v6 v7 v8 v9 ...
Notes: Values of measures at each frequency value of a frequency
   response
   anname: analysis name
   ncol: total number of columns
   nset: =1
   measdbid: dbid of the measure
   measname: name of measure
   fre: frequency value
   v1, v2, v3...: values of measures
study/analysis/study.t##
"time response"
"Analysis:" anname
ncol "columns"
nset "rows"
"col"
        "quantity"
       "time value"
1
2
       measname measdbid
"DATA"
tim v1 v2 v3 v4 v5
  v6 v7 v8 v9 ...
tim v1 v2 v3 v4 v5
      v7 v8 v9 ...
  v6
tim v1 v2 v3 v4 v5
  v6 v7 v8 v9 ...
Notes: Values of measures at each time value of a time
   response
   anname: analysis name
   ncol: total number of columns
   nset: =1
   measdbid: dbid of the measure
   measname: name of measure
   tim: time value
   v1, v2, v3...: values of measures
```

```
study/analysis/study.g##
"Global Sensitivity Plotting File"
"Parameter:" pname pdbid
ncol "columns"
nset "rows"
nstep "steps
"col"
        "quantity"
        "Parameter: pname"
1
        measname measdbid
2
"DATA"
pval v1 v2 v3 v4 v5
   v6 v7 v8 ...
pval v1 v2 v3 v4
                       v5
   v6 v7 v8 ...
pval v1 v2 v3 v4
                       v5
    v6 v7 v8 ...
Notes: Plotting file for global sensitivity; values of measures
    at each parameter step.
    ##: parameter number in two digit format
    pname: parameter name
    pdbid: parameter dbid
    ncol: total number of columns
    nset: number of loads sets or modes; equals the number of
       sets of values at each parameter step
    nstep: number of parameter steps
    measdbid: dbid of the measure
    measname: name of measure
    pval: parameter value
    v1, v2, v3...: values of measures
study/analysis/study.l##
"Local Sensitivity Plotting File"
"Parameter:" pname pdbid
ncol "columns"
nset "rows"
nstep "steps
"col"
        "quantity"
1
        "Parameter: pname"
2
        measname measdbid
```

```
4/10/2015
```

```
"DATA"

pval v1 v2 v3 v4 v5

v6 v7 v8 ...

"

pval v1 v2 v3 v4 v5

v6 v7 v8 ...

"
```

Notes: Plotting file for local sensitivity; values of measures at the two ends of the parameter range.

##: parameter number in two digit format
pname: parameter name
pdbid: parameter dbid
ncol: total number of columns
nset: number of loads sets or modes; equals the number of
sets of values at each parameter step
nstep: number of parameter steps; nstep=2
measdbid: dbid of the measure
measname: name of measure
pval: parameter value

v1, v2, v3...: values of measures

```
study/analysis/study.opt
```

```
"Optimization Plotting File"
```

```
ncol "columns"
nset "rows"
```

"col" "quantity"

1 "optimization iteration number"

2 measname measdbid
"

"

```
"DATA"

iter v1 v2 v3 v4 v5
    v6 v7 v8 ...

"

iter v1 v2 v3 v4 v5
    v6 v7 v8 ...
```

Notes: Plotting file for optimization; values of measures at

every step of the optimization loop.

ncol: total number of columns
nset: number of loads sets or modes; equals the number of
sets of values at each parameter step
measdbid: dbid of the measure
measname: name of measure
iter: optimization loop iteration number
v1, v2, v3...: values of measures

study/analysis/study.c##

http://support.ptc.com/cs/cs_24/howto/mst1283/mst1283.htm

"Contact Plotting File"			
ncol "columns" nloadinc "load increments"			
"col" "quantity" 1 "Load increment" 2 measname measdbid "			
"DATA" loadinc v1 v2 v3 v4 v5 v6 v7 v8			
Notes: Plotting file for contact values of measures at each load increment			
##: load set number in two digit format ncol: total number of columns nloadinc: number of load increments measdbid: dbid of the measure measname: name of measure loadinc: load increment value (floating point number) v1, v2, v3: values of measures			
(5) DIAGNOSTIC FILES			
study/study.err			
Notes: Input data echo and fatal errors encountered during run time.			
study/analysis/study.ter			
Notes: Input data echo and fatal errors encountered during run time. This file is produced for thermal analyses only.			
study/study.rpt			
Notes: Human readable file which contains a log of the progress of analyses or optimization design studies, numerical values of measures, warning messages, or error messages.			
study/study.stt			
Notes: Human readable file which contains the start and completion times of major steps of the engine run.			
study/study.pas			

```
Notes: Human readable file which contains the start and completion
    times of major steps in the engine run. (in more detailed form
    than study/study.stt)
study/study.dia
Notes: File for communicating an error code to the post-processor in
    the event of a fatal error during the engine run.
study/analysis/study.cnv
"Applied Structure Version 3.0(00)"
                                        IF STRUCTURAL ANALYSIS
"Applied Thermal Version 1.0(00)"
                                         IF THERMAL ANALYSIS
"Convergence Report"
date/time stamp
"Analysis:" anname
     "elements"
nedge "edges"
"Convergence History:"
" * number of load cases"
                                IF STATIC OR THERMAL ANALYSIS
" * number of modes"
                               IF MODAL (DYNAMIC) OR BUCKLING ANALYSIS
" * total strain energy"
                             IF STATIC ANALYSIS
" * frequency"
                           IF MODAL (DYNAMIC) ANALYSIS
" * buckling load factor"
                              IF BUCKLING ANALYSIS
" * total gradient energy"
                              IF THERMAL ANALYSIS
" * errors in energy norms"
" * max error in energy norm"
" * max local temp & energy error"
" * convergence index"
" * total number of equations"
" * number of changed elements"
" * max p-order of any edge"
" * p-order of edges"
" * clock time"
"p-loop start time:"
date/time stamp
"---- p-loop pass: 1 ----"
int
long
long
long
long
long
int
int
int
                                 int
                                      int
 int
      int
           int
                 int
                      int
                            int
                      int
                           int
                                 int
                                      int
 int
      int
           int
                int
date/time stamp
"---- p-loop pass: 2 ----"
```

http://support.ptc.com/cs/cs_24/howto/mst1283/mst1283.htm

```
"---- p-loop pass: 3 ----"
"The analysis (did not) converged to" icon "on"
convergence_criterion
IF STATIC ANALYSIS
"Final convergence results, displacements:"
" edge node 1 node 2 p-order dU/Umax U/Umax I.c."
 int int int long long int d/r (*)
IF MODAL (DYNAMIC) OR BUCKLING ANALYSIS
"Final convergence results, displacements:"
" edge node 1 node 2 p-order dU/Umax U/Umax mode"
 int int int long long int d/r (*)
IF THERMAL ANALYSIS
"Final convergence results, temperatures:"
" edge node 1 node 2 p-order dT/Tmax T/Tmax I.c."
 int int int long long int d (*)
IF STATIC OR THERMAL ANALYSIS
"Final convergence results, element energy:"
                 sqrt(dE/E) E/Etot I.c."
" element edges
  int int long long int (*)
IF MODAL (DYNAMIC) OR BUCKLING ANALYSIS
"Final convergence results, element energy:"
" element edges sqrt(dE/E) E/Etot mode"
  int int long long int (*)
Notes: This file contains convergence information at each iteration
   of the p-loop, including:
   the p-order of each edge
   errors in edge displacements or temperatures
    strain energies or frequencies or gradient energies
    the convergence index
   At the end it reports and edges and elements for which
   convergence was not achieved.
    For transient thermal analysis, the .cnv file is placed in the
    STEP#### directory. It contains only the p-order of each edge
    at the time of the master interval.
```

(6) SCRATCH FILES

study/analysis/study.tld
Notes: File for passing thermal loads to structural analyses. The file is created only for thermal analyses.
For transient thermal analysis, the .tld file is placed in the STEP### directory. It contains the thermal field at the time of the master interval.
study/analysis/study.coe
Notes: File for storing the function coefficients of the solution. The file is used by dynamic analyses referring to previously run model or dynamic analyses.
study/analysis/study.buc
Notes: Written by any static analyses for use in a subsequent buckling analysis. Contains static analysis solution info needed to reconstruct element stress during buckling analysis element stress-stiffness matrix computation.
study/analysis/study.fatigue## "fatigues" iset nset name iel inod ind s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
Notes: Results for a fatigue analysis. All quantities are calculated at the h-node locations lying on the external surface of the model and are reported with respect to the global rectangular coordinate system.
iset: load set number; equal to ## nset: total number of load sets or modes name: load set name

iel: p-element number inod: h-node number ind: =2 if 3-D shells, =3 if 3-D solids

s1: Log of life for solids

Log of life on the top surface for shells

s2: Log of damage for solids

Log of damage on the top surface for shells

s3: Factor of Safety for solids

Factor of Safety on the top surface for shells

s4: Biaxiality Ratio for solids

Biaxiality Ratio on the top surface for shells

s5: Confidence for solids

Confidence on the top surface for shells

s6: 0 for solids

Log of life on the bottom surface for shells

s7: 0 for solids

Log of damage on the bottom surface for shells

s8: 0 for solids

Factor of Safety on the bottom surface for shells

s9: 0 for solids

Biaxiality Ratio on the bottom surface for shells

s10: 0 for solids

Confidence on the bottom surface for shells

study/analysis/study.ss##

IN STRUCTURAL ANALYSES

"stresses" iset nset name iel inod ind nvals s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 s36 s37 s38 s39 s40 s41 s43 s44 s44 s45 s46 s47 s48 s49 s50 s51 s52 s53 iel inod ind nvals s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 s36 s37 s38 s39 s40 s41 s42 s43 s44 s44 s45 s46 s47 s48 s49 s50 s51 s52 s53

Notes:

Stress components distribution in a fatigue analysis in ASCII.

This is output only if the environment variable WRITE_SURFACE_STRESSES is set.

The format is the same as that described for the .s## file, except that only the following slots are filled, the rest are all 0.

s13: global (stress)xx for solids;

global (stress)xx on the top surface for shells

s14: global (stress)yy for solids;

global (stress)yy on the top surface for shells

s15: global (stress)xy for solids;

global (stress)xy on the top surface for shells

s16: global (stress)zz for 3d solids;

global (stress)zz on the top surface for shells

s17: global (stress)yz for solids;

global (stress)yz on the top surface for shells

s18: global (stress)xz for 3d solids

global (stress)xz on the top surface for shells

s19: zero for solids;

global (stress)xx on the bottom surface for shells

s20: zero for solids;

global (stress)yy on the bottom surface for shells

s21: zero for solids;

global (stress)xy on the bottom surface for shells

s22: zero for solids;

global (stress)zz on the bottom surface for shells

s23: zero for solids;

10/2015	TITLE: Interpreting Pro/MECHANICA Structure ASCII Output Files
	global (stress)yz on the bottom surface for shells
	s24: zero for solids;
	global (stress)xz on the bottom surface for shells

Copyright © 2015, PTC Inc. Legal Policies Software Piracy

Social Media Directory