
Creo® Parametric TOOLKIT
User’s Guide

8.0.2.0

Copyright © 2021 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
"PTC") are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes. Information described herein is
furnished for general information only, is subject to change without notice, and should not be construed as a
warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the
piracy of PTC software products, and we pursue (both civilly and criminally) those who do so using all legal
means available, including public and private surveillance resources. As part of these efforts, PTC uses data
monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our software.
This data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection and
transmission of such data (including to the United States), cease using the illegal version, and contact PTC to
obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

Contents

About This Guide ..19

Fundamentals...22
Introduction to Creo Parametric TOOLKIT ..23
Online Documentation in Creo Parametric TOOLKITAPIWizard.............................23
Creo Parametric TOOLKIT Style ..24
Installing Creo Parametric TOOLKIT ..27
Developing a Creo Parametric TOOLKITApplication ...35
Creo Parametric TOOLKIT Support for Creo Applications54
User-Supplied Main ..54
Asynchronous Mode ...55
Creo Parametric TOOLKIT Techniques ..56
Visit Functions..62
Support for Creo Model Names and Files Paths ..64
Wide Strings...65
String and Widestring Functions ..66
Support for IPv6 ...67
Accessing LearningConnector ...68

Core: Models and Model Items ...69
Modes ...70
Models...70
Model Items ...80
Version Stamps ..83
Layers ...84
Notebook ...89
Visiting Displayed Entities ...90

Core: Solids, Parts, and Materials...92
Solid Objects..93
Part Objects ... 117
Material Objects ... 118

Core: Solid Body ... 126
Introduction to Solid Body.. 127
States of bodies.. 128
Creating a Body.. 128
Listing Features.. 129
Multibody Operations .. 130

Core: Features.. 131
Feature Objects.. 132
Visiting Features... 132

3

Feature Inquiry ... 132
Feature Geometry .. 138
Manipulating Features... 138
Manipulating Features based on Regeneration Flags .. 141
Feature Dimensions.. 143
Manipulating Patterns ... 144
Creating Local Groups .. 145
Read Access to Groups .. 146
Updating or Replacing UDFs ... 149
Placing UDFs ... 150
The UDF Input Data Structure ProUdfdata.. 152
Reading UDF Properties ... 158
Notification on UDF Library Creation .. 161
Multibody Support in a UDF and a Copy feature .. 162

Core: 3D Geometry ... 170
Geometry Objects... 171
Visiting Geometry Objects ... 172
Tessellation .. 181
Evaluating Geometry .. 184
Geometry Equations ... 187
Ray Tracing.. 194
Measurement ... 195
Geometry as NURBS.. 198
Interference.. 198
Faceted Geometry .. 202

Core: Relations ... 204
Relations.. 205
Adding a Customized Function to the Relations Dialog in Creo Parametric............ 208

Core: Parameters.. 210
Parameter Objects.. 211
Parameter Values ... 212
Accessing Parameters .. 212
Designating Parameters Windchill Servers ... 218
Restricted Parameters .. 218
Table-Restricted Parameters ... 219
Driven Parameters.. 221

Core: Coordinate Systems and Transformations.. 222
Coordinate Systems ... 223
Coordinate System Transformations .. 225

Core: Family Tables... 230
Family Table Objects... 231
Family Table Utilities ... 231
Visiting Family Tables.. 231
Operations on Family Table Instances .. 232
Operations on Family Table Items .. 234

4 Creo® Parametric TOOLKITUser’s Guide

Core: External Data... 235
Introduction to External Data ... 236
Storing External Data .. 237
Retrieving External Data ... 239

Core: Cross Sections... 241
Listing Cross Sections... 242
Extracting Cross-Sectional Geometry... 242
Visiting Cross Sections.. 247
Creating and Modifying Cross Sections .. 247
Mass Properties of Cross Sections... 254
Line Patterns of Cross Section Components ... 254

Core: Utilities .. 261
Configuration Options ... 262
Registry File Data ... 262
Trail Files ... 263
Creo Parametric License Data ... 263
Current Directory .. 263
File Handling .. 263
Wide Strings... 267
Freeing Integer Outputs .. 268
Running Creo ModelCHECK ... 268

Core: Asynchronous Mode... 277
Overview.. 278
Simple Asynchronous Mode .. 279
Full Asynchronous Mode... 282

User Interface: Messages .. 284
Writing a Message Using a Popup Dialog ... 285
Writing a Message to the Message Window.. 285
Message Classification ... 288
Writing a Message to an Internal Buffer .. 289
Getting Keyboard Input ... 290
Using Default Values... 290

User Interface: Ribbon Tabs, Groups, and Menu Items... 292
Creating Ribbon Tabs, Groups, and Menu Items ... 293
About the Ribbon Definition File ... 295
Localizing the Ribbon User Interface Created by Creo Parametric TOOLKIT
Applications .. 298

Tab Switching Events .. 299
Support for Legacy Pro/TOOLKITApplications.. 299
Migration of Legacy Pro/TOOLKITApplications... 300

User Interface: Menus, Commands, and Popupmenus... 301
Introduction .. 302
Menu Buttons and Menus.. 302
Designating Commands .. 310
Popup Menus ... 315

Contents 5

Menu Manager Buttons and Menus.. 320
Customizing the Creo Parametric Navigation Area .. 335
Entering Creo Parametric Commands .. 339

User Interface: Dialogs .. 344
Introduction .. 346
UI Components .. 347
Cascade Button.. 359
Checkbutton... 360
Drawing Area ... 362
Input Panel... 371
Label ... 374
Layout ... 376
List .. 378
Menubar .. 381
Menupane.. 382
Optionmenu ... 384
Progressbar ... 386
Pushbutton... 388
Radiogroup .. 390
Separator... 392
Slider ... 393
Spinbox ... 395
Tab .. 397
Table ... 400
Textarea... 408
Thumbwheel .. 411
Tree... 413
Master Table of Resource File Attributes... 425
Using Resource Files .. 444

User Interface: Dashboards ... 467
Introduction to Dashboards.. 468
Dashboard ... 468
Dashboard Page .. 471

User Interface: Basic Graphics ... 476
Manipulating Windows .. 477
Flushing the Display Commands to Window ... 482
Solid Orientation... 483
Graphics Colors and Line Styles .. 486
Displaying Graphics.. 490
Displaying Text ... 491
Validating Text Styles .. 493
Display Lists... 493
Getting Mouse Input.. 495
Cosmetic Properties ... 495
Creating 3D Shaded Data for Rendering... 500

6 Creo® Parametric TOOLKITUser’s Guide

User Interface: Selection.. 503
The Selection Object... 504
Interactive Selection ... 507
Highlighting .. 511
Selection Buffer .. 512

User Interface: Curve and Surface Collection .. 515
Introduction to Curve and Surface Collection .. 516
Interactive Collection... 517
Accessing Collection object from Selection Buffer ... 520
Adding a Collection Object to the Selection Buffer ... 521
Programmatic Access to Collections .. 521
Access of Collection Object from Feature Element Trees 531
Programmatic Access to Legacy Collections .. 532
Example 1: Interactive Curve Collection using Creo Parametric TOOLKIT............. 533
Example 2: Interactive Surface Collection using Creo Parametric
TOOLKIT.. 533

User Interface: Animation... 535
Introduction .. 536
Animation Objects .. 537
Animation Frames .. 537
Playing Animations ... 538

Annotations: Annotation Features and Annotations.. 541
Overview of Annotation Features ... 543
Creating Annotation Features .. 543
Redefining Annotation Features... 544
Visiting Annotation Features .. 545
Creating Datum Targets .. 545
Visiting Annotation Elements ... 546
Accessing Annotation Elements... 547
Modification of Annotation Elements .. 549
Automatic Propagation of Annotation Elements... 552
Detail Tree ... 553
Access to Annotations... 554
Converting Annotations to Latest Version ... 558
Annotation Text Styles... 559
Annotation Orientation .. 559
Annotation Associativity .. 563
Annotation Security... 564
Interactive Selection ... 565
Display Modes.. 565
Designating Dimensions and Symbols.. 565
Dimensions .. 566
Notes... 597
Geometric Tolerances ... 606
Accessing Set Datum Tags.. 606
Accessing Set Datums for Datum Axes or Planes.. 611

Contents 7

Surface Finish Annotations.. 612
Symbol Annotations.. 614

Annotations: Geometric Tolerances .. 617
Geometric Tolerance Objects... 618
Visiting Geometric Tolerances.. 618
Reading Geometric Tolerances.. 619
Creating a Geometric Tolerance... 623
Deleting a Geometric Tolerance ... 630
Validating a Geometric Tolerance... 630
Geometric Tolerance Layout .. 630
Additional Text for Geometric Tolerances.. 631
Geometric Tolerance Text Style.. 632
Prefix and Suffix for Geometric Tolerances ... 633
Parameters for Geometric Tolerance Attributes ... 633

Annotations: Designated Area Feature.. 635
Introduction to Designated Area Feature .. 636
Feature Element Tree for the Designated Area.. 636
Accessing Designated Area Properties... 638

Data Management: Windchill Operations .. 640
Introduction .. 641
Accessing a Windchill Server from a Creo Parametric Session............................. 641
Accessing the Workspace ... 644
Workflow to Register a Server.. 646
Aliased URL ... 646
Server Operations .. 647
Utility APIs ... 662
Sample Batch Workflow .. 662

Interface: Data Exchange... 664
Exporting Information Files .. 665
Exporting 2D Models... 667
Automatic Printing of 3D Models .. 672
Exporting 3D Models... 678
Shrinkwrap Export .. 694
Exporting to PDF and U3D .. 698
Importing Parameter Files ... 706
Importing 2D Models... 708
Importing 3D Models... 709
Validation Score for Imports... 718

Interface: Importing Features ... 720
Creating Import Features from Files ... 721
Creating Import Features from Arbitrary Geometric Data...................................... 724
Redefining the Import Feature ... 737
Import Feature Properties.. 738
Extracting Creo Parametric Geometry as Interface Data 740
Associative Topology Bus Enabled Interfaces ... 741

8 Creo® Parametric TOOLKITUser’s Guide

Associative Topology Bus Enabled Models and Features..................................... 742

Interface: Customized Plot Driver ... 745
Using the Plot Driver Functionality.. 746

Working with Multi-CAD Models Using Creo Unite ... 748
Overview.. 749
Support for File Names in Non-Creo Models ... 750
Character Support for File Names in Non-Creo Models.. 750
Working with Multi-CAD Models in Creo Parametric TOOLKIT 751
Functions that Support Multi-CAD Assemblies .. 754
Superseded Functions .. 756
Restrictions on Character Length for Multi-CAD Functions 758
Functional Areas in Creo that do not Support Multi-CAD Assemblies 762
Sample Applications for Multi-CAD Assemblies... 762
Migrating Applications Using Tools ... 763

Element Trees: Principles of Feature Creation ... 764
Overview of Feature Creation .. 765
Feature Inquiry ... 785
Feature Redefine.. 786
XML Representation of Feature Element Trees... 787

Element Trees: References.. 799
Overview of Reference Objects.. 800
Reading References ... 800
Modifying References ... 803

Element Trees: Datum Features ... 804
Datum Plane Features .. 805
Datum Point Features ... 816
Datum Axis Features .. 830
Datum Coordinate System Features... 838

Element Trees: Datum Curves.. 847
Datum Curve Features.. 848
Datum Curve Types .. 848
Other Datum Curve Types ... 852

Element Trees: Edit Menu Features.. 853
Mirror Feature .. 854
Move Feature ... 856
Fill Feature... 859
Intersect Feature .. 861
Merge Feature.. 861
Pattern Feature .. 864
Wrap Feature ... 864
Trim Feature... 865
Offset Feature .. 870
Thicken Feature ... 870
Solidify Feature .. 873

Contents 9

Remove Feature... 876
Attach Feature.. 881

Element Trees: Replace .. 884
Introduction .. 885
The Feature Element Tree... 885

Element Trees: Draft Features.. 886
Draft Feature.. 887
Variable Pull Direction Draft Feature... 894

Element Trees: Round and Chamfer ... 901
Round Feature ... 902
Modify Round Radius Feature ... 913
Auto Round Feature.. 916
Chamfer Feature .. 916
Corner Chamfer Feature ... 929

Element Trees: Hole.. 932
Overview.. 933
Feature Element Tree for Hole Features... 933
Feature Element Data Types ... 936
Common Element Values .. 939
PRO_E_HLE_COM Values ... 940
Valid PRO_E_HLE_COM Sub-Elements .. 947
Hole Placement Types .. 951
Miscellaneous Information... 955

Element Trees: Shell ... 958
Introduction to Shell Feature.. 959
Feature Element Tree for the Shell Feature... 960
Creating a Shell Feature.. 961
Redefining a Shell Feature .. 962
Accessing a Shell Feature ... 962

Element Trees: Patterns .. 963
Introduction .. 964
The Element Tree for Pattern Creation ... 964
Obtaining the Element Tree for a Pattern .. 985
Visiting and Creating a Pattern... 985

Element Trees: Sections .. 987
Overview.. 988
Creating Section Models ... 988

Element Trees: Sketched Features... 1004
Overview.. 1005
Creating Features Containing Sections .. 1006
Creating Features with 2D Sections ... 1007
Verifying Section Shapes... 1008
Creating Features with 3D Sections ... 1009
Reference Entities and Use Edge .. 1009

10 Creo® Parametric TOOLKITUser’s Guide

Reusing Existing Sketches .. 1011

Element Trees: Extrude and Revolve .. 1013
The Element Tree for Extruded Features .. 1014
The Element Tree for Revolved Features.. 1025
The Element Tree for First Features ... 1034

Element Trees: Ribs .. 1037
The Element Tree for Rib Features .. 1038

Element Trees: Sweep... 1042
Sweeps in Creo Parametric TOOLKIT .. 1043
Sweep Feature ... 1043
Creating a Sweep Feature... 1051
Simple Sweep Feature.. 1052

Element Trees: Solid Body... 1055
Introduction .. 1056
The Element Tree for Body Options.. 1056
The Element Tree for Body Copy Feature ... 1057
The Element Tree for Body Split Feature .. 1058
The Element Tree for Body Remove Feature .. 1061
The Element Tree for Boolean Body Operations.. 1062

Element Trees: Creo Flexible Modeling Features... 1067
Move and Move-Copy Features ... 1068
3D Transformation Set Feature.. 1074
Attachment Geometry Feature... 1082
Offset Geometry Feature... 1094
Modify Analytic Surface Feature .. 1096
Tangency Propagation .. 1099
Mirror Feature .. 1105
Substitute Feature .. 1107
Planar Symmetry Recognition Feature ..1110
Attach Feature...1112
Example 1: Creating a Flexible Model Feature ...1115

Element Trees: Bushing Load ...1116
Introduction ...1117
The Feature Element Tree for Bushing Loads ..1117

Element Trees: Cosmetic Thread ... 1120
Introduction .. 1121
The Element Tree for Cosmetic Thread .. 1121

Element Trees: ECAD Area Feature ... 1125
Introduction to ECAD Area Feature .. 1126

Assembly: Basic Assembly Access... 1130
Structure of Assemblies and Assembly Objects... 1131
Visiting Assembly Components.. 1133
Locations of Assembly Components... 1137

Contents 11

Assembling Components .. 1138
Redefining and Rerouting Components .. 1138
Deleting Components ... 1138
Flexible Components .. 1138
Exploded Assemblies.. 1141
Merge and Cutout ... 1145
Automatic Interchange .. 1145

Assembly: Top-down Design .. 1147
Overview.. 1148
Skeleton Model Functions ... 1150
Assembly Component Functions.. 1151
External Reference Control Functions .. 1151
Feature and CopyGeom Feature Functions .. 1153
External Reference Data Gathering.. 1154

Assembly: Assembling Components... 1159
Assembling Components by Functions... 1160
Assembling a Component Parametrically ... 1161
Redefining Components Interactively ... 1166
Assembling Components by Element Tree ... 1166
The Element Tree for an Assembly Component .. 1166
Assembling Components Using Intent Datums.. 1175

Assembly: Kinematic Dragging and Creating Snapshots .. 1176
Connecting to a Kinematic Drag Session .. 1177
Performing Kinematic Drag.. 1179
Creating and Modifying Snapshots... 1179
Snapshot Constraints.. 1180
Snapshot Transforms.. 1182
Snapshots in Drawing Views ... 1183

Assembly: Simplified Representations .. 1184
Overview.. 1185
Simplified Representations in Session.. 1186
Retrieving Simplified Representations .. 1189
Retrieving and Expanding LightWeight Graphics Simplified
Representations.. 1190

Retrieving User-Defined Simplified Representations.. 1190
Creating and Deleting Simplified Representations ... 1192
Extracting Information About Simplified Representations 1192
Modifying Simplified Representations... 1194
Gathering Components by Rule ... 1196

Assembly: Data Sharing Features .. 1199
Copy Geometry, Publish Geometry, and Shrinkwrap Features............................ 1200
General Merge (Merge, Cutout and Inheritance Feature) 1211
Inheritance Feature and Flexible Component Variant Items................................ 1215

Drawings .. 1226
Creating Drawings from Templates... 1227

12 Creo® Parametric TOOLKITUser’s Guide

Diagnosing Drawing Creation Errors .. 1228
Drawing Setup.. 1229
Context in Drawing Mode .. 1230
Access Drawing Location in Grid.. 1231
Drawing Tree.. 1231
Merge Drawings ... 1232
Drawing Sheets .. 1232
Drawing Format Files .. 1235
Drawing Views and Models.. 1236
Detail Items.. 1255
Drawing Symbol Groups ... 1286
Drawing Edges... 1289
Drawing Tables... 1290
Creating BOM Balloons... 1299
Drawing Dimensions ... 1301

Production Applications: Sheetmetal... 1310
Geometry Analysis.. 1312
Bend Tables and Dimensions .. 1315
Bend Allowance Parameters.. 1316
Unattached Planar Wall Feature .. 1317
Flange Wall Feature.. 1329
Extend Wall Feature ... 1346
Split Area Feature... 1350
Punch and Die Form Features ... 1352
Quilt Form Feature.. 1359
Flatten Form Feature .. 1362
Convert Features.. 1364
Rip Features .. 1368
Corner Relief Feature.. 1377
Editing Corner Relief Feature... 1383
Editing Corner Seams ... 1385
Bend Feature ... 1390
Editing Bend Reliefs.. 1403
Edge Bend Feature... 1407
Unbend Feature ... 1410
Flat Pattern Feature .. 1414
Bend Back Feature ... 1415
Sketch Form Feature .. 1417
Join Feature ... 1423
Twist Wall Feature .. 1426
Merge Wall Feature .. 1430
Recognizing Sheet Metal Design Objects ... 1432

Production Applications: Manufacturing .. 1439
Manufacturing Models... 1440
Creating a Manufacturing Model .. 1440
Analyzing a Manufacturing Model .. 1441

Contents 13

Creating Manufacturing Objects... 1444
Analyzing Manufacturing Features ... 1459

Production Applications: Customized Tool Database.. 1460
Overview.. 1461
Setting up the Database and Custom Search Parameters.................................. 1461
Registering the External Database... 1462
Querying the External Database .. 1463
Returning the Search Results .. 1465

Production Applications: Creo NC Sequences, Operations and Work Centers............ 1467
Overview.. 1469
Element Trees: Roughing Step .. 1469
Element Trees: Reroughing Step ... 1474
Element Trees: Finishing Step ... 1480
Element Trees: Corner Finishing Step .. 1484
Element Trees: 3–Axis Trajectory Milling Step... 1490
Manufacturing 2–Axis Curve Trajectory Milling Step .. 1496
Element Trees: Manual Cycle Step .. 1501
Element Trees: Thread Milling ... 1507
Element Trees: Turning Step ... 1523
Element Trees: Thread Turning Step.. 1529
Element Trees: Creo NC Operation Definition .. 1534
Element Trees: Workcell Definition... 1539
Element Trees: Manufacturing Mill Workcell.. 1542
Element Trees: Manufacturing Mill/Turn Workcell .. 1546
Element Trees: Manufacturing Lathe Workcell .. 1554
Element Trees: Manufacturing CMMWorkcell... 1558
Element Trees: Profile Milling Step... 1560
Element Trees: Face Milling Step... 1567
Element Trees: Fixture Definition ... 1576
Manufacturing Holemaking Step .. 1578
Shut off Surface Feature Element Tree... 1617
Element Trees: Manufacturing Round and Chamfer .. 1620
Element Trees: Engraving Step ... 1627
Element Trees: Manufacturing Cutline Milling Sequence.................................... 1635
Element Trees: Manufacturing Drill Group Feature .. 1651
Manufacturing Volume Milling Feature.. 1657
Element Trees: Skirt Feature ... 1664
Sub-Element Trees: Creo NC Steps... 1672

Production Applications: Process Planning.. 1784
Process Step Objects.. 1785
Visiting Process Steps .. 1785
Process Step Access .. 1785
Creating Process Steps... 1786

Production Applications: NC Process Manager.. 1789
Overview.. 1790

14 Creo® Parametric TOOLKITUser’s Guide

Accessing the Process Manager .. 1790
Manufacturing Process Items .. 1792
Parameters .. 1796
Manufacturing Features .. 1799
Import and Export of Process Table Contents.. 1799
Notification ... 1800

Production Applications: Cabling .. 1813
Cabling .. 1814

Production Applications: Piping .. 1830
Piping Terminology ... 1831
Linestock Management Functions.. 1831
Pipeline Features.. 1834
Pipeline Connectivity Analysis ... 1837

Production Applications: Welding ... 1848
Read Access to Weld Features.. 1849
Customizing Weld Drawing Symbols .. 1850

Creo Simulate: Items ... 1852
Entering the Creo Simulate Environment .. 1854
Entering the Creo Simulate Environment with Failed Features 1855
Selection of Creo Simulate Items ... 1855
Accessing Creo Simulate Items ... 1856
Creo Simulate Object References .. 1857
Geometric References .. 1858
Y-directions .. 1861
Functions ... 1862
Creo Simulate Expressions ... 1865
Accessing the Properties used for Loads and Constraints 1866
Creo Simulate Loads .. 1870
Creo Simulate Load Sets... 1883
Creo Simulate Constraints... 1884
Creo Simulate Constraint Sets... 1894
Creo Simulate Matrix Functions ... 1894
Creo Simulate Vector Functions... 1895
Creo Simulate Beams ... 1895
Creo Simulate Beams: Sections, Sketched Sections, and General
Sections ... 1898

Creo Simulate Beam Sections ... 1904
Sketched Beam Section .. 1908
General Beam Section .. 1909
Beam Orientations .. 1911
Beam Releases .. 1914
Creo Simulate Spring Items ... 1915
Creo Simulate Spring Property Items ... 1917
Creo Simulate Mass Items... 1920
Creo Simulate Mass Properties.. 1923

Contents 15

Creo Simulate Material Assignment ... 1924
Material Orientations... 1925
Creo Simulate Shells .. 1929
Shell Properties .. 1931
Shell Pairs.. 1938
Interfaces... 1941
Gaps ... 1948
Mesh Control.. 1950
Welds .. 1963
Creo Simulate Features .. 1967
Validating New and Modified Simulation Objects ... 1967

Creo Simulate: Geometry... 1969
Introduction .. 1970
Obtaining Creo Simulate Geometry from Creo Parametric TOOLKIT 1971
To Create a Surface Region Feature .. 1985

Creo Simulate: Finite Element Modeling (FEM).. 1987
Overview.. 1988
Exporting an FEA Mesh .. 1988

Mechanism Design: Mechanism Features ... 1991
Mechanism Spring Feature.. 1992
Mechanism Damper Feature ... 1994
Mechanism Belt Feature ... 1995
Mechanism 3D Contact Feature... 1998
Mechanism Motor Features ... 2002

Event-driven Programming: Notifications .. 2010
Using Notify.. 2011
Notification Types ... 2011

Event-driven Programming: External Objects .. 2020
Summary of External Objects .. 2021
External Objects and Object Classes ... 2021
External Object Data... 2024
External Object References... 2031
Callbacks for External Objects ... 2033
Warning Mechanism for External Objects ... 2034
Example 1: Creating an External Object ... 2036

Event-driven Programming: Toolkit-Based Analysis ... 2037
Overview.. 2038
Interactive Creation of Toolkit-Based Analysis ... 2038
Interactive Creation of Toolkit-Based Analysis Feature....................................... 2039
Storage of Toolkit-Based Analysis Feature in Creo Parametric 2039
Registering a Toolkit-Based Analysis with Creo Parametric 2040
Analysis Callbacks.. 2040
Creo Parametric TOOLKITAnalysis Information.. 2043
Results Data .. 2043
Analysis Attributes .. 2045

16 Creo® Parametric TOOLKITUser’s Guide

Visiting Saved Toolkit-Based Analyses ... 2046
Visiting Toolkit-Based Analyses Features ... 2046
Using the Model without Creo Parametric TOOLKIT .. 2046

Event-driven Programming: Foreign Datum Curves ... 2048
Foreign Datum Curves .. 2049

Task Based Application Libraries .. 2053
ProArgument and Argument Management.. 2054
Creating Creo Parametric TOOLKIT DLL Task Libraries..................................... 2055
Launching Synchronous J-Link Applications ... 2061

Technical Summary of Changes ... 2063
Technical Summary of Changes for Creo 8.0.0.0... 2064
Technical Summary of Changes for Creo 8.0.1.0... 2075
Technical Summary of Changes for Creo 8.0.2.0... 2076

Appendix A.Unicode Encoding ... 2077
Introduction to Unicode Encoding... 2078
Unicode Encoding and Creo Parametric TOOLKIT .. 2079
Necessity of Unicode Compliance.. 2080
External Interface Handling ... 2080

Appendix B.Updating Older Applications ... 2084
Overview.. 2085
Tools Available for Updating Applications.. 2085

Appendix C.Migrating to Creo Object TOOLKIT C++.. 2088
Overview.. 2089
Migrating Applications Using Tools ... 2089

Appendix D.Migrating to the Multibody Environment... 2092
Overview.. 2093

Appendix E.Creo Parametric TOOLKIT Registry File.. 2099
Registry File Fields ... 2100
Sample Registry Files ... 2101

Appendix F.Creo Parametric TOOLKIT Library Types .. 2103
Overview.. 2104
Standard Libraries .. 2105
Alternate Libraries .. 2105

Appendix G.Creo Parametric TOOLKIT Sample Applications.................................... 2106
Installing Sample Applications ... 2107
Details on Sample Applications.. 2108

Appendix H.Advanced Licensing Options.. 2113
Advance Licensing Options for Creo Parametric TOOLKIT 2114

Appendix I.Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping............... 2115
The Relationship Between Creo Parametric TOOLKITand Pro/
DEVELOP .. 2116

Converting from Pro/DEVELOP ... 2116

Contents 17

Equivalent Pro/DEVELOP Functions.. 2128

Appendix J.Geometry Traversal ... 2142
Overview.. 2143
Geometry Terms... 2143

Appendix K.Geometry Representations .. 2147
Domain of Evaluation .. 2148
Surface Data Structures .. 2148
Edge and Curve Data Structures.. 2160

Appendix L.Debugging Creo Parametric TOOLKITApplications................................ 2164
Building a Creo Parametric TOOLKITApplication for Debugging 2165
Debugging Techniques.. 2165
Debugging a Multiprocess Application .. 2167

Glossary... 2168

Index.. 2172

18 Creo® Parametric TOOLKITUser’s Guide

About This Guide

Creo Parametric TOOLKIT is the C-language customization toolkit for Creo
Parametric. It provides customers and third-parties the ability to expand Creo
Parametric capabilities by writing C-language code and seamlessly integrating the
resulting application into Creo Parametric. It provides a large library of C
functions that enables the external application to access the Creo Parametric
database and user interface in a controlled and safe manner.

Note
Creo Parametric TOOLKIT is supported only with Creo Parametric. It is not
supported with the other Creo applications.

Creo Parametric TOOLKIT is aimed at software engineers with experience in C
programming. They should also be trained in the basic use of Creo Parametric.

19

The Creo Parametric TOOLKIT User’s Guide describes how to use Creo
Parametric TOOLKIT. This manual introduces Creo Parametric TOOLKIT, the
features it offers, and the techniques and background knowledge users require to
use it.

Note
The code examples included in this guide have been reformatted for
presentation purposes, and therefore may contain hidden editing characters,
such as tabs and end-of-line characters, and extraneous spaces. Do not cut and
paste sample application code or code fragments from the User’s Guide as the
additional formatting characters could break the code; always use the sample
code provided in the Creo Parametric TOOLKIT installation directory at
<creo_loadpoint>\<datecode>\Common Files\protoolkit\
protk_appls.

The documentation for Creo Parametric TOOLKIT includes an online browser
that contains the Creo Parametric TOOLKIT User’s Guide and describes Creo
Parametric TOOLKIT function syntax.
The following table lists conventions and terms used throughout this book.
Convention Description
UPPERCASE Creo Parametric-type menu name (for example,

PART).

Boldface Windows-type menu name or menu or dialog box
option (for example, View), or utility (for example,
promonitor). Function names also appear in
boldface font.

Monospace(Courier) Code samples appear
Emphasis Important information appears in italics. Italic font

also indicates file names and function arguments.
Choose Highlight a menu option by placing the arrow cursor

on the option and pressing the left mouse button.
Select A synonym for “choose” as above, Select also

describes the actions of selecting elements on a
model and checking boxes.

Element An element describes redefinable characteristics of a
feature in a model.

Mode An environment in Creo Parametric in which you
can perform a group of closely related functions
(Drawing, for example).

Model An assembly, part, drawing, format, notebook, case
study, sketch, and so on.

Option An item in a menu or an entry in a configuration file
or a setup file.

Solid A part or an assembly.

20 Creo® Parametric TOOLKITUser’s Guide

Convention Description
<creo_loadpoint> The location where the Creo applications are

installed, for example, C:\Program Files\
PTC\Creo 1.0.

<creo_toolkit_loadpoint> The location where the Creo Parametric TOOLKIT
application is installed, that is, <creo_
loadpoint>\<datecode>\Common Files\
protoolkit.

Note
• Important information that should not be overlooked appears in notes like

this.
• All references to mouse clicks assume use of a right-handed mouse.

Software Product Concerns and Documentation Comments
For resources and services to help you with PTC software products, please visit
the Customer Support Guide in the eSupport Portal at:
http://support.ptc.com/appserver/support/csguide/csguide.jsp
You must have a Service Contract Number (SCN) before you can receive assisted
technical support. If you do not have a service contract number please contact
PTC Customer Care by clicking the Contact tab on the Customer Support Guide
page.
In regard to documentation, PTC welcomes your suggestions and comments. You
can send feedback in the following ways:
• Send comments electronically to MCAD-documentation@ptc.com.
• Fill out and mail the PTC Documentation Survey in the customer service

guide.

About This Guide 21

http://support.ptc.com/appserver/support/csguide/csguide.jsp
http://support.ptc.com/appserver/support/csguide/csguide.jsp?missing=support/cs_guide/cs_guide.pdf#150257-131282

1
Fundamentals

Introduction to Creo Parametric TOOLKIT ...23
Online Documentation in Creo Parametric TOOLKITAPIWizard23
Creo Parametric TOOLKIT Style...24
Installing Creo Parametric TOOLKIT...27
Developing a Creo Parametric TOOLKITApplication..35
Creo Parametric TOOLKIT Support for Creo Applications...54
User-Supplied Main ...54
Asynchronous Mode..55
Creo Parametric TOOLKIT Techniques ...56
Visit Functions...62
Support for Creo Model Names and Files Paths...64
Wide Strings ...65
String and Widestring Functions ...66
Support for IPv6 ..67
Accessing LearningConnector..68

This chapter describes fundamental Creo Parametric TOOLKIT concepts and
functions.

22 Creo® Parametric TOOLKITUser’s Guide

Introduction to Creo Parametric TOOLKIT
Creo Parametric TOOLKIT is the customization toolkit for Creo Parametric from
Parametric Technology Corporation (PTC). It gives customers and third-parties
the ability to expand Creo Parametric capabilities by writing C programming
language code and then seamlessly integrating the resulting application into Creo
Parametric.
Creo Parametric TOOLKIT provides a large library of C functions to provide the
external application safe and controlled access to the Creo Parametric database
and applications. Creo Parametric TOOLKIT is the primary PTC application
programmer's interface (API) for Creo Parametric.

Online Documentation in Creo Parametric
TOOLKITAPIWizard
Creo Parametric TOOLKIT provides an online browser called the APIWizard that
displays detailed documentation data. This browser displays information from the
Creo Parametric TOOLKIT Users’ Guide and API specifications derived from
Creo Parametric TOOLKIT header file data.
The Creo Parametric TOOLKIT APIWizard contains the following:

• Definitions of Creo Parametric TOOLKIT objects and their hierarchical
relationships

• Definitions of Creo Parametric TOOLKIT functions
• Declarations of data types used by Creo Parametric TOOLKIT functions
• The Creo Parametric TOOLKIT Users’ Guide, which users can browse by

topic or by object
• Code examples for Creo Parametric TOOLKIT functions (taken from

applications provided as part of the Creo Parametric TOOLKIT installation)
Review the Release Notes for the most up-to-date information on documentation
changes.

Note
• The User’s Guide is also available in PDF format. This file is located

at:<creo_toolkit_loadpoint>\tkuse.pdf
• From Creo Parametric 4.0 F000, the applet based APIWizard is no longer

supported. Use the non-applet based APIWizard instead.

Fundamentals 23

To Install the APIWizard
The Creo Parametric product CD installation procedure automatically installs the
Creo Parametric TOOLKIT APIWizard. The files reside in a directory under the
Creo Parametric load point. The location for the Creo Parametric TOOLKIT
APIWizard files is <creo_toolkit_loadpoint>\protkdoc
To load the APIWizard manually, copy all files from <creo_toolkit_
loadpoint>\protkdoc to your target directory.

APIWizard Overview
The APIWizard supports Internet Explorer, Firefox, and Chromium browsers.
Start the Creo Parametric TOOLKIT APIWizard by pointing your browser to:
<creo_toolkit_loadpoint>\protkdoc\index.html

A page containing links to the Creo Parametric TOOLKIT APIWizard and User’s
Guide will open in the web browser.

APIWizard
Click APIWizard to open the list of Creo Parametric TOOLKIT Objects and the
related functions. Click a function name to read more about it.
Use the search field at the top of the left pane to search for functions. You can
search using the following criteria:
• Search by API names
• Search using wildcard character *, where * (asterisk) matches zero or more

nonwhite space characters
The search displays the resulting API names with embedded links in a drop down
list. The deprecated APIs are highlighted in yellow.

User’s Guide
Click User’s Guide to access the Creo Parametric Toolkit User’s Guide.

Creo Parametric TOOLKIT Style
Creo Parametric TOOLKIT uses an object-oriented programming style. Data
structures for the transfer information between Creo Parametric and the
application are not directly visible to the application. These data structures are
accessible only with Creo Parametric TOOLKIT functions.

24 Creo® Parametric TOOLKITUser’s Guide

Objects and Actions
The most basic Creo Parametric TOOLKIT concepts are objects and actions.
Each Creo Parametric TOOLKIT library C function performs an action on a
specific type of object. The Creo Parametric TOOLKIT convention for function
names is the prefix “Pro” the name of the object type, and the name of the action it
performs, for example:
ProSectionLocationGet()

A Creo Parametric TOOLKIT object is a well-defined and self-contained C
structure used to perform actions relevant to that object. Most objects are items in
the Creo Parametric database, such as features and surfaces. Others, however, are
more abstract or transient, such as the information resulting from a select action.
In Creo Parametric TOOLKIT, each type of object has a standard name consisting
of a “Pro” plus capitalized word that describes the object. Simple examples of
Creo Parametric TOOLKIT object types and their Creo Parametric equivalents are
as follows:

• ProFeature—A feature
• ProSurface—A surface
• ProSolid—An abstract object created to exploit the commonality between

parts and assemblies
• ProWcell—Aworkcell feature in a manufacturing assembly
Creo Parametric TOOLKIT provides a C typedef for each object used for
variables and arguments that refer to those objects. Creo Parametric TOOLKIT
objects have a hierarchical relationship that reflects the Creo Parametric database.
For example, a ProFeature object can contain objects of type ProSurface
(among others).
For example, the following functions have actions that are single verbs:
ProSolidRegenerate()

ProFeatureDelete()

Some Creo Parametric TOOLKIT functions require names that include more than
one object type. The function names have the object types first, then the action.
For example:
ProFeatureParentsGet()

ProWcellTypeGet()

The action verbs indicate the type of action being performed, as shown in the
following table.

Fundamentals 25

Action Verb Type of Action
Get Read information directly from the Creo Parametric

database.
Eval Provide the result of a simple calculation.
Compute Provide the result of a computation that typically

involves numerical analysis of the model geometry.

Examples are:

• ProEdgeLengthEval()

• ProSurfaceAreaEval()

• ProSolidRayIntersectionCompute()

To illustrate further, function ProSolidOutlineGet() reads from Creo
Parametric the currently stored solid outline, but
ProSolidOutlineCompute() invokes a recomputation of that information.
Use ProSolidOutlineCompute() to compute an accurate outline of a solid.

Note
Do not use ProSolidOutlineGet() to calculate the outline of a solid. It
will not return a properly calculated outline.

Other Creo Parametric TOOLKIT function conventions are that the first argument
identifies the object, and input arguments come before output arguments.

Function Prototyping
Each Creo Parametric TOOLKIT function has an ANSI function prototype. (The
C compilers on platforms supported by Creo Parametric TOOLKIT provide at
least the option of function prototype checking.) All function prototypes for a
particular Creo Parametric TOOLKIT object reside in a header file named for that
object. For example, the prototype for function ProEdgeLengthEval() is
located in the header file ProEdge.h.

Note
PTC strongly recommends that you use prototyping. Make sure you include
the appropriate header files in your Creo Parametric TOOLKIT application.

26 Creo® Parametric TOOLKITUser’s Guide

Function Error Statuses
The return type of most Creo Parametric TOOLKIT functions is ProError.
ProError is an enumerated type with a value for each common case where Creo
Parametric TOOLKIT functions succeeds or fails.
The normal value for success is PRO_TK_NO_ERROR. The other “failure”
statuses occur when there is a genuine problem, or for more benign reasons. For
example, these error statuses denote genuine problems:

• PRO_TK_BAD_INPUTS—The Creo Parametric TOOLKIT program called
the function incorrectly.

• PRO_TK_OUT_OF_MEMORY or PRO_TK_COMM_ERROR—System failure.
The following statuses are more benign:

• PRO_TK_USER_ABORT—A function that supports user interaction was
aborted by the Creo Parametric user.

• PRO_TK_E_NOT_FOUND—A function attempted operation on an empty
object list.

Users must pay careful attention to how their program reacts to a Creo Parametric
TOOLKIT function error status—there can be several types of failure and success,
each requiring different handling.
The subset of ProError values that a particular Creo Parametric TOOLKIT
function can return is described in the browser under that function. Possible errors
are also included in a comment under each function prototype in the
corresponding Creo Parametric TOOLKIT header file.

Installing Creo Parametric TOOLKIT
The next sections describe how to install Creo Parametric TOOLKIT.

Overview
Creo Parametric TOOLKIT is on the same DVD as Creo Parametric, so you do
not need to arrange a special delivery from your supplier. When Creo Parametric
is installed using PTC.Setup, one of the optional components is API Toolkits.
This includes Creo Parametric TOOLKIT, Pro/WebLink, J-Link, VB, and Creo
Object TOOLKIT C++ and Creo Object TOOLKIT Java.
If you select Creo Parametric TOOLKIT, it is installed under the loadpoint of
Creo Parametric at the location <creo_loadpoint>\<datecode>\Common
Files\protoolkit. The protoolkit directory contains all the headers,
libraries, example applications, and documentation specific to Creo Parametric
TOOLKIT.

Fundamentals 27

The following figure shows the tree of directories found under the Creo
Parametric TOOLKIT loadpoint after installation.

Creo Parametric TOOLKIT Installation Directory Tree

The directory protk_appls contains sample Creo Parametric TOOLKIT
applications. For more information regarding the sample applications refer to the
Appendix on Sample Applications.

Add or Update Creo Parametric TOOLKIT
Installation
Add a Creo Parametric TOOLKIT installation to an existing Creo Parametric
installation using the Update option in PTC.Setup. For a description of using PTC.
Setup, refer to the Creo Parametric Installation and Administration Guide.
Be sure your system administrator reinstalls Creo Parametric TOOLKIT each time
they update your Creo Parametric installation from a new CD. PTC recommends
that, when possible, you use a Creo Parametric TOOLKIT from the same build
number as Creo Parametric.

Note
The Creo Parametric library functions work by invoking functions inside the
Creo Parametric executable, so an update to Creo Parametric TOOLKIT often
involves a change to Creo Parametric rather than Creo Parametric TOOLKIT
itself. So when you receive a Creo Parametric DVD that contains an update to
Creo Parametric TOOLKIT, always reinstall Creo Parametric from that DVD.

28 Creo® Parametric TOOLKITUser’s Guide

In many situations it will be inconvenient or impossible to ensure that the users of
your Creo Parametric TOOLKIT application will use the same build of Creo
Parametric that you used to compile and link the Creo Parametric TOOLKIT
application. Refer to section Version Compatibility: Creo Parametric and Creo
Parametric TOOLKIT on page 41 for the rules to mix versions of Creo Parametric
and Creo Parametric TOOLKIT.

Testing the Creo Parametric TOOLKIT Installation
After your system administrator has installed Creo Parametric TOOLKIT, you
should compile, link, and run a simple Creo Parametric TOOLKIT application as
soon as possible on each machine you intend to use for development. This
provides an independent test of the following items:

• The installation of Creo Parametric TOOLKIT is present, complete, and
visible from your machine.

• The version of Creo Parametric you plan to use during development has the
Creo Parametric TOOLKIT license option added to it.

• The machine you will use for development has access to all the necessary C
program development tools, in versions supported by Creo Parametric
TOOLKIT (especially, of course, the C compiler and linker).

Running the Microsoft Visual Studio Solution
PTC provides a ready-to-use Visual Studio solution on the Windows platform to
build and test Creo Parametric TOOLKIT applications by using an appropriate
makefile. For the version of Visual Studio compatible with the release of Creo
Parametric TOOLKIT, refer to the hardware notes at Creo Future Platform
Support Summary.
This ready-to-use Visual Studio solution has the following advantages:

• Provides an effective way to build and test sample applications provided by
PTC.

• Provides a preconfigured Visual Studio development environment for use with
Creo Parametric TOOLKIT.

• Supports Intellisense for Creo Parametric TOOLKIT functions.

Fundamentals 29

https://www.ptc.com/en/support/refdoc/creo_direct/5.0/ptc_creo_future_platform_support_summary_160242
https://www.ptc.com/en/support/refdoc/creo_direct/5.0/ptc_creo_future_platform_support_summary_160242

Note
○ The supported version of Visual Studio changes with every release of Creo

Parametric TOOLKIT, and hence the compiler flags and libraries also
change. For every release, you must download the latest version of the
ready-to-use Visual Studio solution from the creo_toolkit_
loadpoint.

○ In Creo Parametric 7.0.1.0 and later, Creo Parametric TOOLKIT supports
Visual Studio 2019. The compiler flags and libraries are available for
Visual Studio 2019. Creo Parametric TOOLKIT no longer supports Visual
Studio 2015.

All Creo Parametric TOOLKIT applications on 64-bit Windows platforms
built using the Microsoft Visual Studio 2019 compiler must set the
configuration property Platform Toolset as Visual Studio 2019 (v142).

When you install Creo Parametric TOOLKIT, the file protk_install_
example.zip is installed under the <creo_toolkit_loadpoint> at
$<machine_type>\obj. To use this solution:

1. Unzip protk_install_example.zip. The following files and
directories are available:
Directory or File Description
make_install.sln Specifies the ready-to-use Visual Studio solution

file.
make_install Contains the makefile project and the

creotk.dat file.

2. Open Microsoft Visual Studio.
3. Click File ▶ Open ▶ Project/Solution. The Open Project dialog opens.
4. Browse the protk_install_example directory and select make_

install.sln.
5. Click Open to access the solution file.
The make_install makefile project is available in Visual Studio.

Running the Makefile Project
1. Click Build ▶ Build make_install. The application should build without errors.

This creates the Creo Parametric TOOLKIT DLL file called pt_inst_

30 Creo® Parametric TOOLKITUser’s Guide

test.dll. If the application fails, check that the environment variable
PROTOOL_SRC is set correctly.

2. Modify the exec_file and text_dir fields in the creotk.dat file
located in the make_install directory to specify the full path to pt_
inst_test.dll and \text, respectively. For example,

exec_file <full_path>\pt_inst_test.dll
text_dir <full_path>\text

3. Unlock the application, using the following command:
<creo_loadpoint>\<datecode>\Parametric\bin\protk_unlock.bat
<path to executables or DLLs to unlock>

4. Start Creo Parametric.
5. On the Tools tab, in the Utilities group, click Auxiliary Applications. The

Auxiliary Applications dialog box opens.
6. Click Register to register the updated creotk.dat file. The Register

auxiliary application dialog box opens.
7. Browse to the <full_path> and select creotk.dat.
8. Click Open. The Creo Parametric TOOLKIT application adds the command

Install Test under the Tools ▶ File menu in the TOOLKIT group in the Home tab
on the Creo Parametric ribbon user interface.

Note
Refer to the Creo Parametric Help for more information on customizing
the Ribbon.

9. Click Tools and then click File ▶ Install Test. The Creo Parametric TOOLKIT
Install Test Results message window opens, indicating that the installation test
has succeeded.

10. Click OK.

Fundamentals 31

To run other sample applications provided by PTC, follow these steps:

1. Copy the required makefile from <creo_toolkit_loadpoint>\
$<machine_type>\obj to the make_install directory of the ready-
to-use Visual Studio solution.

If you are working on a 64-bit Windows platform, copy the file from <creo_
toolkit_loadpoint>\x86e_win64\obj.

2. Copy the text directory associated with the sample application from <creo_
toolkit_loadpoint>\protk_appls\<app_name>\text to the
make_install directory.

3. Open Visual Studio and set the values of the following variables in the
makefile:
PROTOOL_SRC = ../../../../../protoolkit
PROTOOL_SYS = $(PROTOOL_SRC)/$(PRO_MACHINE_TYPE)

4. Click Project ▶ Properties to update the NMake properties of the project.
5. Click Build ▶ Rebuild make_install. The application builds and creates a new

.dll file.
6. Update the creotk.dat file located in the make_install directory with

the name of the sample application and the DLL file.
7. Modify the exec_file and text_dir fields in the creotk.dat file to

specify the full path to the .dll file and \text directory, respectively.
8. Start Creo Parametric.
9. On the Home tab, in the Utilities group, click Auxiliary Applications or click

Tools ▶ Auxiliary Applications. The Auxiliary Applications dialog box opens.
10. Click Register to register the updated creotk.dat file. The Register

auxiliary application dialog box opens.
11. Browse to the full path and select creotk.dat.
12. Click Open. The Creo Parametric TOOLKIT application runs.

Building a Sample Application
The Creo Parametric TOOLKIT loadpoint includes the source of a simple
application designed specifically to test the Creo Parametric TOOLKIT
installation. The steps required to build and run the test application are described
in the following sections.
In this explanation, <creo_toolkit_loadpoint> refers to the directory that
forms the loadpoint of Creo Parametric TOOLKIT, and <machine_type>
refers to the name of the type of platform you are using (for example, i486_nt).

32 Creo® Parametric TOOLKITUser’s Guide

Step 1—Compile and Link
Compile and link the Creo Parametric TOOLKIT installation test application
using the makefile <creo_toolkit_loadpoint>\$<machine_type>\
obj\make_install

The makefile is designed to be run in that location, and creates a Creo Parametric
TOOLKIT application file in the directory from which it is run. If you do not have
root privileges, you probably need to copy the makefile to a directory of your own
so the output file can be created. If you do this, you also need to edit the makefile
to correct the macro that refers to the Creo Parametric TOOLKIT loadpoint.
If you copy the makefile to another directory, replace the line:

PROTOOL_SRC = ../..

with:
PROTOOL_SRC = <creo_toolkit_loadpoint>

In this line, <creo_toolkit_loadpoint> is the loadpoint for your Creo
Parametric TOOLKIT installation.
To run the makefile, type the following command:

nmake -f make_install

This creates a file called pt_inst_test.exe.
If you experience any error messages at this stage, it might be due to the Creo
Parametric TOOLKIT installation being incomplete, or, more likely, the C
compiler and linker being unavailable or unsupported by Creo Parametric
TOOLKIT.

Step 2—Register
In the same directory, create a text file called creotk.dat. This file is the
“registry file” that tells Creo Parametric about the Creo Parametric TOOLKIT
application. Refer to the Registering a Creo Parametric TOOLKITApplication on
page 38 and Sample Registry Files on page 2101 sections for syntax requirements
for this file. The creotk.dat file should contain the following lines:

name install_test
exec_file pt_inst_test.exe
text_dir <creo_toolkit_loadpoint>/protk_appls/pt_install_test
end

Note
Use the delimiter character \in creotk.dat.

Fundamentals 33

Step 3—Run Creo Parametric
Run Creo Parametric from the directory that contains the creotk.dat file; Creo
Parametric starts the Creo Parametric TOOLKIT application in multiprocess mode
(see the section How Creo Parametric TOOLKIT Works on page 35 for more
information on multiprocess mode). You should see that the Install Test command
has been added in the TOOLKIT group in the Home tab on the Creo Parametric
ribbon user interface. Click Tools and then click File ▶ Install Test. The Creo
Parametric TOOLKIT application displays a custom dialog indicating whether the
installation test has succeeded:

Install Test Results Dialog Box

Failure or error messages at this stage could be due to the following reasons:

• You made a mistake when creating the creotk.dat file. If the syntax or
contents are wrong, you should see a self-explanatory message in the window
from which you started Creo Parametric.

• The Creo Parametric you ran is not licensed for Creo Parametric TOOLKIT.
This also causes an explanatory message to be displayed in the startup
window.

• The Creo Parametric TOOLKIT executable you created in Step 1 is wrong in
some way: it is for the wrong platform, for example, or might not have execute
access. You can check this by trying to execute the file directly by typing its
name. If the file is correct, the program prints the following messages and then
terminates:

pt_inst_test: insufficient arguments; need 2 arguments:
(1) own RPC program #
(2) root directory path for Pro/TOOLKIT text files.

If the file is incorrect, the exact message will depend on which platform you are
using, but should explain the cause of the problem.

34 Creo® Parametric TOOLKITUser’s Guide

Step 4—Repeat the Test in DLL Mode
To build for DLL mode, use the same makefile, but use the following line instead
of the line nmake -f make_install:

nmake -f make_install dll

This creates a file called pt_inst_test.dll, which is the library to be
dynamically linked.
Next, make these two changes to the creotk.dat file:
Add this line after the first line:

startup dll

Change the exec_file statement to reference the new Creo Parametric
TOOLKIT file. Use the executable name pt_inst_test.exe in the second
line, and the Windows directory syntax in the third line.
You can run Creo Parametric and look at the behavior of the Creo Parametric
TOOLKIT application exactly as in Step 3.
See the section How Creo Parametric TOOLKIT Works on page 35 for more
information on DLL mode.

Developing a Creo Parametric TOOLKIT
Application
This section describes how Creo Parametric TOOLKIT works and the steps you
need to take after installing Creo Parametric TOOLKIT to create a Creo
Parametric TOOLKIT application. The topics are as follows:

• How Creo Parametric TOOLKIT Works on page 35
• Compiling and Linking a Creo Parametric TOOLKITApplication on page 37
• Registering a Creo Parametric TOOLKITApplication on page 38
• Version Compatibility: Creo Parametric and Creo Parametric TOOLKIT on

page 41
• Stopping and Restarting a Creo Parametric TOOLKITApplication on page 43
• Structure of a Creo Parametric TOOLKITApplication on page 47
• User-Supplied Main on page 54
• Creo Parametric TOOLKIT Techniques on page 56

How Creo Parametric TOOLKIT Works
The standard method by which Creo Parametric TOOLKIT application code is
integrated into Creo Parametric is through the use of dynamically linked libraries
(DLLs). When you compile your Creo Parametric TOOLKIT application C code

Fundamentals 35

and link it with the Creo Parametric TOOLKIT library, you create an object
library file designed to be linked into the Creo Parametric executable when Creo
Parametric starts up. This method is referred to as DLL mode.
Creo Parametric TOOLKIT also supports a second method of integration: the
“multiprocess,” or spawned mode. In this mode, the Creo Parametric TOOLKIT
application code is compiled and linked to form a separate executable. This
executable is designed to be spawned by Creo Parametric and runs as a child
process of the Creo Parametric session. In DLL mode, the exchanges between the
Creo Parametric TOOLKIT application and Creo Parametric are made through
direct function calls. In multiprocess mode, the same effect is created by an inter-
process messaging system that simulates direct function calls by passing the
information necessary to identify the function and its argument values between the
two processes.
Multiprocess mode involves more communications overhead than DLL mode,
especially when the Creo Parametric TOOLKIT application makes frequent calls
to Creo Parametric TOOLKIT library functions, because of the more complex
method of implementing those calls. However, it offers the following advantage: it
enables you to run the Creo Parametric TOOLKIT application with a source-code
debugger without also loading the whole Creo Parametric executable into the
debugger. See the section Using a Source-Code Debugger on a Creo Parametric
TOOLKITApplication on page 44 for more details.
You can use a Creo Parametric TOOLKIT application in either DLL mode or
multiprocess mode without changing any of the C source code in the application.
(The methods of setting the mode are described in detail later in this chapter.)
It is also possible to use more than one Creo Parametric TOOLKIT application
within a single session of Creo Parametric, and these can use any combination of
modes.
If you use multiprocess mode during development of your application to debug
more easily, you should switch to DLL mode when you install the application for
your end users because the performance is better in that mode. However, take care
to test your application thoroughly in DLL mode before you deliver it. Any
programming errors in your application that cause corruption to memory used by
Creo Parametric or Creo Parametric TOOLKIT are likely to show quite different
symptoms in each mode, so new bugs may emerge when you switch to DLL
mode.
Although multiprocess mode involves two processes running in parallel, these
processes do not provide genuine parallel processing. There is, however, another
mode of integrating a Creo Parametric TOOLKIT application that provides this
ability, called “asynchronous mode.” (Asynchronous mode is described in detail in
the chapter Core: Asynchronous Mode on page 277.) The DLL and multiprocess
modes are given the general name “synchronous mode.” An asynchronous Creo
Parametric TOOLKIT application is fundamentally different in its architecture
from a synchronous mode application, so you should choose between these

36 Creo® Parametric TOOLKITUser’s Guide

methods before writing any application code. As a general rule, synchronous
mode should be the default choice unless there is some unavoidable reason to use
asynchronous mode, because the latter mode is more complex to use.

Note
• All Creo Parametric TOOLKIT calls running in either synchronous (DLL or

multiprocess) mode or asynchronous mode always clear the Undo/Redo
stack in the Creo Parametric session. The Creo Parametric user interface
reflects this by making the Undo and Redo menu options unavailable.

• When you invoke the Creo Parametric TOOLKIT application, ensure that no
dialogs are open in Creo Parametric session. If Creo Parametric dialog is open,
the results may be unpredictable.

Compiling and Linking a Creo Parametric TOOLKIT
Application
This section describes compiling and linking Creo Parametric TOOLKIT
applications.

Makefiles
The C compiler options and system libraries needed to compile and link a Creo
Parametric TOOLKIT application are different on each platform. To ensure that
the makefile you use for building your Creo Parametric TOOLKIT application
uses the correct options, you should base your makefile on one of the makefiles
located under the <creo_toolkit_loadpoint>. These are designed for
building the various Creo Parametric TOOLKIT applications whose source is
included in the Creo Parametric TOOLKIT installation.
An example of one of the Creo Parametric TOOLKIT applications provided is the
installation test, whose source code is under the directory <creo_toolkit_
loadpoint>\protk_appls\pt_install_test, where <creo_
toolkit_loadpoint> is the loadpoint directory of the Creo Parametric
TOOLKIT installation. The makefile for the installation test application is
<creo_toolkit_loadpoint>\$<machine_type>\obj\make_
install.
To use this as the model for your own makefile, copy it to the directory that will
contain your Creo Parametric TOOLKIT source code, then make the following
changes to it:

Fundamentals 37

• Change the macro MAKEFILENAME to refer to the makefile by its new name.
• Change the macros EXE and EXE_DLL to define output file names more

suitable for your own application.
• Change the macro PROTOOL_SRC to refer to the loadpoint of Creo

Parametric TOOLKIT.
• Change the macro OBJS to refer to the object files that will result from

compiling your Creo Parametric TOOLKIT source files.
• Add targets for those object files. These contain instructions for
• compiling your C source files. The form of these target definitions can be

copied from the ones in the original makefile. They generally take the
following form:

myfile.o: myfile.c
$(CC) $(CFLAGS) myfile.c

Note
The second line must start with a tab character.

If you want to use a debugger with your Creo Parametric TOOLKIT application,
you can also add the appropriate compiler switch (usually “-g”) to the CCFLAGS
macro.
If you are rebuilding an existing Pro/TOOLKIT application with a new version of
Creo Parametric TOOLKIT, remember to repeat these steps to set up a new
makefile—do not continue to use a makefile created for the previous version. You
must do this in case the compiler switches or system libraries needed to build a
Creo Parametric TOOLKIT application have changed in the new version.

Registering a Creo Parametric TOOLKITApplication
Registering a Creo Parametric TOOLKIT application means providing Creo
Parametric with information about the files that form the Creo Parametric
TOOLKIT application. To do this, create a small text file called the Creo
Parametric TOOLKIT registry file, that Creo Parametric will find and read.
Creo Parametric searches for the registry file as follows:

• In the absolute path specified in the creotkdat, protkdat, prodevdat,
and toolkit_registry_file statements in the Creo Parametric
configuration file.

• For the files named creotk.dat, protk.dat, or prodev.dat in the
following locations:

38 Creo® Parametric TOOLKITUser’s Guide

1. The starting directory
2. <creo_loadpoint>\<datecode>\Common Files\

$<machine_type>\text\<language>

3. <creo_loadpoint>\<datecode>\Common Files\text

4. <creo_loadpoint>\<datecode>\Common Files\text\
<language>

In the preceding locations, the variables are as follows:

• <creo_loadpoint>—The Creo Parametric loadpoint (not the Creo
Parametric TOOLKIT loadpoint).

• <machine_type>—The machine-specific subdirectory, such as, i486_nt
or x86e_win64. Set the environment variable PRO_MACHINE_TYPE to
define the type of machine on which Creo Parametric is installed.

If more than one registry file having the same filename exists in this search path,
Creo Parametric stops searching after finding the first instance of the file and
starts all the Creo Parametric TOOLKIT applications specified in it. If more than
one registry file having different filenames exist in this search path, Creo
Parametric stops searching after finding one instance of each of them and starts all
the Creo Parametric TOOLKIT applications specified in them.

Note
• Option 1 is normally used during development, because the Creo Parametric

TOOLKIT application is seen only if you start Creo Parametric from the
specific directory that contains the registry file.

• Option 3 is recommended when making an end-user installation, because it
makes sure that the registry file is found no matter what directory is used to
start Creo Parametric.

The registry file is a simple text file, where each line consists of one of a
predefined set of keywords, followed by a value.
The standard form of the registry file in DLL mode is as follows:

name YourApplicationName
startup dll
exec_file $LOADDIR/$MACHINE_TYPE/obj/filename.dll
text_dir $LOADDIR
end

The fields of the registry file are as follows:

Fundamentals 39

• name—Assigns a unique name to this Creo Parametric TOOLKIT
application.

• startup—Specifies the method Creo Parametric should use to communicate
with the Creo Parametric TOOLKIT application. The example above specifies
the DLL mode.

• exec_file—Specifies the full path and name of the file produced by
compiling and linking the Creo Parametric TOOLKIT application. The
example above shows a typical use of environment variables to make the
reference to the executable file more flexible.

• text_dir—Specifies the full path name to text directory that contains the
language-specific directories. The language-specific directories contain the
message files, menu files, resource files and UI bitmaps in the language
supported by the Creo Parametric TOOLKIT application.

Note
The fields exec_file and text_dir have a character limit of PRO_
PATH_SIZE-1 wide characters (wchar_t).

• end—Indicates the end of the description of this Creo Parametric TOOLKIT
application.

If you want to run the application in multiprocess mode, make the following
changes to the registry file:

• Change the startup statement to:
startup spawn

• Make the exec_file statement refer to the Creo Parametric TOOLKIT
program executable.

Note
For all Creo Parametric TOOLKIT plugins, the registry file protk.dat
is located inside the %ProgramData%\PTC\<Creo Parametric
Toolkit version>\Plugins subdirectories. All registry files located
in this location must use the absolute path in all their entries.

For more information about the registry file, refer to the appendix Creo
Parametric TOOLKIT Registry File on page 2099.

40 Creo® Parametric TOOLKITUser’s Guide

Limit on the Number of Loaded Applications
Previous versions of Pro/ENGINEER limited the number of applications that
could be specified in the registry files; there is no such limit for Pro/ENGINEER
Wildfire 2.0 onwards. However, most platforms do have limits for the size of a
process, the total size of all processes, and the number of processes that a single
process can spawn. PTC recommends that you combine related applications into
the same binary file wherever possible to avoid running into these limits.

Version Compatibility: Creo Parametric and Creo
Parametric TOOLKIT
In many situations it will be inconvenient or impossible to ensure that the users of
your Creo Parametric TOOLKIT application use the same build of Creo
Parametric used to compile and link the Creo Parametric TOOLKIT application.
This section summarizes the rules for mixing Creo Parametric TOOLKIT and
Creo Parametric versions. The Creo Parametric TOOLKIT version is the Creo
Parametric CD version from which the user installed the Creo Parametric
TOOLKIT version used to compile and link the application.
Functions Introduced:

• ProToolkitMajorVersionGet()
Superseded Functions
• ProEngineerReleaseNumericversionGet()
The function ProToolkitMajorVersionGet() returns the version number
of the Creo Parametric executable to which the Creo Parametric TOOLKIT
application is connected. This number is an absolute number and represents the
major release of the product. The version number of Creo Parametric 8.0 is 40.
The function ProEngineerReleaseNumericversionGet() is
deprecated. Use the function ProToolkitMajorVersionGet() instead.

Note
From Pro/ENGINEERWildfire 4.0 onwards applications built with libraries
older than Pro/ENGINEER 2001 will not run. You must recompile these
applications with later versions of the Pro/TOOLKIT libraries.

The following points summarize the rules for mixing Creo Elements/Pro
TOOLKIT and Creo Elements/Pro versions.

• Pro/ENGINEER release older than Pro/TOOLKIT release:

Fundamentals 41

Not supported
• Creo Parametric release newer than a Creo Parametric TOOLKIT release:

This works in many, but not all, cases. The communication method used to
link Creo Parametric TOOLKIT to Creo Parametric provides full compatibility
between releases. However, there are occasional cases where changes internal
to Creo Parametric may require changes to the source code of a Creo
Parametric TOOLKIT application in order that it continue to work correctly.
Whether you need to convert Creo Parametric TOOLKIT applications depends
on what functionality it uses and what functionality changed in Creo
Parametric and Creo Parametric TOOLKIT. PTC makes every effort to keep
these effects to a minimum. The Release Notes for Creo Parametric TOOLKIT
detail any conversion work that could be necessary for that release.

• Creo Parametric build newer than Creo Parametric TOOLKIT build

This is always supported.

Application Compatibility: Creo Parametric and
Creo Parametric TOOLKIT on Different Architecture
In some situations it will be inconvenient or impossible to ensure that the users of
your Creo Parametric TOOLKIT application use a machine with the same
operating system and architecture as the machine on which it was compiled. An
example might be an application integrating with a third party library which is
only available as 32-bit architecture, but needs to be run with Creo Parametric on
a 64-bit architecture machine with the same operating system. Creo Parametric
TOOLKIT provides limited capability to support these situations in spawn and
asynchronous mode only. DLL applications must always be compiled on
machines with the same operating system and architecture as the Creo Parametric
executable.
The following situations might occur:

• Creo Parametric TOOLKIT application compiled on the same architecture and
operating system as Creo Parametric. This is always supported.

• Creo Parametric TOOLKIT application compiled on a machine with a smaller
pointer size (native data size) than the machine on which the application is run
For example, a Creo Parametric TOOLKIT application built on Windows 32-
bit running on an Windows-64 bit installation of Creo Parametric. This is
supported for spawn and asynchronous mode only.

• Creo Parametric TOOLKIT application compiled on a machine with a larger
pointer size (native data size) than the machine on which the application is
run. For example, a Creo Parametric TOOLKIT application built on Windows-

42 Creo® Parametric TOOLKITUser’s Guide

64 bit machine running on an Windows-32 bit installation of Creo Parametric.
This is not supported.

Stopping and Restarting a Creo Parametric
TOOLKITApplication
Creo Parametric TOOLKIT supports the ability to stop and restart a synchronous
application within a single session of Creo Parametric. This is particularly useful
during development of an application because it enables you to make changes to
your source code and retest it without having to restart Creo Parametric and reload
your test models. Use the Auxiliary Applications dialog box to stop and restart
applications.
To make this option available, the registry file (default name protk.dat should
contain one of the following lines:
Multiprocess mode:

startup spawn
DLL mode:

startup DLL

If you want to be able to stop and restart your Creo Parametric TOOLKIT
application within Creo Parametric, you must also add the following statement to
the definition of the application in the registry file:

allow_stop TRUE

To access the Auxiliary Applications dialog box, on the Home tab, in the Utilities
group, click Auxiliary Applications or click Tools ▶ Auxiliary Applications. The
dialog box displays a list of Creo Parametric TOOLKIT applications identified by
the name defined in the name statement in its registry file. Only applications that
a user can start or stop are displayed. This dialog box also shows the current state
of an application and allows an application to be started or stopped.
When a user starts an application from the Auxiliary Applications dialog box, Creo
Parametric freezes the user interface until the application connects to it.
If you use the allow_stop option, you might also set Creo Parametric to not
start the Creo Parametric TOOLKIT application until you explicitly request it. To
do this, you must add the following statement in your registry file:

delay_start TRUE

To start your application in Creo Parametric, choose Auxiliary Applications from
the Tools tab, select your application from the list, then click the Start button.
In addition to Start, Stop, and Close, the dialog box includes the following
buttons:

• Register—Enables you to register a Creo Parametric TOOLKIT application
whose registry file was not present when Creo Parametric was started.

• Info—Reports the following information about each currently registered Creo
Parametric TOOLKIT application:

Fundamentals 43

○ The names of the executable file and text directory
○ The version number used to build the application
○ Whether the application is currently running

There are a few other, less commonly used options in the registry file. All the
options are described fully in the Creo Parametric TOOLKIT Registry File on
page 2099 appendix.

Note
You can delete registration information on any application that is not running.

When stopping an application, make sure that no application-created menu
buttons are current. To do this, before you exit an application you must choose a
command that interrupts the current menu command.

Using a Source-Code Debugger on a Creo Parametric
TOOLKITApplication
For a full description of how to debug Creo Parametric TOOLKIT applications,
see appendix Debugging Creo Parametric TOOLKITApplications on page 2164.
This section also describes optional methods of debugging a Creo Parametric
TOOLKIT application.

Unlocking a Creo Parametric TOOLKITApplication
Before you distribute your application executable to the end user, you must unlock
it. This enables the end user (your customer) to run your applications without
having Creo Parametric TOOLKIT as an option. In Creo Parametric 6.0.0.0 and
later you can digitally sign your application.
To unlock your application, enter the following command:

<creo_loadpoint>/<datecode>/Parametric/bin/protk_unlock [-c] [-cd]
<path to executables or DLLs to unlock>

Note
• The Creo Parametric TOOLKIT application is unlocked even if you do not

specify the -c option.
• To unlock and digitally sign your application, specify the -cd option. Note

that it is mandatory to sign your application if you use the -cd option. See the
section Digitally Signing the Application on page 46, for more information on
digitally signing your application.

44 Creo® Parametric TOOLKITUser’s Guide

More than one Creo Parametric TOOLKIT binary file may be supplied on the
command line.

Note
Once you have unlocked the executable, you can distribute your application
program to Creo Parametric users in accordance with the license agreement.

Using protk_unlock requires a valid Creo Parametric TOOLKIT license be
present and unused on your license server. If the Creo Parametric license server is
configured to add a Creo Parametric TOOLKIT license as a Startup option,
protk_unlock will cause the license server to hold only the Creo Parametric
TOOLKIT option for 15 minutes. The license will not be available for any other
development activity or unlocking during this period.
If you use -cd option to unlock your application, a message appears asking you
to digitally sign your application before using it in Creo.
If the only available Creo Parametric TOOLKIT license is locked to a Creo
Parametric license, the entire Creo Parametric license including the Creo
Parametric TOOLKIT option will be held for 15 minutes. PTC recommends you
configure your Creo Parametric TOOLKIT license option as startup options to
avoid tying up your Creo Parametric licenses.

Note
Only one license will be held for the specified time period, even if multiple
applications were successfully unlocked.

Unlocking the application may also require one or more advanced licensing
options. The protk_unlock application will detect whether any functions
using advanced licenses are in use in the application, and if so, will make a check
for the availability of the advanced license option. If that option is not present,
unlocking will not be permitted. If they are present, the unlock will proceed.
Advanced options are not held on the license server for any length of time. For
more information refer to the Advanced Licensing Options on page 2113 chapter.
If the required licenses are available, the protk_unlock application will unlock
the application immediately. An unlocked application does not require any of the
Creo Parametric TOOLKIT license options to run. Depending on the functionality
invoked by the application, it may still require certain Creo Parametric options to
work correctly.

Fundamentals 45

Note
Once an application binary has been unlocked, it should not be modified in
any way (which includes statically linking the unlocked binary with other
libraries after the unlock). The unlocked binary must not be changed or else
Creo Parametric will again consider it "locked".

Digitally Signing the Application
In Creo Parametric 6.0.0.0 and later, you can digitally sign your application. Use
the standard Microsoft utility SignTool to digitally sign your application. See the
Microsoft documentation for more information on this utility and to create the
digital certificate.
In Creo Parametric 7.0.0.0 and later, Creo checks signatures of Creo Parametric
TOOLKIT applications at load time.
The following configuration options control whether to always allow the users or
administrator to determine whether signed or unsigned Creo Parametric
TOOLKIT applications should be allowed to always run, to never run, or to
prompt the user before running:
• open_protk_unsigned_apps—Controls whether unsigned applications

can be loaded in a Creo session. It can have the following values:
○ Always—Always loads unsigned applications.
○ Never—Never load unsigned applications.
○ Prompt—Asks the user whether to load unsigned applications.

• open_protk_signed_apps—Controls whether signed applications can
be loaded in a Creo session. It can have the following values:
○ Always—Always loads signed applications.
○ Never—Never load signed applications.
○ Prompt—Asks the user whether to load signed applications.

Unlock Messages
The following table lists the messages that can be returned when you unlock a
Creo Parametric TOOLKIT application.
Message Cause
<application name>:Successfully unlocked
application.

The application is unlocked successfully.

Usage: protk_unlock <one or more Creo
Parametric TOOLKIT executables or DLLs>

No arguments supplied.

<application name>:ERROR: No READ access You do not have READ/WRITE access for the

46 Creo® Parametric TOOLKITUser’s Guide

Message Cause

<application name>:ERROR: No WRITE access
executable.

<application name>:Executable is not a Creo
Parametric TOOLKIT application.

The executable is not linked with the Creo
Parametric TOOLKIT libraries, or does not use any
functions from those libraries.

<application name>:Executable is already unlocked. The executable is already unlocked.
Error: Licenses do not contain Creo Parametric
TOOLKIT License Code.

A requirement for unlocking a Creo Parametric
TOOLKIT application.

ERROR: No Creo Parametric licenses are available
for the startup command specified

Could not contact the license server.

<application name>:Unlocking this application
requires option TOOLKIT-for-3D_Drawings.

The application uses functions requiring an advanced
option; and this option is not available.

The license option 222, that is, the TOOLKIT-for-
3D_Drawings license is not available.

<application name>:Unlocking this application
requires option TOOLKIT-for-Mechanica.

The application uses functions requiring an advanced
option; and this option is not available.

The license option 223, that is, the TOOLKIT-for-
Mechanica license is not available.

Structure of a Creo Parametric TOOLKITApplication
The contents of this section refer to the use of synchronous mode. For information
on asynchronous mode applications, see the chapter Core: Asynchronous Mode on
page 277.

Essential Creo Parametric TOOLKIT Include Files
The only header file you must always include in every source file of your Creo
Parametric TOOLKIT application is ProToolkit.h. This file must always be
present, and must be the first include file because it defines the value of wchar_
t, the type for characters in a wide string, referenced from many other include
files. ProToolkit.h also includes these standard include files:

• stdio.h

• string.h

• stddef.h

• stdlib.h

Therefore, you do not need to include these header files explicitly in your
application.
When you use functions for a particular Creo Parametric TOOLKIT object, you
should always include the header file that contains the function prototypes for
those functions. If you do not do this, or omit some, you lose the benefit of
function argument type-checking during compilation. The header file

Fundamentals 47

ProObjects.h, which contains the declarations of the object handles, is
included indirectly in each of the header files that contains function prototypes,
and so does not need to be included explicitly.
For example, if you are using the function ProSurfaceAreaEval(), you
should include the file ProSurface.h, which contains the prototype of that
function, but you do not need to include ProObjects.h in order to see the
definition of ProSurface, because ProObjects.h is included in
ProSurface.h.

Core of a Creo Parametric TOOLKITApplication
Functions Introduced:

• user_initialize()
• ProEngineerDisplaydatecodeGet()
• user_terminate()
A Creo Parametric TOOLKIT application must always contain the functions
user_initialize() and user_terminate(). These functions have the
prefix “user_” because they are written by the Creo Parametric TOOLKIT
application developer, but they are called from within Creo Parametric at the start
and end of the session.
The function user_initialize() initializes a synchronous-mode Creo
Parametric TOOLKIT application. This function must be present in any
synchronous mode application in order for it to be loaded into Creo Parametric.
Use this function to setup user interface additions, or to run the commands
required for a non-interactive application. user_initialize() is called after
the Creo Parametric application has been initialized and the graphics window has
been created. It should contain any initializations that your Creo Parametric
TOOLKIT application needs, including any modification of Creo Parametric
menus (such as adding new buttons).

Note
• user_initialize() must contain at least one Creo Parametric

TOOLKIT API call. Failure to do so causes the Creo Parametric TOOLKIT
application to fail and return PRO_TK_GENERAL_ERROR.

• When coding a Creo Parametric TOOLKIT application in C++ you must
declare the function user_initialize() as extern "C".

The user_initialize() function is called with a number of optional
arguments that can add to your function definition. All input and output arguments
to this function are optional and do not need to be in the function signature. These

48 Creo® Parametric TOOLKITUser’s Guide

arguments provide information about command-line arguments entered when
Creo Parametric was invoked, and the revision and build number of the Creo
Parametric in session. Refer to section the section user_initialize() Arguments on
page 51 for more information on the function arguments.
The initialization function must return 0 to indicate that the Creo Parametric
TOOLKIT application was initialized successfully. Any other return value will be
interpreted as a failure, and the system will notify the Creo Parametric user that
the Creo Parametric TOOLKIT application failed. Use the optional output
argument to user_initialize() to specify the wording of this error
message.
The call to Creo Parametric TOOLKIT application using the function user_
initialize() is delayed until Creo Platform Agent is loaded. When you
install a Creo application, an appropriate version of the Creo Platform Agent also
gets installed. The Platform Agent is used for all browser-related functionalities,
which includes interaction with Windchill. So, to run a Creo Parametric
TOOLKIT application which interacts with Windchill using functions, Creo
Platform Agent must be initialized first before running the Creo Parametric
TOOLKIT application.
The Creo Platform Agent is always initialized first by default. The Creo
Parametric TOOLKIT applications are delayed until the Platform Agent is fully
initialized. The Platform Agent must load in a maximum of 60 seconds, beyond
which the agent will time out. If the Platform Agent fails to load, the Creo
Parametric TOOLKIT application will not start and an error message is displayed.
You can override this behavior and start the Creo Parametric TOOLKIT
application, even if the Platform Agent has not loaded using the following
environment variables. The valid values for these variables are true and false.
• PROTK_DELAYINIT_NO_DELAY—Initiates Creo Platform Agent.

However, Creo Parametric TOOLKIT applications are initiated, without
waiting for Platform Agent to load.

• PROTK_DELAYINIT_ALWAYS_INIT—Waits for Creo Platform Agent to
load. However, it initiates the Creo Parametric TOOLKIT application even if
Creo Platform Agent fails to load or times out.

Note
If both the variables are set, then the environment variable PROTK_
DELAYINIT_NO_DELAY takes precedence.

Fundamentals 49

Note
The Creo Parametric visible datecode format has changed. user_
initialize() continues to receive the classic format based on the year
and week of the Creo Parametric build.

The function ProEngineerDisplaydatecodeGet() returns the user-
visible datecode string from Creo Parametric. Applications that present a datecode
string to users in messages and information should use the new format for the
Creo Parametric displayed datecode.
The function user_terminate() is called at the end of the Creo Parametric
session, after the user selects Yes on the Exit confirmation dialog box. Its return
type is void.

Note
When coding a Creo Parametric TOOLKIT application in C++ you must
declare the function user_terminate() as extern "C".

The following example is the empty core of a Creo Parametric TOOLKIT
application. This code should always be the starting point of each new application
you develop.

#include "ProToolkit.h"
int user_initialize()
{

return (0);
}
void user_terminate()
{
}

If you use the options to start and stop a multiprocess-mode Creo Parametric
TOOLKIT application within a Creo Parametric session, user_
initialize() and user_terminate() are called upon starting and
stopping the Creo Parametric TOOLKIT process only. However, any menu
modifications defined in user_initialize() will be made, even if this
involves repainting menus that are already displayed. All of these modifications
will be reset when the Creo Parametric TOOLKIT application is stopped.

50 Creo® Parametric TOOLKITUser’s Guide

user_initialize() Arguments
user_initialize() is called with a number of input and output arguments.
As always in C, if you don't need to use an argument, your function does not need
to declare it, provided that it declares all the arguments up to the last one used.
The input arguments are:
int arg_num Number of command-line arguments.
char *argc[] Command-line arguments passed by Creo

Parametric. (See further explanation below.)
char* version Release name of the Creo Parametric being used.

Note: From Pro/ENGINEERWildfire 4.0 onwards
applications built with libraries older than Pro/
ENGINEER 2001 will not run. You must recompile
these applications with later versions of the Pro/
TOOLKIT libraries.

char* build The build number of the Creo Parametric being used.

The output argument is:
wchar_t err_buff[80] The text of an error message passed to Creo

Parametric if the Creo Parametric TOOLKIT fails to
initialize. Creo Parametric displays this text when it
reports the Creo Parametric TOOLKIT failure (if
user_initialize() returns non-zero).

The first command-line argument passed to Creo Parametric TOOLKIT is the
same one seen by Creo Parametric; that is, it is the name of the Creo Parametric
executable. The remaining command-line arguments passed to user_
initialize() are a subset of those given on the command line that invoked
Creo Parametric. The rule is that Creo Parametric passes on to user_
initialize() any command-line argument that starts with a “+”, or with a “-”
followed by an upper-case character.
For example, these command-line arguments will be passed to Creo Parametric
TOOLKIT:

+batch=mybatchfile.txt
-Level=expert

Command-line arguments such as -g:no_graphics are interpreted by Creo
Parametric but not passed on to Creo Parametric TOOLKIT.

Threading in Creo Parametric TOOLKITApplications
Calling Creo Parametric TOOLKIT applications from within multiple threads of
any application in any mode is not supported. Extra threads created by the
application are to be used only for completion of tasks that do not directly call the
Creo Parametric TOOLKIT functions.
Function Introduced:

Fundamentals 51

• ProEngineerMultithreadModeEnable()
From Creo Parametric 3.0 onward, the function
ProEngineerMultithreadModeEnable() has been deprecated.
Multithreading is now always supported in Creo Parametric TOOLKIT
applications, without the need to call the multithreading function, when the
application creates additional threads for processing.
Call the function ProEngineerMultithreadModeEnable() from within
the initialization function user_initialize(), if your Creo Parametric
TOOLKIT application creates additional threads for processing. This function
notifies Creo Parametric to execute in the multithread enabled mode. Running in
this mode eliminates the possibility of a memory corruption due to interaction
between Creo Parametric’s thread libraries and the threads created by your
application. This function does not work for multiprocess and asynchronous mode
applications.

Note
Running Creo Parametric in the multithread enabled mode may slow down
performance. Therefore, ProEngineerMultithreadModeEnable()
should be used only for applications that actually create multiple threads.

Using Creo Parametric TOOLKIT to Make a Batch Creo
Parametric Session
Function Introduced:

• ProEngineerEnd()
If you want to use your Creo Parametric TOOLKIT application to perform
operations on Creo Parametric objects that do not require interaction with the user,
you can make all the necessary calls to Creo Parametric TOOLKIT functions in
user_initialize(). When your operations are complete, call the function
ProEngineerEnd() to terminate the Creo Parametric session.
A useful technique when designing a batch-mode Creo Parametric TOOLKIT
application is to use command-line arguments to Creo Parametric as a way of
signaling the batch mode and passing in the name of a batch control file. Consider
the following command to start Creo Parametric:

pro +batch=<filename>

In this example, the option will be ignored by Creo Parametric, but will be passed
as an input argument to user_initialize(). Inside that function, your code
can recognize the switch, and get the name of the file that could contain, for
example, the names of Creo Parametric models to be processed, and operations to
be performed on each one.

52 Creo® Parametric TOOLKITUser’s Guide

A batch-mode operation should also run without displaying any graphics. To
ensure that the Creo Parametric main Graphics Window and Message Window are
not displayed, you should use either the command-line option -g:no_
graphics (or the configuration file option “graphics NO_GRAPHICS”) to
turn off the Creo Parametric graphics. See the Creo Parametric Help for more
details of these options.

Example 1: Batch Mode Operation
This example shows how to use the arguments to user_initialize() and
the function ProEngineerEnd() to set up a batch mode session of Creo
Parametric. The application retrieves a part specified in the Creo Parametric
command line, performs an action on it (using the dummy function
UserAddHoles()), saves the parts, and terminates Creo Parametric.
/*==*\
FUNCTION: UserAddHoles
PURPOSE: Find the circular datum curves and replace them with

holes.
==/
UserAddHoles (ProMdl p_part)
{
/* .

.

.
*/
}
/*==*\

Load the part specified by the command line argument, and
replace its datum curves with holes.

==/
int user_initialize (int argc, char *argv[])
{

ProMdl p_part;
ProName name_wchar;
ProError err;
char *part_name;

/*--*\
Set up the part name from the argument list. Note that the
Creo Parametric arguments for Creo Parametric TOOLKIT have a leading
"+" or "-."

--/
part_name = argv[1];
part_name++;
ProStringToWstring (name_wchar, part_name);

/*--*\
Retrieve the part.

--/
err = ProMdlRetrieve (name_wchar, PRO_PART, &p_part);
if (err != PRO_TK_NO_ERROR)
{

Fundamentals 53

printf ("*** Failed to retrieve part %s\n", part_name);
ProEngineerEnd();

}
/*--*\

Add the holes to the part.
--/

UserAddHoles (p_part);
/*--*\

Save the part.
--/

ProMdlSave (p_part);
/*--*\

Terminate the Creo Parametric session.
--/

ProEngineerEnd();
return (0);

}
/*==*\
FUNCTION: user_terminate()
PURPOSE: Report successful termination of the program.
==/
void user_terminate()
{

printf ("Creo Parametric TOOLKIT application terminated successfully\n");
}

Creo Parametric TOOLKIT Support for
Creo Applications
Creo Parametric TOOLKIT applications in synchronous and asynchronous modes
are supported only with the Creo Parametric application. They are not supported
with the other Creo applications, such as, Creo Layout, Creo Simulate, and so on.
In the asynchronous mode, the functions ProEngineerConnect() and
ProEngineerStart() return an error when the Creo Parametric TOOLKIT
application attempts to connect to a Creo application other than Creo Parametric.
For Creo Parametric TOOLKIT applications in synchronous mode, the non-Creo
Parametric applications ignore the Toolkit registry files without any warnings. The
Auxiliary Applications dialog box is also not available within the non-Creo
Parametric applications.

User-Supplied Main
Function Introduced:

54 Creo® Parametric TOOLKITUser’s Guide

• ProToolkitMain()
In synchronous mode, the main() function of the Creo Parametric TOOLKIT
program is not written by you, the application developer. In DLL mode, the
main() is the root of the Creo Parametric program itself; in multiprocess
synchronous mode, the main() is taken from the Creo Parametric TOOLKIT
library, and its job is to set up the communication channel with the separate Creo
Parametric executable.
If you are using a language such as C++ in your Creo Parametric TOOLKIT
application, it can be advantageous to compile the main() function with the C++
compiler to ensure that the program structure is correct for C++. In DLL mode,
you cannot do this because you do not have access to the Creo Parametric
main(). But in multiprocess mode, you can substitute the Creo Parametric
TOOLKIT main() with your own, if you observe the following rules:

• Your main() must call the function ProToolkitMain() as its last
statement. This function contains all the necessary setup code that needs to be
run when the Creo Parametric TOOLKIT application starts up in multiprocess
mode.

• You must pass on the argc and argv arguments input to main() as the input
arguments to ProToolkitMain() without modifying them in any way.

• You cannot make calls to any other Creo Parametric TOOLKIT functions
before the call to ProToolkitMain(), because the communications with
Creo Parametric have not yet been set up. You may, however, make other non-
Creo Parametric TOOLKIT function calls before calling
ProToolkitMain().

The following example shows a user-defined main() for use in multiprocess
mode.
#include "ProToolkit.h"
main(

int argc,
char *argv[])

{
.
.
.
ProToolkitMain (argc, argv);
/* The program exits from within ProToolkitMain().

Any code here is not executed. */
}

Asynchronous Mode
For more information on the asynchronous mode, see the chapter Core:
Asynchronous Mode on page 277.

Fundamentals 55

Creo Parametric TOOLKIT Techniques
This section describes the basic techniques you use when writing Creo Parametric
TOOLKIT applications. The topics are as follows:

• Object Handles on page 56
• Expandable Arrays on page 59
Also see the Visit Functions on page 62 section for information on techniques
used when writing Creo Parametric TOOLKIT applications.

Object Handles
Each object in Creo Parametric TOOLKIT has a corresponding C typedef, called a
“handle”, whose name is always the name of the object itself with the prefix
“Pro.” The handle is used as the type for all variables and arguments that refer to
an object of that type. For example, any Creo Parametric TOOLKIT function that
performs an action on a solid has an input argument of type ProSolid.
Handles are classified into two types, depending on the way in which they are
defined and have to be used. The two types are opaque handle (OHandle) and
database handle (DHandle). The following sections describe these handles in
detail.

OHandles
The simplest way to reference an object in Creo Parametric is to use the memory
address of the Creo Parametric data structure that describes that object. To prevent
the Creo Parametric TOOLKIT application from accessing the content of the data
structure for the object directly, the declaration of the structure is not provided.
For example, the object handle ProSurface is defined as follows:

typedef struct geom* ProSurface;

The structure struct geom is used to describe a surface in Creo Parametric, but
the declaration of the structure is not included in Creo Parametric TOOLKIT. This
type of handle is called an opaque handle or opaque pointer for this reason.
Opaque handles have the advantage of simplicity and efficiency—they can be
directly dereferenced inside the Creo Parametric TOOLKIT function without any
searching. They can also reference items that are transient and not in the Creo
Parametric database at all, such as the surfaces and edges that result from an
interference volume calculation.
Other examples of Creo Parametric TOOLKIT objects that are given OHandles
are as follows:

typedef void* ProMdl;
typedef struct curve_header* ProEdge;
typedef struct sld_part* ProSolid;
typedef struct entity* ProPoint;

56 Creo® Parametric TOOLKITUser’s Guide

typedef struct entity* ProAxis;
typedef struct entity* ProCsys;
typedef struct entity* ProCurve;

Because opaque handles are just memory pointers, they suffer the disadvantage of
all pointers in that they are volatile—they become invalid if the database object
they refer to moves to a different memory location. For example, a ProSurface
handle (a pointer to a Creo Parametric surface) may become invalid after
regeneration of the owning part (because its memory has been reallocated).
However, most of the Creo Parametric structures referenced by opaque handles
contain an integer identifier that is unique for items of that type within the owning
model. This identifier retains its value through the whole life of that item, even
between sessions of Creo Parametric. Creo Parametric TOOLKIT provides
functions such as ProSurfaceIdGet() and ProAxisIdGet() that enable
your application to use these identifiers as a persistent way to reference objects.
These integer identifiers are also used in DHandles, described in the following
section.
In the case of models, it is the name and type that are persistent. The functions
ProMdlMdlnameGet() and ProMdlTypeGet() provide the name and type
of a model, given its opaque handle.

DHandles
A further limitation of opaque handles is that they can be too specific in cases
where the action you want to perform is more generic. For example, a function
that provides the name of a geometrical item should, ideally, be able to act on any
of the geometry objects (ProSurface, ProEdge, ProCsys, and so on).
However, the opaque handles for those different geometry items are not mutually
compatible, so the Creo Parametric TOOLKIT function would also need to know
the type of the object before it could internally de-reference the opaque pointer.
To solve this problem, Creo Parametric TOOLKIT defines a new, generic object
type in these cases and declares it using a data handle, or DHandle. A DHandle is
an explicit data structure that carries just enough information to identify a
database item uniquely: the type, integer identifier, and handle to the owning
model. Because the DHandle must contain the integer identifier (not the too-
specific opaque handle), it also has the advantage of being persistent.
The most important examples of DHandles are ProGeomitem, which is the
generic type for the geometry items previously mentioned, and ProModelitem,
which is an even more generic object that includes ProGeomitem.
The declaration is as follows:

typedef struct pro_model_item
{

ProType type;
int id;
ProMdl owner;

Fundamentals 57

} ProModelitem, ProGeomitem;

Note
Although the field owner is defined using the OHandle ProMdl, and is
therefore strictly speaking volatile, this handle is guaranteed to remain valid
while the Creo Parametric model it refers to remains in memory.

The generic object ProGeomitem can represent any of the geometrical objects
in a solid model, such as ProSurface, ProEdge, ProCurve, and ProCsys.
The specific object types are said to be “derived from” the most generic type, and
also to be “instances” of that type. The object type ProGeomitem is in turn an
instance of ProModelitem, which can represent database items other than
geometrical ones.
The generic object types such as ProModelitem and ProGeomitem are used
as inputs to Creo Parametric TOOLKIT functions whose actions are applicable to
all of the more specific types of object that are instances of the generic type. For
example, the function ProGeomitemFeatureGet() has that name because it
can act on any type of object that is an instance of ProGeomitem
ProSurface, ProEdge, ProCsys, and so on. The function
ProModelitemNameGet() is applicable to a wider range of database objects,
not just geometrical ones.
If you have the OHandle to an object, such as ProSurface, and you want to call
a generic function such as ProGeomitemFeatureGet(), you need to convert
the OHandle to the more generic DHandle. Functions such as
ProGeomitemInit() and ProModelitemInit() provide this capability.
Similarly, you can convert a ProGeomitem to a ProSurface using the
function ProSurfaceInit(). These techniques are illustrated in Example 3:
Listing Holes in a Model on page 64, in the Visit Functions on page 62 section.

Workspace Handles
When you use Creo Parametric TOOLKIT to create an object in Creo Parametric
that contains a lot of information, such as a feature, it is important to be able to set
up all of that information before adding the object to the Creo Parametric
database. The object-oriented style of Creo Parametric TOOLKIT does not allow
explicit access to the contents of such a structure, however. Instead, you must use
a special workspace object that is allocated and filled by the Creo Parametric
TOOLKIT application using functions provided for that purpose.
The “workspace” is a memory area in Creo Parametric that contains data
structures not yet part of the design database.

58 Creo® Parametric TOOLKITUser’s Guide

The workspace object is identified by a handle that contains the address of the
memory for the object, which is therefore similar to an OHandle. To distinguish
this from handles that refer to objects in the Creo Parametric database, such
handles are called workspace handles (WHandles).

Expandable Arrays
Functions Introduced:

• ProArrayAlloc()
• ProArrayFree()
• ProArraySizeGet()
• ProArraySizeSet()
• ProArrayMaxCountGet()
• ProArrayObjectAdd()
• ProArrayObjectRemove()
The functions in this section enable you to access a set of programming utilities in
general use within Creo Parametric. The utilities fill a need that is common in C
and Pascal programming—to provide a storage method that provides the
advantages of an array, but without its limitations.
When you use an array for storage for a group of items, you have the advantage
over a linked list in that the members are contiguous in memory. This enables you
to access a given member using its index in the array. However, if you need to
make frequent additions to the members in a way that cannot be predicted (a
common situation in MCAE applications), you must reallocate the memory for the
array each time.
A common compromise is to allocate the memory in blocks large enough to
contain several array members, then reallocate the memory only when a block
becomes full. You would choose the size of the blocks such that the frequency of
reallocation is significantly reduced, while the amount of unused memory in the
last block is acceptably small. The difficulty of this solution is that you would
normally need a new set of utilities for each item you want to store as an array,
and additional static data for each array to keep track of the number of blocks and
the number of members.
The “expandable array” utilities provide a set of functions that can be applied to
items of any size. The utilities do this by keeping a private header at the start of
the array memory to which the “bookkeeping” information (the number and size
of its members, and of the blocks) is written. The pointer your application sees is
the address of the first block, not the address of the preceding header.

Fundamentals 59

The importance of the expandable array utilities in a Creo Parametric TOOLKIT
application is not only that you can use them for your own arrays, but that you
must use them for arrays of data passed between your application and the internals
of Creo Parametric through the Creo Parametric TOOLKIT functions.
Note that because the array pointer is not the start of the contiguous memory
claimed by the array utility, this pointer is not recognized by the operating system
as a valid location for dynamic memory. Therefore, you will cause a fatal error if
you try to use the memory management library functions, such as realloc()
and free().
The basic type used for referring to expandable arrays is ProArray, declared as
a void*.
The function ProArrayAlloc() sets up a new expandable array. Its inputs are
as follows:

• The initial number of members in the array
• The size, in bytes, of each array member
• Number of objects added to ProArray at each memory reallocation. A

higher number means more memory is preallocated and fewer reallocations of
the ProArray are required.

The function outputs a pointer to the contiguous memory that will contain the
array members. You can write to that memory to fill the array using the usual
memory functions (such as memcpy() and memset()). If you increase the
array size beyond the limit returned by ProArrayMaxCountGet(), this
function returns an out-of-memory message.
The maximum memory allocated is 2 MB, except for 64–bit platforms where the
maximum is twice that.
The function ProArrayFree() releases the memory for the specified
ProArray.
The function ProArraySizeGet() tells you how many members are currently
in the specified array.
The ProArraySizeSet() function enables you to change the number of
members in the expandable array. This function is equivalent to realloc().
Function ProArrayMaxCountGet(), when given the specified structure size
in bytes, returns the maximum number of structure elements a ProArray can
support for that structure size.
The function ProArrayObjectAdd() adds a contiguous set of new members
to an array, though not necessarily to the end of the array. The function also sets
the contents of the new members. If you increase the array size beyond the limit
returned by ProArrayMaxCountGet(), this function returns an out-of-
memory message.

60 Creo® Parametric TOOLKITUser’s Guide

The function ProArrayObjectRemove() removes a member from the array.
The member does not necessarily have to be the last member of the array.
Functions ProArraySizeSet(), ProArrayObjectAdd(), and
ProArrayObjectRemove() change the size of the array, and might therefore
also change its location.
The Creo Parametric TOOLKIT functions use expandable arrays in the following
circumstances:

• The function creates a filled, expandable array as its output.
• The function needs a filled, expandable array as its input.
• The function needs an existing expandable array to which to write its output.
An example of the first type of function is the geometry function
ProEdgeVertexdataGet(), which provides a list of the edges and surfaces
that meet at a specified solid vertex. When you have finished using the output, you
should free the arrays of edges and surfaces (using the function
ProArrayFree()).
An example of the second type of function is ProSolidNoteCreate(),
which creates a design note in a solid. Because the text lines to add to the note are
passed in the form of an expandable array, your application must create and fill the
array using the functions ProArrayAlloc() and ProArrayObjectAdd()
before you call ProSolidNoteCreate().
An example of the third type of function is ProElementChildrenGet(),
which gets the number of feature elements that are the children of the specified
compound element. The feature elements form a tree that contains all the
necessary information about a particular feature. (This function is therefore used
in both feature analysis and feature creation.) Before calling
ProElementChildrenGet(), you must call ProArrayAlloc() to create
an empty array. You can then use ProArraySizeGet() to find out how many
elements were added to the array.
There is a fourth case, which is a variation of the first, in which a Creo Parametric
TOOLKIT function creates an expandable array as its output the first time it is
called in an application, but overwrites the same array on subsequent calls. An
example of this is ProSelect(), whose output array of ProSelection
structures must not be freed using ProArrayFree(). You must also make sure
to copy the contents of the array if you need to use it to make another call to
ProSelect().
The conventions are chosen for each function according to its individual needs.
For example, ProElementChildrenGet() is typically called in a recursive
loop to traverse a tree, so the fourth method of allocation would be inconvenient.
The rules for each Creo Parametric TOOLKIT function are documented in the
browser.

Fundamentals 61

Example 2: Expandable Arrays
The sample code in UgFundExpArrays.c located at <creo_toolkit_
loadpoint>\protk_appls\pt_userguide\ptu_fundament shows
how to use expandable arrays, not as input or output for a Creo Parametric
TOOLKIT function, but to create a utility that provides an alternative to a Creo
Parametric TOOLKIT visit function. To use Creo Parametric TOOLKIT to access
all the features in a solid, you call the function ProSolidFeatVisit().
However, you might prefer to use a function that provides an array of handles to
all of the features, then traverse this array. This kind of function is called a
“collection” function, to distinguish it from a visit function. Although Creo
Parametric TOOLKIT does not provide collection functions, you can use the
technique demonstrated in the example to write your own.
The utility function UserFeatureCollect() passes an empty, expandable
array of feature handles as the application data to ProSolidFeatVisit().
The visit function FeatVisitAction() adds the handle to the visited feature
to the array using ProArrayObjectAdd().

Visit Functions
In a Creo Parametric TOOLKIT application, you often want to perform an
operation on all the objects that belong to another object, such as all the features in
a part, or all the surfaces in a feature. For each case, Creo Parametric TOOLKIT
provides an appropriate “visit function.” A visit function is an alternative to
passing back an array of data.
You write a function that you want to be called for each item (referred to as the
“visit action” function) and pass its pointer to the Creo Parametric TOOLKIT visit
function. The visit function then calls your visit action function once for each
visited item.
Most visit functions also provide for a second callback function, the filter
function, which is called for each visited item before the action function. The
return value of the filter function controls whether the action function is called.
You can use the filter function as a way of visiting only a particular subset of the
items in the list.
For example, the visit function for visiting the features in a solid is declared as
follows:

ProError ProSolidFeatVisit (
ProSolid solid,
ProFeatureVisitAction visit_action,
ProFeatureFilterAction filter_action,
ProAppData app_data);

The first argument is the handle to the solid (the part or assembly) whose features
you want to visit.

62 Creo® Parametric TOOLKITUser’s Guide

The second and third arguments are the visit action function and filter function,
respectively.
The type of the final argument, ProAppData, is a typedef to a void*. This
argument is used to pass any type of user-defined application data down to the
visit_action and filter_action functions through the intervening Creo
Parametric TOOLKIT layer. You might want to use this as an alternative to
allowing global access to the necessary data.
Although you write the visit action and filter functions, they are called from
within the Creo Parametric TOOLKIT visit function, so their arguments are
defined by Creo Parametric TOOLKIT. To enable the C compiler to check the
arguments, Creo Parametric TOOLKIT provides a typedef for each of these
functions.
For example, the type for the action function for ProSolidFeatVisit() is as
follows:

typedef ProError (*ProFeatureVisitAction)(
ProFeature *feature,
ProError status,
ProAppData app_data);

It takes three arguments:

• The handle to the feature being visited
• The status returned by the preceding call to the filter function
• The application data passed as input to the visit function itself
The type for the filter function is as follows:

typedef ProError (*ProFeatureFilterAction)(
ProFeature *feature,
ProAppData app_data);

Its two arguments are the handle to the feature being visited and the application
data.
The filter action function should return one of the following values:

• PRO_TK_CONTINUE—Do not call the visit action for this object, but
continue to visit the subsequent objects.

• Any other value—Call the visit action function for this object and pass the
return value as the status input argument.

The visit action function should return one of the following values:

Fundamentals 63

• PRO_TK_NO_ERROR—Continue visiting the other objects in the list.
• PRO_TK_E_NOT_FOUND—For visit functions, this value indicates that no

items of the desired type were found and no functions could be visited.
• Any other value (including PRO_TK_CONTINUE)—Terminate the visits.

Typically this status is returned from the visit function upon termination, so
that the calling function knows the reason that visiting terminated abnormally.

Example 3: Listing Holes in a Model
The sample code in UgFundVisit.c located at <creo_toolkit_
loadpoint>\protk_appls\pt_userguide\ptu_fundament
demonstrates several of the principles used in Creo Parametric TOOLKIT,
including visit functions, the use of Ohandles and Dhandles, and the
ProSelection object.
The example shows the function UserDemoHoleList(), which visits the axes
in the current part that belong to features of type HOLE. It then writes the axis
names and feature identifiers to a file, and highlights the hole features.
The top function, UserDemoHoleList(), calls ProSolidAxisVisit().
The function uses the ProAppData argument to pass to the visit action function,
UserDemoAxisAct(), a structure that contains the file pointer and handle to
the owning solid.

Support for Creo Model Names and Files
Paths
Creo Parametric supports a maximum length of 31 characters for file names of
native Creo models. This excludes the file extension. The local file paths can
contain a maximum of 260 characters. File paths support some multi-byte
characters.
From Creo Parametric 4.0 F000 onward, file names support multi-byte characters.
The file names and file paths support the following multi-byte characters:
• All characters from Unicode number 0800 onward.
• The following characters from Unicode numbers 0000 to 0070F are supported.

All the other Unicode characters between 0000 to 0070F are not supported.
○ A to Z
○ a to z
○ 0 to 9
○ _ Underscore
○ – Hyphen

64 Creo® Parametric TOOLKITUser’s Guide

All the Creo Parametric TOOLKIT functions support multi-byte characters in file
names and file paths of the models.

Wide Strings
Creo Parametric TOOLKIT, like Creo Parametric, has to work in environments
where character strings use codes other than ASCII, and might use a bigger
character set than can be coded into the usual 1-byte char type, for example, the
Japanese KANJI character set.
For this reason, Creo Parametric TOOLKIT uses the type wchar_t instead of
char for all characters and strings that may be visible to the Creo Parametric
user. This includes all text messages, keyboard input, file names, and names of all
dimensions, parameters, and so on, used within a Creo Parametric object.

Defining wchar_t
Although most platforms supported by Creo Parametric TOOLKIT provide a
definition of wchar_t in a system include file, not all do. Those that do use
definitions of different lengths; some provide definitions that are not suitable for
all the character codes supported by Creo Parametric. Therefore, Creo Parametric
takes considerable care to make sure it uses a suitable definition of wchar_t on
each supported platform.
It is essential to make sure your Creo Parametric TOOLKIT application is using
the same definition of wchar_t as Creo Parametric on each platform your
application supports. To make this easier, Creo Parametric TOOLKIT supplies the
include filepro_wchar_t.h. This file ensures that, if a definition of wchar_
t.h has not already been made in an earlier include file, one is provided that is
consistent with the Creo Parametric definition of the type. Because this file is
included by the file ProToolkit.h, you should include ProToolkit.h as
the very first include file in each source file.

Setting the Hardware Type
To make the handling of the wide character type wchar_t across different
platforms simpler and more reliable, the include file pro_wchar_t.h is
hardware dependent. It knows which platform is being used from the setting of the
environment variable PRO_MACHINE; the recognized values are listed in the
include file pro_hardware.h, included by pro_wchar_t.h.
You must make sure that the environment variable PRO_MACHINE is set to
indicate the type of hardware you are using. Set it to same value used for the
makefile macro PRO_MACHINE in the makefile taken from the Creo Parametric
TOOLKIT loadpoint.

Fundamentals 65

Checking Your Declaration of wchar_t
Function Introduced:

• ProWcharSizeVerify()
The function ProWcharSizeVerify() checks to make sure you have the
correct declaration of wchar_t. PTC recommends that you always call this
function at the beginning of the user_initialize() function (or main() in
asynchronous mode).
You pass as input the size of your wchar_t definition, in bytes, and the function
outputs the correct size. It returns PRO_TK_NO_ERROR if your size is correct,
and PRO_TK_GENERAL_ERROR otherwise. You can check for correctness as
follows:

int proe_wchar_size;
int protk_wchar_size = sizeof (wchar_t);

if (ProWcharSizeVerify (protk_wchar_size, &proe_wchar_size) !=
PRO_TK_NO_ERROR)

{
ProMessageDisplay (msgfil, "USER wchar_t size is %0d,

should be %1d", &protk_wchar_size, &proe_wchar_size);
return (1);

}

String and Widestring Functions
Creo Parametric provides many functions taking as inputs a fixed-length character
or wide character array as a string. Due to some platform-specific behavior, PTC
recommends that you do not use string literals in lieu of fixed length arrays.
Always copy the literal strings to the full size array that the functions accepts as
the input.
For example the following function will get warnings on certain platforms
because the code expects that the arguments can be modified.
ProEngineerStart("proe_path","text_path");

where ProCharPath proe_path=”proe_path”;
ProCharPath text_path=”text_path”;
To overcome this error, it is recommended that you replace the literal strings in the
function with defined arrays as follows:
ProEngineerStart(proe_path,text_path);
Functions Introduced:

• ProStringToWstring()
• ProWstringToString()

66 Creo® Parametric TOOLKITUser’s Guide

• ProWstringLengthGet()
• ProWstringCopy()
• ProWstringCompare()
• ProWstringConcatenate()
Wide character strings are not as easy to manipulate in C as ordinary character
strings. In general, there are no functions for wide strings that correspond to the
standard C str*() functions. printf() does not have a format for wide strings, and
you cannot set a wide string to a literal value in a simple assignment. Because of
this, it is frequently convenient to convert wide strings to character strings, and
vice versa. This is the purpose of the functions ProStringToWstring() and
ProWstringToString().
The function ProWstringLengthGet() is used to find the length of a
widestring.
The function ProWstringCopy() copies a widestring into another buffer. You
should allocate enough memory in the target setting to perform the copy
operation. The number of characters to be copied is provided as input through
num_chars. Use PRO_VALUE_UNUSED to copy the entire string.
The function ProWstringCompare() compares two widestrings for equality.
The two widestrings to be compared are given as inputs. The argument num_chars
allows comparison of portions of the string, pass PRO_VALUE_UNUSED to
compare the entire strings.
The function ProWstringConcatenate() concatenates two widestrings.
You should allocate enough memory in the target string for the copy operation.
The number of characters to concatenate is given as input through num_chars. Use
PRO_VALUE_UNSED to add the entire source string to the target string.
The source code for other useful utilities is located in the file <TK_
LOADPOINT>protk_appls\pt_examples\pt_utils\UtilString.c

Example 4: String Conversion
The sample code in UgFundStringConv.c located at <creo_toolkit_
loadpoint>\protk_appls\pt_userguide\ptu_fundament uses the
function UsrModelFilenameGet() to convert wide strings to character
strings.

Support for IPv6
Creo 6.0.0.0 and later releases have complete support for Internet Protocol version
6 (IPv6). By default Creo uses IPv6 for IP addressing over the network.

Fundamentals 67

Set the environment variable PTC_IPV6_MODE to yes for Creo to use the IPv6
protocol for addressing. To use IPv4 communication protocol, set the environment
variable to no.
If you want to run applications created in Creo Parametric 5.0.0.0 and previous
releases in Creo Parametric 6.0.0.0 with IPv6 enabled, you must rebuild the
applications.
If the environment variable is set to no, that is for IPv4 protocol, these
applications continue to work in Creo Parametric 6.0.0.0 without rebuilding.

Accessing LearningConnector
Function Introduced:

• ProLearningconnectorNotify()
LearningConnector (LC) is a feature in Creo that allows users to access the Creo
training directly from a Creo application. An event triggered in the Creo user
interface notifies the LearningConnector, which displays the relevant training
topics for the current activity.
The function ProLearningconnectorNotify() notifies the
LearningConnector that an event has been triggered from a Creo Parametric
TOOLKIT application. The function also allows users to notify custom-made
trainings other than the standard training provided by PTC for the specified
module. The LearningConnector displays the relevant training topics for the
specified input arguments. You must read the LearningConnector documentation
before using this function. The input arguments are:
• module—This is a mandatory argument. Specifies the name of the Creo

module that triggers the event.
• module_info—This is an optional argument. Specifies additional information

about the Creo module that triggers the event. This additional information is
used by the event-handling function of LearningConnector.

You can use the function on customized Creo Parametric TOOLKIT widgets also.

68 Creo® Parametric TOOLKITUser’s Guide

2
Core: Models and Model Items

Modes ..70
Models ...70
Model Items ..80
Version Stamps...83
Layers ..84
Notebook..89
Visiting Displayed Entities ..90

This chapter describes Creo Parametric TOOLKIT modes, models, and model
items.

69

Modes
Functions Introduced:

• ProModeCurrentGet()
• ProSectionIsActive()
The term “mode” in Creo Parametric refers to the type of model currently being
edited by the user. The possible modes are given by the options listed under the
command File ▶ New.
The ProMode object in Creo Parametric TOOLKIT is an enumerated type,
declared in the file ProMode.h, as are the prototypes for the mode functions.
Find the name of the mode using the function ProModeCurrentGet(). The
function ProModeCurrentGet() outputs the mode in which Creo Parametric
is being used, in the form of the ProMode enumerated type. If there is no current
model—for example, because no model has been retrieved, or because the user
has selected File ▶ Close—the function returns an error status (PRO_TK_BAD_
CONTEXT).
The function ProSectionIsActive() checks if the sketcher is currently
active even if the current mode is part or assembly.

Models
This section describes Creo Parametric TOOLKIT models. The topics are as
follows:

• The ProMdl Object on page 70
• Creating Models on page 71
• Identifying Models on page 72
• Models in Session on page 77
• File Management Operations on page 78

The ProMdl Object
A model is a top-level object in a Creo Parametric mode. For example, in Part
mode, the model is a part; in Assembly mode, the model is an assembly.
The object ProMdl is therefore used for all those functions whose action applies
to models of any type, such as file management operations and version stamps.
The declaration of ProMdl is as follows:

typedef void* ProMdl;

70 Creo® Parametric TOOLKITUser’s Guide

Instances of the ProMdl object are objects for the more specific Creo Parametric
modes. For example, ProSolid is an instance of ProMdl, and ProAssembly
and ProPart are instances of ProSolid. All these object types are represented
in Creo Parametric TOOLKIT by opaque handles, and you can make conversions
between the types by casting.

Creating Models
Functions Introduced

• ProSolidMdlnameCreate()
• ProMfgMdlCreate()
• ProSection2DAlloc()
• ProDrawingFromTmpltCreate()
• ProDrawingFromTemplateCreate()
• ProMdlStartAction()
Creo Parametric TOOLKIT supports creation of models for Solids,
Manufacturing, Section (two-dimensional only), and Drawing.
See Creating a Solid on page 93 for a complete description of
ProSolidMdlnameCreate().
For more information on ProMfgMdlCreate() see Creating a Manufacturing
Model on page 1440.
Allocating a Two-Dimensional Section on page 989 gives more details on
ProSection2DAlloc().
Creating Drawings from Templates on page 1227 has more information on the
function ProDrawingFromTemplateCreate().

Note
The function ProDrawingFromTmpltCreate() will be deprecated in a
future release. Use the function ProDrawingFromTemplateCreate()
instead.

The notification function ProMdlStartAction() is a type for a callback
function for PRO_MDL_START. This function changes the way users can create
models by replacing the Creo Parametric model template dialog box with a user-
specified action.
The user-specified action contains user-programmed activities that allow
customization of new models by applying templates with more inputs than model
creation “on-the-fly” or the standard Creo Parametric template.

Core: Models and Model Items 71

The callback function is activated after the user selects OK from the File ▶ New
dialog box, but only if the Use Default Template checkbox is not selected. The
user’s application must create a new model of the same type and subtype specified
by the callback function.
Setting the configuration option force_new_file_options_dialog to
yes forces the Use Default Template button to be hidden, and calls the callback for
all models created through the File ▶ New dialog.
This function supports all model types.
See Event-driven Programming: Notifications on page 2010 for more data on
using callback functions.

Identifying Models
Functions Introduced:

• ProMdlMdlnameGet()
• ProMdlOriginGet()
• ProMdlExtensionGet()
• ProMdlDirectoryPathGet()
• ProMdlTypeGet()
• ProMdlDisplaynameGet()
• ProMdlCommonnameGet()
• ProMdlCommonnameSet()
• ProMdlObjectdefaultnameGet()
• ProMdlnameInit()
• ProMdlIdGet()
• ProMdlActiveGet()
• ProMdlSubtypeGet()
• ProMdlFiletypeGet()
• ProFileSubtypeGet()
• ProMdlToModelitem()
The object ProMdl is an opaque handle, and is therefore volatile. It cannot be
used to refer to models that are not in memory in Creo Parametric, for example.
To reference a model in a way that is valid for models not in memory, and also
persistent across sessions of Creo Parametric, use the model name and type.
The functions ProMdlMdlnameGet() and ProMdlTypeGet() provide the
name and type of a model, given its ProMdl handle. The type of a model is
expressed in terms of the enumerated type ProMdlType. From Creo Parametric

72 Creo® Parametric TOOLKITUser’s Guide

3.0 onward, this enumerated data type contains an additional value PRO_MDL_
CE_SOLID that represents a Layout model. Creo Parametric TOOLKIT functions
will only be able to read models of type Layout, but will not be able to pass
Layout models as input to other functions. PTC recommends that you review all
Creo Parametric TOOLKIT applications that use the enumerated type
ProMdlType and modify the code as appropriate to ensure that the applications
work correctly.
The function ProMdlOriginGet() retrieves the full source path of the model,
that is, the path from where the specified model has been opened. It returns NULL
if the specified model is new in the session, and has not been saved. For instances,
it returns the full path of the generic model.
The function ProMdlExtensionGet() retrieves the file extension for the
specified model.
The function ProMdlDirectoryPathGet() returns the file path where the
specified model would be saved. It specifies the target home directory for the
model.
The function ProMdlDisplaynameGet() returns the name of the model,
which is displayed in the Creo Parametric user interface. The name is displayed in
the graphics area, such as, the model tree, window title, and so on. If the model is
an instance of native Creo model, the display name is the instance name. For
configurations or instances of non-native models, the display name consists of the
model name along with the configuration name or instance name. If you specify
the input argument include_ext as PRO_B_TRUE, then the display name returned
by the function also includes the file extension of the model.
The functions ProMdlCommonnameGet() and ProMdlCommonnameSet()
obtain and assign the common name of a model, respectively. This name is used to
identify the model in a Product Database Management system such as Windchill
PDMLink.

Note
ProMdlCommonnameSet() can modify the name only for models that are
not yet owned by Windchill PDMLink, or in certain situations if the
configuration option let_proe_rename_pdm_objects is set to yes.

The function ProMdlObjectdefaultnameGet() returns the next available
default name for a given model type. The type of the model is specified by the
enumerated type ProType and has one of the following values:

• PRO_PART

• PRO_ASSEMBLY

• PRO_CABLE

Core: Models and Model Items 73

• PRO_DRAWING

• PRO_REPORT

• PRO_2DSECTION

• PRO_3DSECTION

• PRO_LAYOUT

• PRO_DWGFORM

• PRO_MARKUP

Note
For each of the above types, ProMdlObjectdefaultnameGet() returns
the next available default name, for example PRT00# for PRO_PART or
DRW00# for PRO_DRAWING, where # specifies the part or drawing number.
This number depends on the following factors:

• Models present in the active Creo Parametric session
• Files in the current working directory
• Connection to an active server with the autonumber option enabled

Thus, if no object with the specified name is actually created, the next time the
same name is returned; otherwise the next available name is returned.

The function ProMdlnameInit() does the opposite, and provides a valid
ProMdl handle for a given name and type. The function fails if the specified
model is not in memory in the Creo Parametric session.
A third way to identify a model is by an integer identifier. Unlike the integer
identifiers of objects within a model, such as surfaces and edges, the identifier of a
model is not persistent between Creo Parametric sessions. The function
ProMdlIdGet() provides the identifier of a model, given its ProMdl handle.
The function ProMdlActiveGet() retrieves the model handle ProMdl for an
active Creo Parametric object.
The function ProMdlSubtypeGet() provides the subtype (such as sheet
metal) of a specified model. Valid model subtypes are Part, Assembly, or
Manufacturing. This is like finding subtypes at the Creo Parametric File ▶ New ▶
Model Type menu.
The function ProMdlFiletypeGet() retrieves the file type of the specified
model using the enumerated data type ProMdlfileType.

74 Creo® Parametric TOOLKITUser’s Guide

The function ProFileSubtypeGet() retrieves the following information
when you specify the path to a file as the input argument. The output arguments
are:
• file_type—Specifies the file type using the enumerated data type

ProMdlfileType. For native Creo models, the file type and model type are
the same.

• type—Specifies the model type using the enumerated data type
ProMdlType.

• subtype—Specifies the subtype of the model using the enumerated data type
ProMdlsubtype. For model types that do not have subtypes, the argument
returns PROMDLSTYPE_NONE.

The function ProMdlToModelitem() is used only when you need to represent
the model as a ProModelitem object—the first step in building a
ProSelection object that describes the role of a model in a parent assembly.
Model item objects are described later in this chapter. See the chapter
Fundamentals on page 22 for information on the ProSelection object.

Example 1: Finding the Handle to a Model
The following example shows how to find a model handle, given its name and
type.
ProName name;
ProType type;
ProMdl part;
ProError status;
ProStringToWstring (name, "PRT0001");
type = PRO_PART;
status = ProMdlnameInit (name, type, &);

Surface Properties of Models
Functions Introduced:

• ProMdlVisibleSideAppearancepropsGet()
• ProMdlVisibleSideAppearancepropsSet()
• ProMdlVisibleSideTexturepropsGet()
• ProMdlVisibleSideTexturepropsSet()
• ProMdlLockGet()
• ProMdlLockSet()
• ProMdlVisibleSideTextureplacementpropsGet()
• ProMdlVisibleSideTextureplacementpropsSet()

Core: Models and Model Items 75

From Creo Parametric5.0.0.0 onwards, the following functions have been
deprecated:
• ProMdlVisibleAppearancepropsGet()

• ProMdlVisibleAppearancepropsSet()

• ProMdlVisibleTexturepropsGet()

• ProMdlVisibleTexturepropsSet()

• ProMdlVisibleTextureplacementpropsGet()

• ProMdlVisibleTextureplacementpropsSet()

The functions described in this section enable you to retrieve and set the surface
and texture properties of models. You can retrieve and set these properties for any
level in the model hierarchy. For assemblies, set the owner of ProModelitem
as the top-level assembly. These properties may or may not be visible in the user
interface depending on the properties set by the higher level assembly.
Use the function ProMdlVisibleSideAppearancepropsGet() to
retrieve the surface properties for a specified part, assembly component,
subassembly, specified side of a quilt or surface using the
ProSurfaceAppearanceProps data structure. Refer to the section Surface
Properties on page 496, for more information on
ProSurfaceAppearanceProps data structure. The input arguments are:
• item—Specifies a ProAsmitem object that represents the part, assembly

component, subassembly, quilt, or surface.
• surface_side—Specifies the direction of the side for the surface or quilt. Pass

the value as 0 to specify the side which is along the surface normal. Pass 1 to
specify the side opposite to surface normal.

Use the function ProMdlVisibleSideAppearancepropsSet() to set the
surface properties for a specified element. To see the changes in the Creo
Parametric user interface, call the function ProWindowRepaint() after
ProMdlVisibleSideAppearancepropsSet(). To set the default surface
appearance properties, pass the value of the input argument appearance_
properties as NULL.
Use the functions ProMdlVisibleSideTexturepropsGet() and
ProMdlVisibleSideTexturepropsSet() to apply textures to the
surface. These functions use the ProSurfaceTextureProps data structure to
retrieve and set the texture properties of the surface for a specified element. Refer
to the section Surface Properties on page 496, for more information on
ProSurfaceTextureProps data structure.
Use the functions ProMdlVisibleSideTextureplacementpropsGet()
and ProMdlVisibleSideTextureplacementpropsSet() to retrieve
and set the properties related to the placing of surface texture for the specified
element. These functions use the ProSurfaceTexturePlacementProps
data structure to define the placement properties.

76 Creo® Parametric TOOLKITUser’s Guide

Refer to the section Surface Properties on page 496, for more information on
ProSurfaceTexturePlacementProps data structure.
The functions ProMdlLockGet() and ProMdlLockSet() get and set the
lock/unlock state of the model. The function ProMdlLockGet() returns PRO_
B_TRUE if the model is locked and PRO_B_FALSE if it is unlocked.
The input arguments to the function ProMdlLockSet() follow:
• model—The model to be locked or unlocked.
• lock—Pass the value as PRO_B_TRUE to lock the model and PRO_B_FALSE

to unlock it.

Models in Session
Functions Introduced:

• ProSessionMdlList()
• ProMdlCurrentGet()
• ProMdlDependenciesDataList()
• ProMdlDependenciesCleanup()
• ProMdlDeclaredDataList()
• ProMdlModificationVerify()
• ProMdlIsModifiable()
• ProMdlIsEmbeddedName()
• ProMdlVisibleGet()
The function ProSessionMdlList() provides an array of ProMdl handles
to models of a specified type currently in memory.
The function ProMdlCurrentGet() provides the ProMdl handle to the
model currently being edited by the user.
The function ProMdlDependenciesDataList() provides an array of
ProMdl handles to the models in memory upon which a specified model
depends. One model depends on another if its contents reference that model in
some way. For example, an assembly depends on the models that form its
components, and a drawing model depends on the solid models contained in it.
Sometimes, two models can be mutually dependent, such as when a model feature
references a geometry item in a parent assembly. Clean the dependencies in the
database using the function ProMdlDependenciesCleanup() to get an
accurate list of dependencies for an object in the Creo Parametric workspace.

Core: Models and Model Items 77

Use the function ProMdlDependenciesCleanup() to clean the
dependencies for an object in the Creo Parametric workspace.

Note
Do not call the function ProMdlDependenciesCleanup() during
operations that alter the dependencies, such as, restructuring components and
creating or redefining features.

The function ProMdlDeclaredDataList() provides an array of ProMdl
handles to first-level notebook models that have been declared to a specified solid
model.
The function ProMdlModificationVerify() tells you whether a specified
model in memory has been modified since it was last saved or retrieved. See the
section Version Stamps on page 83 for a more flexible way of keeping track of
changes to a model.
The function ProMdlIsModifiable() checks if the specified model is
modifiable.
The function ProMdlIsEmbeddedName() checks if the specified model name
or full path that includes the model name is an embedded model name. The output
argument is_embedded_name returns PRO_B_TRUE if the model name is an
embedded name, PRO_B_FALSE if not.
In intersected embedded components, the name of the embedded model cannot be
used for file operations. If you are using the embedded name while creating a new
application, the file operation might fail. In such case, you must use the generic or
visible model name.
The function ProMdlVisibleGet() returns the handle to the generic or
visible model for the specified model. The function returns an error PRO_TK_E_
NOT_FOUND, when the generic or visible model does not exist or is not found in
the Creo Parametric session.
When an embedded component is extracted, a copy of the embedded solid is
created and the embedded component model is replaced by the new non-
embedded copy. In this extract operation, the original embedded model is erased
and the name of the model is changed.
For embed operations, if a model has embedded components, a copy of the
existing embedded models is created under the currently embedded model.

File Management Operations
Functions Introduced:

78 Creo® Parametric TOOLKITUser’s Guide

• ProMdlnameCopy()
• ProMdlfileMdlnameCopy()
• ProMdlnameRetrieve()
• ProMdlMultipleRetrieve()
• ProSolidRetrievalErrorsGet()
• ProMdlSave()
• ProMdlIsSaveAllowed()
• ProMdlErase()
• ProMdlEraseNotDisplayed()
• ProMdlEraseAll()
• ProMdlnameRename()
• ProMdlnameBackup()
• ProMdlDelete()
• ProMdlLocationIsStandard()
These functions perform the same actions as the corresponding Creo Parametric
file management commands, with the following exceptions:

• ProMdlnameCopy() and ProMdlfileMdlnameCopy() are equivalent
to the Save As command in the File pull-down menu of the Creo Parametric
menu bar. ProMdlnameCopy() takes the model handle as input, whereas
ProMdlfileMdlnameCopy() takes the type and name of the model to
copy.

• ProMdlnameRetrieve() retrieves the model into memory, but does not
display it or make it the current model.

• ProMdlMultipleRetrieve() retrieves multiple models into memory.
Use the ui_flag parameter to set model display to on or off.

• ProSolidRetrievalErrorsGet() returns the data structure containing
errors that occur during model retrieval. While retrieving a complex assembly,
Creo Parametric sometimes encounters errors in retrieving particular
components and assembling them appropriately in the assembly. In the user
interface, you are informed of errors as they occur, through a dialog box. In
Creo Parametric TOOLKIT, the retrieval functions automatically suppress or
freeze problem components and return PRO_TK_NO_ERROR. To know
whether errors have occurred during retrieval, use the function
ProSolidRetrievalErrorsGet(). The errors are returned as the
elements of the ProSolidretrievalerrs array. The retrieval error
information must be obtained immediately after a call to the
ProMdlnameRetrieve() or equivalent retrieval function.

Core: Models and Model Items 79

• ProMdlSave() saves the specified model to disk. For drawings, sketches
and other 2D model types, to save the graphics data, you must display it. Call
the function ProMdlDisplay() before ProMdlSave(), so that the
graphics data is saved along with the geometry for the model.

• ProMdlIsSaveAllowed() checks whether a given model can be saved.
• ProMdlEraseNotDisplayed() erases all the models that are not

referenced in a window from the current session.
• ProMdlErase() erases the specified model from memory.
• ProMdlEraseAll() erases a model and all the models that it uses, except

those that have cyclic dependencies (that is, models used by other models in
the session). For example, ProMdlEraseAll() recursively erases all
subassemblies of an assembly and all solids referenced from a drawing. This
function also works in cases where some models to be erased have mutual
dependencies, but only if the erased models are not used by other models.

However, while erasing an active model, ProMdlErase() and
ProMdlEraseAll() only clear the graphic display immediately, they do
not clear the data in the memory until the control returns to Creo Parametric
from the Creo Parametric TOOLKIT application. Therefore, after calling them
the control must be returned to Creo Parametric before calling any other
function, otherwise the behavior of Creo Parametric may be unpredictable.

The function ProMdlLocationIsStandard() checks if the specified model
was opened from a standard location. A standard file location can be the local disk
or a mapped drive on a remote computer. The Universal Naming Convention
(UNC) path for network drives is also considered as a standard path if the value
for DisableUNCCheck is set to True for the key HKEY_CURRENT_USER\
Software\Microsoft\Command Processor, in the registry file. The
function returns:
• PRO_B_TRUE when the file is loaded from a standard file location.
• PRO_B_FALSE when the file is loaded from a nonstandard file location, such

as, http, ftp, Design Exploration mode, and so on.

Model Items
A “model item” is a generic object used to represent any item contained in any
type of model, for the purpose of functions whose actions are applicable to all
these types of item. (Some items, such as “version stamp,” retain their own object
types.)
The object type ProModelitem is a DHandle (data handle), a structure that
contains the item type, the persistent integer identifier of the item, and the handle
to the owning object.

80 Creo® Parametric TOOLKITUser’s Guide

The object ProGeomitem, a generic geometrical object described later in this
guide, is an instance of ProModelitem, and is a DHandle that shares the same
type declaration. Therefore, the functions in this section are also directly
applicable to ProGeomitem objects.
The typedef for the ProModelitem data handle is as follows:

typedef struct pro_model_item
{

ProType type;
int id;
ProMdl owner;

} ProModelitem

Functions Introduced:

• ProModelitemByNameInit()
• ProModelitemInit()
• ProModelitemMdlGet()
• ProModelitemDefaultnameGet()
• ProModelitemNameGet()
• ProModelitemNameSet()
• ProModelitemNameCanChange()
• ProModelitemUsernameDelete()
• ProModelitemHide()
• ProModelitemUnhide()
• ProModelitemIsHidden()
The function ProModelitemByNameInit() returns a pointer to an item
(structure), given the name and the type of the item. The valid item types are:

• Edge
• Surface
• Feature
• Co-ordinate System
• Axis
• Point
• Quilt
• Curve
• Layer
• Note

Core: Models and Model Items 81

The function ProModelitemInit() is used to generate a ProModelitem
object from the information contained in the structure. You can create such a
structure directly, but using this function you can also confirm the existence of the
item in the model database.
The function ProModelitemMdlGet() extracts the ProMdl handle from the
structure.
The function ProModelitemDefaultnameGet() gets the default name for a
new model item of a particular type if it was created taking the model handle as
input.
The two functions ProModelitemNameGet() and
ProModelitemNameSet() read and set the name of the Creo Parametric
database object referred to by the model item. These functions are therefore
applicable to all the instances of ProModelitem, such as ProGeomitem and
all its instances, including ProSurface, ProEdge, ProCsys, and ProAxis.

Note
In addition to notes of the type PRO_NOTE, the functions
ProModelitemNameGet() and ProModelitemNameSet() can be
used to read and set the name of the following annotation types:

• Driving or driven dimension of the type PRO_DIMENSION
• Reference dimension of the type PRO_REF_DIMENSION
• Symbol instance of the type PRO_SYMBOL_INSTANCE
• Surface finish of the type PRO_SURF_FIN
• Geometric tolerance of the type PRO_GTOL
• Set datum tag of the type PRO_SET_DATUM_TAG (applicable only for

ProModelitemNameGet())

The function ProModelitemNameCanChange() identifies whether the name
of the model item can be modified by the user or by Creo Parametric TOOLKIT.
The function ProModelitemUsernameDelete() deletes the user-defined
name of the model item from the Creo Parametric database.
The functions ProModelitemHide() and ProModelitemUnhide() are
equivalent to the View ▶ Hide and View ▶ Unhide commands in the Creo
Parametric menu, respectively. ProModelitemHide() hides the specified
model item, whereas ProModelitemUnhide() unhides the model item.
The function ProModelitemIsHidden() identifies if the specified model
item is hidden.

82 Creo® Parametric TOOLKITUser’s Guide

Example 2: Renaming a Selected Surface
The sample code in UgGeomSurfRename.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_geometry shows
how to use the functions ProModelitemNameGet() and
ProModelitemNameSet(). See the Core: 3D Geometry on page 170 chapter
for an explanation of ProSurface and its functions.

Version Stamps
The version stamp object provides a way of keeping track of changes in a Creo
Parametric model to which your Creo Parametric TOOLKIT application may need
to respond. Creo Parametric models and features contain an internal version stamp
incremented each time some design change is made to that model or feature. The
functions in this section enable you to read version stamps in order to look for
design changes.
The version stamp object is called ProWVerstamp because it is a WHandle, or
workspace handle. It is a workspace handle because the data structure it references
is not the one in the Creo Parametric database, but a copy taken from it, which is
private to the Creo Parametric TOOLKIT application.
Functions Introduced:

• ProMdlVerstampGet()
• ProFeatureVerstampGet()
• ProVerstampAlloc()
• ProVerstampFree()
• ProVerstampStringGet()
• ProVerstampStringFree()
• ProStringVerstampGet()
• ProVerstampEqual()
The functions ProMdlVerstampGet() and ProFeatureVerstampGet()
enable you to make a workspace copy of the version stamp on a particular model
or feature. The function ProMdlVerstampGet() is currently applicable to
solids only (parts or assemblies). Both of these functions allocate the space for the
workspace object internally. After using the contents of the version stamp object,
you can free the workspace memory using ProVerstampFree().
If you want to store a copy of a version stamp to compare to a newly read version
later, you should use the nonvolatile representation, which is a C string. The
function ProVerstampStringGet() allocates and fills a string that
represents the contents of the specified ProWVerstamp object. The

Core: Models and Model Items 83

ProStringVerstampGet() function performs the reverse translation: it
allocates a new ProWVerstamp object and fills it by copying the specified C
string.
The function ProVerstampEqual() compares two ProWVerstamp objects
to tell you whether the version stamps they represent are equal.

Note
The version stamp on a feature can change not only when the feature
definition changes, but also when the feature geometry changes as a result of a
change to a parent feature.

Layers
Creo Parametric TOOLKIT implements two data types that enable access to layer
information in Creo Parametric:

• ProLayer—A DHandle that identifies a layer. The ProLayer object is an
instance of ProModelitem.

• ProLayerItem—A DHandle that identifies a layer item. The valid types of
layer item are contained in the enumerated type ProLayerType.

Functions Introduced:

• ProMdlLayerGet()
• ProMdlLayerVisit()
• ProMdlLayersCollect()
• ProLayerCreate()
• ProLayerDelete()
• ProLayerItemsGet()
• ProLayerItemsPopulate()
• ProLayeritemarrayFree()
• ProLayerItemInit()
• ProDwgLayerItemInit()
• ProLayerItemAdd()
• ProLayerItemAddNoUpdate()
• ProLayerItemRemove()
• ProLayerItemRemoveNoUpdate()

84 Creo® Parametric TOOLKITUser’s Guide

• ProLayeritemLayersGet()
• ProLayerDisplaystatusGet()
• ProLayerDisplaystatusSet()
• ProLayerDisplaystatusNoUpdateSet()
• ProLayerDisplaystatusUpdate()
• ProDwgLayerDisplaystatusGet()
• ProDwgLayerDisplaystatusSet()
• ProLayerDisplaystatusSave()
• ProLayerDefLayerSet()
• ProLayerDefLayerGet()
• ProLayerViewDependencySet()
• ProLayerViewDependencyGet()
• ProLayerRuleExecute()
• ProLayerRuleCopy()
• ProLayerRuleMatch()
• ProLayeritemLayerStatusGet()
To get the ProLayer object for a layer with the specified name and owner, call
the function ProMdlLayerGet(). You must pass the name of the layer as a
wide string.
To visit the layers in a model, use the function ProMdlLayerVisit(). As
with other Creo Parametric TOOLKIT visit functions, you supply the visit action
and visit filter functions.
The function ProMdlLayersCollect() collects a ProArray of layers in
the model.
The function ProLayerCreate() creates a new layer with a specified name. It
requires as input the ProMdl handle for the model that will own the layer. The
function ProLayerDelete() deletes the layer identified by the specified
ProLayer object.
The function ProLayerItemsGet() allocates and fills an array of
ProLayerItem objects that contains the items assigned to the specified layer.

Core: Models and Model Items 85

Note
The function ProLayerItemsGet() is deprecated. For a large number of
layer items, the function ProLayerItemsGet() may return an error PRO_
TK_OUT_OF_MEMORY to indicate that the function was unable to allocate a
ProArray to hold all of the layer items. To address this issue, use the new
function ProLayerItemsPopulate().

The function ProLayerItemsPopulate() allocates and fills an array of
ProLayerItem objects that contain the type and identifier of the items assigned
to the specified layer. This function can retrieve a large number of items specified
on the layer. Use the function ProLayeritemarrayFree() to free the
allocated memory.
To initialize a ProLayerItem, call the function ProLayerItemInit().
This function should be used in all cases, except when all of the following are
true:

• The layer owner is a drawing.
• The layer item owner is an assembly.
• The layer item is a component.
• You want to control the display status of this component only in a

subassembly with a given path.
When all of the above conditions are true, use the function
ProDwgLayerItemInit() to initialize the ProLayerItem.
To add items to a layer, call the function ProLayerItemAdd(), and pass as
input a ProLayer object and the ProLayeritem object for the new layer
item. To remove an item from a layer, use the function
ProLayerItemRemove() and specify the ProLayeritem object for the
item to remove.
The function ProLayerItemAddNoUpdate() adds the specified item to a
layer without updating the model tree.
The function ProLayerItemRemoveNoUpdate() removes the specified
item from the layer without updating the model tree.
To find all the layers containing a given layer item, use the function
ProLayeritemLayersGet(). This function supports layers in solid models
and in drawings.

86 Creo® Parametric TOOLKITUser’s Guide

As in an interactive session of Creo Parametric, one of the principal reasons to
create a layer is to display or blank its member items selectively. The function
ProLayerDisplaystatusGet() obtains the display status of the specified
layer, in the form of the ProLayerDisplay enumerated type. The display
status can be of following types:

• PRO_LAYER_TYPE_NONE—The selected layer is displayed. This is the
default display status.

• PRO_LAYER_TYPE_NORMAL—The layer selected by the user is displayed.
• PRO_LAYER_TYPE_DISPLAY—The selected layer is isolated.
• PRO_LAYER_TYPE_BLANK—The selected layer is blanked.
• PRO_LAYER_TYPE_HIDDEN—The components in the hidden layers are

blanked. This status is applicable only in the assembly mode.
To modify the display status of a layer, call the function
ProLayerDisplaystatusSet().

Note
ProLayerDisplaystatusSet() does not repaint the model after it
modifies the display status. This is a temporary setting. It will be lost after you
save or retrieve the model. To permanently change the display status, call the
function ProLayerDisplaystatusSave(). However, the function
ProLayerDisplaystatusSet() updates the model tree for the change
in display status of the layer.

The function ProLayerDisplaystatusNoUpdateSet() sets the display
status of a layer, without updating the model tree. It returns a boolean value PRO_
B_TRUE for the output argument is_update_tree_needed, if the model tree
requires an update for change in the display status of a layer. Use the function
ProLayerDisplaystatusUpdate() to update the model tree for all the
changes in the display statuses of all the layers in the specified model.
Unique functions are required to retrieve and set the status of layers in drawings.
ProDwgLayerDisplaystatusGet() takes as input the layer handle and
drawing view. The function ProDwgLayerDisplaystatusSet() takes an
additional argument as input—the desired display status.
The function ProLayerDisplaystatusSave() saves the changes to the
display status of all the layers in the specified owner. In addition, the display
statuses are saved in the owner's submodels and drawing views.

Core: Models and Model Items 87

To set up a default layer with a specified name, call the function
ProLayerDefLayerSet(). This function requires the default layer type,
which is defined in the enumerated type ProDefLayerType. To get the name
of the default layer with the specified type, call the function
ProLayerDefLayerGet().
The function ProLayerViewDependencySet() sets the display of layers of
the specified view to depend on the display of layers in the drawing. The syntax of
this function is as follows:
ProLayerViewDependencySet (

ProView view,
ProBoolean depend);

If depend is set to PRO_B_TRUE, the layers in the view will be displayed when
the layers in the drawing are displayed. If depend is set to PRO_B_FALSE, the
layer display in the view will be independent of the display in the drawing. To
determine whether the layer display in the view is dependent on the display in the
drawing, call the function ProLayerViewDependencyGet().
You can define rules in layers. Use the function ProLayerRuleExecute() to
execute the layer rules on the specified model. The rules must be enabled in the
layers to be executed.
The function ProLayerRuleCopy() copies the rules from the reference model
to the current model for the specified layer. The input arguments are:
• CurrentModel—Specifies the current model to which the layer rules must

be copied.
• LayerName—Specifies the name of an existing layer in both the models. To

copy the layer rules, the name of the layer LayerName in both the models
must be the same.

• ReferenceModel—Specifies the reference model from which the layer
rules must be copied.

Use the function ProLayerRuleMatch() to compare the rules between the
current and reference model for the specified layer. The name of the layer
LayerName in both the models must be the same, for comparing the layer rules.
The function ProLayeritemLayerStatusGet() returns the status of an
item for the specified layer. The input arguments are:
• pro_drawing—Specifies the drawing which is the owner of the layer that

contains the specified item.
• pro_layer_item—Specifies the layer item. If the owner type of the layer item

is PRO_LAYITEM_FROM_PATH, it is mandatory to specify the pro_drawing
input argument.

• pro_layer—Specifies the layer that contains the item.

88 Creo® Parametric TOOLKITUser’s Guide

The output argument returns the status of the item using the enumerated data type
ProLayerItemStatus. The valid values are:
• PRO_LAY_ITEM_STATUS_INCLUDE—Specifies that the status of the layer

item is Include. The item is included in the specified layer.
• PRO_LAY_ITEM_STATUS_EXCLUDE—Specifies that the status of the layer

item is Exclude. The item is excluded in the specified layer.
• PRO_LAY_ITEM_STATUS_ADDED_BY_RULE—Specifies that the status of

the layer item is defined by rules.
The enumerated data type ProLayerItemStatus must have one of the
following values:
• PRO_LAY_ITEM_STATUS_INCLUDE

• PRO_LAY_ITEM_STATUS_EXCLUDE

• PRO_LAY_ITEM_STATUS_INCLUDE and PRO_LAY_ITEM_STATUS_
ADDED_BY_RULE

• PRO_LAY_ITEM_STATUS_EXCLUDE and PRO_LAY_ITEM_STATUS_
ADDED_BY_RULE

Example 3: Creating a Layer
The sample code in UgModelLayerCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_model shows how to
create a layer and add items to it.
This example streamlines the layer creation process (compared to interactive Creo
Parametric) because the application creates the layer and adds items to it in only
one step. Note that this example does not allow users to add a subassembly to the
new layer.

Notebook
The functions described in this section work with notebook (.lay) files.
Functions Introduced:

• ProLayoutDeclare()
• ProLayoutUndeclare()
• ProLayoutRegenerate()

Core: Models and Model Items 89

The function ProLayoutDeclare() declares a notebook name to the
specified Creo Parametric model or notebook. You can resolve conflicts using the
enumerated type ProDeclareOptions. It has the following values:
• PRO_DECLARE_INTERACTIVE—Resolves the conflict in interactive mode.
• PRO_DECLARE_OBJECT_SYMBOLS—Keep the symbols in the specified

Creo Parametric model or notebook object.
• PRO_DECLARE_LAYOUT_SYMBOLS—Keep the symbols specified in the

notebook.
• PRO_DECLARE_ABORT—Abort the notebook declaration process and return

an error.
Use the function ProLayoutUndeclare() to undeclare the notebook name to
the specified Creo Parametric model or notebook. You can resolve conflicts using
the enumerated type ProUndeclareOptions. It has the following values:
• PRO_UNDECLARE_FORCE—Continues to undeclare the notebook even if

references exist.
• PRO_UNDECLARE_CANCEL—Does not undeclare the notebook if references

exist.
The method ProLayoutRegenerate() regenerates the specified notebook.

Visiting Displayed Entities
Functions Introduced:

• ProSolidDispCompVisit()
• ProAsmcomppathDispPointVisit()
• ProAsmcomppathDispCurveVisit()
• ProAsmcomppathDispCsysVisit()
• ProAsmcomppathDispQuiltVisit()
The functions in this section enable you to find quickly all the entities (points,
datum curves, coordinate systems, and quilts) currently displayed in an assembly.
It is possible to do this using the regular Creo Parametric TOOLKIT functions for
visiting assembly components and entities, together with the ProLayer
functions explained earlier in this chapter; but the functions described here are
much more efficient because they make use of Creo Parametric's internal
knowledge of the display structures.
The function ProSolidDispCompVisit() traverses the components at all
levels in an assembly which are not blanked by a layer. The visit action function is
called on both the downward traversal and the upward one, and is given a boolean
input to distinguish them. It is also given the assembly path and the solid handle to

90 Creo® Parametric TOOLKITUser’s Guide

the current subassembly. The subassembly could be found from the path using
ProAsmcomppathMdlGet(), of course, but Creo Parametric passes this to the
action function to allow greater efficiency.
The functions ProAsmcomppathDisp*Visit() visit the entities in a
subassembly that are not blanked by a layer at any level in the root assembly.

Core: Models and Model Items 91

3
Core: Solids, Parts, and Materials

Solid Objects...93
Part Objects.. 117
Material Objects .. 118

This chapter describes how to access solids, parts, and their contents.

92 Creo® Parametric TOOLKITUser’s Guide

Solid Objects
The Creo Parametric term “solid” denotes a part or an assembly. The object is
called ProSolid and is declared as an opaque handle. It is an instance of
ProMdl and can be cast to that type to use functions that have the prefix
“ProMdl”.

Creating a Solid
Function Introduced:

• ProSolidMdlnameCreate()
The function ProSolidMdlnameCreate() creates an empty part or assembly
with the specified name, and provides a handle to the new object. It does not make
the new solid current, nor does it display the solid. In Creo Parametric 7.0.0.0 and
later, an empty part is created with absolute accuracy, by default. Refer to the Creo
Parametric help for more information on Model Accuracy.

Contents of a Solid
Functions Introduced:

• ProSolidFeatVisit()
• ProSolidQuiltVisit()
• ProSolidAxisVisit()
• ProSolidCsysVisit()
• ProSolidFeatstatusGet()
• ProSolidFeatstatusSet()
• ProSolidFeatstatusWithoptionsSet()
• ProSolidFeatstatusflagsGet()
• ProSolidFailedFeatsList()
• ProSolidFailedfeaturesList()
• ProSldsurfaceShellsAndVoidsFind()
• ProSolidToleranceStandardGet()
• ProSolidToleranceStandardSet()
The following visit functions enable you to access the various types of objects
inside a part or assembly:

Core: Solids, Parts, and Materials 93

• ProSolidFeatVisit()—Visits all the features, including those used
internally (which are not visible to the Creo Parametric user). You can also use
this function to visit the components of an assembly.

• ProSolidSurfaceVisit()—Visits the surfaces of the model only if the
model has a single body else returns the error PRO_TK_MULTIBODY_
UNSUPPORTED. This includes all surfaces created by solid features, but not
datum surfaces.

• ProSolidQuiltVisit()—Visits all the quilts in a part or an assembly.
• ProSolidAxisVisit()—Visits all the axes in a part or an assembly.
• ProSolidCsysVisit()—Visits all the coordinate system datums in a part

or an assembly.
The function ProSolidFeatstatusGet() retrieves a list of the integer
identifiers and statuses of all the features in a specified solid in the order in which
they are regenerated. The integer identifier of a feature is the value of the id field
in the ProFeature object and also the INTERNAL ID seen in Creo Parametric.
The function ProSolidFeatstatusSet() enables you to set the
regeneration order and statuses of the features in the solid.
The function ProSolidFeatstatusWithoptionsSet() assigns the
regeneration order and status bit flags for the specified features in a solid based on
the bitmask containing one or more regeneration control bit flags of the type
PRO_REGEN_* defined in ProSolid.h. Refer to the Regenerating a Solid on
page 96 section for more information on the bit flags.
The function ProSolidFeatstatusflagsGet() retrieves the array of
integer identifiers of the features in a specified solid and the corresponding array
of bitmasks representing one or more feature status bit flags of the type PRO_
FEAT_STAT_* defined in ProFeature.h. Refer to the Core: Features on page
131 chapter for more information on the feature status bit flags.
The function ProSolidFailedFeatsList() retrieves the list of identifiers
of failed features in a specified solid.

Note
From Pro/ENGINEERWildfire 5.0 onward, the function
ProSolidFailedFeatsList() has been deprecated. Use the function
ProSolidFailedfeaturesList() instead. Pass NULL for the input
arguments co_failed_ids and co_x_failed_ids while using
ProSolidFailedfeaturesList() in the Resolve mode.

94 Creo® Parametric TOOLKITUser’s Guide

The function ProSolidFailedfeaturesList() retrieves the list of
identifiers of all or any of the failed features, children of failed features, children
of external failed features, or both the features and their children.
The function ProSldsurfaceShellsAndVoidsFind() returns an ordered
list of surface-contour pairs for each shell and void in a solid.
The surface-contour pairs describe the shell faces and are specified by the
ProSldsurfaceShellface objects. If the contour field in the
ProSldsurfaceShellface object is NULL, it means all the contours in the
geometry belong to the same surface and the shell_faces array contains only
one surface ID. However, if the contours belong to different shells, the shell_
faces array contains items equal to the number of contours.
The ordered list of surface-contour pairs is specified by the
ProSldsurfaceShellorder objects; each of this object contains the
following fields:

• orientation—Specifies the shell orientation. If this field is 1, the shell is
oriented outward, if it is -1, the shell is inward oriented meaning it is a void.

• first_face—Specifies the index in the array of
ProSldsurfaceShellface objects.

• number_of_faces—Specifies the total number of shell faces.
• ambient_shell—Specifies the index in the array of

ProSldsurfaceShellorder objects.
The function ProSolidToleranceStandardGet() returns the tolerance
standard assigned to a solid. Use the method
ProSolidToleranceStandardSet() to set the tolerance standard for a
solid. After you set the tolerance standard for a solid, you must regenerate the
solid, if required. The function does not regenerate the solid.

Displaying a Solid
Function Introduced:

• ProSolidDisplay()
The function ProSolidDisplay() displays a solid in the current Creo
Parametric window. This does not make the object current from the point of Creo
Parametric.

Example 1: Loading and Displaying a Solid
The example in the file UgSolidLoadDisp.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_solid, shows how to
use the functions ProObjectwindowMdlnameCreate() and
ProSolidDisplay().

Core: Solids, Parts, and Materials 95

Regenerating a Solid
Function Introduced:

• ProSolidRegenerate()
• ProSolidRegenerationIsNoresolvemode()
• ProSolidRegenerationstatusGet()
The function ProSolidRegenerate() regenerates the specified solid. One of
the inputs to the function is a bitmask that specifies how the regeneration must be
performed. The bitmask may contain the following flags:

• PRO_REGEN_NO_FLAGS—Equivalent to passing no flags.
• PRO_REGEN_CAN_FIX—Allows the user to interactively fix the model

using the user interface, if regeneration fails. This bit flag needs to be set only
in case of interactive applications. If this option is not included, the user
interface does not update even if regeneration is successful. Use
ProWindowRepaint() and ProTreetoolRefresh() to perform the
update if needed. Also, this bit flag must be set only in the Resolve mode.
Otherwise, ProSolidRegenerate() returns PRO_TK_BAD_CONTEXT.

• PRO_REGEN_ALLOW_CONFIRM—This flag has been deprecated from Creo
Parametric 4.0 M030. Allows the user to interactively select the option of
retaining failed features and children of failed features via a pop-up dialog
box, if regeneration fails. This bit flag must be set only in the No-Resolve
mode. Otherwise, ProSolidRegenerate() returns PRO_TK_BAD_
CONTEXT.

Note
The interactive dialog box which provided an option to retain failed
features and children of failed features, if regeneration fails is no longer
supported. Creo Parametric displays a warning message which gives
details of failed features.

• PRO_REGEN_UNDO_IF_FAIL—Allows the user to undo the failed
regeneration and restore the previous status. This flag needs to be set only in
the No-Resolve mode. Otherwise, ProSolidRegenerate() returns PRO_
TK_BAD_CONTEXT. The result obtained may be different from the one
attained by using the Restore option in the Resolve mode. Restore in the
Resolve mode can be used immediately after the first failure. But undo in the
No-Resolve mode due to this bit flag happens only after all the features are
regenerated or failed. In some cases, the undo may not happen at all.

96 Creo® Parametric TOOLKITUser’s Guide

Note
The bit flags PRO_REGEN_ALLOW_CONFIRM and PRO_REGEN_UNDO_
IF_FAIL are not compatible with each other. Setting both of them
together will result in PRO_TK_BAD_CONTEXT.

• PRO_REGEN_SKIP_DISALLOW_SYS_RECOVER—Skips the preparation
for failure recovery. If this option is used, Undo Changes is possible if a
failure occurs. This option is used only in conjunction with PRO_REGEN_
CAN_FIX.

• PRO_REGEN_UPDATE_INSTS—Updates instances of the solid in memory.
This may slow down the regeneration process.

• PRO_REGEN_RGN_BCK_USING_DISK—Stores the backup model on the
disk. This is useful only if PRO_REGEN_CAN_FIX is set.

• PRO_REGEN_FORCE_REGEN—Forces the solid to fully regenerate. This will
regenerate every feature in the solid. If not set, Creo Parametric uses its
internal algorithm to determine which features to regenerate.

• PRO_REGEN_TOP_ASM_ONLY—Forces only top level assembly to
regenerate. This flag forces the regeneration of all the features and
components that are defined in the specified top level assembly, even when
they are considered up-to-date. The features and components from the low
level assembly that are essential for the correct assembly regeneration results,
might also be regenerated during the regeneration process. However, they are
not excluded from the regeneration process.

Note
This flag cannot be used with PRO_REGEN_FORCE_REGEN.

• PRO_REGEN_UPDATE_ASSEMBLY_ONLY—Updates assembly and sub-
assembly placements and regenerates assembly features and intersected parts.
If the affected assembly is retrieved as a simplified representation, this flag
will update the locations of the components. If the flag is not set, the
component locations are not updated by default when the simplified
representation is retrieved.

Core: Solids, Parts, and Materials 97

Note
This flag cannot be used with PRO_REGEN_FORCE_REGEN.

• PRO_REGEN_RESUME_EXCL_COMPS—Enables Creo Parametric to resume
available excluded components of the simplified representation during
regeneration. This can result in a more accurate update of the simplified
representation.

Note
Component models which are not in session at the time of the call to
ProSolidRegenerate() will not be retrieved due to this option.

• PRO_REGEN_NO_RESOLVE_MODE— Specifies the No-Resolve mode
introduced in Pro/ENGINEERWildfire 5.0. This is the default mode in Creo
Parametric. In this mode, if a model and feature regeneration fails, failed
features and children of failed features are created and regeneration of other
features continues.

• PRO_REGEN_RESOLVE_MODE— Specifies the Resolve mode. In this mode,
you can continue with the Pro/ENGINEERWildfire 4.0 behavior, wherein if a
model and feature regeneration fails, the failure needs to be resolved before
regeneration can be resumed. You can also switch to the Resolve mode by
setting the configuration option regen_failure_handling to
resolve_mode in the Creo Parametric session.

In Creo Parametric 7.0.1.0 and later, the configuration option regen_
failure_handling has been deprecated. If a model and feature
regeneration fails and if you want to use Resolve mode, you need to contact
PTC Customer Support. For more information, refer to the section Contacting
PTC Technical Support in the Getting Started with Creo Parametric TOOLKIT
guide.

98 Creo® Parametric TOOLKITUser’s Guide

Note
Setting the configuration option to switch to Resolve mode ensures the old
behavior as long as you do not retrieve the models saved under the No-
Resolve mode. To consistently preserve the old behavior, use Resolve
mode from the beginning and throughout your Creo Parametric session.
Temporarily setting the bit flag PRO_REGEN_RESOLVE_MODE in the
relevant functions does not ensure the old behavior.

The function ProSolidRegenerationIsNoresolvemode() identifies if
the regeneration mode in the active Creo Parametric session is the No-Resolve
mode. Set the ProBoolean argument is_no_resolve to PRO_B_TRUE to set the
No-Resolve mode.
The function ProSolidRegenerationstatusGet() returns the
regeneration status of the solid model. This status is similar to the regeneration
status indicator (Green/Yellow/Red) in the Creo Parametric User Interface.
The regeneration status can take one of the following values:

• PRO_SOLID_REGENERATED—Specifies that the model is up-to-date and
requires no regeneration.

• PRO_SOLID_NEEDS_REGENERATION—Specifies that the model has
changed and requires regeneration.

• PRO_SOLID_FAILED_REGENERATION—Specifies that the regeneration
has failed or has warnings.

Note
Models with certain contents, such as circular references or assembly
analysis features, will never return a fully “regenerated” status. Thus, this
status should not provide an absolute restriction. If the flag remains in the
“PRO_SOLID_NEEDS_REGENERATION” status through two successful
regenerations, the model could be considered up-to-date.

• PRO_SOLID_CONNECT_FAILED—Specifies that the model has
successfully regenerated, however, the connect operation for mechanisms in
the solid model has failed. This status is applicable only for assemblies which
have moving components.

Core: Solids, Parts, and Materials 99

Example 2: Combining Regeneration Flags
The sample code in UgSolidRegen.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_solid shows how to
use the function ProSolidRegenerate().

Combined States of a Solid
With a combined state, you can combine and apply multiple display states to a
Creo Parametric model. Combined states are composed of the following two or
more display states:

• Saved Views
• Layer state
• Annotations
• Cross section
• Exploded view
• Simplified representation
• Model style
The object ProCombstate for a combined state has the same declaration as the
ProModelitem object, only with the type set to PRO_COMBINED_STATE.
The declaration is as follows:
typedef struct pro_model_item
{
ProType type;
int id;
ProMdl owner;

}ProCombstate;

Functions Introduced:

• ProMdlCombstatesGet()
• ProCombstateActiveGet()
• ProCombstateDataGet()
• ProCombstateActivate()
• ProMdlCombStateCreate()
• ProCombstateRedefine()
• ProCombstateAnnotationsGet()
• ProCombstateAnnotationsAdd()
• ProCombstateAnnotationsRemove()
• ProCombstateDelete()
• ProCombstateAnnotationsStateGet()

100 Creo® Parametric TOOLKITUser’s Guide

• ProCombstateSupplGeomStateGet()
• ProCombstateAnnotationsAndSupplGeomStateSet()
• ProCombstateIsPublished()
• ProCombstateIsDefault()
The function ProMdlCombstatesGet() returns an array of combined states
of a specified solid.
The function ProCombstateActiveGet() retrieves the active combined
state in a specified solid model. The active combined state is the default state
when the model is opened.
The function ProCombstateDataGet() returns information for a specified
combined state. The output arguments of this function are:

• cs_name—The name of the combined state.
• cs_ref_arr—An array of reference states of the type ProModelitem. This

array can contain states of the following types:

○ PRO_VIEW

○ PRO_LAYER_STATE

○ PRO_SIMP_REP

○ PRO_EXPLD_STATE

○ PRO_XSEC

○ PRO_STYLE_STATE

• p_clip_opt—A pointer to the value of the cross section clip. This is applicable
only in case of a valid reference of the type PRO_XSEC. The PRO_XSEC item
represents a ProXsec object or a zone feature.

The values for the cross section clip are specified by the enumerated type
ProCrossecClipOpt. The possible values are as follows:

○ PRO_VIS_OPT_NONE—Specifies that the cross section or zone feature is
not clipped.

○ PRO_VIS_OPT_FRONT—Specifies that the cross section or zone feature
is clipped by removing the material on the front side. The front side is
where the positive normals of the planes of the cross section or zone
feature are directed.

○ PRO_VIS_OPT_BACK—Specifies that the cross section or zone feature is
clipped by removing the material on the back side.

• p_is_expld—A ProBoolean value that specifies whether the combined state
is exploded. This value is available only if when a valid PRO_EXPLD_STATE

Core: Solids, Parts, and Materials 101

reference state is retrieved. It is not available for Creo Parametric parts since
an exploded state does not exist in the part mode.

Use the function ProCombstateActivate() to activate a specified
combined state.
The function ProMdlCombStateCreate() creates a new combined state
based on specified references. The input arguments of this function are as follows:

• p_solid—Specify the solid model in which you want to create a new combined
state.

• new_name—Specify the name of the new combined state.
• ref_arr—Specify the array of reference states. Refer to the description of the

argument cs_ref_arr on page of the function ProCombstateDataGet()
for the valid reference states.

• clip_opt—Specify the value of the cross section clip. Refer to the description
of the argument p_clip_opt on page of the function
ProCombstateDataGet() for more information.

• is_expld—Specify PRO_B_TRUE if the combined state is exploded, else
specify PRO_B_FALSE. This argument needs to be set only in case of a valid
PRO_EXPLD_STATE reference state. It is not applicable for Creo Parametric
parts since an exploded state does not exist in the part mode.

Use the function ProCombstateRedefine() to redefine a created combined
state. The values specified by the input arguments ref_arr, clip_opt, and is_expld
of the function ProMdlCombStateCreate() are redefined.
In case you do not want to redefine a reference state, pass the reference state with
the same value. While redefining, you must specify reference states. If you do not
pass reference states, the combined state is redefined to a NO_STATE state. NO_
STATE state means the display of the reference state is not changed on activation
of combined state.
In case you want to refine or create a combined state that uses the most recently
used instance of a reference state, use the PRO_COMBSTATE_REF_MRU option
as the id field of that type of reference state in the ProModelitem object.
The function ProCombstateAnnotationsGet() retrieves an array of
annotations and their status flags from a specified combined state item.
The function ProCombstateAnnotationsAdd() adds an array of
annotations to a specified combined state item. The input argument status_flags
specifies if an annotation must be displayed in the combined state. If you specify
the value 0 for this argument, then the annotation is displayed in the combined
state. If you specify the value 1, then the annotation is not displayed.
Use the function ProCombstateAnnotationsRemove() to remove the
annotations from a specified combined state item.

102 Creo® Parametric TOOLKITUser’s Guide

Use the function ProCombstateDelete() to delete a specified combined
state. The function fails if the specified combined state is the default or active
combined state.
Annotations and annotation elements can be assigned to a combined state. When
the combined state is active, the annotations are displayed in the graphics window.
Similarly, annotations and annotation elements can be assigned to layers.
Supplementary geometry such as datum planes, points, coordinate systems, axes,
curves, and surfaces can also be assigned to combined state or layers. The display
of annotations and supplementary geometry in a model is controlled either by the
combined state or layers. The configuration option combined_state_type is
used to define how the visibility of annotations and supplementary geometry is
controlled in a new combined state.
Refer to Creo Parametric Help for more information.
The function ProCombstateAnnotationsStateGet() checks if the
display of annotations is controlled by the specified combined state or layers. The
function returns PRO_B_TRUE when the display is controlled by combined state.
Use the function ProCombstateSupplGeomStateGet() to check if the
display of supplementary geometry is controlled by the specified combined state
or layers. The function returns PRO_B_TRUE when the display is controlled by
combined state.
The function ProCombstateAnnotationsAndSupplGeomStateSet()
allows you to change the display of annotations and supplementary geometry by
the combined state or layers. The input arguments follow:
• cs_item—Specifies a pointer to the combined state item from which the state

needs to be retrieved.
• annotation_state—Flag to set the specified combined state to annotation state.

Pass the value of annotation_state as PRO_B_TRUE if display of annotations
should be controlled by combined state. Pass it as PRO_B_FALSE if display
of annotations should be controlled by layers.

• supplgeom_state—Flag to set the specified combined state to supplementary
geometry state. Pass the value of supplgeom_state as PRO_B_TRUE if display
of supplementary geometry should be controlled by combined state. Pass it as
PRO_B_FALSE if display of supplementary geometry should be controlled by
layers.

Note
If value of the input argument supplgeom_state is set to PRO_B_TRUE,
the value of annotation_state also, must be set to PRO_B_TRUE.

Core: Solids, Parts, and Materials 103

The function returns PRO_TK_NO_CHANGE if the current states of
annotations and supplementary geometry in the combined state are same as the
requested states.

The function ProCombstateIsPublished() checks if the specified
combined state has been published to Creo View.
Use the function ProCombstateIsDefault() checks if the specified
combined state is set as the default combined state for the model.

Layer State
A layer state stores the display state of existing layers and all the hidden layers of
the top-level assembly. You can create and save one or more layer states and
switch between them to change the assembly display.
The object ProLayerstate represents the layer state. It has the same
declaration as the ProModelitem object, only with the type set to PRO_
LAYER_STATE. The declaration is as follows:
typedef struct pro_model_item
{
ProType type;
int id;
ProMdl owner;

}ProLayerstate;

Functions Introduced:

• ProLayerstatesGet()
• ProLayerstateActiveGet()
• ProLayerstateNameGet()
• ProLayerstateActivate()
• ProLayerstateCreate()
• ProLayerstateLayersGet()
• ProLayerstateLayerAdd()
• ProLayerstateLayerRemove()
• ProLayerstateActivestateUpdate()
• ProLayerstateModelitemHide()
• ProLayerstateModelitemUnhide()
• ProLayerstateModelitemIsHidden()
• ProLayerstateDelete()
The function ProLayerstatesGet() returns an array of layer states for a
specified solid.

104 Creo® Parametric TOOLKITUser’s Guide

The function ProLayerstateActiveGet() retrieves the active layer state in
a specified solid model.
The function ProLayerstateNameGet() retrieves the name of a specified
layer state.
Use the function ProLayerstateActivate() to activate a specified layer
state.
The function ProLayerstateCreate() creates a new layer state based on
specified references. The input arguments of this function are as follows:

• p_solid—Specify the solid model in which you want to create a new layer
state.

• state_name—Specify the name of the new layer state. The name can only
consist of alphanumeric, underscore, and hypen characters.

• layers—Specify an array of reference layers.
• disp_arr—Specify an array of display statuses. The number of display statues

is equal to the number of reference layers.
• hidden_items—Specify an array of hidden items.

Note
ProLayerItem of type PRO_LAYER_LAYER is not supported in the
function ProLayerstateCreate(), when you create a new layer
state.

The function ProLayerstateLayersGet() retrieves the reference data for a
specified layer state.
The function ProLayerstateLayerAdd() adds a new layer to an existing
layer state. Specify the new layer, its display state, and the name of the existing
layer state as input arguments to this function.
The function ProLayerstateLayerRemove() removes a specific layer from
a specified layer state.
The function ProLayerstateActivestateUpdate() updates the layer
state, which is active in the specified model. If the display statues of layers have
changed, then calling this function ensures that the active layer state in the model
is updated with the new display statuses of the layers.
Use the function ProLayerstateModelitemHide() to hide the display of a
specific item on the specified layer state.
Use the function ProLayerstateModelitemUnhide() to remove a
specific item from the list of hidden items on a layer state.

Core: Solids, Parts, and Materials 105

Use the function ProLayerstateModelitemIsHidden() to identify if an
item is hidden on a layer state.
Use the function ProLayerstateDelete() to delete a specified layer state.

Evaluating Mathematical Expressions for a Solid
Functions Introduced:

• ProMathExpressionEvaluate()
The function ProMathExpressionEvaluate() evaluates the given
mathematical expression in the context of a given solid. The expression may
include parameters, dimensions, embedded functions, or predefined constants.
This function returns a pointer to the calculated result and a pointer to the unit of
the calculated result.

Solid Outline
Functions Introduced:

• ProSolidOutlineGet()
• ProSolidOutlineCompute()
The function ProSolidOutlineGet() provides you with the maximum and
minimum values of X, Y, and Z occupied by the contents of the solid, with respect
to the default, solid coordinate system.
The function ProSolidOutlineCompute() calculates the outline of the
solid with respect to any orientation, defined by a transformation matrix. (For
more information, see the Core: Coordinate Systems and Transformations on page
222 chapter.) The function enables you to exclude from the calculation items of
any or all of the following types:

• Datum plane
• Datum point
• Datum axes
• Datum coordinate system
• Facets

Example 3: Computing the Outline of a Solid
The sample code in UgSolidOutlineComp.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_solid computes the
outline of a solid with respect to a selected coordinate system, and converts the
result back to solid coordinates.

106 Creo® Parametric TOOLKITUser’s Guide

Solid Accuracy
Functions Introduced:

• ProSolidAccuracyGet()
• ProSolidAccuracySet()
• ProSolidMaxsizeGet()
Use the functions ProSolidAccuracyGet() and
ProSolidAccuracySet() to retrieve and set the accuracy of a specified part
or assembly, respectively.

Note
To set or retrieve the accuracy for an assembly you must traverse through all
its parts in the assembly with these functions.

The input arguments for the function ProSolidAccuracySet() are as
follows:

• solid—The part or assembly whose accuracy you want to set.
• type—The type of the accuracy. The valid values are:

○ PRO_ACCURACY_RELATIVE—Specifies the relative accuracy
○ PRO_ACCURACY_ABSOLUTE—Specifies the absolute accuracy

• accuracy—The value of the accuracy that you want to set. The unit used for
the absolute accuracy of the dimension is based on the unit of the part or
assembly.

Note
Regenerate the model using the function ProSolidRegenerate()
after setting the accuracy using ProSolidAccuracySet().

The function ProSolidAccuracyGet() returns the type and value of the
accuracy. The accuracy may be relative or absolute.
Using these functions to set and retrieve part accuracy is similar to performing
these functions in Creo Parametric using File ▶ Prepare ▶Model Properties.
Derive the geometry epsilon for the required relative accuracy as follows:
geometry_epsilon = max_model_size x relative_accuracy x 0.08333

where, max_model_size is the output returned by the function
ProSolidMaxsizeGet() and 0.08333 is the scaling factor.

Core: Solids, Parts, and Materials 107

Use the function ProSolidMaxsizeGet() to get the maximum model size of
the specified solid. The maximum model size does not decrease even when
material is removed from the solid.

Solid Units

Introduction to Unit of Measurement and System of Units
Each model has a basic system of unit to ensure that all material properties of that
model are consistently measured and defined. All models are defined on the basis
of system of units. A part can have only one system of unit.
Following are the types of quantities which govern the definition of unit of
measurement:

• Basic Quantities—The basic units and dimensions of the system of units. For
example, consider the Centimeter Gram Second (CGS) system of unit. The
basic quantity for this system of unit is:

○ Length—cm
○ Mass—g
○ Force—dyne
○ Time—sec
○ Temperature—K

• Derived Quantities—The derived units are those that are derived from the
basic quantities. For example, consider the Centimeter Gram Second (CGS)
system of unit. The derived quantities for this system of unit are as follows:

○ Area—cm^2
○ Volume—cm^3
○ Velocity—cm/sec

Types of Systems of Units
Following are the types of system of units:

• Pre-defined system of unit—This system of unit is provided by default.
• Custom-defined system of unit—This system of unit is defined by the user

only if the model does not contain standard metric or nonmetric units or if the
material file contains units that cannot be derived from the predefined system
of units or both.

In Creo Parametric, the system of units are categorized as follows:

• Mass Length Time (MLT)

108 Creo® Parametric TOOLKITUser’s Guide

○ The following systems of units belong to this category:
○ CGS —Centimeter Gram Second
○ MKS—Meter Kilogram Second
○ mmKS—millimeter Kilogram Second

• Force Length Time (FLT)

○ The following systems of units belong to this category:
○ Creo Parametric Default—Inch lbm Second. This is the default system

followed by Creo Parametric.
○ FPS—Foot Pound Second
○ IPS—Inch Pound Second
○ mmNS—Millimeter Newton Second

Definitions
For Creo Parametric TOOLKIT, a system of units is represented by the structure
ProUnitsystem. This structure is defined as:
typedef struct {
ProMdl owner;
ProName name;

}ProUnitsystem;

where the name is the user-visible name used in the Unit Manager dialog.
An individual unit is represented by the structure ProUnititem. This structure
is defined as:
typedef struct {
ProMdl owner;
ProName name;

}ProUnititem;

where the name is the user-visible abbreviation used in the Unit Manager dialog.

Note
The functions described in the following sections supersede the functions
prodb_get_model_units() and prodb_set_model_units().

Retrieving Systems of Units
Functions Introduced:

• ProMdlUnitsystemsCollect()
• ProMdlPrincipalunitsystemGet()

Core: Solids, Parts, and Materials 109

Use the function ProMdlUnitsystemsCollect() to retrieve the set of
systems of units which are accessible to the model in the form of an array. The
input arguments of the function are as follows:

• mdl—Specifies a handle to the model.
The function outputs a ProArray containing the set of systems of units for the
specified model.

Note
The function retrieves both the pre-defined as well as the custom-defined
system of unit.

Use the function ProMdlPrincipalunitsystemGet() to retrieve the
principal system of units for the specified model.

Modifying Systems of Units
Functions Introduced:

• ProUnitsystemRename()
• ProUnitsystemDelete()
Use the function ProUnitsystemRename() to rename a custom- defined
system of unit. The input parameters for this function are as follows:

• system—Specifies a handle to the system of unit.
• new_name—Specifies the new name for the system.
Use the function ProUnitsystemDelete() to delete a custom- defined
system of unit. Specify a handle to the system of units to be deleted as the input
parameter for this function.

Note
You can only delete a custom-defined system of units. You cannot delete a
pre-defined system of units.

Accessing Systems of Units
Functions Introduced:

110 Creo® Parametric TOOLKITUser’s Guide

• ProUnitsystemIsStandard()
• ProUnitsystemTypeGet()
• ProUnitsystemUnitGet()
Use the function ProUnitsystemIsStandard() to check whether the
system of unit is a Creo Parametric standard system. Specify the name of the
system of unit as the input parameter.
Use the function ProUnitsystemTypeGet() to retrieve the type of system of
unit. Specify the name of the system of unit as the input argument. The output
argument of this function is as follows:

• type—The type of system of unit. It can have the following values:

○ PRO_UNITSYSTEM_MLT—Mass Length Time
○ PRO_UNITSYSTEM_FLT—Force Length Time

For more information on the same refer to the section on Types of Systems of
Units on page 108 above.
Use the function ProUnitsystemUnitGet() to retrieve the unit of particular
type for a specified system of unit.

Creating a New System of Units
Function Introduced:

• ProMdlUnitsystemCreate()
Use the function ProMdlUnitsystemCreate() to create a new system of
unit or to create a copy of an existing system of unit. The function expects the
following input parameters:

• mdl—Specifies a handle to the model.
• type—Specifies the new type of system of unit.
• name—Specifies the name of the new system of unit.
• units—Specifies the set of units for the new system of unit created.
It outputs the newly created system of unit.

Accessing Individual Units
Functions Introduced:

• ProMdlUnitsCollect()
• ProUnitInit()
• ProUnitTypeGet()
• ProUnitNameGet()

Core: Solids, Parts, and Materials 111

• ProUnitConversionGet()
• ProUnitConversionCalculate()
• ProUnitIsStandard()
• ProUnitExpressionGet()
• ProUnitInitByExpression()
• ProUnitCreateByExpression()
• ProUnitModifyByExpression()
Use the function ProMdlUnitsCollect() to retrieve a set of units of a
particular type that are available to the specified model.
The function ProUnitInit() retrieves the unit of a particular name for a
specified model.

Note
The function is applicable only for basic units and not for derived ones.

The function ProUnitNameGet() returns the name of the unit. For system
generated unit, that has no user-friendly name, it returns the error PRO_TK_NOT_
DISPLAYED.
Use the function ProUnitTypeGet() to retrieve the unit type of a particular
unit.
Unit types can have any of the following values:

• PRO_UNITTYPE_LENGTH

• PRO_UNITTYPE_MASS

• PRO_UNITTYPE_FORCE

• PRO_UNITTYPE_TIME

• PRO_UNITTYPE_TEMPERATURE

• PRO_UNITTYPE_ANGLE

Use the function ProUnitConversionGet() to retrieve the conversion factor
for a particular unit. The output arguments of this function are:

• conversion—Specifies the conversion factor for a unit in terms of scale of the
unit and an offset value.
Example - Consider the formula to convert temperature from Centigrade
to Fahrenheit
F = a + (C * b)
where
F is the temperature in Fahrenheit
C is the temperature in Centigrade

112 Creo® Parametric TOOLKITUser’s Guide

a = 32 (constant signifying the offset value)
b = 9/5 (ratio signifying the scale of the unit)

Note
Creo Parametric scales the length dimensions of the model using the factor
specified. If the scale is modified, the model is regenerated. When you
scale the model, the model units are not changed. Imported geometry
cannot be scaled.

• ref_unit— Specifies the reference unit for the conversion.
Use the function ProUnitConversionCalculate() to calculate the
conversion factor between two units. These units can belong to the same model or
two different models.
Use the function ProUnitIsStandard() to determine whether the unit is a
standard unit as defined in Creo Parametric.
Creo Parametric uses named quantities to represent units other than the basic units
(e.g. "Ilbs_stress_unit", which represents a quantity of stress in the default Creo
Parametric unit systems). Parameters and material properties which are assigned
derived units will return the name in the ProUnititem structure, rather than the
actual unit-based expression for the quantity.
Use the function ProUnitExpressionGet() to retrieve the unit-based
expression for a given Creo Parametric unit name.
Use the function ProUnitInitByExpression() to retrieve the
ProUnititem given a unit-based expression.
The function ProUnitCreateByExpression() creates a derived or basic
unit, based on expression. Use the function
ProUnitModifyByExpression() to modify a derived unit.

Modifying Units
Functions Introduced:

• ProUnitModify()
• ProUnitDelete()
• ProUnitRename()
Use the function ProUnitModify() to modify a pre-defined unit. Modifying
the units can invalidate your relations, as they are not scaled along with the model.
The input parameters are:

Core: Solids, Parts, and Materials 113

• unit— Specifies the unit to be modified.
• conversion—Specifies the conversion factor for the unit.
• ref_unit—Specifies the reference unit.
Use the function ProUnitDelete() to delete a previously created unit.

Note
You cannot delete a pre-defined unit. If you delete a unit, you cannot undo the
deletion.

Use the function ProUnitRename() to rename an existing unit.

Creation of a new Unit
• ProUnitCreate()
Use the function ProUnitCreate() to create a new basic unit given a
reference unit and the required conversion factor.

Conversion of Models to a New Unit System
Function Introduced:

• ProMdlPrincipalunitsystemSet()
Use the function ProMdlPrincipalunitsystemSet() to change the
principal system of units assigned to the solid model. The options available for the
conversion are:

• PRO_UNITCONVERT_SAME_DIMS—Specifies the option to keep the
dimension values despite the change in units.

• PRO_UNITCONVERT_SAME_SIZE—Specifies the option to scale the
dimension values to keep the same size for the model.

Conversion of a system of units may result in regeneration failures due to the
modification of dimensions, parameters, and relations.
ProMdlPrincipalunitsystemSet() does not support a flag to undo the
changes made by the unit system conversion, and will always bring the Fix Model
interface to fix any regeneration failure. Therefore use this function only in
interactive mode applications.While updating the principal system of units in an
assembly environment, update the system of units in the following order:
1. Update the system of unit for all the parts separately. Update the parts using

the following procedure:
a. Retrieve the parts.

114 Creo® Parametric TOOLKITUser’s Guide

b. Update the units.
c. Save the part and erase it from the current session.

2. Update all the sub-assemblies, that either need to be changed, or contain
already processed components.

3. Update the topmost level assembly.

Note
The initial units for an assembly are those of its base component. If, however,
the units of the base component have been changed, the assembly units do not
automatically change. You must also modify the units of the assembly. You
cannot change the units of an assembly containing assembly features that
intersect a part.

Mass Properties
Function Introduced:

• ProSolidMassPropertyGet()
• ProSolidBodyMassPropertyGet()
• ProSolidBodyDensityGet()
• ProSolidMassPropertyWithDensityGet()
• ProAssemblySolidMassPropertyGet()
In Creo Parametric 7.0.0.0 and later, the density parameter for any material is
PTC_MASS_DENSITY. When you edit the density of a material, the value of this
parameter is updated. The alternate mass property parameter for an assembly, part,
or body is PRO_MP_ALT_DENSITY. The reported density parameter for an
assembly, part, or body is PRO_MP_DENSITY. In the case of an assembly or a
part with different materials, the value of this parameter is the average density.
The function ProSolidMassPropertyGet() provides information about the
distribution of mass in the part or assembly.
The function ProSolidBodyMassPropertyGet() calculates the mass
properties of a body in the specified coordinate system. The input parameter body
is the handle to a part or an assembly.
Both the functions provide the mass distribution information relative to the
specified coordinate system datum csys_name. If the value of the parameter csys_
name is NULL, the default coordinate system is used.

Core: Solids, Parts, and Materials 115

The functions ProSolidMassPropertyGet() and
ProSolidBodyMassPropertyGet() return the information in the structure
ProMassProperty, declared in the header file ProSolid.h.
The ProMassProperty structure contains the following fields (all doubles):

• volume—The volume.
• surface_area—The surface area.
• density—The density is not defined until a material with well-defined

density is assigned.
• mass—The mass.
• center_of_gravity[3]—The center of gravity (COG).
• coor_sys_inertia[3][3]—The inertia matrix.
• coor_sys_inertia_tensor[3][3]—The inertia tensor.
• cg_inertia_tensor[3][3]—The inertia about the COG.
• principal_moments[3]—The principal moments of inertia (the

eigenvalues of the COG inertia).
• principal_axes[3][3]—The principal axes (the eigenvectors of the

COG inertia).
The function ProSolidBodyDensityGet() determines the density of the
material assigned to a body. The input parameters body is the handle to the body.

Note
If a material is already assigned to the part, the output of the function is the
density of the material that is assigned to the body. The density is measured in
the units of the model. The density of the body is always the density of the
material assigned to the body.

The function ProSolidMassPropertyWithDensityGet() calculates the
mass properties of a part or an assembly in the specified coordinate system. This
function does not impact the mass properties of a solid. The input arguments are
as follows:
• solid—Handle to the part or assembly specified by the ProSolid object.
• csys_name—Name of the coordinate system. If this is Null, the function uses

the default coordinate system.
• dens_use_flag—Value of the density flag specified using the enumerated data

type ProMPDensUse and the valid values are as follows:
○ PRO_MP_DENS_DEFAULT—Calculate the mass properties using the

material density.

116 Creo® Parametric TOOLKITUser’s Guide

○ PRO_MP_DENS_USE_ALWAYS—Calculate the mass properties using the
specified density, even if material has a defined density.

○ PRO_MP_DENS_USE_IF_MISSING—Calculate mass properties using
specified density, even if material does not have a defined density.

• density—Density used while calculating mass properties depending on the
value specified for the input argument dens_use_flag.

The function ProAssemblySolidMassPropertyGet() calculates the mass
properties of a solid that is referenced by the specified coordinate system
selection. The input arguments follow:
• solid —The handle to top assembly or component/sub-assembly.
• csys_sel—Selection of coordinate system specified using the array of

ProSelection object. If this is NULL, the function uses the default
coordinate system of the specified solid.

Solid Postfix Identifiers
Functions Introduced:

• ProSolidToPostfixId()
• ProPostfixIdToSolid()
The postfix identifier of a solid is the integer run-time identifier used in relations
to make the names of its dimensions unique in the context of a parent assembly.
Creo Parametric automatically updates these values when they are used in
relations. The function ProSolidToPostfixId() gives you the identifier for
the solid in session. The ProPostfixIdToSolid() function provides the
solid handle, given the identifier.

Part Objects
The object ProPart is an instance of ProSolid. It is an opaque handle that
can be cast to a ProSolid or ProMdl so you can use any of the functions for
those objects.

Density
Functions Introduced:

• ProPartDensityGet()
Superseded Functions:

Core: Solids, Parts, and Materials 117

• ProPartDensitySet()
The density of a part is used in many calculations inside of Creo Parametric,
including mass properties calculations and shrinkwrap export. The function
ProPartDensityGet() returns the calculated or reported density that is
defined by the parameter PRO_MP_DENSITY.
In Creo Parametric 7.0.0.0 and later, the function ProPartDensitySet() is
deprecated. Use the functions ProMaterialCurrentSet() and
ProMaterialPropertySet() instead.
For more information about materials, refer to Accessing Material Data on page
119.

Example 4: Writing the Mass of a Given Part to the Model
Tree
The sample code in UgSolidInfoMass.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_solid demonstrates
the use of ProPartDensityGet(), ProSolidMassPropertyGet() and
several units related functions. It writes the mass of the given part to the model
tree, along with the appropriate units for the mass value.

Material Objects
Creo Parametric TOOLKIT enables you to programmatically access the material
properties of parts. Using the Creo Parametric TOOLKIT functions, you can do
the following actions:

• Create or delete materials.
• Set the current material.
• Retrieve and set the material types and properties.
• Read and write to material files.
To enable access to materials, Creo Parametric TOOLKIT uses the following
objects:

• ProMaterial—A structure that contains a material name and the part
(ProSolid object) to which it is assigned. This handle is used in older
material functions.

• ProMaterialItem—Another name for a ProModelitem, it contains the
material owner, ID, and type (PRO_RP_MATERIAL).

To convert between ProMaterial and ProMaterialItem, use
ProModelitemByNameInit() to obtain the item from the material owner
and name. To obtain a ProMaterial from a ProMaterialItem, use
ProModelitemNameGet() to get the material name.

118 Creo® Parametric TOOLKITUser’s Guide

Accessing Material Data
Functions Introduced:

• ProMaterialCreate()
• ProPartMaterialsGet()
• ProMaterialDelete()
• ProMaterialCurrentGet()
• ProMaterialCurrentSet()
The function ProMaterialCreate() creates a new material with the name
you specify, and sets the default values within an associated
ProMaterialdata object. Your application must set the correct material
properties in the fields of the ProMaterialdata structure.
The input arguments of this function are as follows:

• part — Specifies the part.
• matl_name — Specifies the material name.
• p_matl_data — This argument has been deprecated. Pass NULL to create an

empty material item whose properties can be set by
ProMaterialPropertySet().

The function ProPartMaterialsGet() obtains an array containing material
names that exist in a part database. Note that you must use ProArrayAlloc()
to allocate memory for this array. To remove a specified material from the part’s
database, call the function ProMaterialDelete().
The current material of a part determines the material properties that will be used
in some computational analyses of that part. Although multiple materials can be
stored in a part database, only one material can be current. The function
ProMaterialCurrentGet() gets the handle for the master material of the
specified part. To set the master material, call the function
ProMaterialCurrentSet().

Core: Solids, Parts, and Materials 119

Note
• When the master material on a part with a single body is changed, the

appearance, density, and sheetmetal properties of the body are updated.
When you create a new body, it is automatically assigned the material
assigned to the part. You can also explicitly assign a material to a body. In
this case, even when the master material on the model is changed, the
appearance, density, and sheetmetal properties of the body are not
changed.

• By default, when assigning a material to a sheetmetal part, the function
ProMaterialCurrentSet() modifies the values of the sheetmetal
properties such as Y factor and bend table according to the material file
definition. This triggers a regeneration and a modification of the developed
length parameters of the sheetmetal part. To prevent this regeneration, set
the value of the configuration option material_update_smt_bend_
table to never_replace. To trigger a regeneration and a
modification of the developed length parameters of the sheetmetal part, set
the configuration option material_update_smt_bend_table to
always_replace. The default value is always_replace.

See the Creo Parametric Sheetmetal online help for more information on
Bend Allowance.

• The function ProMaterialCurrentSet() may change the model
display, if the new material has a default appearance assigned to it.

• The function may also change the family table, if the parameter PTC_
MASTER_MATERIAL is a part of the family table.

• You can still use the legacy parameter PTC_MASTER_MATERIAL,
however, these legacy parameters do not appear correctly in calculations
and reports when you are working with a part that uses multiple materials.

Material Types and Properties
The enumerated type ProMaterialPropertyType contains the material
types and material property types.
The material type is given by PRO_MATPROP_TYPE that takes the following
values:

120 Creo® Parametric TOOLKITUser’s Guide

• PRO_MATERIAL_TYPE_STRUCTURAL_ISOTROPIC—Specifies a
material with an infinite number of planes of material symmetry, making the
structural material properties equal in all directions.

• PRO_MATERIAL_TYPE_STRUCTURAL_ORTHOTROPIC—Specifies a
material with symmetry relative to three mutually perpendicular planes for
structural material properties.

• PRO_MATERIAL_TYPE_STRUCTURAL_TRANS_ISOTROPIC—Specifies
a material with rotational symmetry about an axis for structural material
properties. These properties are equal for all directions in the plane of isotropy.

• PRO_MATERIAL_TYPE_THERMAL_ISOTROPIC—Specifies a material
with an infinite number of planes of material symmetry, making the thermal
material properties equal in all directions.

• PRO_MATERIAL_TYPE_THERMAL_ORTHOTROPIC—Specifies a material
with symmetry relative to three mutually perpendicular planes for thermal
material properties.

• PRO_MATERIAL_TYPE_THERMAL_TRANS_ISOTROPIC— Specifies a
material with rotational symmetry about an axis for thermal material
properties. These properties are equal for all directions in the plane of isotropy.

• PRO_MATERIAL_TYPE_FLUID—Specifies a material with fluid properties.
The material subtype is given by PRO_MATPROP_SUB_TYPE that takes the
following values:

• PRO_MATERIAL_SUB_TYPE_LINEAR—Specifies the linear elastic
material type. This is the default value.

• PRO_MATERIAL_SUB_TYPE_HYPERELASTICSpecifies the hyperelastic
(non-linear) material types, such as rubber, that exhibit instantaneous elastic
response to large strains.

• PRO_MATERIAL_SUB_TYPE_ELASTOPLASTIC—Specifies the
elastoplastic (non-linear) material types, such as metals, with the following
isotropic hardening laws:

○ Perfect Plasticity—Given by the value PRO_MATERIAL_HARDENING_
PERFECT_PLASTICITY

○ Linear Hardening—Given by the value PRO_MATERIAL_HARDENING_
LINEAR_HARDENING

○ Power Law—Given by the value PRO_MATERIAL_HARDENING_
POWER_LAW

○ Exponential Law—Given by the value PRO_MATERIAL_HARDENING_
EXPONENTIAL_LAW

Core: Solids, Parts, and Materials 121

The above three subtypes are available only for PRO_MATERIAL_TYPE_
STRUCTURAL_ISOTROPIC and PRO_MATERIAL_TYPE_THERMAL_
ISOTROPIC material types.
From Creo Parametric 3.0 onward, two additional material types PRO_
MATERIAL_FATIGUE_MAT_TYPE_FERROUS and PRO_MATERIAL_
FATIGUE_MAT_TYPE_OTHER have been added for fatigue analysis. The
material types PRO_MATERIAL_FATIGUE_MAT_TYPE_UNALLOYED_
STEELS and PRO_MATERIAL_FATIGUE_MAT_TYPE_LOW_ALLOY_
STEELS are obsolete. Use the material type PRO_MATERIAL_FATIGUE_MAT_
TYPE_FERROUS instead. The following surface finish types for fatigue analysis
are also obsolete:
• PRO_MATERIAL_FATIGUE_FINISH_FORGED

• PRO_MATERIAL_FATIGUE_FINISH_WATER_CORRODED

• PRO_MATERIAL_FATIGUE_FINISH_SEA_WATER_CORRODED

• PRO_MATERIAL_FATIGUE_FINISH_NITIRIDED

• PRO_MATERIAL_FATIGUE_FINISH_SHOT_PEENED

PTC recommends that you review your existing Creo Parametric TOOLKIT
applications and modify the code as appropriate to ensure that the applications
work correctly for the fatigue materials and material finish types.
Functions Introduced:

• ProMaterialPropertyGet()
• ProSolidBodyMaterialGet()
• ProSolidBodyMaterialSet()
• ProUnitExpressionGet()
• ProMaterialPropertySet()
• ProUnitInitByExpression()
• ProMaterialDescriptionGet()
• ProMaterialDescriptionSet()
• ProMaterialPropertyDelete()
The functions ProMaterialDataGet() and ProMaterialDataSet()
have been deprecated, and do not support all of the available material properties.
PTC recommends that for accessing material properties, you convert the
ProMaterial type to a model item using ProModelitemByNameInit(),
and use ProMaterialPropertyGet() and
ProMaterialPropertySet() the properties of that item, respectively.

122 Creo® Parametric TOOLKITUser’s Guide

A part created in Creo Parametric 7.0.0.0 and later, can contain multiple solid
bodies where each body can have its own material assignment. A part created in
an earlier release of Creo Parametric contains one body and one material is
assigned to the part.
The function ProSolidBodyMaterialSet() assigns a material to the
specified body. You can set the default material by specifying the value of the
system parameter PTC_MASTER_MATERIAL as PTC_SYSTEM_MTRL_PROPS.
In legacy parts, the value of PTC_MASTER_MATERIAL is the material assigned
to the part. The input arguments follow:
• body—Body for which the material needs to be assigned.
• mtl—Name of the material that needs to be assigned to the body.
Use the function ProSolidBodyMaterialGet() to retrieve the information
of the material assigned to the body.

Note
Refer to the Creo Parametric online help for more information about
Materials.

If you do not assign a material to a body, Creo Parametric assigns PTC_
GENERIC_MATERIAL material to the body. The density of this material as well
as other properties are empty.
The function ProMaterialPropertyGet() returns the value and the units
for a material property.

Note
The name of the units returned can be the name of a Creo Parametric unit,
which may not be obviously understood by a user. Use
ProUnitExpressionGet() to change this name to familiar units.

Use the function ProMaterialPropertySet() to create or modify a
material property. It has the following input parameters:

• p_material—Specifies the material as defined by ProMaterialItem.
• prop_type—Specifies the material property type as defined by

ProMaterialPropertyType.
• p_value—Specifies the material property value.
• p_units—Specifies the material property units.

Core: Solids, Parts, and Materials 123

Note
This function expects the Creo Parametric unit name for some unit
properties. To obtain this name, pass the user-visible units through
ProUnitByExpressionInit().

The following table displays the possible combinations of arguments for p_value
and p_units:
p_value p_units Is the property

already created in the
material?

Result

Any value Appropriate units for this
property, or NULL, if the
property is unitless

NO Property is created with
the given units and value.

Any value NULL NO Property is created with
the given value using the
appropriate units from
the owner model.

Any value Current units for this
property, or NULL, if the
property is unitless

YES Property value is changed
to the new value.

Any value NULL YES Property value is changed
to the new value (which
is interpreted as being in
the units from the owner
model)

The current value New appropriate units YES Property units are
changed but the value is
interpreted as being for
the new units.

NULL New appropriate units YES Property units are
changed and the current
value is converted to the
new units.

Note
When using ProMaterialPropertySet() to change the sheetmetal Y-
factor or bend table assigned to the current material, pass the current material
to ProMaterialCurrentSet() again to force Creo Parametric to update
the length calculations developed by sheetmetal.

Use the function ProMaterialDescriptionGet() to get the material
description. This property is also accessible as the material property PRO_
MATPROP_MATERIAL_DESCRIPTION.

124 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMaterialDescriptionSet() to set the material
description.
Use the function ProMaterialPropertyDelete() to remove a property
from the material definition.

Material Input and Output
Functions Introduced:

• ProMaterialfileWrite()
• ProMaterialfileRead()
Material properties are frequently stored in text files accessible for repeated
assignment to parts. Creo Parametric TOOLKIT includes functions that write to
and read these files.
The function ProMaterialfileWrite() writes the information contained in
a ProMaterial object to a file with the specified name.
The format of this file is the new material file format which is consistent with the
Creo Parametric materials library.
The function ProMaterialfileRead() reads from a material file, the
properties of the material with the specified name. The name of the file read can
be either:

• <name>.mtl—Specifies a new material file format.
• <name>.mat—Specifies an old material file format (pre-Wildfire 3.0).
If the material is not already in the part database, ProMaterialfileRead()
adds the material to the database after reading the material file. If the material is
already in the database, the function replaces the material properties in the
database with those contained in the material file.

Example 5: Working with Materials and Material
Properties
The sample code in UgMaterial.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_param shows how to
work with materials and material properties.

Example 6: Creating a Non-linear Material
The sample code in UgSolidMaterial.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_solid shows how to
create a non-linear material and assign it to a solid.

Core: Solids, Parts, and Materials 125

4
Core: Solid Body

Introduction to Solid Body .. 127
States of bodies .. 128
Creating a Body .. 128
Listing Features .. 129
Multibody Operations... 130

This chapter describes how to access, create, or delete bodies in a model.

126 Creo® Parametric TOOLKITUser’s Guide

Introduction to Solid Body
In Creo Parametric 7.0.0.0 and later, the term “solid body” denotes a container
object for solid geometry.
In earlier versions of Creo Parametricall solid geometry in a part is considered as
one piece of a single material, even when the geometry has disjoint volumes.
Starting in Creo Parametric 7.0.0.0, you can create parts that contain one or more
geometric bodies. Each body can be handled individually, and can have different
characteristics. For example, you can assign a different material to each body.
Bodies contain only solid geometry. Nonsolid entities, like datums, curves, and
quilts, are not contained in any body.
When you create a new part, it has an empty body in it. This body will contain the
solid geometry created by the features. If no solid geometry is created, or as long
as the part contains only nonsolid geometry, this body remains empty. A part must
always have at least one body in it.
When you retrieve a part that was created using a version earlier of Creo
Parametric , it shows a single body in it. This body contains all the solid geometry
in the part, if any exists.
Using Creo Parametric solid body feature, you can create parts with one or more
geometric bodies. A body consists of solid geometry of the same material. You
can assign a different material to each body and a single part can have more than
one material.

Solid Body Objects
The structure ProSolidBody describes the contents the solid body object. This
object uses the same declaration as the ProModelitem object, which is as
follows:
typedef struct pro_model_item

{

ProType type;

int id;

ProMdl owner;

} ProSolidBody;

Core: Solid Body 127

States of bodies
When a body has geometry, it does not have a special state. A body can have a
state derived from features and geometry.
• No Contributing Features—No feature contributes geometry to the

body.
• No Geometry— Features which contribute to the body, however other

features cut the entire geometry of this body. Or all the contributing features
are suppressed.

• Construction—Does not participate in mass properties calculations and is
not considered in global or volume interference analysis or in collision
detection. The construction state does not change the other properties of the
body. Setting a body to construction state is reversible.

Creating a Body
A new part is created with a default body. This body is in the No
Contributing Features state. When you add solid geometry to this part,
you can add to this body, or create a new body. You can delete bodies that are in
the No Contributing Features state. When you delete a body, it is
removed from the part and the Bodies folder in the model tree. The parameters
and relations for the body are deleted.
Functions introduced:

• ProSolidBodyCreate()
• ProSolidBodiesCollect()
• ProSolidDefaultBodyGet()
• ProSolidDefaultBodySet()
• ProSolidBodySurfaceVisit()
• ProSolidBodyDelete()
• ProSolidBodyStateGet()
• ProSolidBodyIsConstruction()
• ProSolidBodyConstructionSet()
• ProSolidBodyOutlineGet()
• ProSolidBodyIsSheetmetal()
The function ProSolidBodyCreate() creates a new body. The input
argument sld is the solid owner on which the body needs to be created. The output
argument body is the body that is created.
Refer to the Creo Parametric online help for more information about body
creation.

128 Creo® Parametric TOOLKITUser’s Guide

The function ProSolidBodiesCollect() collects all the bodies in the
specified solid.
The function ProSolidDefaultBodyGet() returns the default body in the
specified solid.
The function ProSolidDefaultBodySet() sets the specified body as
default body in the specified solid. The input argument default_body is the
body to be set as the default body.
Use the function ProSolidBodySurfaceVisit() to visit the surfaces that
are included in the specified body.
The function ProSolidBodyDelete() deletes the body in the specified solid.
When you delete a body, it is removed from the part and the Bodies folder in the
model tree.
The function ProSolidBodyStateGet() returns the state of the body and is
defined by the enumerated data type ProSolidBodyState and the valid
values are:
• PRO_BODY_STATE_MISSING

• PRO_BODY_STATE_CONSUMED

• PRO_BODY_STATE_NO_CONTR_FEAT

• PRO_BODY_STATE_NO_GEOMETRY

• PRO_BODY_STATE_ACTIVE

Use the function ProSolidBodyIsConstruction() to check if the
specified body is a construction body.
Use the function ProSolidBodyConstructionSet() to set the specified
body as a construction body. The function returns the error PRO_TK_NO_
CHANGE if the body is already a construction body.
Use the function ProSolidBodyOutlineGet() to retrieve the regeneration
outline of a solid body, with respect to the base coordinate system orientation.
This outline defines the boundary box of the body. The function returns PRO_TK_
E_NOT_FOUND if the solid body is empty.
The function ProSolidBodyIsSheetmetal() checks if the specified body
is an active sheetmetal body.
In Creo Parametric 7.0, a sheetmetal part can have a single sheetmetal body and
any number of solid bodies.

Listing Features
Functions Introduced:

Core: Solid Body 129

• ProSolidBodyFeaturesGet()
The function ProSolidBodyFeaturesGet() lists all the features that are
associated with the specified body. The output argument features is a
ProArray of features.
The function returns the error PRO_TK_E_NOT_FOUND if there are no
contributing features associated with the body.

Multibody Operations
Each body has its own geometry. You can perform geometric operations such as
splitting a body or merging with other bodies. Bodies contribute to the mass
properties of the model. You can select bodies as references for features. You can
split a body into two bodies and also perform move or copy operations on bodies.
The geometry of the original body is divided between the original body and the
new body. For more information on body options and body operations, refer to the
Element Trees: Solid Body on page 1055 chapter.
You can use the Boolean Operations feature to perform geometric operations such
as:

• Merge—Combines the geometry of two or more bodies into one body.
• Intersect—Keeps the geometry that is shared by two or more bodies.
• Subtract—Removes the geometry of one body from one or more bodies.

130 Creo® Parametric TOOLKITUser’s Guide

5
Core: Features

Feature Objects .. 132
Visiting Features ... 132
Feature Inquiry.. 132
Feature Geometry ... 138
Manipulating Features ... 138
Manipulating Features based on Regeneration Flags... 141
Feature Dimensions .. 143
Manipulating Patterns .. 144
Creating Local Groups... 145
Read Access to Groups ... 146
Updating or Replacing UDFs.. 149
Placing UDFs.. 150
The UDF Input Data Structure ProUdfdata .. 152
Reading UDF Properties .. 158
Notification on UDF Library Creation ... 161
Multibody Support in a UDF and a Copy feature... 162

This chapter describes the Creo Parametric TOOLKIT functions that deal with
features as a whole and the way they relate to each other.
Access to the geometry objects created by features is described in the Core: 3D
Geometry on page 170 chapter.
Access to the internal structure of a feature is described in the Element Trees:
Principles of Feature Creation on page 764 chapter.

131

Feature Objects
Function Introduced:

• ProFeatureInit()
Features are represented by the object ProFeature, which is declared as a
DHandle, or data handle. It shares the same declaration as ProModelitem and
ProGeomitem, and therefore contains the type and integer identifier as fields in
the structure.
Like ProGeomitem, ProFeature is an instance of ProModelitem.
ProFeature objects are contained in ProSolid objects, and contain
ProGeomitem objects.
You can create a new ProFeature handle using the function
ProFeatureInit().

Visiting Features
Function Introduced:

• ProSolidFeatVisit()
The function ProSolidFeatVisit() enables you to visit all the features in a
part or assembly. It visits not only those features visible to the user, but also
features used internally for construction purposes. To skip over such internal,
“invisible” functions, call ProFeatureVisibilityGet().
Note that the function ProSolidFeatstatusGet() (described in detail in
the Core: Solids, Parts, and Materials on page 92 chapter.) provides an array of
integer identifiers for all the features in a solid, thereby offering an alternate way
of finding all the features.

Feature Inquiry
Functions Introduced:

• ProFeatureTypeGet()
• ProFeatureSubtypeGet()
• ProFeatureTypenameGet()
• ProFeatureStatusGet()
• ProFeatureStatusflagsGet()
• ProFeatureIsIncomplete()
• ProFeatureIsNcseq()
• ProFeatureSolidGet()

132 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureChildrenGet()
• ProFeatureParentsGet()
• ProFeatureSelectionGet()
• ProFeatureHasGeomchks()
• ProFeatureIsReadonly()
• ProFeatureIsEmbedded()
• ProInsertModeIsActive()
• ProFeatureCopyinfoGet()
• ProFeatureZoneGet()
• ProFeatureZonesectionCreate()
• ProFeatureZonesectionGet()
• ProZoneReferenceFree()
• ProZoneReferenceArrayFree()
• ProFeatureZonesectionWithflipCreate()
• ProFeatureZoneXsecgeomGet()
• ProFeatureZoneXsecGeomArrayFree()
• ProModelitemIsZone()
• ProFeatureIsInFooter()
• ProFeatureToFooterMove()
• ProFeatureFromFooterMove()
• ProFeatureIsComponentLike()
As described earlier, the function ProSolidFeatVisit() finds all the
features belonging to a part or an assembly. The feature inquiry functions provide
more information about a particular feature.
The function ProFeatureTypeGet() provides the type of the feature. This
feature type uses the data type ProFeattype, which is really an integer that
takes defined values such as the following:

• PRO_FEAT_FIRST_FEAT

• PRO_FEAT_HOLE

• PRO_FEAT_SHAFT

• PRO_FEAT_ROUND

See the include file ProFeatType.h for the list of defined values.

Core: Features 133

The function ProFeatureTypenameGet() returns the name of the feature
type. Given a ProFeature pointer to a specific feature, this function returns the
name of the feature type, for example, CHAMFER, DATUM, COORDINATE
SYSTEM, and so on. Arguments to this function must not be NULL.
The function ProFeatureSubtypeGet() provides the subtype (such as sheet
metal) of a specified feature. Note that not all features support subtypes. This is
like viewing valid model subtypes by opening the Model Tree settings command in
Creo Parametric. Click Settings ▶ Tree Columns menu and then select Feat
Subtype in the Model Tree Columns dialog box, as an additional display column.
The function ProFeatureStatusGet() classifies the feature according to the
following status values:

• PRO_FEAT_ACTIVE—An ordinary feature.
• PRO_FEAT_SUPPRESSED—A suppressed feature.
• PRO_FEAT_FAMTAB_SUPPRESSED—A feature suppressed due to the

family table settings.
• PRO_FEAT_SIMP_REP_SUPPRESSED—A feature suppressed due to the

simplified representation.
• PRO_FEAT_PROG_SUPPRESSED—A feature suppressed due to Pro/

PROGRAM.
• PRO_FEAT_INACTIVE—A feature that is not suppressed, but is not

currently in use for reasons other than the ones identified above.
• PRO_FEAT_UNREGENERATED—A feature that has not yet been regenerated.

This is due to a regeneration failure or if the status is obtained during the
regeneration process.

• PRO_FEAT_INVALID—The feature status could not be retrieved.
The function ProFeatureStatusflagsGet() retrieves the bitmask
containing one or more of the following feature status bit flags for a specified
feature:

• PRO_FEAT_STAT_INVALID—Specifies an invalid feature.
• PRO_FEAT_STAT_INACTIVE—Specifies an inactive feature. If the bit flag

is set to 0, then it means an active feature.
• PRO_FEAT_STAT_ACTIVE—Specifies an active feature.
• PRO_FEAT_STAT_FAMTAB_SUPPRESSED—Specifies a feature

suppressed due to the family table settings.
• PRO_FEAT_STAT_SIMP_REP_SUPPRESSED—Specifies a feature

suppressed due to the simplified representation.
• PRO_FEAT_STAT_PROG_SUPPRESSED—Specifies a feature suppressed

due to Pro/PROGRAM.

134 Creo® Parametric TOOLKITUser’s Guide

• PRO_FEAT_STAT_SUPPRESSED—Specifies a suppressed feature.
• PRO_FEAT_STAT_UNREGENERATED—Specifies an active feature that has

not yet been regenerated. This is due to a regeneration failure or if the status is
obtained during the regeneration process.

• PRO_FEAT_STAT_FAILED—Specifies a failed feature.
• PRO_FEAT_STAT_CHILD_OF_FAILED—Specifies a child of a failed

feature.
• PRO_FEAT_STAT_CHILD_OF_EXT_FAILED—Specifies a child of an

external failed feature.
The function ProFeatureIsIncomplete() tells you whether a specified
feature is incomplete. An incomplete feature is one that has been created by using
ProFeatureCreate() from a Creo Parametric TOOLKIT application, but
which does not yet contain all the necessary feature elements to allow
regeneration.
The function ProFeatureIsNcseq() determines whether a feature is a Creo
NC sequence.
The ProFeatureSolidGet() function provides the identifier of the solid that
owns the specified feature.
The ProFeatureChildrenGet() and ProFeatureParentsGet()
functions get the children and parents of the specified feature. For these functions,
the parent of a feature means a feature it directly depends on, and a child is a
feature that directly depends on it. This differs from the Creo Parametric
command Info ▶ Feature, which also shows indirect dependencies.
The function ProFeatureSelectionGet() is used for features that were
created in a part as a result of a feature in a parent assembly. For example, if you
create a hole in Assembly mode, then select a part to be intersected by that hole,
the geometry of the hole is visible to Creo Parametric TOOLKIT as belonging to
the part, even if the original feature is specified as being visible at the assembly
level. This geometry—a list of the surfaces forming the hole—belongs to a feature
in the part whose type is PRO_FEAT_ASSEM_CUT. The function
ProFeatureSelectionGet(), when applied to that part feature, identifies
the assembly, and the path down through it to the part in question, which contains
the original feature.
During regeneration, Creo Parametric performs geometry checking to prevent
regeneration errors. The geometry check process identifies features that could
cause problems if the part or assembly is modified, but which do not cause
regeneration failure in the model in its present state. The
ProFeatureHasGeomchks() function outputs a variable of type
ProBoolean that indicates whether a particular feature, identified as an input
argument to the function, has geometry checks.

Core: Features 135

The function ProFeatureIsReadonly() provides information about the
read status of the specified feature. Its first argument is a pointer to the feature’s
(ProFeature) handle. If the feature is read only, the function outputs a
ProBoolean with the value PRO_B_TRUE; otherwise, the value is PRO_B_
FALSE.
The function ProFeatureIsEmbedded() identifies whether the feature is an
embedded datum. Embedded features are visible in the model tree, but cannot be
used as reference parents for features other than the feature into which they are
embedded.
To determine whether insert mode is active in a specified solid, use the function
ProInsertModeIsActive(). If activated, features are inserted into the
feature list after the feature specified when
ProFeatureInsertModeActivate() was called. New features continue to
be inserted until you call the function ProInsertModeCancel(). See the
section Manipulating Features on page 138 for more information about insert
mode.
The function ProFeatureCopyinfoGet() returns information about a
copied feature. The information includes the type of copy operation, dependency,
source feature, and additional features copied in the same operation. This function
supersedes the Pro_copy_info structure returned by the Pro/Develop function
prodb_feature_info().
The function ProFeatureZoneGet() returns the following parameters related
to a feature zone:

• p_planes—ProArray of planes.
• p_oper_arr—ProArray of operations; where 0 specifies intersection of half

spaces and 1 specifies union of half spaces. Creo Parametric retains the
material that belongs to the intersection or union of the half spaces of the
planes.

The function ProFeatureZonesectionCreate() creates a zone feature
handle using reference planes and operations. The input arguments are as follows:
• p_solid—A handle to the model.
• zone_refs—An array of zone reference planes of type ProZoneReference.

The structure ProZoneReference contains the geometric ID of the
reference zone plane, the value for the operation, that is, 0 or 1 and the
member ID of the part to which the reference plane belongs to. Pass NULL to
memb_id_tab if the feature is owned by the part on which the zone is being
created.

136 Creo® Parametric TOOLKITUser’s Guide

Creo Parametric retains the material that belongs to the intersection or union
of the half spaces of the reference planes.

• zone_name—The name of the zone feature handle. If a zone with the specified
name exists, then the function returns the error PRO_TK_E_FOUND and the
zone is not created.

The function ProFeatureZonesectionGet() returns the zone references
for the specified feature. The output argument p_zone_refs contains an array
of planes of type ProZoneReferenceWithflip. The structure
ProZoneReferenceWithflip contains:
• The geometric ID of the reference zone plane.
• The value for the operation, where 0 specifies intersection of half spaces that

is, the AND operator and 1 specifies union of half spaces that is, the OR
operator.

• The member ID of the part to which the reference plane belongs.
• The side of the plane where the model is kept. 1 indicates positive normal of

the plane and –1 indicates the opposite side.
Use the function ProZoneReferenceFree() to free the memory allocated to
the zone reference data.
Use the function ProZoneReferenceArrayFree() to free the ProArray
of zone reference data.
The function ProFeatureZonesectionWithflipCreate() creates a
zone feature using reference planes and operations. This function allows you to
flip the direction of zone planes while creating the zone feature.
The function ProFeatureZoneXsecgeomGet() creates an array of cross
section geometry of type ProXsecGeometry for each zone plane. It returns an
array of these arrays in the specified zone feature. Use the function
ProFeatureZoneXsecGeomArrayFree() to free the memory allocated for
the ProArray of ProArrays of type ProXsecGeometry.
The function ProModelitemIsZone() checks if the specified model item is a
zone feature. Specify the handle to the model item as the input argument of this
function.
Use the function ProFeatureIsInFooter() to check if the specified feature
is currently located in the model tree footer. The footer is a section of the model
tree that lists certain types of features such as, component interfaces, annotation
features, zones, reference features, publish geometry, and analysis feature. The
features in the footer are always regenerated at the end of the feature list. You can
move features, such as, reference features, annotation features, and so on, to the
footer. Some features, such as, component interfaces, zones, and so on, are
automatically placed in the footer. Refer to the Creo Parametric online Help for
more information on footer. Refer to the Creo Parametric online Help for more
information on footer.

Core: Features 137

Use the function ProFeatureToFooterMove() to move the specified feature
into the model tree footer.
Use the function ProFeatureFromFooterMove() to move the specified
feature out of the model tree footer.
Some features behave like components because they have some properties that are
similar to those of components. These features have some association with a solid
model and are interpreted as placed components. When a component is placed it
means it has been explicitly positioned at some location in the assembly.
Examples of such features are solid welds, physical sensors, and so on. Solid
welds organize their geometry as a special internal solid model, which gives them
component-like characteristics. Similarly, physical sensors represent actual
hardware that is placed on the model to measure parameters. Use the function
ProFeatureIsComponentLike() to identify components and other features
that behave like components. Refer to the chapter Assembly: Basic Assembly
Access on page 1130 for more information on placed components.

Feature Geometry
Functions Introduced:

• ProFeatureGeomitemVisit()
• ProGeomitemFeatureGet()
For information about feature geometry, see the chapter Core: 3D Geometry on
page 170.

Manipulating Features
Functions Introduced:

• ProFeatureDelete()
• ProFeatureSuppress()
• ProFeatureResume()
• ProFeatureRedefine()
• ProFeatureInsertModeActivate()
• ProInsertModeCancel()
• ProFeatureReadonlySet()
• ProFeatureReadonlyUnset()
• ProFeatureReorder()
• ProFeatureNumberGet()

138 Creo® Parametric TOOLKITUser’s Guide

The functions ProFeatureDelete() and ProFeatureSuppress() act
like the right-mouse button Creo Parametric commands Delete and Suppress,
except they do not repaint the window. You can process many features in a single
call using an input of type ProFeatlist. Each of these functions takes an array
of options as the input that indicates whether to also delete or suppress features
dependent on those being acted on directly. The options used while deleting or
suppressing features are as follows:

• PRO_FEAT_DELETE_NO_OPTS—Delete or suppress the features without
deleting or suppressing their dependent children features. This may result in
regeneration failures. Use the option PRO_FEAT_DELETE_FIX, or one of
the CLIP options to fix these failures.

• PRO_FEAT_DELETE_CLIP—Delete or suppress the features along with
their dependent children features.

• PRO_FEAT_DELETE_FIX—Delete or suppress the features without deleting
or suppressing their dependent children features. The fix model user interface
will be prompted in case of a regeneration failure. This option must be used
only in the Resolve mode. Otherwise, the function returns PRO_TK_BAD_
CONTEXT.

• PRO_FEAT_DELETE_RELATION_DELETE—Delete relations with obsolete
dimensions.

• PRO_FEAT_DELETE_RELATION_COMMENT—Change relations with
obsolete dimensions into comments.

• PRO_FEAT_DELETE_CLIP_ALL—Delete or suppress the features along
with all the following features.

• PRO_FEAT_DELETE_INDIV_GP_MEMBERS—Individually delete or
suppress the features out of the groups to which they belong. If this option is
not included, the entire group of features is deleted or suppressed. This option
can be included only if the option PRO_FEAT_DELETE_CLIP is also
included.

• PRO_FEAT_DELETE_CLIP_INDIV_GP_MEMBERS—Individually delete
or suppress the children of features out of the group to which they belong. If
this option is not included, the entire group containing the features and their
children is deleted or suppressed. This option can be included only if the
options PRO_FEAT_DELETE_CLIP and PRO_FEAT_DELETE_INDIV_
GP_MEMBERS are also included.

• PRO_FEAT_DELETE_KEEP_EMBED_DATUMS—Retain the embedded
datums stored in a feature while deleting the feature using
ProFeatureDelete(). If this option is not included, the embedded
datums will be deleted along with the parent feature.

Core: Features 139

The function ProFeatureRedefine() is equivalent to the Creo Parametric
command Feature>Redefine. Additionally, it can redefine an existing feature with
the new element tree. The data passed in through the new element tree replaces
the existing data in the feature.
Creo Parametric TOOLKIT provides access to the Creo Parametric feature insert
mode functionality with the ProFeatureInsertModeActivate() and
ProInsertModeCancel() functions. The function
ProFeatureInsertModeActivate() takes a single argument—the handle
to the feature after which new features are to be inserted. This feature becomes the
last feature in the feature regeneration list. All features that had appeared after that
feature are temporarily suppressed. New features are added after the (new) last
feature. Feature insertion continues until insert mode is terminated with a call to
ProInsertModeCancel(). Its first argument is a handle to the solid, and the
second is a ProBoolean that enables you to specify whether suppressed features
are to be resumed.
The function ProFeatureReadonlySet() assigns a read-only status to
model features. Its only argument is a ProFeature handle that specifies the last
feature in the feature list to be designated as read only. All preceding features are
read only; all features following this feature have standard access. From Creo
Parametric 3.0 onward, the features that are made read-only appear under a
separate container node at the top of the model tree. The node has its label as Read
Only Features and also has a padlock glyph associated with it.
The function ProFeatureReadonlyUnset() removes the read-only status
from all features in the specified solid. From Creo Parametric 3.0 onward, the
container node Read Only Features is dismissed from the model tree when the
read-only status is removed.
The function ProFeatureReorder() enables you to change the position of
one or more features in the feature regeneration sequence. Its input arguments are
as follows:

• ProSolid solid—The handle to the solid owner of the features.
• int *feat_ids—An array of feature identifiers that specifies the features to be

reordered. The array should contain features that formed a contiguous sublist
within the original feature regeneration list. If reordering a group, all the
features in the group including the Group Header feature must be included in
this array.

• intn_feats—The number of features to reorder.
• intnew_feat_num—An integer that indicates the intended location of the first

feature in the specified set after reorder. This integer is not the feature
identifier, but rather the regeneration sequence number of the feature. You
obtain this number by calling the function ProFeatureNumberGet().

140 Creo® Parametric TOOLKITUser’s Guide

Use the function ProSolidFeatstatusGet() to get the current sequence
and statuses. You must use care when you change the sequence of features. Unless
you have advance knowledge of the relationship between the features you are
reordering, you should use the functions ProFeatureParentsGet() and
ProFeatureChildrenGet() before changing the feature order to ensure that
no feature is reordered to be before its parent features.

Manipulating Features based on
Regeneration Flags
Functions Introduced:

• ProFeatureWithoptionsCreate()
• ProFeatureWithoptionsDelete()
• ProFeatureWithoptionsSuppress()
• ProFeatureWithoptionsResume()
• ProFeatureWithoptionsRedefine()
• ProFeatureWithoptionsReorder()
• ProFeatureInsertmodeWithoptionsActivate()
• ProInsertmodeWithoptionsCancel()
The functions in this section enable you to create, delete, or manipulate the
specified features in a solid, based on the bitmask specified by the input argument
flags. The bitmask must contain one or more regeneration control bit flags of the
type PRO_REGEN_* defined in ProSolid.h. Refer to the Regenerating a Solid
on page 96 section in the Core: Solids, Parts, and Materials on page 92 chapter for
more information on the bit flags.
From Pro/ENGINEERWildfire 5.0 onwards, the functions listed above supersede
the following functions described in the Manipulating Features on page 138
section.

• ProFeatureCreate()

• ProFeatureDelete()

• ProFeatureSuppress()

• ProFeatureResume()

• ProFeatureRedefine()

• ProFeatureReorder()

• ProFeatureInsertModeActivate()

• ProInsertModeCancel()

Core: Features 141

Use the superseding functions with the input argument flags set to PRO_REGEN_
NO_FLAGS for the behavior that is similar to the one provided by the above
deprecated functions.

Feature References
Functions Introduced:

• ProFeatureReferenceEdit()
• ProMdlFeatBackupOwnerNamesGet()
• ProMdlFeatBackupRefMdlNamesGet()
• ProFeatureReferenceEditRefsGet()
• ProFeatureMdltreeDisplaynameGet()
The function ProFeatureReferenceEdit() replaces the old references of a
feature with new references based on the bitmask specified for its input argument
flags. The bitmask must contain one or more regeneration control bit flags of the
type PRO_REGEN_* defined in ProSolid.h. Refer to the Regenerating a Solid
on page 96 section in the Core: Solids, Parts, and Materials on page 92 chapter for
more information on the bit flags.
The function ProMdlFeatBackupOwnerNamesGet() returns the names of
the models, along the model path, from the top model to the owner model for the
specified feature. The input arguments are:
• model—Specifies the model, which contains the specified feature.
• feature—Specifies a feature whose references are to be retrieved.
The function ProMdlFeatBackupRefMdlNamesGet() returns the names of
the models, along the model path, from the top model to the external reference
model for the specified feature. Feature references can be from a local or external
model. The system creates a geometry backup of the local and external references,
which is used for information and display purposes. This function retrieves the
model names from the backup information. The input arguments are:
• model—Specifies the model, which contains the specified feature.
• feature—Specifies a feature whose references are to be retrieved.
• path—Specifies the path as a ProArray of IDs of a subassembly or

component from the top model to the reference model. Specify NULL for local
reference.

To give an example on how to specify the path, consider an assembly A,
which has a component C1 with ID 9 and a subassembly S with ID 7. The

142 Creo® Parametric TOOLKITUser’s Guide

subassembly S has a component C2 with ID 11. If a feature under C1
references an object in the model of C2, the reference ID path must contain
two IDs 7 and 11.

• ref_id—Specifies the ID of the external reference, which is referenced in the
specified feature.

Refer to the Creo Parametric Assembly Design online help for more information
on references and backup data.
The function ProFeatureReferenceEditRefsGet() returns an array of
the original references of a feature that are used to perform the edit reference
operation. The input arguments follow:
• solid—The part or assembly to which the features belong.
• p_feat_handle—The feature handle.
• flags—Indicates the type of references to collect. To collect all types of

references, set the value to PRO_EDITREF_REF_TYPE_ALL.
The function returns the output argument r_orig_ref_arr as a ProArray of
all the original references.
Use the function ProReferencearrayFree() to free the memory.
Use the function ProFeatureMdltreeDisplaynameGet() to retrieve the
name of the node displayed in the model tree.

Feature Dimensions
Function Introduced:

• ProFeatureDimensionVisit()
The function ProFeatureDimensionVisit() visits all the dimensions
which belong to the feature.

Note
Some feature dimensions are dependent on dimensions of other features. For
example, sketch-based features with shared, patterned or external sections,
dependent copied or mirrored features, and so on. In case of such dependent
dimensions, use the function ProDimensionParentGet() to get the
value of the parent dimension .

For more information about dimensions, refer to section Dimensions on page 566
from the chapter Annotations: Annotation Features and Annotations on page 541.

Core: Features 143

Manipulating Patterns
From the Pro/ENGINEERWildfire release, the following changes are
implemented in patterns.

Patterns as Features
Patterns are treated as features in Creo Parametric. Patterns are assigned a header
feature of the type PRO_E_PATTERN_HEAD.
The Pattern feature in Pro/ENGINEERWildfire effects the previous releases of
Pro/ENGINEER as follows:

• Models containing patterns automatically get one extra feature of type PRO_
FEAT_PATTERN_HEAD in the regeneration list. This changes the feature
numbers of all the subsequent features, including those in the pattern.

• The pattern access functions such as ProFeaturePatternGet(),
ProPatternMembersGet() and ProPatternLeaderGet are
unaffected by the addition of the pattern header feature. The pattern leader is
still the first geometric feature contained in the pattern.

The new function ProPatternHeaderGet() returns the header feature.

Fill Patterns
Creo Parametric uses the Fill type of pattern.
Functions Introduced:

• ProFeaturePatternStatusGet()
• ProFeatureGrppatternStatusGet()
• ProFeaturePatternleaderGet()
• ProFeaturePatternGet()
• ProPatternDelete()
• ProPatternLeaderGet()
• ProPatternHeaderGet()
The function ProFeaturePatternStatusGet() classifies the feature
according to its possible role in a feature pattern. The possible values are as
follows:

• PRO_PATTERN_NONE—The feature is not in a pattern.
• PRO_PATTERN_LEADER—The feature is the leader of a pattern.
• PRO_PATTERN_MEMBER—The feature is a member of a pattern.
• PRO_PATTERN_HEADER—The feature is the header of a pattern.

144 Creo® Parametric TOOLKITUser’s Guide

The function ProFeatureGrppatternStatusGet() does the equivalent
for group patterns. The possible values are as follows:

• PRO_GRP_PATTERN_NONE—The feature is not in a group pattern.
• PRO_GRP_PATTERN_LEADER—The feature is the leader of a group pattern.
• PRO_GRP_PATTERN_MEMBER—The feature is a member of a group pattern.
• PRO_GRP_PATTERN_HEADER—The feature is the header of a group

pattern.
The function ProFeaturePatternleaderGet() returns the pattern leader
feature for the specified pattern member feature.
The function ProFeaturePatternGet() obtains the ProPattern handle
for the pattern containing the specified feature. (The ProPattern handle is
described in detail in the chapter Element Trees: Patterns on page 963.)
To delete a pattern, pass the corresponding ProPattern handle to the function
ProPatternDelete().
To obtain the leader feature for a given pattern, pass a ProPattern object to the
function ProPatternLeaderGet().
To obtain the header feature for a given pattern, pass a ProPattern object to
the function ProPatternHeaderGet().
To access pattern information use the pattern element tree described in the chapter
Element Trees: Patterns on page 963. You can access element tree information
using the functions ProElement*(), described in the chapter Element Trees:
Principles of Feature Creation on page 764.

Table-Driven Patterns
The Table-Driven Pattern functions have been deprecated. Use the Table Pattern
feature element tree to read and manipulate table patterns. See the section Table
Patterns on page 970 for more details.

Creating Local Groups
Function Introduced:

• ProLocalGroupCreate()
Local groups offer a way to collect several features together as if they were one
feature. This functionality is particularly useful when you are creating patterns.
The function ProLocalGroupCreate() groups together features specified by
an array of feature identifiers. The output of ProLocalGroupCreate() is the
object ProGroup, which a typedef of a structure similar to ProFeature.

Core: Features 145

The feature identifiers passed to ProLocalGroupCreate() must correspond
to features that possess consecutive regeneration numbers. That is, the feature
identifiers can have any values, but the corresponding features must occupy a
contiguous portion of the regeneration list. (To see the regeneration number of a
feature, add the column Feat # to the model tree.)
If there are features whose regeneration numbers lie between those belonging to
the features to be grouped, Creo Parametric asks the user whether these
unspecified features are to be included in the group. If the user responds with No,
the group is not created.
After you create a local group, you may want to refresh the model tree to see the
changes. To refresh the model tree, call ProTreetoolRefresh().

Read Access to Groups
Groups in Creo Parametric represent sets of contiguous features that act as a
single feature for purposes of some operations. While the individual features can
be affected by most operations individually, certain operations apply to the entire
group:

• Suppress
• Delete
• Layer operations
• Patterning operations
For more information about local groups, see the Part Modeling User's Guide.
User-Defined Features (UDFs) are groups of features that can be stored in a file.
When a UDF is placed in a new model, the features created are automatically
assigned to a group.
A local group is a set of features that have been explicitly assigned to a group, for
purposes of ease of modification or patterning.

Note
All the functions in this section work for both UDFs and local groups.

Each instance of a group is identified in Creo Parametric TOOLKIT as a
ProGroup structure. This structure is the same a ProFeature data handle:

typedef struct pro_model_item {
ProMdl owner;
int id;
ProType type;

} ProGroup;

146 Creo® Parametric TOOLKITUser’s Guide

The integer id in this case is the id of the group header feature, which is the first
feature in the group. All groups, including those in models created before release
200i2, are assigned with a group header feature upon retrieval.
The consequences of the group header feature for users of previous versions of
Pro/TOOLKIT is as follows:

• Models that contain groups automatically get one extra feature in the
regeneration list, of type PRO_FEAT_GROUP_HEAD. This changes the
feature numbers of all subsequent features, including those in the group.

• Each group automatically contains one new feature in the arrays returned by
Pro/TOOLKIT.

• Each group automatically gets a different leader feature (the group head
feature is the leader). The leader is the first feature in the arrays returned by
Pro/TOOLKIT.

• Each group pattern contains, of course, a series of groups, and each group in
the pattern is similarly altered.

Finding Groups
Functions Introduced:

• ProSolidGroupVisit()
• ProSolidGroupsCollect()
• ProFeatureGroupStatusGet()
• ProFeatureGroupGet()
The function ProSolidGroupVisit() allows you to visit the groups in the
solid model. The function ProSolidGroupsCollect() returns an array of
the group structures.
The function ProFeatureGroupStatusGet() tells you if the specified
feature is in a group.
The function ProFeatureGroupGet() returns the ProGroup that includes
the feature.

Group Information
Functions Introduced

• ProUdfNameGet()
• ProGroupIsTabledriven()
• ProGroupFeatureVisit()
• ProGroupFeaturesCollect()

Core: Features 147

• ProUdfDimensionVisit()
• ProUdfDimensionsCollect()
• ProUdfDimensionNameGet()
The function ProUdfNameGet() returns the name of the group. For a local
group, this is the name assigned upon creation. For a UDF-created group, this is
the name of the UDF file. If the UDF is an instance in a UDF family table, the
function also returns the instance name.
The function ProGroupFeatureVisit() traverses the members of the
feature group. The function ProGroupFeaturesCollect() returns an array
containing the feature handles.
The function ProUdfDimensionVisit() traverses the variable dimensions
used in the creation of the UDF (this is only applicable to UDF-created groups).
The function ProUdfDimensionsCollect() returns an array of the variable
dimensions. The variable dimensions are the dimensions that Creo Parametric
prompts for when you create the UDF.
The function ProUdfDimensionNameGet() returns the original dimension
symbol for the variable dimension in the UDF. This symbol is different from the
symbol assigned to the dimension in the group.

Note
In Creo Parametric 6.0.0.0 and later, for the function
ProUdfDimensionNameGet(), it is mandatory to pass the input
argument udf as ProGroup object type. If you pass any other object type, the
function returns the PRO_TK_BAD_CONTEXT error.

Creating Groups
Functions Introduced:

• ProLocalGroupCreate()
The function ProLocalGroupCreate() creates a group out of a set of
specified features. The features must represent a contiguous set of features in the
solid model. (Refer also to Creating Local Groups on page 145).

Deleting Groups
Functions Introduced:

148 Creo® Parametric TOOLKITUser’s Guide

• ProGroupUngroup()
• ProGroupUngroupPreAction()
• ProGroupUngroupPostAction()
The function ProGroupUngroup() removes the indicated group and deletes
the group header feature.
The function prototype ProGroupUngroupPreAction() should be used for
a notification corresponding to the ProNotifyType PRO_GROUP_UNGROUP_
PRE. This callback will be called just before the user ungroups an existing local
group or UDF group in the user interface. If the application returns an error from
this callback, ungroup activity will be prevented (thus providing a means by
which UDFs or other groups may be effectively locked). If ungroup is being
cancelled by the application, the application is required to provide an
informational message to the user explaining this action.
The function prototype ProGroupUngroupPostAction() should be used
for a notification corresponding to the ProNotifyType PRO_GROUP_
UNGROUP_POST. This prototype provides information about the group that was
just ungrouped:

• solid—The solid model that owns the group.
• group_id—The former group feature id.
• udf_name—The name of the UDF the group was created from.
• feature_list—The feature ids that were members of the group.

Updating or Replacing UDFs
This section lists operations, which you can perform on UDFs.
Functions Introduced:

• ProUdfUpdate()
• ProUdfReplace()
• ProUdfFileIsPreCreo7()
The function ProUdfUpdate() updates a dependent UDF to the latest version
of the .gph file. The function should be able to locate the .gph file from within
the session or by the search path. Only dependent UDFs are updated from their
original definitions.
Use the function ProUdfReplace() to replace a UDF placement with a similar
UDF provided that the two UDF's must use the same reference types. The input to
the function can include data that would be used to respond to prompts shown
during an interactive replacement (for items like scale, dimension display and
orientation prompts).

Core: Features 149

The function ProUdfFileIsPreCreo7() identifies if the .gph file is
created or modified in a release earlier than Creo Parametric 7.0.0.0. The input
argument gph_path is the path to the .gph file.
If the .gph file is created or modified in a release earlier than Creo Parametric
7.0.0.0, the function outputs a ProBoolean with the value PRO_B_TRUE;
otherwise, the value is PRO_B_FALSE.

Placing UDFs
Function Introduced:

• ProUdfCreate()
The function ProUdfCreate() is used to create a new group by retrieving and
applying the contents of an existing UDF file. It is equivalent to the Creo
Parametric command Model ▶ User-Defined Feature.
To understand this function explanation, you must have a good knowledge and
understanding of the use of UDFs in Creo Parametric. PTC recommends that you
read about UDFs in the Part Modeling User's Guide, and practice defining and
using UDFs in Creo Parametric before you attempt to use this function.
When you create a UDF interactively, Creo Parametric prompts you for the
information it needs to fix the properties of the resulting features. When you
create a UDF from Creo Parametric TOOLKIT, you can provide some or all of
this information programmatically by assembling the data structure that is the
input to the function ProUdfCreate().
During the call to ProUdfCreate(), Creo Parametric prompts you for the
following:

• Any information the UDF needs that you did not provide in the input data
structure

• Correct information to replace erroneous information
Such prompts are a useful way of diagnosing errors when you develop your
application. This also means that, in addition to creating UDFs fully
programmatically to provide automatic synthesis of model geometry, you can also
use ProUdfCreate() to create UDFs semi-interactively. This can simplify the
interactions needed to place a complex UDF, making it easier for the user and less
prone to error.
Creating a UDF may require the following types of information:

• Name—The name of the UDF library to create, and the instance name, if
applicable.

• Name or path—the name (or full path) of the UDF to create, and the instance
name, if applicable.

150 Creo® Parametric TOOLKITUser’s Guide

• Dependency—Whether the UDF is independent of the UDF definition, or is
modified by changes made to it.

• Scale—How to scale the UDF relative to the placement model.
• Variable parameters—The new values of the variable parameters allowed to be

changed during UDF placement.
• Variable annotations—The new values of the variable gtol values, surface

finish values and dimension tolerances allowed to be changed during UDF
placement.

• Variable dimensions—The new values of the variable dimensions and pattern
parameters; those whose values can be modified each time the UDF is created.

• Dimension display—Whether to show or blank non-variable dimensions
created within the UDF group.

• References—The geometrical elements (surfaces, edges, datum planes, and so
on) that the UDF needs to relate the features it contains to the existing model
features. The elements correspond to the picks that Creo Parametric prompts
you for when you create the UDF interactively (using the prompts defined
when the UDF was set up). You cannot select an embedded datum as the UDF
reference.

• Part intersections—If the UDF is being created in an assembly and contains
features that modify existing solid geometry, you need to define which parts in
the assembly are to be affected (or "intersected"), and at which level in the
assembly each such intersection is to be visible.

• Orientations—If a UDF contains a feature whose direction is defined with
respect to a datum plane (for example, a hole feature that uses a datum plane at
its placement plane), Creo Parametric needs to know in which direction the
new feature is to point (that is, on which side of the datum plane it should lie).
When you create such a UDF interactively, Creo Parametric prompts you for
this orientation with a flip arrow.

• Quadrants—If a UDF contains a linearly placed feature that references two
datum planes to define its location (in the new model), Creo Parametric
prompts you to pick the location of the new feature. This decides on which
side of each datum plane the feature must lie. This choice is referred to as the
"quadrant," because there are four combinations of possibilities for each
linearly placed feature.

• External symbols—The parameter or dimension to use in place of a missing
external symbol from a note callout or relation.

• Copied model names—If a UDF creates components in an assembly, this
argument specifies the names of the new copied components that the
placement creates.

Core: Features 151

The function ProUdfCreate() takes the following arguments:

• solid—The solid model (part or assembly) on which to place the UDF.
• data—The UDF creation data, described below.
• asm_reference—An external reference assembly for calculating intersections

and external references.
• options—An array of option flags.
• n_options—The size of the options array.

The UDF Input Data Structure ProUdfdata
Most of the input needed by the function ProUdfCreate() is contained in the
single ProUdfdata structure. This structure can be assembled using the
ProUdfdata functions.
The options in the data structure correspond closely to the prompts Creo
Parametric gives you when you create a UDF interactively. PTC strongly
recommends that before you write the Creo Parametric TOOLKIT code to fill the
structure, you experiment with creating the UDF interactively using Creo
Parametric, noting what prompts it gives you, and use this as a guide to the
information you need to provide.
Functions Introduced:

• ProUdfdataAlloc()
• ProUdfdataFree()
• ProUdfdataNameSet()
• ProUdfdataPathSet()
• ProUdfdataInstancenameSet()
• ProUdfdataDependencySet()
• ProUdfdataScaleSet()
• ProUdfdataDimdisplaySet()
• ProUdfdataOrientationAdd()
• ProUdfdataQuadrantAdd()
The function ProUdfdataAlloc() allocates memory for the ProUdfdata
structure. The function ProUdfdataFree() frees the data structure memory.
The function ProUdfdataNameSet() allows you to set the name of the UDF
(the root of the file name) to create and, optionally, the instance in the UDF family
table to use.

152 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUdfdataPathSet() to set the path of the UDF file.
ProUdfCreate() will use the input from this path, if set, otherwise the data
from ProUdfdataNameSet() is used.
Use function ProUdfdataInstancenameSet() to assign the instance to be
used when placing this UDF.
The function ProUdfdataDependencySet() specified the dependency of
the UDF. The choices correspond to the choices available when you create the
UDF interactively. The default for this option, if not explicitly specified, is to
create the group independent of the UDF definition.
The function ProUdfdataScaleSet() specifies how to modify the
dimensions of the UDF with respect to the placement model. The choices
correspond to the options presented when you create the UDF interactively. A
value for a user-defined scale can also be specified by this function. The default
for this option, if not explicitly specified, is to use the same size for the UDF,
regardless of the units of the placement model.
The function ProUdfdataDimdisplaySet() specifies how to present the
non-variable dimensions in the created group. These values correspond to the
options presented in Creo Parametric when placing the UDF interactively. The
default for this option, if not explicitly specified, is to display the dimensions
normally (allowing modification).
The function ProUdfdataOrientationAdd() adds to an array of
orientation choices. These orientation options answer the Creo Parametric prompts
that propose a flip arrow (presented, for example, when using datum planes as a
reference). There should be one orientation answer presented for each prompt in
Creo Parametric, and the order of the options should correspond to the order as
presented in Creo Parametric. If an orientation option is not provided, the value
“no flip” is applied.
The function ProUdfdataQuadrantAdd() adds to an array of 3-dimensional
points that correspond to the picks answering the Creo Parametric prompts for the
feature positions. The quadrant is requested when placing a hole or a shaft with
respect to two datum planes if the UDF references were also datum planes. The
order of quadrants specified should correspond to the order in which Creo
Parametric prompts for them when the UDF is created interactively.

Variable Parameters and Annotations
The data structure for both variable parameters and annotations is
ProUdfvarparam.
Functions Introduced:

• ProUdfvarparamAlloc()
• ProUdfdataVarparamAdd()

Core: Features 153

• ProUdfvarparamValueSet()
• ProUdfvarparamFree()
The function ProUdfvarparamAlloc() allocates a UDF variable parameter
or annotation structure which describes a variable parameter or annotation. The
input arguments of this function are:

• name—Specifies the parameter name. If it represents a variable annotation,
then this must be one of the standard annotation parameter names:

○ PTC_ GTOL_PRIMARY_TOL—gtol value
○ PTC_ROUGHNESS_HEIGHT—surface finish value
○ PTC_DIM_TOL_VALUE—dimension symmetric tolerance value
○ PTC_DIM_UPPER_TOL_VALUE—upper dimension tolerance
○ PTC_DIM_LOWER_TOL_VALUE—lower dimension tolerance

• item—Specifies the owner item. This item must have type and id filled out.
(The owner field is ignored by Creo Parametric). The following types are
allowed here:

○ PRO_FEATURE

○ PRO_ANNOTATION_ELEM

Use the function ProUdfdataVarparamAdd() to add information about a
variable parameter assignment to the UDF data.
The function ProUdfvarparamValueSet() assigns the value to be used for
a variable parameter or annotation value when the UDF is placed. Note: you still
must add the variable parameter to the UDF data using
ProUdfdataVarparamAdd().
Use the function ProUdfvarparamFree() to free the UDF variant parameter
handle.

Variable Dimensions and Pattern Parameters
The data structure for variable dimensions and pattern parameters is
ProUdfvardim.
Functions Introduced:

• ProUdfvardimAlloc()
• ProUdfdataUdfvardimAdd()
• ProUdfvardimValueSet()
• ProUdfvardimFree()
The function ProUdfvardimAlloc() sets the values used to determine the
variant dimension value. This function requires the following inputs:

154 Creo® Parametric TOOLKITUser’s Guide

• dim_name—The symbol that the dimension or pattern parameter had when the
UDF was originally defined; not the prompt that the UDF uses when
interactively created. To make the name easy to remember, modify the
symbols of all the dimensions that you want to select to be variable before you
define the UDF that you plan to create with Creo Parametric TOOLKIT.

If you do not remember the name, find it by creating the UDF interactively in
a test model and then using the Creo Parametric TOOLKIT functions
ProUdfDimensionVisit() and ProUdfDimensionNameGet() on
the resulting UDF.

If you get the name wrong, ProUdfCreate() does not recognize the
dimension and prompts the user for the value.

• value—The new value of the dimension or pattern parameter.
• type—This enumerated type takes one of the following values:

○ PROUDFVARTYPE_DIM—For a dimension.
○ PROUDFVARTYPE_IPAR—For a pattern parameter.

The function ProUdfdataUdfvardimAdd() adds a variant dimension data
structure to the UDF creation data.
The function ProUdfvardimValueSet() assigns the value to be used for a
variable dimension value when the UDF is placed.

Note
The variant dimension must be added to the UDF data structure using
ProUdfdatavardimAdd() in order for it to be used during placement.

Use the function ProUdfvardimFree() to free the UDF variant dimension
handle.

UDF References
Functions Introduced:

• ProUdfreferenceAlloc()
• ProUdfdataReferenceAdd()
• ProUdfreferenceFree()
The function ProUdfreferenceAlloc() creates a new reference data
structure. The data that must be provided to allocate the structure is:

Core: Features 155

• prompt—The prompt defined for this reference when the UDF was originally
set up. It indicates which reference this structure is providing.

• ref_item—A ProSelection object representing the geometry to use as the
reference. You can allocate an embedded datum as the UDF reference. If the
reference is external, the selection component path should represent the path to
the owning model relative to the external reference assembly specified in the
call to ProUdfCreate(). If this reference item refers to an annotation
reference, you can pass NULL to make the placed annotation incomplete.

• external—PRO_B_TRUE if the reference is external, and PRO_B_FALSE if it
is internal.

○ Internal—The referenced element belongs directly to the model that
contains the UDF. For an assembly, this means that the element belongs to
the top-level assembly.

○ External—The referenced element belongs to an assembly member other
than the placement member.

The function ProUdfdataReferenceAdd() adds the reference structure to
the ProUdfdata structure.
Use the function ProUdfreferenceFree() to free the UDF reference
handle.

Assembly Intersections
The data structure used for assembly intersections is ProUdfintersection.
Functions Introduced:

• ProUdfintersectionAlloc()
• ProUdfdataIntersectionAdd()
• ProUdfintersectionFree()
The function ProUdfintersectionAlloc() sets the values used to
determine how a UDF placed in the context of an assembly intersects the
members of the assembly. This function requires the following inputs:

• intersect_part—The component path from either the placement assembly or
the external reference assembly down to the intersected component. The
external reference assembly is provided by the asm_reference argument to
ProUdfCreate().

• visibility—The depth of the component path into the assembly where the
intersected UDF is visible. If visibility is equal to the length of the component
path, the feature is visible in the part that it intersects and all assemblies and

156 Creo® Parametric TOOLKITUser’s Guide

subassemblies. If visibility is 0, the feature is only visible in the top-level
assembly.

• instance_names—An array of names for the new instances of parts created to
represent the intersection geometry.

The function ProUdfdataIntersectionAdd() adds the intersection
structure to the ProUdfdata structure.
Use the function ProUdfintersectionFree() to free the UDF intersection
handle.

External Symbol: Parameters
The data structure for external symbol parameters is ProUdfextparam.
Functions Introduced:

• ProUdfextparamAlloc()
• ProUdfdataExtparamAdd()
• ProUdfextparamFree()
The function ProUdfextparamAlloc() allocates and sets a
ProUdfextparam structure, which describes an external symbol referencing a
parameter. The input arguments of this function are:

• prompt—The prompt for the external parameter symbol.
• parameter—The parameter which is used to resolve this external symbol in

the placement model.
Use the function ProUdfdataExtparamAdd() to add information about an
external symbol parameter to the UDF data. Use the function
ProUdfextparamFree() to free the UDF external parameter handle.

External Symbol: Dimensions
The data structure for external symbol dimensions is ProUdfextdim.
Functions Introduced:

• ProUdfextdimAlloc()
• ProUdfdataExtdimAdd()
• ProUdfextdimFree()
Use the function ProUdfextdimAlloc() to allocate and set a structure which
describes an external dimension symbol required by the UDF. The input
arguments of this function are:

Core: Features 157

• prompt—Specifies the prompt used for this external symbol.
• dimension—Specifies the dimension handle to be used to resolve the external

symbol in the placement model.
Use the function ProUdfdataExtdimAdd() to add information about a
required external dimension symbol to the UDF data. Use the function
ProUdfextdimFree() to free the UDF dimension external symbol handle.

Copied Model Names
The data structure used for specifying new component model names is
ProUdfmdlNames.
Functions Introduced:

• ProUdfmdlMdlnamesAlloc()
• ProUdfmdlNamesSet()
The function ProUdfmdlMdlnamesAlloc() sets the values used to
determine the names of new components created by the UDF placement. This
function requires the following inputs:

• old_name—The old name of the component.
• new_name—The new name of the component to be created.
The function ProUdfmdlNamesSet() adds the model names structure to the
ProUdfdata structure.

Reading UDF Properties
The functions in this section provide the ability to read the options for placement
directly from a UDF file (a .gph file) in order for an application to decide at
runtime the inputs it will use for placing a given UDF. The following functions
operate on ProUdfdata. These functions are capable of reading properties from
the UDF file so long as the UDF name or path has already been set by
ProUdfdataNameSet() or ProUdfdataPathSet().
Some of the data retrieved by the functions in this section uses the same data types
as the corresponding ProUdfdata set functions used for placing the UDF (as
listed in the earlier section). However, data that you read out of the ProUdfdata
is not related to data that you are using to place the UDF. You must explicitly pass
each piece of data to the ProUdfdata functions if you want the UDF to be
placed with this information.

Variable Dimensions
Functions Introduced:

158 Creo® Parametric TOOLKITUser’s Guide

• ProUdfdataVardimsGet()
• ProUdfvardimNameGet()
• ProUdfvardimPromptGet()
• ProUdfvardimDefaultvalueGet()
Use the function ProUdfdataVardimsGet() to obtain an array of available
variant dimensions that may be set when placing this UDF. You can use the
function ProUdfvardimProarrayFree() to free this ProArray of variant
dimensions.

Note
The handles obtained when the function ProUdfdataVardimsGet() is
called are not automatically assigned to the UDF for placement. In order to
place the UDF with a user-defined variant dimension value, you must use
ProUdfdataVardimAdd().

Use the function ProUdfvardimNameGet() to obtain the symbol of the
variant dimension. This symbol of the dimension in the reference model should be
used in ProUdfvardimAlloc().
Use the function ProUdfvardimPromptGet() to obtain the prompt of the
variant dimension.
Use the function ProUdfvardimDefaultvalueGet() to obtain the default
value for the variant dimension.

Variable Parameters
Functions Introduced:

• ProUdfdataVarparamsGet()
• ProUdfvarparamOwnerGet()
• ProUdfvarparamNameGet()
• ProUdfvarparamDefaultvalueGet()
• ProUdfvarparamProarrayFree()
Use the function ProUdfdataVarparamsGet() to obtain an array of
available variant parameters and/or annotation values that can optionally be set
when placing this UDF. You can use the function
ProUdfvarparamProarrayFree() to free this ProArray of variant
items.

Core: Features 159

Note
The handles obtained when the function ProUdfdataVarparamsGet() is
called are not automatically assigned to the UDF for placement. In order to
place the UDF with a user-defined variant parameter or annotation value, you
must use ProUdfdataVarparamAdd().

Use the function ProUdfvarparamOwnerGet() to obtain the feature or
annotation element that owns this variant parameter or annotation value.
Use the function ProUdfvarparamNameGet() to obtain the name or the
symbol of the variant parameter or annotation value.
Use the function ProUdfvarparamDefaultvalueGet() to obtain the
default value for the variant parameter or annotation value.

UDF References
Functions Introduced:

• ProUdfdataRequiredreferencesGet()
• ProUdfrequiredrefPromptGet()
• ProUdfrequiredrefTypeGet()
• ProUdfrequiredrefIsannotationref()
• ProUdfrequiredrefFree()
• ProUdfrequiredrefProarrayFree()
Use the function ProUdfdataRequiredreferencesGet() to obtain a list
of the references required to be set for UDF placement. In order to use this
function, the UDF data must have its name or path set, and Creo Parametric must
be able to successfully find the .gph file based on this information.
Use the function ProUdfrequiredrefPromptGet() to obtain the reference
prompt for a UDF reference.
Use the function ProUdfrequiredrefTypeGet() to obtain the type of item
that should be supplied for a UDF reference.
Use the function ProUdfrequiredrefIsannotationref() to determine
if the reference is an annotation reference and is allowed to be left incomplete.
You can use the function ProUdfrequiredrefFree() to free a required
reference handle for a UDF. Use the function
ProUdfrequiredrefProarrayFree() to free a ProArray of handles to
the required references of a UDF.

160 Creo® Parametric TOOLKITUser’s Guide

External Symbols
Functions Introduced:

• ProUdfdataExternalsymbolsGet()
• ProUdfextsymbolTypeGet()
• ProUdfextsymbolPromptGet()
• ProUdfextsymbolParametertypeGet()
• ProUdfextsymbolFree()
• ProUdfextsymbolProarrayFree()
Use the function ProUdfdataExternalsymbolsGet() to obtain an array
of external symbols required by this UDF. You can free a UDF external symbol
handle using the function ProUdfextsymbolFree() and use the function
ProUdfextsymbolProarrayFree() to free an array of external symbol
handles.
Use the function ProUdfextsymbolTypeGet() to obtain the type of external
symbol required (dimension or parameter).
Use the function ProUdfextsymbolPromptGet() to obtain the prompt for
this external symbol.
Use the function ProUdfextsymbolParametertypeGet() used to obtain
the expected parameter type for an external symbol, if the type is PRO_
UDFEXTSYMBOL_PARAM.

Instance Names
Function Introduced:

• ProUdfdataInstancenamesGet()
Use the function ProUdfdataInstancenamesGet() to obtain an array of
the instance names that may be used when placing this UDF. You can free this
ProArray of instances using the function ProArrayFree().

Notification on UDF Library Creation
Creo Parametric TOOLKIT provides the ability to be notified whenever a new
UDF library is created or when one is modified. You can use this notification to
store additional information about the UDF library file, for example, the names
and values of parameters used in the UDF.
Functions Introduced:

Core: Features 161

• ProUdfLibraryCompletePostAction()
Use the function prototype ProUdfLibraryCompletePostAction() for a
notification corresponding to the ProNotifyType PRO_UDF_LIB_
COMPLETE_POST. This function provides the name of the newly created or
modified UDF library file, and a list of all the features included in the UDF.

Note
If you modify a UDF library, which is independent and contains no reference
model then no features will be included in the input to the notification.

Multibody Support in a UDF and a Copy
feature

Automatic Filling of the Body Reference
In Creo Parametric 7.0.0.0, when you are prompted for a body reference, the
prompt will be automatically filled with the default body in the following cases:

• When placing a UDF created in an earlier release, in a single body target
model.

• When placing a UDF created in an earlier release, in a multibody target model,
and when the configuration option tk_pre_creo7_udf_body_
autofill is set to yes. Use this configuration option to automatically fill the
default body during UDF placement in Creo Parametric TOOLKIT.

• In UDFs created in Creo Parametric 7.0.0.0, the body references are not
automatically filled.

162 Creo® Parametric TOOLKITUser’s Guide

The following table lists the changes in the UDF functions ProUdfCreate()
and ProUdfdataRequiredreferencesGet():

Version of
gph file

Bodies in
target model

Value of the
configura-
tion option
tk_pre_
creo7_udf_
body_
autofill

ProUdf
Create()

ProUdfda
taRequire
dreferen
cesGet()

Release earlier
than Creo
Parametric
7.0.0.0

Single Body No Returns PRO_
TK_NO_
ERRORand
automatically
fills the UDF
with the only
available body

Returns PRO_
TK_NO_
ERROR and
also the body
ref/prompt

Release earlier
than Creo
Parametric
7.0.0.0

Single Body Yes Returns PRO_
TK_NO_
ERROR but
does not return
the body ref/
prompt

Release earlier
than Creo
Parametric
7.0.0.0

Multibody No •
1. If body

refer-
ence is
not
speci-
fied,
returns
PRO_
TK_
MULTI
BODY_
UNSUP
PORT
ED and
the
UDF
crea-
tion
fails.

• If correct
body
reference
is

Returns PRO_
TK_NO_
ERROR and
also the body
ref/prompt

Core: Features 163

Version of
gph file

Bodies in
target model

Value of the
configura-
tion option
tk_pre_
creo7_udf_
body_
autofill

ProUdf
Create()

ProUdfda
taRequire
dreferen
cesGet()

specified,
returns
PRO_TK_
NO_
ERROR

Release earlier
than Creo
Parametric
7.0.0.0

Multibody Yes Returns PRO_
TK_NO_
ERROR and
automatically
fills the UDF
with the
default body

Returns PRO_
TK_NO_
ERROR but
does not return
the body ref/
prompt

New Single Body No Does not
automatically
fill the UDF.

Returns PRO_
TK_NO_
ERROR and
also all the
body ref/
prompt

New Single Body Yes
New Multibody No
New Multibody Yes

API Behavior for All Combinations of UDF Type,
Creation and Placement
The following cases use an example of the Solid Extrude or Cut feature requiring
3 references for placement — Top, Right and Front datum planes.

164 Creo® Parametric TOOLKITUser’s Guide

Subordinate UDF Created in a release earlier than Creo Parametric
7.0.0.0
Created in a Part or
Assembly

UDFs that are Retrieved and Placed

Assembly Part
Assembly Irrespective of the value

of the configuration
option tk_pre_
creo7_udf_body_
autofill

ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
Success and returns PRO_
TK_NO_ERROR

Irrespective of the value
of the configuration
option tk_pre_
creo7_udf_body_
autofill

ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
Success and returns PRO_
TK_NO_ERROR. Default
body is used implicitly

Part Value of the configuration
option tk_pre_
creo7_udf_body_
autofill is YES
ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
returns PRO_TK_NO_
ERROR

Value of the configuration
option tk_pre_
creo7_udf_body_
autofill is YES
ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
automatically fills the
reference with the default
body and returns PRO_
TK_NO_ERROR.

Value of the configuration
option tk_pre_
creo7_udf_body_
autofill is NO
ProUdfdataRequire
dreferences
Get()—4
ProUdfCreate()—
returns PRO_TK_NO_
ERROR

Value of the configuration
option tk_pre_
creo7_udf_body_
autofill is NO
ProUdfdataRequire
dreferences
Get()—4
Single body
ProUdfCreate()—
automatically fills the
reference with the default

Core: Features 165

Created in a Part or
Assembly

UDFs that are Retrieved and Placed

Assembly Part

Note
You need not fill the
body reference.

ProUdfdataRe
quiredreferen
cesGet() is for
query purpose only.

body and returns PRO_
TK_NO_ERROR.
Multibody
ProUdfCreate()—
returns PRO_TK_
MULTIBODY_
UNSUPPORTED, if you
do not specify the body
reference and the UDF
creation fails.
ReturnsPRO_TK_NO_
ERROR, if you do not
specify the body
reference correctly.

Stand-alone UDF with a Reference Model, Created in a Release Earlier
than Creo Parametric 7.0.0.0
You can create a stand-alone UDF with a reference model in a part but not in an
assembly

Created in a Part or
Assembly

UDFs that are Retrieved and Placed

Assembly Part
Assembly NIL NIL
Part Value of the configuration

option tk_pre_
creo7_udf_body_
autofill is YES
ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
returns PRO_TK_NO_
ERROR

Value of the configuration
option tk_pre_
creo7_udf_body_
autofill is YES
ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
automatically fill the
reference with the default
body and returns PRO_
TK_NO_ERROR.

166 Creo® Parametric TOOLKITUser’s Guide

Created in a Part or
Assembly

UDFs that are Retrieved and Placed

Assembly Part
Value of the configuration
option tk_pre_
creo7_udf_body_
autofill is NO
ProUdfdataRequire
dreferences
Get()—4
ProUdfCreate()—
returns PRO_TK_NO_
ERROR

Note
You need not fill the
body reference.

ProUdfdataRe
quiredreferen
cesGet() is for
query purpose only.

Value of the configuration
option tk_pre_
creo7_udf_body_
autofill is NO
ProUdfdataRequire
dreferences
Get()—4
Single body
ProUdfCreate()—
automatically fill the
reference with the default
body and returns PRO_
TK_NO_ERROR.
Multibody
ProUdfCreate()—
returns PRO_TK_
MULTIBODY_
UNSUPPORTED, if you
do not specify the body
reference and the UDF
creation fails.
ReturnsPRO_TK_NO_
ERROR, if you do not
specify the body
reference correctly.

Stand-alone UDF without Reference Model, Created in a Release
Earlier than Creo Parametric 7.0.0.0
For a stand-alone UDF created without a reference model, there is no information
where it was created and creating in an assembly is assumed. Therefore, body
references are not appended.

Core: Features 167

Created in a Part or
Assembly

UDFs that are Retrieved and Placed

Assembly Part
Assembly or part. There
is no information in the .
gph file and as a result no
difference from earlier
releases

Irrespective of the value
of the configuration
option tk_pre_
creo7_udf_body_
autofill

ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
Success and returns PRO_
TK_NO_ERROR

Irrespective of the value
of the configuration
option tk_pre_
creo7_udf_body_
autofill

ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
Success and returns PRO_
TK_NO_ERROR

Default body is used
implicitly

Stand-alone UDF without Reference Model, Created in Creo
Parametric 7.0.0.0
Body references for features like Extrude or Cut created in a part in Creo
Parametric 7.0.0.0 are included in the feature definition and saved in the UDF.
When such UDFs are retrieved in a part, you are always prompted in the user
interface for the body references, and
ProUdfdataRequiredreferencesGet() always returns the actual
number of references stored in the UDF.

168 Creo® Parametric TOOLKITUser’s Guide

Created in a Part or
Assembly

UDFs that are Retrieved and Placed

Assembly Part
Assembly Irrespective of the value

of the configuration
option tk_pre_
creo7_udf_body_
autofill

ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
Success and returns PRO_
TK_NO_ERROR.

Irrespective of the value
of the configuration
option tk_pre_
creo7_udf_body_
autofill

ProUdfdataRequire
dreferences
Get()—3
ProUdfCreate()—
Success and returns PRO_
TK_NO_ERROR.
Default body is used
implicitly.

Part Irrespective of the value
of the configuration
option tk_pre_
creo7_udf_body_
autofill

ProUdfdataRequire
dreferences
Get()—4 or more
1 or more body
references.
ProUdfCreate()—
returns PRO_TK_NO_
ERROR

Note
You do not need to fill
the body reference.

ProUdfdataRe
quiredreferen
cesGet() is for
query purpose only.

Irrespective of the value
of the configuration
option tk_pre_
creo7_udf_body_
autofill

ProUdfdataRequire
dreferences
Get()—4 or more
1 or more body
references.
ProUdfCreate()—
Single or Mutlibody —
Do not fill the body
reference.

Core: Features 169

6
Core: 3D Geometry

Geometry Objects ... 171
Visiting Geometry Objects.. 172
Tessellation... 181
Evaluating Geometry ... 184
Geometry Equations.. 187
Ray Tracing .. 194
Measurement.. 195
Geometry as NURBS... 198
Interference .. 198
Faceted Geometry... 202

This chapter deals with the objects and actions used to extract the geometry of a
Creo Parametric solid. Because the geometry objects are closely related to each
other and have a number of generic types of action in common, this chapter is
organized not by object, but by types of action needed in Creo Parametric
TOOLKIT.
Some of the objects and actions in this chapter also apply to assemblies. See the
Assembly: Basic Assembly Access on page 1130 chapter for information on
objects and actions specific to assemblies.

170 Creo® Parametric TOOLKITUser’s Guide

Geometry Objects
The generic object for geometry is called ProGeomitem, or “geometry item”. It
is a DHandle that shares the declaration of ProModelitem. Its own instances
are the specific types of geometrical item familiar to users of Creo Parametric.
Each of these is declared as an OHandle, or opaque handle.
The ProGeomitem types are as follows:

• ProSurface—Surface, datum surface, or datum plane
• ProEdge—Edge
• ProCurve—Datum curve
• ProCompcrv—Composite datum curve
• ProQuilt—Quilt
• ProAxis—Axis
• ProPoint—Datum point
• ProCsys—Datum coordinate system
Every ProGeomitem is contained in a feature, and each feature is contained in a
solid, as shown in the following figure.

ProGeomItem in Feature In Solid

Some geometrical items in a part are also contained in another hierarchy, which
shows how they connect together geometrically, rather than to which features they
belong. This type of hierarchy is shown in the following figure.

Core: 3D Geometry 171

Hierarchy of Geometrical Items in a Part

The Creo Parametric TOOLKIT object ProContour is also an OHandle, but has
no corresponding integer identifier, and therefore is not an instance of
ProGeomitem.
There are a number of actions applicable to many of these types, whose
corresponding functions begin with “ProGeomitem”. These include functions such
as ProGeomitemdataGet(), for which there are also specific functions for
the subtypes (where appropriate), and some functions for generic measurement
operations. These functions are described under the context of their action type.
To read and modify the name of a ProGeomitem, use the functions
ProModelitemNameGet() and ProModelitemNameSet(), described in
the chapter Core: Models and Model Items on page 69.

Visiting Geometry Objects
Visiting geometry objects means acquiring the object handles to all the geometry
objects in a solid model, either in the form of a ProGeomitem, or in the form of
the various specific opaque handles.
The term “solid” is used in Creo Parametric TOOLKIT to distinguish models that
contain three-dimensional geometry—parts and assemblies—from other model
types, such as drawings. However, to the Creo Parametric user, the term “solid” is
used in parts and assemblies to distinguish features that represent the geometry of
the design object from features used in construction only—the various types of
“datum.” Within this chapter, therefore, the terms “solid geometry” and “datums”
are used in that sense.
The most general way to visit geometrical items is through their features. The
section Visiting Feature Geometry on page 173 describes this in detail, and
includes an illustration of the hierarchy used.

172 Creo® Parametric TOOLKITUser’s Guide

You can also traverse solid geometry items through the hierarchy of surfaces,
contours, and edges in a part. This is described in the section Visiting Solid
Geometry on page 175.
The following sections describe the traversal of the various datums. Some of these
datums have their own visit functions, whereas others are visited through the
feature hierarchy.

Note
Although the Creo Parametric user can create solid features in Assembly
mode, the geometrical items that result from them are stored only within the
component parts whose geometry is modified—not in the assembly features
themselves. Therefore, although traversal of datums is applicable to
assemblies exactly as to parts, no solid geometry items are found in
assemblies.

Datum planes, datum surfaces, and solid surfaces are all represented by the
ProSurface object because they share the same types of mathematical
description.

Visiting Feature Geometry
Functions Introduced:

• ProSolidFeatVisit()
• ProFeatureStatusGet()
• ProFeatureTypeGet()
• ProFeatureVisibilityGet()
• ProFeatureGeomitemVisit()
• ProGeomitemIsInactive()
• ProGeomitemdataGet()
All geometry in Creo Parametric is created as a result of features, so each
geometry object in Creo Parametric TOOLKIT belongs to a feature. Therefore, the
most general way to traverse geometry of all types is to traverse the features, then
traverse the geometry each one contains.
The function ProSolidFeatVisit() visits every feature in a solid. The
function ProFeatureTypeGet() reports the type of a feature in terms of the
enumerated type ProFeattype (described in the include file
ProFeattype.h).

Core: 3D Geometry 173

Note that ProSolidFeatVisit() is designed partly for internal use within
Creo Parametric. It visits not only the features seen by the Creo Parametric users,
but also the features created internally to help in the construction of geometry.
These internal features are rarely of interest to Creo Parametric TOOLKIT users.
To distinguish the visible features from the internal, or invisible, features, call the
function ProFeatureVisibilityGet(). Internal features are invisible
features used internally for construction purposes.

Note
The function ProFeatureVisibilityGet() is primarily used in the
action and filter callbacks of the function ProSolidFeatVisit().

The function ProFeatureStatusGet() reports whether a feature is
suppressed or inactive for some reason—only active features contain active
geometry.
The function ProFeatureGeomitemVisit() visits the geometry items
within a feature. It can visit all the geometry items, or one of these specific types:
SURFACE, PRO_EDGE, or PRO_CURVE. Like ProSolidFeatVisit(), this
function visits not only the visible items, but also items used internally to aid in
regeneration. Use the function ProGeomitemIsInactive() to skip over the
internal, or inactive, geometry items. For features with solid geometry,
ProFeatureGeomitemVisit() visits not only the surfaces, but also the
edges. Contrast this with the visit functions specific to those items, described in
the next section, that show the hierarchical relationships between surfaces,
contours, and edges.
Active geometry objects for datums will usually be found in features created for
them, and therefore have the corresponding type. For example, a ProGeomitem
object of type PRO_CSYS is usually contained in a feature of type PRO_FEAT_
CSYS. However, this is not always true; a geomitem of type PRO_AXIS can exist
in a feature of type PRO_FEAT_HOLE, for example. A feature of type PRO_
FEAT_MERGE, which may arise from a Mirror operation in Part mode, or from
a Merge in Assembly mode, contains geometry objects corresponding to all those
in the referenced features, whatever their type. In general, it is it best to make no
assumptions about what kinds of feature in which you should look for datums.
Remember to distinguish the feature object from the geometry object it contains,
even when they have a one-to-one relationship. For example, a feature of type
PRO_FEAT_DATUM_AXIS contains a single geometry item of type PRO_AXIS,
and each of these can be represented as a ProModelitem object. However, they
are still distinct items with their own identifiers and types.
To extract the type and shape of each geometry item, use the function
ProGeomitemdataGet(), described in detail in the section Geometry
Equations on page 187.

174 Creo® Parametric TOOLKITUser’s Guide

Note
Some of the following sections about traversing specific geometry items
introduce new functions specific to those types. PTC recommends that you use
the more specific functions rather than the general method described in this
section, because they are easier to use and usually have better performance.

All the functions in this section specific to features are described in detail in the
chapter Core: Features on page 131.

Visiting Solid Geometry
Functions Introduced:

• ProSolidBodySurfaceVisit()
• ProSurfaceContourVisit()
• ProContourEdgeVisit()
• ProEdgeContourGet()
• ProContourTraversalGet()
• ProContainingContourFind()
• ProEdgeDirGet()
• ProEdgeNeighborsGet()
• ProEdgeVertexdataGet()
Superseded Functions:

• ProSolidSurfaceVisit()
In Creo Parametric 7.0.0.0 and later, the function ProSolidSurfaceVisit()
has been deprecated. The function ProSolidSurfaceVisit() visits the
surfaces of the model only if the model has a single body else returns the error
PRO_TK_MULTIBODY_UNSUPPORTED.
The method ProSolidBodySurfaceVisit() visits all the surfaces in the
specified body.
In a Creo Parametric solid, each surface contains a list of contours, and each
contour contains a list of edges. The edges in a contour form a closed loop, and
are ordered such that following the edges keeps the surface on the right. External
contours go clockwise, and internal contours go counterclockwise.
The functions ProSolidBodySurfaceVisit(),
ProSurfaceContourVisit(), and ProContourEdgeVisit() traverse
all the objects in this three-level hierarchy. If you visit all the surfaces, the

Core: 3D Geometry 175

contours of each surface, and the edges of each contour, the resulting code visits
each surface and contour one time, and each edge twice. This is true because each
edge forms the intersection between two surfaces, and is therefore listed in one
contour of each of the two surfaces.
The function ProEdgeContourGet() returns a pointer to the contour, which
is associated with the specified edge. The input arguments are:
• surface—Specifies the surface of the contour.
• edge—Specifies the handle of the edge.
The function ProContourTraversalGet() tells you whether the specified
contour is internal or external. The function
ProContainingContourFind() finds the innermost contour that closes the
specified contour. If the specified contour is internal, the returned contour will be
external, and vice versa. If the specified contour is the outermost contour for the
surface, ProContainingContourFind() outputs NULL.
Each contour has a natural direction in terms of the order in which
ProContourEdgeVisit() visits its edges. Each edge also has its own
direction, in terms of its parameterization—the parameter, t, moves from 0 to 1
along the edge. The function ProEdgeDirGet() tells you whether an edge is
parameterized along or against the direction of the specified contour. Note that
each edge belongs to two contours, and will be in the same direction as one
contour, and in the opposite direction of the other.
The function ProEdgeNeighborsGet() returns the two surfaces that
intersect at the specified edge, and which edges on each of those surfaces is the
next one following the specified edge when traversing its contour.
The function ProEdgeVertexdataGet() returns the list of surfaces and
edges that meet at the specified vertex.

Note
The functions in this section visit active geometry items only, so you do not
need to call the function ProGeomitemIsInactive().

Example 1: Finding the Surfaces Penetrated by a Hole
The sample code in UgGeomHoleSrfDisp.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_geometry uses the
techniques of feature traversal and solid geometry traversal to find the surfaces
that neighbor the surfaces of the selected hole.

176 Creo® Parametric TOOLKITUser’s Guide

Visiting Axis Datums
Functions Introduced:

• ProSolidAxisVisit()
• ProAxisIdGet()
• ProAxisInit()
• ProGeomitemFeatureGet()
• ProAxisSurfaceGet()
An axis is represented by the object ProAxis, which is declared as an opaque
handle. The function ProSolidAxisVisit() visits all the axes in a part or
assembly. An axis created explicitly using the Creo Parametric command Model ▶
Axis will be contained in a feature of type PRO_FEAT_DATUM_AXIS, but axes
can also exist in features of other types, such as PRO_FEAT_HOLE.
To find the feature that an axis belongs to, describe the axis in terms of a
ProGeomitem object using the functions ProAxisIdGet() and
ProModelitemInit(), then call ProGeomitemFeatureGet().
You could also traverse axes using the functions ProSolidFeatVisit() and
ProFeatureGeomitemVisit(), described in the section Visiting Feature
Geometry on page 173. As input to ProFeatureGeomitemVisit(), use the
type PRO_AXIS. You would have to visit features of any type that could contain
axes.
Always remember to use the function ProGeomitemIsInactive() to skip
over axes used internally only.
The function ProAxisSurfaceGet() provides the ProSurface object that
identifies the surface used to define the axis position.

Visiting Coordinate System Datums
Functions Introduced:

• ProSolidCsysVisit()
• ProCsysIdGet()
• ProCsysInit()
A coordinate system datum is represented by the object ProCsys, which is
declared as an opaque handle. The function ProSolidCsysVisit() visits all
the coordinate system datums in a part or an assembly.
You could also traverse the coordinate system datums using the
ProSolidFeatVisit() and ProFeatureGeomitemVisit() functions,
described in the section Visiting Feature Geometry on page 173. The coordinate
system datums are usually found in features of type PRO_FEAT_CSYS, although
they can appear in others, and have the geomitem type PRO_CSYS.

Core: 3D Geometry 177

Always remember to use the function ProGeomitemIsInactive() to skip
over coordinate system datums used internally only.
The function ProCsysIdGet() provides the persistent integer identifier of the
coordinate system, which is used if you need to make a ProGeomitem
representation of the coordinate system. The function ProCsysInit() creates
a ProCsys object from the integer identifier.

Visiting Datum Planes
Functions Introduced:

• ProSurfaceInit()
• ProSurfaceIdGet()
A datum plane is represented by the object ProSurface, which is declared as an
opaque handle and is also used to represent solid surfaces and datum surfaces.
To visit all the datum planes, use the functions ProSolidFeatVisit() and
ProFeatureGeomitemVisit(), described in the section Visiting Feature
Geometry on page 173. The datum planes are contained in features of type PRO_
FEAT_DATUM, each of which contains a single active ProGeomitem object
whose type field is PRO_SURFACE.
Always remember to use the function ProGeomitemIsInactive() to skip
over datum planes used internally only. (Active datum planes occur in features of
type PRO_FEAT_DATUM only; datum planes created on-the-fly during creation of
other features are inactive.)
To convert the ProGeomitem to a ProSurface, use the id field in the
ProGeomitem as input to the function ProSurfaceInit().
The function ProSurfaceIdGet() gives the integer identifier of a
ProSurface, so you can convert back to a ProGeomitem using the function
ProModelitemInit().

Note
Although a datum plane has a nominal outline used to visualize the datum in
the Creo Parametric display, this is not part of the geometry because a datum
plane is an infinite, unbounded plane. Therefore, if you try to use the function
ProSurfaceContourVisit() on a datum plane, it will not find any
contours.

Visiting Quilts and Datum Surfaces
Functions Introduced:

178 Creo® Parametric TOOLKITUser’s Guide

• ProSolidQuiltVisit()
• ProQuiltSurfaceVisit()
• ProQuiltIdGet()
• ProQuiltInit()
A datum surface is represented by the object ProSurface, which is declared as
an opaque handle and is also used to represent solid surfaces and datum planes.
From the viewpoint of Creo Parametric TOOLKIT, every datum surface belongs
to a quilt, even if no explicit quilt feature has been made in Creo Parametric. If the
user creates a single datum surface, it belongs to an internal quilt created for that
purpose.
A quilt is represented by the object ProQuilt, which is declared as an opaque
handle.
To visit datum surfaces, you must therefore first visit all the quilts, using
ProSolidQuiltVisit(), then visit each surface in the quilt using
ProQuiltSurfaceVisit().
The function ProSolidQuiltVisit() takes the filter function
ProQuiltFilterAction() and the visit function
ProQuiltVisitAction() as its input arguments. The function
ProQuiltFilterAction() is a generic action function for filtering quilts
from a solid model. It returns the filter status of the quilts. This status is used as an
input argument by the visit action function ProQuiltVisitAction().
The function ProQuiltSurfaceVisit() takes the filter function
ProQuiltSurfaceFilterAction() and the visit function
ProQuiltSurfaceVisitAction() as its input arguments. The function
ProQuiltSurfaceFilterAction() is a generic action function for
filtering datum surfaces in a quilt. It returns the filter status of the datum surfaces.
This status is used as an input argument by the visit function
ProQuiltSurfaceVisitAction()

Always remember to use the function ProGeomitemIsInactive() to skip
over quilts and datum surfaces used internally only.
To convert a ProQuilt object to a ProGeomitem, use the functions
ProQuiltIdGet() and ProModelitemInit().
To create a ProQuilt object from the integer identifier, use
ProQuiltInit().
To find the contours and edges of a datum surface, use the visit functions
ProSurfaceContourVisit() and ProContourEdgeVisit(),
described in the section Visiting Solid Geometry on page 175.

Visiting Datum Curves
Functions Introduced:

Core: 3D Geometry 179

• ProCurveIdGet()
• ProCurveInit()
• ProCurvePersistentColorGet()
• ProCurvePersistentColorSet()
• ProCurvePersistentLinestyleGet()
• ProCurvePersistentLinestyleSet()
A datum curve is represented by the object ProCurve, which is declared as an
opaque handle.
To visit all the datum curves, use the functions ProSolidFeatVisit() and
ProFeatureGeomitemVisit(), described in the section Visiting Feature
Geometry on page 173. The datum curves are contained in features of many
different types, each of which contains one or more active ProGeomitem
objects whose type field is PRO_CURVE.
Always remember to use the function ProGeomitemIsInactive() to skip
over datum curves used internally only.
To convert a ProCurve object to a ProGeomitem, use the functions
ProCurveIdGet() and ProModelitemInit().
To create a ProCurve object from the integer identifier, use
ProCurveInit().
Use the functions ProCurvePersistentColorGet() and
ProCurvePersistentColorSet() to obtain and set the color of a specified
curve. In order to view the color changes, use the function
ProDisplistInvalidate() on the owner model.
Use the functions ProCurvePersistentLinestyleGet() and
ProCurvePersistentLinestyleSet(). In order to view the linestyle
changes, use the function ProDisplistInvalidate() on the owner model.

Visiting Composite Datum Curves
Function Introduced:

• ProCurveCompVisit()
A composite datum curve is also represented by the object ProCurve. To
distinguish a composite curve from an ordinary curve when dealing with a
ProCurve object, use the function ProCurveTypeGet(). This function
outputs the value PRO_ENT_CMP_CRV for a composite curve.
To visit all the composite datum curves, use the functions
ProSolidFeatVisit() andProFeatureGeomitemVisit(), described
in the section Visiting Feature Geometry on page 173.

180 Creo® Parametric TOOLKITUser’s Guide

The composite curves are contained in features of many different types, each of
which contains one or more active ProGeomitem objects whose type field is
PRO_CURVE.
To visit the datum curves in a composite curve, use the function
ProCurveCompVisit().
Remember that each curve in a composite may be a composite itself, so you may
need to make recursive calls. However, you can find all non-composite curves,
including those contained in composites, using the method described in the
previous section. It is therefore unnecessary to traverse all the composite curves to
find all the non-composite curves.

Visiting Datum Points
Functions Introduced:

• ProPointIdGet()
• ProPointInit()
A datum point is represented by the object ProPoint, which is declared as an
opaque handle.
To visit all the datum points, use the functions ProSolidFeatVisit() and
ProFeatureGeomitemVisit(), described in the section Visiting Feature
Geometry on page 173. The datum points are usually contained in features of type
PRO_FEAT_DATUM_POINT, although they can also occur in others, such as
PRO_FEAT_MERGE. Datum points are represented by geometry items of type
PRO_POINT.
Always remember to use the function ProGeomitemIsInactive() to skip
over datum points used internally only.
To convert a ProPoint object to a ProGeomitem, use the functions
ProPointIdGet() and ProModelitemInit().
To create a ProPoint object from the integer identifier, use
ProPointInit().

Tessellation
You can calculate tessellation for different types of Creo Parametric geometry.
The tessellation is made up of small lines (for edges and curves), or triangles (for
surfaces and solid models).

Curve and Edge Tessellation
Functions Introduced:

Core: 3D Geometry 181

• ProEdgeTessellationGet()
• ProCurveTessellationGet()
The function ProEdgeTessellationGet() enables you to invoke the
algorithm that generates a sequence of lines from an arbitrary curved edge. This
function provides the following outputs:

• An array of the XYZ coordinates of the vertices between the tessellations
• The two surfaces that neighbor the edge (as also provided by

ProEdgeNeighborsGet()). If the edge is a single-sided edge, then the
output argument returns only one surface.

• An array of uv pairs for the tessellation vertices in the first neighboring
surface

• An array of uv pairs for the second neighboring surface
• The number of tessellation vertices
The function ProCurveTessellationGet() retrieves the curve tessellation
for a datum curve. It returns the number of tessellation points and a list of them.

Surface Tessellation
Functions Introduced:

• ProSurfaceTessellationGet()
• ProTessellationFree()
• ProTessellationVerticesGet()
• ProTessellationFacetsGet()
• ProTessellationNormalsGet()
• ProTessellationParamsGet()
• ProSurfacetessellationinputAlloc()
• ProSurfacetessellationinputFree()
• ProSurfacetessellationinputChordheightSet()
• ProSurfacetessellationinputAnglecontrolSet()
• ProSurfacetessellationinputStepsizeSet()
• ProSurfacetessellationinputUvprojectionSet()
The function ProSurfaceTessellationGet() calculates the tessellation
data given by the ProTessellation object for a specified surface. Use the
function ProTessellationFree() to release the memory used by this data
object.

182 Creo® Parametric TOOLKITUser’s Guide

The function ProTessellationVerticesGet() obtains the vertices for the
tessellation for a specified surface.
The function ProTessellationFacetsGet() obtains the indices indicating
the vertices used for each facet of the tessellated item.
The function ProTessellationNormalsGet() obtains the normal vectors
for each of the tessellation vertices.
The function ProTessellationParamsGet() obtains the UV parameters
for each of the tessellation vertices.
The function ProSurfacetessellationinputAlloc() allocates the
ProSurfaceTessellationInput data object containing the options for
surface tessellation. Use the function
ProSurfacetessellationinputFree() to release the memory allocated
to this data object.
The function ProSurfacetessellationinputChordheightSet()
assigns the chord height used for surface tessellation.
The function ProSurfacetessellationinputAnglecontrolSet()
assigns the value of the angle control used for surface tessellation.
The function ProSurfacetessellationinputStepsizeSet() assigns
the maximum value for the step size used for surface tessellation.
The function ProSurfacetessellationinputUvprojectionSet()
assigns the parameters used to calculate the UV projection for the texture mapping
to the tessellation inputs. The types of UV projection are given by the enumerated
type ProSurfaceTessellationProjection, and are as follows:

• PRO_SRFTESS_DEFAULT_PROJECTION—Provides the UV parameters
for the tessellation points that map to a plane whose U and Vextents are [0,1]
each. This is the default projection.

• PRO_SRFTESS_PLANAR_PROJECTION—Projects the UV parameters
using a planar transform, where u=x, v=y, and z is ignored.

• PRO_SRFTESS_CYLINDRICAL_PROJECTION—Projects the UV
parameters using a cylindrical transform, where x=r*cos(theta), y=r*sin(theta),
u=theta, v=z, and r is ignored.

• PRO_SRFTESS_SPHERICAL_PROJECTION—Projects the UV parameters
onto a sphere, where x=r*cos(theta)*sin(phi), y=r*sin(theta)*sin(phi), z=r*cos
(phi), u=theta, v=phi, and r is ignored.

• PRO_SRFTESS_NO_PROJECTION—Provides the unmodified UV
parameters for the tessellation points. This is similar to using the function
ProSurfaceParamEval().

• PRO_SRFTESS_BOX_PROJECTION—Projects the UV parameters using the
box transform. The box transformation uses planar projection to project a

Core: 3D Geometry 183

point from the face of the box onto the model or surface, which is opposite to
the face of the box, where u = x, v = y, and z is ignored.

Note
• If the function

ProSurfacetessellationinputUvprojectionSet() is not used,
the output tessellation will not contain any UV parameters and the function
ProTessellationParamsGet() will not return any values.

• Specify the unmodified UV parameters obtained using PRO_SRFTESS_NO_
PROJECTION as the input u and v values for the functions
ProSurfaceXyzdataEval(), ProSurfaceUvpntVerify(),
ProSurfaceDiameterEval(), and
ProSurfacePrincipalCrvtEval().

Part and Assembly Tessellation
Functions Introduced:

• ProPartTessellate()
• ProPartTessellationFree()
The function ProPartTessellate() tessellates all surfaces of the specified
part or assembly in one operation. On parts, ProPartTessellate() acts on
all surfaces. On assemblies, this function acts only on surfaces that belong to the
assembly, that is, it does not tessellate surfaces of the assembly components.
ProPartTessellate() returns an array of
ProSurfaceTessellationData data objects. Use the function
ProPartTessellationFree() to release the memory assigned to these data
objects.

Evaluating Geometry
The geometry of each edge or curve in Creo Parametric is described as a set of
three parametric equations that represent the values of X, Y, and Z as functions of
the independent parameter, t. For a surface, the three equations are functions of
the two independent parameters u and v.
The Creo Parametric TOOLKIT functions described in this section provide the
ability to evaluate the parametric edge and surface functions—that is, find the
values and derivatives of X, Y and Z for the specified values of t, or u and v.
They also provide for reverse evaluation.

184 Creo® Parametric TOOLKITUser’s Guide

Evaluating Surfaces, Edges, and Curves
Functions Introduced:

• ProSurfaceXyzdataEval()
• ProEdgeXyzdataEval()
• ProCurveXyzdataEval()
• ProEdgeUvdataEval()
• ProSurfaceUvpntVerify()
• ProContourUvpntVerify()
The function ProSurfaceXyzdataEval() evaluates the parametric
equations for a surface at a point specified by its u and v values. The inputs to the
function are the ProSurface object and the u and v values. The u and v values
are obtained by specifying the projection type as PRO_SRFTESS_NO_
PROJECTION for the function
ProSurfacetessellationinputUvprojectionSet().
The function outputs are as follows:

• The X, Y, and Z coordinates of the point, with respect to the model coordinates
• The first partial derivatives of X, Y, and Z, with respect to u and v
• The second partial derivatives of X, Y, and Z, with respect to u and v
• A unit vector in the direction of the outward normal to the surface at that point
The function ProEdgeXyzdataEval() performs a similar role for an edge. Its
inputs are the ProEdge object and the value of t at the required point. The
function outputs are as follows:

• The X, Y, and Z coordinates of the point, with respect to the model coordinates
• The first partial derivatives of X, Y, and Z, with respect to t
• The second partial derivatives of X, Y, and Z, with respect to t
• A unit vector in the direction of the edge
You must allocate a memory location for each of the output arguments of these
two functions. Pass a NULL pointer if you do not want to use an output argument.
You cannot pass a null for both the output arguments.
The function ProCurveXyzdataEval() is equivalent to
ProEdgeXyzdataEval(), but works for datum curves.
The ProEdgeUvdataEval() function relates the geometry of a point on an
edge to the surfaces that meet at that point.

Core: 3D Geometry 185

The function ProSurfaceUvpntVerify() verifies whether a surface point,
specified by its u and v values, lies inside, outside, or very close to the boundary
of the surface. The u and v values are obtained by specifying the projection type
as PRO_SRFTESS_NO_PROJECTION for the function
ProSurfacetessellationinputUvprojectionSet().
Function ProContourUvpntVerify() does the same for points on a given
contour.

Inverse Evaluation and Minimum Distances
Functions Introduced:

• ProSurfaceParamEval()
• ProEdgeParamEval()
• ProCurveParamEval()
• ProGeomitemBodyGet()
These functions provide the parameters of a point on a surface, edge, or datum
curve nearest to the specified XYZ coordinate point.
You can use the function ProEdgeParamEval() only for the points that are
either on the edge or very close to the edge.
The function ProSurfaceParamEval() returns the closest approximation to
the unmodified u and v values obtained by specifying the projection type as PRO_
SRFTESS_NO_PROJECTION for the function
ProSurfacetessellationinputUvprojectionSet().
Use the function ProGeomitemBodyGet() to retrieve the body that is
associated with the specified geometry item.

Geometry at Points
Functions Introduced:

• ProGeometryAtPointFind()
• ProPoint3dOnsurfaceFind()
• ProPoint3dIntoleranceFind()
• ProSolidProjectPoint()
The function ProGeometryAtPointFind() locates the geometry items that
lie on a given point. This function supports solid geometry only.

186 Creo® Parametric TOOLKITUser’s Guide

The function ProPoint3dOnsurfaceFind() determines if the distance
between the specified point and the specified surface is less than the Creo
Parametric model accuracy as set in the current Creo Parametric session.
Accuracy can also be set with function ProSolidAccuracySet(). This
function is applicable to solid and datum surfaces.
The function ProPoint3dIntoleranceFind() determines if two specified
points are co-incident, that is, if the distance between the two points is within the
Creo Parametric tolerance set in ProSolidToleranceGet().
The function ProSolidProjectPoint() projects a point along the shortest
possible line normal to a surface, finds the point where that line hits the solid, and
returns that point. Note that this function works on parts only.

Geometry Equations
Functions Introduced:

• ProGeomitemdataGet()
• ProGeomitemdataFree()
The parametric equations that describe surfaces, edges, and datum curves in Creo
Parametric are documented in the Geometry Representations on page 2147
appendix. (Datum curves are geometrically equivalent to edges, but because they
play a different role in Creo Parametric, they need a parallel set of functions to
access them. The word curve is used as a generic word for the shape of either an
edge or a datum curve.)
To know the form of a particular geometry item, you need to know not only which
type of equation is being used, but also the values of the various coefficients and
constants used in that equation for that item.Geometry Representations on page
2147 documents the equations using the same names for these coefficients and
constants used to store them in the Creo Parametric data structures. The functions
in this section enable you to get copies of the data structures containing those
coefficients and constants. Therefore, you can perform your own evaluations.
The data structures for ProSurfacedata are defined in the include file
ProSurfacedata.h, and those for ProCurvedata are defined in
ProCurvedata.h.
The function ProGeomitemdataGet() allocates and fills a data structure that
describes the geometry of the item. The structure ProGeomitemdata is
declared in the file ProGeomitemdata.h, and looks like this:
typedef struct geom_item_data_struct
{
ProType obj_type;
union
{

ProCurvedata *p_curve_data;

Core: 3D Geometry 187

ProSurfacedata *p_surface_data;
ProCsysdata *p_csys_data;

} data;
} ProGeomitemdata;

The type field has the same value as the type field in the ProGeomitem
object.
The three fields in the union contain data structures for the geometry of curves
(including solid edges and axes), surfaces, and coordinate system datums. These
three data structures are described in detail in the sections Geometry of Solid
Edges on page 188, Geometry of Surfaces on page 189, and Geometry of
Coordinate System Datums on page 191, respectively.
The memory for the data structure is allocated by the function, but is never freed.
To free the memory when you have finished with it, call
ProGeomitemdataFree().

Geometry of Solid Edges
Functions Introduced:

• ProEdgeTypeGet()
• ProEdgeDataGet()
• ProEdgedataMemoryFree()
• ProEdgedataFree()
Function ProEdgeTypeGet() provides the equation used to describe the edge.
Function ProEdgeDataGet() returns the data structure associated with the
specified edge.
Use function ProEdgedataMemoryFree() to free the top-level memory
associated with the edge data structure. Function ProEdgedataFree() frees
the underlying memory of the data structure.
Follow these steps to get the description of an edge:

1. Get the type of equation used to describe the edge using the function
ProEdgeTypeGet(). The possible types for a solid edge are as follows:

• PRO_ENT_LINE—A straight line
• PRO_ENT_ARC—An arc
• PRO_ENT_ELLIPSE—An ellipse
• PRO_ENT_SPLINE—A nonuniform cubic spline
• PRO_ENT_B_SPLINE—A nonuniform rational B-spline (NURBS)

2. Get the data structure for the geometry using the function
ProEdgeDataGet(). For an edge, the type field is set to PRO_EDGE, and

188 Creo® Parametric TOOLKITUser’s Guide

the relevant field from the union is p_curve_data. The type for that field,
ProCurvedata, is itself a union that contains a field for each type of edge
equation. For example, if the edge type is PRO_ENT_ARC, the relevant field
in the ProCurvedata structure is the one called arc, of type
ProArcdata. Each such structure contains fields for the coefficients and
constants in the relevant equations (described in the Geometry Representations
on page 2147 appendix), and share the same names.

3. When you have read the information you need from the ProGeomitemdata
structure, free the memory using ProGeomitemdataFree().

Example 2: Extracting the Diameter of an Arc Edge
The sample code in UgGeomArcDiaDisp.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_geometry shows
how to extract the geometry equation of a solid edge.

Geometry of Surfaces
Functions Introduced:

• ProSurfaceTypeGet()
• ProSurfaceDataGet()
• ProSurfaceIsDatumPlane()
• ProSurfaceSameSrfsFind()
• ProSldsurfaceVolumesFind()
• ProSurfacePeriodicityGet()
• ProSurfaceNextGet()
The method for getting the description of surface geometry is analogous to that
described in the previous section for solid edges. Function
ProSurfaceTypeGet() provides the equation used to describe the surface.
Function ProSurfaceDataGet() returns the data structure associated with
the specified surface.
Use function ProSurfacedataMemoryFree() to free the top-level memory
associated with the surface data structure. Function ProSurfacedataFree()
frees the underlying memory of the data structure.
The possible types of surface are as follows:

• PRO_SRF_PLANE—A plane
• PRO_SRF_CYL—A cylinder
• PRO_SRF_CONE—A cone
• PRO_SRF_TORUS—A torus

Core: 3D Geometry 189

• PRO_SRF_COONS—A Coons patch
• PRO_SRF_SPL—A spline surface
• PRO_SRF_FIL—A fillet surface
• PRO_SRF_RUL—A ruled surface
• PRO_SRF_REV—A surface of revolution
• PRO_SRF_TABCYL—A tabulated cylinder
• PRO_SRF_B_SPL—A nonuniform rational B-spline (NURBS)
• PRO_SRF_CYL_SPL—A cylindrical spline surface
The relevant field in the ProGeomitemdata structure is p_surface_data,
of type ProSurfacedata.
The structure ProSurfacedata contains information applicable to surfaces of
all types, such as the maximum and minimum values of u and v, and of X, Y, and
Z for the surface, and a union that contains a field for each type of surface
geometry.
As with edges, these structures contain fields for the coefficients and constants in
the relevant equations, described in the Geometry Representations on page 2147
appendix.
These functions are also applicable to datum surfaces, and to datum planes (in
which the surface type will always be PRO_SRF_PLANE).
The function ProSurfaceIsDatumPlane() identifies if the given surface is
a datum plane.
The function ProSurfaceSameSrfsFind() finds and returns an array of
surfaces that are the same as the input surface. For example, in case of a cylinder,
Creo Parametric creates two half cylindrical surfaces. If you obtain one half, the
other half is returned by this function.
The function ProSldsurfaceVolumesFind() analyzes and returns the
number of connect volumes of a part and the surfaces that bound them.
The function ProSurfacePeriodicityGet() gets information about the
periodicity of a surface. The output arguments are:
• periodic_in_u—Specifies if the surface is periodic in U-direction.
• period_in_u—Specifies the value of period in U-direction.
• periodic_in_v—Specifies if the surface is periodic in V-direction.
• period_in_v—Specifies the value of period in V-direction.
The function ProSurfaceNextGet() returns the next surface in the surface
list or returns NULL if there is no next surface. The input argument this_
surface is the surface for which the next surface is queried and can be NULL.

190 Creo® Parametric TOOLKITUser’s Guide

The output argument p_next_surface is a non-Null pointer for returning the
next surface. If the surface passed through the input argument this_surface is
the last surface in the list, then the returned surface is NULL.

Note
For a solid body part with multiple bodies, this function does not return a
surface that is outside the body.

Example 3: Getting the Angle of a Conical Surface
The sample code in UgGeomConeAngDisp.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_geometry shows
how to read the geometry equation of a surface.

Geometry of Axes
Function Introduced:

• ProAxisDataGet()
An axis is treated in the same way as a solid edge. The function
ProAxisDataGet() allocates and fills a ProGeomitemdata structure for a
ProAxis object. The relevant field in the union is p_curve_data, but the type
of the contained edge is always a line.

Geometry of Coordinate System Datums
Function Introduced:

• ProCsysDataGet()
The function ProCsysDataGet() provides a ProGeomitemdata structure
in which the field p_csys_data is set. This is a pointer to a structure called
ProCsysdata, declared in ProCsysdata.h, that contains the location of the
origin, and the directions of the three axes, of the coordinate system datum.

Geometry of Datum Planes
Datum planes are treated exactly like surfaces, so you can use
ProSurfaceDataGet().
Their type is always PRO_SRF_PLANE.

Core: 3D Geometry 191

Geometry of Quilts
Functions Introduced:

• ProQuiltdataGet()
• ProQuiltdataSurfArrayGet()
• ProQuiltdataSurfArraySet()
• ProQuiltdataMemoryFree()
• ProQuiltdataFree()
• ProQuiltdataTypeGet()
• ProQuiltdataTypeSet()
• ProQuiltVolumeEval()
• ProQuiltIsBackupgeometry()
A quilt represents a "patchwork" of connected nonsolid surfaces. A quilt may
consist of a single surface or a collection of surfaces. A quilt contains information
describing the geometry of all the surfaces that compose a quilt and information
on how quilt surfaces are "stitched" (joined or intersected). A part can contain
several quilts. You can create or manipulate quilts using a surface feature.
To find the surfaces it contains, use ProQuiltSurfaceVisit() and analyze
the geometry of each surface.
The function ProQuiltdataGet() retrieves information from the quilt data
structure. The helper functions ProQuiltdataSurfArrayGet() and
ProQuiltdataSurfArraySet() return or define, respectively, an array of
pointers to the datum surfaces in the quilt data structure.
The function ProQuiltdataMemoryFree() releases the top-level memory
associated with the quilt data structure. The function ProQuiltdataFree()
releases the underlying memory of the data structure.
The function ProQuiltdataTypeGet() returns the type of quilt data. If the
type of quilt data is a body, the output argument p_body_or_quilt returns
PRO_BODY and returns PRO_QUILT if the type is quilt.
Use the function ProQuiltdataTypeSet() to set the type of quilt data as
PRO_BODY or PRO_QUILT. The input arguments follow:
• p_quilt_data—The quilt data.
• body_or_quilt—Type of quilt data as PRO_BODY or PRO_QUILT.
The function ProQuiltVolumeEval() calculates the volume of a closed
quilt.

192 Creo® Parametric TOOLKITUser’s Guide

The function ProQuiltIsBackupgeometry() identifies if the specified
quilt belongs to the invisible Copy Geometry backup feature. Its input argument is
a pointer to the quilt’s handle of the type ProQuilt. If the quilt belongs to the
invisible Copy Geometry backup feature, the function returns a ProBoolean
with the value PRO_B_TRUE; otherwise, the value is PRO_B_FALSE.

Geometry of Datum Surfaces
Because the system treats datum surfaces exactly like surfaces, you can use
ProSurfaceDataGet().
They can have any type of geometry.

Geometry of Datum Points
Functions Introduced:

• ProPointCoordGet()
The function ProPointCoordGet() provides the X, Y, and Z coordinates of
the specified ProPoint object.

Geometry of Datum Curves
Functions Introduced:

• ProCurveTypeGet()
• ProCurveDataGet()
• ProCurvedataMemoryFree()
• ProCurvedataFree()
Datum curves use the same data structure as edges, with the same possible types
of geometry. Because they are stored in a different location in the Creo Parametric
database, they need their own functions:

• ProCurveTypeGet() is analogous to ProEdgeTypeGet().
• ProCurveDataGet() is analogous to ProEdgeDataGet().
The enumerated type ProEnttype is used to get the type of curve.
• The value PRO_ENT_CMP_CRV specifies a composite curve.
• The value PRO_ENT_PARAM_CRV specifies a parametrized curve (x(t), y(t),

z(t)), where x, y, and z are user-defined functions.
• The value PRO_ENT_SRF_CRV specifies a parameterized curve (u(t), v(t))

that exists on a surface, where u and v are user-defined functions.

Core: 3D Geometry 193

Use function ProCurvedataMemoryFree() to free the top-level memory
associated with the curve data structure. Function ProCurvedataFree() frees
the underlying memory of the data structure.

Geometry of Composite Curves
A composite curve does not have geometry of its own. Find the member curves
using ProCurveCompVisit() and analyze their geometry in the usual way.

Ray Tracing
Functions Introduced:

• ProSolidRayIntersectionCompute()
• ProSelectionDepthGet()
The function ProSolidRayIntersectionCompute() finds the
intersections between a ray and a solid.
The ray is defined in terms of a start location and direction vector. The
intersections are described in terms of an array of ProSelection objects to
show their context in an assembly.
The function finds intersections in both directions from the start point of the ray,
and assigns each intersection a depth—the distance from the ray start point in the
direction defined (intersections in the reverse direction have a negative depth).
You can extract the depth of each intersection using the function
ProSelectionDepthGet(). The intersections are ordered from the most
negative depth to the most positive.
The function processes all solid surfaces and datum surfaces, but not datum
planes. It also includes edges that lie within a certain critical distance, called the
aperture radius, of the ray. Such an edge is shown as intersected, even if a
neighboring surface is also intersected. This implies that several entries in the
array may represent a single “piercing,” in geometrical terms.
The aperture radius is an optional input to the function, defined in terms of pixels.
If you supply a value less than –1.0, the value is taken from the Creo Parametric
configuration file option pick_aperture_radius. If that option is not set,
the function uses the default value of 7.0.
In an assembly, each component is processed separately, so if two coincident
mating faces are hit, the function records two separate intersections.
Surfaces and edges that are not displayed because they are assigned to a blanked
layer are not intersected.

194 Creo® Parametric TOOLKITUser’s Guide

This function is most often used in optical analysis, when calculating the path of a
ray of light through an assembly whose parts represent lenses or mirrors. In this
case, you want to find the closest intersecting surface in the positive direction,
then calculate the normal to the surface at that point, in assembly coordinates.

Measurement
Functions Introduced:

• ProSurfaceAreaEval()
• ProContourAreaEval()
• ProSurfaceExtremesEval()
• ProSurfacePrincipalCrvtEval()
• ProEdgeLengthEval()
• ProCurveLengthEval()
• ProEdgeLengthT1T2Eval()
• ProCurveLengthT1T2Eval()
• ProEdgeParamByLengthEval()
• ProCurveParamByLengthEval()
• ProGeomitemDistanceEval()
• ProGeomitemAngleEval()
• ProSurfaceDiameterEval()
• ProGeomitemDiameterEval()
• ProContourBoundbox3dCompute()
• ProContourBoundbox2dCompute()
• ProSelectionWithOptionsDistanceEval()
The function ProSurfaceAreaEval() evaluates the surface areas of a
specified surface. It is not valid for datum planes.
Function ProContourAreaEval() outputs the inside surface area of a
specified outer contour. Note it takes into account internal voids.
The function ProSurfaceExtremesEval() finds the coordinates of the face
edges at the extremes in the specified direction. The accuracy of the result is
limited to the accuracy of edge tessellation.
Function ProSurfacePrincipalCrvtEval() outputs the curvatures and
directions of the specified surface at a given UV point. The u and v values are
obtained by specifying the projection type as PRO_SRFTESS_NO_
PROJECTION for the function
ProSurfacetessellationinputUvprojectionSet().

Core: 3D Geometry 195

The function ProEdgeLengthEval() evaluates the length of a solid edge, and
ProCurveLengthEval() does the same for a datum curve.
Function ProEdgeLengthT1T2Eval() finds the length of a specified edge
between two parameters. Use function ProCurveLengthT1T2Eval() to do
the same for a curve.
ProEdgeParamByLengthEval() finds the parameter value of the point
located a given length from the specified start parameter. Use function
ProCurveParamByLengthEval() to do the same for a curve.
The function ProGeomitemDistanceEval() measures the distance between
two geometry items. The geometry items are expressed as ProSelection
objects, so you can specify any two objects in an assembly. Each object can be an
axis, plane surface, or datum point.
The function ProGeomitemAngleEval() measures the angle between two
geometry items expressed as ProSelection objects. Both objects must be
straight, solid edges.
The function ProSurfaceDiameterEval() measures the diameter of a
surface, expressed as a ProSelection object. The surface type must be one of
the following:

• Cylinder—The cylinder radius
• Torus—The distance from the axis to the generating arc
• Cone—The distance of the point specified from the axis
• Surface of revolution—The distance of the point specified from the axis
The u and v values are obtained by specifying the projection type as PRO_
SRFTESS_NO_PROJECTION for the function
ProSurfacetessellationinputUvprojectionSet().

Note
In the case of a sphere made by revolving an arc, the Creo Parametric
command Analysis ▶ Diameter gives the real spherical diameter, whereas
ProGeomitemDiameterEval() gives the distance of the specified point
from the axis of revolution.

The functions ProContourBoundbox2dCompute() and
ProContourBoundbox3dCompute() output a bounding box for the inside
surface of the specified outer contour.

196 Creo® Parametric TOOLKITUser’s Guide

Note
• Only the ProContourBoundbox3dCompute() function takes into

account internal voids.
• The outline returned by the function

ProContourBoundbox3dCompute() represents the outline box used by
Creo Parametric embedded algorithms, and hence it can be slightly bigger than
the outline computed directly from the surface parameters.

The function ProSelectionWithOptionsDistanceEval() evaluates the
distance between two items. You can evaluate distance between surfaces, edges,
entities, vertices, curves, datums, and so on. The initial selection of the item is
used to guess the type of geometry. In case of error in selecting the geometry, the
output argument p_result is set to -1.0 and all parameters are set to 0.0.
Error types PRO_TK_BAD_INPUTS and PRO_TK_BAD_CONTEXT are returned
when p_result is set to -1.0.
The input arguments option1 and option2 are analogous to Options in the
Measure dialog box in Creo Parametric user interface. You can specify PRO_B_
TRUE if you want to turn on the following options for the selected items:
• If the selected item is a cylindrical surface, measures the distance from the

central axis of the cylindrical surface. Specify PRO_B_FALSE to measure
from the surface instead of the axis.

• If the selected item is an arc, measures the distance from the center of a circle
or an arc-shaped curve or edge. Specify PRO_B_FALSE to measure from the
edge instead of the center.

• If the selected item is a planar surface or a plane, extends the selected surface
or plane to infinity in both directions only for the purpose of measuring
distance. You can now measure the distance normal to the reference entity.

• If the selected item is linear, extends the selected straight edge or curve to
infinity in both directions only for the purpose of measuring distance. You can
now measure the distance normal to the reference entity.

The output arguments return the following values:
• p_result—Distance between the two items
• pnt_1 and pnt_2—Critical point for the first and second selected items.

Critical point is the actual point used for measurement.
• param_1 and param_2—UV parameter of the critical point for the first and

second selected items

Core: 3D Geometry 197

Note
The function ProSelectionDistanceEval() cannot be used to
evaluate distance between datum planes and axes. This function will be
deprecated in a future release. Use the function
ProSelectionWithOptionsDistanceEval() instead.

Geometry as NURBS
Functions Introduced:

• ProSurfaceToNURBS()
• ProEdgeToNURBS()
• ProCurveToNURBS()
A common reason for extracting the solid geometry of a Creo Parametric model is
to pass it to another MCAE tool for some kind of engineering analysis. Not all of
the other MCAE tools share the rich variety of geometry equation types supported
by Creo Parametric, and therefore may not be able to import all the surface
descriptions directly. Because many MCAE systems use nonuniform rational B-
splines (NURBS) to model surfaces and edges, you frequently need to convert
many or all of the Creo Parametric surface descriptions to NURB splines.
The function ProSurfaceToNURBS() operates on a surface of any type. The
function makes an accurate approximation of the shape of the surface using a
NURBS, and outputs a pointer to the structure ProSurfacedata. This
structure contains the surface type PTC_B_SPLSRF, which describes the form of
the NURBS.
The function ProEdgeToNURBS() finds a one-dimensional NURBS that
approximates a Creo Parametric solid edge. The function outputs a pointer to the
ProCurvedata union whose b_spline field contains the NURBS
description.
The function ProCurveToNURBS() provides the same functionality as
ProEdgeToNURBS(), but for a datum curve.
Both ProSurfacedata and ProCurvedata are declared in the Creo
Parametric TOOLKIT header file ProGeomitem.h.

Interference
Functions Introduced:

198 Creo® Parametric TOOLKITUser’s Guide

• ProFitClearanceCompute()
• ProFitGlobalinterferenceCompute()
• ProFitInterferenceCompute()
• ProFitInterferencevolumeCompute()
• ProFitInterferencevolumeDisplay()
• ProInterferenceDataFree()
• ProInterferenceInfoProarrayFree()
• ProVolumeInterferenceCompute()
• ProVolumeInterferenceDisplay()
• ProVolumeInterferenceBodiesGet()
• ProVolumeInterferenceDisplayForBody()
• ProVolumeInterferenceInfoArrayFree()
The function ProFitClearanceCompute() computes the clearance between
two objects. When the function computes clearance between two parts, it also tries
to determine if there is interference between them.
Use the function ProFitGlobalinterferenceCompute() to compute the
interference in the specified assembly. If the assembly is regenerated, the
interference must be recalculated. The enumerated data type
ProFitComputeSetup specifies the set up to compute the interference for
parts or subassemblies. The valid values are:
• PRO_FIT_PART—Computes interference between the pairs of parts in an

assembly. The interference is computed only for those pairs whose volume can
be calculated. The pairs whose volume could not be calculated are removed.

• PRO_FIT_SUB_ASSEMBLY—Computes interference between the pairs of
subassemblies in an assembly, that is, computes interference between parts of
different subassemblies. The interference is computed only for pairs whose
volume can be calculated. The pairs whose volume could not be calculated are
removed.

• PRO_FIT_PART_DETAILED—Computes interference between the pairs of
parts in an assembly. The interference is computed for all the pairs irrespective
of whether the volume can be calculated.

• PRO_FIT_SUB_ASSEMBLY_DETAILED—Computes interference between
the pairs of subassemblies in an assembly, that is, computes interference
between parts of different subassemblies. The interference is computed for all
the pairs irrespective of whether the volume can be calculated.

Core: 3D Geometry 199

The function ProFitInterferenceCompute() returns the interference
information specified between two items. In assembly mode, each item is either a
component part or a solid body of a part. In Part mode, each item is a solid body
of the current part. If the items are regenerated, the interferences must be
recalculated. The input arguments follow:
• sel_1—The first part or solid body.
• sel_2—The second part or solid body.
• set_facets—The option to include facets for parts.
• set_quilts—The option to include quilts for parts.

Note
Set the ProBoolean arguments set_facets and set_quilts to PRO_B_
TRUE to include facets or quilts in the model, respectively.

Note
The interference data obtained from the functions
ProFitGlobalinterferenceCompute() and
ProFitInterferenceCompute() must be passed as input to the
functions ProFitInterferencevolumeCompute() and
ProFitInterferencevolumeDisplay(). The interference data must
not include facets or quilts. They must include information about only
interfering solids.

The function ProFitInterferenceCompute() returns an error PRO_TK_
NOT_EXIST if one or more items specified by either of the input arguments sel_1
and sel_2 could not be found or does not contain any geometry with which to
compute interference.
The function returns the error PRO_TK_GENERAL_ERROR if the interference
could not be computed.
The function ProFitInterferencevolumeCompute() calculates volume
of interference between two specified components. Use the function
ProFitInterferencevolumeDisplay() to display the volume of
interference between the two specified components.
Use the functions ProInterferenceDataFree() and
ProInterferenceInfoProarrayFree() to free the interference data
obtained from the functions ProFitInterferenceCompute() and
ProFitGlobalinterferenceCompute() respectively.

200 Creo® Parametric TOOLKITUser’s Guide

The function ProVolumeInterferenceCompute() calculates the volume
interference between the selected closed quilt and an assembly. The output
argument p_intf_infos is a pointer to the ProArray, where the interference
results are stored. The interference data is returned as a
ProVolumeInterferenceInfo structure.
Use the function ProVolumeInterferenceInfoArrayFree() to free the
interference data obtained from the function
ProVolumeInterferenceCompute(). The function is supported only in
DLL mode.
The function ProVolumeInterferenceDisplay() displays the curves and
surfaces that interfere with the selected quilt in the specified color or hides them.
This function must be called after the interference data is computed. The input
arguments are:
• inetrf_data — Specifies a pointer to the interference data.
• color— Specifies the color to use for highlighting the interference.
• hilite— Specifies if the curves and surfaces that interfere with the selected

quilt must be displayed or hidden. Specify PRO_B_TRUE for displaying the
interfering component and PRO_B_FALSE for hiding it.

Use the function ProVolumeInterferenceBodiesGet() to obtain the
solid bodies of the specified component that participate in the interference with
the selected closed quilt. The input argument interf_data specified through the
structure ProVolumeInterferenceData is the pointer to the interference
data for the corresponding component that interferes with the quilt. The output
argument r_bodies returns an array of the bodies through the structure
ProSolidBody which is allocated by the function.
Call the function ProVolumeInterferenceCompute() before using
ProVolumeInterferenceBodiesGet().
The function ProVolumeInterferenceBodiesGet() returns an error
PRO_TK_E_NOT_FOUND if there are no solid bodies in the interference data.
The function ProVolumeInterferenceDisplayForBody() displays or
hides the curves and surfaces of the specified solid body that interfere with the
quilt that is selected. The input arguments follow:
• interf_data— Pointer to the interference data for the corresponding component

that interferes with the quilt.
• p_body—Pointer to the solid body in the specified component.
• color— Specifies the color to be used for highlighting the interference and is

defined by the enumerated data type ProColortype.
• hilite— Specifies if the curves and surfaces that interfere with the selected

quilt must be displayed or hidden. Specify PRO_B_TRUE for displaying the
interference geometry of the specified body and PRO_B_FALSE for hiding it.

Core: 3D Geometry 201

The function ProVolumeInterferenceDisplayForBody() returns an
error PRO_TK_E_NOT_FOUND if the given body does not interfere with the
quilt.
Call the function ProVolumeInterferenceInfoArrayFree() to remove
the interference highlighted by the function
ProVolumeInterferenceDisplay() or partially highlighted by the
function ProVolumeInterferenceDisplayForBody().

Faceted Geometry
Creo Parametric allows you to build a surface CAD model on top of faceted or
triangular data. Each facet is uniquely identified by a face normal and three
vertices.
A facet is represented by the opaque handle ProFacet, while a set of facets is
represented by the DHandle ProFacetSet. ProFacetSet has the same
structure as the object ProModelitem and is defined as follows:
typedef struct pro_model_item
{
ProType type;
int id;
ProMdl owner;

} ProFacetSet;

Visiting Facets and Facet Sets
The functions described below enable you to find all the facet sets in a model and
visit the facets stored in those sets.
Functions Introduced:

• ProSolidFacetsetVisit()
• ProFacetsetFacetVisit()
The function ProSolidFacetsetVisit() visits each of the facet sets in a
given model. This function takes the filter function
ProFacetsetFilterAction() and the visit function
ProFacetsetVisitAction() as its input arguments. The function
ProFacetsetFilterAction() is a generic action function for filtering the
facet sets from a model. It returns the filter status of the facet sets. This status is
used as an input argument by the visit action function
ProFacetsetVisitAction().
The function ProFacetsetFacetVisit() visits the facets in the faceted
geometry set. This function takes the filter function
ProFacetFilterAction() and the visit function
ProFacetVisitAction() as its input arguments. The function

202 Creo® Parametric TOOLKITUser’s Guide

ProFacetFilterAction() is a generic action function for filtering a facet
from the faceted geometry set. It returns the filter status of the facet. This status is
used as the input argument by the visit action function
ProFacetVisitAction().

Accessing Facet Properties
The functions described below allow you to access the face normal and three
vertices or corners of a facet. A facet vertex is given by the object
ProFacetVertex.
Functions Introduced:

• ProFacetVerticesGet()
• ProFacetverticesFree()
• ProFacetvertexPointGet()
• ProFacetNormalGet()
The function ProFacetVerticesGet() obtains the vertices of a specified
facet.
Use the function ProFacetverticesFree() to release the memory allocated
for the vertices of a facet.
The function ProFacetvertexPointGet() returns the location of the facet
vertex in the model coordinate system.
The function ProFacetNormalGet() returns the normal vector of a facet in
the model coordinate system.

Core: 3D Geometry 203

7
Core: Relations

Relations .. 205
Adding a Customized Function to the Relations Dialog in Creo Parametric 208

This chapter describes how to access relations on all models and model items in
Creo Parametric using the functions provided in Creo Parametric TOOLKIT.

204 Creo® Parametric TOOLKITUser’s Guide

Relations
Functions Introduced:

• ProModelitemToRelset()
• ProSolidRelsetVisit()
• ProRelsetToModelitem()
• ProRelsetPostregenerationInit()
• ProRelsetRegenerate()
• ProRelsetCreate()
• ProRelsetDelete()
• ProRelsetRelationsGet()
• ProRelsetRelationsSet()
• ProRelationEvalWithUnitsRefResolve()
• ProRelsetUnitsSensitiveSet()
• ProRelsetIsUnitsSensitive()
Superseded Functions:

• ProRelationEvalWithUnits()
The object ProRelset represents the entire set of relations on any model or
model item. It is an opaque handle whose contents can be accessed only through
the functions described in this section.
Creo Parametric TOOLKIT can only access the relations of the models and model
item types as listed in the table below:
Model Types Description
PRO_PART Part
PRO_ASSEMBLY Assembly
PRO_DRAWING Drawing
PRO_REPORT Report
PRO_DIAGRAM Diagram
PRO_DWGFORM Format
PRO_UDF User-defined feature
PRO_FEATURE Feature
PRO_SURFACE Surface
PRO_EDGE Edge
PRO_WELD_PARAMS Weld parameters
PRO_BND_TABLE Bend table
PRO_EXTOBJ External objects
PRO_PATREL_FIRST_DIR Pattern direction 1
PRO_PATREL_SECOND_DIR Pattern direction 2

Core: Relations 205

Model Types Description
PRO_RELOBJ_QUILT Quilt
PRO_RELOBJ_CRV Curve
PRO_RELOBJ_COMP_CRV Compound curve
PRO_RELOBJ_ANNOT_ELEM Annotation Element
PRO_RELOBJ_NC_STEP_OBJECT NC Step Table Entry
PRO_RELOBJ_NC_STEP_MODEL NC Step Table Model

The function ProModelitemToRelset() outputs a ProRelset object that
contains the set of initial relations owned by the given model item. (Note that not
all model items can have relations sets associated with them—only the types listed
in the table.)
Use the function ProRelsetPostregenerationInit() to initialize the
post-regeneration data object ProRelset. The object contains post-regeneration
relations in the specified model.

Note
According to your requirement you can pass the initial relations, or the post-
regeneration relations data object, ProRelset as input to the functions
ProRelsetRelationsGet(), ProRelsetRelationsSet(),
ProRelsetRegenerate() and ProRelsetDelete().

To get the relations of a feature pattern, the model item type should be either
PRO_PATREL_FIRST_DIR or PRO_PATREL_SECOND_DIR, and the
identifier should be that of the dimension on the pattern leader that drives the
pattern in that direction. To find the identifiers of the pattern dimension, use the
functions described in the section Manipulating Patterns on page 144.
The function ProSolidRelsetVisit() enables you to visit all the relation
sets on every model item in a model. Like other visit functions, it calls a user-
supplied action function for each relation set, although there is no filter function.
If the user-supplied function returns any status other than PRO_TK_NO_ERROR,
visiting will stop. The model types PRO_PART, PRO_ASSEMBLY, and PRO_
DRAWING are supported.
The function ProRelsetToModelitem() outputs the model item that is the
owner of the specified ProRelset.
You can regenerate a relation set using the function
ProRelsetRegenerate(). This function also determines whether the
specified relation set is valid. If an error occurred, the function returns a status
other than PRO_TK_NO_ERROR.

206 Creo® Parametric TOOLKITUser’s Guide

To create a new relation set for a model item, use the function
ProRelsetCreate(). If a relation set already exists for that item, the function
returns PRO_TK_E_FOUND.
To delete all the relations in a specified relation set, call the function
ProRelsetDelete().
The function ProRelsetRelationsGet() extracts the text of a set of
relations described by a ProRelset object. This function takes two arguments:
the ProRelset for the relation set and a preallocated expandable array. The
elements of the expandable array are of type ProLine (wide strings).
The function ProRelsetRelationsSet() creates a ProRelset object
from an expandable array of ProLine objects that describes the relations as text.
For details of the syntax and use of relations, see the Creo Parametric help.

Note
Existing relations will be overwritten by a call to
ProRelsetRelationsSet().

The function ProRelationEvalWithUnits() evaluates a line of a relation
set and outputs the resulting value in the form of a ProParamvalue structure.
Specify the input argument consider_units as true if you want the units of
the relation to be considered while evaluating the relation. In this case, the result
of the relation is returned along with its unit. See the chapter Core: Parameters on
page 210 for a description of this data structure. The use of special pattern relation
symbols such as memb_v or idx1 is not supported; instead, replace these
symbols with the corresponding dimension value or number, and evaluate them
individually.
The function ProRelationEvalWithUnits() cannot be used for
referencing external symbols.
In Creo Parametric 8.0.0.0 and later, the function
ProRelationEvalWithUnits() is deprecated. Use the function
ProRelationEvalWithUnitsRefResolve() instead.
The function ProRelationEvalWithUnitsRefResolve() evaluates the
expression that is specified on the right side of a relation line and returns the value
in the form of ProParamvalue structure. Relations with symbols that are
referenced by parameters or dimensions on a different model can be evaluated
using the function ProRelationEvalWithUnitsRefResolve(). Specify
the input argument consider_units as true if you want the units of the
relation to be considered while evaluating the relation. In this case, the result of
the relation is returned along with its unit. See the chapter Core: Parameters on
page 210 for a description of this data structure. The use of special pattern relation

Core: Relations 207

symbols such as memb_v or idx1 is not supported; instead, replace these
symbols with the corresponding dimension value or number, and evaluate them
individually.
The function ProRelsetUnitsSensitiveSet() specifies that units must
be considered while solving the specified relation. Use the function
ProRelsetIsUnitsSensitive() to check if units must be considered
while solving the relation.

Adding a Customized Function to the
Relations Dialog in Creo Parametric
Functions Introduced:

• ProRelationFunctionRegister()
• ProRelationReadFunction()
• ProRelationWriteFunction()
• ProRelationArgscheckFunction()
The function ProRelationFunctionRegister() registers a custom
function that is visible to users in the Creo Parametric relations dialog. To register
a custom function you may supply the following:

• An array of expected arguments. The arguments are described by their type
(double, integer, etc) and attributes indicating if the argument can be skipped
when the user calls the relations function. These optional arguments must fall
at the end of the argument list.

• A Boolean indicating whether or not to check argument types internally. If the
Boolean is set not to check the argument types internally, Creo Parametric
does not need to know the contents of the arguments array. The custom
function you create must handle all the user errors in this situation.

• An arguments check function, which can be used to verify the input
arguments.

• A read function, which provides the value of the function when used in the
right-hand side of a relation. For example
d12 = ptk_user_function (0.5, 5, true, inch)

• Awrite function, which receives the value when the function is used in the
left-hand side of the relation. For example:
ptk_user_function (assigned_value) = 14.0;

• All the callback functions are optional and may be NULL.

208 Creo® Parametric TOOLKITUser’s Guide

Note
Creo Parametric TOOLKIT registered relations are valid only when the
function has been registered by the application. If the application is not
running or not present, models that contain user-defined relations cannot
evaluate these relations. In this situation, the relations are marked as errors,
however, they can be commented until needed at a later time when the
relation functions are reactivated.

The function type ProRelationReadFunction() is called when a custom
relation function is used on the right-hand side of the relation. You should output
the computed value of the custom relation function which is used to complete
evaluation of the relation.
The function ProRelationWriteFunction(), is called when a custom
function is used on the left hand side of a relation. The value of the right-hand side
of the relation is provided as an input. You can use this type of function to
initialize properties to be stored and used by your Creo Parametric TOOLKIT
application.
The function ProRelationArgscheckFunction() performs the argument
check function for a custom relation function. Return PRO_TK_NO_ERROR to
indicate that the arguments passed to the relation are valid. Any other error causes
an error to be displayed in the Relations dialog.
The following example creates three externally defined functions to be available
in the relations dialog:
ptk_set_a and ptk_set_b are used from the left-hand side of relations to
initialize double values to stored "A" and "B" variables.
ptk_eval_ax_plus_b returns the computation of Ax+B, where x is an input
to the function.
These functions are available only while the Creo Parametric TOOLKIT
application is running. Models can be saved with relations referencing these
functions, but these models will have relation errors if retrieved while the
application is not running.

Code Example
The sample code in the file UgCustomRelationFunction.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
param shows how to use the "Write" function for the assignment of the
parameters used for calculation.

Core: Relations 209

8
Core: Parameters

Parameter Objects .. 211
Parameter Values.. 212
Accessing Parameters... 212
Designating Parameters Windchill Servers .. 218
Restricted Parameters ... 218
Table-Restricted Parameters .. 219
Driven Parameters .. 221

This chapter describes the Creo Parametric TOOLKIT functions that give access
to parameters and geometric tolerances.

210 Creo® Parametric TOOLKITUser’s Guide

Parameter Objects
The object ProParameter describes the contents and ownership of a parameter.
ProParameter is a DHandle whose declaration is as follows:
typedef struct proparameter
{
ProType type;
ProName id;
ProParamowner owner;

} ProParameter;
typedef struct proparamowner
{

ProParamfrom type;
union
{

ProModelitem item;
ProMdl model;

} who;
} ProParamowner;

typedef enum proparamfrom
{

PRM_MODEL,
PRM_ITEM

} ProParamfrom;

A structure called ProParamvalue is used to represent the value of a
parameter. Its declaration is as follows:
typedef struct Pro_Param_Value
{
ProParamvalueType type;
ProParamvalueValue value;

} ProParamvalue;
typedef enum param_value_types
{

PRO_PARAM_DOUBLE,
PRO_PARAM_STRING,
PRO_PARAM_INTEGER,
PRO_PARAM_BOOLEAN,
PRO_PARAM_NOTE_ID,
PRO_PARAM_VOID

} ProParamvalueType;
typedef union param_value_values
{

double d_val;
int i_val;
short l_val;
ProLine s_val;

} ProParamvalueValue;

Core: Parameters 211

Parameter Values
Functions introduced:

• ProParamvalueSet()
• ProParamvalueValueGet()
• ProParamvalueTypeGet()
These three functions are utilities to help you manipulate the ProParamvalue
structure. They do not directly affect any parameter in Creo Parametric .
The function ProParamvalueSet() sets the value type of a
ProParamvalue structure, and writes a value of that type to the object.
The function ProParamvalueTypeGet() provides the type of a
ProParamvalue object.
The function ProParamvalueValueGet() reads a value of the specified type
from a ProParamvalue structure.

Accessing Parameters
Functions introduced:

• ProParameterInit()
• ProParameterValueWithUnitsGet()
• ProParameterValueWithUnitsSet()
• ProParameterIsModified()
• ProParameterValueReset()
• ProParameterCreate()
• ProParameterDelete()
• ProParameterSelect()
• ProParameterTableExport()
• ProParameterVisit()
• ProParameterReorder()
• ProParameterToFamtableItem()
• ProParameterUnitsGet()
• ProParameterUnitsAssign()
• ProParameterWithUnitsCreate()
• ProParameterScaledvalueGet()
• ProParameterScaledvalueSet()

212 Creo® Parametric TOOLKITUser’s Guide

• ProParameterDescriptionGet()
• ProParameterDescriptionSet()
• ProParameterLockstatusGet()
• ProParameterLockstatusSet()
The function ProParameterInit() initializes a ProParameter object by
defining its name and owner. The owner is expressed in terms of a
ProModelitem object, and can be a Creo Parametric model, feature, surface, or
edge.
If the owner is a model, use ProMdlToModelitem() to create the
ProModelitem object; in other cases, use ProModelitemInit().
The function ProParameterValueWithUnitsGet() reads the value of a
parameter specified by a ProParameter object into a ProParamvalue
object provided by the application. The function also retrieves the units in which
the parameter value was expressed.
The function ProParameterValueWithUnitsSet() sets the value of a
Creo Parametric parameter identified by a ProParameter object to a value
specified in a ProParamvalue structure. The parameter is expressed using the
value specified for the input parameter units.

Note
If the input argument units is passed as NULL, then the parameter will have the
same units as that of the owner model.

The ProParameterIsModified() function returns a boolean value that
indicates whether the value of the specified parameter has been modified since the
last successful regeneration of the parameter owner. This function works
successfully for solid models only.
The function ProParameterValueReset() sets the value of a parameter to
the one it had at the end of the last regeneration.
The function ProParameterCreate() adds a new parameter to the Creo
Parametric database, and returns a valid ProParameter object for the new
parameter. This function takes input arguments such as the ProModelitem
object for the owner, the name, and the ProParamvalue structure for the value.

Core: Parameters 213

Note
• Model items must have a name before you create a parameter for them.

Geometric items such as surfaces, edges, curves, and quilts are not named by
default; use ProModelitemNameSet() on these items before attempting
to add parameters to them.

• From Creo Parametric 1.0 onwards, you can create parameters on top of an
external simplified representation assembly. However, you cannot create
parameters on the extracted master assembly component.

The function ProParameterDelete() deletes a parameter, specified by a
ProParameter object, from the Creo Parametric database.
The function ProParameterSelect() allows the user to select one or more
parameters of a specified model or database item from the Parameters dialog box
in Creo Parametric . The top model from which the parameters will be selected
must be displayed in the current window. The input argument context allows you
to select parameters by context. It takes the following values:

• PRO_PARAMSELECT_ANY—Specifies any parameter.
• PRO_PARAMSELECT_MODEL—Specifies the parameters of the top-level

model.
• PRO_PARAMSELECT_PART—Specifies the parameters of any part.
• PRO_PARAMSELECT_ASM—Specifies the parameters of any assembly.
• PRO_PARAMSELECT_FEATURE—Specifies the parameters of any feature.
• PRO_PARAMSELECT_EDGE—Specifies the parameters of any edge.
• PRO_PARAMSELECT_SURFACE—Specifies the parameters of any surface.
• PRO_PARAMSELECT_QUILT—Specifies the parameters of any quilt.
• PRO_PARAMSELECT_CURVE—Specifies the parameters of any curve.
• PRO_PARAMSELECT_COMPOSITE_CURVE—Specifies the parameters of

any composite curve.
• PRO_PARAMSELECT_INHERITED—Specifies the parameters of any

inheritance feature.
• PRO_PARAMSELECT_SKELETON—Specifies the parameters of any

skeleton.

214 Creo® Parametric TOOLKITUser’s Guide

• PRO_PARAMSELECT_COMPONENT—Specifies the parameters of any
component.

• PRO_PARAMSELECT_ALLOW_SUBITEM_SELECTION—Specifies the
parameters of all the subitems of the top model.

Note
The signature of ProParameterSelect() has changed from Pro/
ENGINEERWildfire 2.0 onward.

The function ProParameterTableExport() exports a file containing
information from a parameter table in Creo Parametric in the CSVor TXT format.
If the output type is CSV, the output file contains the columns specified by the
input argument column_list, which is a bitmask of columns. In the CSV format,
only the local parameters are exported. However, if the output type is TXT, then a
default set of columns is exported. In the TXT format, all the parameters in the
specified model are exported.
The function ProParameterVisit() visits all the parameters on a specified
database item.

Note
• The parameters are returned in the order that they appear in the parameter

dialog box for the database item.
• ProParameterVisit() does not visit mass property parameters.

The function ProParameterReorder() reorders the given parameter to
come just after the indicated parameter.
The function ProParameterToFamtableItem() converts
ProParameter objects to ProFamtableItem objects. You may need to call
ProParameterToFamtableItem() after calling
ProParameterSelect() that allows you to select parameters from a menu.
The function ProParameterUnitsGet() fetches the units assigned to a
parameter.
The function ProParameterUnitsAssign() assigns the specified unit to a
parameter. If the parameter already has a unit assigned to it, the function will
reassign the specified unit to it. The function can reassign unit only from the same
quantity type. To convert a parameter with unit to a unitless parameter, pass the
input argument units as NULL.

Core: Parameters 215

The function ProParameterWithUnitsCreate() enables the creation of a
new parameter with the assigned units. To create a parameter without units, pass
the input argument units as NULL.
The function ProParameterScaledvalueGet() retrieves the parameter
value in terms of the units of the parameter, instead of the units of the owner
model.
The function ProParameterScaledvalueSet() sets the parameter value in
terms of the units provided, instead of using the units of the owner model.
The function ProParameterDescriptionGet() obtains the description of
the parameter. The function ProParameterDescriptionSet() assigns the
description of the parameter.
The function ProParameterLockstatusGet() returns the access state of
the specified parameter. Use the function ProParameterLockstatusSet()
to set the access state for the specified parameter. The access state is defined in the
enumerated data type ProLockstatus. The valid values are:
• PRO_PARAMLOCKSTATUS_UNLOCKED—Parameters with full access are

user-defined parameters, that can be modified from any application.
• PRO_PARAMLOCKSTATUS_LIMITED—Full access parameters can be set to

have limited access. Limited access parameters can be modified by user,
family tables and programs. These parameters cannot be modified by relations.

• PRO_PARAMLOCKSTATUS_LOCKED—Parameters with locked access are
parameters that can be locked either by an external application, or by the user.
You can modify parameters locked by an external application only from within
an external application. You cannot modify user-defined locked parameters
from within an external application.

Notification Functions
The parameter notification functions support the parameters owned by an
annotation element. These functions are call back functions and are accessible by
calling the function ProNotificationSet().

• ProParameterCreateWithUnitsPreAction()
• ProParameterDeletePreAction()
• ProParameterModifyWithUnitsPreAction()
• ProParameterCreatePostAction()
• ProParameterModifyWithUnitsPostAction()
• ProParameterDeleteWithUnitsPostAction()
The notification function ProParameterCreateWithUnitsPreAction()
is called before the parameter is created in the Creo Parametric user interface. This
function is available by calling ProNotificationSet() with the value of the

216 Creo® Parametric TOOLKITUser’s Guide

notify type as PRO_PARAM_CREATE_W_UNITS_PRE. You can specify the units
for the parameter. The function ProParameterCreatePreAction() has
been superseded by ProParameterCreateWithUnitsPreAction().
The notification function ProParameterDeletePreAction() is called
before the parameter is deleted. This function is available by calling
ProNotificationSet() with the value of the notify type as PRO_PARAM_
DELETE_PRE.
The notification function ProParameterModifyWithUnitsPreAction()
is called before a parameter is modified in the Creo Parametric user interface. This
function is available by calling ProNotificationSet() with the value of the
notify type as PRO_PARAM_MODIFY_W_UNITS_PRE. The function returns the
old and new units of the parameter along with the values. The function
ProParameterModifyPreAction() has been superseded by
ProParameterModifyWithUnitsPreAction().
You can use the PreAction functions to cancel any changes made to the
parameters. If any value except PRO_TK_NO_ERROR is returned, then the change
is not permitted. The application must provide appropriate messaging to the user
to explain the reason for which the change was rejected.

Note
You are not permitted to cancel the parameter modification events when
modifying multiple parameters as a group.

The notification function ProParameterCreatePostAction() is called
after a parameter has been created. This function is available by calling
ProNotificationSet() with the value of the notify type as PRO_PARAM_
CREATE_POST.
The notification function
ProParameterModifyWithUnitsPostAction() is called after a
parameter has been modified in the Creo Parametric user interface. This function
is available by calling ProNotificationSet() with the value of the notify
type as PRO_PARAM_MODIFY_W_UNITS_POST. The function returns the old
and modified units of the parameter along with the values. The function
ProParameterModifyPostAction() has been superseded by
ProParameterModifyWithUnitsPostAction().
The notification function
ProParameterDeleteWithUnitsPostAction() is called after a
parameter has been deleted in the Creo Parametric user interface. This function is
available by calling ProNotificationSet() with the value of the notify

Core: Parameters 217

type as PRO_PARAM_DELETE_W_UNITS_POST. The function
ProParameterDeletePostAction() has been superseded by
ProParameterDeleteWithUnitsPostAction().

Example 1: Labeling a Feature with a String Parameter
The sample code in UgParamFeatLabel.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_param shows how to
label the selected feature with the specified string parameter. The program calls
ProParameterInit() to find out whether the parameter already exists. If the
parameter does not exist, the function calls ProParameterCreate(); if it
exists, the function calls ProParameterValueSet().

Designating Parameters Windchill
Servers
Functions introduced:

• ProParameterDesignationAdd()
• ProParameterDesignationVerify()
• ProParameterDesignationRemove()
These functions control the designation of parameters for Windchill servers. A
designated parameter will become visible within these management systems as an
attribute on the owning model when it is next submitted.
The function ProParameterDesignationAdd() designates an existing
parameter, referred to by its ProParameter object.
The function ProParameterDesignationRemove() removes the
designation.

Note
PTC does not recommend undesignating or deleting a parameter that is
already exposed to a Product Data Management system, such as Windchill
PDMLink or Pro/INTRALINK.

The function ProParameterDesignationVerify() tells you whether a
specified model parameter is currently designated or not.

Restricted Parameters
Restricted parameters can have either:

218 Creo® Parametric TOOLKITUser’s Guide

• an enumeration which limits values only to those specified in advance; or
• a range which limits numerical values to fall within that range.
Functions introduced:

• ProParameterIsEnumerated()
• ProParameterRangeGet()
Use the function ProParameterIsEnumerated() to identify if a parameter
is enumerated, and provides the values that may be assigned to it. If the parameter
is enumerated then it gives the ProArray of values that are assigned to this
parameter.
Use the function ProParameterRangeGet() to identify if a parameter's
value is restricted to a certain range. If the parameter is restricted by a range then
it gives the maximum and minimum value of the parameter.

Table-Restricted Parameters
A parameter table is made up of one or more parameter table sets. Each set
represents one or more parameters with their assigned values or assigned ranges.
A given parameter owner (model, feature, annotation element, geometry item) can
only have one parameter table set applied that creates a given parameter. In Creo
Parametric TOOLKIT , a parameter table set is represented by the type
ProParamtableSet and is made up of entries, represented by
ProParamtableEntry. A single entry represents a parameter with an
assigned value or range.
Functions introduced:

• ProParameterTablesetGet()
• ProMdlParamtablesetsCollect()
• ProParamtablesetEntriesGet()
• ProParamtablesetTablepathGet()
• ProParamtablesetLabelGet()
• ProParamtablesetFree()
• ProParamtablesetProarrayFree()
• ProParamtableentryValueGet()
• ProParamtableentryRangeGet()
• ProParamtableentryNameGet()
• ProParamtableentryProarrayFree()
• ProParamtablesetApply()
• ProRelsetConstraintsGet()

Core: Parameters 219

Use the function ProParameterTablesetGet() to obtain the governing
parameter table set for this parameter, if it's a member of a set.
Use the function ProMdlParamtablesetsCollect() to obtain an array of
all the table sets that are available for use in the given model. This includes all sets
that are loaded from table files that are set up in this session, and any other sets
that were previously stored in the model.
Use the function ProParamtablesetFree() to free the parameter table set
and the function ProParamtablesetProarrayFree() to free an array of
parameter table sets.
Use the function ProParamtablesetEntriesGet() to obtain the entries
that are contained in a parameter table set.
Use the function ProParamtablesetTablepathGet() to obtain the name
of the table that owns this parameter table set. If the set is loaded from a certain
table file, this is the full path. If the set has been stored in the model directly, this
is the table name.
Use the function ProParamtablesetLabelGet() to obtain the set label for
a given parameter table set.
Use the function ProParamtableentryNameGet() to obtain the name for
the parameter in this table set.
Use the function ProParamtableentryValueGet() to obtain the value for
the parameter in this table set. If the parameter also has a range applied, this is the
default value for the parameter. Use the function
ProParamtableentryRangeGet() to obtain the permitted range for the
parameter in this table set. The output arguments for this function are:

• minimum—The minimum value for this parameter as set by the parameter set.
• maximum—The maximum value for this parameter as set by the parameter set
You can use the function ProParamtableentryProarrayFree() to free
an array of table entries.
The function ProParamtablesetApply() assigns this parameter set to the
given parameter owner. Parameters used by the set are created or modified, as
appropriate. The parameter values are set to the default values. This function does
not regenerate the model and may fail if the parameter owner already has one or
more of the set's required parameters defined which are not driven by this table.
The function ProRelsetConstraintsGet() obtains the constraints applied
to a given relation set. Constraints may be assigned when one or more parameters
of the set is governed by an external parameter file.

220 Creo® Parametric TOOLKITUser’s Guide

Driven Parameters
The functions described below provide access to the item (parameter or function)
driving model parameters.
Functions Introduced:

• ProParameterDrivertypeGet()
• ProParameterDrivingsymbolGet()
• ProParameterDrivingparamSet()
• ProParameterDrivingFunctionGet()
• ProParameterDrivingFunctionSet()
The function ProParameterDriverGet() has been deprecated. Use the
function ProParameterDrivertypeGet() instead. The function
ProParameterDrivertypeGet() retrieves the type of operation that is
driving a model parameter in the form of ProParameterDriver object. In
assemblies, you can refer to a parameter that belongs to another model. The
function ProParameterDrivertypeGet() returns information for such
parameters, which are referenced in the current model but belong to another
model. The types of drivers are as follows:

• PRO_PARAMDRIVER_PARAM—Specifies the parameter driving the model
parameter.

• PRO_PARAMDRIVER_FUNCTION—Specifies the function driving the model
parameter.

• PRO_PARAMDRIVER_RELATION—Specifies the relation driving the model
parameter.

The function ProParameterDrivingparamGet() has been deprecated.
Use the function ProParameterDrivingsymbolGet() instead. The
function ProParameterDrivingsymbolGet() retrieves the driving
parameter for a model parameter, if the driver type is PRO_PARAMDRIVER_
PARAM. The function ProParameterDrivingsymbolGet() also returns
information for parameters, which are referenced in the current model but belong
to another model.
The function ProParameterDrivingparamSet() sets the driver type for a
material parameter to the value PRO_PARAMDRIVER_PARAM.
The function ProParameterDrivingFunctionGet() obtains the driving
function for a material parameter, if the driver type is PRO_PARAMDRIVER_
FUNCTION.
The function ProParameterDrivingFunctionSet() sets the driver type
for a material parameter to the value PRO_PARAMDRIVER_FUNCTION.

Core: Parameters 221

9
Core: Coordinate Systems and

Transformations
Coordinate Systems .. 223
Coordinate System Transformations ... 225

This chapter describes the various coordinate systems used by Creo Parametric
and Creo Parametric TOOLKIT, and how to transform coordinates from one to
another.

222 Creo® Parametric TOOLKITUser’s Guide

Coordinate Systems
Creo Parametric and Creo Parametric TOOLKIT use the following coordinate
systems:

• Solid coordinate system
• Screen coordinate system
• Window coordinate system
• Drawing coordinate system
• Drawing view coordinate system
• Assembly coordinate system
• Datum coordinate system
• Section coordinate system
The following sections describe each of these coordinate systems.

Solid Coordinate System
The solid coordinate system is the three-dimensional, Cartesian coordinate system
used to describe the geometry of a Creo Parametric solid model. In a part, the
solid coordinate system describes the geometry of the surfaces and edges. In an
assembly, the solid coordinate system also describes the locations and orientations
of the assembly members.
You can visualize the solid coordinate system in Creo Parametric by creating a
coordinate system datum with the option Model ▶ Coordinate System. Distances
measured in solid coordinates correspond to the values of dimensions as seen by
the Creo Parametric user.
Solid coordinates are used by Creo Parametric TOOLKIT for all the functions that
look at geometry, and most of the functions that draw three-dimensional graphics.

Screen Coordinate System
The screen coordinate system is a two-dimensional coordinate system that
describes locations in a Creo Parametric window. This is an intermediate
coordinate system after which the screen points are transformed to screen pixels.
All the models are first mapped to the screen coordinate system. When the user
zooms or pans the view, the screen coordinate system follows the display of the
solid, so a particular point on the solid always maps to the same screen coordinate.
The mapping changes only when the view orientation is changed.
Screen coordinates are used by some of the graphics functions, the mouse input
functions, and all the functions that draw graphics or manipulate items on a
drawing.

Core: Coordinate Systems and Transformations 223

Window Coordinate System
The window coordinate system is similar to the screen coordinate system. After
mapping the models to the screen coordinate system, they are mapped to the
window coordinate before being drawn to screen pixels based on screen
resolution. When pan or zoom values are applied to the coordinates in the screen
coordinate system, they result in window coordinates. When an object is first
displayed in a window, or the option View ▶ Refit is used, the screen and window
coordinates are the same.
You can use the function ProWindowCoordinatePixelGet() to get the
window point in pixel coordinates.
The 3D point that is projected to 2D will be visible on the screen only if it lies
within the outline that is returned by the function
ProWindowPixelOutlineGet(). If not, it will be clipped and will not be
visible on the screen.

Drawing Coordinate System
The drawing coordinate system is a two-dimensional system that describes the
location on a drawing relative to the bottom, left corner, and measured in drawing
units. For example, on a U.S. letter-sized, landscape-format drawing sheet that
uses inches, the top, right corner is (11, 8.5) in drawing coordinates.
The Creo Parametric TOOLKIT functions that manipulate drawings generally use
screen coordinates.

Drawing View Coordinate System
This drawing view coordinate system is used to describe the locations of entities
in a drawing view.

Assembly Coordinate System
An assembly has its own coordinate system that describes the positions and
orientations of the member parts and subassemblies, and the geometry of datum
features created in the assembly.
When an assembly is retrieved into memory, each member is loaded too, and
continues to use its own solid coordinate system to describe its geometry.
This is important when you are analyzing the geometry of a subassembly, and
want to extract or display the results relative to the coordinate system of the parent
assembly.

224 Creo® Parametric TOOLKITUser’s Guide

Datum Coordinate System
A coordinate system datum can be created anywhere in any part or assembly, and
represents a user-defined coordinate system. It is often a requirement in a Creo
Parametric TOOLKIT application to describe geometry relative to such a datum.

Section Coordinate System
Every sketch has a coordinate system used to locate entities in that sketch.
Sketches used in features will use a coordinate system different from that of the
solid model.

Coordinate System Transformations
Functions Introduced:

• ProPntTrfEval()
• ProVectorTrfEval()
All coordinate systems are treated in Creo Parametric TOOLKIT as if they were
three-dimensional. Therefore, a point in any of the coordinate systems described is
always represented in C by the following type:

typedef double ProPoint3d[3]

Vectors are distinguished for clarity by a different, though equivalent, declaration:
typedef double ProVector[3]

, Screen, window and section coordinates contain a Z value whose positive
direction is normal to the screen or the sketch. The value of Z is not generally
important when specifying a screen location as an input to a function, but it is
useful in other situations. For example, if the user selects a datum plane, you can
find out which side is towards the user by calculating the normal to the plane,
transforming to screen coordinates, then looking at the sign of the Z coordinate.
A transformation between two coordinate systems is represented by a 4x4 matrix,
with the following type:
typedef double ProMatrix[4][4];

This combines the conventional 3x3 matrix that describes the relative orientation
of the two systems, and the vector that describes the shift between them.

Core: Coordinate Systems and Transformations 225

Transformation Matrix

Creo Parametric TOOLKIT provides two utilities for performing coordinate
transformations. The function ProPntTrfEval() transforms a three-
dimensional point, and ProVectorTrfEval() transforms a three-dimensional
vector.
The source code for other utilities that manipulate transformation matrices is
located in the file Matrix.c located at <creo_toolkit_loadpoint>/
protk_appls/pt_examples/pt_utils/Util.
The following sections describe the functions needed to obtain the transformation
matrix between two different coordinate systems in Creo Parametric.

Transforming Solid to Screen Coordinates
Functions Introduced:

• ProViewMatrixGet()
• ProViewMatrixSet()
The view matrix describes the transformation from solid to screen coordinates.
The function ProViewMatrixGet() provides the view matrix for the
specified view. Example 1: Solid Coordinates to Screen Coordinates on page 226
shows a function that transforms a point, using theProViewMatrixGet()
function, and an example user function.
The function ProViewMatrixSet() changes the orientation of the solid
model on the screen.

Example 1: Solid Coordinates to Screen Coordinates
The sample code in the file UgFundSolid2Screen.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
fundament shows how to transform solid coordinates to screen coordinates.

226 Creo® Parametric TOOLKITUser’s Guide

Example 2: Transform from Solid Coordinates to Screen
Coordinates
The sample code in the file UgFundCsysTrf.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_fundament shows
how to extract a selected point from the surface of a solid model, transform it from
solid coordinates to screen coordinates, write the results into a file and display it.

Transforming Screen to Window Coordinates
Functions Introduced:

• ProWindowCurrentMatrixGet()
• ProWindowPanZoomMatrixSet()
Transformation from screen to window coordinates consists solely of a zoom
factor and pan in X and Y.
The function ProWindowCurrentMatrixGet() gets the transformation
matrix for the window. A pan and zoom transformation matrix consists of:

• The scale factor, running down the diagonal of the matrix. For example, to
zoom in by a factor of 2, the value 2.0 will be down the diagonal in the
elements (0,0), (1,1), and (2,2).

• The translation factor (pan) in the elements (3,0) - X and (3,1) - Y.
• The element at (3,3) should be 1.0.
The function ProWindowPanZoomMatrixSet() can change the pan and
zoom of the window. The matrix should contain only the elements listed above,
for function ProWindowCurrentMatrixGet().

Transforming from Drawing View to Screen
Coordinates in a Drawing
Function Introduced:

• ProDrawingViewTransformGet()
The function ProDrawingViewTransformGet() performs the
transformation from drawing view coordinates (solid) to screen coordinates. It
describes where a particular point on the solid will be in the drawing for a
particular view of the solid.

Transforming from Screen to Drawing Coordinates
in a Drawing
Function Introduced:

Core: Coordinate Systems and Transformations 227

• ProDrawingSheetTrfGet()
The function ProDrawingSheetTrfGet() returns the matrix that transforms
screen coordinates to drawing coordinates. The function performs this
transformation for the first sheet.

Example 3: Screen Coordinates to Drawing Coordinates
The sample code in the file UgFundScreen2Drw.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
fundament allows you to transform the screen coordinates to drawing
coordinates.

Example 4: Transform from Screen Coordinates to Drawing
Coordinates
The sample code in the file UgFundCsysTrf.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_fundament allows
you to select a point from the screen, transform it from screen coordinates to
drawing coordinates, write the results into a file and display it.

Transforming Coordinates of an Assembly Member
Function Introduced:

• ProAsmcomppathTrfGet()
The function ProAsmcomppathTrfGet() provides the matrix for
transforming from the solid coordinate system of the assembly member to the
solid coordinates of the parent assembly, or the reverse.

Transforming to Coordinate System Datum
Coordinates
Functions Introduced:

• ProCsysDataGet()
• ProMatrixInit()
The function ProCsysDataGet() provides the location and orientation of the
coordinate system datum in the solid coordinate system of the solid that contains
it. The location is in terms of the directions of the three axes, and the position of
the origin. When these four vectors are made into a transformation matrix using
the function ProMatrixInit(), that matrix defines the transformation of a
point described relative to the coordinate system datum back to solid coordinates.

228 Creo® Parametric TOOLKITUser’s Guide

To transform the other way, which is the more usual requirement, you need to
invert the matrix. The example function ProUtilMatrixInvert(), inverts
the specified matrix.

Transforming Coordinates of Sketched Entities
Function Introduced:

• ProSectionLocationGet()
The function ProSectionLocationGet() provides the matrix for
transforming from the solid coordinate system to the sketch coordinate system, or
the reverse.

Example 5: Using Several Coordinate Transforms
The sample code in the file UgGraphZoomAtPoint.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
graphics demonstrates how to use several coordinate transformations. The
function will zoom in on a solid model, with the results centered at the selected
location.

Core: Coordinate Systems and Transformations 229

10
Core: Family Tables

Family Table Objects ... 231
Family Table Utilities.. 231
Visiting Family Tables .. 231
Operations on Family Table Instances... 232
Operations on Family Table Items... 234

This chapter describes how to use Creo Parametric TOOLKIT functions to
manipulate the family table for an object.

230 Creo® Parametric TOOLKITUser’s Guide

Family Table Objects
To enable access to family tables, Creo Parametric TOOLKIT implements the
following objects (all DHandles):

• ProFamtable—A structure that contains the owner, type, and integer
identifier of a family table.

• ProFaminstance—A structure that contains the name of a family table
instance and the handle of the family table to which it belongs.

• ProFamtableItem—A structure that contains the type, name, and owner
of a family table item (or column).

Family Table Utilities
Functions Introduced:

• ProFamtableInit()
• ProFamtableCheck()
• ProFamtableEdit()
• ProFamtableShow()
• ProFamtableErase()
• ProFamtableIsModifiable()
Before you can manipulate the family table information stored in an object, you
must get the handle to its family table using the function
ProFamtableInit(). Then use ProFamtableCheck() to determine
whether the family table is empty (for a ProSolid, ProPart, or
ProAssembly object, use ProSolidFamtableCheck()
The function ProFamtableEdit() opens a Pro/TABLE window for editing
the specified family table, producing the same effect as the Creo Parametric
command Edit in the Family Table dialog box.
Similarly, a call to ProFamtableShow() presents the family table in the same
manner as the Creo Parametric command Family Tab, Show.
The function ProFamtableErase() clears the family from the current
session, similar to the Creo Parametric command Family Tab, Erase Table.
The function ProFamtableIsModifiable() checks whether the specified
family table can be modified.

Visiting Family Tables
Functions Introduced:

Core: Family Tables 231

• ProFamtableInstanceVisit()
• ProFamtableItemVisit()
As with the other Creo Parametric TOOLKIT traversal functions, the traversal
functions for family tables visit family table objects and pass each object to action
and filter functions that you supply.
For example, the function ProFamtableInstanceVisit() visits all the
family’s instances and calls the user-supplied functions of type
ProFamtableInstanceAction() and
ProFamtableInstanceFilter().
The function ProFamtableItemVisit() visits each family table item (or
column) and calls the user-supplied functions of type
ProFamtableItemAction() and ProFamtableItemFilter().

Operations on Family Table Instances
Functions Introduced:

• ProFaminstanceValueGet()
• ProFaminstanceValueSet()
• ProFaminstanceFamtableItemIsDefault()
• ProFaminstanceAdd()
• ProFaminstanceCheck()
• ProFaminstanceIsModifiable()
• ProFaminstanceInit()
• ProFaminstanceRemove()
• ProFaminstanceSelect()
• ProFaminstanceMdlGet()
• ProFaminstanceErase()
• ProFaminstanceLock()
• ProFaminstanceRetrieve()
• ProFaminstanceGenericGet()
• ProFaminstanceImmediategenericinfoGet()
• ProFaminstanceIsVerified()
• ProFaminstanceIsExtLocked()
• ProFaminstanceIsFlatState()
The functions in this section enable you to programmatically manipulate instances
that appear in a family table.

232 Creo® Parametric TOOLKITUser’s Guide

The function ProFaminstanceValueGet() retrieves the value of the family
table item for the specified family table instance. Use the function
ProFaminstanceValueSet() to change the value of the specified family
table item.
For the specified instance, use the function
ProFaminstanceFamtableItemIsDefault() to determine if the
specified item has the default value, which is the value of the specified item in the
generic model.
The functions ProFaminstanceValueGet(),
ProFaminstanceValueSet(), and
ProFaminstanceFamtableItemIsDefault() require the instance and
the item handles as input values, both of which are available via the visit
functions.
The function ProFaminstanceAdd() adds an instance to a family table. Note
that you must initialize the handle to the new instance (using
ProFaminstanceInit()) before adding the instance to the table.
Use the function ProFaminstanceRemove() to remove the specified
instance from the family table.
The function ProFaminstanceMdlGet() retrieves the handle to the instance
model for the given instance that is in session.
To erase an instance model from memory, call the function
ProFaminstanceErase().
The function ProFaminstanceCheck() checks the existence and lock status
of the specified instance. Use the function ProFaminstanceLock() to make
changes to the lock status of an instance.
The function ProFaminstanceIsModifiable() checks whether the given
instance of a family table can be modified.
Given the instance handle, the function ProFaminstanceRetrieve()
retrieves an instance of a model from disk. Note that you must allocate space for
the resulting ProMdl object. In addition, you must call ProSolidDisplay()
to display the instance model.
The function ProFaminstanceGenericGet() retrieves the generic model
handle for a given instance model. This function includes the ability to choose
between the immediate and the top-level generic models.
From Pro/ENGINEERWildfire 4.0 onwards, the behavior of the function
ProFaminstanceGenericGet() has changed as a result of performance
improvement in family table retrieval. When you now call the function
ProFaminstanceGenericGet() with the flag immediate set to TRUE,
the function returns a new error code PRO_TK_CANT_OPEN if the immediate
generic is currently not in session. Use the function

Core: Family Tables 233

ProFaminstanceImmediategenericinfoGet() to get the name and
model type of the immediate generic model. This information can be used to
retrieve the immediate generic model.
If you wish to turn-off this behavior and continue to run legacy applications in the
pre-Wildfire 4.0 mode, set the configuration option retrieve_instance_
dependencies to instance_and_generic_deps.
The function ProFaminstanceIsVerified() identifies whether the
instance has been verified, and whether the verification succeeded or failed.
The function ProFaminstanceIsExtLocked() identifies whether the
instance has been locked by an external application.
The function ProFaminstanceIsFlatState() identifies whether an
instance is a sheetmetal flat state instance.

Operations on Family Table Items
Functions Introduced:

• ProFamtableItemAdd()
• ProFamtableItemRemove()
• ProFamtableItemToModelitem()
• ProModelitemToFamtableItem()
• ProFamtableItemToParameter()
• ProParameterToFamtableItem()
These functions enable you to programmatically manipulate family table items
(column values).
The function ProFamtableItemAdd() adds the specified item to a family
table. Similarly, ProFamtableItemRemove() removes the specified item
from the family table.
The functions ProFamtableItemToModelitem() and
ProModelitemToFamtableItem() convert between ProFamtableItem
and ProModelitem objects. Note that user selections (ProSelection
objects) can be converted to ProFamtableItem objects by calling the
functions ProSelectionModelitemGet() and
ProModelitemToFamtableItem().
The functions ProFamtableItemToParameter() and
ProParameterToFamtableItem() convert between ProFamtableItem
and ProParameter objects. Note that you might need to call
ProParameterToFamtableItem() after calling
ProParameterSelect() (which enables users to select parameters from a
menu).

234 Creo® Parametric TOOLKITUser’s Guide

11
Core: External Data

Introduction to External Data .. 236
Storing External Data... 237
Retrieving External Data .. 239

This chapter describes how to store and retrieve external data. External data is a
Creo Parametric TOOLKIT application to be stored in the Creo Parametric
database in a way that is invisible to the Creo Parametric user.

235

Introduction to External Data
External data provides a way for the Creo Parametric TOOLKIT application to
store its own private information about a Creo Parametric model within the model
file. The data is built and interrogated by the Creo Parametric TOOLKIT
application as a workspace data structure. It is saved to the model file when the
model is saved, and retrieved when the model is retrieved. The external data is
otherwise ignored by Creo Parametric, so the Creo Parametric TOOLKIT
application has complete control over the form and content.
The external data for a particular Creo Parametric model is broken down into
classes and slots. A class is a named “bin” for your data, and simply identifies it as
yours so no other Creo Parametric TOOLKIT application (or other classes in your
own application) will use it by mistake. A Creo Parametric TOOLKIT application
usually needs only one class. The class name should be unique for each model,
and describe the role of the data in your application.
Each class contains a list of data slots. Each slot is identified by either a name or
an identifier, and contains a single data item of one of the following types:

• Integer
• Double
• Wide string (maximum length = 512 characters)
• Stream (maximum size = 512 kilobytes). A slot of type stream contains a

completely unformatted sequence of bytes with unrestricted values. The slot
also records the number of bytes in the stream, so no termination rules are
assumed. The stream type should be used only when the format is completely
controlled by your application in a platform-independent way. For example, if
the volume of external data is very large, the stream format might be used to
store the data in a more compressed form for greater efficiency.

• Chapter. The chapter data type is similar to the stream data. It has the
following advantages as compared to stream data type:

○ Chapter data type has no limit on data length.
○ The name of the slot is used as the name of the chapter.

Stream and chapter slots could also be used as a shortcut way to store, for
instance, an entire C structure, or an array of C structures, without any formatting.
However, if you are supporting more than one platform with your Creo Parametric
TOOLKIT application, remember that the mapping of a C structure may differ
between platforms.
If external data is stored during a Creo Parametric session on one platform and
retrieved on another, the values of integer, double, and wide string slots will be
preserved correctly, regardless of any differences in the coding of those data types

236 Creo® Parametric TOOLKITUser’s Guide

by the two C compilers. Stream and chapter slots will be preserved with exactly
the same byte values and sequence that was saved, regardless of byte-swap
conventions on the two platforms.
External data is stored in the workspace and is accessible only through the
functions provided for that purpose. Two objects are used to reference the data
contents: ProExtdataClass and ProExtdataSlot. These are both
declared as DHandles—visible data structures. The declarations are as follows:

typedef struct pro_extdata_class
{

ProMdl p_model;
ProName class_name;

} ProExtdataClass;

typedef struct pro_extdata_slot
{

ProExtdataClass *p_class;
ProName slot_name;
int slot_id;

} ProExtdataSlot;

Each slot has two ways to be identified: a name, which is defined by the
application when the slot is created, or an identifier, which is allocated
automatically. You can choose which kind of identifier to use for each slot. The
Creo Parametric TOOLKIT functions for external data do not use the usual return
type ProError. Instead, they use an enumerated type called ProExtdataErr
that contains error statuses that are more specific to the needs of those functions.
All the declarations relevant to external data are in the header file
ProExtdata.h.

Storing External Data
Functions Introduced:

• ProExtdataInit()
• ProExtdataClassRegister()
• ProExtdataClassUnregister()
• ProExtdataSlotCreate()
• ProExtdataSlotWrite()

Core: External Data 237

• ProExtdataSlotDelete()
• ProExtdataTerm()

Note
For the functions ProExtdataClassRegister() and
ProExtdataSlotCreate(), the combined length of the class and slot
names must not exceed PRO_NAME_SIZE.

The first step in manipulating external data for a model in a Creo Parametric
session is to call the initialize function ProExtdataInit() for that model.
Next, set up a class using the function ProExtdataClassRegister(). The
inputs are the ProMdl object and the class name, in the form of a wide string.
The function outputs a ProExtdataClass used thereafter by the application to
reference the class.
You can delete a class that is no longer needed using the function
ProExtdataClassUnregister().
The function ProExtdataSlotCreate() creates an empty data slot. The
inputs are the ProExtdataClass object and the slot name, in the form of a
wide string. The function outputs a ProExtdataSlot object to identify the new
slot. You can use NULL as the value of the slot name argument, in which case the
function allocates a unique integer identifier for the slot (which becomes the value
of the field slot_id in the ProExtdataSlot structure).

Note
Slot names cannot begin with a number.

The function ProExtdataSlotWrite() specifies the slot data type and
writes an item of that type to the slot. The inputs are:

• The slot object ProExtdataSlot
• A flag showing whether the slot is identified by name or integer
• The data type of the slot
• The number of bytes in the data. Specify this argument only when the data

type is stream or chapter.
• A pointer to the data (cast to void*)

238 Creo® Parametric TOOLKITUser’s Guide

A slot of type stream has a maximum size of 512 kilobytes. If this size is
exceeded, ProExtdataSlotWrite() returns the status PROEXTDATA_TK_
STREAM_TOO_LARGE. For data of size larger than 512 kilobytes, use the slot of
type chapter.
You can delete an unused slot using the function ProExtdataSlotDelete().
If the user and application no longer need external data in session, call
ProExtdataTerm() to clean the external data from memory.

Note
ProExtdataTerm() does not affect the contents of any file on the disk. It
only removes all external data from the memory. Changes made to external
data during the current session are not stored in the file until you save the
model. If you call ProExtdataTerm() after making changes to the model,
all external data changes (such as newly created slots, changed slot value, and
deleted slot) made since the last ProMdlSave() are lost.

Retrieving External Data
Functions Introduced:

• ProExtdataLoadAll()
• ProExtdataClassNamesList()
• ProExtdataSlotIdsList()
• ProExtdataSlotNamesList()
• ProExtdataSlotRead()
• ProExtdataFree()
For improved performance, external data is not loaded automatically into memory
with the model. When the model is in session, call the function
ProExtdataLoadAll() to retrieve all the external data for the specified
model from the Creo Parametric model file and put it in the workspace. The
function needs to be called only once to retrieve all the data.
Note that the function ProExtdataLoadAll() provides better performance
than ProExtdataClassNamesList(),
ProExtdataSlotNamesList(), and ProExtdataSlotRead() because
these functions load only specific information (class names, slot names, and slot
files, respectively), which can be slow.
The ProExtdataClassNamesList() function provides an array of the
names of all the external data classes registered in a specified model.

Core: External Data 239

The function ProExtdataSlotIdsList() provides an array of the integer
identifiers of all the slots in a specified class. The input is a ProExtdataClass
structure that must be set up manually or programmatically. The function
ProExtdataSlotNamesList() provides an array of the names of the slots
in the specified class. The function allocates a term in the array for each slot, even
if you did not assigned a name to the slot.
The function ProExtdataSlotRead() reads the data type and data from a
specified slot. Its input is a ProExtdataSlot structure that must be set up
manually. There is also an input argument to show whether the slot is identified by
name or by integer. The function outputs the data type, the number of bytes (if the
data type is stream or chapter), and a pointer to the data itself.
The ProExtdataSlotRead() function allocates memory for the data it
outputs. To free this memory, call ProExtdataFree().

Note
If you call ProExtdataSlotRead() multiple times and do not free the
memory, the function uses the same memory for each call.

240 Creo® Parametric TOOLKITUser’s Guide

12
Core: Cross Sections

Listing Cross Sections ... 242
Extracting Cross-Sectional Geometry ... 242
Visiting Cross Sections .. 247
Creating and Modifying Cross Sections... 247
Mass Properties of Cross Sections ... 254
Line Patterns of Cross Section Components.. 254

The functions in this chapter enable you to access, modify, and delete cross
sections, and create planar cross sections.

241

Listing Cross Sections
Functions Introduced:

• ProXsecRename()
• ProXsecTypeGet()
The function ProXsecRename() renames a specified cross section.
Use function ProXsecTypeGet() to retrieve the type of cross section. The
input argument for this function is a handle to the specified cross section. The
output argument p_type is a ProXsecType structure, which contains the
following fields:

• cutter—Specifies the cutting object type. The valid cutting object types are
contained in the enumerated type ProXsecCut and are as follows:

○ PRO_XSEC_PLANAR

○ PRO_XSEC_OFFSET

○ PRO_XSEC_PATTERN

• cut_object—Specifies the object that was cut. The valid object types are
contained in the enumerated type ProXsecCutobj and are as follows:

○ PRO_XSECTYPE_MODEL—Specifies that the cross section was created
on solid geometry.

○ PRO_XSECTYPE_QUILTS—Specifies that the cross section was created
on one quilt surface.

○ PRO_XSECTYPE_MODELQUILTS—Specifies that the cross section was
created on solid geometry and all quilt surfaces.

○ PRO_XSECTYPE_ONEPART—Specifies that the cross section was
created on one component in the assembly.

Extracting Cross-Sectional Geometry
Functions Introduced:

• ProXSectionItemDataGet()
• ProXSectionItemFree()
• ProXSectionItemsArrFree()
• ProXSectionItemsCollect()
• ProXsecGeometryArrayFree()
• ProXsecGeometryFree()
• ProXsecRegenerate()

242 Creo® Parametric TOOLKITUser’s Guide

• ProXsecDisplay()
• ProXsecPlaneGet()
• ProOffsetXsecGet()
• ProOffsetXsecInfoGet()
• ProXsecGet()
• ProXsecMdlnameAlloc()
• ProXsecMdlnameFree()
• ProXsecMdlnameNameGet
• ProXsecMdlnameNameSet()
• ProXsecMdlnameSolidOwnerGet()
• ProXsecMdlnameSolidOwnerSet()
• ProXsecAsModelitemGet()
• ProXsecFlipGet()
• ProXSectionExcludeCompGet()
• ProAsmpathProarrayFree()
Superseded Functions:

• ProXsecGeometryRetrieve()
• ProXsecGeometryCollect()
• ProXsecExcludeCompGet()
The geometry of a cross section in an assembly is divided into components. Each
component corresponds to one of the parts in the assembly that is intersected by
the cross section, and describes the geometry of that intersection. A component
can have disjoint geometry if the cross section intersects a given part instance in
more than one place.
A cross section in a part has a single component.
The components of a cross section are identified by consecutive integer identifiers
that always start at 0.
The function ProXSectionItemsCollect() returns an array of
ProXSectionItem. An array item is created for each body. If no bodies are
created, an array contains one item for each component. The function returns the
error PRO_TK_E_NOT_FOUND when the input argument p_view is a drawing
view and the input cross section is not found in the view.

Core: Cross Sections 243

The function ProXSectionItemDataGet() returns the data from the cross
section body specified using the structure ProXSectionItem. The output
arguments follow:
• r_path—Path to the component being cut by the cross section.
• r_id_type—Body or quilt type.
• r_id—Id of the body or the quilt being cut.
• r_geom—Geometry created by the cross section by cutting the specific body

or quilt.
Use the function ProXSectionItemFree() to free the memory allocated to
the ProXSectionItem structure.
Use the function ProXSectionItemsArrFree() to free the ProArray of
cross section data allocated by the function ProXSectionItemsCollect().
The function ProXsecGeometryRetrieve() returns an array containing the
geometry of all components in the specified cross section and retrieves the
following information about a specified cross-sectional component:

• The memb_num and memb_id_tab for the intersected part, with respect to the
assembly that contains the cross section.

• A handle to the geometry of the intersection.
The geometry handle can be treated as an ordinary face pointer. Extract its
contours with function ProSurfaceContourVisit().
Use the function ProXsecGeometryArrayFree() to free the memory
allocated to the array of cross section data and use the function
ProXsecGeometryFree() to free memory allocated to the cross section data.
The geometry of a cross section is not maintained constantly by Creo
Parametric—it is regenerated only when the user requests to see the cross section.
Use function ProXsecRegenerate() to regenerate the cross section of a part
or an assembly. Use function ProXsecDisplay() to display a cross section.
ProXsecDisplay() does not add the cross section to the associated objects
list, and the displayed cross section disappears on the first screen redraw.
The function ProXsecPlaneGet() returns the plane geometry for a specified
cross section.
The function ProOffsetXsecGet() will be deprecated in a future release of
Creo Parametric. Use the function ProOffsetXsecInfoGet() instead.
The function ProOffsetXsecGet() returns the following parameters for a
specified offset cross section.

• p_ent_arr—Specifies a ProArray of Pro2dLinedef structures for the
cross section entities.

• plane—Specifies an entity plane.

244 Creo® Parametric TOOLKITUser’s Guide

• p_one_sided—If this output argument is true, the cross section lies on one side
of the entity plane, if it is false, the cross section is both-sided.

• p_flip—If this output argument is false, Creo Parametric removes material
from the left of the cross section entities if the viewing direction is from the
positive side of the entity plane. If p_flip is true, Creo Parametric retains the
material from the left of the cross section entities and removes the rest of the
material.

The function ProOffsetXsecInfoGet() returns the following parameters
for a specified offset cross section.

• p_ent_arr—Specifies a ProArray of Pro2dLinedef structures for the
cross section entities.

• plane—Specifies an entity plane.
• p_one_sided—If this output argument is true, the cross section lies on one side

of the entity plane, if it is false, the cross section is both-sided.
• p_flip—If this output argument is false, Creo Parametric removes material

from the left of the cross section entities if the viewing direction is from the
positive side of the entity plane. If p_flip is true, Creo Parametric retains the
material from the left of the cross section entities and removes the rest of the
material.

• p_side_xsec_mode—Specifies the side to which the cross-section is oriented.
The side is specified by the enumerated data type ProXsecOffsetSide.
The valid values are:

○ PRO_XSEC_OFFSET_BOTH_SIDES—Orients the cross section to both
sides of entity plane.

○ PRO_XSEC_OFFSET_SIDE_1—Orients the cross section to the positive
normal of entity plane.

○ PRO_XSEC_OFFSET_SIDE_2—Orients the cross section to the
negative normal of entity plane.

The function ProXsecGet() retrieves the cross section handle based on the
specified solid model and cross section ID.

Core: Cross Sections 245

The function ProXsecMdlnameAlloc() allocates the ProXsecMdlname
handle. The input arguments follow:
• solid_owner—Specifies the model where the cross section will be created.
• xsec_name—The name to set in the cross section. Maximum name size should

be PRO_MDLNAME_SIZE.

Note
The function ProXsecMdlnameAlloc() returns the error PRO_TK_
LINE_TOO_LONG if the name of the cross section is longer than PRO_
NAME_SIZE.

Use the function ProXsecMdlnameFree() to free the memory allocated to the
ProXsecMdlname handle.
The function ProXsecMdlnameNameGet() returns the name of the cross
section handle.
Use the function ProXsecMdlnameNameSet() to set the name of the cross
section. Maximum name size should be PRO_NAME_SIZE.

Note
The function ProXsecMdlnameNameSet() returns the error PRO_TK_
LINE_TOO_LONG if the name of the cross section is longer than PRO_
NAME_SIZE.

The functions ProXsecMdlnameSolidOwnerGet() and
ProXsecMdlnameSolidOwnerSet() get and set the owner of the cross
section.
The function ProXsecAsModelitemGet() converts a cross section handle
into an appropriate model item.
The function ProXsecFlipGet() returns a integer value that indicates the
direction in which the cross section has been clipped. Depending on the type of
cross section, the integer value indicates different direction of clipping as below:
• Planar cross section—The integer value:

○ 1 indicates that the cross section has been clipped in the direction of the
positive normal to the cross section plane.

246 Creo® Parametric TOOLKITUser’s Guide

○ -1 indicates that the cross section has been clipped in the opposite
direction of the positive normal.

• Offset cross section—The integer value:
○ 1 indicates that material has been removed from the left of the cross

section entities if the viewing direction is from the positive side of the
entity plane.

○ -1 indicates that the material has been retained from the left of the cross
section entities and rest of the material has been removed.

In Creo Parametric 7.0.0.0 the function ProXsecExcludeCompGet() is
deprecated. Use the function ProXSectionExcludeCompGet() instead.
The function ProXSectionExcludeCompGet() returns the status and an
array of paths to the assembly components and bodies that have been included and
excluded for the specified cross section. The assembly paths are returned as a
ProArray of type ProSelection. The status of the assembly components
and bodies is returned by the enumerated type ProXsecExcludeModels and
the valid values are:
• PRO_XSEC_MODEL_EXCLUDE—Specifies that the assembly components

and bodies have been excluded.
• PRO_XSEC_MODEL_INCLUDE—Specifies that the assembly components

and bodies have been included.
Use the function ProSelectionarrayFree() to free the memory allocated
to the ProArray of type ProSelection.

Visiting Cross Sections
Function Introduced:

• ProSolidXsecVisit()
• ProSolidXsecVisitAction()
The function ProSolidXsecVisit() enables you to visit all named cross
sections in the specified solid. Use ProSolidXsecVisitAction() to supply
the function to be performed when visiting part or assembly cross sections.

Creating and Modifying Cross Sections
Functions Introduced:

• ProXsecParallelCreate()
• ProXSectionOffsetCreate()
• ProXSectionPlanarCreate()
• ProXSectionCreateDataAlloc()

Core: Cross Sections 247

• ProXSectionCreateDataFree()
• ProXSectionCreateDataQuiltSelSet()
• ProXSectionCreateDataQuiltSelGet()
• ProXSectionCreateDataQuiltTypeSet()
• ProXSectionCreateDataQuiltTypeGet()
• ProXsecMakeVisible()
• ProXsecIsVisible()
• ProXsecActiveSet()
• ProXsecActiveGet()
• ProXsecCanCreateAsFeature()
• ProXsecOldToNewConvert()
• ProXsecIsFeature()
• ProXsecFeatureGet()
• ProXsecDelete()
Superseded Functions:

• ProXsecOffsetCreate()
• ProXsecPlanarWithoptionsCreate()
The function ProXsecParallelCreate() creates a cross section feature
parallel to a given plane.
In Creo Parametric 7.0.0.0 the function
ProXsecPlanarWithoptionsCreate() is deprecated. Use the function
ProXSectionPlanarCreate() instead.
The function ProXSectionPlanarCreate() creates a cross section feature
through a datum plane and also makes the cross section visible. The input
arguments are:
• solid_owner—Specifies the model where the cross section will be created.
• xsec_name—Specifies the name of the cross section.
• cutting_plane—Specifies the selection of the cutting plane. The cutting plane

must belong to the top-level part or assembly.
• xsec_type—Specifies the type of object that will be cut by the cross section. It

is specified by the enumerated type ProXsecCutobj.
• quilt_or_one_part—Specifies the selection of the quilt or component

depending on type of object specified by xsec_type.

248 Creo® Parametric TOOLKITUser’s Guide

• flip—Specifies the direction in which the cross section will be clipped. The
value 1 indicates that the cross section will be clipped in the direction of the
positive normal to the cutting plane. -1 indicates that the cross section will be
clipped in the opposite direction of the positive normal.

• excld_incld_opt—Specifies the items to exclude, specified by the input
parameter exclude_items from cutting by the cross section and is defined by
the enumerated data type ProXsecExcludeModels.

• exclude_items—Specifies a ProArray of selected bodies or parts to be
included or excludes from the cross section.

• data—Reserved for future use.

Note
• From Creo Parametric 4.0 F000 onward, when a cross section is created, it is

not displayed by default in the model. You must call the function
ProXsecMakeVisible() to display the cross section.

• While porting Creo Parametric TOOLKIT applications, which have used the
function ProXsecPlanarWithoptionsCreate() and have been
created in releases prior to Creo Parametric 4.0 F000, depending on whether
you want the cross section to be displayed, call the function
ProXsecMakeVisible() in your applications.
ProXsecMakeVisible() displays the cross section in the model.

• From Creo Parametric 2.0 onward:

○ the legacy cross sections, that is, the cross sections created in Pro/
ENGINEER, Creo Elements/Pro, and in releases prior to Creo Parametric
2.0 are not supported.

○ the functions ProXsecParallelCreate() and
ProXsecPlanarWithoptionsCreate() create cross sections as
features.

○ the functions ProXsecParallelCreate() and
ProXsecPlanarWithoptionsCreate() automatically convert the
legacy cross sections to new cross section features as defined in Creo
Parametric 2.0 before creating any new cross section feature.

The function ProXsecOffsetCreate() is deprecated. Use the function
ProXSectionOffsetCreate() instead.

Core: Cross Sections 249

The function ProXSectionOffsetCreate() creates an offset cross section
from a polyline. The polyline lies on a plane and the plane is defined by a local
coordinate system. Offset cross section is created by extruding the polyline
perpendicular to the sketching plane. The input arguments are:
• solid_owner—Specifies the model where the cross section will be created.
• xsec_name—Specifies the name of the cross section.
• trf—Specifies the local coordinate system of the plane which contains the

polyline.
• ent_arr—Specifies a ProArray of Pro2dEntdef structure. The structure

contains information about the entities of the polyline.
• side—Specifies the side to which the cross section must be extended. The

cross section is extended normal to the polyline plane. The side is specified
using the enumerated data type ProXsecOffsetSide. The valid values
are:
○ PRO_XSEC_OFFSET_BOTH_SIDES—Extends the cross section to both

sides of polyline plane.
○ PRO_XSEC_OFFSET_SIDE_1—Extends the cross section to the

positive normal of polyline plane.
○ PRO_XSEC_OFFSET_SIDE_2—Extends the cross section to the

negative normal of polyline plane.
• flip—Specifies the direction in which the cross section will be clipped. The

value False indicates that the material on the right side of the polyline plane
is retained. When the argument side is set to PRO_XSEC_OFFSET_SIDE_
1 or PRO_XSEC_OFFSET_SIDE_2 then the material is retained from
positive or negative side of polyline plane respectively.

250 Creo® Parametric TOOLKITUser’s Guide

When the value is set to True the above area is removed. The remaining
material is retained.

Note
If the polyline from which the cross section has been created is closed,
then flip works a little different.

Core: Cross Sections 251

Polyline Direction Flip Value Description
Closed polyline created
clockwise

False The material inside of
the closed polyline is
retained.
When the argument
side is set to PRO_
XSEC_OFFSET_
SIDE_1 or PRO_
XSEC_OFFSET_
SIDE_2 then the
material is retained
from positive or
negative side of
polyline plane
respectively.

Closed polyline created
clockwise

True The material described
in above case on page
is removed. The
remaining material is
retained.

Closed polyline created
counter clockwise

True The material inside of
the closed polyline is
retained.
When the argument
side is set to PRO_
XSEC_OFFSET_
SIDE_1 or PRO_
XSEC_OFFSET_
SIDE_2 then the
material is retained
from positive or
negative side of
polyline plane
respectively.

Closed polyline created
counter clockwise

False The material described
in above case on page
is removed. The
remaining material is
retained.

252 Creo® Parametric TOOLKITUser’s Guide

• excld_incld_opt—Specifies the items to be excluded from cutting by the cross
section and is defined by the enumerated data type
ProXsecExcludeModels. The items to be excluded are specified by the
input parameter exclude_items.

• exclude_items—Specifies a ProArray of selected bodies or parts to include
or exclude from the cross section.

• data—This option is specified using the data structure
ProXSectionCreateData and is used to set quilt cross section type as
PRO_XSECTYPE_QUILTS or PRO_XSECTYPE_MODELQUILTS for offset
cross section. . This input argument is optional. If you do not want to offset
cross section to cut quilts, set this as Null.

The functions ProXSectionPlanarCreate() and
ProXSectionOffsetCreate() return an error PRO_TK_LINE_TOO_
LONG, when the xsec_name is longer than PRO_NAME_SIZE.
The function ProXSectionCreateDataAlloc() allocates memory for the
ProXSectionCreateData data structure.
Use the function ProXSectionCreateDataFree() to free the
ProXSectionCreateData data structure memory.
The data structure ProXSectionCreateData is defined as follows:
Use the function ProXSectionCreateDataQuiltSelGet() to retrieve the
quilt selection data. The output argument r_quilt_sel is the address of the
quilt selection pointer given through the ProSelection object.
The function ProXSectionCreateDataQuiltSelSet() sets the quilt
selection data using the structure ProXSectionCreateData.
The function ProXSectionCreateDataQuiltTypeGet() gets the quilt
cross section type using the structure ProXSectionCreateData. The output
argument r_xsec_type is defined by the enumerated data type
ProXsecCutobj. The valid values can be PRO_XSECTYPE_QUILTS or
PRO_XSECTYPE_MODELQUILTS.
Use the function ProXSectionCreateDataQuiltTypeSet() to set the
quilt cross section type using the structure ProXSectionCreateData.
The function ProXsecMakeVisible() displays the specified cross section in
the model. Use the function ProXsecIsVisible() to check if the specified
cross section is displayed in the model.
The function ProXsecActiveSet() sets the specified cross section as active
in the current view. Use the function ProXsecActiveGet() to retrieve the
cross section, which is active in the current view.
Use the function ProXsecCanCreateAsFeature() to check if new cross
section features can be created in the specified model. The function returns PRO_
B_FALSE if the specified model has legacy cross sections.

Core: Cross Sections 253

The function ProXsecOldToNewConvert() converts the legacy cross
sections to new cross section features as defined in Creo Parametric 2.0 for the
specified model.
Use the function ProXsecIsFeature() to check whether the cross section is
a feature.
The function ProXsecFeatureGet() returns a pointer to the cross section
feature. The function returns the error type PRO_TK_BAD_CONTEXT for legacy
cross sections.
The function ProXsecDelete() deletes a given cross section from a part or
assembly.

Mass Properties of Cross Sections
Function Introduced:

• ProXsecMassPropertyCompute()
The function ProXsecMassPropertyCompute() calculates the mass
properties of the cross section in the specified coordinate system. The function
needs the name of a coordinate system datum whose X- and Y-axes are parallel to
the cross section. The output from this function also refers to the coordinate
system datum. Call ProXsecRegenerate() before
ProXsecMassPropertyCompute().

Note
The function ProXsecMassPropertyCompute() is not supported for
offset and quilt type of cross sections.

Line Patterns of Cross Section
Components
Functions Introduced:

• ProXsecCompXhatchGet()
• ProXsecCompXhatchAdd()
• ProXsecCompXhatchReplace()
• ProXsectionCompXhatchStyleGet()
• ProXSectionItemXhatchStyleGet()
• ProXsecNewXhatchStyleCreateFromName()

254 Creo® Parametric TOOLKITUser’s Guide

• ProXsectionCompXhatchStyleSet()
• ProXSectionItemXhatchStyleSet()
Superseded Functions:

• ProXsecCompNewXhatchStyleSetByName()
• ProXsecCompNewXhatchStyleSet()
• ProXsecCompXhatchStyleSet()
• ProXsecCompXhatchStyleGet()
• ProXsecCompNewXhatchStyleGet()
Creo Parametric supports hatch pattern files of the *.pat file format. The new
hatch supports nonlinear hatching styles.
The old hatch uses the Xhatch *.xch file format. It is recommended to use the
*.pat files. Refer to the Creo Parametric Online Help for more information.
The function ProXsecCompXhatchGet() returns the line patterns of a cross
section component based on the specified cross section handle and the ID of the
cross section component. The line patterns obtained are ProXsecXhatch
structures that contain the following fields:

• angle—Specifies the angle of the line patterns.
• spacing—Specifies the distance between the line patterns.
• offset—Specifies the offset of the first line in the pattern.

Note
The functions ProXsecCompXhatchGet(),
ProXsecCompXhatchAdd(), and ProXsecCompXhatchReplace()
support only the old hatching styles, that is, the *.xch file format.

The function ProXsecCompXhatchAdd() adds a line pattern to a specified
cross section component. This function takes the handle to the cross section, the
ID of the cross section component, the handle to the drawing view containing the
cross section component and a pointer to the ProXsecXhatch object as its
input arguments.

Note
If the cross section component already includes a line pattern, then the
function ProXsecCompXhatchAdd() does not add a line pattern.

Core: Cross Sections 255

The function ProXsecCompXhatchReplace() replaces all existing line
patterns of a specified cross section component with a new one.
In Creo Parametric 7.0.0.0 the functions ProXsecCompXhatchStyleGet()
and ProXsecCompNewXhatchStyleGet() are deprecated. Use the function
ProXsectionCompXhatchStyleGet () to get p_xhatch_style from a
component and ProXSectionItemXhatchStyleGet() to get p_
xhatch_style from a body.
The function ProXSectionItemXhatchStyleGet() returns the cross
section p_xhatch_style for the cross section handle of the body. The output
argument p_xhatch_style returns a ProXsecNewXhatchStyle handle.
The function ProXsectionCompXhatchStyleGet() returns information
about the style of hatch pattern in the specified cross section component. The
output argument p_xhatch_style returns a ProXsecNewXhatchStyle
handle. The structure ProXsecNewXhatchStyle specifies the following
information:
• type—Type of hatch. Specify the following values:

○ PRO_XHATCH—Cross section component is appears as a hatch.
○ PRO_XSEC_EXCLUDED—Cross section is excluded for the specified

assembly component.
○ PRO_XSEC_FILL—Cross section component appears as a solid.
○ PRO_XHATCH_ERASED—Cross section component is erased, that is,

neither hatched nor filled.
• ProXsecXhatchPattern—Structure that contains information about the

old hatch pattern in a cross section. It specifies the following information:
○ angle—Angle of the lines in the patterns.
○ spacing—Distance between the lines in the patterns.
○ offset—Offset of the first line in the pattern.
○ font—Line style for the line pattern.
○ color—Color for the line pattern.

256 Creo® Parametric TOOLKITUser’s Guide

Note
When the cross section has old hatch patterns, the field *new_lines in
the structure ProXsecNewXhatchStyle is returned as NULL.

• ProXsecNewXhatchPattern—Structure that contains information about
the new hatch pattern in a cross section. It specifies the following information:

○ 1 X-Origin, Y-Origin
○ 2 Angle
○ 3 Delta X
○ 4 Delta Y

○ angle—Angle of the lines in the patterns.
○ x_origin—Origin of the first pattern line along the x-axis.
○ y_origin—Origin of the first pattern line along the y-axis.
○ delta_x—For a dashed line pattern, the distance after which the next

dashed line starts in a pattern.
○ delta_y—For a continuous and dashed line pattern, the distance

between the pattern lines.
○ dash—Dashed line pattern.

Core: Cross Sections 257

○ num_dash—Number of dashes for the line pattern. Max number of
dashes is 6.

○ color—Color for the line pattern.

Note
When the cross section has new hatch patterns, the field *old_lines in
the structure ProXsecNewXhatchStyle is returned as NULL.

In Creo Parametric 7.0.0.0 the function
ProXsecCompNewXhatchStyleSetByName() is deprecated. Use the
function ProXsecNewXhatchStyleCreateFromName () to create
ProXsecNewXhatchStyle. Use the functions
ProXsectionCompXhatchStyleSet() and
ProXSectionItemXhatchStyleSet() to set
ProXsecNewXhatchStyle.
Use the function ProXsecNewXhatchStyleCreateFromName() to create
a ProXsecNewXhatchStyle structure using the hatch pattern specified by the
input argument hatch_name. This function supports only new, that is, PAT hatch
patterns. The input arguments follows:
• hatch_name—Name of the existing PAT hatch.
• color —Color of the newly created pattern.
• type—Type of the hatch specified by structure ProXsecNewXhatchStyle

and has the following values:
○ PRO_XHATCH—Cross section component appears as a hatch.
○ PRO_XSEC_EXCLUDED—Cross section is excluded for the specified

assembly component.
○ PRO_XSEC_FILL—Cross section component appears as a solid.
○ PRO_XHATCH_ERASED—Cross section component is erased, that is,

neither hatched nor filled.
After creating the ProXsecNewXhatchStyle structure using the function
ProXsecNewXhatchStyleCreateFromName(), either of the following
situations might occur:
• The new PAT hatch that is created using the function

ProXSectionItemXhatchStyleSet() is available in the hatch edit
dialog in the part and assembly mode and a suffix _TK is added to the hatch
name.

• If the hatch name is used as the input parameter to the function
ProXSectionItemXhatchStyleSet() is used, then a new hatch is not
added.

258 Creo® Parametric TOOLKITUser’s Guide

The output argument p_xhatch_style can be set by the functions
ProXSectionItemXhatchStyleSet() and
ProXsectionCompXhatchStyleSet().
The function ProXSectionItemXhatchStyleSet() sets the cross section
p_xhatch_style for the cross section handle of the body, using the
ProXsecNewXhatchStyle structure. The input arguments follow:
• xsec_item—Cross section handle of the specific body.
• p_view—View handle.
• hatch_name—Name of the nonlinear hatch.
• p_xhatch_style—Handle to ProXsecNewXhatchStyle. The unused hatch

field must be set to NULL.
In Creo Parametric 7.0.0.0 the function ProXsecCompXhatchStyleSet() is
deprecated. Use the function ProXsectionCompXhatchStyleSet() to set
p_xhatch_style on a component and
ProXSectionItemXhatchStyleSet() to set p_xhatch_style on a body.

Note
Use the function ProXsecCompNewXhatchStyleGet() for nonlinear
hatch support.

The function ProXsectionCompXhatchStyleSet() sets the cross section
p_xhatch_style for the specified component using the
ProXsecNewXhatchStyle structure. The input arguments follow:
• xsec—Cross section handle of the specific body.
• path—Path to the specified component.
• p_view—View handle.
• hatch_name—Name of the nonlinear hatch.
• p_xhatch_style—Handle to ProXsecNewXhatchStyle. The unused hatch

field must be set to NULL.

Note
PRO_XSEC_EXCLUDED type is applied only in the drawing environment.

When parts with multiple solid bodies are being cut by the cross section, the
following functions return the error PRO_TK_MULTIBODY_UNSUPPORTED:
• ProXsecCompNewXhatchStyleSetByName

• ProXsecCompNewXhatchStyleSet()

Core: Cross Sections 259

• ProXsecCompXhatchStyleSet()

• ProXsecCompNewXhatchStyleGet()

• ProXsecCompXhatchStyleGet()

260 Creo® Parametric TOOLKITUser’s Guide

13
Core: Utilities

Configuration Options .. 262
Registry File Data.. 262
Trail Files.. 263
Creo Parametric License Data.. 263
Current Directory... 263
File Handling... 263
Wide Strings ... 267
Freeing Integer Outputs ... 268
Running Creo ModelCHECK .. 268

This chapter describes the Creo Parametric TOOLKIT utility functions.

261

Configuration Options
Functions Introduced:

• ProConfigoptionGet()
• ProConfigoptSet()
• ProConfigoptArrayGet()
• ProDisplistInvalidate()
The functions ProConfigoptionGet() and ProConfigoptSet() enable
you to retrieve and set the current value for the specified configuration file option.
The function ProConfigoptGet() has been deprecated. Use the function
ProConfigoptionGet() instead. The function ProConfigoptionGet()
returns the value of configuration option as a ProPath object.
To use ProConfigoptSet() on a configuration option that affects the display
of Creo Parametric, you must call the function ProDisplistInvalidate()
before you repaint the screen. This function makes sure Creo Parametric
invalidates the two- or three-dimensional display list. The calling sequence of
functions is as follows:

ProConfigoptSet (woption, value);
ProMdlCurrentGet (&model);
ProDisplistInvalidate (model)
ProWindowRepaint (-1);

The function ProConfigoptSet(), when applied to a multi string
configuration option like "search_path", adds a new path entry into the session. It
does not affect existing values. When applied to a single-valued configuration
option, ProConfigoptSet() modifies the value of the configuration option.
The function ProConfigoptArrayGet() retrieves the value of a specified
configuration file option. The function returns an array of values assigned to the
configuration file. It returns a single value if the configuration file option is not a
multi-valued option.

Registry File Data
Functions Introduced:

• ProToolkitApplExecPathGet()
• ProToolkitApplTextPathGet()
The function ProToolkitApplExecPathGet() returns the path to the Creo
Parametric TOOLKIT executable file (exec_file) from the registry file.
The function ProToolkitApplTextPathGet() returns the path to the
directory containing the "text" directory for the application.

262 Creo® Parametric TOOLKITUser’s Guide

Trail Files
Function Introduced:

• ProTrailfileCommentWrite()
To append a comment to the end of the current trail file, call the function
ProTrailfileCommentWrite(). The comment should not be longer than
(PRO_COMMENT_SIZE - 2) characters, and should not contain any nonprintable
characters, such as “\n.”

Creo Parametric License Data
Function Introduced:

• ProOptionOrderedVerify()
The function ProOptionOrderedVerify() reports whether a specified Creo
Parametric license option (such as Pro/MESH) is currently available in the Creo
Parametric session.

Current Directory
Functions Introduced;

• ProDirectoryCurrentGet()
• ProDirectoryChange()
These two functions are concerned with the current default directory in Creo
Parametric—the one in which it searches when you retrieve an object, for
example. The Creo Parametric user changes this directory using the command File
▶ Manage Session ▶Working Directory.
The function ProDirectoryChange() enables you to do the exact equivalent
of File ▶Manage Session ▶Working Directory in Creo Parametric. Use this
function if you need to save and retrieve objects in a directory other than the one
the user chose.
The function ProDirectoryCurrentGet() returns the whole path to the
directory, as a wide string.

File Handling
Functions Introduced:

• ProFilesList()
• ProFileMdlnameOpen()
• ProFileMdlfiletypeOpen()

Core: Utilities 263

• ProFileOpenRegister()
• ProFileMdlnameSave()
• ProFileMdlfiletypeSave()
• ProFileSaveRegister()
• ProDirectoryChoose()
• ProFileMdlnameParse()
• ProPathMdlnameCreate()
• ProInfoWindowDisplay()
• ProFileEdit()
• ProTexturePathGet()
The function ProFilesList() provides a list of the contents of a directory,
given the directory path. You can filter the list to include only files of a particular
type, as specified by the file extension. Use the PRO_FILE_LIST_ALL option to
include all versions of a file in the list; use PRO_FILE_LIST_LATEST to
include only the latest version. In addition to an array of file names, the function
returns an array of subdirectory names, regardless of the filter used.
Starting with Pro/ENGINEERWildfire 5.0, the function ProFilesList()can
also list instance objects when accessing Windchill workspaces or folders. A PDM
location (for workspace or commonspace) must be passed as the directory path.
The following options have been added in the ProFileListOpt enumerated
type that can be passed as the listing_option argument to
ProFilesList():

• PRO_FILE_LIST_ALL_INST—Same as the LIST_ALL option. It returns
instances only for PDM locations.

• PRO_FILE_LIST_LATEST_INST—Same as the LIST_LATEST option. It
returns instances only for PDM locations.

• PRO_FILE_LIST_ALL_SORTED_INST—Same as the LIST_ALL_
SORTED option. It returns instances only for PDM locations.

• PRO_FILE_LIST_LATEST_SORTED_INST—Same as the LIST_
LATEST_SORTED option. It returns instances only for PDM locations.

• PRO_FILE_LIST_LATEST_SORTED_INST—Same as the LIST_
LATEST_SORTED option. It returns instances only for PDM locations.

The function ProFileMdlnameOpen() opens the dialog box to browse
directories and open files. The function lets you specify the title of the dialog box,
a set of shortcuts to other directories, and the name of a file to be preselected. This
function uses the same filtering method as ProFilesList(). You can set a
filter in the dialog box to include files of a particular type. In the input argument
filter_string specify all types of files extensions with wildcards separated by
commas, for example, *.prt, *.asm, *.txt, *.avi, and so on.

264 Creo® Parametric TOOLKITUser’s Guide

You can also use the function ProFileMdlfiletypeOpen() to browse
directories and open files. You can set a filter in the dialog box to include files of a
particular type. In the input argument file_types, you can specify an array of
file types using the enumerated data type ProMdlfileType.

Note
The functions ProFileMdlnameOpen() and
ProFileMdlfiletypeOpen() do not actually open the file, but return
the file path of the selected file. For example, to open a text file, use the
function ProFileEdit() or ProInfoWindowDisplay().

The function ProFileOpenRegister() registers a new file type in the File ▶
Open dialog box in Creo Parametric. This function takes the access function
ProFileOpenAccessFunction() and the action function
ProFileOpenOperationAction() as its input arguments.
The function ProFileOpenAccessFunction() is called to determine
whether the new file type can be opened using the File ▶ Open dialog box. The
function ProFileOpenOperationAction() is called on clicking Open for
the newly registered file type.
The function ProFileMdlnameSave() opens the save dialog box. This
function has input arguments similar to ProFileMdlnameOpen().
You can also use the function ProFileMdlfiletypeSave() to open the
save dialog box. You can set a filter in the dialog box to include files of a
particular type. In the input argument file_types, you can specify an array of
file types using the enumerated data type ProMdlfileType.

Note
• The functions ProFileMdlnameSave() and

ProFileMdlfiletypeSave() do not actually save the file, but return the
file path of the selected file.

• For multi-CAD models, in a linked session of Creo Parametric with Windchill,
the functions ProFileMdlnameSave() and
ProFileMdlfiletypeSave() do not support a file path location on local
disk.

The function ProFileSaveRegister() registers a new file type in the File ▶
Save a Copy dialog box in Creo Parametric. This function takes the access
function ProFileSaveAccessFunction() and the action function
ProFileSaveOperationAction() as its input arguments.

Core: Utilities 265

The function ProFileSaveAccessFunction() is called to determine
whether the new file type can be saved using the File ▶ Save a Copy dialog box.
The function ProFileSaveOperationAction() is called on clicking OK
for the newly registered file type.
The function ProDirectoryChoose() prompts the user to select a directory
using the Creo Parametric dialog box for browsing directories. Specify the title of
the dialog box, a set of shortcuts to other directories, and the default directory path
to start browsing. If the default path is specified as null, the current directory is
used. The function returns the selected directory path as output.
In general, the file utility functions refer to files using a single wide character
string, which contains four, distinct pieces of information that uniquely identify
the file: the directory path, file name, extension, and version. The function
ProFileMdlnameParse() takes such a string as input, and returns the four
segments as separate arguments.

Note
The function ProFileMdlnameParse() returns the file version as -1, if
the input argument file_name_w_path has the path specified as the path to a
Windchill model. This function does not support fetching of model version of
a Windchill model.

The function ProPathMdlnameCreate() performs the opposite operation—
it builds the single wide string that identifies the file, given the path, file name,
extension, and version.
The function ProInfoWindowDisplay() creates a text information window.
It reads the contents from a text file in the current directory whose name is an
input to the function. The function can also override the default size, shape, and
location of the window. (These do not affect the properties of the Creo Parametric
Information Window.)
The function ProFileEdit() opens an edit window on a specified text file.
The editor used is the current default editor for Creo Parametric.
The function ProTexturePathGet() looks for the full path to the specified
texture, decal, or bump map files and loads them from the texture path.

Note
For textures embedded inside a Creo Parametric model, if the create_
temp_file is set to true the ProTexturePathGet() function writes a
temporary copy of the specified files.

266 Creo® Parametric TOOLKITUser’s Guide

Wide Strings
Functions Introduced:

• ProStringToWstring()
• ProWstringToString()
• ProWcharSizeVerify()
These three utilities are described in the section Wide Strings on page 65 in the
Fundamentals on page 22 chapter.

Freeing String Outputs
Many Creo Parametric TOOLKIT functions provide outputs of non-fixed length
strings or wide strings. These outputs must be freed using a special set of
functions, because they have been allocated by a special function internally.

Note
These functions must be only used for strings and string arrays output from
Creo Parametric TOOLKIT functions. Check the function description to
determine the function to use when freeing the output.

Functions Introduced:

• ProStringFree()
• ProWstringFree()
• ProStringarrayFree()
• ProWstringarrayFree()
• ProStringproarrayFree()
• ProWstringproarrayFree()
Use the functions ProStringFree() and ProWstringFree() to free a
single char* or wchar_t* output from a Creo Parametric TOOLKIT function.
Use the functions ProStringarrayFree() and
ProWstringarrayFree() to free a standard array of char* or wchar_t*
output from a Creo Parametric TOOLKIT function.
Use the functions ProStringproarrayFree() and
ProWstringproarrayFree() to free a ProArray of char* or wchar_
t* output from a Creo Parametric TOOLKIT function.

Core: Utilities 267

Freeing Integer Outputs
Functions Introduced:

• ProIntarrayFree()
Use the function ProIntarrayFree() to free a plain integer array, which has
been returned from a Creo Parametric TOOLKIT function.

Running Creo ModelCHECK
Creo ModelCHECK is an integrated application that runs transparently within
Creo Parametric. Creo ModelCHECK uses a configurable list of company design
standards and best modeling practices. You can configure Creo ModelCHECK to
run interactively or automatically when you regenerate or save a model.
Functions Introduced:

• ProModelcheckExecute()
You can execute Creo ModelCHECK from an external application using the
function ProModelcheckExecute(). The input parameters of this function
are:

• mdl—Specifies the model on which you want to execute Creo ModelCHECK.
• show_ui—Specifies True to display the Creo ModelCHECK report in the

Web browser.

Note
The configuration option SHOW_REPORT in the config_init.mc file
overrides the show_ui value.

• mcMode—Specifies the mode in which you want to run Creo ModelCHECK.
The modes are:

○ PRO_MODELCHECK_GRAPHICS—Interactive mode
○ PRO_MODELCHECK_NO_GRAPHICS—Batch mode

• config_dir—Specifies the location of the configuration files. If this
parameter is set to NULL, the default Creo ModelCHECK configuration files
are used.

• output_dir—Specifies a location for the reports. If this parameter is set to
NULL, the default Creo ModelCHECK output directory is used.

The output parameters of this function are:

268 Creo® Parametric TOOLKITUser’s Guide

• errors—Specifies the number of errors found.
• warnings—Specifies the number of warnings found.
• model_saved—True if the model is saved with updates, else false.

Creating Custom Checks
This section describes how to define custom checks in Creo ModelCHECK that
users can run using the standard Creo ModelCHECK interface in Creo Parametric.
To define and register a custom check:

1. Set the CUSTMTK_CHECKS_FILE configuration option in the start
configuration file to a text file that stores the check definition. For example:

CUSTMTK_CHECKS_FILE text/custmtk_checks.txt.
2. Set the contents of the CUSTMTK_CHECKS_FILE file to define the checks.

Each check should list the following items:

• DEF_<checkname>—Specifies the name of the check. The format must
be CHKTK_<checkname>_<mode>, where mode is PRT, ASM, or
DRW.

• TAB_<checkname>—Specifies the tab (category) in the Creo
ModelCHECK report under which the check is classified. Valid tab values
are:

○ INFO

○ PARAMETER

○ LAYER

○ FEATURE

○ RELATION

○ DATUM

○ MISC

○ VDA

○ VIEWS

• MSG_<checkname>—Specifies the description of the check that appears
in the lower part of the Creo ModelCHECK report when you select the
name.

• DSC_<checkname>—Specifies the name of the check as it appears in
the Creo ModelCHECK report table.

• ERM_<checkname>—If set to INFO, the check is considered an INFO
check and the report table will display the text from the first item returned

Core: Utilities 269

by the check, instead of a count of the items. Otherwise, this value must be
included, but is ignored by Creo Parametric.

See Example 1: Text File for Custom Checks on page 273 for a sample custom
checks text file.

1. Add the check and its values to the Creo ModelCHECK configuration file. For
an example of how this is done, see the sample code at the end of this section.

2. Register the Creo ModelCHECK check from the Creo Parametric TOOLKIT
application.

Note
Other than the requirements listed above, Creo Parametric TOOLKIT
custom checks do not have access to the rest of the values in the Creo
ModelCHECK configuration files. All the custom settings specific to the
check such as start parameters, constants, and so on, must be supported by
the user application and not Creo ModelCHECK. In the custom checks
text file, separate options and values for options with a space, not by a tab
character.

Functions Introduced

• ProModelcheckCheckRegister()
• ProModelcheckCheckFunction()
• ProModelcheckUpdateFunction()
• ProModelcheckCleanupFunction()
The function ProModelcheckCheckRegister() registers the callback
functions for each custom check. The following arguments are available:

• The custom check name. This name must match the name given to the check
in the Creo ModelCHECK configuration file, and must begin with "CHKTK_
".

• The check label. Currently unused; the label is taken from the check
configuration file.

• The check options. Currenlty unused, specify the value as NULL.
• The check callback functions, described in details below.
• Labels for the action and update buttons, or specify NULL if these buttons

should not be shown.
• Application data to pass to the callback functions.
The check callback functions are as follows:

270 Creo® Parametric TOOLKITUser’s Guide

• The check function (required)—This function, whose signature matches
ProModelcheckCheckFunction(), should calculate the results of the
check and provide them to Creo ModelCHECK through the function output
arguments.

• The action and update functions (optional)—These functions are called when
users choose the action or update button when viewing the Creo
ModelCHECK report. These have the signature of the
ProModelcheckUpdateFunction() function.

• The cleanup function (optional)—Gives your application a chance to free
memory allocated by the check function. This has the signature of the
ProModelcheckCleanupFunction() function.

Each callback function receives the following inputs:

• The name of the custom check, as defined in the original call to
ProModelcheckCheckRegister().

• The model being checked.
• A pointer to the application data, set during the call to

ProModelcheckCheckRegister().
The function whose prototype matches ProModelcheckCheckFunction()
is used to evaluate the custom defined checks. The user application runs the check
on the specified model and populates the following output arguments:

• results_count—Specifies an integer indicating the number of errors found by
the check.

• results_url—Specifies the link to an application-owned page that contains
information specific to the check.

• results_table—Specifies an array of data for each error encountered that will
be shown along with the results.

The following figure illustrates how the results of some custom checks might be
displayed in the Creo ModelCHECK report.

Core: Utilities 271

The function whose prototype matches
ProModelcheckCleanupFunction() is used to release memory allocated
for the check callback function.
The functions whose prototypes matches
ProModelcheckUpdateFunction() are used for the following:

• To execute a check-defined action on a given item.
• To automatically update a given item to fix errors, if any.
The selected item’s description string is passed as an argument to the update
function.
Creo ModelCHECK checks may have one "action" function to highlight the
problem, and possibly an update function, to fix it automatically. The following
figure displays the Creo ModelCHECK report with an action button that invokes
the action callback function.

272 Creo® Parametric TOOLKITUser’s Guide

Example 1: Text File for Custom Checks
The following is the text file for the custom check examples.
UG CustomCheck: MDL PARAM NOT FOUND
Parameter %0w is not found in the model %1w
#
#
UG CustomCheck: MDL PARAM OK
Parameter %0w is set correctly in the model %1w
#
#
UG CustomCheck: MDL PARAM INV TYPE
Parameter %0w in %1w is not a String parameter
#
#
Parameter %0w value does not match model name %1w

Core: Utilities 273

UG CustomCheck: MDL PARAM INCORRECT
#
#
UG CustomCheck: MDL PARAM NAME
Parameter %0w value matches model name
#
#
UG CustomCheckUpdate: MDL PARAM NAME
Fix Parameter
#
#
%CIUG CustomCheck: MDL PARAM UPDATED
Mdl name parameter %0w has been updated.
#
#
%CEUG CustomCheck: MDL PARAM UPDATE TYPE
Cannot modify the type of parameter %0w; this error should be fixed
manually.
#
#
UG CustomCheck: MDL ACC TYPE
Model accuracy
#
#
UG CustomCheck: MDL ACC ABS
Absolute Accuracy
#
#
UG CustomCheck: MDL ACC REL
Relative Accuracy
#
#
UG CustomCheck: DWGVIEW GENERIC
Drawing Views using Generics
#
#
UG CustomCheckAction: DWGVIEW GENERIC
Highlight
#
#

Example 2: Registering Custom Creo ModelCheck Checks
The sample code in UgModelCheck.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_main shows how to
register custom Creo ModelCHECK checks using Creo Parametric TOOLKIT.
The following custom checks are registered:

274 Creo® Parametric TOOLKITUser’s Guide

• CHKTK_MDL_NAME_PARAM—Determines if the model has a parameter
whose value is equal to the model name

• CHKTK_MDL_REFC_SCOPE—Info check that prints the model reference
control settings

• CHKTK_DWVIEW_GENERIC—Drawing mode check that looks for views that
use generic models

Example 3: Implementing a Model Name Parameter Check
The sample code in UgModelCheck.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_main shows the
implementation for the model name parameter check. This check has a check
function callback and an update function callback. Also included is the cleanup
callback used for all of the custom checks.

Example 4: Implementing a Reference Control Info Check
The sample code UgModelCheck.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_main shows the
implementation for an info check that will report on the reference control setting
applied to the model. This check has a check function callback but no action or
update function (because it is an info-only check).

Example 5: Implementing a Check Looking for Drawing
Views Using Generics
The sample code in UgModelCheck.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_main shows the
implementation for the drawing view using generics check. This check has a
check function callback and an action function used to highlight the views that
have this error.

Example 6: Changes to the Creo ModelCheck Configuration
Files to enable Custom Checks
The following show the changes made to the Creo ModelCHECK configuration
files to enable the custom checks.
Lines from the custom TK checks file (custmtk_checks.txt)
Custom TK Check File
#
UG_MDLPARAM_NAME
DEF_UG_MDLPARAM_NAME CHKTK_UG_MDLPARAM_NAME_PRT
TAB_UG_MDLPARAM_NAME PARAMETER
MSG_UG_MDLPARAM_NAME Pro/TOOLKIT: Models with missing or invalid model
name parameters:
ERM_UG_MDLPARAM_NAME N/A

Core: Utilities 275

DSC_UG_MDLPARAM_NAME Pro/TOOLKIT: Model Name Parameter
UG_MDL_REFC_SCOPE
DEF_UG_MDL_REFC_SCOPE
CHKTK_UG_MDL_REFC_SCOPE_PRT
TAB_UG_MDL_REFC_SCOPE INFO
MSG_UG_MDL_REFC_SCOPE Pro/TOOLKIT: Model reference control scope:
ERM_UG_MDL_REFC_SCOPE INFO
DSC_UG_MDL_REFC_SCOPE Pro/TOOLKIT: Model reference control scope:
UG_DWGVIEW_GENERIC
DEF_UG_DWGVIEW_GENERIC CHKTK_UG_DWGVIEW_GENERIC_DRW
TAB_UG_DWGVIEW_GENERIC VIEWS
MSG_UG_DWGVIEW_GENERIC Pro/TOOLKIT: Drawing views containing generic
models:
ERM_UG_DWGVIEW_GENERIC N/A
DSC_UG_DWGVIEW_GENERIC Pro/TOOLKIT: Drawing Views using Generics
Lines added to the ModelCheck configuration file (default_checks.mch)
CHKTK_UG_MDLPARAM_NAME_PRT YNEW E E E E Y
CHKTK_UG_MDL_REFC_SCOPE_PRT YNEW Y Y Y Y Y
CHKTK_UG_DWGVIEW_GENERIC_DRW YNEW E E E E Y
Lines added to the ModelCheck start file (nostart.mcs)
CUSTMTK_CHECKS_FILE text/custmtk_checks.txt

276 Creo® Parametric TOOLKITUser’s Guide

14
Core: Asynchronous Mode

Overview .. 278
Simple Asynchronous Mode... 279
Full Asynchronous Mode.. 282

This chapter explains using Creo Parametric TOOLKIT in Asynchronous Mode.

277

Overview
Asynchronous mode is a multiprocess mode in which the Creo Parametric
TOOLKIT application and Creo Parametric can perform concurrent operations.
Unlike synchronous mode, the asynchronous mode uses remote procedure calls
(rpc) as the means of communication between the application and Creo
Parametric.
Another important difference between synchronous and asynchronous modes is in
the startup of the Creo Parametric TOOLKIT application. In synchronous mode,
the application is started by Creo Parametric, based on information contained in
the registry file. In asynchronous mode, the application is started independently of
Creo Parametric and subsequently either starts or connects to a Creo Parametric
process. The application can contain its own main() or wmain() function. Use
wmain() if the application needs to receive command-line arguments as
wchar_t, for example if the input contains non-usascii characters. Note that an
asynchronous application will not appear in the Auxiliary Applications dialog
box.
The section How Creo Parametric TOOLKIT Works on page 35 in Fundamentals
on page 22 chapter describes two modes—DLL and multiprocess (or “spawned”).
These modes are synchronous modes in the sense that the Creo Parametric
TOOLKIT application and Creo Parametric do not perform operations
concurrently. In spawn mode, each process can send a message to the other to ask
for some operation, but each waits for a returning message that reports that the
operation is complete. Control alternates between the two processes, one of which
is always in a wait state.
Asynchronous mode applications operate with the same method of
communication as spawn mode (multiprocess). The use of rpc in spawn mode
causes this mode to perform significantly slower than DLL communications. For
this reason, you should be careful not to apply asynchronous mode when it is not
needed. Note that asynchronous mode is not the only mode in which your
application can have explicit control over Creo Parametric. You can also run Creo
Parametric in batch mode using Creo Parametric TOOLKIT applications; for more
information on batch mode operation, refer to the section Using Creo Parametric
TOOLKIT to Make a Batch Creo Parametric Session on page 52.

Setting up an Asynchronous Creo Parametric
TOOLKITApplication
For your asynchronous application to communicate with Creo Parametric, you
must set the environment variable PRO_COMM_MSG_EXE to the full path of the
executable pro_comm_msg.exe , that is, <creo_loadpoint>\
<datecode>\Common Files\<machine>\obj\pro_comm_msg.exe

Set PRO_COMM_MSG_EXE in the Environment Variables section of the System
window (which can be accessed from the Control Panel).

278 Creo® Parametric TOOLKITUser’s Guide

Depending on how your asynchronous application handles messages from Creo
Parametric, your application can be classified as either “simple” or “full”. The
following sections describe simple and full asynchronous mode.
The environment variable RPC_TIMEOUT sets the maximum time limit in which
the remote procedure calls must be executed. The variable sets the time in
seconds. The default value is set to 2000 seconds. The functions return the error
PRO_TK_COMM_ERROR, when the application times out without complete
execution. If your application requires more time for execution, you must set this
variable to a higher value.

Note
For asynchronous mode applications, you are not required to supply user_
initialize() and user_terminate(), Creo Parametric TOOLKIT
will supply a default implementation for these functions. If you do wish to
include a custom version of either function, both the functions user_
initialize() and user_terminate() must be supplied in the
application. A custom user_initialize() will make it possible to
access the user_initialize() input arguments and to reuse code from a
synchronous application without making modifications.

Simple Asynchronous Mode
A simple asynchronous application does not implement a way to handle requests
from Creo Parametric. Therefore, Creo Parametric cannot call functions in the
Creo Parametric TOOLKIT application. Consequently, Creo Parametric cannot
invoke the callback functions that must be supplied when you add, for example,
menu buttons or notifications to Creo Parametric.
Despite this limitation, Creo Parametric running with graphics is still an
interactive process available to the user.
When you design a Creo Parametric TOOLKIT application to run in simple
asynchronous mode, keep the following in mind:

• The Creo Parametric process and the application perform operations
concurrently.

• None of the application’s functions are invoked by Creo Parametric.
• Simple asynchronous mode supports Creo Parametric TOOLKIT visit

functions (ProSolidFeatVisit(), for example), but does not support
notification callbacks.

Core: Asynchronous Mode 279

These considerations imply that the Creo Parametric TOOLKIT application does
not know the state (the current mode, for example) of the Creo Parametric process
at any moment.

Starting and Stopping Creo Parametric
Functions introduced:

• ProEngineerStart()
• ProEngineerConnectionStart()
• ProEngineerEnd()
A simple asynchronous application can spawn and connect to a Creo Parametric
process via the function ProEngineerStart(). During this startup, Creo
Parametric calls user_initialize() if it is present in the application. The
Creo Parametric process “listens” for requests from the application and acts on the
requests at suitable breakpoints—normally between commands.
The function ProEngineerConnectionStart() performs the same task as
ProEngineerStart(), except that ProEngineerConnectionStart()
outputs a ProProcessHandle which can be used for later connect and disconnect
operations. Using this function requires building with a C++ compiler — see the
description of ProEngineerConnect() for more information.
To connect to an existing Creo Parametric process from an asynchronous
application, see the section Connecting to a Creo Parametric Process on page 280.
Unlike applications running in synchronous mode, asynchronous applications are
not terminated when Creo Parametric terminates. This functionality is useful when
the application needs to perform Creo Parametric operations only intermittently,
and therefore start and stop Creo Parametric more than once during a session. To
end a Creo Parametric process, call the function ProEngineerEnd().

Connecting to a Creo Parametric Process
Functions introduced:

• ProEngineerConnectIdGet()
• ProEngineerConnect()
• ProEngineerDisconnect()
• ProEngineerConnectIdExtract()
The function ProEngineerConnectIdGet() returns the asynchronous
connection id of the Creo Parametric session that the application is running with.
This function can be called from any synchronous (DLL or spawn mode) or

280 Creo® Parametric TOOLKITUser’s Guide

asynchronous application. It allows the application to send the connection id to
any other asynchronous application that needs to connect to this specific Creo
Parametric session.
A simple asynchronous application can also connect to a Creo Parametric process
that is already running on that machine. The function
ProEngineerConnect() performs this function. It allows you to specify the
name of the user who owns the Creo Parametric process to which you want to
connect, and the name of the machine used for the display. If multiple Creo
Parametric sessions meet this specification, ProEngineerConnect() can
optionally choose one process at random or return an error status.
To disconnect from a Creo Parametric process, call
ProEngineerDisconnect().
The connection to a Creo Parametric process uses information that is provided by
the name service daemon. The name service daemon accepts and supplies
information about the processes running on the specified hosts. The application
manager, for example, uses name service when it starts up Creo Parametric and
other processes. The name service daemon is set up as part of the Creo Parametric
installation.
The function ProEngineerConnectIdExtract() returns a string
connection identifier for the Creo Parametric process. This identifier can be used
later to connect to the same process using a call to ProEngineerConnect().
Pass the connection id as the first argument to the connection function.
To use the functions in this section, and also the function
ProEngineerConnectionStart(), you must link your application with the
library pt_asynchronous.lib, which is in the following location:
<creo_toolkit_loadpoint>/<Machine>/obj

Because this is a C++ library, you must use a C++ compiler to build your
application. For sample makefiles containing C++ settings, see the makefiles
under the directory <creo_toolkit_loadpoint>/<Machine>/obj

Note
You do not have to link with pt_asynchronous.lib (or use a C++ compiler) if
you do not use the functions just described or
ProEngineerConnectionStart().

Status of a Creo Parametric Process
Function introduced:

Core: Asynchronous Mode 281

• ProEngineerStatusGet()
It might be useful for your application to know whether a Creo Parametric process
is running. The function ProEngineerStatusGet() returns this information.

Full Asynchronous Mode
Functions introduced:

• ProEventProcess()
• ProAsynchronousEventLoop()
• ProAsynchronousEventLoopInterrupt()
• ProTermFuncSet()
• ProTerminationAction()
Full asynchronous mode is identical to simple asynchronous mode except in the
way the Creo Parametric TOOLKIT application handles requests from Creo
Parametric. In simple asynchronous mode, it is not possible to process such
requests. In full asynchronous mode, the application must implement a control
loop that “listens” for messages that arrive from Creo Parametric. As a result,
Creo Parametric can call functions in the application, including callback functions
for menu buttons and notifications.
The control loop of an application running in full asynchronous mode must
contain a call to the function ProEventProcess(), which takes no arguments.
This function responds to Creo Parametric messages in a manner similar to
synchronous mode. For example, if the user selects a menu button that is added by
your application, ProEventProcess() processes the call to your callback
function and returns when the call completes. (For more information on callback
functions and adding menu buttons, see the User Interface: Menus, Commands,
and Popupmenus on page 301 chapter.)
The function ProAsynchronousEventLoop() provides an alternative to the
development of an event processing loop in a full asynchronous mode application.
Call this function to have the application wait in a loop for events to be passed
from Creo Parametric. No other processing will take place while the application is
waiting. The loop will continue until
ProAsynchronousEventLoopInterrupt() is called from a Creo
Parametric TOOLKIT callback action, or until the application detects that Creo
Parametric has terminated.
It is often necessary for your full asynchronous application to be notified of the
termination of the Creo Parametric process. In particular, your control loop need
not continue to listen for Creo Parametric messages if Creo Parametric is no
longer running. The function ProTermFuncSet() binds a termination action to
be executed when Creo Parametric is terminated. The termination action is a

282 Creo® Parametric TOOLKITUser’s Guide

function that you supply and identify in the input of ProTermFuncSet() by a
function pointer of type ProTerminationAction. The input to the
termination action is the termination type, which is one of the following:

• PROTERM_EXIT—Normal exit (the user picks Exit from the menu).
• PROTERM_ABNORMAL—Exit with error status.
• PROTERM_SIGNAL—Fatal signal raised.
Your application can interpret the termination type and take appropriate action.

Setting Up a Non-Interactive Session
You can spawn a Creo Parametric session that is both noninteractive and
nongraphical. In asynchronous mode, include the following arguments in the call
to ProEngineerStart():

• -g:no_graphics—Turn off the graphics display.
• -i:rpc_input—Cause Creo Parametric to expect input from your asynchronous

application only.
Both of these arguments are required, but the order is not important. The syntax of
the call for a noninteractive, nongraphical session is as follows:
ProEngineerStart ("parametric -g:no_graphics -i:rpc_input", <text_dir>);

In the syntax, parametric is the command to start Creo Parametric.

Core: Asynchronous Mode 283

15
User Interface: Messages

Writing a Message Using a Popup Dialog .. 285
Writing a Message to the Message Window... 285
Message Classification .. 288
Writing a Message to an Internal Buffer ... 289
Getting Keyboard Input .. 290
Using Default Values ... 290

This chapter describes the functions used to communicate with the user through
the text message area, including keyboard entry.

284 Creo® Parametric TOOLKITUser’s Guide

Writing a Message Using a Popup Dialog
The function ProUIMessageDialogDisplay() displays the UI message
dialog. The input arguments to the function are:

• The type of message to be displayed.
• The text to display as the title of the dialog. If you want to support displaying

localized text, use the message files and the function
ProMessageToBuffer() to generate this string. Message files are
described later in this chapter.

• The message text to be displayed in the dialog. If you want to support
displaying localized text, use the message files and function
ProMessageToBuffer() to generate this string. Message files are
described later in this chapter.

• ProArray of possible button identifiers for the dialog.
• The identifier of the default button for the dialog.
The function outputs the button that the user selected.

Example 1: Displaying the UI Message Dialog
The sample code in UgUIMessageDisplay located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_message shows how
to display a hard coded confirmation message.

Writing a Message to the Message
Window
This section describes the following topics:

• Displaying and clearing messages
• The text message file
Functions Introduced:

• ProMessageDisplay()
• ProMessageClear()
• ProUIMessageDialogDisplay()
The function ProMessageDisplay() is similar to the C function printf(),
but with some important differences:

User Interface: Messages 285

• The first argument is the name (as a wide string) of the message file. The
name must include the file extension, but not the path. See the section Text
Message File Format and Restrictions on page 286.

• The second argument, instead of being a format string, is a keyword used to
look up the format string in the message file.

• The subsequent arguments for the values inserted into the format string are
pointers, not values. These values can be data inserted into the message or
default values for the data to be read from user input. See the section Getting
Keyboard Input on page 290 for more information.

• Although the list of arguments for the values is variable in number, there is a
maximum of 9. See Contents of the Message File on page 287 for more
information on using these arguments with a message format.

The function ProMessageClear() scrolls the text in the message area up one
line. This could be used to indicate that Creo Parametric has received the user’s
response to a message.

Text Message File Format and Restrictions
The text message file enables you to provide your own translation of the text
message, just as the menu files enable you to provide your own translation of the
button name and the one-line command help.

Restrictions on the Text Message File
You must observe the following restrictions when you name your message file:

• The name of the file must be 30 characters or less, including the extension.
• The name of the file must contain lowercase characters only.
• The file extension must be three characters.
• The version number must be in the range 1 to 9999.
• All message file names must be unique, and all message key strings must be

unique across all applications that run with Creo Parametric. Duplicate
message file names or message key strings can cause Creo Parametric to
exhibit unexpected behavior. To avoid conflicts with the names of Creo
Parametric or Creo Parametric TOOLKIT application message files or
message key strings, PTC recommends that you choose a prefix unique to
your application, and prepend that prefix to each message file name and each
message key string corresponding to that application.

Creo Parametric looks for the message file using the following search path:

286 Creo® Parametric TOOLKITUser’s Guide

• The current Creo Parametric directory
• The directory text under the directory named in the text_dir statement in

the registry file (protk.dat).
Note that message files are loaded into Creo Parametric only once during a
session, during the first call to ProMessageDisplay(). Consequently, if you
make a change to the message file while Creo Parametric is running, you must
exit and restart Creo Parametric to have the changes take effect.

Contents of the Message File
The message file consists of groups of four lines—one group for each message
you want to write. The four lines are as follows:

1. A string that acts as the keyword to identify the message when you call
ProMessageDisplay() This keyword must be unique for all Creo
Parametric messages.

2. A string that will be substituted for the first string when you call
ProMessageDisplay(). This string acts like the format string in a
printf() statement. By modifying this line in the message file, you can
modify the text of the message without modifying your C code.

3. The translation of the message into another language (can be blank).
4. An intentionally blank line reserved for future extensions.
The format string (line 2 in the message file) differs from the format string of a
printf() in the following respects:

• The conversion specifications (%d, %s, and so on) must include an argument
number corresponding to the position of that argument in the subsequent list
(starting at 0). For example, instead of %d, %s, you must have %0d,%1s, and
so on. If you want to specify a field width, put it in parentheses between the
position number and the type specifier; for example, %0(5.3)f.

• The separator ||| between message text and a conversion specification signifies
that the conversion specification is for a default value for user input. This
default value will appear in the text box created using the keyboard input
functions, such as ProMessageIntegerRead(). Refer to Using Default
Values on page 290 for more on default values.

• The conversion character w is available for wide strings.
• You do not need the character constant (\n) at the end of the format. Creo

Parametric automatically inserts a new line when necessary.

User Interface: Messages 287

Note
The length of any line in the message file must not exceed 4096 wide
characters.

The following table lists the conversion characters and their corresponding data
types.
Conversion Character Data Type
f Float (or double)
d Decimal integer
s Ordinary string (or type char[])
w Wide character strings
e Exponential
g Either float or exponential, as appropriate

Ensure that the keyword string is similar to the format string to make your C code
easy to interpret. Add a prefix that is unique to your application to the keyword
string. The examples in this manual use the unique prefix “USER.”

Message Classification
Messages displayed in Creo Parametric include a symbol which identifies the
message type. Each message type is identified by a classification which begins
with the characters %C. A message classification requires that the message key
(line 1 in the message file) be preceeded by the classification code. Note that the
message key string used in the code should NOT contain the classification.
Creo Parametric TOOLKIT applications can now display any or all of these
message symbols:

• Prompt—the Creo Parametric message displayed is preceded by a green arrow.
The user must respond to this message type (to either input information,
accept the default value offered, or cancel the application). Without such
action, no progress can be made. The response may be either textual or in the
form of a selection. The classification code for prompt messages is %CP.

• Info—the Creo Parametric message displayed is preceded by a blue dot. This
message type contains information such as user requests or feedback from
either Creo Parametric or the Creo Parametric TOOLKIT application. The
classification code for prompt messages is %CI.

288 Creo® Parametric TOOLKITUser’s Guide

Note
Do not classify as Info any message which informs users of a problem
with an operation or process. These messages should be classified as
Warnings.

• Warning—the Creo Parametric message displayed is preceded by a triangle
containing an exclamation point. Warnings alert the user to situations which
may lead to potentially erroneous situations at a later stage, for example,
possible process restrictions imposed or a suspected data problem. However,
warnings do not prevent or interrupt task completion, nor should they be used
to indicate a failed operation. Warnings only caution the user that the operation
has been completed, but may not have been performed in a completely
desirable way. The classification code for prompt messages is %CW.

• Error—the Creo Parametric message is preceded by a broken square. This
message type informs the user when a required task was not successfully
completed. It may or may not require intervention or correction before work
can continue, depending on the application. Whenever possible, provide a path
to redress this situation. The classification code for prompt messages is %CE.

• Critical—the Creo Parametric message displayed is preceded by a red X. This
message type informs the user of extremely serious situations, especially those
which could cause the loss of user data. Options for redressing the situation (if
available) should be provided with the message. The classification code for
prompt messages is %CC.

Writing a Message to an Internal Buffer
Function Introduced:

• ProMessageToBuffer()
• ProMessageWstringbufferAlloc()
The functions ProMessageToBuffer() and
ProMessageWstringbufferAlloc() have the same relationship to
ProMessageDisplay() that the C library function sprintf() has to
printf(): it enables you to write a message to an internal, wide-string buffer
instead of to the Creo Parametric message area. These functions perform exactly
the same argument substitution and translation as ProMessageDisplay().
You provide a wide-string buffer as the first argument, and the subsequent
arguments are the same as those for ProMessageDisplay().
The function ProMessageToBuffer() allows you to write a message with a
maximum length of 80 characters to a wide-string buffer.

User Interface: Messages 289

For a message of any length use the function
ProMessageWstringbufferAlloc(). You must free the output string
translated_msg using the function ProWstringFree().

Getting Keyboard Input
Functions Introduced:

• ProMessageIntegerRead()
• ProMessageDoubleRead()
• ProMessageStringRead()
• ProMessagePasswordRead()
These four functions obtain keyboard input from a text box at the bottom of the
Creo Parametric window. The functions check the syntax of the user’s entry and
indicate when the entry is simply a carriage return. Each of the functions enable
you to restrict numeric input to a specified range, or string input to a specified
string length. The functions continue to prompt the user until a valid response is
entered.
The function ProMessageStringRead() supports string lengths up to 127
characters.

Using Default Values
Prior to Release 20, Pro/TOOLKIT applications implemented default values by
checking for a user-entered carriage return. Beginning with Release 20, you can
specify default values within the call to ProMessageDisplay(), provided
that the separator ||| appears in the format string in the message file. (See the
section Contents of the Message File on page 287 for the specific placement of the
||| separator.)

Note
You must call the function ProMessageDisplay() before calling the
ProMessage*Read functions to specify the default values.

Default values are displayed in the text box as input. Note that this value will not
be passed to the Creo Parametric TOOLKIT function if the user hits a carriage
return; instead, the function will return PRO_TK_GENERAL_ERROR and the
application must interpret that the user intends to use the default.
To specify a constant default value, the format string would appear as follows:

Enter a double: |||3.0

290 Creo® Parametric TOOLKITUser’s Guide

Specifying constant defaults is not recommended as changing the default requires
revising the Creo Parametric TOOLKIT application. Specifying defaults that are
variables is more flexible.
To specify a default integer that is a variable, for example, the format string in the
message file would appear as follows:

Enter any integer: |||%0d

Example 2: Displaying Messages and Retrieving
Keyboard Input
The sample code in UgMessageWindowUse.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_message shows how
to print messages and accept keyboard input with default values. The example
also shows how to write a message to an internal, wide-string buffer. The name of
the message file is msg_ugmessage.txt.

User Interface: Messages 291

16
User Interface: Ribbon Tabs,

Groups, and Menu Items
Creating Ribbon Tabs, Groups, and Menu Items .. 293
About the Ribbon Definition File.. 295
Localizing the Ribbon User Interface Created by Creo Parametric TOOLKIT
Applications... 298

Tab Switching Events... 299
Support for Legacy Pro/TOOLKITApplications .. 299
Migration of Legacy Pro/TOOLKIT Applications ... 300

This chapter describes theCreo Parametric TOOLKIT support for the Ribbon User
Interface (UI). It also describes the impact of the ribbon user interface on legacy
Pro/TOOLKIT applications and the procedure to place the commands, buttons,
and menu items created by the legacy applications in the Creo Parametric ribbon
user interface. Refer to the Creo Parametric Help for more information on the
ribbon user interface and the procedure to customize the ribbon.

292 Creo® Parametric TOOLKITUser’s Guide

Creating Ribbon Tabs, Groups, and Menu
Items
Customizations to the ribbon user interface using the Creo Parametric TOOLKIT
applications are supported through the Customize Ribbon tab in the Creo
Parametric Options dialog box. You can specify the user interface layout for a
Creo Parametric TOOLKIT application and save the layout definition in a ribbon
definition file, toolkitribbonui.rbn. When you run Creo Parametric, the
toolkitribbonui.rbn file is loaded along with the Creo Parametric
TOOLKIT application and the commands created by the Creo Parametric
TOOLKIT application appear in the ribbon user interface. Refer to the section
About the Ribbon Definition File on page 295for more information on the
toolkitribbonui.rbn file.
You can customize the ribbon user interface only for a particular mode in Creo
Parametric. For example, if you customize the ribbon user interface and save it to
the toolkitribbonui.rbn file in the Part mode, then on loading Creo
Parametric the customized user interface will be visible only in the Part mode. To
view a particular tab or group in all the modes, you must customize the ribbon
user interface and save the toolkitribbonui.rbn file in each mode. Refer
to the Creo Parametric help for more information on customizing the ribbon.

Note
You can add a new group to an existing tab or create a new tab using the
Customize Ribbon tab in theCreo Parametric Options dialog box. You will not
be able to modify the tabs or groups that are defined by Creo Parametric.

Workflow to Add Menu Items to the Ribbon User
Interface

Note
The instructions explained below are applicable only if the application is
implemented in full asynchronous mode. This is because applications in
simple asynchronous mode cannot handle requests, that is, command
callbacks, from Creo Parametric. Refer to the chapter Core: Asynchronous
Mode on page 277, for more information.

User Interface: Ribbon Tabs, Groups, and Menu Items 293

You must have a Creo Parametric TOOLKIT development license to customize
the ribbon user interface for Creo Parametric TOOLKIT applications. The steps to
add commands to the Creo Parametric ribbon user interface are as follows:
1. Create a Creo Parametric TOOLKIT application with complete command

definition, which includes specifying command label, help text, large icon
name, and small icon name. Designate the command using the
ProCmdDesignate().

Note
The labels and the text added using the ProCmdDesignate() function
duplicate existing messages that are previously added in the Creo database.
To display the correct label and text message, you can use a prefix or a
suffix with the message names that will identify your Creo Parametric
TOOLKIT application. You should avoid using generic names of Creo
Parametric TOOLKIT buttons such as Point, Arc, Circle, Ellipse in the
labels and text.

2. Start the Creo Parametric TOOLKIT application and ensure that it is started or
connected to Creo Parametric. The commands created by the Creo Parametric
TOOLKIT application will be loaded in Creo Parametric.

3. Click File ▶ Options. The Creo Parametric Options dialog box opens.
4. Click Customize Ribbon.
5. In the Customize the Ribbon list, select a tab and create a new group in it or

create a new tab and a group in it.
6. In the Choose commands from list, select TOOLKIT Commands. The

commands created by the Creo Parametric TOOLKIT application are
displayed.

7. Click Add to add the commands to the new tab or group.
8. Click Import/Export ▶ Save the Auxiliary Application User Interface. The

changes are saved to the toolkitribbonui.rbn file. The
toolkitribbonui.rbn file is saved in the text folder specified in the
Creo Parametric TOOLKIT application registry file. For more information
refer to the section on Ribbon Definition File on page 295.

9. Click Apply. The custom settings are saved to the toolkitribbonui.rbn
file.

10. Reload the Creo Parametric TOOLKIT application or restart Creo Parametric.
The toolkitribbonui.rbn file will be loaded along with the Creo
Parametric TOOLKIT application.

294 Creo® Parametric TOOLKITUser’s Guide

If translated messages are available for the newly added tabs or groups, then Creo
Parametric displays the translated strings by searching for the same string from the
list of string based messages that are loaded. For more information refer to the
section on Localizing the Ribbon User Interface Created by the Creo Parametric
TOOLKITApplications on page 298.

About the Ribbon Definition File
A ribbon definition file is a file that is created through the Customize Ribbon
interface in Creo Parametric. This file defines the containers, that is, Tabs, Groups,
or Cascade menus that are created by a particular Creo Parametric TOOLKIT
application. It contains information on whether to show an icon or label. It also
contains the size of the icon to be used, that is, a large icon (32X32) or a small
icon (16x16).
The ribbon user interface displays the commands referenced in the ribbon
definition file only if the commands are loaded and are visible in that particular
Creo Parametric mode. If translated messages are available for the newly added
tabs or groups, then Creo Parametric displays the translated strings by searching
for the same string from the list of string based messages that are loaded. For more
information refer to the section on Localizing the Ribbon User Interface Created
by the Creo Parametric TOOLKITApplications on page 298.
You need a Creo Parametric development license to create, modify, or save the
toolkitribbonui.rbn file. You cannot edit it manually. To save the ribbon
user interface layout definition to the toolkitribbonui.rbn file:
1. Click File ▶ Options. The Creo Parametric Options dialog box opens.
2. Click Customize Ribbon.
3. In the Customize the Ribbon list, select a tab and create a new group in it or

create a new tab and a group in it.
4. In the Choose commands from list, select TOOLKIT Commands. The

commands created by the Creo Parametric TOOLKIT application are
displayed.

5. Click Add to add the commands to the new tab or group.
6. Click Import/Export ▶ Save the Auxiliary Application User Interface. The

modified layout is saved to the toolkitribbonui.rbn file located in the
text folder within the Creo Parametric TOOLKIT application directory, that
is, <protk_app_dir>/text

7. Click OK.

User Interface: Ribbon Tabs, Groups, and Menu Items 295

To Specify the Path for the Ribbon Definition File
You can rename the toolkitribbonui.rbn to another filename with the
.rbn extension. To enable the Creo Parametric TOOLKIT application to read the
ribbon definition file having a name other than toolkitribbonui.rbn, it
must be available at the location <protk_app_dir>/text/ribbon. The
function introduced in this section enables you to load the ribbon definition file
from within a Creo Parametric TOOLKIT application.
Function Introduced:

• ProRibbonDefinitionfileLoad()
The function ProRibbonDefinitionfileLoad() loads a specified ribbon
definition file from a default path into the Creo Parametric application. The input
argument is as follows:
• file_name - Specify the name of the ribbon definition file including its

extension. The default search path for this file is:
○ The working directory from where Creo Parametric is loaded.
○ <application_text_dir>/ribbon

○ <application_text_dir>/language/ribbon

Note
◆ The location of the application text directory is specified in the Creo

Parametric TOOLKIT registry file.
◆ A Creo Parametric TOOLKIT application can load a ribbon definition

file only once. After the application has loaded the ribbon, calls made
to the function ProRibbonDefinitionfileLoad() to load
other ribbon definition files are ignored.

Loading Multiple Applications Using the Ribbon
Definition File
Creo Parametric supports loading of multiple .rbn files in the same session. You
can develop multiple Creo Parametric TOOLKIT applications that share the same
tabs or groups and each application will have its own ribbon definition file. As
each application is loaded, its .rbn file will be read and applied. When an
application is unloaded, the containers and command created by its .rbn file will
be removed.
For example, consider two Creo Parametric TOOLKIT applications, namely, pt_
geardesign and pt_examples that add commands to the same group on a
tab on the Ribbon user interface. The application pt_geardesign adds a

296 Creo® Parametric TOOLKITUser’s Guide

command Pro/TOOLKIT Gear Design to the Advanced Modeling group on the Model
tab and the application pt_examples adds a command TKPart to the Advanced
Modeling group on the Model tab. The ribbon definition file for each application
will contain an instruction to create the Advanced Modeling group and if both the
ribbon files are loaded, the group will be created only once and the two ribbon
customizations will be merged into the same group.
That is, if both the applications are running in the same Creo Parametric session,
then the commands, Pro/TOOLKIT Gear Design and TKPart will be available under
the Advanced Modeling group on the Model tab.

Note
The order in which the commands will be displayed within the group will
depend on the order of loading of the .rbn file for each application.

The following image displays commands added by two Creo Parametric
TOOLKIT applications to the same group.

To save the customization when multiple applications are loaded:
1. Click File ▶ Options. The Creo Parametric Options dialog box opens.
2. Click Customize Ribbon.
3. In the Customize the Ribbon list, select a tab and create a new group in it or

create a new tab and a group in it.
4. In the Choose commands from list, select TOOLKIT Commands. The

commands created by the TOOLKIT application are displayed.
5. Click Add to add the commands to the new tab or group.
6. Click Import/Export ▶ Save the Auxiliary Application User Interface. The Save

UI Customization dialog box opens.
7. Select a Creo Parametric TOOLKIT application and Click Save. The modified

layout is saved to the .rbn file of the specified Creo Parametric TOOLKIT
application.

User Interface: Ribbon Tabs, Groups, and Menu Items 297

The Save UI Customization dialog box is shown in the following image:

Localizing the Ribbon User Interface
Created by Creo Parametric TOOLKIT
Applications
The labels for the custom tabs, groups, and cascade menus belonging to the Creo
Parametric TOOLKIT application can be translated in the languages supported by
Creo Parametric. To display localized labels, specify the translated labels in the
ribbonui.txt file and save this file at the location <application_text_
dir>/<language>. For example, the text file for German locale must be saved
at the location <application_text_dir>/german/ribbonui.txt.
Create a file containing translations for each of the languages in which the Creo
Parametric TOOLKIT application is localized. The Localized translation files
must use the UTF-8 encoding with BOM character for the translated text to be
displayed correctly in the user interface. For more information on UTF-8
encoding, refer to Unicode Encoding on page 2077.
The format of the ribbonui.txt file is as shown below. Specify the following
lines for each label entry in the file:

1. A hash sign (#) followed by the label, as specified in the ribbon definition file.
2. The label as specified in the ribbon definition file and as displayed in the

ribbon user interface.
3. The translated label.
4. Add an empty line at the end of each label entry in the file.

298 Creo® Parametric TOOLKITUser’s Guide

For example, if the Creo Parametric TOOLKIT application creates a tab with the
name TK_TAB having a group with the name TK_GROUP, then the translated file
will contain the following:
#TK_TAB

TK_TAB

<translation for TK_TAB>

<Empty_line>

#TK_GROUP

TK_GROUP

<translation for TK_GROUP>

<Empty_line>

Tab Switching Events
If tab switching happens at run-time in Creo Parametric, use the notification
functions to trigger a call back function to manage the changes due to the tab
switching.
Functions Introduced:

• ProNotificationSet()
• ProRibbonTabSwitchAction()
• ProNotificationUnset()
Use the function ProNotificationSet() to assign a callback function to be
called when the application switches from one tab to the other.
If the notification argument type is set to PRO_RIBBON_TAB_SWITCH, a
registered call back function whose signature matches
ProRibbonTabSwitchAction() is called. The “(Switch) from Tab” and
“(Switch) to Tab” information is provided to the call back function, through the
function arguments, whenever a Tab switch happens.
Use the function ProNotificationUnset() to cancel a notification.
For more information on using notifications see the chapter Event-driven
Programming: Notifications.

Support for Legacy Pro/TOOLKIT
Applications
The user interface for Creo Parametric 1.0 has been restructured to a ribbon user
interface. This may affect the behavior of existing Pro/TOOLKIT applications that
were designed to add commands to specific Pro/ENGINEER menus or toolbars.
These menus or toolbars or both have been redesigned in Creo Parametric 1.0.

User Interface: Ribbon Tabs, Groups, and Menu Items 299

The commands added by the Pro/TOOLKIT applications appear on the Creo
Parametric ribbon in the Home tab under the TOOLKIT group. When you open a
model, the TOOLKIT group is on the Tools tab.
You can also arrange the commands added by the Pro/TOOLKIT applications
under a new tab or an existing tab by customizing the ribbon using the Customize
Ribbon tab in the Creo Parametric Options dialog box. For a list of all the
commands added by the Pro/TOOLKIT applications, follow this procedure:
1. Click File ▶ Options. The Creo Parametric Options dialog box opens.
2. Click Customize Ribbon.
3. In the Choose commands from list, select TOOLKIT Commands. All the

commands added by legacy Pro/TOOLKIT applications are listed.

Note
Commands that have not been designated will not have an icon or will have a
generic icon.

Refer to the Creo Parametric Help for more information on customizing the
Ribbon.

Migration of Legacy Pro/TOOLKIT
Applications
To migrate existing Pro/TOOLKIT applications to the Creo Parametric Ribbon
user interface without compiling the source code:
1. Load the Pro/TOOLKIT applications in Creo Parametric so that the commands

created in these applications are available in the Customize Ribbon user
interface.

2. Modify the ribbon user interface layout and save the changes to the
toolkitribbonui.rbn.

3. Copy the toolkitribbonui.rbn to the location <application_
text_dir>/ribbon.

4. Reload Pro/TOOLKIT application or restart Creo Parametric. The .rbn file
will be loaded along with the Pro/TOOLKIT application and the commands
will be visible in the ribbon user interface if its accessibility will be visible.

300 Creo® Parametric TOOLKITUser’s Guide

17
User Interface: Menus,

Commands, and Popupmenus
Introduction... 302
Menu Buttons and Menus .. 302
Designating Commands... 310
Popup Menus.. 315
Menu Manager Buttons and Menus .. 320
Customizing the Creo Parametric Navigation Area... 335
Entering Creo Parametric Commands... 339

This chapter describes all the functions provided by Creo Parametric TOOLKIT to
create and manipulate menus and buttons in the Creo Parametric ribbon user
interface.
Refer to the chapter User Interface: Ribbon Tabs, Groups, and Menu Items on
page 292 for more information. Also, refer to the Creo Parametric Help for more
information on customizing the ribbon user interface.

301

Introduction
Using Creo Parametric TOOLKIT, you can supplement the Creo Parametric
ribbon user interface.
Once the Creo Parametric TOOLKIT application is loaded, you can add a new
group to an existing tab or create a new tab using the Customize Ribbon tab in the
Creo Parametric Options dialog box in Creo Parametric. You will not be able to
modify the groups that are defined by Creo Parametric. If the translated messages
are available for the newly added tabs or groups, then Creo Parametric will use
them by searching for the same string in the list of sting based messages loaded.
You can customize the ribbon user interface only for a particular mode in Creo
Parametric. For example, if you customize the ribbon user interface and save it to
the toolkitribbonui.rbn file in the Part mode, then on loading Creo
Parametric the customized user interface will be visible only in the Part mode. To
view a particular tab or group in all the modes, you must customize the ribbon
user interface and save thetoolkitribbonui.rbn file in each mode. Refer to
the Creo Parametric Fundamentals Help for more information on customizing the
ribbon.
When you are designing your Creo Parametric TOOLKIT application, you should
carefully consider the context of the buttons that you add to the Creo Parametric
User Interface (UI). Buttons specific to a particular mode (such as PART) should
be located on the ribbon related to that mode. Buttons that initiate some action on
a part, for example, should be located on the PART ribbon.
There are fundamental differences in the files and functions used to manipulate
Ribbon and Menu-Manager menus. For this reason, this manual describes these
subjects in separate sections.

Menu Buttons and Menus
The tabs in the Creo Parametric ribbon user interface contain groups composed of
both buttons and submenus. Using Creo Parametric TOOLKIT, you can create
similar structures in the Creo Parametric ribbon user interface. The object
definitions are as follows:

• Push button—A named item in a group or menu that is used to launch a set of
instructions. An example is the Plane button in the Datum group.

Check button—An item in a group or menu that may be toggled on and off.
An example is the Plane Display toggle in the Model Display group in the View
tab.

• Radio group—An item in a group or menu that may be set to one and only one
of any number of options. An example is the group of windows listed in the
Window group at the Windows tab which allow you to switch between
different windows.

302 Creo® Parametric TOOLKITUser’s Guide

• Command—A procedure in Creo Parametric that may be activated from a
button.

• Command ID—An opaque pointer to a command, used as an input to other
Creo Parametric TOOLKIT functions.

• Action command—A command which executes a set of instructions.
Launched by push buttons.

• Option command—A command which executes a set of instructions based on
the state of a UI component. Commands are launched by check buttons and
radio groups.

Using the Trail File to Determine UI Names
Several functions dealing with UI components require the input of strings that
Creo Parametric uses to identify commands and menu buttons.
To find the name of an action command, click the corresponding icon on the
ribbon user interface and then check the last entry in the trail file. For example, for
the save icon, the trail file will have the corresponding entry:
~ Command `ProCmdModelSave`

The command name for the save button is ProCmdModelSave. This string can
be used as input to ProCmdCmdIdFind() to get the command ID.

Adding a PushButton
To add a button to the ribbon user interface, your Creo Parametric TOOLKIT
application must do the following:

1. Define the action command to be initiated by the button. The action is defined
in a function known as the “callback function.”

2. Designate the command using the function ProCmdDesignate().
3. Add the button to the ribbon user interface using the using the Customize

Ribbon tab in the File ▶ Options dialog box. This operation binds the added
action to the button.

These procedures are described in the sections that follow.

Adding an Action to the Creo Parametric Ribbon
Function Introduced:

• ProCmdActionAdd()
The function ProCmdActionAdd() adds an action to Creo Parametric. This
action can be later associated with a push button command in the Creo Parametric
user interface. The syntax of this function is as follows:

User Interface: Menus, Commands, and Popupmenus 303

ProError ProCmdActionAdd (
char *action_name,
uiCmdCmdActFn action_cb,
uiCmdPriority priority,
uiCmdAccessFn access_func,
ProBoolean allow_in_non_active_window,
ProBoolean allow_in_accessory_window,
uiCmdCmdId *action_id);

This function takes the following arguments:

• action_name —The name of the command as it will be used in Creo
Parametric. This name must be unique, and it must occur only once in your
applications or in Creo Parametric. To prevent conflicts, PTC recommends
prepending or appending a unique identifier to your command names, similar
to ptc_openfile or openfile_ptc.

• action_cb—The action function (callback function) that will be called when
the command is activated by pressing the button, cast to a uiCmdCmdActFn:

typedef int (*uiCmdCmdActFn) (
uiCmdCmdId command,
uiCmdValue *p_value,
void *p_push_command_data

);

○ command—Identifier of the action or option.
○ p_value—For options passed to ValueGet functions. Ignored for actions.
○ p_push_command_dataNot implemented in this release.

• priority—The command priority. The priority of the action refers to the level
of precedence the added action takes over other Creo Parametric actions.

The available action priorities are defined in the enumerated type
uiCmdPriority. The possible values are as follows:

typedef int uiCmdPriority;
#define uiCmdPrioDefault ((uiCmdPriority) 0)
#define uiProeImmediate ((uiCmdPriority) 2)
#define uiProeAsynch ((uiCmdPriority) 3)
#define uiProe2ndImmediate ((uiCmdPriority) 5)
#define uiProe3rdImmediate ((uiCmdPriority) 6)
#define uiCmdNoPriority ((uiCmdPriority) 999)

The following table describes the enumerated values in detail.

304 Creo® Parametric TOOLKITUser’s Guide

Value Description
uiCmdPrioDefault Normal priority actions

Normal priority actions dismiss all other actions
except asynchronous actions. Note that buttons of
this priority can lead to the dismissal of Menu
Manager menus. Dismissing these menus can
result in unexpected behavior from functions that
depend on the mode and the context of the Creo
Parametric session. One example of a function
which can exhibit unintended behavior is
ProSelect() when selecting objects from an
active simplified representation. Menu buttons
should have lesser priority if they depend on the
context of the Creo Parametric session.

uiProeImmediate,
uiProe2ndImmediate, and
uiProe3rdImmediate

Levels of immediate priority. Actions of each level
of priority dismiss actions with lower level
priorities.

uiProeAsynch Asynchronous priority. Actions with asynchronous
priority are independent of all other actions.

• access_func—The access function (callback function) that determines if the
menu button should be available, unavailable, or hidden. Action accessibility
refers to whether an added button is available for user selection. This function
is called each time the button is displayed. The accessibility is evaluated based
on the conditions pertaining at the time the button is pressed. The access
function must be cast to a uiCmdAccessFn:

typedef uiCmdAccessState (*uiCmdAccessFn)
(uiCmdAccessMode access_mode);

The potential return values are listed in the enumerated type
uiCmdAccessState:

○ ACCESS_REMOVE—The button is not visible, and the containing menus
might also be removed from the menu, if all of the menu buttons in the
containing menu possess an access function returning ACCESS_REMOVE.

○ ACCESS_INVISIBLE—The button is not visible.
○ ACCESS_UNAVAILABLE—The button is visible, but unavailable and

cannot be selected.
○ ACCESS_DISALLOW—The button shows as available, but the command

will not be executed when it is chosen.
○ ACCESS_AVAILABLE—The button is available and can be selected by

the user.

User Interface: Menus, Commands, and Popupmenus 305

Note
When you add a button, all the return values for the enumerated type
uiCmdAccessState work as documented. However, when you add a
button to the Creo Parametric ribbon user interface, and the access
function returns the value ACCESS_REMOVE or ACCESS_INVISIBLE,
these values are ignored. The values are treated as ACCESS_
UNAVAILABLE instead. The button is visible, but is unavailable.

• allow_in_non_active_window—A ProBoolean determining whether or not
to show this command in any non active window. A non-active window is a
window that exists and contains a model, but that is no the active window in
the Creo Parametric session. Awindow becomes active when the user chooses
View ▶ Activate. This functionality is equivalent to changing the active
window by selecting and activating a window using the pull-down menu of
Windows command under the View tab in Creo Parametric.

• allow_in_accessory_window—A ProBoolean determining whether or not
to show this command in an accessory window. An accessory window is
smaller than a main Creo Parametric window and allows only the File>Exit
command from the menu.

• action_id—The function will return a uiCmdCmdId, the command identifier.
This identifier can be used in additional Creo Parametric function calls, such
as, ProCmdDesignate.

Note
• The function ProCmdActionAdd() is executed only once per Creo

Parametric session for each action. Subsequent calls to this function for a
previously loaded action are ignored (therefore you cannot redefine an action
within a Creo Parametric session).

Adding a Button to the Ribbon
You can add a button to the ribbon user interface using the Customize Ribbon tab
in the Creo Parametric Options dialog box. Refer to the chapter on User Interface:
Ribbon Tabs, Groups, and Menu Items on page 292 for more information. Also,
refer to the Creo Parametric Help for more information on customizing the Ribbon
User Interface.

306 Creo® Parametric TOOLKITUser’s Guide

Adding a Check Button to the Ribbon User Interface
To add a check button to the ribbon user interface, your Creo Parametric
TOOLKIT application must do the following:

1. Define the option command to be initiated by the button. The definition of this
command includes the definition of three callback functions.

2. Designate the command using the function ProCmdDesignate().
3. Add the check button to the ribbon user interface. This operation binds the

added action to the button.
These procedures are described in the sections that follow.

Adding an Option Command to Creo Parametric—Check
Button
Functions Introduced:

• ProCmdOptionAdd()
• ProCmdChkbuttonValueGet()
• ProCmdChkbuttonValueSet()
The function ProCmdOptionAdd() adds a command to Creo Parametric.
The syntax of this function is as follows:
ProError ProCmdOptionAdd (

char *option_name,
uiCmdCmdActFn option_cb,
ProBoolean boolean_operation,
uiCmdCmdValFn set_value_cb,
uiCmdAccessFn access_func,
ProBoolean allow_in_non_active_window,
ProBoolean allow_in_accessory_window,
uiCmdCmdId *option_id);

This function requires the following arguments:

• option_name—The name of the option command. This must be unique, in the
same way as action command.

• option_cb—The action command to be executed when the check button is
toggled, cast to a uiCmdCmdActFn. This function should include a call to
ProCmdChkbuttonValueGet(), to determine the value of the check
button.

• boolean_operation—Specifies whether or not the option has two values. Set
this to PRO_B_TRUE for a check button.

• set_value_cb—The callback function that sets the value of the check button,
cast to a uiCmdCmdValFn:

User Interface: Menus, Commands, and Popupmenus 307

typedef int (*uiCmdCmdValFn) (
uiCmdCmdId command,
uiCmdValue *p_value

);

This function should include a call to ProCmdChkbuttonValueSet() to
set the value of the check button when the UI is displayed or refreshed.

• access_func—The callback function that determines if the command is
accessible.

• allow_in_non_active_window—A ProBoolean determining whether or not
to show this command in any non-active window. A non-active window is a
window that exists and contains a model, but that is not the active window in
the Creo Parametric session. Awindow becomes active when the user
activates a new window or opens a model in a new window.

• allow_in_accessory_window—A ProBoolean determining whether or not
to show this command in an accessory window. An accessory window is
smaller then a main Creo Parametric window and allows only the File>Exit
command from the ribbon user interface.

The functions ProCmdChkbuttonValueGet() and
ProCmdChkbuttonValueSet() provide access to the value of the check
button. These functions require the option command value (provided by the
callback functions as input), and the value is expressed as a ProBoolean.

Adding a Check Button to the Ribbon
You can add a check button to the ribbon user interface using the Customize
Ribbon tab in the Creo Parametric Options dialog box. Refer to the chapter on
User Interface: Ribbon Tabs, Groups, and Menu Items on page 292 for more
information. Also, refer to the Creo Parametric Help for more information on
customizing the Ribbon User Interface.

Adding a Radio Button Group to the Ribbon
To add a radio button group to the ribbon user interface, your Creo Parametric
TOOLKIT application must:

1. Define the option command to be initiated by the group of buttons. The
definition of this command includes the definition of three callback functions.

2. Designate the command using the function ProCmdDesignate()
3. Add the radio button group to the ribbon user interface. This operation binds

the added action to the button.
These procedures are described in the sections that follow.

308 Creo® Parametric TOOLKITUser’s Guide

Adding an Option Command to Creo Parametric—Radio
Group
Functions Introduced:

• ProCmdOptionAdd()
• ProCmdRadiogrpValueGet()
• ProCmdRadiogrpValueSet()
The function ProCmdOptionAdd() is used to create the option command
corresponding to the button group.
The arguments should be similar to the usage for creating the option command for
a check button, with the following exceptions:

• output_callback_function—Must include a call to
ProCmdRadiogrpValueGet() to determine the selected value in the
radio group.

• boolean_operations —Must be PRO_B_FALSE for radio groups.
• set_value_cb—Must include a call to ProCmdRadiogrpValueSet() to

set the value of the group upon redisplay of the radio group UI.
The functions ProCmdRadiogrpValueGet() and
ProCmdRadiogrpValueSet() provide access to getting or setting the
selected item in the group. They require the option command value (provided by
the callback functions) as an input. The selected value is returned as a
ProMenuItemName string.

Adding a Radio Button Group
You can add a button to the ribbon user interface using the Customize Ribbon tab
in the Creo Parametric Options dialog box. Refer to the chapter on User Interface:
Ribbon Tabs, Groups, and Menu Items on page 292 for more information. Also,
refer to the Creo Parametric Help for more information on customizing the Ribbon
User Interface.

Manipulating Existing Commands
Functions Introduced:

• ProCmdCmdIdFind()
• ProCmdAccessFuncAdd()
• ProCmdAccessFuncRemove()
• ProCmdBracketFuncAdd()

User Interface: Menus, Commands, and Popupmenus 309

The function ProCmdCmdIdFind() allows you to find the command ID for an
existing command so you can add an access function or bracket function to the
command. You must know the name of the command in order to find its ID. See
section Using the Trail File to Determine UI Names on page 303 to determine UI
names in order to determine the name of the command.
The functions ProCmdAccessFuncAdd() and
ProCmdAccessFuncRemove() allow you to impose an access function on a
particular command. (See function ProCmdActionAdd() for a description of
access functions.) The Add function provides an access_id. This ID must be
saved for later use when you deactivate the access function.
The function ProCmdBracketFuncAdd() allows the creation of a function
that will be called immediately before and after execution of a given command.
this function would be used to add company logic to the start or end (or both) of
an existing Creo Parametric command. It could also be used to cancel an
upcoming command. This function is declared as:
ProError ProCmdBracketFuncAdd (

uiCmdCmdId cmd_id,
uiCmdCmdBktFn bracket_func,
char *bracket_func_name,
void **pp_bracket_data);

The function takes the following arguments:

• cmd_id—The command identifier.
• bracket_func—The callback function to be called before and after the

command, cast to a uiCmdCmdBktFn:
typedef int (*uiCmdCmdBktFn)

(uiCmdCmdId command,
uiCmdValue *p_new_value,
int entering_command,
void **pp_bracket_data);

The entering command argument will be 1 before execution and 0 after. If the
operation is before the upcoming command execution, and you want to cancel
the upcoming command execution, return 0. Otherwise, return non-zero.

• bracket_func_name—The name of the bracket function.
• pp_bracket_data—A void** containing data to be passed to the bracket

function.

Designating Commands
Using Creo Parametric TOOLKIT you can designate Creo Parametric commands.
These commands can later appear in the Creo Parametric ribbon user interface.

310 Creo® Parametric TOOLKITUser’s Guide

In Creo Parametric TOOLKIT you can set a button to refer to a command and
subsequently drag this button on to the Creo Parametric ribbon user interface.
When the button is clicked, the command is executed.
To add a command, your Creo Parametric TOOLKIT application must do the
following:

1. Define or add the command to be initiated on clicking the icon.
2. Optionally designate an icon button to be used with the command defined by

you.
3. Designate the command (icon) to appear in the Customize Ribbon tab in the

Creo Parametric Options dialog box.

Note
Refer to the chapter on User Interface: Ribbon Tabs, Groups, and Menu
Items on page 292 for more information. Also, refer to the Creo Parametric
Help for more information on customizing the Ribbon User Interface.

4. Save the configuration in Creo Parametric so that changes to the ribbon user
interface appear when a new session of Creo Parametric is started.

Adding the Command
Functions Introduced:

• ProCmdActionAdd()
• ProCmdOptionAdd()
The functions ProCmdActionAdd() and ProCmdOptionAdd() allow you
to define or register a Creo Parametric command. See the section Adding an
Action to the Creo Parametric Ribbon on page 303 for more information on the
function ProCmdActionAdd() and the section Adding an Option Command to
Creo Parametric—Check Button on page 307 for more information on the
function ProCmdOptionAdd().

Providing the Icon
Function Introduced:

• ProCmdIconSet()
The function ProCmdIconSet() allows you to provide an icon to be used with
the command you created. The function adds the icon to the Creo Parametric
command. The function takes the command identifier as one of the inputs and the
name of the icon file, including the extension as the other input. A valid format for

User Interface: Menus, Commands, and Popupmenus 311

the icon file is a standard .GIF, .JPG, or.PNG. PTC recommends using .PNG
format. All icons in the Creo Parametric ribbon are either 16x16 (small) or
32x32 (large) size. The naming convention for the icons is as follows:
• Small icon—<iconname.ext>

• Large icon—<iconname_large.ext>

Note
The legacy naming convention for icons <icon_name_icon_size.ext>
will not be supported in future releases of Creo Parametric. The icon size was
added as a suffix to the name of the icon. For example, the legacy naming
convention for small icons was iconname16X16.ext. It is recommended
to use the standard naming conventions for icons, that is, iconname.ext or
iconname_large.ext.

The application searches for the icon files in the following locations:
• <creo_loadpoint>\<datecode>\Common Files\text\

resources

• <application_text_dir>\resource

• <application_text_dir>\<language_dir>/resource

The location of the application text directory is specified in the Creo
Parametric TOOLKIT registry file.

The Creo Parametric button is replaced with the icon image.
Commands that do not have an icon assigned to them display the button label.
You may also use this function to assign a small icon to a button.

Designating the Command
Function Introduced:

• ProCmdDesignate()
• ProCmdRadiogrpDesignate()
• ProCmdAlwaysAllowValueUpdate()
The function ProCmdDesignate() allows you to designate a command or
check button to be available in the Customize Ribbon tab in the Creo Parametric
Options dialog of Creo Parametric.
After a Creo Parametric TOOLKIT application has used the function
ProCmdDesignate() on a command, the user can add the button associated
with this command into the Creo Parametric ribbon user interface.

312 Creo® Parametric TOOLKITUser’s Guide

If this function is not called, the button will not be visible in the TOOLKIT
Commands list in the Customize Ribbon tab in the Creo Parametric Options dialog
of Creo Parametric.
The syntax of the function ProCmdDesignate() is:
ProError ProCmdDesignate (uiCmdCmdId cmd_id,

ProMenuItemLabel button_label,
ProMenuLineHelp one_line_help,
ProMenuDescription description,
ProFileName msg_file);

The arguments to this function are:

• cmd_id—The command identifier.
• button_label—The message string that refers to the icon label. This label

(stored in the message file) identifies the text seen when the button is
displayed. If the command is not assigned an icon, the button_label string
appears on the button by default.

• one_line_help—The one-line Help for the icon. This label (stored in the
message file) identifies the help line seen when the mouse moves over the
icon.

• description—The message appears in the Customize Ribbon tab in the Creo
Parametric Options dialog and also when "Description" is clicked in Creo
Parametric.

• msg_file—The message file name. All the labels including the one-line Help
labels must be present in the message file.

Note
This file must be in the directory <text_path>/text or <text_
path>/text/<language>.

The function ProCmdRadiogrpDesignate designates the radio button to be
available in the TOOLKIT Commands list in the Customize Ribbon tab in the Creo
Parametric Options dialog box of Creo Parametric. The input arguments of this
function are:
• option_id—The option identifier.
• number_radio_group_items—Specifies the number of options in the radio

group
• radio_group_items—Specifies an array of items in the radio group.

User Interface: Menus, Commands, and Popupmenus 313

• radio_group_labels—Specifies the labels for the radio buttons. This label
(stored in the message file) identifies the text seen when the button is
displayed. If the command is not assigned an icon, the label string appears on
the menu by default.

• one_line_helps—The one-line Help for the icon. This label (stored in the
message file) identifies the help line seen when the mouse moves over the
icon.

• radio_group_icons—Specifies an array of icon file names, including the
extension. A valid format for the icon file is a standard .GIF, .JPG, or.PNG.
PTC recommends using .PNG format. All icons in the Creo Parametric
ribbon are either 16x16 (small) or 32x32 (large) size. The naming convention
for the icons is as follows:
○ Small icon— <icon_name_16X16.ext>

○ Large icon— <icon_name_32X32.ext>

The application searches for the icon files in the following locations:
○ <creo_loadpoint>\<datecode>\Common Files\text\

resources

○ <application_text_dir>\resource

○ <application_text_dir>\<language_dir>\resource

The location of the application text directory is specified in the Creo
Parametric TOOLKIT registry file.

• description—The message appears in the Customize Ribbon tab in the Creo
Parametric Options dialog and also when "Description" is clicked in Creo
Parametric.

• msg_file—The message file name. All the labels including the one-line Help
labels must be present in the message file.

Note
This file must be in the directory <text_path>/text or <text_
path>/text/<language>.

The function ProCmdAlwaysAllowValueUpdate() allows the value of the
command to be updated always, even when the command is not accessible. By
default, set_value_cb is called only when the command is accessible. The
input arguments follow:
• cmd_id—The command identifier.
• allow—Specify as PRO_B_TRUE for the value of the command to be updated

always. Specify it as PRO_B_FALSE, only when the command is accessible.

314 Creo® Parametric TOOLKITUser’s Guide

Placing the Button
Once the button has been created using the functions discussed, place the button
on the Creo Parametric ribbon user interface. Refer to the chapter on User
Interface: Ribbon Tabs, Groups, and Menu Items on page 292 for more
information. Also, refer to the Creo Parametric Help for more information on
customizing the Ribbon User Interface.

Example 1: Designating a Command
The example code in the file UgMain.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_main illustrates how
to designate a command to be available for placement as a button.

Popup Menus
Creo Parametric provides shortcut menus that contain frequently used commands
appropriate to the currently selected items. You can access a shortcut menu by
clicking the right mouse button (RMB) after selecting an item. Shortcut menus are
accessible in:

• Graphics window
• Model tree
• Some dialog boxes
• Any area where you can perform an object-action operation by selecting an

item and then choosing a command to perform on the selected item.
Creo Parametric TOOLKIT provides different procedures to add custom buttons
to popup menus, depending on the buttons’ context. To add to the model tree
popup menu, use the procedure described in Adding a Button to the Model Tree
Popup Menu on page 320. To add a popup menu to a custom dialog box, see the
User Interface: Dialogs on page 344 chapter (you cannot modify the popup menus
in an existing UI dialog box). To add to a graphics window popup menu, refer to
Adding a Popup Menu to the Graphics Window on page 315.

Adding a Popup Menu to the Graphics Window
Different popup menus can be activated during a given session of Creo
Parametric. Every time the Creo Parametric context changes (by opening a
different model type, by entering different tools, or by entering special modes like
"Edit") a different popup menu is created. When Creo Parametric moves to the
next context, the popup menu may be destroyed.

User Interface: Menus, Commands, and Popupmenus 315

Because of this, Creo Parametric TOOLKIT applications must attach a button to
the popup menu during initialization of the popup menu. The Creo Parametric
TOOLKIT application is notified each time a particular popup menu is created,
which then allows the user to add to the popup menu.
Use the following procedure to add items to graphics window popup menus:

1. Obtain the name of the existing popup menus to which you want to add a new
menu using the trail file.

2. Register the Creo Parametric TOOLKIT notifications for creation and
destruction of popup menus.

3. Create commands for the new popup menu items.
4. Implement access functions to provide visibility information for the items.
5. When the notification is called for the desired popup menu, add the custom

buttons to the menu.
6. When the destroy notification is called, free the associated memory for the

custom buttons.
The following sections describe each of these steps in detail. You can add push
buttons, check buttons, and cascade menus to the popup menus. You can add
popup menu items only in the active window. You cannot use this procedure to
remove items from existing menus. To remove items using an access function see
the section on Manipulating Existing Commands on page 309.

Using the Trail File to Determine Existing Popup
Menu Names
The trail file in Creo Parametric contains a comment that identifies the name of
the popup menu if the configuration option auxapp_popup_menu_info is set
to yes.
For example, the popup menu, Edit Properties, has the following comment in the
trail file:
~ Close `rmb_popup` `PopupMenu`
~ Command `ProCmdEditProperties`

Registering Notifications to Create and Destroy
Popup Menus
Popup menus are created at runtime in Creo Parametric and only when the
required menus exist in the active window. Hence it is not possible to pre-register
the custom buttons. Notification functions notify applications to add a new popup
menu. For more information on using notifications see the chapter Event-driven
Programming: Notifications on page 2010.

316 Creo® Parametric TOOLKITUser’s Guide

Functions Introduced:

• ProNotificationSet()
• ProPopupmenuCreatePostAction()
• ProPopupmenuDestroyPreAction()
If the notification value argument type is set to PRO_POPMENU_CREATE_POST,
a registered callback function whose signature matches
ProPopupmenuCreatePostAction() is called. This function is called after
the popup menu is created internally in Creo Parametric and must be used to
assign application-specific buttons to the popup menu.
If the notification value argument type is set as PRO_POPUPMENU_DESTROY_
PRE, a registered callback notification function
ProPopupmenuDestroyPreAction() is called before the popup menu is
destroyed. Use this function to free memory allocated by the application for the
custom buttons in the popup menu.

Accessing the Popup Menus
The functions described in this section provide the name and ID of the popup
menus that are used to access these menus while using other functions.
Functions Introduced:

• ProPopupmenuIdGet()
• ProPopupmenuNameGet()
The function ProPopupmenuIdGet() returns the popup menu ID for a given
popup menu name. The popup menu ID is required for the functions that add
buttons to the popup menu. IDs are dependent on the context of Creo Parametric
and are not maintained between sessions.
The function ProPopupmenuNameGet() returns the name of the popup menu
assigned to a given ID.

Creating Commands for the New Popup Menu
Buttons
Functions Introduced:

• ProCmdActionAdd()
• ProCmdOptionAdd()
• ProCmdCmdIdFind()
The functions ProCmdActionAdd() or ProCmdOptionAdd() are used to
create commands for the popup menus. Only push buttons (action commands) and
check buttons (option commands) are supported in popup menus. Commands with

User Interface: Menus, Commands, and Popupmenus 317

a given name are created only once in a session of Creo Parametric. Hence PTC
recommends that you create the required commands in the user_
initialize() function of the application.
Use ProCmdCmdIdFind() to obtain the command ID for the command (in the
notification callback for PRO_POPUPMENU_CREATE_POST) to add the button
to the popup menu.

Checking the Access State of a Popup Menu Item
Functions Introduced:

• ProPopupmenuAccessFunction()
A popup menu uses an additional access function to determine whether the
popupmenu must be visible based on the currently selected items. Use the
function whose signature matches ProPopupmenuAccessFunction() to set
the access state of the button in the popup menu.
The syntax for this function is as follows:
typedef uiCmdAccessState (*ProPopupmenuAccessFunction)
(uiCmdCmdId command,
ProAppData appdata,
ProSelection* sel_buffer);

The last argument contains an array of selected items that are used to determine
the visibility of the popup menu button. It is PTC standard practice to remove
popup menu buttons using ACCESS_REMOVE instead of graying them out using
ACCESS_UNAVAILABLE when unusable item types have been selected. This is
to minimize the size of the popup menu.

Adding Creo Parametric Popup Menus
Functions Introduced:

• ProPopupmenuButtonAdd()
• ProPopupmenuCascadebuttonAdd()
Use ProPopupmenuButtonAdd() to add a new item to a popup menu. The
input arguments are:

• menu_ID—Specifies the ID of the popup menu obtained from
ProPopupmenuIdGet().

• position—Specifies the position in the popup menu at which to add the menu
button. Pass PRO_VALUE_UNUSED to add to the bottom of the menu.

• button_name—Specifies the name of the added button. The button name is
placed in the trail file when the user selects the menu button. For more

318 Creo® Parametric TOOLKITUser’s Guide

information on valid characters that you can use to specify the name, refer to
the section Naming Convention for UI Components on page 349.

• button_label—Specifies the message that refers to the button label. This label
identifies the text seen when the button is displayed. To localize this text,
obtain and pass a string from ProMessageToBuffer().

Note
The labels and the text added using the ProCmdDesignate() function
duplicate existing messages that are previously added in the Creo database.
To display the correct label and text message, you can use a prefix or a
suffix with the message names that will identify your Creo Parametric
TOOLKIT application. You should avoid using generic names of Creo
Parametric TOOLKIT buttons such as Point, Arc, Circle, Ellipse in the
labels and text.

• button_helptext—Specifies the help message associated with the button. This
label acts as a keyword that identifies the help text in the message file. To
localize this text, obtain and pass a string from ProMessageToBuffer().

• cmd_ID—Specifies the command identifier for the action or option.
• access_status—Specifies the callback function used to determine the visibility

status of the added button.
• appdata—Specifies the user application data.
Use the function ProPopupmenuCascadebuttonAdd() to add a new
cascade menu to an existing popup menu.
The input arguments are:

• menu_ID—Specifies the ID of the popup menu obtained from
ProPopupmenuIdGet().

• position—Specifies the position in the menu at which to add the cascade
button. Pass PRO_VALUE_UNUSED to add to the bottom of the menu.

• cascade_menu_name—Specifies the name of the cascade menu. The name is
placed in the trail file when the user selects the menu button. For more
information on valid characters that you can use to specify the name, refer to
the section Naming Convention for UI Components on page .

• cascade_menu_label—Specifies the message that refers to the cascade menu
label. This label identifies the text seen when the menu is displayed. To
localize this text, obtain and pass a string from ProMessageToBuffer().

User Interface: Menus, Commands, and Popupmenus 319

• cascade_menu_helptext—Specifies the help message associated with the
cascade menu. This label acts as a keyword that identifies the help text in the
message file. To localize this text, obtain and pass a string from
ProMessageToBuffer().

• access_status—Specifies the callback function used to determine the visibility
status of the added item.

• appdata—Specifies the user application data.
The output argument is casc_menuId, the menu ID of the cascade menu.

Adding a Button to the Model Tree Popup Menu
To add a button to the ribbon user interface, refer to the section Menu Bar Buttons
and Menus on page 302. Ensure that the following conditions are met:

• The menu name used should be “ActionMenu.”
• The command access function should be configured to read the selection

buffer using ProSelbufferSelectionsGet(). If the buffer is inactive
or empty, the access function should make the menu item invisible.

Example 2: Assigning the Creo Parametric
command to popup menus
The example in the file UgPopupmenus.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_main demonstrates
how to assign a Creo Parametric command to the popup menus in the graphics
window and the model tree. It adds the example
UserAsmcompConstraintsHighlight() to the popup menu (see the
chapter on Assembly: Basic Assembly Access on page 1130 for details). The
popup menus use an access function to check the currently selected item in the
selection buffer that is an assembly component. If it is not an assembly
component, the button will be removed from the menu. The example adds the
popup menu button using ProPopupmenuButtonAdd() if the menu name is
the name of the current main popup menu in assembly mode.

Menu Manager Buttons and Menus
Very few modes in Creo Parametric display a menu manager. For example, the
ASM PROCESS menu is displayed only when Creo Parametric is in the Process
Plan Assembly mode, which occurs when a Process-Plan Assembly has been
created or retrieved. Modifying and supplementing the menu manager interface is
fundamentally different from similar operations on the ribbon.

320 Creo® Parametric TOOLKITUser’s Guide

This section describes the files and functions necessary to manipulate the menu
manager buttons and menus of Creo Parametric. This section covers the following
topics:

• Menu Files on page 321
• Adding a Menu Button on page 323
• New Menus on page 325
• Preempting Creo Parametric Commands on page 330
• Submenus on page 331
• Manipulating Menus on page 331
• Data Menus on page 332
• Setting Menu Buttons on page 333
• Controlling Accessibility of Menu Buttons on page 333
• Pushing and Popping Menus on page 334
• Run-time Menus on page 334

Menu Files
Menu files enable you to specify your own text for the name of a menu button and
the one-line help text that appears when you place the cursor over that button,
along with translations for both of these.
Creo Parametric looks for the Creo Parametric TOOLKIT menu files in the
following locations:

• The current Creo Parametric startup directory
• The subdirectory text/menus under the directory named by the text_dir

statement in the registry file
PTC recommends that during development you place your menu files in text/
menus under your working directory and specify the following registry file entry:

text_dir .

Names and Contents of Menu Files
There are two conventional extensions used in naming menu files:

• .mnu—Files that describe complete menus
• .aux—Files that describe new buttons to be added to existing Creo

Parametric menus
The following restrictions apply to file names:

User Interface: Menus, Commands, and Popupmenus 321

• The name must be unique through out Creo Parametric.
• The name must have no more than 30 characters, including the extension.
To find out what menu file names are used by Creo Parametric, look in the Creo
Parametric menu directory at <creo_loadpoint>\<datecode>\Common
Files\text\<language_dir>\menus.
When you create an .aux file to extend an existing Creo Parametric menu, use
the same file name root as Creo Parametric used for that menu.

Syntax and Semantics of Menu Files
The two types of files—.mnu and .aux—have identical formats.
The format consists of groups of three lines (one group for each menu button) and
a group at the top for the menu title. The title group contains the menu title on the
first line, and then two blank lines.
The menu title is the name that appears at the top of the menu when you run Creo
Parametric in English. The menu title is also used to refer to the menu from your
Creo Parametric TOOLKIT code, so it is essential that this name is unique in all
Creo Parametric menus. For example, if you are writing an .aux file to add
buttons to a Creo Parametric menu, make sure you use the title that appears in the
corresponding .mnu file in Creo Parametric. If you are creating a new menu,
make sure that the title you use has not already been used in Creo Parametric.
If the menu title is followed by a second word, Creo Parametric displays the
second word instead of the first one. This is how a translation is provided. If there
is no second word, Creo Parametric displays the first word.
Each menu button group consists of the following three lines:

• Button name—If the button name as it appears on the Creo Parametric screen
contains spaces, each space must be replaced by the character # in the menu
file. If the button name is followed by another name, separated by white space,
the second name will be what is actually displayed.

The first name is still used to refer to the button from your Creo Parametric
TOOLKIT code. The second provides an optional translation of that button
name.

• One-line Help—This is a single line of text that explains what the menu button
does. When you place the mouse pointer on the menu button, Creo Parametric
displays the one-line Help text in the Message Window.

• Alternate Help—If this line is not blank (or does not start with the comment
character “#”), it will be used in place of the one-line Help. This provides a
translation of the Help message.

322 Creo® Parametric TOOLKITUser’s Guide

Example 3: Sample Menu File
The following example code shows the menu file you would create to add a new
button, Check Part, to the Creo Parametric PART menu.
Menu file "part.aux":
[Start of file on next line]
PART
<blank line>
<blank line>
Check#Part
Check the validity of the current part.
<blank line>
[End of file on previous line]

Example 4: Adding Alternate Names and Help Text to a
Button
This example code creates an alternate button name and Help text for the previous
example.
Menu file "part.aux":
[Start of file on next line]
PART
<blank line>
<blank line>
Check#Part DRC#Check
Check the validity of the current part.
Perform a DRC (Design Rule Check) on the part.
[End of file on previous line]

Adding a Menu Button
Functions Introduced:

• ProMenuFileRegister()
• ProMenuAuxfileRegister()
• ProMenubuttonActionSet()
• ProMenubuttonGenactionSet()
When you add a new button to an existing menu in user_initialize(), you
are modifying the Creo Parametric definition of the menu in its memory before
that menu has been used by Creo Parametric, and therefore before Creo
Parametric has loaded it from its menu file. You must call the function
ProMenuFileRegister() to tell Creo Parametric to load its own menu file
before you can add your own buttons.
To add a button to a menu, first write a menu file, and then add the following calls
to user_initialize():

User Interface: Menus, Commands, and Popupmenus 323

1. Load the Creo Parametric menu into memory, using
ProMenuFileRegister().

2. Add the buttons in your menu file to the menu, using
ProMenuAuxfileRegister().

3. Define the actions of the new buttons, using
ProMenubuttonActionSet().

Calling ProMenuFileRegister()
The input arguments to ProMenuFileRegister() are as follows:

• ProMenuName menuname—The unique title of the menu that appears as the
first word on the first line of the menu file and on the heading of the menu on
the screen when you run Creo Parametric in English. This argument is case-
insensitive.

• ProMenufileName filename—The name of the menu file, including the
extension but not the directory.

The function outputs the integer identifier of the menu, which you do not normally
need. If the function fails for some reason (for example, the menu file did not
exist), it returns PRO_TK_GENERAL_ERROR. If you call this function a second
time on the same menu file, it has no effect.

Calling ProMenuAuxfileRegister()
This function has the same arguments and return value as
ProMenuFileRegister(). Instead of loading a new menu into memory, the
function adds the buttons in the file to a menu already in memory.

Calling ProMenubuttonActionSet()
The first three arguments to ProMenubuttonActionSet() are as follows:

• ProMenuName menuname—The title of the menu that contains the button.
• ProMenubuttonName button—The first name for the button in the menu

file (not the second, which provides the translation), but with spaces instead of
pound signs (#). This argument is case-insensitive.

• ProMenubuttonAction action—A pointer to the Creo Parametric
TOOLKIT callback function to be called when the user selects this menu
button. To pass a pointer to a function, supply the name of the function
without the following parentheses. If your function does not precede the call to
ProMenubuttonActionSet() in the same file, you must add a
declaration of it to show the compiler that this is a function.

324 Creo® Parametric TOOLKITUser’s Guide

The other two arguments, app_data and app_int, are optional arguments to your
command function. These arguments enable your command function to be more
flexible in what it does. If you do not want to use app_data and app_int, supply
the values NULL and 0, respectively.
Sample declarations and the use of the optional arguments are shown in Example
5: Adding a Button to the Creo Parametric Ribbon on page 325; Example 6:
Defining a New Menu that Closes Itself on page 326; and Example 7: Defining a
New Menu the User Must Close on page 327.

Example 5: Adding a Button to the Creo Parametric Ribbon
The example code in the file UgMenuMenuButtonAdd.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_menu
adds the button Check Part to the Creo Parametric PART tab. The example uses the
menu file from the previous examples.

New Menus
Functions Introduced:

• ProMenuProcess()
• ProMenuDelete()
• ProMenuCreate()
• ProMenuHold()
• ProMenuDeleteWithStatus()
Creo Parametric TOOLKIT enables you to create new menus. Defining a new
menu differs from adding buttons to an existing menu in the following ways:

• The menu file you supply should end in .mnu, not .aux. (It has the same
syntax, though.)

• You do not need to call ProMenuAuxfileRegister() because the whole
menu is defined in a single menu file.

• You need to define an exit action for the menu, in addition to an action for
each button on the menu.

• You can either specify the new menu in user_initialize() or you can
set up the new menu locally before you use it.

Exit Actions
You must not only tell the menu manager inside Creo Parametric which function
to call for each button on your menu, but also which function to call if the user
selects a button on another menu. This function is called an exit action because it
is often used to close the menu.

User Interface: Menus, Commands, and Popupmenus 325

Note
If you do not define an exit action, Creo Parametric’s behavior is undefined if
the user selects from another menu.

There are two types of exit action:

• Nothing—The menu selection is ignored. This is useful if you want the user to
take some definite action before leaving the current menu.

• Close the current menu—The menus unwind to the level of the menu selected
and the selected command is entered. This is the usual way to leave a menu.

Defining a New Menu
To define a new menu, first write a menu file. Before you need to use the menu,
add the following calls to your Creo Parametric TOOLKIT program:

1. Load the Creo Parametric menu into memory, using
ProMenuFileRegister().

2. Define the actions of the new buttons, using the function
ProMenubuttonActionSet().

3. Define the exit action of the new menu, using the functions
ProMenubuttonActionSet() and one of the exit action functions
described in the following section.

Example 6: Defining a New Menu that Closes Itself
This example code defines a new menu, MYMENU, that closes itself using the
function ProMenuDelete().
[Start of file on next line]
MYMENU
<blank line>
<blank line>
Partial#Check
Perform a partial check on the part.
<blank line>
Full#Check
Perform a full check on the part.
<blank line>
[End of file on previous line]

The following code sets up the menu:
int menuId;
ProMenuFileRegister ("mymenu", "mymenu.mnu", &menuId);
ProMenubuttonActionSet ("mymenu", "Partial Check", ProCheckPart,

NULL, 0);

326 Creo® Parametric TOOLKITUser’s Guide

ProMenubuttonActionSet ("mymenu", "Full Check", ProCheckPart, NULL,
1);

ProMenubuttonActionSet ("mymenu", "Quit Checks",
(ProMenubuttonAction)ProMenuDelete, NULL, 0);

ProMenubuttonActionSet("mymenu", "mymenu",
(ProMenubuttonAction)ProMenuDelete, NULL, 0);

Example 7: Defining a New Menu the User Must Close
In the following example code, the user has to close MYMENU.

int menuId;
ProMenuFileRegister ("mymenu", "mymenu.mnu", &menuId);
ProMenubuttonActionSet ("mymenu", "Partial Check", ProCheckPart,

NULL, 0);
ProMenubuttonActionSet ("mymenu", "Full Check", ProCheckPart,

NULL, 1);
ProMenubuttonActionSet ("mymenu", "Quit Checks",

(ProMenubuttonAction)ProMenuDelete, NULL, 0);
ProMenubuttonActionSet ("mymenu", "mymenu",

(ProMenubuttonAction)ProMenuHold, NULL, 0);

Defining an Exit Action
To define an exit action, make an extra call to
ProMenubuttonActionSet(), but instead of the button name (the third
argument), specify the menu name.
If you want the menus to unwind and the new command to be entered, use
ProMenuDelete() as the action function.
If you want the selection to be ignored, use the function ProMenuHold() as the
exit action. If you use this function, you must provide some other exit route for the
menu. For example, you can specify an explicit menu button (such as Done)
whose command function calls ProMenuDelete().
If you want to perform some additional action in these cases (such as sending a
warning to the user), you can provide your own exit function that performs the
action and then calls ProMenuHold().

Using a New Menu
After you have defined your new menu, you need to know how to use it. This is
normally done inside the command function of another menu button.
To Use a New Menu

1. Display the menu, using ProMenuCreate().
2. Make the menu active so the user can select from it, using

ProMenuProcess().

User Interface: Menus, Commands, and Popupmenus 327

Calling ProMenuCreate()
The first argument to ProMenuCreate() is either PROMENUTYPE_MAIN or
PROMENUTYPE_SUB. The usual choice is PROMENUTYPE_MAIN (see the
section Submenus on page 331 for detailed information about submenus). The
second argument is the title of the menu. The last argument is the identifier of the
displayed menu.

Calling ProMenuProcess()
The function ProMenuProcess() takes a single input argument—the title of
the menu. If the menu is the last one displayed, you can pass an empty string. The
return value is meaningful only if you use the function
ProMenuDeleteWithStatus() as the exit action for the menu.
The function ProMenuProcess() returns only when the menu is closed, as the
result of a call to either ProMenuDelete() or
ProMenuDeleteWithStatus(). The following is true for any code
following the call to ProMenuProcess():

1. The code does not get executed until the menu is closed.
2. The code gets executed before any command that causes an exit from the

menu. When the user closes a menu by selecting another command, that
command is put into the input buffer and is not executed until control passes
from your application back to Creo Parametric.

Example 8: Using a New Menu
The following example code shows how to use the functions
ProMenuProcess() and ProMenuCreate(). The example builds on the
previous examples.

int action, menuId;
.
.
.
ProMenuCreate (PROMENUTYPE_MAIN, "mymenu", &menuId);
ProMenuProcess ("", &action);
.
.

Creating a Menu for Selecting a Single Value
Function Introduced:

• ProMenuDeleteWithStatus()
• ProMenubuttonActionSet()
• ProMenuProcess()

328 Creo® Parametric TOOLKITUser’s Guide

Use of ProMenubuttonActionSet() Final Arguments
The two last arguments of ProMenubuttonActionSet() are app_data, of
type ProAppData and app_int, of type integer. These arguments are passed
directly to your callback function when it is invoked. Because Creo Parametric
TOOLKIT and Creo Parametric do not look at these arguments, you can use them
for any information that you want to pass to or from your function.
Example 9: Creating a Menu that Selects a Value on page 329 uses the final
argument of ProMenubuttonActionSet() to distinguish between several
menu buttons that share the same command function. Inside the command
function, this value appears as the second argument. It is used to determine which
button was selected and then perform the appropriate action. The command
function does not use the fourth argument of ProMenubuttonActionSet(),
but includes a dummy first argument of type ProAppData to match it, so that
the second argument is received correctly.

Returning a Value from ProMenuProcess()
The function ProMenuDelete() closes the current menu and causes control to
return from the call to ProMenuProcess() that made that menu active. If you
want to close the menu under more than one condition and react to that condition
in the code that follows the return from ProMenuProcess(), use
ProMenuDeleteWithStatus() instead of ProMenuDelete(). The
ProMenuDeleteWithStatus() function takes a single integer argument,
which is the value returned by ProMenuProcess().

Example 9: Creating a Menu that Selects a Value
The example code in the file UgMenuValueSelect.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_menu
shows several new techniques for using the menu functions. This example shows
how to use ProMenuDeleteWithStatus() and uses more of the arguments
to ProMenubuttonActionSet().

Compound Menus
Function Introduced:

• ProCompoundmenuCreate()
The ProCompoundmenuCreate() function enables you to take an array of
previously loaded menu names and append them together into one menu.
To Create a Compound Menu:

1. Specify which submenus to include in the compound menu, as follows:
static char **compound_menu = {"MENU_1","MENU_2", "MENU_3", ""};

2. Load the actions on the buttons.

User Interface: Menus, Commands, and Popupmenus 329

3. Set the button visibility and accessibility.
4. Generate the compound menu, as follows:

ProCompoundmenuCreate (compound_menu, n_submenus);

5. Get user input, as follows:
ProMenuProcess (compound_menu[0], action);

Preempting Creo Parametric Commands
Functions Introduced:

• ProMenubuttonPreactionSet()
• ProMenubuttonPostactionSet()
In addition to adding your own menus and menu buttons, it is sometimes useful to
be able to modify the effect of an existing Creo Parametric menu button. The
function ProMenubuttonPreactionSet() enables you to call your
function before the Creo Parametric command is executed. If the operation is
before the upcoming command execution, and you want to cancel the upcoming
command execution, return 1. Otherwise, return zero.
You could also cancel the Creo Parametric command, so only your function gets
called. Similarly, the function ProMenubuttonPostactionSet() enables
you to call your function after the Creo Parametric command is executed.
You can use the ProMenubuttonPreactionSet() function to protect
certain commands, so that the user can use them only under certain circumstances
specified by your Creo Parametric TOOLKIT application. For example, you may
want to prevent the user from saving a model unless it has passed a certain
validity check.

Calling ProMenubutton*actionSet()
The functions ProMenubuttonPreactionSet() and
ProMenubuttonPostactionSet() have the same arguments as
ProMenubuttonActionSet(). The function
ProMenubuttonPreactionSet() inserts your function before an existing
Creo Parametric command instead of assigning it to a new button. The function
ProMenubuttonPostactionSet() inserts your function after an existing
Creo Parametric command.
Because you are changing the definition of the menu in Creo Parametric, you must
make sure the menu is loaded into memory first, by calling
ProMenuFileRegister().
If the command function you load returns the value 0, the Creo Parametric
command for that menu button will be executed immediately. If your function
returns any other value, the Creo Parametric command will not be performed.

330 Creo® Parametric TOOLKITUser’s Guide

Example 10: Asking for Confirmation on Quit Window
The example code in the file UgMenuConfirmGet.c located at <creo_
toolkit_loadpoint>protk_appls/pt_userguide/ptu_menu
shows how to use ProMenubuttonPreactionSet() to ask the user to
confirm a selection. The example uses ProMenubuttonPreactionSet() to
protect Quit Window

Submenus
Function Introduced:

• ProMenuCreate()
All the menus described so far have been main menus. The other type of menu is
called a submenu. A submenu differs from a main menu in the following ways:

• A submenu is active at the same time as the menu above it. Selecting from the
menu above does not close the submenu.

• A submenu does not display its title.
In effect, a submenu acts as an extension to the menu above it. This enables you to
display two active menus at the same time, such as if you want the user to choose
two options from two exclusive groups of values.

Making a Menu a Submenu
To make a Main Menu a Submenu:

1. Display the menu above the submenu, using ProMenuCreate().
2. Display the submenu, using ProMenuCreate(), but make the first

argument PROMENUTYPE_SUB instead of PROMENUTYPE_MAIN.
3. Call ProMenuProcess() for the submenu only. Because it is a submenu,

the menu above it will become active at the same time.
4. Close both menus, using either ProMenuDelete() or

ProMenuDeleteWithStatus().

Manipulating Menus
Function Introduced:

• ProMenubuttonLocationSet()
The function ProMenubuttonLocationSet() provides the ability to move
a Creo Parametric menu button to a different location on its menu, or to add new
menu buttons to a Creo Parametric menu somewhere other than at the bottom of
the menu.

User Interface: Menus, Commands, and Popupmenus 331

Before you call ProMenubuttonLocationSet(), you must make sure the
menu you are modifying has been fully loaded into memory. Make sure
ProMenuFileRegister() has been called, and, where appropriate,
ProMenuAuxfileRegister().
The first two arguments of the ProMenubuttonLocationSet() function
identify the menu and the button, as in ProMenubuttonActionSet().
The final argument is a switch that specifies where to move the button. The
possible values are as follows:

• 0—The button becomes the first in the menu.
• 1—The button is inserted after the current first button.
• 2—The button is inserted after the current second button.
• –1—The button becomes the last button on the menu.

Data Menus
Functions Introduced:

• ProMenuModeSet()
• ProMenuDatamodeSet()
Menus can operate in two modes:

• PROMENUMODE_OPERATIONAL—The default mode. This mode is used in
all the previous examples. On an operational menu, only one button is ever set
(that is, displayed with a red background) while that command is in progress.

• PROMENUMODE_DATA—Each button remains set until you select it again.
This is useful when the buttons do not represent commands, but, for example,
a set of independently selectable options.

The function ProMenuModeSet() sets the menu mode. For a
PROMENUMODE_DATA menu, you can choose to indicate the set buttons with a
check mark instead of the usual red background by using the function
ProMenuDatamodeSet().

Calling ProMenuModeSet() and ProMenuDatamodeSet()
The function ProMenuModeSet() has two arguments:

• The menu title
• The menu mode (either PROMENU_MODE_OPERATIONAL or

PROMENUMODE_DATA)
The function ProMenuDatamodeSet() has two arguments:

332 Creo® Parametric TOOLKITUser’s Guide

• The menu title.
• The set indicator, which indicates which buttons are set. This argument can

have either of the following values:

○ TRUE—Use a check mark.
○ FALSE—Use a red background. This is the default value.

Both of these functions must be called after the menu has been loaded into
memory (using ProMenuFileRegister()), and before the menu has been
displayed (using ProMenuCreate()).
If you want to create a menu whose buttons are dependent on run-time data, use
the function ProMenuStringsSelect(), described later in this
sectionchapter.

Setting Menu Buttons
Functions Introduced:

• ProMenubuttonHighlight()
• ProMenubuttonUnhighlight()
Sometimes it is useful to be able to set and unset menu buttons from the Creo
Parametric TOOLKIT application. For example, if you are using data menus, you
can set the appropriate buttons when the menu is displayed to show the current
options.

Calling ProMenubuttonHighlight() and
ProMenubuttonUnhighlight()
Both ProMenubuttonHighlight() and
ProMenubuttonUnhighlight() take two arguments—the menu title and
button name. Both functions must be called after the menu has been displayed
(using ProMenuCreate()), but before making the menu interactive (using
ProMenuProcess()). Contrast these rules to the rules for using
ProMenuModeSet() and ProMenuDatamodeSet().

Controlling Accessibility of Menu Buttons
Functions Introduced:

• ProMenubuttonActivate()
• ProMenubuttonDeactivate()

User Interface: Menus, Commands, and Popupmenus 333

A menu button that is inaccessible is one that, though currently displayed on a
menu, is gray and has no effect when it is selected. Creo Parametric uses this
facility for options that are temporarily unavailable for some reason. For example,
you cannot create a hole until you have created the first protrusion.
You can control the accessibility of your own menu buttons from Creo Parametric
TOOLKIT using ProMenubuttonActivate() and
ProMenubuttonDeactivate(). Each function takes two arguments: the
menu title and button name. These functions must be called when the menu is
displayed (after calling ProMenuCreate()).

Pushing and Popping Menus
Functions Introduced:

• ProMenuVisibilityGet()
• ProMenuPush()
• ProMenuPop()
Sometimes Creo Parametric temporarily hides certain menus, even though they
are still in context, to make room for lower-level menus. An example of this is
when you select Make Datum during feature creation. This process is called
pushing menus, because they are put on a stack from which they can be popped to
make them reappear.
The function ProMenuVisibilityGet() tells you whether the specified
menu is currently displayed. It takes one input argument—the menu title.
The function ProMenuPush() pushes the current lowest menu. It takes no
arguments.
The function ProMenuPop() pops the menu from the top of the stack. It takes
no arguments.

Run-time Menus
Functions Introduced:

• ProMenuStringsSelect()
• ProMenuFromStringsRegister()
The ProMenuStringsSelect() function enables you to set up a menu at run
time. You do not need to supply a menu file because the buttons are defined when
you display the menu. You cannot attach command functions to the button; a run-
time menu simply returns a list of the buttons selected.
A run-time menu is displayed together with a submenu that contains the following
buttons:

334 Creo® Parametric TOOLKITUser’s Guide

• Done Select

• Quit Select

• List

The default option, List, causes the string menu itself to be displayed.
You can set the maximum number of items you want to be selectable. The
function returns when the user has selected the maximum number of items you
specified, or has selected Done or Quit. Creo Parametric uses this type of menu to
select a disk file to be retrieved after the user selects Search/Retr.
The maximum size of the string you assign to a button is PRO_NAME_SIZE - 1.
PRO_NAME_SIZE is defined in file ProSizeConst.h.
The function ProMenuFromStringsRegister() creates menus at run time
and attaches actions to the menu buttons. The function takes as arguments all the
information required to create auxiliary (*.aux) and user-defined (*.mnu) menu
files. The first argument is the default menu name. The next argument enables you
to specify an alternate name for the menu if, for instance, your application
supports a foreign language. The list of button labels is passed to the function as
an array of wide character strings. As with the menu name, you can provide
alternate button labels for foreign language support. You can also provide one-line
Help for each button.
After you have registered the menu with a call to the function
ProMenuFromStringsRegister(), you can attach actions to the buttons by
calling the function ProMenuButtonActionSet() for each button. You must
also define an exit action for your run-time menu. To do this, call
ProMenuButtonActionSet() and supply the name of the menu instead of a
button name. Finally, create the menu by calling ProMenuProcess(), and then
ProMenuCreate().

Customizing the Creo Parametric
Navigation Area
The Creo Parametric navigation area includes the Model Tree and Layer Tree pane,
Folder Browser pane, and Favorites pane. The functions described in this section
enable Creo Parametric TOOLKIT applications to add custom panes to the Creo
Parametric navigation area. The custom panes can contain custom dialog box
components or WEB pages.

Adding Custom Web Pages
To add custom web pages to the navigation area, the Creo Parametric TOOLKIT
application must:

User Interface: Menus, Commands, and Popupmenus 335

1. Add a new pane to the navigation area.
2. Set an icon for this pane.
3. Set the URL of the location that will be displayed in the pane.
Functions Introduced:

• ProNavigatorpaneBrowserAdd()
• ProNavigatorpaneBrowsericonSet()
• ProNavigatorpaneBrowserURLSet()
The function ProNavigatorpaneBrowserAdd() adds a new pane that can
display a web page to the navigation area. The input arguments are:

• pane_name—Specify a unique name for the pane. Use this name in
susbsequent calls to ProNavigatorpaneBrowsericonSet() and
ProNavigatorpaneBrowserURLSet().

• icon_file_name—Specify the name of the icon file, including the extension. A
valid format for the icon file is .GIF, .JPG, or .PNG. The new pane is
displayed with the icon image. If you specify the value as NULL, the default
Creo Parametric icon is used.

• url—Specify the URL of the location to be accessed from the pane.
Use the function ProNavigatorpaneBrowsericonSet() to set or change
the icon of a specified browser pane in the navigation area.
Use the ProNavigatorpaneBrowserURLSet() to change the URL of the
page displayed in the browser pane in the navigation area.

Adding Custom Dialog Box Components
To add a new pane to the navigation area based on Creo Parametric TOOLKIT
dialog box components:

1. Add a new pane to the navigation area.
2. Assign an icon for the pane.
3. Add the Creo Parametric TOOLKIT dialog box components using one of the

following methods:

• Assign resource files that describe the overall structure of the new
navigation pane. To customize the components after placement in the
navigation pane, get the window device name and component name using
the Creo Parametric TOOLKIT functions described in this section and set

336 Creo® Parametric TOOLKITUser’s Guide

the necessary values using the Creo Parametric TOOLKIT functions
described in the chapter User Interface: Dialogs on page 344

• To build the layout of the dialog box programmatically, obtain the window
device name and layout name. Add each component to the layout as
desired using Creo Parametric TOOLKIT user interface functions
described in the chapter User Interface: Dialogs on page 344.

Functions Introduced:

• ProNavigatorpanePHolderAdd()
• ProNavigatorpanePHolderDelete()
• ProNavigatorpanePHolderShow()
• ProNavigatorpanePHolderHide()
• ProNavigatorpanePHolderDevicenameGet()
• ProNavigatorpanePHolderLayoutGet()
• ProNavigatorpanePHolderComponentnameGet()
• ProNavigatorpanePHolderHelptextSet()
The function ProNavigatorpanePHolderAdd() adds a layout that will be
displayed in the new pane in the navigation area. The input arguments are:

• pane_name— Specify a unique name for the pane.
• resource_name—Specify the name of the resource file to use (whose top

component must be a layout, not a dialog box). The contents of the layout
from the specified resource file will be inserted into the custom pane.

• icon_file_name—Specify the name of the icon file, including the extension. A
valid format for the icon file is .GIF, .JPG, or .PNG. The new pane is
displayed with the icon image. If you specify the value as NULL, the default
Creo Parametric icon is used.

The function ProNavigatorpanePHolderDelete() deletes the specified
pane from the navigation area.
Use the functions ProNavigatorpanePHolderShow() and
ProNavigatorpanePHolderHide() to show and hide the specified pane in
the navigation area.
The function ProNavigatorpanePHolderLayoutGet() returns the layout
name for the specified pane in the navigation area. You can create and place the
user interface components within this layout.
Components added to the custom pane actually belong to the Creo Parametric
main window dialog. Creo Parametric automatically modifies the names of
components loaded from resource files to ensure that no name collisions occur
when the components are added. The functions

User Interface: Menus, Commands, and Popupmenus 337

ProNavigatorpanePHolderDevicenameGet() and
ProNavigatorpanePHolderComponentnameGet() allow you to locate
the names of components that you need to access.
Use the function ProNavigatorpanePHolderDevicenameGet() to
obtain name of the Creo Parametric window owning the new pane in the
navigation area.
Use the function ProNavigatorpanePHolderComponentnameGet() to
obtain the complete name of the component in the navigation pane, if loaded from
a layout.
Use the device name and the component name to add or update the placement of
the components in the layout with the help of the ProUI* functions. For more
information on the user interface functions, refer to the chapter User Interface:
Dialogs on page 344.
The function ProNavigatorpanePHolderHelptextSet()sets the popup
help text, which is displayed when you point over the navigator pane component.

Example 11: Customizing the Creo Parametric
Navigation Pane
The sample code in the file UgNavigatorPane.c located at <creo_
toolkit_loadpoint>protk_appls/pt_userguide/ptu_menu
shows you how to customize the Creo Parametric navigation pane.

Registering Notifications to Add and Destroy
Content to a New Pane
The navigation panes are available in every window within a Creo Parametric
session. Notifications are provided to the Creo Parametric TOOLKIT application
when a Creo Parametric window populated with a model so that the application
can add the necessary contents to the new pane upon this event. Similarly,
notifications are provided before a model is removed from a Creo Parametric
window so that the application can cleanup resources related to added panes. For
more information on using notifications see the chapter Event-driven
Programming: Notifications on page 2010.
Functions Introduced:

• ProNotificationSet()
• ProWindowOccupyPostAction()
• ProWindowVacatePreAction()
Specify the argument type of the function ProNotificationSet() to PRO_
WINDOW_OCCUPY_POST, to call the callback function whose signature matches
ProWindowOccupyPostAction(). This function is called when a new Creo

338 Creo® Parametric TOOLKITUser’s Guide

Parametric window is created, or when the base window is populated and is used
by the application to add the necessary content to the new pane in the navigation
area.
Specify the argument type of the function ProNotificationSet() to PRO_
WINDOW_VACATE_PRE, to call the callback function whose signature matches
ProWindowVacatePreAction(). This function is called when a Creo
Parametric window is closed, or when the base window gets cleared. Use this
function to free memory allocated by the Creo Parametric TOOLKIT application
to add content in the navigation pane.

Entering Creo Parametric Commands
Functions Introduced:

• ProMacroLoad()
• ProMacroExecute()
• ProMenuCommandPush()
The function ProMacroLoad() loads a macro string or a mapkey onto a stack
of macros that are executed after control returns to Creo Parametric. A Creo
Parametric TOOLKIT macro is a string. The macro string is equivalent to a
mapkey without the key sequence and the mapkey name.

Note
ProMacroLoad() fails if a macro string contains a backslash or if a
command splits over two lines with or without a backslash. A macro string can
contain multiple commands separated by semicolons. However, each
command should entirely appear in a single line.

The function ProMacroLoad() enables you to execute the commands created
by the Creo Parametric TOOLKIT application using the following macro:
~ Command `<command name>`

Click Mapkeys Settings in the Environment tab of the Creo Parametric Options
dialog box to create a mapkey in the Creo Parametric user interface. Copy the
value of the generated mapkey option from the Configuration Editor in the Creo
Parametric Options dialog box. An example of a created mapkey is as follows:
$F2 @MAPKEY_LABELtest;
~ Command `ProCmdModelNew`
~ Activate `new` `OK`

The key sequence is $F2. . The remainder of the string after the first semicolon is
the macro string. In this case, it is as follows:
~ Command `ProCmdModelNew`

User Interface: Menus, Commands, and Popupmenus 339

~ Activate `new` `OK`

You can either pass the mapkey directly or the generated macro string to
ProMacroLoad(). Pass the mapkey directly as %key_sequence.

Note
Creating or editing the macro string manually is not supported, as mapkeys are
not a supported scripting language. The syntax is not defined for users and
may not remain constant across different datecodes of Creo Parametric.

Execution Rules
Consider the following rules about the execution of macros:

• In asynchronous mode, macros are executed as soon as they are loaded with
ProMacroLoad().

• In synchronous mode, the mapkey or the macro strings are pushed onto a stack
and are popped off and executed only when control returns to Creo Parametric
from the Creo Parametric TOOLKIT program. Due to the last in, first out
nature of the stack, macros that cannot be passed entirely in one
ProMacroLoad() call should have the strings loaded in reverse order of
desired execution.

• To execute a macro from within Creo Parametric TOOLKIT, call the function
ProMacroExecute(). The function runs the Creo Parametric macro and
returns the control to the Creo Parametric TOOLKIT application. It executes
the macros previously loaded using the function ProMacroLoad(). The
function works only in the synchronous mode.

• Do not call the function ProMacroExecute() during the following
operations:

○ Activating dialog boxes or setting the current model
○ Erasing the current model
○ Replaying a trail file

• Clicking the OK button on the dialog box to complete the command operation.
In this case, the dialog box may be displayed momentarily without completing
the command operation.

340 Creo® Parametric TOOLKITUser’s Guide

Note
○ You can execute only the dialog boxes with built-in exit confirmation as

macros, by canceling the exit action.
○ It is possible that a macro may not be executed because a command

specified in the macro is currently inaccessible in the menus. The
functional success of ProMacroExecute() depends on the priority of
the executed command against the current context.

• If some of the commands ask for an input to be entered from the keyboard
(such as a part name), the macro continues execution after you type the input
and press ENTER. However, if you must select something with the mouse
(such as selecting a sketching plane), the macro is interrupted and ignores the
remaining commands in the string.

This allows the application to create object-independent macros for long
sequences of repeating choices (as long as the user does not have to select any
geometry).

A ProStringToWstring() call for defining the macro string must be
followed by the following calls:

• ProMacroLoad(macro wstring) to load the macro strings or the
mapkey

• ProMacroExecute() to execute the macro
Some sample macros in various scenarios are given below.

Ribbon User Interface Macros
The following single entry and exit type of interactions are supported by
ProMacroExecute().

• To switch the wireframe display of model, use the macro:
Command `ProCmdEnvWireframe` 1

• To switch the shaded display of model, use the macro:
~ Command `ProCmdEnvShaded` 1

• You can switch the display for datum planes and datum axes using the
following macros:

○ Datum Planes
~ Command `ProCmdEnvDtmDisp` 1

○ Datum Axes
~ Command `ProCmdEnvAxisDisp` 0

User Interface: Menus, Commands, and Popupmenus 341

• To repaint a model, use the macro:
~ Command `ProCmdViewRepaint`

• To get the default model orientation, use the macro:
~ Command `ProCmdNamedViewsGalSelect` `Default`

• To get the model information, use the macro:
~ Command `ProCmdInfoModel`

Macros For Feature Creation
The following macros are used while creating the following features.

• To create a hole feature, use the macro:
~ Command `ProCmdHole`

• To extrude a feature, use the macro:
~ Command `ProCmdFtExtrude`

• To create a datum plane, use the macro:
~ Command `ProCmdDatumPlane`

Creo Parametric Navigator Macros
The following macros are provided for Creo Parametric navigator:

• For folder navigator:
~ Select `main_dlg_cur` `PHTLeft.ProExplorerTab` 1 `PHTLeft.Folders`

• For Favorites navigator:
~ Select `main_dlg_cur` `PHTLeft.ProExplorerTab` 1 `PHTLeft.FavLay`

• For the Model Tree:
~ Select `main_dlg_cur` `PHTLeft.ProExplorerTab` 1 `PHTLeft.MdlTreeLay`

The function ProMenuCommandPush() places the name of a specific menu
button in the command input buffer for Creo Parametric. This command is
executed after control returns to Creo Parametric from the Creo Parametric
TOOLKIT application, as if you have selected that menu button. This menu
button must be from the menu that is currently displayed in the Creo Parametric
user interface.

Specifying Keyboard Input
You can specify keyboard input within the command string. As previously
specified, a macro must be preceded by a pound sign (#) and terminated by a
semicolon. If the field after the semicolon does not start with a pound sign, the
data up to the next semicolon is used as input at the next keyboard prompt. If the
command currently being executed does not request keyboard input, the system
ignores this keyboard data. Note that keyboard data is case-sensitive and spaces
are not ignored. A carriage return is indicated when no data appears between the
semicolons.

342 Creo® Parametric TOOLKITUser’s Guide

Note
Note that the correctness of the sequence is the responsibility of the user. PTC
does not guarantee that a sequence will be valid from one version of Creo
Parametric to another.

User Interface: Menus, Commands, and Popupmenus 343

18
User Interface: Dialogs

Introduction... 346
UI Components ... 347
Cascade Button .. 359
Checkbutton ... 360
Drawing Area .. 362
Input Panel ... 371
Label .. 374
Layout .. 376
List ... 378
Menubar ... 381
Menupane .. 382
Optionmenu.. 384
Progressbar .. 386
Pushbutton ... 388
Radiogroup... 390
Separator ... 392
Slider.. 393
Spinbox .. 395
Tab... 397
Table .. 400
Textarea ... 408
Thumbwheel ... 411
Tree ... 413
Master Table of Resource File Attributes ... 425
Using Resource Files... 444

344 Creo® Parametric TOOLKITUser’s Guide

This chapter describes the User Interface (UI) components available in Pro/
TOOLKIT for Pro/ENGINEERWildfire 3.0 onwards. The following sections
introduce each of the dialog component types, operations and callbacks available
for each component, and the methods and techniques that can be used to
instantiate and show customized user interface dialogs.

User Interface: Dialogs 345

Introduction
This chapter includes documentation for each UI component. The documentation
is divided into the following sections:

• Attributes—Defines the names and functions that affect attributes on the UI
component. Each component supports its own set of unique attributes;
however, some attributes are supported by more than one component. Because
of the fact that attributes typically work on more than one component, detailed
documentation for the attributes is included in a master table at the end of this
chapter.

• Operations—Defines the component-specific functions that make more
detailed modifications to the components.

• Actions—Defines the functions that register action callbacks on a component.

Note
From Creo 3.0 onward, a new tool, Creo UI Editor, allows you to interactively
create and edit dialog boxes for Creo Object TOOLKIT C++ and Creo Object
TOOLKIT Java customizations. It provides a library of graphical user
interface components such as buttons, lists, and so on. The new framework,
User Interface Foundation Classes (UIFC), provides enhanced attributes and
actions for the user interface components. The UIFC framework is available in
Creo Object TOOLKIT C++ and Creo Object TOOLKIT Java. You can
generate callbacks in Creo Object TOOLKIT C++ or Creo Object TOOLKIT
Java. Refer to the Creo UI Editor User’s Guide, for more information.

About Creo Parametric TOOLKIT Support for User
Interface
Creo Parametric TOOLKIT allows applications to create dialogs and dashboards
with the same look and feel as those in Creo Parametric. Creo Parametric
TOOLKIT users can accomplish this task by following the following steps:

• Establish the main UI container object. This is either a dialog or a dashboard.
Optionally, this can be read from a resource file to prepopulate the container
with specific components.

• Add components to the container (if they do not already exist).
• Set attributes on components in the container.

346 Creo® Parametric TOOLKITUser’s Guide

• Execute operations on components in the container. Operations also modify
the component, but typically make more detailed or sophisticated changes than
setting an individual attribute.

• Establish action function callbacks on components in the container. Action
functions are called when the user interacts with the component in some way.
They allow the application to react to user events.

• Show the dialog or dashboard.
• Based on user actions, eventually you will need to close the container.
• "Destroy" the container to free up the resources it uses.

Note
The functions described in this section do not support using Creo
Parametric TOOLKIT to modify standard Creo Parametric dialogs.

The UI function library is integral to Creo Parametric, not the Creo Parametric
TOOLKIT libraries; thus, the library can only be used while a Creo Parametric
session is active. The library cannot be used to display user interfaces when the
application is not connected to Creo Parametric running interactively.

UI Components
The behavior and uses of the different component types is introduced briefly
below, and described in more detail in later sections. The component types are:

• Tab—part of a dialog that can contain several groups of components,
formatted such that only one group is visible at a time. ATab component must
always contain a set of Layout components; each layout contains the
components that must displayed at one time. The Figure - ‘All Components
Dialog’ shows a decorated Tab which displays a handle on each layout to
allow the user to select which layout is visible.

• Layout—an area of a dialog which can contain any number of other dialog
components. A Layout can be used to better control the relative position of
components in a dialog, by allowing the grids in different parts of the dialog to
adopt unaligned rows or columns. A layout can also be used inside a Tab
component.

• Check Button—a button which toggles between a TRUE and FALSE state
each time the user selects it.

• Drawing Area—a component which allows points, lines, shapes, images and
text (including symbols) to be drawn in a variety of colors.

User Interface: Dialogs 347

• Input Panel—a box containing a single line of text. The Input Panel may be set
to expect text in different formats, for example a real number or an integer.
The Input Panel may also be set to be read-only, when it is used by the
application to show information to the user.

• Label—a text string used to label the other components.
• List—a box containing a list of text strings, which can be selected by the user.

Users can set the List to allow selection of only one item at a time, or more
than one.

• Option Menu—a single-line box which allows selection of a single text string
from a list of options. The selection is done using a pull-down menu, which
appears when a button next to the text box is selected.

• Progress Bar—a component which shows the progress of a time-consuming
action.

• Push Button—a button which performs some action when it is selected. It does
not contain any remembered state. Push Buttons appear on almost every dialog
as OK and Cancel buttons.

• Radio Group—a set of buttons which individually act like check buttons, but
which are connected to each other such that only one can be set to TRUE at
any time. Selecting one button sets that button and unsets all others in the
group.

• Separator—a separator is for cosmetic purposes only, and helps to visually
divide components into logical groups.

• Slider—a device which allows the user to set a value in a predefined range by
moving a handle with the mouse. Use sliders in situations where an exact
value may not be needed. A slider should usually be tied programmatically
with a read-only input panel to show the current value.

• Spin-Box—a box containing a single numerical value that can be directly
edited. The spin box also has up- and down-arrow buttons for increasing or
decreasing the value in steps. A single click increments or decrements by a
single step. Holding a button down makes the value change in repeated steps,
first small steps and then large steps. The step sizes can be set for each spin
box.

• Table—a set of tabulated rows and columns containing text and other
components.

• Text Area—a box containing unformatted text containing any number of lines.
It may be set to be read-only and used by the application to output information
to the user.

348 Creo® Parametric TOOLKITUser’s Guide

• Thumbwheel—a thumbwheel is similar to slider but provides finer control
over a wider range of values. Unlike the slider, it does not provide a visual
indication of the current value.

• Tree—a tree contains nodes which are structured and displayed in a
hierarchical formation.

Naming Convention for UI Components
The valid characters for naming UI components are:

• A to Z (uppercase)
• a to z (lowercase)
• 0 to 9
• Underscore(_)
• Hypen(-)
Using any other characters in UI component names may result in an error.

Menubars and Menubar Components
A dialog can also contain its own menubar. These menubars support cascading
menus.
See Example 15: Resource File for Dialog with Menubar on page 457 for resource
file code for this example.
The following components are used to define menu bars and their dependent
menus:

• Menubar—The menubar itself is just a container for the menu panes. A dialog
can contain only one menubar, and it must contain at least one other
component at the top level.

• MenuPane—A menu pane describes a button on a menubar and also acts as a
container for the components on the pull-down menu that appears when the
user selects the menu pane button.

• Cascade button—A button on a pull-down menu that contains its own
menupane. Selecting the cascade button pulls out the menu described by the
menupane.

The following components described in the previous section can also be added to
menu panes, but in this case their appearance is automatically modified to suit the
style of pull-down menus:

User Interface: Dialogs 349

• Check Button—This looks like a regular menu button, but in fact toggles its
state. When TRUE, it shows a check mark next to the label.

• Push Button—When added to a menu pane a pushbutton represents a
command that causes some action.

• Radio Group—A radio group on a menu pane behaves exactly as it would in
the body of a dialog, although the appearance is rather different, as shown in
the picture above.

• Separator—A separator can be used to group buttons on a menu pane.

Dialog Attributes
Attribute
Name

Get Function Set Function(s)

.AttachBot
tom on page

ProUIDialogIsAttachedBottom() ProUIDialogAttachBottom()

ProUIDialogUnattachBottom()

.AttachTop
on page

ProUIDialogIsAttachedTop() ProUIDialogAttachTop()

ProUIDialogUnattachTop()

.Attach
Right on
page

ProUIDialogIsAttachedRight() ProUIDialogAttachRight()

ProUIDialogUnattachRight()

.AttachLeft
on page

ProUIDialogIsAttachedLeft() ProUIDialogAttachLeft()

ProUIDialogUnattachLeft()

.BottomOff
set on page

ProUIDialogBottomoffsetGet() ProUIDialogBottomoffsetSet()

.Bitmap on
page

ProUIDialogBitmapGet() ProUIDialogBitmapSet()

.ChildNames
on page

ProUIDialogChildnamesGet() Not Applicable

.ClassName
on page

ProUIComponentClassnameGet() Not Applicable

.DefaultBut
ton on page

ProUIDialogDefaultbuttonGet() ProUIDialogDefaultbutton
Set()

.Dialog
Style on
page

ProUIDialogDialogstyleGet() ProUIDialogDialogstyleSet()

.Focus on
page

Not Applicable ProUIDialogFocusSet()

.Height on
page

ProUIDialogHeightGet() ProUIDialogHeightSet()

.HorzAt
Point on
page

ProUIDialogHorzatpointGet() ProUIDialogHorzatpointSet()

.HorzDialog
on page

ProUIDialogHorzdialogGet() ProUIDialogHorzdialogSet()

.HorzMethod
on page

ProUIDialogHorzmethodGet() ProUIDialogHorzmethodSet()

350 Creo® Parametric TOOLKITUser’s Guide

Attribute
Name

Get Function Set Function(s)

.HorzPoint
on page

ProUIDialogHorzpointGet() ProUIDialogHorzpointSet()

.HorzPosOff
set on page

ProUIDialogHorzposoffsetGet() ProUIDialogHorzposoffset
Set()

.HorzSize
on page

ProUIDialogHorzsizeGet() ProUIDialogHorzsizeSet()

.Labels on
page

ProUIDialogTitleGet() ProUIDialogTitleSet()

.LeftOffset
on page

ProUIDialogLeftoffsetGet() ProUIDialogLeftoffsetSet()

.Mapped on
page

ProUIDialogIsMapped() ProUIDialogMappedSet()

ProUIDialogMappedUnset()

.PopupMenu
on page

ProUIDialogPopupmenuGet() ProUIDialogPopupmenuSet()

.RememberPo
sition on
page

ProUIDialogRemembersPosition() ProUIDialogRememberPosi
tion()

ProUIDialogForgetPosition()

.Remember
Size on page

ProUIDialogRemembersSize() ProUIDialogRememberSize()

ProUIDialogForgetSize()

.Resizeable
on page

ProUIDialogIsResizeable() ProUIDialogEnableResizing()

ProUIDialogDisableResizing()

.RightOff
set on page

ProUIDialogRightoffsetGet() ProUIDialogRightoffsetSet()

.StartLoca
tion on page

ProUIDialogStartlocationGet() ProUIDialogStartlocation
Set()

.TopOffset
on page

ProUIDialogTopoffsetGet() ProUIDialogTopoffsetSet()

.VertAt
Point on
page

ProUIDialogVertatpointGet() ProUIDialogVertatpointSet()

.VertDialog
on page

ProUIDialogVertdialogGet() ProUIDialogVertdialogSet()

.VertMethod
on page

ProUIDialogVertmethodGet() ProUIDialogVertmethodSet()

.VertPoint
on page

ProUIDialogVertpointGet() ProUIDialogVertpointSet()

.VertPosOff
set on page

ProUIDialogVertposoffsetGet() ProUIDialogVertposoffset
Set()

.VertSize
on page

ProUIDialogVertsizeGet() ProUIDialogVertsizeSet()

.Width on
page

ProUIDialogWidthGet() ProUIDialogWidthSet()

User Interface: Dialogs 351

Dialog Operations
Functions Introduced

• ProUIDialogCreate()
• ProUIDialogActivate()
• ProUIDialogComponentsCollect()
• ProUIDialogMinimumsizeGet()
• ProUIDialogSizeGet()
• ProUIDialogPositionReset()
• ProUIDialogReconfigure()
• ProUIDialogScreenpositionGet()
• ProUIDialogAboveactivewindowGet()
• ProUIDialogAboveactivewindowSet()
• ProUIDialogShow()
• ProUIDialogHide()
• ProUIDialogExit()
• ProUIDialogDestroy()
• ProUITimerCreate()
• ProUIDialogTimerStart()
• ProUIDialogTimerStop()
• ProUITimerDestroy()
The function ProUIDialogCreate() loads a dialog from a resource file into
memory. It can also create an empty dialog by passing a NULL value for the
resource file name. The input arguments follow:
• session_dialog_name—Name of the dialog.
• resource—Name of the resource file.

Note
• The function ProUIDialogCreate() requires that the resource file name

input matches the case of the actual resource file.
• The dialog name specified in the resource file should match both the input

argument resource and the name of the resource file without adding the suffix
name.

352 Creo® Parametric TOOLKITUser’s Guide

The following points must be noted while developing Creo Parametric TOOLKIT
applications:
• Resource names of dialogs resources must not coincide with the resources that

are defined by PTC.
• Dialog instance or session names must not coincide with the instance or

session names that are defined by PTC.
• You can ensure uniqueness in the dialog resource and session names by adding

a prefix that specifies the name of the Creo Parametric TOOLKIT application.
Use the function ProUIDialogActivate()to display the dialog on the
screen and makes it active by setting the key input focus on it. This function
returns only after the function ProUIDialogExit() has been called on the
same dialog.
Use the function ProUIDialogComponentsCollect() to return the names
of components in this dialog. This function can also filter components by their
type.

Note
Refer to the section UI Components on page 347 for the predefined list of
component types.

Use the function ProUIDialogMinimumsizeGet() to get the minimum size
of the dialog in pixels.
Use the function ProUIDialogSizeGet() to get the size of the dialog.
Use the function ProUIDialogPositionReset() to reset the dialog in its
previous screen position.
Use the function ProUIDialogReconfigure() to reset the size and position
of the dialog.
Use the function ProUIDialogScreenpositionGet() get the screen
position in pixels of the dialog component.
Use the function ProUIDialogAboveactivewindowGet() to checks if the
dialog is always going to be above the Creo Parametric dialogs currently active in
the Creo Parametric window.
Use the function ProUIDialogAboveactivewindowSet() to set focus of
the dialog above any dialog in the currently active Creo Parametric window.

User Interface: Dialogs 353

Note
Using the ProUIDialogAboveactivewindowSet() allows Creo
Parametric TOOLKIT applications to always stay in focus in the Creo
Parametric window during opening and closing events of Creo Parametric.

Use the ProUIDialogDestroy() to remove the dialog instance from memory
as it is not automatically removed.
Use the function ProUIDialogShow() to show a secondary window when the
primary window is being restored.
Use the function ProUIDialogHide() to iconify a secondary window when
the primary window is being minimized.
Use the function ProUIDialogExit() to terminate the activation of the
named dialog window. The function causes a return from the call to
ProUIDialogActivate() that make it active.
Use the function ProUIDialogDestroy() to remove the dialog from the
memory.
You can set a timer to schedule an action to be executed later in Creo Parametric
session. The function ProUITimerCreate() creates a timer and registers the
action. f you call the function ProUITimerCreate() with timer_name that
already exists in the session, it returns an error. The input arguments for the
function are:
• action—Specifies call to the action callback function

ProUITimerAction(). You can invoke the action callback only once
from the function ProUIDialogTimerStart(). To run the action again,
you must call ProUIDialogTimerStart() again.

• appdata—Specifies the data that will be passed to the action callback.
• timer_name—Specifies the name of the timer.
The function returns the ID of the timer, which will be used to start and stop the
timer.
Use the function ProUIDialogTimerStart() to start the timer. The action is
executed after the specified interval of time. The input arguments are:
• dialog—Specifies the name of the dialog box. You can invoke only one timer

at a time for a dialog box.
• timer_id—Specifies the ID of the timer, which was returned by the function

ProUITimerCreate().

354 Creo® Parametric TOOLKITUser’s Guide

• duration—Specifies the time interval in milliseconds after which the action
must be executed. The minimum value is set to 500 milliseconds.

• write_in_trail_file—Specifies if the timer action must be recorded in a trail
file.

The function ProUIDialogTimerStop() stops the timer and the action will
not be executed. Specify the ID of the timer as the input argument.
The function ProUITimerDestroy() removes the specified timer, which was
created using the function ProUITimerCreate(). If the timer to be removed
has already been started, it is first stopped, and then removed. Pass the ID of the
timer as the input argument. After the timer is removed, its name is available for
use again. You can specify the name to a new timer.

Note
You must use the functions ProUITimerCreate(),
ProUIDialogTimerStart(), ProUIDialogTimerStop(), and
ProUITimerDestroy() only in DLL mode.

Example 1: Source for Dialog with Text Question, OK and
Cancel Buttons
The example in the file UgUIYesnoDialog.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_ui, shows the source
code that uses this dialog.

Adding and Removing Components
Component
Name

Add Function Remove Function

Checkbutton ProUIDialogCheckbuttonAdd() ProUIDialogCheckbuttonRe
move()

Drawingarea ProUIDialogDrawingareaAdd() ProUIDialogDrawingareaRe
move()

Inputpanel ProUIDialogInputpanelAdd() ProUIDialogInputpanelRemove()

Label ProUIDialogLabelAdd() ProUIDialogLabelRemove()

Layout ProUIDialogLayoutAdd() ProUIDialogLayoutRemove()

List ProUIDialogListAdd() ProUIDialogListRemove()

Menubar ProUIDialogMenubarAdd() Not Applicable

Menupane ProUIDialogMenupaneAdd() ProUIDialogMenupaneRemove()

Optionmenu ProUIDialogProgressbarAdd() ProUIDialogOptionmenuRemove()

Progressbar ProUIDialogProgressbarAdd() ProUIDialogProgressbarRe
move()

Pushbutton ProUIDialogPushbuttonAdd() ProUIDialogPushbuttonRemove()

User Interface: Dialogs 355

Component
Name

Add Function Remove Function

Radiogroup ProUIDialogRadiogroupAdd() ProUIDialogRadiogroupRemove()

Separator ProUIDialogSeparatorAdd() ProUIDialogSeparatorRemove()

Slider ProUIDialogSliderAdd() ProUIDialogSliderRemove()

Spinbox ProUIDialogSpinboxAdd() ProUIDialogSpinboxRemove()

Tab ProUIDialogTabAdd() ProUIDialogTabRemove()

Table ProUIDialogTableAdd() ProUIDialogTableRemove()

Textarea ProUIDialogTextareaAdd() ProUIDialogTextareaRemove()

Thumbwheel ProUIDialogThumbwheelAdd() ProUIDialogThumbwheelRemove()

Tree ProUIDialogTreeAdd() ProUIDialogTreeRemove()

Creo Parametric TOOLKIT provides functions to add components to a dialog.
These functions accept an argument of type ProUIGridopts that determines
the location and initial placement details of the component. In addition, a number
of grid-specific attributes control the position and resizing of the newly created
component within the grid of the Dialog.
These grid-specific attributes are listed as follows:
Attribute Default Value Description
column PRO_UI_INSERT_NEW_

COLUMN
The column of the grid into which
the component should be added. A
value of PRO_UI_INSERT_
NEW_COLUMN indicates that the
component should be added to a
newly created column to the left of
any existing columns.

row PRO_UI_INSERT_NEW_ROW The row of the grid into which the
component should be added. A
value of PRO_UI_INSERT_
NEW_ROW indicates that the
component should be added to a
newly created row to the left of
any existing rows.

horz_cells 1 The number of cells which the
component should occupy in the
existing grid in a horizontal
direction.

vert_cells 1 The number of cells which the
component should occupy in the
existing grid in a vertical direction.

horz_resize PRO_B_TRUE A flag indicating whether the grid
cell containing the component
should resize horizontally.

vert_resize PRO_B_TRUE A flag indicating whether the grid
cell containing the component
should resize vertically.

attach_top PRO_B_TRUE Attach the item to the top neighbor
attach_bottom PRO_B_TRUE Attach the item to the bottom

neighbor

356 Creo® Parametric TOOLKITUser’s Guide

Attribute Default Value Description
attach_left PRO_B_TRUE Attach the item to the left neighbor
attach_right PRO_B_TRUE Attach the item to the right

neighbor
top_offset PRO_UI_USE_DEVICE_

OFFSET
Offset to the top neighbor. The
default value PRO_UI_USE_
DEVICE_OFFSET inherits the
offset from the owning dialog.

bottom_offset PRO_UI_USE_DEVICE_
OFFSET

Offset to the bottom neighbor. The
default value PRO_UI_USE_
DEVICE_OFFSET inherits the
offset from the owning dialog.

left_offset PRO_UI_USE_DEVICE_
OFFSET

Offset to the left neighbor. The
default value PRO_UI_USE_
DEVICE_OFFSET inherits the
offset from the owning dialog.

right_offset PRO_UI_USE_DEVICE_
OFFSET

Offset to the right neighbor. The
default value PRO_UI_USE_
DEVICE_OFFSET inherits the
offset from the owning dialog.

Note
Components that are added to a dialog after it is displayed do not permit
modification of all component attributes. When creating and displaying a
dialog, it is preferable to use these functions to add the components before
activating the dialog. If a component might be needed but should not be shown
initially, add it before activation and set its .Visible attribute to false.

Dialog Action Callbacks
Functions Introduced

• ProUIDialogPremanagenotifyActionSet()
• ProUIDialogPostmanagenotifyActionSet()
• ProUIDialogDestroynotifyActionSet()
• ProUIDialogCloseActionSet()
• ProUIDialogActivateActionSet()
• ProUIDialogAppActionSet()
• ProUIDialogAppActionRemove()
Use the function ProUIDialogPremanagenotifyActionSet() to set the
function to be called when the dialog is about to be managed. For example, when
a dialog box is displayed or redisplayed.

User Interface: Dialogs 357

Use the function ProUIDialogPostmanagenotifyActionSet() to set
the function to be called when the dialog has just been managed. For example,
when a dialog box is displayed.
Use the function ProUIDialogDestroynotifyActionSet() to set the
function to be called when the dialog is about to be destroyed.
Use the function ProUIDialogCloseActionSet() to set the action
function to be called when the user attempts to close the dialog using the window
close icon in the upper right corner of the dialog.
Use the function ProUIDialogActivateActionSet() to set the function
to be called when the dialog has just been activated and made the current
foreground window. The action function for a given dialog can be called

• The dialog must not be the current foreground application.
• The dialog (when it is not the foreground application) is activated using one of

the following methods:

○ When the user clicks on the taskbar button for the given dialog.
○ When the user switches to the given dialog using Alt+Tab.
○ When the user clicks within the given dialog.

Use the function ProUIDialogAppActionSet() to set a function to be
called only once, when you return to or enter an event loop. The input arguments
follow:
• dialog—Name of the dialog. The action is associated with the dialog and is

automatically cancelled if the dialog is destroyed. The value can be NULL.
• function—Function to be called when you return to an event loop.
• data—Action data passed to the callback function. The value can be NULL.
Use the function ProUIDialogAppActionRemove() to remove a function
added via ProUIDialogAppActionSet(). The input arguments follow:
• dialog—Name of the dialog passed to the function

ProUIDialogAppActionRemove().
• function— Function passed to ProUIDialogActionSet().
• data—Action data passed to ProUIDialogActionSet().

358 Creo® Parametric TOOLKITUser’s Guide

Cascade Button

Cascade Button Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom
on page

ProUICascadebutton
IsAttachedBottom()

ProUICascadebutton
AttachBottom()

ProUICascadebutton

UnattachBottom()
.AttachTop on
page

ProUICascadebutton
IsAttachedTop()

ProUICascadebutton
AttachTop()

ProUICascadebutton

UnattachTop()

.AttachRight on
page

ProUICascadebutton
IsAttachedRight()

ProUICascadebutton
AttachRight()

ProUICascadebutton

UnattachRight()

.AttachLeft on
page

ProUICascadebutton
IsAttachedLeft()

ProUICascadebutton
AttachLeft()

ProUICascadebutton

UnattachLeft()
.BottomOffset
on page

ProUICascadebutton
BottomoffsetGet()

ProUICascadebutton
BottomoffsetSet()

.Bitmap on page ProUICascadebutton
BitmapGet()

ProUICascadebutton
BitmapSet()

.CascadeDirec
tion on page

ProUICascadebutton
CascadedirectionGet()

ProUICascadebutton
CascadedirectionSet()

.ChildNames on
page

ProUICascadebutton
ChildnamesGet()

ProUICascadebutton
ChildnamesSet()

.HelpText on
page

ProUICascadebutton
HelptextGet()

ProUICascadebutton
HelptextSet()

.Label on page ProUICascadebutton
TextGet()

ProUICascadebutton
TextSet()

.LeftOffset on
page

ProUICascadebutton
LeftoffsetGet()

ProUICascadebutton
LeftoffsetSet()

.ParentName on
page

ProUICascadebutton
ParentnameGet()

ProUICascadebutton
ParentnameSet()

.PopupMenu on
page

ProUICascadebutton
PopupmenuGet()

ProUICascadebutton
PopupmenuSet()

.Resizeable on
page

ProUICascadebutton
IsResizeable()

ProUICascadebutton
EnableResizing()

ProUICascadebutton

DisableResizing()

.RightOffset on
page

ProUICascadebutton
RightoffsetGet()

ProUICascadebutton
RightoffsetSet()

.Sensitive on ProUICascadebutton
IsEnabled()

ProUICascadebutton
Enable()

User Interface: Dialogs 359

Attribute Name Get Function Set Function(s)
page

ProUICascadebutton

Disable()
.TopOffset on
page

ProUICascadebutton
TopoffsetGet()

ProUICascadebutton
TopoffsetSet()

.Visible on
page

ProUICascadebutton
IsVisible()

ProUICascadebutton
Show()

ProUICascadebutton

Hide()

Checkbutton

Checkbutton Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUICheckbuttonIsAtta
chedBottom()

ProUICheckbuttonAttachBot
tom()

ProUICheckbuttonUnattachBot

tom
.AttachTop on
page

ProUICheckbuttonIsAtta
chedTop()

ProUICheckbuttonAttachTop()

ProUICheckbuttonUnattach

Top()

.AttachRight on
page

ProUICheckbuttonIsAtta
chedRight()

ProUICheckbuttonAttach
Right()

ProUICheckbuttonUnattach

Right()

.AttachLeft on
page

ProUICheckbuttonIsAtta
chedLeft()

ProUICheckbuttonAttachLeft()

ProUICheckbuttonUnatta

chLeft()
.BottomOffset on
page

ProUICheckbuttonBottomoff
setGet()

ProUICheckbuttonBottomoffset
Set()

.Bitmap on page ProUICheckbuttonBitmap
Get()

ProUICheckbuttonBitmapSet()

.ButtonStyle on
page

ProUICheckbuttonButtonsty
leGet()

ProUICheckbuttonButtonstyle
Set()

.HelpText on page ProUICheckbuttonHelptext
Get()

ProUICheckbuttonHelptext
Set()

.Label on page ProUICheckbuttonTextGet() ProUICheckbuttonTextSet()

.ModalOverride
on page

Not Applicable ProUICheckbuttonModaloverride
Set()

.LeftOffset on
page

ProUICheckbuttonLeftoff
setGet()

ProUICheckbuttonLeftoffset
Set()

.ParentName on
page

ProUICheckbuttonParentna
meGet()

Not Applicable

360 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.PopupMenu on
page

ProUICheckbuttonPopupmenu
Get()

ProUICheckbuttonPopupmenu
Set()

.Resizeable on
page

ProUICheckbuttonIsResizea
ble()

ProUICheckbuttonEnableResiz
ing()

ProUICheckbuttonDisableResiz

ing()

.RightOffset on
page

ProUICheckbuttonRightoff
setGet()

ProUICheckbuttonRightoffset
Set()

.Set on page ProUICheckbuttonGet
State()

ProUICheckbuttonSet()

ProUICheckbuttonUnset()

.Sensitive on
page

ProUICheckbuttonIsEna
bled()

ProUICheckbuttonEnable()

ProUICheckbuttonDisable()
.TopOffset on
page

ProUICheckbuttonTopoffset
Get()

ProUICheckbuttonTopoffset
Set()

.Visible on page ProUICheckbuttonIsVisi
ble()

ProUICheckbuttonShow()

ProUICheckbuttonHide()

Checkbutton Operations
Functions Introduced

• ProUICheckbuttonAnchorSet()
• ProUICheckbuttonSizeSet()
• ProUICheckbuttonMinimumsizeGet()
• ProUICheckbuttonPositionSet()
• ProUICheckbuttonPositionGet()
• ProUICheckbuttonSizeGet()
Use the function ProUICheckbuttonAnchorSet() to set the position of the
checkbutton with respect to a given anchor location. This function is applicable
only if the parent of the checkbutton is a drawing area. The input argument anchor
determines which part of the component is being positioned.
Use the function ProUICheckbuttonSizeSet() to set the size of the
checkbutton in pixels. This operation is applicable only if the parent is a drawing
area. The function will fail, if you specify a value smaller than the minimum size
for the input arguments width or height
Use the function ProUICheckbuttonMinimumsizeGet()to retrieve the
minimum size of the width and height of the check button in pixels. Use this
function only if the parent is a drawing area.

User Interface: Dialogs 361

Use the function ProUICheckbuttonPositionSet() to set the position to
the checkbutton with respect to its parent. This operation is applicable only if the
parent is a drawing area.
Use the function ProUICheckbuttonPositionGet() to get the position of
the checkbutton with respect to its parent. This operation is applicable only if the
parent is a drawing area.
Use the function ProUICheckbuttonSizeGet() to get the size of the
checkbutton. This operation is applicable only if the parent is a drawing area.

Checkbutton Action Callbacks
Functions Introduced

• ProUICheckbuttonActivateActionSet()
The function ProUICheckbuttonActivateActionSet() sets the
callback action to be invoked when the user toggles the state of the checkbutton.

Drawing Area

Drawing Area Attributes
Attribute Name Get Function Set Function(s)
.ArcDirection on page ProUIDrawingareaArcdir

ectionGet()
ProUIDrawingareaArcdir
ectionSet()

.ArcFillMode on page ProUIDrawingareaArcfill
modeGet()

ProUIDrawingareaArcfill
modeSet()

.AttachBottom on page ProUIDrawingareaIsAtta
chedBottom()

ProUIDrawingareaAttach
Bottom()

ProUIDrawingareaUnat

tachBottom()
.AttachTop on page ProUIDrawingareaIsAtta

chedTop()
ProUIDrawingareaAttach
Top()

ProUIDrawingareaUnat

tachTop()

.AttachRight on page ProUIDrawingareaIsAtta
chedRight()

ProUIDrawingareaAttach
Right()

ProUIDrawingareaUnat

tachRight()

.AttachLeft on page ProUIDrawingareaIsAtta
chedLeft()

ProUIDrawingareaAtta
chLeft()

ProUIDrawingareaUnatta

chLeft()
.BackgroundColor on page ProUIDrawingareaBack ProUIDrawingareaBack

362 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
groundcolorGet() groundcolorSet()

.BgColor on page ProUIDrawingareaBgcolor
Get()

ProUIDrawingareaBgcolor
Set()

.BottomOffset on page ProUIDrawingareaBotto
moffsetGet()

ProUIDrawingareaBotto
moffsetSet()

.ChildNames on page ProUIDrawingareaChildna
mesGet()

Not Applicable

.ClipChildren on page ProUIDrawingareaClip
childrenGet()

ProUIDrawingareaClip
childrenSet()

.Decorated on page ProUIDrawingareaIsDeco
rated()

ProUIDrawingareaDeco
rate()

ProUIDrawingareaUndeco

rate()

.DrawingHeight on page ProUIDrawingareaDrawing
heightGet()

ProUIDrawingareaDrawing
heightSet()

.DrawingMode on page ProUIDrawingareaDrawing
modeGet()

ProUIDrawingareaDrawing
modeSet()

.DrawingWidth on page ProUIDrawingareaDrawing
widthGet()

ProUIDrawingareaDrawing
widthSet()

.FillMode on page ProUIDrawingareaFillmo
deGet()

ProUIDrawingareaFillmo
deSet()

.FontClass on page ProUIDrawingareaFont
classGet()

ProUIDrawingareaFont
classSet()

.FontSize on page ProUIDrawingareaFontsi
zeGet()

ProUIDrawingareaFontsi
zeSet()

.FontStyle on page ProUIDrawingareaFontsty
leGet()

ProUIDrawingareaFontsty
leSet()

.FgColor on page ProUIDrawingareaFgcolor
Get()

ProUIDrawingareaFgcolor
Set()

.HelpText on page ProUIDrawingareaHelp
textGet()

ProUIDrawingareaHelp
textSet()

.Images on page ProUIDrawingareaImages
Get()

ProUIDrawingareaImages
Set()

.LeftOffset on page ProUIDrawingareaLeftoff
setGet()

ProUIDrawingareaLeftoff
setSet()

.LineStyle on page ProUIDrawingareaLinesty
leGet()

ProUIDrawingareaLinesty
leSet()

.ParentName on page ProUIDrawingareaParent
nameGet()

Not Applicable

.PolygonFillMode on page ProUIDrawingareaPolygon
fillmodeGet()

ProUIDrawingareaPolygon
fillmodeSet()

.PopupMenu on page ProUIDrawingareaPopupme
nuGet()

ProUIDrawingareaPopupme
nuSet()

.RightOffset on page ProUIDrawingareaRight
offsetGet()

ProUIDrawingareaRight
offsetSet()

.Sensitive on page ProUIDrawingareaIsEna
bled()

ProUIDrawingareaEna
ble()

ProUIDrawingareaDisa

ble()

User Interface: Dialogs 363

Attribute Name Get Function Set Function(s)
.TopOffset on page ProUIDrawingareaTopoff

setGet()
ProUIDrawingareaTopoff
setSet()

.Tracking on page ProUIDrawingareaIsTrack
ingEnabled()

ProUIDrawingareaEnable
Tracking()

ProUIDrawingareaDisable

Tracking()

.Visible on page ProUIDrawingareaIsVisi
ble()

ProUIDrawingareaShow()

ProUIDrawingareaHide()

Adding and Removing Components
Component Name Adding Functions Removing Functions
Checkbutton ProUIDrawingareaCheck

buttonAdd()
ProUIDrawingareaCheck
buttonRemove()

Drawingarea ProUIDrawingareaDrawin
gareaAdd()

ProUIDrawingareaDrawin
gareaRemove()

Inputpanel ProUIDrawingareaInputpa
nelAdd()

ProUIDrawingareaInputpa
nelRemove()

Label ProUIDrawingareaLabe
lAdd()

ProUIDrawingareaLabelRe
move()

Layout ProUIDrawingareaLayou
tAdd()

ProUIDrawingareaLayou
tRemove()

List ProUIDrawingareaLis
tAdd()

ProUIDrawingareaListRe
move()

Optionmenu ProUIDrawingareaOption
menuAdd()

ProUIDrawingareaOption
menuRemove()

Progressbar ProUIDrawingareaProg
ressbarAdd()

ProUIDrawingareaProg
ressbarRemove()

Pushbutton ProUIDrawingareaPushbut
tonAdd()

ProUIDrawingareaPushbut
tonRemove()

Radiogroup ProUIDrawingareaRadiog
roupAdd()

ProUIDrawingareaRadiog
roupRemove()

Slider ProUIDrawingareaSlider
Add()

ProUIDrawingareaSlider
Remove()

Spinbox ProUIDrawingareaSpinbox
Add()

ProUIDrawingareaSpinbox
Remove()

Tab ProUIDrawingareaTa
bAdd()

ProUIDrawingareaTabRe
move()

Table ProUIDrawingareaTa
bleAdd()

ProUIDrawingareaTableRe
move()

Textarea ProUIDrawingareaTextar
eaAdd()

ProUIDrawingareaTextar
eaRemove()

Thumbwheel ProUIDrawingareaThumb
wheelAdd()

ProUIDrawingareaThumb
wheelRemove()

Tree ProUIDrawingareaTree
Add()

ProUIDrawingareaTreeRe
move()

364 Creo® Parametric TOOLKITUser’s Guide

Components added to drawing areas are not managed in grids like components in
most other containers. Instead, use the operations that set the component size and
position to place the component how you wish in the drawing area.

Note
This means that components may possibly overlap each other in a drawing
area depending on their individual placement.

Drawing Area Action Callbacks
Functions Introduced

• ProUIDrawingareaEnterActionSet()
• ProUIDrawingareaExitActionSet()
• ProUIDrawingareaMoveActionSet()
• ProUIDrawingareaLbuttonarmActionSet()
• ProUIDrawingareaLbuttondisarmActionSet()
• ProUIDrawingareaLbuttonactivateActionSet()
• ProUIDrawingareaLbuttondblclkActionSet()
• ProUIDrawingareaMbuttonarmActionSet()
• ProUIDrawingareaMbuttondisarmActionSet()
• ProUIDrawingareaMbuttondisarmActionSet()
• ProUIDrawingareaMbuttonactivateActionSet()
• ProUIDrawingareaMbuttondblclkActionSet()
• ProUIDrawingareaRbuttonarmActionSet()
• ProUIDrawingareaRbuttondisarmActionSet()
• ProUIDrawingareaRbuttonactivateActionSet()
• ProUIDrawingareaRbuttondblclkActionSet()
• ProUIDrawingareaUpdateActionSet()
• ProUIDrawingareaResizeActionSet()
• ProUIDrawingareaPostmanagenotifyActionSet()
Use the function ProUIDrawingareaEnterActionSet() to set the action
function to be called when the user has moved the cursor into the drawing area.
This action will be generated only if tracking is enabled for the drawing area.

User Interface: Dialogs 365

Use the function ProUIDrawingareaExitActionSet() to set the function
to be called when the user has moved the cursor out of the drawing area. This
action will be generated only if tracking is enabled for the drawing area.
Use the function ProUIDrawingareaMoveActionSet() to set the function
to be called when the cursor is moved over the drawing area. This action will be
generated only if tracking is enabled for the drawing area.
Use the function ProUIDrawingareaLbuttonarmActionSet() to set the
function to be called when the left mouse button is clicked in the drawing area.
Use the function ProUIDrawingareaLbuttondisarmActionSet() to
set the function to be called when the left mouse button is released in the drawing
area.
Use the function ProUIDrawingareaLbuttonactivateActionSet() to
set the function to be called when the left mouse button is clicked and released in
the drawing area.
Use the function ProUIDrawingareaLbuttondblclkActionSet() to
set the function to be called when the left mouse button is double-clicked in the
drawing area.
Use the function ProUIDrawingareaMbuttonarmActionSet() to set the
function to be called when the middle mouse button is clicked in the drawing area.
Use the function ProUIDrawingareaMbuttondisarmActionSet() to
set the function to be called when the middle mouse button is released in the
drawing area.
Use the function ProUIDrawingareaMbuttonactivateActionSet() to
set the function to be called when the middle mouse button is clicked and released
in the drawing area.
Use the function ProUIDrawingareaMbuttondblclkActionSet() to
set the function to be called when the middle mouse button is double-clicked in
the drawing area.
Use the function ProUIDrawingareaRbuttonarmActionSet() to set the
function to be called when the right mouse button is clicked in the drawing area.
Use the function ProUIDrawingareaRbuttondisarmActionSet() to
set the function to be called when the right mouse button is released in the
drawing area.
Use the function ProUIDrawingareaRbuttonactivateActionSet() to
set the function to be called when the right mouse button is clicked and released in
the drawing area.
Use the function ProUIDrawingareaRbuttondblclkActionSet() to
set the function to be called when the right mouse button is double-clicked in the
drawing area.

366 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUIDrawingareaUpdateActionSet() to set the
function to be called when the drawing area needs to be updated due to a system-
level color scheme change.
Use the function ProUIDrawingareaResizeActionSet() to set the
function to be called when the drawing area is resized.

Note
Any graphics, text or images added to the drawing area is typically cleared
after a resize.

Use the function ProUIDrawingareaPostmanagenotifyActionSet()
to set the function to be called when the drawing area has just been displayed. Use
this callback to setup the initial graphics, text, and images in the drawing area.

Drawing Area Operations
Functions Introduced

• ProUIDrawingareaAnchorSet()
• ProUIDrawingareaSizeGet()
• ProUIDrawingareaSizeSet()
• ProUIDrawingareaMinimumsizeGet()
• ProUIDrawingareaPositionGet()
• ProUIDrawingareaPositionSet()
• ProUIDrawingareaClear()
• ProUIDrawingareaCopyArea()
• ProUIDrawingareaPointDraw()
• ProUIDrawingareaPointsDraw()
• ProUIDrawingareaLineDraw()
• ProUIDrawingareaLinesDraw()
• ProUIDrawingareaPolylineDraw()
• ProUIDrawingareaRectDraw()
• ProUIDrawingareaRectsDraw()
• ProUIDrawingareaRectFill()
• ProUIDrawingareaRectsFill()
• ProUIDrawingareaShadowRectDraw()

User Interface: Dialogs 367

• ProUIDrawingareaShadowRectsDraw()
• ProUIDrawingareaPolygonDraw()
• ProUIDrawingareaPolygonFill()
• ProUIDrawingareaArcDraw()
• ProUIDrawingareaArcsDraw()
• ProUIDrawingareaArcFill()
• ProUIDrawingareaArcsFill()
• ProUIDrawingareaEllipseDraw()
• ProUIDrawingareaEllipsesDraw()
• ProUIDrawingareaEllipseFill()
• ProUIDrawingareaEllipsesFill()
• ProUIDrawingareaImageDraw()
• ProUIDrawingareaImagesDraw()
• ProUIDrawingareaStringDraw()
• ProUIDrawingareaStringsDraw()
• ProUIDrawingareaStringsizeGet()
• ProUIDrawingareaStringbaselineGet()
• ProUIDrawingareaImagesizeGet()
• ProUIDrawingareaCursorposGet()
• ProUIDrawingareaCursorposSet()
Use the function ProUIDrawingareaAnchorSet() to set the position of the
drawing area with respect to a given anchor location. This function is applicable
only if the parent of the drawing area is another drawing area.
Use the function ProUIDrawingareaSizeGet() to get the size of the
drawing area. This operation is applicable only if the parent is a drawing area. The
function will fail, if you specify a value smaller than the minimum size for the
input arguments width or height.
Use the function ProUIDrawingareaMinimumsizeGet() to retrieve the
minimum size of the width and height of the drawing area in pixels. Use this
function only if the parent is a drawing area.
Use the function ProUIDrawingareaSizeSet() to set the size of the
drawing area. This operation is applicable only if the parent is a drawing area.
Use the function ProUIDrawingareaPositionGet() to get the position of
the drawing area with respect to its parent. This operation is applicable only if the
parent is a drawing area.

368 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUIDrawingareaPositionSet() to set the position to
the drawing area with respect to its parent. This operation is applicable only if the
parent is a drawing area.
Use the function ProUIDrawingareaClear() to clear the contents of the
drawing area by painting it in the drawing background color.
Use the function ProUIDrawingareaCopyArea() to copy the contents
within a given boundary at a location in the drawing area to another location.
Use the function ProUIDrawingareaPointDraw() to draw a point in the
drawing area.
Use the function ProUIDrawingareaPointsDraw() to draw an array of
points in the drawing area.
Use the function ProUIDrawingareaLineDraw() to draw a line in the
drawing area.
Use the function ProUIDrawingareaLinesDraw() to draw a set of lines
between in the drawing area. Each line will be drawn from the indicated start
point in the array to the corresponding endpoint.
Use the function ProUIDrawingareaPolylineDraw() to draw a series of
connected lines in the drawing area.
Use the function ProUIDrawingareaRectDraw() to draw a rectangle in the
drawing area.
Use the function ProUIDrawingareaRectsDraw() to draw a set of
rectangles in the drawing area.
Use the function ProUIDrawingareaRectFill() to draw a filled rectangle
in the drawing area.
Use the function ProUIDrawingareaRectsFill() to draw a set of filled
rectangles in the drawing area.
Use the function ProUIDrawingareaShadowRectDraw() to draw a
rectangle with a shadow border.
Use the function ProUIDrawingareaShadowRectsDraw() to draw a set of
rectangles with shadow borders.
Use the function ProUIDrawingareaPolygonDraw() to draw a polygon in
the drawing area.
Use the function ProUIDrawingareaPolygonFill() to draw a filled
polygon in the drawing area.
Use the function ProUIDrawingareaArcDraw() to draw an arc in the
drawing area.
Use the function ProUIDrawingareaArcsDraw() to draw a set of arcs in
the drawing area.

User Interface: Dialogs 369

Use the function ProUIDrawingareaArcFill() to draw a filled arc in the
drawing area.
Use the function ProUIDrawingareaArcsFill() to draw a set of filled arcs
in the drawing.
Use the function ProUIDrawingareaEllipseDraw() to draw an ellipse in
the drawing area.
Use the function ProUIDrawingareaEllipsesDraw() to draw a set of
ellipses in the drawing area.
Use the function ProUIDrawingareaEllipseFill() to draw a filled
ellipse in the drawing area.
Use the function ProUIDrawingareaEllipsesFill() to draw a set of
filled ellipses in the drawing area.
Use the function ProUIDrawingareaImageDraw() to draw an image in the
drawing area.
Use the function ProUIDrawingareaImagesDraw() to draw images at the
given positions in the drawing area.
Use the function ProUIDrawingareaStringDraw() to draw a string at the
given position in the drawing area.
Use the function ProUIDrawingareaStringsDraw() to draw strings at the
given positions in the drawing.
Use the function ProUIDrawingareaStringsizeGet() to get the size that
the given text string will occupy in the drawing area, given the current drawing
area font settings.
Use the function ProUIDrawingareaStringbaselineGet() to get the
height from the top of the string border to the string baseline for the given text
string in the drawing area, given the current drawing area font settings.
Use the function ProUIDrawingareaImagesizeGet() to get the size of
the image in the drawing area.
Use the function ProUIDrawingareaCursorposGet() to get the position
of the cursor in the drawing area.
Use the function ProUIDrawingareaCursorposSet() to set the cursor at
the given location in the drawing area.

370 Creo® Parametric TOOLKITUser’s Guide

Input Panel

Input Panel Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUIInputpanelIsAttached
Bottom()

ProUIInputpanelAttachBot
tom()

ProUIInputpanelUnattach

Bottom()
.AttachTop on page ProUIInputpanelIsAttached

Top()
ProUIInputpanelAttach
Top()

ProUIInputpanelUnattach

Top()

.AttachRight on
page

ProUIInputpanelIsAttached
Right()

ProUIInputpanelAttach
Right()

ProUIInputpanelUnattach

Right()

.AttachLeft on page ProUIInputpanelIsAttached
Left()

ProUIInputpanelAtta
chLeft()

ProUIInputpanelUnatta

chLeft()

.Autohighlight on
page

ProUIInputpanelIsAutohigh
lightEnabled()

ProUIInputpanelAutohigh
lightEnable()

ProUIInputpanelAutohigh

lightDisable()

.BackgroundColor on
page

Not Applicable ProUIInputpanelBack
groundcolorSet()

.BottomOffset on
page

ProUIInputpanelBottomoffset
Get()

ProUIInputpanelBottomoff
setSet()

.Columns on page ProUIInputpanelColumnsGet() ProUIInputpanelColumns
Set()

.Denominator on
page

ProUIInputpanelDenominator
Get()

ProUIInputpanelDenomina
torSet()

.Digits on page ProUIInputpanelDigitsGet() ProUIInputpanelDigits
Set()

.Double on page ProUIInputpanelDoubleGet() ProUIInputpanelDouble
Set()

.DoubleFormat on
page

ProUIInputpanelDoubleformat
Get()

ProUIInputpanelDoublefor
matSet()

.Editable on page ProUIInputpanelIsEditable() ProUIInputpanelEdita
ble()

ProUIInputpanelReadOn

ly()

.HelpText on page ProUIInputpanelHelptext
Get()

ProUIInputpanelHelptext
Set()

.InputType on page ProUIInputpanelInputtype ProUIInputpanelInputtype

User Interface: Dialogs 371

Attribute Name Get Function Set Function(s)
Get() Set()

.Integer on page ProUIInputpanelIntegerGet() ProUIInputpanelInteger
Set()

.LeftOffset on page ProUIInputpanelLeftoffset
Get()

ProUIInputpanelLeftoff
setSet()

.MinColumns on page ProUIInputpanelMincolumns
Get()

ProUIInputpanelMinco
lumnsSet()

.MinDouble on page ProUIInputpanelMindouble
Get()

ProUIInputpanelMindouble
Set()

.MaxDouble on page ProUIInputpanelMaxdouble
Get()

ProUIInputpanelMaxdouble
Set()

.MinInteger on page ProUIInputpanelMininteger
Get()

ProUIInputpanelMininte
gerSet()

.MaxInteger on page ProUIInputpanelMaxinteger
Get()

ProUIInputpanelMaxinte
gerSet()

.MaxLen on page ProUIInputpanelMaxlenGet() ProUIInputpanelMaxlen
Set()

.Numerator on page ProUIInputpanelNumerator
Get()

ProUIInputpanelNumerator
Set()

.Ordinal on page ProUIInputpanelOrdinalGet() ProUIInputpanelOrdinal
Set()

.ParentName on page ProUIInputpanelParentname
Get()

Not Applicable

.Password on page ProUIInputpanelPasswordchar
Get()

ProUIInputpanelUsePass
wordchars()

ProUIInputpanelUseNormal

chars()

ProUIInputpanelContains

Password()

ProUIInputpanelPassword

charSet()
.PopupMenu on page ProUIInputpanelPopupmenu

Get()
ProUIInputpanelPopupmenu
Set()

.RightOffset on
page

ProUIInputpanelRightoffset
Get()

ProUIInputpanelRightoff
setSet()

.Sensitive on page ProUIInputpanelIsEnabled() ProUIInputpanelEnable()

ProUIInputpanelDisable()

.String on page ProUIInputpanelStringGet() ProUIInputpanelString
Set()

.TabCharsAllow on
page

ProUIInputpanelTabcharsAl
low()

ProUIInputpanelTabchars
Disallow()

ProUIInputpanelAllowsTab

chars()
.TopOffset on page ProUIInputpanelTopoffset

Get()
ProUIInputpanelTopoffset
Set()

.Value on page ProUIInputpanelValueGet() ProUIInputpanelValue
Set()

372 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.Visible on page ProUIInputpanelIsVisible() ProUIInputpanelShow()

ProUIInputpanelHide()

.WideString on page ProUIInputpanelWidestring
Get()

ProUIInputpanelWides
tringSet()

Input Panel Action Callbacks
Functions Introduced

• ProUIInputpanelActivateActionSet()
• ProUIInputpanelFocusinActionSet()
• ProUIInputpanelFocusoutActionSet()
• ProUIInputpanelInputActionSet()
Use the function ProUIInputpanelActivateActionSet() to set the
action callback to be called when the user hits return in an input panel.
Use the function ProUIInputpanelFocusinActionSet() to set the focus
in action for an input panel. This function is called when the user moves the cursor
onto the input panel using the mouse or <TAB> key.
Use the function ProUIInputpanelFocusoutActionSet() to set the
focus out action for an input panel. This function is called when the user moves
the cursor off of the input panel using the mouse or <TAB> key.
Use the function ProUIInputpanelInputActionSet() to set the action
callback to be called when the user enters a key in an input panel.

Input Panel Operations
Functions Introduced

• ProUIInputpanelAnchorSet()
• ProUIInputpanelSizeGet()
• ProUIInputpanelSizeSet()
• ProUIInputpanelMinimumsizeGet()
• ProUIInputpanelPositionGet()
• ProUIInputpanelPositionSet()
Use the function ProUIInputpanelAnchorSet() to set the position of the
input panel with respect to a given anchor location. This function is applicable
only if the parent of the input panel is a drawing area.
Use the function ProUIInputpanelSizeGet() to get the size of the input
panel. This operation is applicable only if the parent is a drawing area.

User Interface: Dialogs 373

Use the function ProUIInputpanelSizeSet() to set the size of the input
panel. This operation is applicable only if the parent is a drawing area. The
function will fail, if you specify a value smaller than the minimum size for the
input arguments width or height.
Use the function ProUIInputpanelMinimumsizeGet() to retrieve the
minimum size of the width and height of the input panel in pixels. Use this
function only if the parent is a drawing area.
Use the function ProUIInputpanelPositionGet() to get the position of
the input panel with respect to its parent. This operation is applicable only if the
parent is a drawing area.
Use the function ProUIInputpanelPositionSet() to set the position to
the input panel with respect to its parent. This operation is applicable only if the
parent is a drawing area.

Label

Label Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on page ProUILabelIsAttachedBot

tom()
ProUILabelAttachBot
tom()

ProUILabelUnattachBot

tom()
.AttachTop on page ProUILabelIsAttached

Top()
ProUILabelAttachTop()

ProUILabelUnattachTop()

.AttachRight on page ProUILabelIsAttached
Right()

ProUILabelAttachRight()

ProUILabelUnattach

Right()

.AttachLeft on page ProUILabelIsAttached
Left()

ProUILabelAttachLeft()

ProUILabelUnatta

chLeft()

.Bitmap on page ProUILabelBitmapGet() ProUILabelBitmapSet()

.BottomOffset on page ProUILabelBottomoffset
Get()

ProUILabelBottomoffset
Set()

.Columns on page ProUILabelColumnsGet() ProUILabelColumnsSet()

.HelpText on page ProUILabelHelptextGet() ProUILabelHelptextSet()

.Label on page ProUILabelTextGet() ProUILabelTextSet()

.LeftOffset on page ProUILabelLeftoffset
Get()

ProUILabelLeftoffset
Set()

.ParentName on page ProUILabelParentname
Get()

Not Applicable

.PopupMenu on page ProUILabelPopupmenu
Get()

ProUILabelPopupmenu
Set()

374 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.Resizeable on page ProUILabelIsResizea

ble()
ProUILabelEnableResiz
ing()

ProUILabelDisableResiz

ing()

.RightOffset on page ProUILabelRightoffset
Get()

ProUILabelRightoffset
Set()

.Sensitive on page ProUILabelIsEnabled() ProUILabelEnable()

ProUILabelDisable()
.TopOffset on page ProUILabelTopoffset

Get()
ProUILabelTopoffset
Set()

.Visible on page ProUILabelIsVisible() ProUILabelShow()

ProUILabelHide()

Label Operations
Functions Introduced

• ProUILabelAnchorSet()
• ProUILabelSizeSet()
• ProUILabelMinimumsizeGet()
• ProUILabelPositionGet()
• ProUILabelPositionSet()
• ProUILabelSizeGet()
Use the function ProUILabelAnchorSet() to set the location to position the
label with respect to its parent. This field is used only if the parent is a drawing
area.
Use the function ProUILabelSizeSet() to set the size of the label. This field
is used only if the parent is a drawing area. The function will fail, if you specify a
value smaller than the minimum size for the input arguments width or height.
Use the function ProUILabelMinimumsizeGet() to retrieve the minimum
size of the width and height of the label in pixels. Use this function only if the
parent is a drawing area.
Use the function ProUILabelPositionGet() to get the position of the label
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUILabelPositionSet() to set the position to the label
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUILabelSizeGet() to get the size of the label. This
field is used only if the parent is a drawing area.

User Interface: Dialogs 375

Layout

Layout Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUILayoutIsAttachedBot
tom()

ProUILayoutAttachBottom()

ProUILayoutUnattachBottom()

.AttachTop on page ProUILayoutIsAttached
Top()

ProUILayoutAttachTop()

ProUILayoutUnattachTop()

.AttachRight on
page

ProUILayoutIsAttached
Right()

ProUILayoutAttachRight()

ProUILayoutUnattachRight()

.AttachLeft on
page

ProUILayoutIsAttached
Left()

ProUILayoutAttachLeft()

ProUILayoutUnattachLeft()

.Bitmap on page ProUILayoutBitmapGet() ProUILayoutBitmapSet()

.BottomOffset on
page

ProUILayoutBottomoffset
Get()

ProUILayoutBottomoffset
Set()

.ChildNames on
page

ProUILayoutChildnames
Get()

Not Applicable

.HelpText on page ProUILayoutHelptextGet() ProUILayoutHelptextSet()

.Label on page ProUILayoutTextGet() ProUILayoutTextSet()

.LeftOffset on
page

ProUILayoutLeftoffset
Get()

ProUILayoutLeftoffsetSet()

.Mapped on page ProUILayoutIsMapped() ProUILayoutMappedSet()

ProUILayoutMappedUnset()

.ParentName on
page

ProUILayoutParentname
Get()

Not Applicable

.PopupMenu on page ProUILayoutPopupmenuGet() ProUILayoutPopupmenuSet()

.RightOffset on
page

ProUILayoutRightoffset
Get()

ProUILayoutRightoffsetSet()

.Sensitive on page ProUILayoutIsEnabled() ProUILayoutEnable()

ProUILayoutDisable()

.TopOffset on page ProUILayoutTopoffsetGet() ProUILayoutTopoffsetSet()

.Visible on page ProUILayoutIsVisible() ProUILayoutShow()

ProUILayoutHide()

Adding and Removing Components
Component Name Adding Functions Removing Functions
Checkbutton ProUILayoutCheckbutto

nAdd()
ProUILayoutCheckbutton
Remove()

Drawingarea ProUILayoutDrawingar
eaAdd()

ProUILayoutDrawingareaR
emove()

Inputpanel ProUILayoutInputpane ProUILayoutInputpanelRe

376 Creo® Parametric TOOLKITUser’s Guide

Component Name Adding Functions Removing Functions
lAdd() move()

Label ProUILayoutLabelAdd() ProUILayoutLabelRe
move()

Layout ProUILayoutLayoutAdd() ProUILayoutLayoutRe
move()

List ProUILayoutListAdd() ProUILayoutListRemove()

Optionmenu ProUILayoutOptionme
nuAdd()

ProUILayoutOptionmenuRe
move()

Progressbar ProUILayoutProgressbar
Add()

ProUILayoutProgressbar
Remove()

Pushbutton ProUILayoutPushbutto
nAdd()

ProUILayoutPushbuttonRe
move()

Radiogroup ProUILayoutRadiogrou
pAdd()

ProUILayoutRadiogroupRe
move()

Separator ProUILayoutSeparator
Add()

ProUILayoutSeparatorRe
move()

Slider ProUILayoutSliderAdd() ProUILayoutSliderRe
move()

Spinbox ProUILayoutSpinboxAdd() ProUILayoutSpinboxRe
move()

Tab ProUILayoutTabAdd() ProUILayoutTabRemove()

Table ProUILayoutTableAdd() ProUILayoutTableRe
move()

Textarea ProUILayoutTextar
eaAdd()

ProUILayoutTextareaRe
move()

Thumbwheel ProUILayoutThumbwhee
lAdd()

ProUILayoutThumbwheelRe
move()

Tree ProUILayoutTreeAdd() ProUILayoutTreeRemove()

See the section on Adding and Removing Components on page 402 for
description of how to use the ProUIGridopts arguments when adding
components to a layout.

Layout Operations
Functions Introduced

• ProUILayoutAnchorSet()
• ProUILayoutSizeSet()
• ProUILayoutMinimumsizeGet()
• ProUILayoutPositionGet()
• ProUILayoutPositionSet()
• ProUILayoutSizeGet()
• ProUILayoutIsMapped()

User Interface: Dialogs 377

• ProUILayoutMappedSet()
• ProUILayoutMappedUnset()
Use the function ProUILayoutAnchorSet() to set the position of the layout
with respect to a given anchor location. This function is applicable only if the
parent of the layout is a drawing area.
Use the function ProUILayoutSizeSet() to set the size of the layout. This
field is used only if the parent is a drawing area. The function will fail, if you
specify a value smaller than the minimum size for the input arguments width or
height.
Use the function ProUILayoutMinimumsizeGet() to retrieve the minimum
size of the width and height of the layout in pixels. Use this function only if the
parent is a drawing area.
Use the function ProUILayoutPositionGet() to get the position of the
layout with respect to its parent. This field is used only if the parent is a drawing
area.
Use the function ProUILayoutPositionSet() to set the position to the
layout with respect to its parent. This field is used only if the parent is a drawing
area.
Use the function ProUILayoutSizeGet() to get the size of the layout. This
field is used only if the parent is a drawing area.
The function ProUILayoutIsMapped() specifies if the given layout
component is mapped. The value of the output flag is PRO_B_TRUE if the layout
is mapped, else it is PRO_B_FALSE.
The functions ProUILayoutShow() and ProUILayoutHide() show and
hide the layout component respectively, along with its contents. Use the function
ProUILayoutMappedSet() to keep the size of the layout unchanged while
working with these functions. To collapse or expand the layout to its nominal size,
use the function ProUILayoutMappedUnset().

List

List Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUIListIsAttachedBot
tom()

ProUIListAttachBottom()

ProUIListUnattachBottom()
.AttachTop on page ProUIListIsAttached

Top()
ProUIListAttachTop()

ProUIListUnattachTop()

.AttachRight on
page

ProUIListIsAttached
Right()

ProUIListAttachRight()

ProUIListUnattachRight()

378 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.AttachLeft on page ProUIListIsAttached

Left()
ProUIListAttachLeft()

ProUIListUnattachLeft()
.BackgroundColor
on page

Not Applicable ProUIListBackgroundcolorSet()

.BottomOffset on
page

ProUIListBottomoffset
Get()

ProUIListBottomoffsetSet()

.Columns on page ProUIListColumnsGet() ProUIListColumnsSet()

.ColumnLabel on
page

ProUIListColumnlabel
Get()

ProUIListColumnlabelSet()

.HelpText on page ProUIListHelptextGet() ProUIListHelptextSet()

.ItemHelpText on
page

ProUIListItemhelptext
Get()

ProUIListItemhelptextSet()

.ItemImage on page ProUIListItemimageGet() ProUIListItemimageSet()

.Label on page ProUIListLabelsGet() ProUIListLabelsSet()

.Lastentereditem
on page

ProUIListLastenteredi
temGet()

Not Applicable

.LeftOffset on page ProUIListLeftoffset
Get()

ProUIListLeftoffsetSet()

.ListState on page ProUIListStateGet() ProUIListStateSet()

.ListType on page ProUIListListtypeGet() ProUIListListtypeSet()

.ParentName on page ProUIListParentname
Get()

Not Applicable

.MinColumns on page ProUIListMincolumns
Set()

ProUIListMincolumnsGet()

.MinRows on page ProUIListMinrowsGet() ProUIListMinrowsSet()

.Names on page ProUIListNamesGet() ProUIListNamesSet()

.PopupMenu on page ProUIListPopupmenuGet() ProUIListPopupmenuSet()

.RightOffset on
page

ProUIListRightoffset
Get()

ProUIListRightoffsetSet()

.SelectedNames on
page

ProUIListSelectednames
Get()

ProUIListSelectednamesSet()

.SelectionPolicy
on page

ProUIListSelectionpoli
cyGet()

ProUIListSelectionpolicySet()

.Sensitive on page ProUIListIsEnabled() ProUIListEnable()

ProUIListDisable()
.TopOffset on page ProUIListTopoffsetGet() ProUIListTopoffsetSet()

.Visible on page ProUIListIsVisible() ProUIListShow()

ProUIListHide()
.VisibleRows on
page

ProUIListVisiblerows
Get()

ProUIListVisiblerowsSet()

List Action Callbacks
Functions Introduced

User Interface: Dialogs 379

• ProUIListActivateActionSet()
• ProUIListSelectActionSet()
• ProUIListTriggerhighlightActionSet()
• ProUIListFocusinActionSet()
• ProUIListFocusoutActionSet()
Use the function ProUIListActivateActionSet() to set the activate
action for a list. This function is called when the return key is pressed or the
mouse is double-clicked in the list.
Use the function ProUIListSelectActionSet() to set the select action for
a list component.
Use the function ProUIListTriggerhighlightActionSet() to set the
trigger highlight action for a list. This function is called when the user moves the
mouse over an item on the list.
Use the function ProUIListFocusinActionSet() to set the focus in action
for a list. This function is called when the user moves the cursor onto of the list
using the mouse or <TAB> key.
Use the function ProUIListFocusoutActionSet() to set the focus out
action for a list. This function is called when the user moves the cursor off of the
list using the mouse or <TAB> key.

List Operations
Functions Introduced

• ProUIListAnchorSet()
• ProUIListSizeSet()
• ProUIListMinimumsizeGet()
• ProUIListPositionGet()
• ProUIListPositionSet()
• ProUIListSizeGet()
• ProUIListStateGet()
• ProUIListStateSet()
Use the function ProUIListAnchorSet() to set the position of the list with
respect to a given anchor location. This function is applicable only if the parent of
the list is a drawing area.
Use the function ProUIListSizeSet() to set the size of the list. This field is
used only if the parent is a drawing area. The function will fail, if you specify a
value smaller than the minimum size for the input arguments width or height.

380 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUIListMinimumsizeGet() to retrieve the minimum
size of the width and height of the list in pixels. Use this function only if the
parent is a drawing area.
Use the function ProUIListPositionSet() to set the position to the list
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUIListPositionGet() to get the position of the list
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUIListSizeGet() to get the size of the list. This field is
used only if the parent is a drawing area.
Use the function ProUIlistStateGet() to get the state of the item in the list.
The state is applicable only for a "check" type of list and refers to the checked or
unchecked status of the item.
Use the function ProUIListStateSet() to set the state of the item in the list.
The state is applicable only for a "check" type of list and refers to the checked or
unchecked status of the item.

Example 2: To use UI List Functions
The sample code in UgUIListImplement.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_ui shows the source
code for UI List functions. The application gets the names of the parts that
constitute any given drawing and then populates the list area in a newly created
dialog with those names.

Menubar

Menubar Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom
on page

ProUIMenubarIsAttached
Bottom()

ProUIMenubarAttachBottom()

ProUIMenubarUnattachBottom()
.AttachTop on
page

ProUIMenubarIsAttached
Top()

ProUIMenubarAttachTop()

ProUIMenubarUnattachTop()

.AttachRight on
page

ProUIMenubarIsAttached
Right()

ProUIMenubarAttachRight()

ProUIMenubarUnattachRight()

.AttachLeft on
page

ProUIMenubarIsAttached
Left()

ProUIMenubarAttachLeft()

ProUIMenubarUnattachLeft()
.BottomOffset
on page

ProUIMenubarBottomoffset
Get()

ProUIMenubarBottomoffsetSet()

.HelpText on
page

ProUIMenubarHelptext
Get()

ProUIMenubarHelptextSet()

User Interface: Dialogs 381

Attribute Name Get Function Set Function(s)
.ItemHelpText
on page

ProUIMenubarItemhelptext
Get()

ProUIMenubarItemhelptextSet()

.Label on page ProUIMenupaneTextGet() ProUIMenupaneTextSet()

.LeftOffset on
page

ProUIMenubarLeftoffset
Get()

ProUIMenubarLeftoffsetSet()

.Names on page ProUIMenubarNamesGet() ProUIMenubarNamesSet()

.PopupMenu on
page

ProUIMenubarPopupmenu
Get()

ProUIMenubarPopupmenuSet()

.RightOffset on
page

ProUIMenubarRightoffset
Get()

ProUIMenubarRightoffsetSet()

.Selectable
Names on page

ProUIMenubarSelectablena
mesGet()

ProUIMenubarSelectablenames
Set()

.Sensitive on
page

ProUIMenubarIsEnabled() ProUIMenubarEnable()

ProUIMenubarDisable()
.TopOffset on
page

ProUIMenubarTopoffset
Get()

ProUIMenubarTopoffsetSet()

.Visible on
page

ProUIMenubarIsVisible() ProUIMenubarShow()

ProUIMenubarHide()

.VisibleNames
on page

ProUIMenubarVisiblenames
Get()

ProUIMenubarVisiblenamesSet()

Menupane

Menupane Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUIMenupaneIsAttached
Bottom()

ProUIMenupaneAttachBot
tom()

ProUIMenupaneUnattachBot

tom()
.AttachTop on page ProUIMenupaneIsAttached

Top()
ProUIMenupaneAttachTop()

ProUIMenupaneUnattach

Top()

.AttachRight on page ProUIMenupaneIsAttached
Right()

ProUIMenupaneAttach
Right()

ProUIMenupaneUnattach

Right()

.AttachLeft on page ProUIMenupaneIsAttached
Left()

ProUIMenupaneAttachLeft()

ProUIMenupaneUnatta

chLeft()

.Bitmap on page ProUIMenupaneBitmapGet() ProUIMenupaneBitmapSet()

.BottomOffset on
page

ProUIMenupaneBottomoffset
Get()

ProUIMenupaneBottomoffset
Set()

382 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.ChildNames on page ProUIMenupaneChildnames

Get()
Not Applicable

.LeftOffset on page ProUIMenupaneLeftoffset
Get()

ProUIMenupaneLeftoffset
Set()

.PopupMenu on page ProUIMenupanePopupmenu
Get()

ProUIMenupanePopupmenu
Set()

.RightOffset on page ProUIMenupaneRightoffset
Get()

ProUIMenupaneRightoffset
Set()

.TopOffset on page ProUIMenupaneTopoffset
Get()

ProUIMenupaneTopoffset
Set()

.Visible on page ProUIMenupaneIsVisible() ProUIMenupaneShow()

ProUIMenupaneHide()

Adding and Removing Components
Component Name Adding Functions Removing Functions
Cascadebutton ProUIMenupaneCascadebutto

nAdd()

ProUIMenupaneCascadebutto

nInsert()

ProUIMenupaneCascadebut
tonRemove()

Checkbutton ProUIMenupaneCheckbutto
nAdd()

ProUIMenupaneCheckbuttonIn

sert()

ProUIMenupaneCheckbutton
Remove()

Pushbutton ProUIMenupanePushbutto
nAdd()

ProUIMenupanePushbuttonIn

sert()

ProUIMenupanePushbuttonRe
move()

Radiogroup ProUIMenupaneRadiogrou
pAdd()

ProUIMenupaneRadiogroupIn

sert()

ProUIMenupaneRadiogroupRe
move()

Separator ProUIMenupaneSeparatorAdd()

ProUIMenupaneSeparatorIn

sert()

ProUIMenupaneSeparatorRe
move()

User Interface: Dialogs 383

Optionmenu

Optionmenu Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUIOptionmenuIsAttached
Bottom()

ProUIOptionmenuAttachBot
tom()

ProUIOptionmenuUnattachBot

tom()
.AttachTop on
page

ProUIOptionmenuIsAttached
Top()

ProUIOptionmenuAttachTop()

ProUIOptionmenuUnattach

Top()

.AttachRight on
page

ProUIOptionmenuIsAttached
Right()

ProUIOptionmenuAttach
Right()

ProUIOptionmenuUnattach

Right()

.AttachLeft on
page

ProUIOptionmenuIsAttached
Left()

ProUIOptionmenuAttachLeft()

ProUIOptionmenuUnatta

chLeft()
.BottomOffset on
page

ProUIOptionmenuBottomoffset
Get()

ProUIOptionmenuBottomoffset
Set()

.Columns on page ProUIOptionmenuColumnsGet() ProUIOptionmenuColumnsSet()

.Editable on page ProUIOptionmenuIsEditable() ProUIOptionmenuEditable()

ProUIOptionmenuReadOnly()

.HelpText on page ProUIOptionmenuHelptext
Get()

ProUIOptionmenuHelptext
Set()

.ItemHelpText on
page

ProUIOptionmenuItemhelptext
Get()

ProUIOptionmenuItemhelptext
Set()

.ItemImage on
page

ProUIOptionmenuItemimage
Get()

ProUIOptionmenuItemimage
Set()

.Label on page ProUIOptionmenuLabelsGet() ProUIOptionmenuLabelsSet()

.Lastentereditem
on page

ProUIOptionmenuLastenteredi
temGet()

Not Applicable

.LeftOffset on
page

ProUIOptionmenuLeftoffset
Get()

ProUIOptionmenuLeftoffset
Set()

.MinColumns on
page

ProUIOptionmenuMincolumns
Get()

ProUIOptionmenuMincolumns
Set()

.Names on page ProUIOptionmenuNamesGet() ProUIOptionmenuNamesSet()

.ParentName on
page

ProUIOptionmenuParentname
Get()

Not Applicable

.PopupMenu on
page

ProUIOptionmenuPopupmenu
Get()

ProUIOptionmenuPopupmenu
Set()

.RightOffset on
page

ProUIOptionmenuRightoffset
Get()

ProUIOptionmenuRightoffset
Set()

.SelectedNames
on page

ProUIOptionmenuSelectedna
mesGet()

ProUIOptionmenuSelectedna
mesSet()

384 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.Sensitive on
page

ProUIOptionmenuIsEnabled() ProUIOptionmenuEnable()

ProUIOptionmenuDisable()

.TopOffset on
page

ProUIOptionmenuTopoffset
Get()

ProUIOptionmenuTopoffset
Set()

.Value on page ProUIOptionmenuValueGet() ProUIOptionmenuValueSet()

.Visible on page ProUIOptionmenuIsVisible() ProUIOptionmenuShow()

ProUIOptionmenuHide()

.VisibleRows on
page

ProUIOptionmenuVisiblerows
Get()

ProUIOptionmenuVisiblerows
Set()

Optionmenu Action Callbacks
Functions Introduced

• ProUIOptionmenuActivateActionSet()
• ProUIOptionmenuSelectActionSet()
• ProUIOptionmenuInputActionSet()
• ProUIOptionmenuTriggerhighlightActionSet()
• ProUIOptionmenuFocusinActionSet()
• ProUIOptionmenuFocusoutActionSet()
Use the function ProUIOptionmenuActivateActionSet() to set the
activate action for an option menu. This function is called when the user modifies
the contents of the option menu. The option menu must be editable. The action
callback is called when you press the ENTER key in the input panel of the option
menu.
Use the function ProUIOptionmenuSelectActionSet() to set the select
action for a option menu component.
Use the function ProUIOptionmenuInputActionSet() to set the input
action for an optionmenu. This function is called when the user changes the
contents of the option menu. This is only valid for editable optionmenus.
Use the function ProUIOptionmenuTriggerhighlightActionSet() to
set the trigger highlight action for an optionmenu. This function is called when the
user moves the mouse on an item in the drop down list of the optionmenu.
Use the function ProUIOptionmenuFocusinActionSet() to set the focus
in action for an optionmenu.
Use the function ProUIOptionmenuFocusoutActionSet() to set the
focus out action for an optionmenu.

User Interface: Dialogs 385

Optionmenu Operations
Functions Introduced

• ProUIOptionmenuAnchorSet()
• ProUIOptionmenuSizeSet()
• ProUIOptionmenuMinimumsizeGet()
• ProUIOptionmenuPositionSet()
• ProUIOptionmenuPositionGet()
• ProUIOptionmenuSizeGet()
Use the function ProUIOptionmenuAnchorSet() to the position of the
option menu with respect to a given anchor location. This function is applicable
only if the parent of the option menu is a drawing area.
Use the function ProUIOptionmenuSizeSet() to set the size of the
optionmenu. This field is used only if the parent is a drawing area. The function
will fail, if you specify a value smaller than the minimum size for the input
arguments width or height.
Use the function ProUIOptionmenuMinimumsizeGet() to retrieve the
minimum size of the width and height of the option menu in pixels. Use this
function only if the parent is a drawing area.
Use the function ProUIOptionmenuPositionSet() to set the position to
the optionmenu with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIOptionmenuPositionGet() to get the position of
the optionmenu with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIOptionmenuSizeGet() to get the size of the
optionmenu. This field is used only if the parent is a drawing area.

Progressbar

Progressbar Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUIProgressbarIsAttached
Bottom()

ProUIProgressbarAttachBot
tom()

ProUIProgressbarUnattachBot

tom()
.AttachTop on
page

ProUIProgressbarIsAttached
Top()

ProUIProgressbarAttachTop()

386 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)

ProUIProgressbarUnattach

Top()

.AttachRight on
page

ProUIProgressbarIsAttached
Right()

ProUIProgressbarAttach
Right()

ProUIProgressbarUnattach

Right()

.AttachLeft on
page

ProUIProgressbarIsAttached
Left()

ProUIProgressbarAtta
chLeft()

ProUIProgressbarUnatta

chLeft()
.BottomOffset on
page

ProUIProgressbarBottomoff
setGet()

ProUIProgressbarBottomoff
setSet()

.HelpText on
page

ProUIProgressbarHelptext
Get()

ProUIProgressbarHelptext
Set()

.Integer on page ProUIProgressbarInteger
Get()

ProUIProgressbarInteger
Set()

.LeftOffset on
page

ProUIProgressbarLeftoffset
Get()

ProUIProgressbarLeftoffset
Set()

.Length on page ProUIProgressbarLengthGet() ProUIProgressbarLengthSet()

.MaxInteger on
page

ProUIProgressbarMaxinteger
Get()

ProUIProgressbarMaxinteger
Set()

.MinInteger on
page

ProUIProgressbarMininteger
Get()

ProUIProgressbarMininteger
Set()

Orientation on
page

ProUIProgressbarOrientation
Get()

ProUIProgressbarOrientation
Set()

.ParentName on
page

ProUIProgressbarParentname
Get()

Not Applicable

.PopupMenu on
page

ProUIProgressbarPopupmenu
Get()

ProUIProgressbarPopupmenu
Set()

.ProgressStyle
on page

ProUIProgressbarProgresssty
leGet()

ProUIProgressbarProgresssty
leSet()

.RightOffset on
page

ProUIProgressbarRightoffset
Get()

ProUIProgressbarRightoffset
Set()

.TopOffset on
page

ProUIProgressbarTopoffset
Get()

ProUIProgressbarTopoffset
Set()

.Visible on page ProUIProgressbarIsVisible() ProUIProgressbarShow()

ProUIProgressbarHide()

Progressbar Operations
Functions Introduced

• ProUIProgressbarAnchorSet()
• ProUIProgressbarSizeSet()
• ProUIProgressbarMinimumsizeGet()

User Interface: Dialogs 387

• ProUIProgressbarPositionSet()
• ProUIProgressbarPositionGet()
• ProUIProgressbarSizeGet()
Use the function ProUIProgressbarAnchorSet() to set the position of the
progressbar with respect to a given anchor location. This function is applicable
only if the parent of the progressbar is a drawing area.
Use the function ProUIProgressbarSizeSet() to set the size of the
progressbar. This field is used only if the parent is a drawing area. The function
will fail, if you specify a value smaller than the minimum size for the input
arguments width or height.
Use the function ProUIProgressbarMinimumsizeGet() to retrieve the
minimum size of the width and height of the progress bar in pixels. Use this
function only if the parent is a drawing area.
Use the function ProUIProgressbarPositionSet() to set the position to
the progressbar with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIProgressbarPositionGet() to get the position to
the progressbar with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIProgressbarSizeGet() to get the size of the
progressbar. This field is used only if the parent is a drawing area.

Pushbutton

Pushbutton Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUIPushbuttonIsAttached
Bottom()

ProUIPushbuttonAttachBot
tom()

ProUIPushbuttonUnattachBot

tom
.AttachTop on page ProUIPushbuttonIsAttached

Top()
ProUIPushbuttonAttachTop()

ProUIPushbuttonUnattach

Top()

.AttachRight on
page

ProUIPushbuttonIsAttached
Right()

ProUIPushbuttonAttach
Right()

ProUIPushbuttonUnattach

Right()

.AttachLeft on
page

ProUIPushbuttonIsAttached
Left()

ProUIPushbuttonAtta
chLeft()

388 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)

ProUIPushbuttonUnatta

chLeft()
.BottomOffset on
page

ProUIPushbuttonBottomoff
setGet()

ProUIPushbuttonBottomoff
setSet()

.Bitmap on page ProUIPushbuttonBitmapGet() ProUIPushbuttonBitmapSet()

.ButtonStyle on
page

ProUIPushbuttonButtonstyle
Get()

ProUIPushbuttonButtonstyle
Set()

.HelpText on page ProUIPushbuttonHelptext
Get()

ProUIPushbuttonHelptext
Set()

.Label on page ProUIPushbuttonTextGet() ProUIPushbuttonTextSet()

.ModalOverride on
page

Not Applicable ProUIPushbuttonModaloverri
deSet()

.LeftOffset on
page

ProUIPushbuttonLeftoffset
Get()

ProUIPushbuttonLeftoffset
Set()

.ParentName on
page

ProUIPushbuttonParentname
Get()

Not Applicable

.PopupMenu on page ProUIPushbuttonPopupmenu
Get()

ProUIPushbuttonPopupmenu
Set()

.Resizeable on
page

ProUIPushbuttonIsResizea
ble()

ProUIPushbuttonEnableResiz
ing()

ProUIPushbuttonDisableRe

sizing()

.RightOffset on
page

ProUIPushbuttonRightoffset
Get()

ProUIPushbuttonRightoffset
Set()

.Sensitive on page ProUIPushbuttonIsEnabled() ProUIPushbuttonEnable()

ProUIPushbuttonDisable()
.TopOffset on page ProUIPushbuttonTopoffset

Get()
ProUIPushbuttonTopoffset
Set()

.Visible on page ProUIPushbuttonIsVisible() ProUIPushbuttonShow()

ProUIPushbuttonHide()

Pushbutton Operations
Functions Introduced

• ProUIPushbuttonAnchorSet()
• ProUIPushbuttonSizeSet()
• ProUIPushbuttonPositionSet()
• ProUIPushbuttonPositionGet()
• ProUIPushbuttonSizeGet()
Use the function ProUIPushbuttonAnchorSet() to set the position of the
pushbutton with respect to a given anchor location. This function is applicable
only if the parent of the Pushbutton is a drawing area.

User Interface: Dialogs 389

Use the function ProUIPushbuttonSizeSet() to set the size of the
pushbutton. This field is used only if the parent is a drawing area.
Use the function ProUIPushbuttonPositionSet() to set the position to
the pushbutton with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIPushbuttonPositionGet() to get the position to
the pushbutton with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIPushbuttonSizeGet() to get the size of the
pushbutton. This field is used only if the parent is a drawing area.

Pushbutton Action Callbacks
Function Introduced

• ProUIPushbuttonActivateActionSet()
Use the function ProUIPushbuttonActivateActionSet() to set the
activate action for a pushbutton. This function is called when the user selects the
pushbutton.

Example 3: Controlling Component Visibility or Sensitivity
at Runtime
The sample code in UgUIVisibility.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_ui shows how to
control component visibility or sensitivity at runtime.

Radiogroup

Radiogroup Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUIRadiogroupIsAtta
chedBottom()

ProUIRadiogroupAttachBottom()

ProUIRadiogroupUnattachBottom

.AttachTop on
page

ProUIRadiogroupIsAtta
chedTop()

ProUIRadiogroupAttachTop()

ProUIRadiogroupUnattachTop()

.AttachRight on
page

ProUIRadiogroupIsAtta
chedRight()

ProUIRadiogroupAttachRight()

ProUIRadiogroupUnattach

Right()

.AttachLeft on
page

ProUIRadiogroupIsAtta
chedLeft()

ProUIRadiogroupAttachLeft()

ProUIRadiogroupUnattachLeft()

390 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.BottomOffset on
page

ProUIRadiogroupBottomoff
setGet()

ProUIRadiogroupBottomoffset
Set()

.ButtonStyle on
page

ProUIRadiogroupButtonsty
leGet()

ProUIRadiogroupButtonstyle
Set()

.HelpText on page ProUIRadiogroupHelptext
Get()

ProUIRadiogroupHelptextSet()

.ItemHelpText on
page

ProUIRadiogroupItemhelp
textGet()

ProUIRadiogroupItemhelptext
Set()

.ItemImage on
page

ProUIRadiogroupItemimage
Get()

ProUIRadiogroupItemimageSet()

.Label on page ProUIRadiogroupLabels
Get()

ProUIRadiogroupLabelsSet()

.LeftOffset on
page

ProUIRadiogroupLeftoff
setGet()

ProUIRadiogroupLeftoffset
Set()

.Names on page ProUIRadiogroupNames
Get()

ProUIRadiogroupNamesSet()

Orientation on
page

ProUIRadiogroupOrienta
tionGet()

ProUIRadiogroupOrientation
Set()

.ParentName on
page

ProUIRadiogroupParentna
meGet()

Not Applicable

.PopupMenu on
page

ProUIRadiogroupPopupmenu
Get()

ProUIRadiogroupPopupmenuSet()

.Resizeable on
page

ProUIRadiogroupIsResizea
ble()

ProUIRadiogroupEnableResiz
ing()

ProUIRadiogroupDisableResiz

ing()

.RightOffset on
page

ProUIRadiogroupRightoff
setGet()

ProUIRadiogroupRightoffset
Set()

.SelectedNames
on page

ProUIRadiogroupSelected
namesGet()

ProUIRadiogroupSelectednames
Set()

.Sensitive on
page

ProUIRadiogroupIsEna
bled()

ProUIRadiogroupEnable()

ProUIRadiogroupDisable()

.TopOffset on
page

ProUIRadiogroupTopoffset
Get()

ProUIRadiogroupTopoffsetSet()

.Visible on page ProUIRadiogroupIsVisi
ble()

ProUIRadiogroupShow()

ProUIRadiogroupHide()

Radiogroup Operations
Functions Introduced

• ProUIRadiogroupAnchorSet()
• ProUIRadiogroupSizeSet()
• ProUIRadiogroupMinimumsizeGet()
• ProUIRadiogroupPositionSet()

User Interface: Dialogs 391

• ProUIRadiogroupPositionGet()
• ProUIRadiogroupSizeGet()
Use the function ProUIRadiogroupAnchorSet() to set the position of the
radiogroup with respect to a given anchor location. This function is applicable
only if the parent of the Radiogroup is a drawing area.
Use the function ProUIRadiogroupSizeSet() to set the size of the
radiogroup. This field is used only if the parent is a drawing area. The function
will fail, if you specify a value smaller than the minimum size for the input
arguments width or height.
Use the function ProUIRadiogroupMinimumsizeGet() to retrieve the
minimum size of the width and height of the radiogroup in pixels. Use this
function only if the parent is a drawing area.
Use the function ProUIRadiogroupPositionSet() to set the position to
the radiogroup with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIRadiogroupPositionGet() to get the position to
the radiogroup with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIRadiogroupSizeGet() to get the size of the
radiogroup. This field is used only if the parent is a drawing area.

Radiogroup Action Callback
Function Introduced:

• ProUIRadiogroupSelectActionSet()
Use the function ProUIRadiogroupSelectActionSet() to set the select
action for a radio group. This function is called when the user selects one of the
buttons in the radio group.

Separator

Separator Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUISeparatorIsAttachedBot
tom()

ProUISeparatorAttachBot
tom()

ProUISeparatorUnattachBot

tom
.AttachTop on
page

ProUISeparatorIsAttached
Top()

ProUISeparatorAttachTop()

ProUISeparatorUnattachTop()

392 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.AttachRight on
page

ProUISeparatorIsAttached
Right()

ProUISeparatorAttachRight()

ProUISeparatorUnattach

Right()

.AttachLeft on
page

ProUISeparatorIsAttached
Left()

ProUISeparatorAttachLeft()

ProUISeparatorUnatta

chLeft()
.BottomOffset on
page

ProUISeparatorBottomoffset
Get()

ProUISeparatorBottomoffset
Set()

.LeftOffset on
page

ProUISeparatorLeftoffset
Get()

ProUISeparatorLeftoffset
Set()

.PopupMenu on
page

ProUISeparatorPopupmenu
Get()

ProUISeparatorPopupmenu
Set()

.RightOffset on
page

ProUISeparatorRightoffset
Get()

ProUISeparatorRightoffset
Set()

.TopOffset on
page

ProUISeparatorTopoffset
Get()

ProUISeparatorTopoffset
Set()

.Visible on page ProUISeparatorIsVisible() ProUISeparatorShow()

ProUISeparatorHide()

Slider

Slider Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUISliderIsAttachedBot
tom()

ProUISliderAttachBottom()

ProUISliderUnattachBottom
.AttachTop on page ProUISliderIsAttachedTop() ProUISliderAttachTop()

ProUISliderUnattachTop()

.AttachRight on
page

ProUISliderIsAttached
Right()

ProUISliderAttachRight()

ProUISliderUnattachRight()

.AttachLeft on
page

ProUISliderIsAttached
Left()

ProUISliderAttachLeft()

ProUISliderUnattachLeft()
.BottomOffset on
page

ProUISliderBottomoffset
Get()

ProUISliderBottomoffset
Set()

.HelpText on page ProUISliderHelptextGet() ProUISliderHelptextSet()

.Integer on page ProUISliderIntegerGet() ProUISliderIntegerSet()

.LeftOffset on
page

ProUISliderLeftoffsetGet() ProUISliderLeftoffsetSet()

.Length on page ProUISliderLengthGet() ProUISliderLengthSet()

.MaxInteger on
page

ProUISliderMaxintegerGet() ProUISliderMaxintegerSet()

.MinInteger on ProUISliderMinintegerGet() ProUISliderMinintegerSet()

User Interface: Dialogs 393

Attribute Name Get Function Set Function(s)
page

Orientation on
page

ProUISliderOrientation
Get()

ProUISliderOrientation
Set()

.ParentName on
page

ProUISliderParentnameGet() Not Applicable

.PopupMenu on page ProUISliderPopupmenuGet() ProUISliderPopupmenuSet()

.RightOffset on
page

ProUISliderRightoffset
Get()

ProUISliderRightoffset
Set()

.Sensitive on page ProUISliderIsEnabled() ProUISliderEnable()

ProUISliderDisable()
.TopOffset on page ProUISliderTopoffsetGet() ProUISliderTopoffsetSet()

.Tracking on page ProUISliderIsTrackingEna
bled()

ProUISliderEnableTrack
ing()

ProUISliderDisableTrack

ing()

.Visible on page ProUISliderIsVisible() ProUISliderShow()

ProUISliderHide()

Slider Operations
Functions Introduced

• ProUISliderAnchorSet()
• ProUISliderSizeSet()
• ProUISliderMinimumsizeGet()
• ProUISliderPositionSet()
• ProUISliderPositionGet()
• ProUISliderSizeGet()
Use the function ProUISliderAnchorSet() to set the position of the slider
with respect to a given anchor location. This function is applicable only if the
parent of the Slider is a drawing area.
Use the function ProUISliderSizeSet() to set the size of the slider. This
field is used only if the parent is a drawing area. The function will fail, if you
specify a value smaller than the minimum size for the input arguments width or
height.
Use the function ProUISliderMinimumsizeGet() to retrieve the minimum
size of the width and height of the slider in pixels. Use this function only if the
parent is a drawing area.
Use the function ProUISliderPositionSet() to set the position to the
slider with respect to its parent. This field is used only if the parent is a drawing
area.

394 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUISliderPositionGet() to get the position to the
slider with respect to its parent. This field is used only if the parent is a drawing
area.
Use the function ProUISliderSizeGet() to get the size of the slider. This
field is used only if the parent is a drawing area.

Slider Action Callbacks
Function Introduced

• ProUISliderUpdateActionSet()
Use the function ProUISliderUpdateActionSet() to set the update
action for the slider.

Example 4: Source of Dialog with Slider and Linked
InputPanel
The sample code in UgUISlider.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_ui shows code for use
of a dialog with Slider and Linked InputPanel.

Spinbox

Spinbox Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUISpinboxIsAttachedBot
tom()

ProUISpinboxAttachBottom()

ProUISpinboxUnattachBottom

.AttachTop on page ProUISpinboxIsAttached
Top()

ProUISpinboxAttachTop()

ProUISpinboxUnattachTop()

.AttachRight on
page

ProUISpinboxIsAttached
Right()

ProUISpinboxAttachRight()

ProUISpinboxUnattachRight()

.AttachLeft on
page

ProUISpinboxIsAttached
Left()

ProUISpinboxAttachLeft()

ProUISpinboxUnattachLeft()

.BottomOffset on
page

ProUISpinboxBottomoffset
Get()

ProUISpinboxBottomoffset
Set()

.Digits on page ProUISpinboxDigitsGet() ProUISpinboxDigitsSet()

.Double on page ProUISpinboxDoubleGet() ProUISpinboxDoubleSet()

.DoubleFormat on
page

ProUISpinboxDoubleformat
Get()

ProUISpinboxDoubleformat
Set()

.DoubleIncrement
on page

ProUISpinboxDoubleincre
mentGet()

ProUISpinboxDoubleincrement
Set()

User Interface: Dialogs 395

Attribute Name Get Function Set Function(s)
.Editable on page ProUISpinboxIsEditable() ProUISpinboxEditable()

ProUISpinboxReadOnly()

.FastDoubleIncre
ment on page

ProUISpinboxFastdoublein
crementGet()

ProUISpinboxFastdoubleincre
mentSet()

.FastIncrement on
page

ProUISpinboxFastincrement
Get()

ProUISpinboxFastincrement
Set()

.HelpText on page ProUISpinboxHelptextGet() ProUISpinboxHelptextSet()

.Increment on page ProUISpinboxIncrement
Get()

ProUISpinboxIncrementSet()

.InputType on page ProUISpinboxInputtype
Get()

ProUISpinboxInputtypeSet()

.Integer on page ProUISpinboxIntegerGet() ProUISpinboxIntegerSet()

.LeftOffset on
page

ProUISpinboxLeftoffset
Get()

ProUISpinboxLeftoffsetSet()

.MaxDouble on page ProUISpinboxMaxdouble
Get()

ProUISpinboxMaxdoubleSet()

.MaxInteger on
page

ProUISpinboxMaxinteger
Get()

ProUISpinboxMaxintegerSet()

.MinDouble on page ProUISpinboxMindouble
Get()

ProUISpinboxMindoubleSet()

.MinInteger on
page

ProUISpinboxMininteger
Get()

ProUISpinboxMinintegerSet()

.ParentName on
page

ProUISpinboxParentname
Get()

Not Applicable

.PopupMenu on page ProUISpinboxPopupmenu
Get()

ProUISpinboxPopupmenuSet()

.RightOffset on
page

ProUISpinboxRightoffset
Get()

ProUISpinboxRightoffset
Set()

.Sensitive on page ProUISpinboxIsEnabled() ProUISpinboxEnable()

ProUISpinboxDisable()

.TopOffset on page ProUISpinboxTopoffset
Get()

ProUISpinboxTopoffsetSet()

.Visible on page ProUISpinboxIsVisible() ProUISpinboxShow()

ProUISpinboxHide()

Spinbox Action Callbacks
Functions Introduced:

• ProUISpinboxUpdateActionSet()
• ProUISpinboxActivateActionSet()
Use the function ProUISpinboxUpdateActionSet() and
ProUISpinboxActivateActionSet() to set the update and activate
action for a spin box respectively.

396 Creo® Parametric TOOLKITUser’s Guide

Spinbox Operations
Functions Introduced

• ProUISpinboxAnchorSet()
• ProUISpinboxSizeSet()
• ProUISpinboxMinimumsizeGet()
• ProUISpinboxPositionSet()
• ProUISpinboxPositionGet()
• ProUISpinboxSizeGet()
Use the function ProUISpinboxAnchorSet() to set the position of the
spinbox with respect to a given anchor location. This function is applicable only if
the parent of the Spinbox is a drawing area.
Use the function ProUISpinboxSizeSet() to set the size of the spinbox.
This field is used only if the parent is a drawing area. The function will fail, if you
specify a value smaller than the minimum size for the input arguments width or
height.
Use the function ProUISpinboxMinimumsizeGet() to retrieve the
minimum size of the width and height of the spin box in pixels. Use this function
only if the parent is a drawing area.
Use the function ProUISpinboxPositionSet() to set the position to the
spinbox with respect to its parent. This field is used only if the parent is a drawing
area.
Use the function ProUISpinboxPositionGet() to get the position to the
spinbox with respect to its parent. This field is used only if the parent is a drawing
area.
Use the function ProUISpinboxSizeGet() to get the size of the spinbox.
This field is used only if the parent is a drawing area.

Tab

Tab Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom
on page

ProUITabIsAttachedBot
tom()

ProUITabAttachBottom()

ProUITabUnattachBottom
.AttachTop on
page

ProUITabIsAttached
Top()

ProUITabAttachTop()

ProUITabUnattachTop()

.AttachRight on
page

ProUITabIsAttached
Right()

ProUITabAttachRight()

ProUITabUnattachRight()

User Interface: Dialogs 397

Attribute Name Get Function Set Function(s)
.AttachLeft on
page

ProUITabIsAttached
Left()

ProUITabAttachLeft()

ProUITabUnattachLeft()
.BottomOffset
on page

ProUITabBottomoffset
Get()

ProUITabBottomoffsetSet()

.Decorated on
page

ProUITabIsDecorated() ProUITabDecorate()

ProUITabUndecorate()
.HelpText on
page

ProUITabHelptextGet() ProUITabHelptextSet()

.ItemHelpText
on page

ProUITabItemhelptext
Get()

ProUITabItemhelptextSet()

.Label on page ProUITabLabelsGet() ProUITabLabelsSet()

.LeftOffset on
page

ProUITabLeftoffset
Get()

ProUITabLeftoffsetSet()

.ParentName on
page

ProUITabParentname
Get()

Not Applicable

.PopupMenu on
page

ProUITabPopupmenuGet() ProUITabPopupmenuSet()

.RightOffset on
page

ProUITabRightoffset
Get()

ProUITabRightoffsetSet()

.SelectedNames
on page

ProUITabSelectednames
Get()

ProUITabSelectednamesSet()

.Sensitive on
page

ProUITabIsEnabled() ProUITabEnable()

ProUITabDisable()
.TopOffset on
page

ProUITabTopoffsetGet() ProUITabTopoffsetSet()

.Visible on page ProUITabIsVisible() ProUITabShow()

ProUITabHide()

Tab Operations
Functions Introduced

• ProUITabAnchorSet()
• ProUITabSizeSet()
• ProUITabMinimumsizeGet()
• ProUITabPositionSet()
• ProUITabPositionGet()
• ProUITabSizeGet()
• ProUITabLayoutAdd()
• ProUITabLayoutsInsert()
• ProUITabItemNameSet()

398 Creo® Parametric TOOLKITUser’s Guide

• ProUITabItemLabelSet()
• ProUITabItemImageSet()
• ProUITabItemHelptextStringSet()
• ProUITabItemLabelGet()
• ProUITabItemImageGet()
• ProUITabItemHelptextStringGet()
• ProUITabItemExtentsGet()
Use the function ProUITabAnchorSet() to set the position of the Tab with
respect to a given anchor location. This function is applicable only if the parent of
the Tab is a drawing area.
Use the function ProUITabSizeSet() to set the size of the Tab. This field is
used only if the parent is a drawing area. The function will fail, if you specify a
value smaller than the minimum size for the input arguments width or height.
Use the function ProUITabMinimumsizeGet() to retrieve the minimum size
of the width and height of the tab in pixels. Use this function only if the parent is a
drawing area.
Use the function ProUITabPositionSet() to set the position to the Tab with
respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUITabPositionGet() to get the position to the Tab
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUITabSizeGet() to get the size of the Tab. This field is
used only if the parent is a drawing area.
Use the function ProUITabLayoutAdd() to add a new layout to the tab. Even
if the layout has a label assigned, you must set the tab labels with
ProUITabLabelsSet() for the decorated tab to show the appropriate labels.
Use the function ProUITabLayoutsInsert() to insert a new layout after an
existing component in the tab. Even if the layouts have labels assigned, you must
set the tab labels with ProUITabLabelsSet() for the decorated tab to show
the appropriate labels.
Use the function ProUITabItemNameSet() to set a new name to the item in
the tab.
Use the function ProUITabItemLabelSet() to set the label of the item in
the tab.
Use the function ProUITabItemImageSet() to set the image of the item in
the tab.
Use the function ProUITabItemHelptextStringSet() to set the text that
should be displayed when the cursor is over the item in the tab.

User Interface: Dialogs 399

Use the function ProUITabItemLabelGet() to get the label of the item in
the tab.
Use the function ProUITabItemImageGet() to get the image of the item in
the tab.
Use the function ProUITabItemHelptextStringGet() to get the text that
is displayed when the cursor is over the item in the tab.
Use the function ProUITabItemExtentsGet() to get the boundary of the
item that is in the tab relative to the top left corner of the dialog.

Tab Action Callbacks
Function Introduced

• ProUITabSelectActionSet()
Use the function ProUITabSelectActionSet() sets the select action for a
tab. This function is called when the user selects the tab.

Table

Table Attributes
Attribute Name Get Function Set Function(s)
.ActivateOnReturn
on page

ProUITableIsActivateonre
turnEnabled()

ProUITableActivateonreturnEn
able()

ProUITableActivateonreturn

Disable()

.Alignment on page ProUITableAlignmentGet() ProUITableAlignmentSet()

.AttachBottom on
page

ProUITableIsAttachedBot
tom()

ProUITableAttachBottom()

ProUITableUnattachBottom
.AttachTop on page ProUITableIsAttached

Top()
ProUITableAttachTop()

ProUITableUnattachTop()

.AttachRight on
page

ProUITableIsAttached
Right()

ProUITableAttachRight()

ProUITableUnattachRight()

.AttachLeft on
page

ProUITableIsAttached
Left()

ProUITableAttachLeft()

ProUITableUnattachLeft()

.Autohighlight on
page

ProUITableIsAutohigh
lightEnabled()

ProUITableAutohighlightEna
ble()

ProUITableAutohighlightDisa

ble()
.BottomOffset on
page

ProUITableBottomoffset
Get()

ProUITableBottomoffsetSet()

400 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.ChildNames on
page

ProUITableChildnames
Get()

Not Applicable

.ColumnLabels on
page

ProUITableColumnlabels
Get()

ProUITableColumnlabelsSet()

.ColumnNames on
page

ProUITableColumnnames
Get()

ProUITableColumnnamesSet()

.ColumnWidths on
page

ProUITableColumnwidths
Get()

ProUITableColumnwidthsSet()

.ColumnResizings
on page

ProUITableColumnresi
zingsGet()

ProUITableColumnresizings
Set()

.ColumnSelection
Policy on page

ProUITableColumnselec
tionpolicyGet()

ProUITableColumnselectionpo
licySet()

.Columns on page ProUITableColumnsGet() ProUITableColumnsSet()

.DefaultColumn
Width on page

ProUITableDefaultcolumn
widthGet()

ProUITableDefaultcolumnwidth
Set()

.HelpText on page ProUITableHelptextGet() ProUITableHelptextSet()

.LeftOffset on
page

ProUITableLeftoffset
Get()

ProUITableLeftoffsetSet()

.LockedColumns on
page

ProUITableLockedcolumns
Get()

ProUITableLockedcolumnsSet()

.LockedRows on
page

ProUITableLockedrows
Get()

ProUITableLockedrowsSet()

.MinColumns on
page

ProUITableMincolumns
Get()

ProUITableMincolumnsSet()

.MinRows on page ProUITableMinrowsGet() ProUITableMinrowsSet()

.ParentName on
page

ProUITableParentname
Get()

Not Applicable

.PopupMenu on page ProUITablePopupmenuGet() ProUITablePopupmenuSet()

.RightOffset on
page

ProUITableRightoffset
Get()

ProUITableRightoffsetSet()

.RowLabels on page ProUITableRowlabelsGet() ProUITableRowlabelsSet()

.RowNames on page ProUITableRownamesGet() ProUITableRownamesSet()

.RowSelectionPoli
cy on page

Not Applicable Not Applicable

.ScrollBarsWhen
Needed on page

ProUITableUsesScrollbars
whenneeded()

ProUITableUseScrollbarswhen
Needed()

ProUITableAlwaysUsescroll

Bars()
.SelectedNames on
page

ProUITableSelectednames
Get()

ProUITableSelectednamesSet()

.SelectedColumn
Names on page

ProUITableSelectedcolumn
namesGet()

ProUITableSelectedcolumnna
mesSet()

.SelectedRowNames
on page

ProUITableSelectedrowna
mesGet()

ProUITableSelectedrownames
Set()

.Sensitive on page ProUITableIsEnabled() ProUITableEnable()

ProUITableDisable()

.SelectionPolicy
on page

ProUITableSelectionpoli
cyGet()

ProUITableSelectionpolicy
Set()

User Interface: Dialogs 401

Attribute Name Get Function Set Function(s)
.ShowGrid on page ProUITableShowgridGet() ProUITableShowgridSet()

.TopOffset on page ProUITableTopoffsetGet() ProUITableTopoffsetSet()

.TruncateLabel on
page

ProUITableTruncatelabel
Get()

ProUITableTruncatelabelSet()

.Visible on page ProUITableIsVisible() ProUITableShow()

ProUITableHide()

.VisibleRows on
page

ProUITableVisiblerows
Get()

ProUITableVisiblerowsSet()

Adding and Removing Components
Component Name Adding Functions Removing Functions
Checkbutton ProUITableCheckbutto

nAdd()
ProUITableCheckbuttonRe
move()

Drawingarea ProUITableDrawingar
eaAdd()

ProUITableDrawingareaRe
move()

Inputpanel ProUITableInputpane
lAdd()

ProUITableInputpanelRemove()

Label ProUITableLabelAdd() ProUITableLabelRemove()
Layout ProUITableLayoutAdd() ProUITableLayoutRemove()

List ProUITableListAdd() ProUITableListRemove()

Optionmenu ProUITableOptionme
nuAdd()

ProUITableOptionmenuRemove()

Progressbar ProUITableProgressbar
Add()

ProUITableProgressbarRe
move()

Pushbutton ProUITablePushbutto
nAdd()

ProUITablePushbuttonRemove()

Radiogroup ProUITableRadiogrou
pAdd()

ProUITableRadiogroupRemove()

Slider ProUITableSliderAdd() ProUITableSliderRemove()
Spinbox ProUITableSpinboxAdd() ProUITableSpinboxRemove()

Tab ProUITableTabAdd() ProUITableTabRemove()
Table ProUITableTableAdd() ProUITableTableRemove()
Textarea ProUITableTextareaAdd() ProUITableTextareaRemove()
Thumbwheel ProUITableThumbwhee

lAdd()
ProUITableThumbwheelRemove()

Tree ProUITableTreeAdd() ProUITableTreeRemove()

Table Cell Functions
Functions Introduced

• ProUITableCellLabelSet()
• ProUITableCellLabelGet()
• ProUITableCellHelpTextSet()

402 Creo® Parametric TOOLKITUser’s Guide

• ProUITableIsCellSensitive()
• ProUITableCellEnable()
• ProUITableCellDisable()
• ProUITableCellComponentNameSet()
• ProUITableCellComponentNameGet()
• ProUITableCellComponentCopy()
• ProUITableCellComponentDelete()
• ProUITableAnchorCellSet()
• ProUITableAnchorCellGet()
• ProUITableFocusCellSet()
• ProUITableFocusCellGet()
• ProUITableCellHelptextStringGet()
• ProUITableCellHelptextStringSet()
• ProUITableCellForegroundColorGet()
• ProUITableCellForegroundColorSet()
• ProUITableCellBackgroundColorGet()
• ProUITableCellBackgroundColorSet()
Use the function ProUITableCellLabelSet() to set the text contained in
the table cell.
Use the function ProUITableCellLabelGet() to get the text contained in
the table cell.
Use the function ProUITableCellHelpTextSet() to set the help text for
the table cell.
Use the function ProUITableIsCellSensitive() to determine if the table
cell is sensitive to user input.
Use the function ProUITableCellEnable() to set the table cell to be
sensitive to user input.
Use the function ProUITableCellDisable() to set the table cell to be
insensitive to user input.
Use the function ProUITableCellComponentNameSet() to set the
component name contained in the table cell.
Use the function ProUITableCellComponentNameGet() to get the
component name contained in the table cell.
Use the function ProUITableCellComponentCopy() to copy a predefined
component and places it in the table in the designated cell. The component will be
displayed in this cell.

User Interface: Dialogs 403

Use the function ProUITableCellComponentDelete() to remove the
component contained in the table cell.
Use the function ProUITableAnchorCellSet() to set the coordinates of
the table selection anchor cell.
Use the function ProUITableAnchorCellGet() to get the coordinates of
the table selection anchor cell.
Use the function ProUITableFocusCellSet() to set the coordinates of the
table selection focus cell.
Use the function ProUITableFocusCellGet() to get the coordinates of the
table selection focus cell.
Use the function ProUITableCellHelptextStringGet() to get the help-
text that is displayed while the cursor is over the table cell.
Use the function ProUITableCellHelptextStringSet() to set the help-
text to be displayed when the cursor is over the table cell.
Use the function ProUITableCellForegroundColorGet() to get the
foreground color of the table cell.
Use the function ProUITableCellForegroundColorSet() to set the
foreground color of the table.
Use the function ProUITableCellBackgroundColorGet() to get the
background color of the table cell.
Use the function ProUITableCellBackgroundColorSet() to set the
background color of the table cell.

Example 5: To Assign Components into Table Cells
The sample code in UgUITables.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_ui shows how to
assign components into table cells.

Table Row Functions
Functions Introduced

• ProUITableRowIndexGet()
• ProUITableRowRename()
• ProUITableRowLabelSet()
• ProUITableRowLabelGet()
• ProUITableRowsInsert()
• ProUITableRowsDelete()

404 Creo® Parametric TOOLKITUser’s Guide

• ProUITableRowCellsSelect()
• ProUITableRowCellsDeselect()
• ProUITableRowCellLabelsSet()
Use the function ProUITableRowIndexGet() to get the index of the table
row with the given name.
Use the function ProUITableRowRename() to rename the table row.
Use the function ProUITableRowLabelSet() to set the user-visible label for
the table row.
Use the function ProUITableRowLabelGet() to get the user-visible label
for the table row.
Use the function ProUITableRowsInsert() to insert one or more new rows
into the table.
Use the function ProUITableRowsDelete() to delete one or more rows
from the table.
Use the function ProUITableRowCellsSelect() to select the cells of the
given rows of the table. The table selection policy must be either Multiple or
Extended.
Use the function ProUITableRowCellsDeselect() to deselect the cells of
the given rows of the table.
Use the function ProUITableRowCellLabelsSet() to set the contents of
the cells of the rows using a single string.

Table Column Functions
Functions Introduced

• ProUITableColumnIndexGet()
• ProUITableColumnRename()
• ProUITableColumnLabelSet()
• ProUITableColumnLabelGet()
• ProUITableColumnWidthSet()
• ProUITableColumnWidthGet()
• ProUITableColumnResizingFactorSet()
• ProUITableColumnResizingFactorGet()
• ProUITableColumnsInsert()
• ProUITableColumnsDelete()
• ProUITableColumnCellsSelect()

User Interface: Dialogs 405

• ProUITableColumnCellsDeselect()
• ProUITableResetColumnWidth()
Use the function ProUITableColumnIndexGet() to get the column index
for a given column.
Use the function ProUITableColumnRename() to rename a table column.
Use the function ProUITableColumnLabelSet() to set the user visible
label for the column.
Use the function ProUITableColumnLabelGet() to get the user-visible
label for the column.
Use the function ProUITableColumnWidthSet() to set the width of the
column in the table.
Use the function ProUITableColumnWidthGet() to get the width of the
column in the table.
Use the function ProUITableColumnResizingFactorSet() to set the
resizing factor of the column in the table.
Use the function ProUITableColumnResizingFactorGet() to get the
resizing factor of the column in the table.
Use the function ProUITableColumnsInsert() to insert one or more
columns into the table.
Use the function ProUITableColumnsDelete() to delete one or more
columns from the table.
Use the function ProUITableColumnCellsSelect() to select the cells of
the given columns in the table.
Use the function ProUITableColumnCellsDeselect() to deselect the
cells of the given columns in the table.
Use the function ProUITableResetColumnWidth() to set the column
width to the default.

Example 6: To Access and Modify Names and Labels for the
Table Rows and Columns
The sample code in UgUITables.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_ui shows how to
access and modify names and labels for the Table rows and columns and also to
access, allocate and free the string and wide string arrays.

Table Operations
Functions Introduced

406 Creo® Parametric TOOLKITUser’s Guide

• ProUITableAnchorSet()
• ProUITableSizeSet()
• ProUITableMinimumsizeGet()
• ProUITablePositionSet()
• ProUITablePositionGet()
• ProUITableSizeGet()
• ProUITableComponentCopy()
• ProUITableComponentDelete()
Use the function ProUITableAnchorSet() to set the position of the table
with respect to a given anchor location. This function is applicable only if the
parent of the table is a drawing area.
Use the function ProUITableSizeSet() to set the size of the table. This field
is used only if the parent is a drawing area. The function will fail, if you specify a
value smaller than the minimum size for the input arguments width or height.
Use the function ProUITableMinimumsizeGet() to retrieve the minimum
size of the width and height of the table in pixels. Use this function only if the
parent is a drawing area.
Use the function ProUITablePositionSet() to set the position to the table
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUITablePositionGet() to get the position to the table
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUITableSizeGet() to get the size of the table. This
field is used only if the parent is a drawing area.
Use the function ProUITableComponentCopy() to copy a predefined
component and place it in the table. The component is not displayed until it is
assigned to a table cell using ProUITableCellComponentNameSet().
However, you can update the component's properties as needed and display it at a
later time.
Use the function ProUITableComponentDelete() to delete a specified
component from the table.

Table Action Callbacks
Functions Introduced

• ProUITableArmActionSet()
• ProUITableDisarmActionSet()
• ProUITableSelectActionSet()
• ProUITableActivateActionSet()

User Interface: Dialogs 407

• ProUITableFocusinActionSet()
• ProUITableFocusoutActionSet()
• ProUITableColumnselectActionSet()
Use the function ProUITableArmActionSet() to set the arm action for a
table. This function is called when the user changes the selection anchor cell and
focus cell in the table.
Use the function ProUITableDisarmActionSet() to set the disarm action
for a table. This function is called when the user changes the selection focus cell
in the table.
Use the function ProUITableSelectActionSet() to set the select action
for a table. This function is called when the user changes the selected cells in the
table.
Use the function ProUITableActivateActionSet() to set the activate
action for a table. This function is called when the user presses the return key or
double-clicks the left mouse button in the table.
Use the function ProUITableFocusinActionSet() to set the focus in
action for a table.
Use the function ProUITableFocusoutActionSet() to set the focus out
action for a table.
Use the function ProUITableColumnselectActionSet() to set the
column selection action for the table. This function is called when the user
changes the currently selected table columns.

Example 7: To Access Selected Names Array from Tables
The sample code in UgUITables.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_ui shows how to
access selected names array from tables.

Textarea

Textarea Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUITextareaIsAttachedBot
tom()

ProUITextareaAttachBot
tom()

ProUITextareaUnattachBot

tom()
.AttachTop on page ProUITextareaIsAttached

Top()
ProUITextareaAttachTop()

ProUITextareaUnattachTop()

408 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
.AttachRight on
page

ProUITextareaIsAttached
Right()

ProUITextareaAttachRight()

ProUITextareaUnattach

Right()

.AttachLeft on
page

ProUITextareaIsAttached
Left()

ProUITextareaAttachLeft()

ProUITextareaUnatta

chLeft()
.BottomOffset on
page

ProUITextareaBottomoffset
Get()

ProUITextareaBottomoffset
Set()

.Columns on page ProUITextareaColumnsGet() ProUITextareaColumnsSet()

.Editable on page ProUITextareaIsEditable() ProUITextareaEditable()

ProUITextareaReadOnly()

.HelpText on page ProUITextareaHelptextGet() ProUITextareaHelptextSet()

.LeftOffset on
page

ProUITextareaLeftoffset
Get()

ProUITextareaLeftoffset
Set()

.MinRows on page ProUITextareaMinrowsGet() ProUITextareaMinrowsSet()

.MaxLen on page ProUITextareaMaxlenGet() ProUITextareaMaxlenSet()

.ParentName on
page

ProUITextareaParentname
Get()

Not Applicable

.PopupMenu on page ProUITextareaPopupmenu
Get()

ProUITextareaPopupmenu
Set()

.RightOffset on
page

ProUITextareaRightoffset
Get()

ProUITextareaRightoffset
Set()

.Rows on page ProUITextareaRowsGet() ProUITextareaRowsSet()

.Sensitive on page ProUITextareaIsEnabled() ProUITextareaEnable()

ProUITextareaDisable()
.TopOffset on page ProUITextareaTopoffset

Get()
ProUITextareaTopoffset
Set()

.Value on page ProUITextareaValueGet() ProUITextareaValueSet()

.Visible on page ProUITextareaIsVisible() ProUITextareaShow()

ProUITextareaHide()

Textarea Operations
Functions Introduced

• ProUITextareaAnchorSet()
• ProUITextareaSizeSet()
• ProUITextareaMinimumsizeGet
• ProUITextareaPositionGet()
• ProUITextareaPositionSet()
• ProUITextareaSizeGet()

User Interface: Dialogs 409

Use the function ProUITextareaAnchorSet() to set the position of the
Textarea with respect to a given anchor location. This function is applicable only
if the parent of the Textarea is a drawing area.
Use the function ProUITextareaSizeSet() to set the size of the Textarea.
This operation is applicable only if the parent is a drawing area. The function will
fail, if you specify a value smaller than the minimum size for the input arguments
width or height.
Use the function ProUITextareaMinimumsizeGet to retrieve the minimum
size of the width and height of the textarea in pixels. Use this function only if the
parent is a drawing area.
Use the function ProUITextareaPositionGet() to get the position of the
Textarea with respect to its parent. This operation is applicable only if the parent is
a drawing area.
Use the function ProUITextareaPositionSet() to set the position to the
Textarea with respect to its parent. This operation is applicable only if the parent is
a drawing area.
Use the function ProUITextareaSizeGet() to get the size of the Textarea.
This operation is applicable only if the parent is a drawing area.

Textarea Action Callbacks
Functions Introduced

• ProUITextareaActivateActionSet()
• ProUITextareaFocusinActionSet()
• ProUITextareaFocusoutActionSet()
• ProUITextareaInputActionSet()
Use the function ProUITextareaActivateActionSet() to set the action
callback to be called when the user hits return in an Textarea.
Use the function ProUITextareaFocusinActionSet() to set the focus in
action for an Textarea. This function is called when the user moves the cursor onto
the Textarea using the mouse or <TAB> key.
Use the function ProUITextareaFocusoutActionSet() to set the focus
out action for an Textarea. This function is called when the user moves the cursor
off of the Textarea using the mouse or <TAB> key.
Use the function ProUITextareaInputActionSet() to set the action
callback to be called when the user enters a key in an Textarea.

410 Creo® Parametric TOOLKITUser’s Guide

Thumbwheel

Thumbwheel Attributes
Attribute Name Get Function Set Function(s)
.AttachBottom on
page

ProUIThumbwheelIsAtta
chedBottom()

ProUIThumbwheelAttachBot
tom()

ProUIThumbwheelUnattachBot

tom
.AttachTop on page ProUIThumbwheelIsAtta

chedTop()
ProUIThumbwheelAttachTop()

ProUIThumbwheelUnattach

Top()

.AttachRight on
page

ProUIThumbwheelIsAtta
chedRight()

ProUIThumbwheelAttach
Right()

ProUIThumbwheelUnattach

Right()

.AttachLeft on page ProUIThumbwheelIsAtta
chedLeft()

ProUIThumbwheelAttachLeft()

ProUIThumbwheelUnatta

chLeft()
.BottomOffset on
page

ProUIThumbwheelBottomoff
setGet()

ProUIThumbwheelBottomoffset
Set()

.HelpText on page ProUIThumbwheelHelptext
Get()

ProUIThumbwheelHelptext
Set()

.Integer on page ProUIThumbwheelInteger
Get()

ProUIThumbwheelIntegerSet()

.LeftOffset on page ProUIThumbwheelLeftoff
setGet()

ProUIThumbwheelLeftoffset
Set()

.MaxInteger on page ProUIThumbwheelMaxinte
gerGet()

ProUIThumbwheelMaxinteger
Set()

.MinInteger on page ProUIThumbwheelMininte
gerGet()

ProUIThumbwheelMininteger
Set()

.ParentName on page ProUIThumbwheelParentna
meGet()

Not Applicable

.PopupMenu on page ProUIThumbwheelPopupmenu
Get()

ProUIThumbwheelPopupmenu
Set()

.RightOffset on
page

ProUIThumbwheelRightoff
setGet()

ProUIThumbwheelRightoffset
Set()

.Sensitive on page ProUIThumbwheelIsEna
bled()

ProUIThumbwheelEnable()

ProUIThumbwheelDisable()
.TopOffset on page ProUIThumbwheelTopoffset

Get()
ProUIThumbwheelTopoffset
Set()

.UnitsPerRotation
on page

ProUIThumbwheelUnitsper
rotationGet()

ProUIThumbwheelUnitsperrota
tionSet()

.Visible on page ProUIThumbwheelIsVisi
ble()

ProUIThumbwheelShow()

ProUIThumbwheelHide()

User Interface: Dialogs 411

Thumbwheel Operations
Functions Introduced

• ProUIThumbwheelAnchorSet()
• ProUIThumbwheelSizeSet()
• ProUIThumbwheelMinimumsizeGet()
• ProUIThumbwheelPositionSet()
• ProUIThumbwheelPositionGet()
• ProUIThumbwheelSizeGet()
Use the function ProUIThumbwheelAnchorSet() to set the position of the
Thumbwheel with respect to a given anchor location. This function is applicable
only if the parent of the Thumbwheel is a drawing area.
Use the function ProUIThumbwheelSizeSet() to set the size of the
Thumbwheel. This field is used only if the parent is a drawing area. The function
will fail, if you specify a value smaller than the minimum size for the input
arguments width or height.
Use the function ProUIThumbwheelMinimumsizeGet() to retrieve the
minimum size of the width and height of the thumb wheel in pixels. Use this
function only if the parent is a drawing area.
Use the function ProUIThumbwheelPositionSet() to set the position to
the Thumbwheel with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIThumbwheelPositionGet() to get the position to
the Thumbwheel with respect to its parent. This field is used only if the parent is a
drawing area.
Use the function ProUIThumbwheelSizeGet() to get the size of the
Thumbwheel. This field is used only if the parent is a drawing area.

Thumbwheel Action Callbacks
Functions Introduced

• ProUIThumbwheelUpdateActionSet()
Use the function ProUIThumbwheelUpdateActionSet() to set the update
action for the Thumbwheel.

412 Creo® Parametric TOOLKITUser’s Guide

Tree

Tree Attributes
Attribute Name Get Function Set Function(s)
.ActivateOnRe
turn on page

ProUITreeIsActivateonretur
nEnabled()

ProUITreeActivateonreturnEn
able()

ProUITreeActivateonreturn

Disable()
.AttachBottom on
page

ProUITreeIsAttachedBot
tom()

ProUITreeAttachBottom()

ProUITreeUnattachBottom()
.AttachLeft on
page

ProUITreeIsAttachedLeft() ProUITreeAttachLeft()

ProUITreeUnattachLeft()
.AttachRight on
page

ProUITreeIsAttachedRight() ProUITreeAttachRight()

ProUITreeUnattachRight()

.AttachTop on
page

ProUITreeIsAttachedTop() ProUITreeAttachTop()

ProUITreeUnattachTop()

.BackgroundColor
on page

ProUITreeBackgroundcolor
Get()

ProUITreeBackgroundcolor
Set()

.BottomOffset on
page

ProUITreeBottomoffsetGet() ProUITreeBottomoffsetSet()

.LeftOffset on
page

ProUITreeLeftoffsetGet() ProUITreeLeftoffsetSet()

.RightOffset on
page

ProUITreeRightoffsetGet() ProUITreeRightoffsetSet()

.TopOffset on
page

ProUITreeTopoffsetGet() ProUITreeTopoffsetSet()

.Columns on page Not Applicable Not Applicable

.ForegroundColor
on page

ProUITreeForegroundcolor
Get()

ProUITreeForegroundcolor
Set()

.HelpText on page ProUITreeHelptextGet() ProUITreeHelptextSet()

.Label on page Not Applicable Not Applicable

.LabelAlignment
on page

Not Applicable Not Applicable

.Lastentereditem
on page

ProUITreeLastentereditem
Get()

Not Applicable

.Mapped on page ProUITreeIsMapped() ProUITreeMappedSet()

ProUITreeMappedUnset()

.MinColumns on
page

Not Applicable Not Applicable

.MinRows on page Not Applicable Not Applicable

.MixedState on
page

ProUITreeMixedStateGet() ProUITreeMixedStateSet()

.ParentName on
page

ProUITreeParentnameGet() Not Applicable

User Interface: Dialogs 413

Attribute Name Get Function Set Function(s)
.PopupMenu on
page

ProUITreePopupmenuGet() ProUITreePopupmenuSet()

.PopupWhenInsen
on page

ProUITreeIsPopupwheninsen
sitiveEnabled()

ProUITreeEnablePopupwhenin
sensitive()

ProUITreeDisablePopupwhenin

sensitive()

.ResizableCols on
page

Not Applicable Not Applicable

.Rows on page ProUITreeRowsGet() ProUITreeRowsSet()

.ScrollBarsWhen
Needed on page

ProUITreeUsesScrollbars
whenneeded()

ProUITreeUseScrollbarswhen
Needed()

ProUITreeAlwaysUsescroll

Bars()
.SelectedNames on
page

ProUITreeSelectednames
Get()

ProUITreeSelectednamesSet()

.SelectionPolicy
on page

ProUITreeSelectionpolicy
Get()

ProUITreeSelectionpolicy
Set()

.SelectByCell on
page

Not Applicable Not Applicable

.SelectCBRegard
less on page

ProUITreeSelectcbregar
dlessGet()

ProUITreeSelectcbregardless
Set()

.Sensitive on
page

ProUITreeIsEnabled() ProUITreeEnable()

ProUITreeDisable()
.TreeAttribute
Window on page

Not Applicable Not Applicable

.TreeBoxNodes on
page

Not Applicable Not Applicable

.TreeCellInput on
page

ProUITreeTreecellinput
Get()

Not Applicable

.TreeCellSelCol
on page

ProUITreeTreecellselcol
Get()

ProUITreeTreecellselcol
Set()

.TreeCellSelNode
on page

ProUITreeTreecellselnode
Get()

ProUITreeTreecellselnode
Set()

.TreeChildOrder
on page

Not Applicable Not Applicable

.TreeColumns
Justs on page

Not Applicable Not Applicable

.TreeColumns
Names on page

Not Applicable Not Applicable

.TreeColumnsTi
tles on page

Not Applicable Not Applicable

.TreeColumns
Widths on page

Not Applicable Not Applicable

.TreeColumnOrder
on page

ProUITreeTreecolumnorder
Get()

ProUITreeTreecolumnorder
Set()

.TreeCurrent on
page

ProUITreeTreecurrentnode
Get()

ProUITreeTreecurrentnode
Set()

.TreeDisplayRoot ProUITreeIsRootnodeVisi ProUITreeShowRootnode()

414 Creo® Parametric TOOLKITUser’s Guide

Attribute Name Get Function Set Function(s)
on page ble()

ProUITreeHideRootnode()
.TreeExpColNode
on page

ProUITreeTreeexpcolnode
Get()

Not Applicable

.TreeIndicate
Children on page

Not Applicable Not Applicable

.TreeInitialSash
Percent on page

Not Applicable Not Applicable

.TreeKeyboardIn
put on page

ProUITreeIsCellkeyboardin
putEnabled()

ProUITreeEnableCellkeyboar
dinput()

ProUITreeDisableCellkeyboar

dinput()

.TreeLinkStyle on
page

Not Applicable Not Applicable

.TreeNodeTypeAp
pends on page

ProUITreeTreenodetypeap
pendsGet()

ProUITreeTreenodetypeap
pendsSet()

.TreeNodeTypeCol
lapsedImages on
page

ProUITreeTreenodetypecol
lapsedimagesGet()

ProUITreeTreenodetypecollap
sedimagesSet()

.TreeNodeTypeEx
pandedImages on
page

ProUITreeTreenodetypeexpan
dedimagesGet()

ProUITreeTreenodetypeexpan
dedimagesSet()

.TreeNodeType
HelpTexts on page

ProUITreeTreenodetypehelp
textsGet()

ProUITreeTreenodetypehelp
textsSet()

.TreeNodeTypePre
fixs on page

ProUITreeTreenodetypepre
fixesGet

ProUITreeTreenodetypeprefix
esSet()

.TreeNodeType
Names on page

ProUITreeTreenodetypenames
Get()

ProUITreeTreenodetypenames
Set()

.TreeRedraw on
page

ProUITreeTreeredrawGet() ProUITreeTreeredrawSet()

.TreeRootNode on
page

ProUITreeTreerootnodeGet() ProUITreeTreerootnodeSet()

.TreeState on
page

ProUITreeStateGet() ProUITreeStateSet()

.TreeVerticalSB
Position on page

Not Applicable Not Applicable

.Visible on page ProUITreeIsVisible() ProUITreeShow()

ProUITreeHide()

Note
Many of the properties of trees are currently only supported as a part of the
resource file. Only very basic trees can be created using programmatic means.

User Interface: Dialogs 415

Adding and Removing Components
Component Name Adding Functions Removing Functions
Checkbutton ProUITreeCheckbutto

nAdd()
ProUITreeCheckbuttonRe
move()

Drawingarea ProUITreeDrawingar
eaAdd()

ProUITreeDrawingareaRe
move()

Inputpanel ProUITreeInputpane
lAdd()

ProUITreeInputpanelRe
move()

Label ProUITreeLabelAdd() ProUITreeLabelRemove()

Layout ProUITreeLayoutAdd() ProUITreeLayoutRemove()

List ProUITreeListAdd() ProUITreeListRemove()

Optionmenu ProUITreeOptionme
nuAdd()

ProUITreeOptionmenuRe
move()

Progressbar ProUITreeProgressbar
Add()

ProUITreeProgressbarRe
move()

Pushbutton ProUITreePushbutto
nAdd()

ProUITreePushbuttonRe
move()

Radiogroup ProUITreeRadiogrou
pAdd()

ProUITreeRadiogroupRe
move()

Slider ProUITreeSliderAdd() ProUITreeSliderRemove()

Spinbox ProUITreeSpinboxAdd() ProUITreeSpinboxRe
move()

Tab ProUITreeTabAdd() ProUITreeTabRemove()

Table ProUITreeTableAdd() ProUITreeTableRemove()

Tree ProUITreeTreeAdd() ProUITreeTreeRemove()

Textarea ProUITreeTextareaAdd() ProUITreeTextareaRe
move()

Thumbwheel ProUITreeThumbwhee
lAdd()

ProUITreeThumbwheelRe
move()

Tree Column Functions
Functions Introduced

• ProUITreeColumnCreate()
• ProUITreeColumnTitleGet()
• ProUITreeColumnWidthGet()
• ProUITreeColumnVisibilityGet()
• ProUITreeColumnJustificationGet()
• ProUITreeColumnTitleSet()
• ProUITreeColumnWidthSet()
• ProUITreeColumnVisibilitySet()
• ProUITreeColumnJustificationSet()

416 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUITreeColumnCreate() to create a column of the
given name in the attribute window of the tree. The name must be unique within
the scope of the columns of the tree.
Use the function ProUITreeColumnTitleGet() to obtain the title of a
column in the tree.
Use the function ProUITreeColumnWidthGet() to obtain the width of a
column in the tree.
Use the function ProUITreeColumnVisibilityGet() to obtain the
visibility of a column in the tree.
Use the function ProUITreeColumnJustificationGet() to obtain the
justification of a column in the tree.
Use the function ProUITreeColumnTitleSet() to set a title to the column
in the tree.
Use the function ProUITreeColumnWidthSet() to set a width to the
column in the tree.
Use the function ProUITreeColumnVisibilitySet() to set visibility of
the column in the tree.
Use the function ProUITreeColumnJustificationSet() to set
justification to the column in the tree.

Tree Node Functions
Functions Introduced

• ProUITreeNodeComponentSet()
• ProUITreeNodeChildrenGet()
• ProUITreeNodeLabelGet()
• ProUITreeNodeLabelSet()
• ProUITreeNodeParentGet()
• ProUITreeNodeTypeGet()
• ProUITreeNodeTypeSet()
• ProUITreeNodeExtentsGet()
• ProUITreeNodesOfTypeGet()
• ProUITreeNodeAdd()
• ProUITreeNodeInsert()
• ProUITreeNodeCollapse()
• ProUITreeNodeDelete()

User Interface: Dialogs 417

• ProUITreeNodeExists()
• ProUITreeNodeExpand()
• ProUITreeNodeHelptextGet()
• ProUITreeNodeIsVisible()
• ProUITreeNodeIsExpanded()
• ProUITreeNodeIsSelected()
• ProUITreeNodeFontstyleGet()
• ProUITreeNodeHelptextSet()
• ProUITreeNodeShow()
• ProUITreeNodeHide()
• ProUITreeNodeSelect()
• ProUITreeNodeDeselect()
• ProUITreeNodeFontstyleSet()
• ProUITreeNodeMove()
• ProUITreeNodeRename()
• ProUITreeNodetypeAdd()
• ProUITreeNodetypeDelete()
• ProUITreeNodeColumntextSet()
• ProUITreeNodesSelect()
• ProUITreeNodetypeSelect()
• ProUITreeAllnodesSelect()
• ProUITreeNodesDeselect()
• ProUITreeNodetypeDeselect()
• ProUITreeAllnodesDeselect()
• ProUITreeNodeVisitAction()
• ProUITreeNodeFilterAction()
• ProUITreeNodesVisit()
Use the function ProUITreeNodeComponentSet() to set the component to
be displayed in the given column corresponding to the given node name of the
tree.
Use the function ProUITreeNodeChildrenGet() to get the child nodes for
the node in the tree.
Use the function ProUITreeNodeLabelGet() to get the label of the node in
the tree.

418 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUITreeNodeLabelSet() to set the label of the node in
the tree.
Use the function ProUITreeNodeParentGet() to get the parent of the node
in the tree.
Use the function ProUITreeNodeTypeGet() to get the name of the node
type associated with the node.
Use the function ProUITreeNodeTypeSet() to set the name of the node type
associated with the node.
Use the function ProUITreeNodeExtentsGet() to get the boundary of the
node of the tree relative to the top-left corner of the dialog.
Use the function ProUITreeNodesOfTypeGet() to get the name of all
nodes of the tree associated with the node type.
Use the function ProUITreeNodeAdd() to add a new node to the tree.
Use the function ProUITreeNodeInsert() to insert a new node before a
node in the tree.
Use the function ProUITreeNodeCollapse() to collapse a node in the tree
making its children invisible.
Use the function ProUITreeNodeDelete() to delete the node in the tree.
Use the function ProUITreeNodeExists() to checks if the given node exists
or not.
Use the function ProUITreeNodeExpand() to expand the node of the tree
making all of its children visible.
Use the function ProUITreeNodeHelptextGet() to get the help text of the
node in the tree.
Use the function ProUITreeNodeIsVisible() to checks if the node is
shown or hidden.
Use the function ProUITreeNodeIsExpanded() to checks if the node is
expanded or collapsed.
Use the function ProUITreeNodeIsSelected() to checks if the node is
selected or not.
Use the function ProUITreeNodeFontstyleGet() to get the fontstyle of
the node.
Use the function ProUITreeNodeHelptextSet() to set the helptext of the
node in tree.
Use the function ProUITreeNodeShow() to display the node in a tree.
Use the function ProUITreeNodeHide() to hide the node in the tree.
Use the function ProUITreeNodeSelect() to select the node in the tree.

User Interface: Dialogs 419

Use the function ProUITreeNodeDeselect() to unselect the node in the
tree.
Use the function ProUITreeNodeFontstyleSet() to set fontstyle to the
node in the tree.
Use the function ProUITreeNodeMove() to move the node in the tree to a
child of the given parent node.
Use the function ProUITreeNodeRename() to rename the given node of the
tree using the given name.
Use the function ProUITreeNodetypeAdd() to add a new node type to the
tree using the information supplied in the given data structure. Use
ProUITreeNodeTypeAlloc() to fill the ProUITreeNodeType().
Use the function ProUITreeNodetypeDelete() to delete a node type from
the tree using the information supplied in the given data structure.
Use the function ProUITreeNodeColumntextSet() to set the given text to
be displayed in the given column corresponding to the given node of the tree.
Use the function ProUITreeNodesSelect() to select an array of nodes in
the tree.
Use the function ProUITreeNodetypeSelect() to select all the nodes
corresponding to a given node type.
Use the function ProUITreeAllnodesSelect() to select all nodes in the
tree.
Use the function ProUITreeNodesDeselect() to unselect an array of nodes
in the tree.
Use the function ProUITreeNodetypeDeselect() to unselect all the nodes
corresponding to a given node type.
Use the function ProUITreeAllnodesDeselect() to unselect all the nodes
in the tree.
Use the function ProUITreeParentnameGet() to get the name of the parent
to the tree component.
Use the function ProUITreeChildnamesGet() to get the name of the
children to the tree component.
Use the function ProUITreeNodeVisitAction() for visiting nodes.
Use the function ProUITreeNodeFilterAction() for filtering nodes.
Use the function ProUITreeNodesVisit() to visits all the descendent nodes
of the given node in the tree.

420 Creo® Parametric TOOLKITUser’s Guide

Tree NodeType Functions
Functions Introduced

• ProUITreeNodeTypeAlloc()
• ProUITreeNodeTypeFree()
• ProUITreeNodeTypeExpandImageSet()
• ProUITreeNodeTypeExpandImageGet()
• ProUITreeNodeTypeCollapseImageSet()
• ProUITreeNodeTypeCollapseImageGet()
• ProUITreeNodeTypePrefixSet()
• ProUITreeNodeTypePrefixGet()
• ProUITreeNodeTypeAppendStringSet()
• ProUITreeNodeTypeAppendStringGet()
• ProUITreeNodeTypeNodesSet()
• ProUITreeNodeTypeNodesGet()
Use the function ProUITreeNodeTypeAlloc() to allocate
ProUITreeNodeType data.
Use the function ProUITreeNodeTypeFree() to free
ProUITreeNodeType data.
Use the function ProUITreeNodeTypeExpandImageSet() to set the
image to appear when the nodetype is expanded.
Use the function ProUITreeNodeTypeExpandImageGet() to get the
image that appears when the nodetype is expanded.
Use the function ProUITreeNodeTypeCollapseImageSet() to set the
image to appear when the nodetype is collapsed.
Use the function ProUITreeNodeTypeCollapseImageGet() to get the
image that appears when the nodetype is collapsed.
Use the function ProUITreeNodeTypePrefixSet() to set prefix to the
nodetype.
Use the function ProUITreeNodeTypePrefixGet() to get prefix of the
nodetype.
Use the function ProUITreeNodeTypeAppendStringSet() to append the
string to the nodetype.
Use the function ProUITreeNodeTypeAppendStringGet() to get the
appended string to the nodetype.
Use the function ProUITreeNodeTypeNodesSet() to set the nodes to the
nodetype.

User Interface: Dialogs 421

Use the function ProUITreeNodeTypeNodesGet() to get the nodes to the
nodetype.

Tree Operations
Functions Introduced

• ProUITreeAnchorSet()
• ProUITreeSizeSet()
• ProUITreeMinimumsizeGet()
• ProUITreePositionSet()
• ProUITreePositionGet()
• ProUITreeSizeGet()
• ProUITreeSashPositionGet()
• ProUITreeStateGet()
• ProUITreeStateSet()
• ProUITreeMixedStateGet()
• ProUITreeMixedStateSet()
• ProUITreeLastentereditemGet()
Use the function ProUITreeAnchorSet() to set the position of the Tree with
respect to a given anchor location. This function is applicable only if the parent of
the Tree is a drawing area.
Use the function ProUITreeSizeSet() to set the size of the Tree. This field
is used only if the parent is a drawing area. The function will fail, if you specify a
value smaller than the minimum size for the input arguments width or height.
Use the function ProUITreeMinimumsizeGet() to retrieve the minimum
size of the width and height of the tree in pixels. Use this function only if the
parent is a drawing area.
Use the function ProUITreePositionSet() to set the position to the Tree
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUITreePositionGet() to get the position to the Tree
with respect to its parent. This field is used only if the parent is a drawing area.
Use the function ProUITreeSizeGet() to get the size of the Tree. This field
is used only if the parent is a drawing area.
Use the function ProUITreeSashPositionGet() to get the position of the
sash between the tree hierarchy and the attribute window.

422 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUITreeStateGet() to get the state of the item in the
tree. The function ProUITreeStateSet() sets the state of an item in the tree.
The state is applicable only for a "check" type of list and refers to the checked or
unchecked status of the item in the tree.
The function ProUITreeMixedStateGet() returns if the specified item in
the tree is in an indeterminate state. Use the function
ProUITreeMixedStateSet() to set the specified item in the tree in an
indeterminate state. An indeterminate state indicates that the component is in
mixed state, that is, has no selection. The state is applicable only for a "check"
type of tree.
The function ProUITreeLastentereditemGet() returns the name of the
item, which is was last pointed to by the pointer.

Tree Action Callbacks
Functions Introduced

• ProUITreeSelectActionSet()
• ProUITreeActivateActionSet()
• ProUITreeFocusinActionSet()
• ProUITreeFocusoutActionSet()
• ProUITreeExpandActionSet()
• ProUITreeCollapseActionSet()
• ProUITreeTreecellselectActionSet()
• ProUITreeTreecellactivateActionSet()
• ProUITreeTreecellinputActionSet()
• ProUITreeTreecelldeleteActionSet()
• ProUITreeMoveActionSet()
• ProUITreeUpdateActionSet()
Use the function ProUITreeSelectActionSet() to set the select action for
a Tree. This function is called when the user changes the selected cells in the Tree.
Use the function ProUITreeActivateActionSet() to set the activate
action for a Tree. This function is called when the user presses the return key or
double-clicks the left mouse button in the Tree.
Use the function ProUITreeFocusinActionSet() to set the focus in action
for a Tree.
Use the function ProUITreeFocusoutActionSet() to set the focus out
action for a Tree.

User Interface: Dialogs 423

Use the function ProUITreeSelectActionSet() to set the action function
to be called when the tree is selected. The left mouse button, the SPACE key and
the navigation keys (if the selection policy is PROUISELPOLICY_BROWSE or
PROUISELPOLICY_EXTENDED) can be used to make a selection in the tree.
Use the function ProUITreeActivateActionSet() to set the action
function to be called when the tree is activated. The tree is activated by the press
of RETURN key or the double click of LEFT mouse button over the node in the
tree.
Use the function ProUITreeExpandActionSet() to set the action function
to be called when the user attempts to expand a tree node by clicking on the '+'
sign.

Note
You must make this callback call ProUITreeNodeExpand() to actually
expand the node.

Use the function ProUITreeCollapseActionSet() to set the action
function to be called when the user attempts to collapse a tree node by clicking on
the '-' sign.

Note
You must make this callback call ProUITreeNodeCollapse() to
actually collapse the node.

Use the function ProUITreeFocusinActionSet() to set the action
function to be called when the tree has got keyboard input focus.
Use the function ProUITreeFocusoutActionSet() to set the action
function to be called when the tree has lost keyboard input focus.
Use the function ProUITreeTreecellselectActionSet() to set the
action function to be called when the cell of the attribute window of the tree has
been selected.
Use the function ProUITreeTreecellactivateActionSet() to set the
action function to be called when the cell of the attribute window of the tree has
been activated.
Use the function ProUITreeTreecellinputActionSet() to set the
action function to be called when text has been entered into a cell of the attribute
window of the tree.

424 Creo® Parametric TOOLKITUser’s Guide

Use the function ProUITreeTreecelldeleteActionSet() to set the
action function to be called when the DELETE key has been pressed in a cell of
the attribute window of the tree.
Use the function ProUITreeMoveActionSet() to set the action function to
be called when the sash of the tree between the tree hierarchy and the attribute
window has been moved.
Use the function ProUITreeUpdateActionSet() to set the update action
for the tree.

Master Table of Resource File Attributes
Resource File Attribute Permitted Values Description
.ActivateOnReturn Of Boolean type

TRUE (default)

Flag indicating whether a RETURN
key press should generate a UI_
ACTIVATE_ACTION callback or
whether it should cause the default
button in the Dialog to be pressed.

.ArcDirection Enumerated type
ProUIArcDirection

The direction to use when drawing
arcs in a drawing area:
PROUIARCDIR_CLOCKWISE
draws in a clockwise direction
between the two line segments in
order to form the
arc.PROUIARCDIR_
COUNTERCLOCKWISE Draws in
a counterclockwise direction
between the two line segments in
order to form the arc.

.ArcFillMode Enumerated type
ProUIArcFillMode

The type of fill to generate for an
arc drawn in a drawing area:
PROUIARCFILL_PIE—Fills the
arc bounded by two line segments
joining the endpoints of the arc
and its center point.
PROUIARCFILL_CHORD—Fills
the arc bounded by a single line
segment that joins the two
endpoints of the arc.

.Alignment Enumerated type
ProUIAlignment.Default is
"left"

The alignment of the text:

.AttachBottom Of Boolean type

TRUE (default), FALSE

The four Attach attributes specify
to which sides of its grid location a
component is attached. If it is
attached to none the component
will float inside the area available
without changing size when the
dialog is resized. If it is attached to
the left only, for example, it will
stay at the left of the area
available. If it is attached both left

.AttachTop

.AttachRight

.AttachLeft

User Interface: Dialogs 425

Resource File Attribute Permitted Values Description
and right, it will stretch
horizontally to fit the space
available. If it is attached both top
and bottom it will stretch
vertically.

.Autohighlight Of Boolean type

FALSE (default)

Flag indicating whether to
highlight the entire row when a
selection is made in a cell in the
row.

.BackgroundColor Integer type based on
ProUIColorType or a user
defined color type.

The background color of the
component as a user specified
color or a window color of
ProUIColorType.

.BgColor Integer type based on
ProUIColorType or a user
defined color type.

The background drawing color of
the component as a user specified
color or a window color of
ProUIColorType. This cannot
be set in a resource file.

.BottomOffset Of Integer type

Default Value is -1

The four Offset attributes describe
the minimum gap, in pixels,
between the component and the
edge of the area available to it.
The maximum value of an offset is
20. The default, -1, is equivalent to
no offset. It is usual in Creo
Parametric to put an offset of 4
around each component, so the
minimum distance between
components is 8 pixels. If you
have a vertical column of
components such as input panels
in a single layout, you can reduce
the overall vertical gap between
them to 4 pixels.

.TopOffset

.RightOffset

.LeftOffset

.Bitmap Of String type The icon of the component.

This may be a PNG, PCX, GIF,
BMP, ICO or CUR file. The file
must be visible to Creo Parametric
by residing in Creo Parametric's
text directory or in the Creo
Parametric TOOLKIT
application's text directory.

.ButtonStyle Enumerated type
ProUIButtonStyle

Following are the available types:

1. PROUIBUTTONSTYLE_
CHECK—The horizontal and
vertical margins are equal, no
shadow border is drawn and by
default, the button accepts
keyboard input.

426 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description

2. PROUIBUTTONSTYLE_
TOGGLE—The horizontal margin
is twice as wide as the vertical
margin, the shadow border is
always drawn and by default, the
button accepts keyboard input.

3. PROUIBUTTONSTYLE_
TOOL—The horizontal and
vertical margins are equal, the
shadow border is always drawn
and by default, the button does not
accept keyboard input.

4. PROUIBUTTONSTYLE_
FLAT—The horizontal and
vertical margins are equal, the
shadow border is only drawn when
the pointer is moved over the
component and by default the
button does not accept keyboard
input.

5. PROUIBUTTONSTYLE_
LINK—The button works like a
hyperlink.

.ModalOverride Enumerated data type
ProUIModalOverride

ModalOverride determines
whether the component is also
blocked when its Dialog is
blocked. It determines if there is
an attempt to dismiss a blocking
Dialog and menu before
processing the action callbacks for
the component. The following are
the valid values:
• PROUIMODALOVERRIDE_

NORMAL—The component is
blocked whenever the Dialog
is blocked. Callbacks are
processed without an attempt
to dismiss a blocking Dialog
and menu.

• PROUIMODALOVERRIDE_
ASYNC—The component is
never blocked. Callbacks are
processed without an attempt
to dismiss a blocking Dialog
and menu.

• PROUIMODALOVERRIDE_
CAN_DISMISS_MENUS—

User Interface: Dialogs 427

Resource File Attribute Permitted Values Description
The component is never
blocked. Callbacks are
processed only if a blocking
Dialog and menu are
successfully dismissed.

.CascadeDirection Enumerated type
ProUICascadeDirection

The direction in which the
MenuPane should cascade when
the CascadeButton is activated.
Following are the possible values:

PROUICASCADEDIR_TOP_

LEFT—Up and to the left

PROUICASCADEDIR_TOP_

RIGHT—Up and to the right

PROUICASCADEDIR_BOTTOM_

LEFT—Down and to the left

PROUICASCADEDIR_BOTTOM_

RIGHT—Down and to the right
.ChildNames Of String array type Names of the children of the

component. Read Only. This
cannot be specified in a resource
file.

.ClassName Of String type Name of the class of the
component. It is Read-only type.
These are defined in the
ProUI.h file. This cannot be
specified in a resource file.

.ClipChildren Of Boolean type

TRUE (default), FALSE

Flag indicating whether drawing
operations within a DrawingArea
are clipped so that they do not
overlap any children contained
within the DrawingArea.

.Columns Of Integer type

Default Value is 16

The width of the InputPanel, in
character widths. Column widths
are determines by the widest
possible character in the font of
the component (typically 'W').
Thus, a component with a width of
16 will likely hold words with
more than 16 characters.

.ColumnLabel Of WideString type The tab-separated labels to be
displayed as the column headers of
a List.

.ColumnLabels Of WideString type The labels of the columns of a
table.

.ColumnNames Of String Array type The names of the columns of a
table.

.ColumnResizings Of Integer Array type

Default Value is 0

The resizing factors of the
columns of a Table.

428 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description
.ColumnSelectionPolicy Enumerated type

ProUISelectionpolicy
The types of selection supported
for the columns of a table:
• PROUISELPOLICY_

SINGLE—No item or one
item can be selected at a time.
Click to clear a selected item.

• PROUISELPOLICY_
BROWSE—Only one item can
be selected at a time. You
cannot clear the selection. You
can replace the selected item
with another selection.

• PROUISELPOLICY_
MULTIPLE—More than one
item can be selected. Click to
clear a selected item.

• PROUISELPOLICY_
EXTENDED—When no key is
pressed, only one item can be
selected at a time. You cannot
clear the selection. You can
replace the selected item with
another selection.

Press SHIFT or CTRL keys, to
select multiple items.

Press SHIFT key to select a range
of items.

Press CTRL key to select multiple
items. You can click to select and
clear an item.

.ColumnWidths Of Integer Array type

Default Value is the value of
DefaultColumnWidth

The widths of the columns of a
Table, in character widths. You
can refer to .Columns on page

.Decorated Boolean, default is true Flag indicating whether the
component has a decorated
shadow border.

.DefaultButton Of String type The name of the component of the
dialog which is to be treated as the
default button of the dialog. The
default button is automatically
activated when the user hits
RETURN or presses the middle
mouse button within the Dialog.

.DefaultColumnWidth Of Integer type

Default Value is 8

The default column width if no
widths are specified or if any of
the ColumnWidths members are
less than or equal to 0.

.Denominator Of Integer type The denominator value of the
fractional contents of the

User Interface: Dialogs 429

Resource File Attribute Permitted Values Description

Default Value is 1
InputPanel.

.DialogStyle Enumerated type
ProUIDialogStyle

The options defined by the
enumerated data type
ProUIDialogStyle control
the blocking behavior of Creo
Parametric window. The dialog
style types that are supported by
Creo Parametric TOOLKIT
application are as follows:
• PROUIDIALOGSTYLE_

PARENT_MODAL—You can
use this option, when you want
to block the parent window.

Note

You cannot perform the
following operations after
you use this option:

○ Close the newly
created dialog box.

○ Click any button on
the Creo user
interface.

○ Close the Creo
window.

• PROUIDIALOGSTYLE_
WORKING—You can use this
option, if you want to block
both the application and the
process. The application and
the process are blocked until
all the pending events are
processed.

Note

You can close the newly
created dialog box,
however, you cannot open
a Creo part file with the
dialog box open.

• PROUIDIALOGSTYLE_
APPLICATION_MODAL—
You can use this option if you
want to block the application.

430 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description

Note

You cannot perform the
following operations after
you use this option:

○ Close the newly
created dialog box

○ Click any button on
the Creo user
interface.

○ Close the Creo
window.

• PROUIDIALOGSTYLE_
MODELESS—You can use this
option if you do not want to
block anything.

Note

You can close the newly
created dialog box, and
open a Creopart file.

Other dialog style values should
not be used in Creo Parametric
TOOLKIT dialogs. The only
purpose of the other dialog style
values is to be returned by the
function
ProUIDialogDialogstyle

Get() on a dialog created by
Creo Parametric.

.Digits Of Integer type

Default Value is -1

The number of digits to be
displayed if the contents are being
treated as a number.

A value of 0 indicates that this
attribute should be ignored when
formatting the value.

.Double Of Float type

Default Value is 0

The double value of the contents
of the component.

.DoubleFormat Of String type

Default Value is "%.*lf"

The format of the contents of the
component if they are being
treated as a double. The value of
this attribute is a C formatting
string, which can handle the
precision and value of the contents

User Interface: Dialogs 431

Resource File Attribute Permitted Values Description
of the InputPanel.

Note: the formatting is not applied
to values entered into the
component until the component's
Double value is accessed
programmatically.

.DoubleIncrement Of Float type

Default Value is 1

Slow increment to be used when
Spinbox value is a double.

.DrawingHeight Of Integer type

Default Value is 100

Height in pixels of the drawing
area.

.DrawingMode Enumerated type
ProUIDrawingMode

The drawing mode of the
DrawingArea. Following are the
possible values:

PROUIDRWMODE_COPY—Draw
using the foreground drawing
color.

PROUIDRWMODE_NOT—Draw,
inverting the existing pixels of the
component.

PROUIDRWMODE_AND—Draw
using a combination of the
foreground drawing color AND
the existing pixels.

PROUIDRWMODE_OR—Draw
using a combination of the
foreground drawing color OR the
existing pixels.

PROUIDRWMODE_XOR—Draw
using a combination of the
foreground drawing color XOR
the existing pixels.

.DrawingWidth Of Integer type

Default Value is 100

Width in pixels of the drawing
area.

.Editable Of Boolean type

TRUE (default), FALSE

Flag indicating whether the text
contents of the component may be
modified by the user.

.FastDoubleIncrement Of Float type

Default Value is 10

The fast increment to be used
when the SpinBox value is a
double

.FastIncrement Of Integer type

Default Value is 10

The fast increment to be used
when the SpinBox value is an
integer.

432 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description
.FillMode Enumerated type

ProUIFillMode
The current drawing fill mode of
the DrawingArea. Following are
the possible values:

PROUIFILLMODE_SOLID—Fill
using the foreground drawing
color.

PROUIFILLMODE_LIGHT

_STIPPLE— Fill using a 75%
stipple of the foreground and
background drawing colors.

PROUIFILLMODE_MEDIUM

_STIPPLE— Fill using a 50%
stipple of the foreground and
background drawing colors.

PROUIFILLMODE_HEAVY

_STIPPLE— Fill using a 25%
stipple of the foreground and
background drawing colors.

.Focus Of String type The name of the component on
which the cursor is positioned
when the dialog is activated. If the
Dialog is already active then this
specifies the name of the
component within the Dialog on
which on which the focus is set
and the cursor is positioned.

.FontClass Enumerated type
ProUIFontClass

The base font class to be used to
draw text in the component.

.FontSize Of Float type

Default Value is 0

Point size of the font used to draw
text in the component.

.FontStyle Enumerated type
ProUIFontStyle

A bitwise OR of the styles of the
font used to draw text in the
component.

Note: All styles are not supported
for a given font class and platform.

.ForegroundColor Integer type based on
ProUIColorType or a user
defined color type.

The foreground color of the
component.

.FgColor Integer type based on
ProUIColorType or a user
defined color type.

The foreground drawing color of
the component as a user specified
color or a window color of
ProUIColorType.

.Height Of Integer type

Default Value is -1

Height in pixels of the component.

.HelpText Of WideString type The popup help-text to be

User Interface: Dialogs 433

Resource File Attribute Permitted Values Description
displayed whilst the pointer is over
the component.

.HorzAtPoint Of Integer type

Default Value is 0

The horizontal location from the
existing dialog to which a new
dialog is being positioned
horizontally. The possible
alignment types are left/ center/
right.

.HorzDialog Of String type The name of the dialog to which
the existing dialog is relatively
being positioned horizontally.

.HorzMethod Enumerated type
ProUIHorzPosition

Horizontal positioning method of
the dialog.

.HorzPoint Enumerated type
ProUIHorzPosition.

The horizontal location on
thedialog which is used for
positioning.

.HorzPosition Of Integer type

Default Value is -1

Desired horizontal position of the
dialog. This is the absolute
position.

.HorzPosOffset Of Integer type

Default Value is -1

The desired horizontal offset
between the dialog to which it is
being relatively positioned and the
existing dialog.

.HorzSize Of Integer type

Default Value is -1

The desired width of the dialog.

.Images Of String array typeDefault Value
is NULL

The names of the images, which
will be drawn in a DrawingArea.
Each image may be a PNG, PCX,
GIF, BMP, ICO or CUR file.

.Increment Of Integer type

Default Value is 1

The slow increment to be used
when the SpinBox value is an
integer.

.Integer Of Integer typeDefault Value is 0 The integer value of the contents
of the component.

.InputType Enumerated type
ProUIInputtype

Datatype of the contents of the
input panel.

Following are the possible types:
• PROUIINPUTTYPE_

STRING

• PROUIINPUTTYPE_
WSTRING

• PROUIINPUTTYPE_
INTEGER

• PROUIINPUTTYPE_
DOUBLE

• PROUIINPUTTYPE_
FRACTION

• PROUIINPUTTYPE_
RELATION

434 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description
.ItemHelpText Of WideString Array type The popup help-text to be

displayed for the items of the
component whilst the pointer is
over the component. The array
size should match the number of
items in the component.

.ItemImage Of String Array type The images of the items of the
component. Each image may be a
PNG, PCX, GIF, BMP, ICO or
CUR file. The array size should
match the number of items in the
component.

.Label Of WideString type The text shown on the component.

(For dialogs: this is the dialog
title).

.Labels Of WideString type The user visible text for each of
the items of the component.

.LabelAlignment Of Integer type

Default Value is 2

The justification of the label of the
Tree if the Tree has an attribute
window and can be as follows:
• PROUIALIGNMENT_LEFT

• PROUIALIGNMENT_RIGHT

• PROUIALIGNMENT_
CENTER

.Lastentereditem String The name of the item, which was
last pointed to by the pointer.

.Length Of Integer type

Default Value is 8

The length of the Slider, in
character widths.

.ListState Of Integer Array type The state of each of the items of
the List.

.LineStyle Enumerated type
ProUILineStyle

The current line drawing style of
the DrawingArea.

Following are the available types:
• PROUILINESTYLE_SOLID

—Draw solid lines in the
foreground drawing color.

• PROUILINESTYLE_
DOTTED—Draw dotted lines
in the foreground and
background drawing colors.

• PROUILINESTYLE_
DASHED
—Draw dashed lines in the
foreground and background
drawing colors.

.ListType Enumerated type
ProUIListtype

The possible list types are as
follows:

User Interface: Dialogs 435

Resource File Attribute Permitted Values Description

PROUILISTTYPE_

STANDARD—No column headers
or check
marks.PROUILISTTYPE_
TABULATED—Display column
headers, but do not display check
marks.

PROUILISTTYPE_CHECK—
Display check marks, but do not
display column headers. The value
of the check mark for each item is
accessed by
ProUIListStateGet() and
ProUIListStateSet()

.LockedColumns Of Integer type

Default Value is 0

The number of locked columns of
the table.

.LockedRows Of Integer type

Default Value is 0

The number of locked rows of the
Table.

.Mapped Of Boolean type

FALSE (default)

For a dialog component this flag
indicates whether the dialog is
visible on the screen or not. For all
other components this flag
indicates whether the component
occupies any space when it is
invisible.

.MaxDouble Of Float type

8.507e+37

The maximum double value of the
contents of the component.

.MaxInteger Of Integer type

2147483647

The maximum integer value of the
contents of the component.

.MaxLen Of Integer type

Default Value is 32

The maximum length of the text
contents of the component.

.MinColumns Of Integer type

Default Value is 4

The minimum width of the
component, in character widths.

.MinDouble Of Float type

-8.507e+37

The minimum double value of the
contents of the component.

.MinInteger Of Integer type

-2147483647

The minimum integer value of the
contents of the component.

.MinRows Of Integer type

Default Value is 1

The minimum number of visible
rows of the component.

.MixedState Of Integer Array type The indeterminate state of the
items in a Tree.

.Names Of String Array type The names of the items of the

436 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description
component.

.Numerator Of Integer type

Default Value is 0

The numerator value of the
fractional contents of the
InputPanel.

.Ordinal Of Integer type

Default Value is 0

The ordinal value of the fractional
contents of the InputPanel.

.Orientation Enumerated type
ProUIOrientation

The orientation of the component.
It is of the following types:

PROUI_HORIZONTAL

PROUI_VERTICAL

.ParentName Of String type The name of the parent component
of the component.

.Password Of Boolean type

FALSE (default)

Flag indicating whether the
component is used for password
entry.

.PolygonFillMode Enumerated type
ProUIPolygonFillMode

The fill mode to be used when
drawing Polygons in the
DrawingArea.

.PopupMenu Of String type Allows you to designate the popup
menu for a component This is the
name of a MenuPane component
to use as a popup menu for the
given component.

.PopupWhenInsen Of Boolean type Flag indicating whether the
component should display its
popup menu when it is insensitive
(TRUE) or whether no popup
menu should be displayed at such
times (FALSE).

.ProgressStyle Enumerated type
ProUIProgressstyle

The display style of the
ProgressBar. It is of the following
types:
• PROUIPROGRESS_NOTEXT

• PROUIPROGRESS_VALUE

• PROUIPROGRESS_
PERCENT

• PROUIPROGRESS_
INTERVALS

.RememberPosition Of Boolean type

TRUE (default), FALSE

Controls whether Creo Parametric
should store the location of the
dialog when it is destroyed, and
apply the position to the dialog
again if it is shown again.

.RememberSize Of Boolean type

TRUE (default), FALSE

Controls whether Creo Parametric
should store the size the dialog
when it is destroyed, and apply the
size to the dialog again if it is
shown.

User Interface: Dialogs 437

Resource File Attribute Permitted Values Description
.Resizeable Of Boolean type

TRUE (default), FALSE

Identifies whether a component is
allowed to resize based on
changing of content. If the content
is larger than the component, set
this to TRUE to resize to contain
the new content. Set it to FALSE
to truncate or shorten the content.

.ResizableCols Of Boolean type

TRUE (default), FALSE

Flag indicating whether the Tree
columns may be resized using the
column headers as draggable
sashes.

.Rows Of Integer type

Default Value is 8

The number of rows of the
component.

.RowLabels Of WideString Array type The labels of the rows of the
component. If labels are specified
then the table will display row
headers, otherwise no row headers
are displayed.

.RowNames Of String Array type The names of the rows of the
component.

.RowSelectionPolicy Enumerated type
ProUISelectionpolicy

The types of selection supported
for the rows of a table:

PROUISELPOLICY_SINGLE—
No item or one item can be
selected at a time. Click to clear a
selected item.

PROUISELPOLICY_BROWSE—
Only one item can be selected at a
time. You cannot clear the
selection. You can replace the
selected item with another
selection.

PROUISELPOLICY_

MULTIPLE—More than one item
can be selected. Click to clear a
selected item.

PROUISELPOLICY_

EXTENDED—When no key is
pressed, only one item can be
selected at a time. You cannot
clear the selection. You can
replace the selected item with
another selection.

Press SHIFT or CTRL keys, to
select multiple items.

438 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description

Press SHIFT key to select a range
of items.

Press CTRL key to select multiple
items. You can click to select and
clear an item.

.ScrollBarsWhenNeeded Of Boolean type Flag indicating whether scrollbars
should only be displayed when
they are required (TRUE) or
whether they should always be
displayed (FALSE).

.SelectableNames Of String Array type The names of the items of the
component that may be selected.
An empty array indicates that
every item is currently selectable.

.SelectedNames Of String Array type The names of the currently
selected items of the component.
An empty array indicates that no
item of the component is selected.
This attribute may not be set in the
resource file.

.SelectedColumnNames Of String Array type The names of the currently
selected columns of the Table.
This attribute may not be set in the
resource file.

.SelectedRowNames Of String Array type The names of the currently
selected rows of the Table. This
attribute cannot be set through the
resource file.

.SelectionPolicy Enumerated type
ProUISelectionPolicy

The type of selection allowed for
items in the component:
• PROUISELPOLICY_

SINGLE—No item or one
item can be selected at a time.
Click to clear a selected item.

• PROUISELPOLICY_
BROWSE—Only one item can
be selected at a time. You
cannot clear the selection. You
can replace the selected item
with another selection.

• PROUISELPOLICY_
MULTIPLE—More than one
item can be selected. Click to
clear a selected item.

• PROUISELPOLICY_
EXTENDED—When no key is
pressed, only one item can be
selected at a time. You cannot
clear the selection. You can
replace the selected item with
another selection.

User Interface: Dialogs 439

Resource File Attribute Permitted Values Description

Press SHIFT or CTRL keys, to
select multiple items.

Press SHIFT key to select a range
of items.

Press CTRL key to select multiple
items. You can click to select and
clear an item.

.SelectByCell Of Boolean type Flag indicating whether the Tree
attribute window allows selection
by cell (TRUE) or whether all the
cells of the selected node of the
Tree are selected when a node is
selected (FALSE).

.SelectCBRegardless Of Boolean type Flag indicating whether the Tree
should generate a UI_SELECT_
ACTION callback when the
currently selected item is re-
selected (TRUE) or whether such a
selection should be ignored as the
state has not changed.

.Sensitive Of Boolean type Flag indicating whether the
component is disabled (FALSE) or
sensitive to user input (TRUE).

.Set Of Integer type

Default Value is 0

The state of the component.

.ShowGrid Of Boolean type Flag indicating whether to display
the grid lines of the Table.

.StartLocation Enumerated type
ProUIStartLocation

Following are the possible user
defined start locations and anchor
positions for a UI component:

PROUIDEFAULT_LOCATION—
default location

PROUITOP_LEFT—top left-hand
corner

PROUITOP_MIDDLE—top edge

PROUITOP_RIGHT—top right-
hand corner

PROUIMIDDLE_LEFT—left-
hand edge

PROUIMIDDLE_MIDDLE—
middle

PROUIMIDDLE_RIGHT—right-
hand edge

440 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description

PROUIBOTTOM_LEFT—bottom
left-hand corner

PROUIBOTTOM_MIDDLE—
bottom edge

PROUIBOTTOM_RIGHT—bottom
right-hand corner

.String Of String type The contents of the InputPanel as a
string

.TabCharsAllow Of Boolean type Flag indicating the behavior of the
input panel when the TAB key is
pressed. If the value is True,
inserts a TAB key press into the
text of input panel as a tab
character. If the value is False,
uses the TAB key press for focus
traversal. The input panel ignores
the tab key press. This attribute
may not be set in the resource file.

.Tracking Of Boolean type Flag indicating whether the
DrawingArea generates a UI_
MOVE_ACTION whenever the
pointer is moved over the visible
region of the component.

.TreeAttributeWindow Of Boolean type Flag indicating whether the Tree
has an attribute window.

.TreeBoxNodes Of Boolean type Flag indicating whether the nodes
of the Tree should be displayed
with a bounding rectangle.

.TreeCellInput Of WideString type The text entered by the user which
caused a UI_TREE_CELL_
INPUT_ACTION to be generated.
This cannot be specified in the
resource file.

.TreeCellSelCol Of String type The name of the column of the
selected cell of the attribute
window of the Tree. This cannot
be specified in the resource file.

.TreeCellSelNode Of String type The name of the node of the
selected cell of the attribute
window of the Tree. This cannot
be specified in the resource file.

.TreeChildOrder Of Integer type

Default Value is 1

The method used to order the
children of a parent node of the
Tree.

.TreeColumnsJusts Of Integer Array type The justifcations of the text of the
columns of the attribute window
of the Tree.

.TreeColumnsNames Of String Array type The names of the columns of the
attribute window of the Tree.

User Interface: Dialogs 441

Resource File Attribute Permitted Values Description
.TreeColumnsTitles Of WideStringArray type The labels of the column headers

of the attribute window of the
Tree.

.TreeColumnsWidths Of Integer Array type The widths of the columns of the
attribute window of the Tree.

.TreeColumnOrder Of String Array type The display order of the columns
of the attribute window of the
Tree. An empty array indicates
that the columns should be
displayed in the order in which
they were created.

.TreeCurrent Of String type The name of the current node of
the Tree. This is the node which is
drawn with a dotted focus
rectangle if the Tree component
has the keyboard input focus. This
cannot be specified in the resource
file.

.TreeDisplayRoot Of Boolean type Flag indicating whether the root
node of the Tree should be
displayed (TRUE) or whether it
should be hidden from view
(FALSE).

.TreeExpColNode Of String type The name of the node of the Tree
which was expanded or collapsed
to generate a UI_EXPAND_
ACTION or a UI_COLLAPSE_
ACTION, respectively. This
cannot be specified in the resource
file.

.TreeIndicateChildren Of Boolean type Flag indicating whether the nodes
of the Tree should be displayed
with a "..." suffix to indicate that
they have children when the nodes
themselves are not expanded.

.TreeInitialSashPercent Of Integer type

Default Value is 50

The initial percentage position of
the sash of the Tree between the
Tree hierarchy and the attribute
window of the Tree.

.TreeKeyboardInput Of Boolean type Flag indicating whether the
attribute window of the Tree
should respond to keyboard input
and generate a UI_TREE_CELL_
INPUT_ACTION.

.TreeLinkStyle Of Integer type

Default Value is 2

The link-style used to indicate the
children of a parent node of the
Tree.

.TreeNodeTypeAppends Of WideStringArray type The text to be appended to the
labels of the nodes of the node
types of the Tree.

.TreeNodeTypeCollapsedImages Of String Array type The image to be displayed with the
collapsed nodes of the node types
of the Tree.

442 Creo® Parametric TOOLKITUser’s Guide

Resource File Attribute Permitted Values Description
.TreeNodeTypeExpandedImages Of String Array type The image to be displayed with the

expanded nodes of the node types
of the Tree.

.TreeNodeTypeHelpTexts Of WideStringArray type The help text of the nodes of the
node types of the Tree.

.TreeNodeTypeNames Of String Array type The names of the node types of the
Tree.

.TreeNodeTypePrefixs Of WideStringArray type The text to be prepended to the
labels of the nodes of the node
types of the Tree.

.TreeRedraw Of Boolean type Flag indicating whether redraws
are allowed in the Tree. This
cannot be specified in the resource
file.

.TreeRootNode Of String type The name of the root node of the
Tree. This cannot be specified in
the resource file.

.TreeState Of Integer Array type The state of each of the items in
the Tree.

.TreeVerticalSBPosition Of Integer type

Default Value is 3.

The position of the vertical
scrollbar of the Tree.

.TruncateLabel Of Boolean type Flag indicating whether to truncate
the labels of newly created cells in
the Table to the size of their cell.

Modifying this after adding rows
and columns will have no effect on
any existing cell's appearance.

.UnitsPerRotation Of Integer type

Default Value is 360.

The amount by which the value of
the thumbwheel should be
incremented for each complete
revolution of the wheel.

.Value Of WideString type The text contents of the
component.

.VertAtPoint Enumerated type
ProUIVertPosition.

The vertical location from the
existing dialog to which a new
dialog is being positioned
vertically.

.VertDialog Of String type The name of the dialog to which
the existing dialog is relatively
being positioned.

.VertMethod Enumerated type
ProUIPositioninMethod

Vertical positioning method of the
dialog.

.VertPoint Enumerated type
ProUIVertPosition.

The vertical location on the dialog,
which is used for positioning.

.VertPosOffset Of Integer type

Default Value is -1

The desired vertical offset between
the dialog to which it is being
relatively positioned and the
existing dialog.

.VertSize Of Integer type The desired height of the dialog.

User Interface: Dialogs 443

Resource File Attribute Permitted Values Description

Default Value is -1
.Visible Of Boolean type Flag indicating whether the

component is shown (TRUE) or
hidden (FALSE).

.VisibleNames Of String Array type The names of the visible items of
the component. An empty array
indicates that every item of the
component is visible.

.VisibleRows Of Integer type

Default Value is 4

The number of visible rows of the
component.

.WideString Of WideString type The contents of the InputPanel as a
wide-string.

.Width Of Integer type

Default Value is -1

Width of the component, in pixels.

Using Resource Files
Resource files are text files that describe the overall structure of a dialog box.

Note
For most Creo Parametric TOOLKIT applications, it is not required to use
resource files. Instead you can use the functions described in the previous
sections to create, lay out, and populate dialog boxes directly. Information in
this section is provided for the few applications that still require resource files.

When the Creo Parametric TOOLKIT application wants to show a dialog box to
the Creo Parametric user, it simply asks Creo Parametric to load the dialog box
from the resource file. The first task for the Creo Parametric TOOLKIT user who
wants to display a dialog box is to write the resource file.
The resource file describes:

• Overall attributes of the dialog box.
• A list of components it contains.
• Attributes of the components themselves and the relative positions of the

components.
• Rules for how they behave when the user resizes the dialog box.
Many of the dialog box and component attributes can also be read and modified
programmatically with Creo Parametric TOOLKIT functions.

444 Creo® Parametric TOOLKITUser’s Guide

A resource file must be called dialog_name.res where dialog_name is
the name of the dialog box. The name of the resource file should be in the lower
case. Resource files used by the Creo Parametric TOOLKIT application must be
stored under the text directory referred to by the text_dir statement in the
Creo Parametric TOOLKIT registry file.

Location and Translation of Resource Files
If the application uses language-specific directories, the resource file must be
located in the <application_text_dir>/<language_dir>/
resource directory. One resource file must exist for each language supported by
the application. If the application supports only one language, then the resource
file may be located in the <application_text_dir>/resource directory.
A Creo Parametric TOOLKIT application can optionally include only one
resource file for all supported languages in the <application_text_dir>/
resource directory. This application should also include a text file containing
the translated entities and translated text for each additional language, in the
format used by the function ProMessageDisplay(), in the
<application_text_dir>/resource/<language_dir> directory.
The translation text file should include the following items:

• The component and attribute for each translated item in line 1
• The English text in line 2
• The translated entities and translated text in line 3
• Line 4 should be left blank
Function Introduced:

• ProUITranslationFilesEnable()
Use the function ProUITranslationFilesEnable() to set your Creo
Parametric TOOLKIT application to use the single resource file and multiple
translation files method of deploying resource files for translated dialog boxes.
Call this function from your application’s user_intialize() function before
any call is made to another ProUI* function.

Syntax of Resource Files
The resource file is composed of nested statements; each statement is enclosed in
parentheses, and contains either a keyword or the name of a dialog or component
attribute followed by one or more values and/or other statements.
The top-level statement in a resource file for dialog must always be
(
Dialog dialog_name (other statements...)
)

User Interface: Dialogs 445

where dialog_name is the name of the dialog itself. The dialog name is used to
refer to the dialog from the source code of the application. The name of a dialog
can be of any length, and contains alphanumeric characters and underscores. Case
is ignored.
If the resource file contains only a layout, the top-level statement would be
(
Layout layout_name (other statements...)
)

instead. Collectively, the top statement describes the outermost container in the
resource file.
The two statements that follow the name of the container are always Components
and Resources.
The Components statement simply lists the types and names of the components
that the dialog contains.
Components of type Layout, MenuPane, CascadeButton, Table, or Tree may have
their own container-level statements following the Dialog statement. The formats
of these statements are exactly the same as the Dialog statement.
If one of the components is a tab, the layouts that the tab contains are listed after
the tab name in the Components part of the Dialog statement. Similarly, if one of
the components is a MenuBar or a CascadeButton, the MenuPanes that it contains
are listed after the MenuBar name in the Components part of the Dialog statement.
A Resources statement contains one or more attribute assignments. Each attribute
assignment statement is of this form
(componentname.attributename value)

The Resource statement defines the attributes of the dialog and the components,
and the Layout which defines the relative positions of the components, and the
way in which they behave when the dialog is resized. If the component name is
missing, the statement (for example, (.attributename value)) will be
assumed to apply to an attribute of the dialog or layout itself. The attributes and
their values are described in detail in the following sections of this chapter.
The last attribute statement in a Resources statement is a special one called
.Layout. The value of a .Layout statement is always a single statement of
type Grid. The Grid statement describes a flexible grid of rows and columns in
which the components are placed; this defines the neighbor-relations between
components, in other words their relative positions. The absolute positions, and
the sizes, of the components may change as the grid stretches and shrinks in
response to the user resizing the window containing the dialog. Components of
type MenuPane do not require a .Layout statement.
The Grid statement contains the following values:

446 Creo® Parametric TOOLKITUser’s Guide

• Rows statement—lists the rows in the grid.
• Cols statement—lists the columns in the grid.
• Values list—specify the contents of each grid location in turn, reading left-to-

right, top-to-bottom. Each of the values can be either

○ The name of a component
○ A Pos statement, to specify the row and column number of the next

component in the list, if it is not in the next available location. A Pos
statement allows you to skip some locations, leaving them empty.

○ Another Grid statement, to show that the location contains several
components on their own local grid.

The value of a Rows or Cols statement is a list of integers, one for each row or
column. The value of the integer is 0 if the row or column cannot be resized when
user resized the dialog. the integer value is 1 if it can be resized. (It is normal to
set this to 1, so that all the components in the dialog will stretch when the dialog
stretches.)
The size and position of the components within the grid is also partly determined
by the values set for the Attach and Offset attributes described in more detail
in the section Master Table of Resource File Attributes on page 425.

Note
Ensure that the resource file contains a new line after the last parenthesis, or
else the function ProUIDialogCreate() will return an error.

Example 8: Dialog with All Components
(Dialog allcomponents

(Components
(PushButton PushButton1)
(PushButton PushButton2)
(Tab Tab3

Layout11
Layout8)

(Label Label16)
)
(Resources

(PushButton1.Label "OK")
(PushButton1.TopOffset 4)
(PushButton1.BottomOffset 4)
(PushButton1.LeftOffset 4)
(PushButton1.RightOffset 4)
(PushButton2.Label "Cancel")
(PushButton2.TopOffset 4)

User Interface: Dialogs 447

(PushButton2.BottomOffset 4)
(PushButton2.LeftOffset 4)
(PushButton2.RightOffset 4)
(Tab3.Decorated True)
(Label16.Label "Push Buttons")
(.Label "All Components")
(.Layout

(Grid (Rows 1 1 1) (Cols 1)
Tab3
Label16
(Grid (Rows 1) (Cols 1 1)

PushButton1
PushButton2

)
)

)
)

)
(Layout Layout11

(Components
(SubLayout Layout1)

)

(Resources
(.Label "Tab with two layouts")
(.Decorated True)
(.Layout

(Grid (Rows 1) (Cols 1)
Layout1

)
)

)
)
(Layout Layout1

(Components
(InputPanel InputPanel1)
(Label Label1)
(CheckButton CheckButton1)
(Label Label2)
(Label Label3)
(Label Label4)
(List List1)
(Label Label5)
(OptionMenu OptionMenu1)
(Label Label6)
(Label Label8)
(RadioGroup RadioGroup1)
(Slider Slider1)
(Label Label9)
(TextArea TextArea1)
(Label Label10)

448 Creo® Parametric TOOLKITUser’s Guide

(CheckButton CheckButton3)
(Label Label7)
(Label Label11)
(ThumbWheel ThumbWheel1)
(ProgressBar ProgressBar1)
(SpinBox SpinBox1)
(Label Label14)
(Separator Separator1)
(Label Label13)
(Table Table1)
(Label Label17)

)
(Resources

(InputPanel1.InputType 2)
(Label1.Label "Input Panel")
(Label1.AttachLeft True)
(CheckButton1.Label "Check2")
(CheckButton1.Set True)
(CheckButton1.TopOffset 4)
(CheckButton1.BottomOffset 4)
(CheckButton1.LeftOffset 4)
(CheckButton1.RightOffset 4)
(Label2.Label "Check Buttons")
(Label2.AttachLeft True)
(Label2.TopOffset 4)
(Label2.BottomOffset 4)
(Label2.LeftOffset 4)
(Label2.RightOffset 4)
(Label3.Label "Label")
(Label3.AttachLeft True)
(Label4.Label "Label Text")
(List1.Names "n1"

"n2"
"n3"
"n4"
"n5")

(List1.Labels "Value 1"
"Value 2"
"Value 3"
"Value 4"
"Value 5")

(Label5.Label "List")
(Label5.AttachLeft True)
(OptionMenu1.Names "n1"

"n2"
"n3"
"n4"
"n5")

(OptionMenu1.Labels "Option 1"
"Option 2"
"Option 3"

User Interface: Dialogs 449

"Option 4"
"Option 5")

(Label6.Label "Option Menu")
(Label6.AttachLeft True)
(Label8.Label "Radio Group")
(Label8.AttachLeft True)
(RadioGroup1.Orientation True)
(RadioGroup1.AttachLeft False)
(RadioGroup1.AttachRight False)
(RadioGroup1.AttachTop False)
(RadioGroup1.AttachBottom False)
(RadioGroup1.Names "n1"

"n2"
"n3")

(RadioGroup1.Labels "Rad1"
"Rad2"
"Rad3")

(RadioGroup1.Alignment 2)
(Label9.Label "Slider")
(Label9.AttachLeft True)
(Label10.Label "Text Area")
(Label10.AttachLeft True)
(CheckButton3.Label "Check1")
(Label7.Label "Thumbwheel")
(Label7.AttachLeft True)
(Label11.Label "Progress bar")
(Label11.AttachLeft True)
(Label14.Label "Spinbox")
(Label14.AttachLeft True)
(Label13.Label "Separator")
(Label13.AttachLeft True)
(Table1.RowNames "r1"

"r2"
"r3")

(Table1.RowLabels "1"
"2"
"3")

(Table1.ColumnNames "c1"
"c2"
"c3")

(Table1.ColumnLabels "- A -"
"- B -"
"- C -")

(Table1.ColumnWidths 4
4
4)

(Table1.VisibleRows 4)
(Table1.ShowGrid True)
(Label17.Label "Table")
(Label17.AttachLeft True)
(.Label "Decorated layout")

450 Creo® Parametric TOOLKITUser’s Guide

(.Decorated True)
(.TopOffset 4)
(.BottomOffset 4)
(.LeftOffset 4)
(.RightOffset 4)
(.Layout

(Grid (Rows 1 1 1 1 1 1 1 1 1 1 1 1 1) (Cols 1 1)
Label2
(Grid (Rows 1 1) (Cols 1)

CheckButton3
CheckButton1

)
Label1
InputPanel1
Label3
Label4
Label5
List1
Label6
OptionMenu1
Label11
ProgressBar1
Label8
RadioGroup1
Label13
Separator1
Label9
Slider1
Label14
SpinBox1
Label17
Table1
Label10
TextArea1
Label7
ThumbWheel1

)
)

)
)

(Layout Layout8
(Components

(Label Label15)
)
(Resources

(Label15.Bitmap "ptc_logo")
(.Label "Second layout")
(.Layout

(Grid (Rows 1) (Cols 1)
Label15

User Interface: Dialogs 451

)
)

)
)

Example 9: Resource File for Dialog with Four Components
on 2x2 Grid
This example shows a simple dialog which contains four components on a single
2-by-2 grid.
(Dialog Simple

(Components
(PushButton OK)
(PushButton Cancel)
(Label RadioLabel)
(RadioGroup Tolgroup)

)
(Resources

(OK.Label "OK")
(OK.TopOffset 4)
(OK.BottomOffset 4)
(OK.LeftOffset 4)
(OK.RightOffset 4)
(Cancel.Label "Cancel")
(Cancel.TopOffset 4)
(Cancel.BottomOffset 4)
(Cancel.LeftOffset 4)
(Cancel.RightOffset 4)
(RadioLabel.Label "Value to use")
(RadioLabel.TopOffset 4)
(RadioLabel.BottomOffset 4)
(RadioLabel.LeftOffset 4)
(RadioLabel.RightOffset 4)
(Tolgroup.Orientation True)
(Tolgroup.Names "Top"

"Middle"
"Bottom")

(Tolgroup.Labels "Upper limit"
"Nominal"
"Lower limit")

(.Label "Simple Dialog")
(.Layout

(Grid (Rows 1 1) (Cols 1 1)
RadioLabel
Tolgroup
OK
Cancel

)
)

)

452 Creo® Parametric TOOLKITUser’s Guide

)

Example 10: Resource File for Subgrid Dialog
This example shows the resource file for the preceding subgrid dialog.
(Dialog subgrid

(Components
(PushButton OK)
(PushButton Cancel)
(InputPanel FeatNamePanel)
(Label FeatNameLabel)

)
(Resources

(OK.Label "OK")
(OK.TopOffset 4)
(OK.BottomOffset 4)
(OK.LeftOffset 4)
(OK.RightOffset 4)
(Cancel.Label "Cancel")
(Cancel.TopOffset 4)
(Cancel.BottomOffset 4)
(Cancel.LeftOffset 4)
(Cancel.RightOffset 4)
(FeatNamePanel.TopOffset 4)
(FeatNamePanel.BottomOffset 4)
(FeatNamePanel.LeftOffset 4)
(FeatNamePanel.RightOffset 4)
(FeatNameLabel.Label "Feature name")
(.Label "Subgrid")
(.Layout

(Grid (Rows 1 1 1) (Cols 1)
FeatNameLabel
FeatNamePanel
(Grid (Rows 1) (Cols 1 1)

OK
Cancel

)
)

)
)

)

Example 11: Resource File for Subgrid Dialog with Resize
A better way to lay out the dialog in the previous example would be to place the
input panel text to the left of the input panel. If this were done with a single 2-by-2
grid, the input panel label and panel itself would resize to take up the same width

User Interface: Dialogs 453

as the OK and Cancel buttons. To avoid this you can put the first two components
in a layout of their own, which therefore has its own grid, so the columns can take
up their own widths.
This example demonstrates this method.
(Dialog subgrid

(Components
(PushButton OK)
(PushButton Cancel)
(InputPanel FeatNamePanel)
(Label FeatNameLabel)

)
(Resources

(OK.Label "OK")
(OK.TopOffset 4)
(OK.BottomOffset 4)
(OK.LeftOffset 4)
(OK.RightOffset 4)
(Cancel.Label "Cancel")
(Cancel.TopOffset 4)
(Cancel.BottomOffset 4)
(Cancel.LeftOffset 4)
(Cancel.RightOffset 4)
(FeatNamePanel.TopOffset 4)
(FeatNamePanel.BottomOffset 4)
(FeatNamePanel.LeftOffset 4)
(FeatNamePanel.RightOffset 4)
(FeatNameLabel.Label "Feature name")
(.Label "Subgrid")
(.Layout

(Grid (Rows 1 1 1) (Cols 1)
FeatNameLabel
FeatNamePanel
(Grid (Rows 1) (Cols 1 1)

OK
Cancel

)
)

)
)

)

Example 12: Resource File with Offsets, Attachments, and
Help Text
This example shows a section of resource file which specifies offsets, attachments,
and help text is shown below. This is an extended version of the previous
example.

(Resources
(FeatNameLabel.Label "Feature name")

454 Creo® Parametric TOOLKITUser’s Guide

(FeatNameLabel.AttachLeft True)
(FeatNameLabel.TopOffset 4)
(FeatNameLabel.BottomOffset 4)
(FeatNameLabel.LeftOffset 4)
(FeatNameLabel.RightOffset 4)
(FeatNamePanel.HelpText "Enter the Feature name here.")
(FeatNamePanel.TopOffset 4)
(FeatNamePanel.BottomOffset 4)
(FeatNamePanel.LeftOffset 4)
(FeatNamePanel.RightOffset 4)
....

)

The .Bitmap attribute is the name of a file which contains a bitmap description of
an image which should be applied to the component. The file can be one of the
following types:

• .GIF

• .PNG

• .PCX

• .BMP

• .ICO

• .CUR

If you supply only the root of the filename, the .bif format will be assumed.

Example 13: Resource File with Text Question, OK and
Cancel Buttons
This example shows the use of a simple dialog, which contains a text question and
OK and Cancel buttons. It would be used for any kind of confirmation request.
For a programatic method of creating this dialog box refer to Example 1: Source
for Dialog with Text Question, OK and Cancel Buttons on page 355.
(Dialog confirm

(Components
(Label Question)
(PushButton OK)
(PushButton Cancel)

)
(Resources

(Question.Label "Dummy label")
(Question.TopOffset 4)
(Question.BottomOffset 4)
(Question.LeftOffset 4)
(Question.RightOffset 4)
(OK.Label "OK")
(OK.TopOffset 4)
(OK.BottomOffset 4)

User Interface: Dialogs 455

(OK.LeftOffset 4)
(OK.RightOffset 4)
(Cancel.Label "Cancel")
(Cancel.TopOffset 4)
(Cancel.BottomOffset 4)
(Cancel.LeftOffset 4)
(Cancel.RightOffset 4)
(.Label "Confirm")
(.Layout

(Grid (Rows 1 1) (Cols 1)
Question
(Grid (Rows 1) (Cols 1 1)

OK Cancel
)

)
)

)
)

Example 14: UI List Resource File
The example below shows the resource file used to create UI List.For a
programatic method of creating the UI List refer to Example 2: To use UI List
Functions on page 381.
(Dialog ug_uilist

(Components
(SubLayout ug_uilist_layout1)
(SubLayout ug_uilist_layout2)

)

(Resources
(.Label "UI List")
(.Layout

(Grid (Rows 1 1) (Cols 1)
ug_uilist_layout1
ug_uilist_layout2

)
)

)
)

(Layout ug_uilist_layout1
(Components

(List ug_uilist_comp)
(Label ug_uilist_label_1)
(TextArea ug_uilist_txtarea)
(Label ug_uilist_lable_2)

)

(Resources

456 Creo® Parametric TOOLKITUser’s Guide

(ug_uilist_label_1.Label "List area")
(ug_uilist_txtarea.FontStyle 4)
(ug_uilist_lable_2.Label "Text Area")
(.Decorated True)
(.DecoratedStyle 3)
(.Layout

(Grid (Rows 1 1 1 1) (Cols 1)
ug_uilist_label_1
ug_uilist_comp
ug_uilist_lable_2
ug_uilist_txtarea

)
)

)
)

(Layout ug_uilist_layout2
(Components

(PushButton ug_uilist_ok)
(PushButton ug_uilist_cancel)

)

(Resources
(ug_uilist_ok.Label "Ok")
(ug_uilist_ok.TopOffset 4)
(ug_uilist_ok.BottomOffset 4)
(ug_uilist_ok.RightOffset 20)
(ug_uilist_cancel.Label "Cancel")
(ug_uilist_cancel.TopOffset 4)
(ug_uilist_cancel.BottomOffset 4)
(ug_uilist_cancel.LeftOffset 20)
(.Layout

(Grid (Rows 1) (Cols 1 1 1)
ug_uilist_ok
(Pos 1 3)
ug_uilist_cancel

)
)

)
)

Example 15: Resource File for Dialog with Menubar
The example below shows the resource file used to create the dialog with
MenuBars as described in section Example 9: Resource File for Dialog with Four
Components on 2x2 Grid on page 452.
(Dialog menus

(Components
(MenuBar MenuBar1

MenuPane1

User Interface: Dialogs 457

MenuPane2)
(TextArea TextArea1)

)

(Resources
(TextArea1.Rows 10)
(TextArea1.Columns 25)
(.Label "Menubar dialog")
(.Layout

(Grid (Rows 1) (Cols 1)
TextArea1

)
)

)
)

(MenuPane MenuPane1
(Components

(PushButton PushButton1)
(PushButton PushButton2)

)

(Resources
(.Label "MenuPane1")

(PushButton1.Label "Button1")
(PushButton2.Label "Button2")
)

)

(MenuPane MenuPane2
(Components

(PushButton PushButton3)
(Separator Separator1)
(RadioGroup RadioGroup1)
(RadioGroup RadioGroup2)
(Separator Separator2)
(CascadeButton CascadeButton2

MenuPane4)
(CheckButton CheckButton1)

)

(Resources
(.Label "MenuPane2")

(PushButton3.Label "Pushbutton")
(RadioGroup1.Names "RG1"

"RG2")
(RadioGroup1.Labels "Radio group 1"

"Radio group 2")
(CascadeButton2.Label "Cascade button")
(CheckButton1.Label "Checkbutton")

)

458 Creo® Parametric TOOLKITUser’s Guide

)

(MenuPane MenuPane4
(Components

(PushButton PushButton5)
(PushButton PushButton6)

)

(Resources
(PushButton5.Label "Pushbutton")
(PushButton6.Label "Pushbutton")

)
)

Example 16: Progress Bar Resource File
(Dialog progressbars

(Components
(ProgressBar ProgressBar2)
(ProgressBar ProgressBar3)
(ProgressBar ProgressBar4)
(ProgressBar ProgressBar5)
(Label Label2)
(Label Label3)
(Label Label4)
(Label Label5)
(Separator Separator1)
(SpinBox SpinBox1)
(SpinBox SpinBox2)
(ThumbWheel ThumbWheel1)

)

(Resources
(ProgressBar2.ProgressStyle 0)
(ProgressBar2.TopOffset 4)
(ProgressBar2.BottomOffset 4)
(ProgressBar2.LeftOffset 4)
(ProgressBar2.RightOffset 4)
(ProgressBar3.ProgressStyle 1)
(ProgressBar3.TopOffset 4)
(ProgressBar3.BottomOffset 4)
(ProgressBar3.LeftOffset 4)
(ProgressBar3.RightOffset 4)
(ProgressBar4.TopOffset 4)
(ProgressBar4.BottomOffset 4)
(ProgressBar4.LeftOffset 4)
(ProgressBar4.RightOffset 4)
(ProgressBar5.ProgressStyle 3)
(ProgressBar5.TopOffset 4)
(ProgressBar5.BottomOffset 4)
(ProgressBar5.LeftOffset 4)

User Interface: Dialogs 459

(ProgressBar5.RightOffset 4)
(Label2.Label "No text")
(Label2.AttachLeft True)
(Label3.Label "Value")
(Label3.AttachLeft True)
(Label4.Label "Percentage")
(Label4.AttachLeft True)
(Label5.Label "Interval")
(Label5.AttachLeft True)
(Separator1.Orientation True)
(SpinBox1.Columns 8)
(SpinBox1.Editable False)
(SpinBox1.IntegerBase 8)
(SpinBox1.Rate 1)
(SpinBox1.InputType 3)
(SpinBox1.Digits 3)
(SpinBox1.DoubleFormat "%12.*le")
(ThumbWheel1.DecoratedStyle 4)
(ThumbWheel1.InfiniteRange False)
(.Layout

(Grid (Rows 1 1 1 1 1 1) (Cols 1 1 1)
(Pos 1 2)
Label2
ProgressBar2
(Pos 2 2)
Label3
ProgressBar3
(Pos 3 2)
Label4
ProgressBar4
(Pos 5 1)
Label5
Separator1
ProgressBar5
SpinBox1
SpinBox2
ThumbWheel1

)
)

)
)

Example 17: Component Visibility Resource File
For a programatic method of creating this dialog box refer to Example 3:
Controlling Component Visibility or Sensitivity at Runtime on page 390.

(Dialog uguivisibility
(Components

(SubLayout PushbuttonVisibility)

460 Creo® Parametric TOOLKITUser’s Guide

(PushButton CloseButton)
)

(Resources
(CloseButton.Label "Close")
(CloseButton.TopOffset 4)
(CloseButton.BottomOffset 4)
(CloseButton.LeftOffset 4)
(CloseButton.RightOffset 4)
(.Label "Component Visibility")
(.Layout

(Grid (Rows 1 1) (Cols 1)
PushbuttonVisibility

CloseButton
)

)
)

)

(Layout PushbuttonVisibility
(Components

(PushButton TargetBtn)
(CheckButton VisibleCheck)
(CheckButton SensitiveCheck)
(InputPanel ButtonLabel)

)
(Resources

(TargetBtn.Label "PushButton")
(TargetBtn.TopOffset 4)
(TargetBtn.BottomOffset 4)
(TargetBtn.LeftOffset 4)
(TargetBtn.RightOffset 4)
(TargetBtn.Resizeable True)
(VisibleCheck.Label "Visible")
(VisibleCheck.Set True)
(VisibleCheck.TopOffset 4)
(VisibleCheck.BottomOffset 4)
(VisibleCheck.LeftOffset 4)
(VisibleCheck.RightOffset 4)
(SensitiveCheck.Label "Sensitive")
(SensitiveCheck.Set True)
(SensitiveCheck.TopOffset 4)
(SensitiveCheck.BottomOffset 4)
(SensitiveCheck.LeftOffset 4)
(SensitiveCheck.RightOffset 4)
(ButtonLabel.Value "PushButton")
(ButtonLabel.TopOffset 4)
(ButtonLabel.BottomOffset 4)
(ButtonLabel.LeftOffset 4)
(ButtonLabel.RightOffset 4)
(.Label "PushButtons")
(.Layout

User Interface: Dialogs 461

(Grid (Rows 1) (Cols 1 1 1 1)
TargetBtn
VisibleCheck
SensitiveCheck
ButtonLabel

)
)

)
)

Example 18: Resource File for Dialog with Slider and Linked
InputPanel
This example shows the resource file for a dialog with slider and linked input
panel. For a programatic method of creating this dialog box refer to Example 4:
Source of Dialog with Slider and Linked InputPanel on page 395.
(Dialog angle

(Components
(SubLayout Layout1)
(SubLayout Layout2)

)
(Resources

(.Label "Angle")
(.DefaultButton "OK")
(.Layout

(Grid (Rows 1 1) (Cols 1)
Layout1 Layout2

)
)

)
)
(Layout Layout1

(Components
(Slider Slider)
(InputPanel InputPanel)
(Label Prompt)

)
(Resources

(Slider.MinInteger -180)
(Slider.MaxInteger 180)
(Slider.Length 12)
(Slider.Tracking True)
(Slider.TopOffset 4)
(Slider.BottomOffset 4)
(Slider.LeftOffset 4)
(Slider.RightOffset 4)
(InputPanel.Columns 4)
(InputPanel.AttachLeft False)
(InputPanel.AttachRight False)
(InputPanel.MinInteger -180)

462 Creo® Parametric TOOLKITUser’s Guide

(InputPanel.MaxInteger 180)
(InputPanel.TopOffset 4)
(InputPanel.BottomOffset 4)
(InputPanel.LeftOffset 4)
(InputPanel.RightOffset 4)
(InputPanel.InputType 2)
(Prompt.Label "Dummy text")
(.Layout

(Grid (Rows 1 1) (Cols 1)
Prompt
(Grid (Rows 1) (Cols 1 1)

Slider
InputPanel

)
)

)
)

)
(Layout Layout2

(Components
(PushButton OK)
(PushButton Cancel)

)
(Resources

(OK.Label "OK")
(OK.TopOffset 4)
(OK.BottomOffset 4)
(OK.LeftOffset 4)
(OK.RightOffset 4)
(Cancel.Label "Cancel")
(Cancel.TopOffset 4)
(Cancel.BottomOffset 4)
(Cancel.LeftOffset 4)
(Cancel.RightOffset 4)
(.Layout

(Grid (Rows 1) (Cols 1 1)
OK Cancel

)
)

)
)

Example 19: UG Tables Resource File
The following example shows a resource file containing a table. Components may
be assigned to a table through the table layout. Components of the table layout are
invisible until assigned or copied in to a table cell.
(Dialog uguitableexample

(Components
(SubLayout TableLayout)

User Interface: Dialogs 463

(SubLayout ButtonLayout)
(OptionMenu ToCopy)

)

(Resources
(ToCopy.Visible False)
(ToCopy.AttachTop True)
(ToCopy.AttachBottom True)
(ToCopy.Names "ONE"

"MANY")
(ToCopy.Labels "Select One"

"Select Many")
(.Label "UG Tables")
(.Layout

(Grid (Rows 1 0 1) (Cols 1)
TableLayout
ButtonLayout
ToCopy

)
)

)
)

(Layout TableLayout
(Components

(Table LargeTable)
)

(Resources
(LargeTable.Columns 40)
(LargeTable.MinRows 4)
(LargeTable.TopOffset 4)
(LargeTable.BottomOffset 4)
(LargeTable.LeftOffset 4)
(LargeTable.RightOffset 4)
(LargeTable.RowNames "A"

"B"
"C"
"D"
"E")

(LargeTable.ColumnNames "1"
"2"
"3"
"4")

(LargeTable.RowLabels "Alpha"
"Beta"
"Gamma"
"Delta"
"Epsilon")

(LargeTable.ColumnLabels "One"
"Two"

464 Creo® Parametric TOOLKITUser’s Guide

"Three"
"Four")

(LargeTable.ShowGrid True)
(.AttachLeft True)
(.AttachRight True)
(.AttachTop True)
(.AttachBottom True)
(.Layout

(Grid (Rows 1) (Cols 1)
LargeTable

)
)

)
)

(TableLayout LargeTable
(Components

(PushButton BaseButton)
(CheckButton BaseCheckButton)
(InputPanel BaseInputPanel)

)

(Resources
(BaseButton.Label "Table Button")
(BaseCheckButton.Label "Table Check Button")
(BaseInputPanel.Value "Table Input Panel")

)
)

(Layout ButtonLayout
(Components

(PushButton CloseButton)
(PushButton ModifySelectButton)
(Label Label1)

)

(Resources
(CloseButton.Label "Close")
(CloseButton.TopOffset 4)
(CloseButton.BottomOffset 4)
(CloseButton.LeftOffset 4)
(CloseButton.RightOffset 4)
(ModifySelectButton.Label "Toggle cells")
(ModifySelectButton.Visible False)
(ModifySelectButton.TopOffset 4)
(ModifySelectButton.BottomOffset 4)
(ModifySelectButton.LeftOffset 4)
(ModifySelectButton.RightOffset 4)
(.Layout

(Grid (Rows 1 1) (Cols 1 1 1)
(Pos 1 3)

User Interface: Dialogs 465

Label1
ModifySelectButton
CloseButton

)
)

)
)

Example 20: UG Tables Component Resource File
The following example demonstrates different methods that can be used to assign
components into table cells. The example directly assigns a stored component,
copies a stored component, copies a component from elsewhere in the dialog, and
copies a component from another independent dialog.
The Example 19: UG Tables Resource File on page 463 is the primary resource
file for the following example. The table components dialog is another dialog
from which the following resource code will copy a component into the table.
For a programatic method of assigning components into table cells refer to
Example 5: To Assign Components into Table Cells on page 404.
(Dialog uguitablecomponents

(Components
(PushButton ExternalButtonToCopy)

)

(Resources
(ExternalButtonToCopy.Label "From other dialog...")
(.Layout

(Grid (Rows 1) (Cols 1)
ExternalButtonToCopy

)
)

)
)

466 Creo® Parametric TOOLKITUser’s Guide

19
User Interface: Dashboards

Introduction to Dashboards .. 468
Dashboard.. 468
Dashboard Page ... 471

This chapter introduces the basics of dashboards and describes how Creo
Parametric TOOLKIT offers the capability to create and control dashboards. Creo
Parametric TOOLKIT applications can construct dashboards for any tool where
they would typically require a dialog box.
The behavior of the Creo Parametric TOOLKIT dashboard is similar to the Creo
Parametric dashboard. The TOOLKIT dashboards use the same commands and
dismiss mechanism as the native Creo Parametric dashboard. However, individual
commands may have different accessibility logic and so different dashboards can
have slightly different commands available.

467

Introduction to Dashboards
A dashboard is an embedded "dialog box" at the top of the Creo Parametric
graphics window. A dashboard typically appears when you create or modify a
feature in Creo Parametric. It offers the necessary controls, inputs, status and
guidance for creating or editing of features.

Dashboard components

1 Tool Icon
2 Dialog Bar
3 Slide-down Panels
4 Standard Buttons

A dashboard consists of the following components:

• A main dialog bar, which show the commonly used commands and entry
fields. You perform most of your modeling tasks in the graphics window and
the dialog bar. When you activate a tool, the dialog bar displays commonly
used options and collectors.

• Standard buttons for controlling the tool.
• Slide-down panels that open to reveal less commonly-used functionality. You

can use them to perform advanced modeling actions or retrieve comprehensive
feature information.

• A bitmap identifies the tool (typically the same icon used on buttons that
invoke the tool).

Creo Parametric uses the dashboard to create features that involve extensive
interaction with user interface components and geometry manipulation. You can
use dashboards in Creo Parametric TOOLKIT applications:

• Where a dialog box is too large in size or is intrusive onto the graphics
window. Dashboards enable you to make a smooth-flow tool.

• To present a streamlined "simple-user" activity with more complicated actions
available to "expert users".

• Where Creo Parametric TOOLKIT dashboards are not only limited to feature
creation activities and solid model modes.

Dashboard
An opaque pointer ProUIDashboard is a handle to the overall dashboard tool
after it has been shown.

468 Creo® Parametric TOOLKITUser’s Guide

Showing a Dashboard
Functions Introduced:

• ProUIDashboardShow()
• ProUIDashboardshowoptionsAlloc()
• ProUIDashboardshowoptionsNotificationSet()
• ProUIDashboardshowoptionsTitleSet()
• ProUIDashboardshowoptionsIconSet()
• ProUIDashboardshowoptionsHelpTextSet()
• ProUIDashboardshowoptionsDefaultOpenSet()
• ProUIDashboardshowoptionsFree()
• ProUIDashboardDestroy()
Use the function ProUIDashboardShow() to push a new dashboard User
Interface into the dashboard stack mechanism. The dashboard will be shown in the
message area of Creo Parametric. This function creates an event loop, and thus
does not exit until the dashboard is being dismissed.
Use the function ProUIDashboardshowoptionsAlloc() to allocate a
handle containing data used to build a dashboard. The input arguments for this
function are:

• main_page—Specifies the main page for the dashboard.
• slideup_pages—Specifies a ProArray of handles representing the slide-

down pages, if needed.
• appdata—Specifies the application data to be stored with the dashboard.
Use the function ProUIDashboardshowoptionsNotificationSet() to
assign a callback function to be called for the indicated event occurrence in the
dashboard. The input arguments for this function are:

• options—Specifies a handle to data used to build a dashboard.
• notification—Specifies the notification function to be called for the given

event.
• appdata—Specifies the application data to be passed to the callback function

when it is invoked.
You can register event notifications for the following events on the dashboard:

• PRO_UI_DASHBOARD_CREATE—when the dashboard is first initialized
(before the pages are initialized).

• PRO_UI_DASHBOARD_SHOW—when the dashboard is shown or resumed.
• PRO_UI_DASHBOARD_HIDE—when the dashboard is paused and replaced

by another tool.

User Interface: Dashboards 469

• PRO_UI_DASHBOARD_ENTER—when you switch to a dashboard from
another component in the ribbon user interface

• PRO_UI_DASHBOARD_EXIT—when you leave the dash board and return to
a component on the ribbon user interface

• PRO_UI_DASHBOARD_DISMISS—upon the dashboard “close” event.
• PRO_UI_DASHBOARD_DESTROY—when the dashboard is finally destroyed.
The function ProUIDashboardshowoptionsTitleSet() sets the title of
the dashboard. The input arguments of this function are:
• dash_options—Specifies the handle containing data that is used to build the

dashboard.
• title—Specifies the title of the dashboard.
Use the function ProUIDashboardshowoptionsIconSet() to set an icon
for the specified dashboard. This is the first icon in the first group from the left on
the dashboard.
The function ProUIDashboardshowoptionsHelpTextSet() sets the
help text for the specified dashboard.

• 1. Dashboard icon
• 2. Dashboard help text
Use the function ProUIDashboardshowoptionsDefaultOpenSet() to
set the specified dashboard as the open by default page. The input arguments
follow:
• dash_options—Specify the handle to the data used to build the dashboard.
• page_name—Specify the page name to be opened by default.
You can use the function ProUIDashboardshowoptionsFree() to free a
handle containing the data used to build a dashboard.
Use the function ProUIDashboardDestroy() to pop the dashboard from the
dashboard stack mechanism. The dashboard User Interface will be destroyed.

Accessing a Dashboard
Functions Introduced:

470 Creo® Parametric TOOLKITUser’s Guide

• ProUIDashboardUserdataGet()
• ProUIDashboardStdlayoutGet()
• ProUIDashboardBitmapSet()
Use the functions ProUIDashboardUserdataGet() to get the application
data you attached to the dashboard items upon registration. This can be used to
store the current state of the tool, and thus to control the visibility of components.
Creo Parametric TOOLKIT does not currently provide access to create the feature
dashboard’s standard buttons. However, you can use
ProUIDashboardStdlayoutGet() to get the layout name where you can
create and place the buttons in the standard button area. Typically this consists of
(at least) OK and Cancel buttons.
Use the function ProUIDashboardBitmapSet() to assign the icon for the
dashboard, which appears to the left of the slide-down panel buttons.

Dashboard Page
Each section of content in a dashboard is called a dashboard page. The opaque
handle ProUIDashboardPage represents an individual page, that is, either the
dialog bar, or a single slide-down panel.

Dashboard Page Options
Functions Introduced:

• ProUIDashboardpageoptionsAlloc()
• ProUIDashboardpageoptionsNotificationSet()
• ProUIDashboardpageoptionsFree()
Use the function ProUIDashboardpageoptionsAlloc() to allocate a
handle representing a single page (or layout) that will be shown in a dashboard.
The input arguments for this function are:

• page_name— Specifies the page name (must be unique).
• resource_name—Specifies the name of the resource file to use (whose top

component must be a layout, not a dialog). If NULL, an empty default layout is
used.

• application_data—Specifies the application data stored for the page.
Use the function ProUIDashboardpageoptionsNotificationSet() to
assign a function to be called upon a certain event occurring in the dashboard. The
input arguments for this function are:

User Interface: Dashboards 471

• options—Specifies a handle representing a dashboard page.
• notification—Specifies the function to be called upon the designated event

occurrence.
• appdata—Specifies the application data passed to the callback function when

it is invoked.
You can register event notifications for the following events on the dashboard
page:

• PRO_UI_DASHBOARD_PAGE_CREATE—when the page is first created.
• PRO_UI_DASHBOARD_PAGE_SHOW—when the page is shown (slide-down

panels only).
• PRO_UI_DASHBOARD_PAGE_HIDE—when the page is hidden (slide-down

panels only).
• PRO_UI_DASHBOARD_PAGE_DESTROY—when the page is destroyed.
You can use the function ProUIDashboardpageoptionsFree() to free a
handle representing a single page (or layout) that will be shown in a dashboard.

Accessing a Dashboard Page
Functions Introduced:

• ProUIDashboardPageGet()
• ProUIDashboardpageTitleSet()
• ProUIDashboardpageForegroundcolorSet()
• ProUIDashboardStdlayoutDefaultBtnsAdd()
• ProUIDashboardStdlayoutButtonAdd()
• ProUIDashboardStdlayoutDefaultButtonNameGet()
• ProUIDashboardPauseresumeButtonStateGet()
• ProUIDashboardPauseresumeButtonStateSet()
• ProUIDashboardpageStateSet()
• ProUIDashboardpageNameGet()
• ProUIDashboardpageDashboardGet()
• ProUIDashboardpageUserdataGet()
• ProUIDashboardpageClose()
Use the function ProUIDashboardPageGet() to obtain the handle to a given
page from the dashboard. The input arguments for this function are:

472 Creo® Parametric TOOLKITUser’s Guide

• dashboard—Specifies the dashboard handle.
• name—Specifies the page name. Pass NULL to get the handle to the main

page.
Use the function ProUIDashboardpageTitleSet() to assign the title
string for the dashboard page. This will be shown as the button name for the slide-
down panel. This should typically be called from the CREATE notification of the
dashboard page.
Use the function ProUIDashboardpageForegroundcolorSet() to set
the text color for the button that invokes a slide-down panel. This technique is
used in several Creo Parametric tools to notify the user that they must enter one of
the panels to complete the tool.
The function ProUIDashboardStdlayoutDefaultBtnsAdd() adds new
standard push buttons to the Creo Parametric dashboard. The input arguments
follow:
• pageHandler—A handle to the dashboard page.
• buttons—The bit mask to identify the buttons to be added. This value is

defined by the enumerated data type
ProUIDashboardStdLayoutButton. The valid values are as follows:
○ PRO_UI_DASHBOARD_BUTTON_PAUSE_RESUME

○ PRO_UI_DASHBOARD_BUTTON_PREVIEW

○ PRO_UI_DASHBOARD_BUTTON_OK

○ PRO_UI_DASHBOARD_BUTTON_CANCEL

The function ProUIDashboardStdlayoutButtonAdd() adds a new push
button to the Creo Parametric dashboard. This function is executed only once
during a Creo Parametric session for each push button. Subsequent calls to this
function for a previously loaded push button are ignored. The input arguments
follow:
• page_handle—A handle to the dashboard page.
• button_Name—A unique name for the push button. The maximum size should

be less than PRO_NAME_SIZE.
• button_label—A label for the push button. The maximum size should be less

than PRO_LINE_SIZE.
• one_line_help—A one-line help for the push button. The maximum size

should be less than PRO_LINE_SIZE
• icon—An image of the push button.
• filename—The name of the message file that contains the label and help

string.
PRO_NAME_SIZE and PRO_LINE_SIZE are defined in the
ProSizeConst.h header file.

User Interface: Dashboards 473

The function ProUIDashboardStdlayoutDefaultButtonNameGet()
returns the default name of the specified button id. The output argument
button_name is in the form of a character string. Use the function
ProStringFree() to free this string.
The function ProUIDashboardPauseresumeButtonStateGet() returns
the state of the button. The output argument state is defined by the enumerated
data type ProUIDashboardPauseResumeButtonState and the valid are
as values follows:
• ProUIDashboardButtonPauseState—Specifies that the button is in a

paused state.
• ProUIDashboardButtonResumeState—Specifies that the button is in

a resume state.
Use the function ProUIDashboardPauseresumeButtonStateSet() to
set the pause or resume state of the button.
Use the function ProUIDashboardpageStateSet() to modify the visibility
of the button that opens the dashboard page according to the page state. This
function affects the background and foreground of the button. The input
arguments follow:
• page—Handle to the dashboard page defined by ProUIDashboardPage.
• state—State of the page defined by the enumerated data type

ProUIDashboardPageState. The valid values are as follows:
○ PRO_UI_DASHBOARD_PAGE_DEFAULT_STATE

○ PRO_UI_DASHBOARD_PAGE_WARNING_STATE

○ PRO_UI_DASHBOARD_PAGE_ERROR_STATE

Use the function ProUIDashboardpageNameGet() to obtain the name of
the page.
Use the function ProUIDashboardpageDashboardGet() to obtain the
dashboard that owns this page.
Use the function ProUIDashboardpageUserdataGet()to obtain the
application stored with this dashboard page on registration.
Use the function ProUIDashboardpageClose() to close the dashboard
slide-down page.

Accessing Components in the Dashboard Pages
Components added to the dashboard are actually "owned" by the Creo Parametric
dialog window. Creo Parametric automatically modifies the names of components
loaded from resource files to ensure that no name collisions occur when the
components are added. The functions in this section allow you to locate the names
of components that you need to access.

474 Creo® Parametric TOOLKITUser’s Guide

Functions Introduced:

• ProUIDashboardpageDevicenameGet()
• ProUIDashboardpageComponentnameGet()
Use the function ProUIDashboardpageDevicenameGet() to obtain the
device name owning the dashboard page. This name should be used in other
ProUI functions to access the components stored in the dashboard page.
Use the function ProUIDashboardpageComponentnameGet() to obtain
the real component name in the dashboard page, if the page contents were loaded
from a layout. This name should be used in ProUI functions for accessing a
component in the dashboard.

User Interface: Dashboards 475

20
User Interface: Basic Graphics

Manipulating Windows... 477
Flushing the Display Commands to Window .. 482
Solid Orientation.. 483
Graphics Colors and Line Styles... 486
Displaying Graphics... 490
Displaying Text.. 491
Validating Text Styles... 493
Display Lists ... 493
Getting Mouse Input .. 495
Cosmetic Properties .. 495
Creating 3D Shaded Data for Rendering ... 500

This chapter describes all the functions provided by Creo Parametric TOOLKIT
that create and manipulate graphics and object displays.
Creo Parametric TOOLKIT refers to windows using integer identifiers. The base
window (the big graphics window created automatically when you enter Creo
Parametric) is window 0, and the text message window at the bottom is window 1.
In many of the functions in this section, you can use the identifier “–1” to refer to
the current window (the one current to the Creo Parametric user).

476 Creo® Parametric TOOLKITUser’s Guide

Manipulating Windows
This section describes how to manipulate windows using Creo Parametric
TOOLKIT . It is divided into the following subsections:

• Resizing Windows on page 477
• Manipulating the Embedded Browser in Windows on page 478
• Repainting Windows on page 478
• Controlling Which Window is Current on page 479
• Creating and Removing Windows on page 480
• Retrieving the Owner of a Window on page 481
• Visiting Windows on page 481
• Activating Windows on page 482

Windows
Functions Introduced:

• ProWindowNameGet()
The function ProWindowNameGet() returns the window name for the
specified window identifier. The input parameter win_id is the identifier of the
Creo Parametric window. The output parameter win_name is the name of the Creo
Parametric window.

Resizing Windows
Functions Introduced:

• ProWindowSizeGet()
• ProGraphicWindowSizeGet()
• ProWindowPixelOutlineGet()
• ProWindowCoordinatePixelGet()
The function ProWindowSizeGet() returns the size of the Creo Parametric
window including the User Interface border.
The function ProGraphicWindowSizeGet() returns the size of the Creo
Parametric graphics window without the border. If the window occupies the whole
screen. the window size is returned as 1. If the screen is 1024 pixels wide and the
window is 512 pixels, the width will be returned as 0.5.
The function ProWindowPixelOutlineGet() returns the outline of the
Creo Parametric window in pixels. The outline is the height and width of the
graphic area.

User Interface: Basic Graphics 477

The function ProWindowCoordinatePixelGet() converts the Windows
coordinates received through the input argument point into Pixel coordinates. The
input arguments are as follows:
• window_id—Valid window identifier.
• point—Window space 3D coordinates given by ProArray of the

Pro3dPnt object.
The output argument pixelSpaceCoord is the 2D pixel coordinates in integers and
is returned by a ProArray of the Pro2dPnt object.

Manipulating the Embedded Browser in Windows
Functions Introduced:

• ProWindowBrowserSizeGet()
• ProWindowBrowserSizeSet()
• ProWindowURLShow()
• ProWindowURLGet()
The functions ProWindowBrowserSizeGet() and
ProWindowBrowserSizeSet() enable you to find and change size of the
embedded browser in the Creo Parametric window. These functions refer to the
browser size in terms of a percentage of the graphics window (0.0 to 100.0).

Note
The functions ProWindowBrowserSizeGet() and
ProWindowBrowserSizeSet() are not supported if the browser is open
in a separate window.

The functions ProWindowURLGet() and ProWindowURLShow() enable
you to find and change the URL displayed in the embedded browser in the Creo
Parametric window.

Repainting Windows
Functions Introduced:

• ProWindowClear()
• ProWindowRepaint()
• ProWindowRefresh()
• ProWindowRefit()
• ProTreetoolRefresh()

478 Creo® Parametric TOOLKITUser’s Guide

The function ProWindowClear() temporarily removes all graphics from the
specified window. If you give the function a window identifier of –1, it clears the
current window.
This function is not equivalent to the Creo Parametric option to quit the window.
It does not break the connection between the current solid and the window. That is
the purpose of the function ProWindowDelete(), described later in this
chapter.
The ProWindowRepaint() function is equivalent to the Creo Parametric
command Repaint in the Graphics toolbar, and removes highlights. The function
accepts –1 as the identifier, which indicates the current view.
The function ProWindowRefresh() is designed primarily for the purposes of
animation. It updates the display very efficiently, but does not remove highlights.
The function accepts –1 as the window identifier, which indicates the current
window.
The function ProWindowRefit() performs exactly the same action as the
Creo Parametric command View ▶ Refit . (It does not accept -1 as the current
window. Use ProWindowCurrentGet() if you need the id of the current
window.)
The function ProTreetoolRefresh() refreshes the display of the model tree
for the specified model. This function is useful when you are modifying the model
in some way, such as when you are creating patterns or features.

Controlling Which Window is Current
Functions Introduced:

• ProWindowCurrentGet()
• ProWindowCurrentSet()
• ProAccessorywindowAboveactivewindowSet()
The functions ProWindowCurrentGet() and ProWindowCurrentSet()
enable you to find out and change the current window. The window is active only
for the purposes of the other Creo Parametric TOOLKIT commands that affect
windows.
The function ProWindowCurrentSet() is not equivalent to the Creo
Parametric command to activate the window and has no effect on the object
returned by ProMdlCurrentGet().
The function ProAccessorywindowAboveactivewindowSet() allows
you to display the accessory window always above the active Creo Parametric
window, for the current Creo Parametric TOOLKIT application. Pass the input
argument above_active_window as PRO_B_TRUE to display the accessory
window on top of the current window. To remove this setting, pass the input
argument above_active_window as PRO_B_FALSE.

User Interface: Basic Graphics 479

Note
The configuration option accessory_window_above allows you to
control the display of accessory window in Creo Parametric. The valid values
are:

• yes—Always displays the accessory window above the active window.
• no—Does not display the accessory window above the active window.

Here, whichever is the active window is displayed on top.

Creating and Removing Windows
Functions Introduced:

• ProObjectwindowMdlnameCreate()
• ProWindowDelete()
• ProWindowCurrentClose()
• ProAccessorywindowWithTreeMdlnameCreate()
The function ProObjectwindowMdlnameCreate() opens a new window
containing a specified solid. The solid must already be in memory. If a window is
already open on that solid, the function returns the identifier of that window. If the
Main Window is empty, the function uses it instead of creating a new one. The
section Graphics Colors and Line Styles on page 486 shows how to use
ProObjectwindowMdlnameCreate().
The function ProWindowDelete() closes a window and breaks the object-to-
window attachment. The function deletes the window, if it is not the base window.
You cannot break the attachment for the currently active window. Use the function
ProWindowCurrentSet() to make a different window be the current window
before calling this function.
The function ProWindowDelete() is the equivalent of the Creo Parametric
command to quit the window. If the window is not the Main Window, it is also
deleted from the screen.
To close the current window, use the function ProWindowCurrentClose().
When you call this function, the control must be returned to Creo Parametric to
close the current window.
This function duplicates the behavior of the View ▶ Close command in Creo
Parametric. If the current window is the original window created when Creo
Parametric was started, the function clears the window; otherwise, the function
removes the window from the screen.

480 Creo® Parametric TOOLKITUser’s Guide

Note
Any work done since the last save will be lost.

In Creo Parametric, when the main window is active, you can open an accessory
window for operations such as edit an inserted component or a feature, preview an
object, select a reference, and some other operations. The model tree associated
with this Creo Parametric object is also displayed in the accessory window. For
more information about the accessory window, refer the Creo Parametric help.
In Creo Parametric TOOLKIT , the function
ProAccessorywindowWithTreeMdlnameCreate() opens an accessory
window containing the specified object. If a window is already open with the
specified object, the function returns the identifier of that window. If an empty
window exists, the function uses that window to open the object. The input
argument tree_flag controls the display of the model tree in the accessory window.
If this flag is set to PRO_B_TRUE the model tree is displayed.

Retrieving the Owner of a Window
Function Introduced:

• ProWindowMdlGet()
The function ProWindowMdlGet() retrieves the Creo Parametric model that
owns the specified window. This function gives you details about the window
needed to perform necessary actions on it.

Note
If no model is associated with the specified window, Creo Parametric
TOOLKIT returns NULL as a model pointer and PRO_TK_NO_ERROR as a
return value.

Visiting Windows
Function Introduced:

• ProWindowsVisit()
The function ProWindowsVisit() enables you to visit all the Creo Parametric
windows. For a detailed explanation of visiting functions, see the section Visit
Functions in the Fundamentals on page 22 chapter.

User Interface: Basic Graphics 481

Activating Windows
Function Introduced:

• ProWindowActivate()
The function ProWindowActivate() activates the specified window and sets
it as the current window. When you call this function, the control must be returned
to Creo Parametric to activate the specified window.
You can regain control by registering callback using the function
ProUIDialogAppActionSet().
This functionality is equivalent to changing the active window by selecting and
activating a window using the pull-down menu of Windows command under the
View tab in Creo Parametric.

Note
This function works in asynchronous graphics mode only.

Flushing the Display Commands to
Window
Function Introduced:

• ProWindowDeviceFlush()
When an application sends commands to display graphics, these calls are buffered.
The buffered commands are executed whenever there is a movement of mouse in
the graphics window. If the Creo Parametric TOOLKIT application modifies the
current display, but does not have any interaction with the graphics window, the
function ProWindowDeviceFlush() must be called. The function flushes the
buffers and executes all the display commands on the specified window. For
example, consider a link which is clicked in an embedded browser. This link alters
the display in the graphics window. As there is no movement of the mouse in the
graphics window, the function ProWindowDeviceFlush() must be called to
execute the display calls.

Note
You must not call this function often, as it causes the systems running on
Windows Vista and Windows 7 to slow down. It is recommended that you call
this function only after you complete all the display operations.

482 Creo® Parametric TOOLKITUser’s Guide

Solid Orientation
Functions Introduced:

• ProWindowCurrentMatrixGet()
• ProViewMatrixGet()
• ProViewMatrixSet()
• ProViewReset()
• ProViewRotate()
• ProWindowPanZoomMatrixSet()
• ProViewRefit()
Each graphics window in solid (Part or Assembly) mode has two transformation
matrices associated with it—the view matrix and the window matrix. The view
matrix describes the transformation between solid coordinates and screen
coordinates. Therefore, the view matrix describes the orientation of the solid in the
window.
The window matrix is the transformation between screen coordinates and window
coordinates. The window matrix describes the pan and zoom factors. The screen
coordinate at which a particular point on a solid is displayed is not affected by
pans and zooms—this affects window coordinates only.
The view matrix is important because the mouse input functions and some of the
graphics drawing functions use screen coordinates, while all solid geometry uses
solid coordinates. The view matrix enables you to transform between the two
systems. The function ProWindowCurrentMatrixGet() provides the
window matrix for the current window.
The function ProWindowPanZoomMatrixSet() enables you to set the pan
and zoom matrix (window matrix) for the current window.
The function ProViewRefit() zooms and pans the view to display the
specified object in the window. The input arguments are:
• model—Handle to the object. The supported object types are drawing, part,

and assembly.
• view—Handle to the view, which is used to display the object. If the object is a

solid model, and is displayed in the current window, you can pass the
argument as NULL.

If the object is a drawing, pass the handle to the background view. Use the
function ProDrawingBackgroundViewGet() to get the handle to the
background view.

User Interface: Basic Graphics 483

Getting and Setting the View Matrix
The function ProViewMatrixGet() provides the view matrix for a specified
window. Set the view argument to NULL for the current view.
The function ProViewMatrixSet() enables you to set the view matrix (if
normalized), and therefore the orientation of the solid in the view.

Note
Function ProViewMatrixSet() does not cause the view to be repainted.

A 4x4 transformation matrix describes a shift and a scaling, as well as a
reorientation. You set the view matrix to define a new orientation. Creo Parametric
applies its own shift and scaling to the view matrix you provide to ensure that the
solid fits properly into the view. This implies the following:

• The matrix output by ProViewMatrixGet() is not the same as the one
you previously input to the function ProViewMatrixSet(), although its
orientation is the same.

• Each row of the matrix you provide to ProViewMatrixSet() must have a
length of 1.0, and the bottom row must be 0, 0, 0, 1.

• The matrix you provide to ProViewMatrixSet() must be normalized—it
cannot include scaling or shift. Example 1: Saving Three Views on page 502
shows how to normalize a matrix.

Converting a Matrix to Orthonormal
Functions Introduced:

• ProMatrixMakeOrthonormal()
The function ProMatrixMakeOrthonormal() converts a non-orthonormal
matrix to an orthonormal matrix with the specified scaling factor.
The input arguments follow:
• inMatrix—The matrix to be converted to orthonormal.
• intended_scale—Scale factor to be applied on the matrix.

Storing Named Views
Functions Introduced:

• ProViewStore()
• ProViewRetrieve()

484 Creo® Parametric TOOLKITUser’s Guide

• ProViewNamesGet()
• ProViewFromModelitemGet()
• ProViewNameLineGet()
• ProViewIdFromNameLineGet()
• ProViewNameSet()
• ProViewDelete()
The ProViewStore() and ProViewRetrieve() functions enable you to
save and use a named view of the solid. They are equivalent to the Creo
Parametric View ▶ Reorient commands Save, and Set in the Saved Views tab,
under the Orientation dialog box. You can then select the view you want from the
list of view names.
The function ProViewNamesGet() retrieves the names of the views in the
specified solid.
The function ProViewFromModelitemGet() retrieves the view handle from
a model item handle. The model item must be of type PRO_VIEW.
The function ProViewNameGet() has been superseded by the function
ProViewNameLineGet(). The function ProViewNameLineGet()
retrieves the name of the view from the view handle.
The function ProViewIdFromNameGet() has been superseded by the
function ProViewIdFromNameLineGet(). The function
ProViewIdFromNameLineGet() retrieves the ID of the view. The input
arguments are:
• model—Specifies the handle to the part or assembly associated with the

drawing, or to the drawing that contains the view. This argument cannot be
NULL.

• view_name—Specifies the name of the view. This argument cannot be NULL.
The function ProViewNameSet() sets the name of the view in the specified
solid. The inputs arguments are:
• model—Specifies the handle to a part, assembly, or drawing. This argument

cannot be NULL.
• p_view—Specifies the handle of the view.
• p_name—Specifies the name of the view.
The function ProViewDelete() deletes the view from the specified solid. The
input arguments are:
• model—Specifies the handle to a part, assembly, drawing. This argument

cannot be NULL.
• p_view—Specifies the handle of the view.

User Interface: Basic Graphics 485

Example 1: Saving Three Views
The sample code in UgGraphViewsSave.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_graphics shows
how to set the view matrix and store a named view.

Graphics Colors and Line Styles
Creo Parametric uses several predefined colors in its color map. The colors are
represented by the values of ProColorType(), defined in the file
ProToolkit.h. The names of the types generally indicate what they are used
for in Creo Parametric, although many colormap entries are used for several
different purposes. These also correspond to the system colors presented to the
user through the user interface.

Note
PTC reserves the right to change both the definitions of the predefined
colormap and also of the assignment of entities to members of the color map
as required by improvements to the user interface. PTC recommends not
relying on the predefined RGB color for displaying of Creo Parametric
TOOLKIT entities or graphics, and also recommends against relying on the
relationship between certain colormap entries and types of entities. The
following section describe how to construct your application so that it does not
rely on potentially variant properties in Creo Parametric.

Setting Colors to Desired Values
Functions Introduced:

• ProTextColorModify()
• ProGraphicsColorModify()
The functions ProTextColorModify() and
ProGraphicsColorModify() enable you to select a different color to be
used for either of the following:

• Graphics text—User custom text drawn by the
ProGraphicsTextDisplay. Graphics text is by default displayed using
PRO_COLOR_LETTER.

• Graphics—User custom graphics drawn by ProGraphics function, which is
by default displayed using PRO_COLOR_DRAWING.

486 Creo® Parametric TOOLKITUser’s Guide

Both functions only affect the color used for new graphics, you draw using Creo
Parametric TOOLKIT , not the colors used for items Creo Parametric draws.
Both functions take a ProColor structure as input. This structure allows you to
specify color by one of the following three methods:

• DEFAULT—use the default Creo Parametric color entry for new graphics or
text.

• TYPE—use a predefined ProColortype color.
• RGB - use a custom RGB value. This method should be used for any graphics

which should not be allowed to change color (for example; if an application
wants a yellow line on the screen that should always be yellow and not depend
on the chosen color scheme.

Both functions output the value of the previous setting. It is good practice to
return the color to its previous value after having finished drawing an object.

Setting Colors to Match Existing Entities
Functions Introduced:

• ProColorByTypeGet()
The functions ProGraphicsColorModify() and
ProColorTextModify() allow you to draw graphics that will change color
based on changes to the Creo Parametric colormap. This allows you to draw
entities in similar colors to related entities created by Creo Parametric. However,
if the associations between objects and colormap entries should change in a new
release of Creo Parametric, the association between the application entities and the
Creo Parametric entities would be lost. The function ProColorByTypeGet()
returns the standard colormap entry corresponding to a particular entity in Creo
Parametric. This allows applications to draw graphics that will always match the
color of a particular Creo Parametric entity.

Example 2: Setting the Graphics Color to a Specific RGB
Value
The sample code in UgGraphColorsAdjust.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
graphics shows how to set the graphics color to a specific RGB value.

User Interface: Basic Graphics 487

Example 3: Setting The Graphics Color to Follow the Color
of Creo Parametric Entity
The sample code in UgGraphColorsAdjust.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
graphics shows how to set the graphics color to follow the color of Creo
Parametric Entity.

Modifying the Creo Parametric Color Map
Functions Introduced:

• ProColormapGet()
• ProColormapSet()
These functions enable you to find out and alter the color settings for Creo
Parametric. Each color is defined in terms of the red, green, and blue values. The
RGB values should be expressed in a range from 0.0 to 1.0. Note that some colors
related to selection and highlighting are fixed and may not be modified.
Creo Parametric uses these colors for everything it displays.
Changes to the color map are preserved for the rest of the Creo Parametric
session. If you want to have permanent changes, call ProColormapSet() in
user_initialize().

Note
Changing the Creo Parametric color map can have unintended effects if the
user has chosen an alternate color scheme. It may cause certain entries to
blend into the background or to be confused with other types of entries.

Example 4: Modifying the Color of the HALF_TONE Display
The sample code in UgGraphColorsAdjust.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
graphics shows how to modify the default half-tone color (gray) to a brighter
color, using the function ProColormapSet(). Creo Parametric uses half-tone
color to display hidden lines.

Creo Parametric Color Schemes
Functions Introduced:

• ProColormapAlternateschemeGet()
• ProColormapAlternateschemeSet()

488 Creo® Parametric TOOLKITUser’s Guide

The functions ProColormapAlternateschemeGet() and
ProColormapAlternateschemeSet() enable you to change the color
scheme of Creo Parametric to a predefined color scheme by turning on and off the
blended background (light to dark grey) for alternate schemes. The possible
alternate color schemes are as follows:

• PRO_COLORMAP_ALT_BLACK_ON_WHITE—Displays black entities shown
on a white background.

• PRO_COLORMAP_ALT_WHITE_ON_BLACK—Displays white entities shown
on a black background.

• PRO_COLORMAP_ALT_WHITE_ON_GREEN—Displays white entities shown
on a dark green background.

• PRO_COLORMAP_OPTIONAL1—Represents the color scheme with a dark
background.

• PRO_COLORMAP_OPTIONAL2—Represents the color scheme with a
medium background.

• PRO_COLORMAP_CLASSIC_WF—Resets the color scheme to the light to
dark grey background (default upto Pro/ENGINEER Wildfire 4.0).

• PRO_COLORMAP_ALT_DEFAULT—Resets the color scheme to the default
color scheme of light to dark blue gradient background (from Pro/ENGINEER
Wildfire 5.0 onwards).

Setting Line Styles for Creo Parametric TOOLKIT
Graphics
Functions Introduced:

• ProLinestyleSet()
• ProLinestyleDataGet()
• ProGraphicsModeSet()
The function ProLineStyleSet() enables you to set the style of graphics you
draw. The function ProLinestyleDataGet()queries the definition of the
line style.
The possible values for the line style are as follows:

• PRO_LINESTYLE_SOLID—Solid line
• PRO_LINESTYLE_DOT—Dotted line
• PRO_LINESTYLE_CENTERLINE—Alternating long and short dashes
• PRO_LINESTYLE_PHANTOM—Alternating long dashes and two dots

User Interface: Basic Graphics 489

Displaying the Color Selection Dialog Box
Function Introduced:

• ProUIColorSelectionShow()

The function ProUIColorSelectionShow() displays the dialog box used to
select values for the red, green, blue (RGB) colors. The input arguments of this
function are:
• title – Specifies the title of the selection dialog box. If this argument is

NULL, the default value RGB will be used.
• default_rgb_color – Specifies the default RGB values that will be

displayed when the dialog box is opened. The color black is selected, if the
value specified for this argument is invalid.

Displaying Graphics
Functions Introduced:

• ProGraphicsPenPosition()
• ProGraphicsLineDraw()
• ProGraphicsPolylineDraw()
• ProGraphicsMultiPolylinesDraw()
• ProGraphicsArcDraw()
• ProGraphicsCircleDraw()
• ProGraphicsPolygonDraw()
All the functions in this section draw graphics in the current window (the Creo
Parametric current window, unless redefined by a call to
ProWindowCurrentSet()), and use the color and line style set by calls to
ProGraphicsColorSet() and ProLinestyleSet(). The functions draw
the graphics in the Creo Parametric graphics color. The default graphics color is
white.
By default, the graphics elements are not stored in the Creo Parametric display
list, so they do not get redrawn by Creo Parametric when the user selects the
Repaint command or the orientation commands in the Orientation group in the
View tab. However, if you store graphics elements in either 2-D or 3-D display
lists, Creo Parametric redraws them. See the section Display Lists on page 493 for
more information.
The functions ProGraphicsPenPosition() and
ProGraphicsLineDraw() draw three-dimensional polylines in solid mode,
and take solid coordinates.

490 Creo® Parametric TOOLKITUser’s Guide

The function ProGraphicsPenPosition() sets the point at which you want
to start drawing the line. The function ProGraphicsLineDraw() draws a line
to the given point from the position given in the last call to either of the two
functions. You call ProGraphicsPenPosition() for the start of the
polyline, and ProGraphicsLineDraw() for each vertex.
If you use these functions in Drawing mode they work correctly, but use screen
coordinates instead of solid coordinates.
The ProGraphicsPolylineDraw() and
ProGraphicsMultiPolylinesDraw() functions also draw polylines, but
you need to have the whole polyline defined in a local array before you call either
function. If you are drawing many lines, use
ProGraphicsMultipolylinesDraw() to minimize the number of function
calls.
The function ProGraphicsArcDraw() draws an arc, in screen coordinates.
The function ProGraphicsCircleDraw() uses solid coordinates for the
center of the circle and the radius value, but draws the circle parallel to the plane
of the window. You can position the circle at a chosen solid vertex, for example,
and the circle will always be clearly visible as a circle, regardless of the current
solid orientation.

Example 5: Displaying Lines and Circles
The sample code in UgGraphLineCircleDraw.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
graphics shows how to draws a circle at each point and draws lines between
the points.
In this example, the user selects a series of points on a part surface.

Displaying Text
Function Introduced:

• ProGraphicsTextDisplay()
The function ProGraphicsTextDisplay() places text, specified as a wide
string, at a position specified in screen coordinates. Therefore, if you want to add
text to a particular position on the solid, you must transform the solid coordinates
into screen coordinates by using the view matrix.
Like the graphics polylines, arcs, and so on (added by the functions described in
the section Displaying Graphics on page 490), the text items drawn by
ProGraphicsTextDisplay() are not known to Creo Parametric, and
therefore are not redrawn when you use the Repaint command. Use the notify or
display list functions to tell Creo Parametric about the items. See the section

User Interface: Basic Graphics 491

Display Lists on page 493 for more information on the display list functions. To
add permanent text to a drawing (for example, a drawing note), see the section
Drawings on page 1226.

Controlling Text Attributes
Functions Introduced:

• ProTextAttributesCurrentGet()
• ProTextFontIdCurrentSet()
• ProTextHeightCurrentSet()
• ProTextRotationAngleCurrentSet()
• ProTextSlantAngleCurrentSet()
• ProTextWidthFactorCurrentSet()
These functions control the attributes of text added by calls to
ProGraphicsTextDisplay(). You can get and set the following
information:

• The font identifier
• The text height, in screen coordinates
• The ratio of the width of each character (including the gap) as a proportion of

the height
• The angle of rotation of the whole text, in counterclockwise degrees
• The angle of slant of the text, in clockwise degrees

Controlling Text Fonts
Functions Introduced:

• ProTextFontDefaultIdGet()
• ProTextFontNameGet()
• ProTextFontNameToId()
• ProTextFontRetrieve()
• ProTextStyleFontGet()
• ProTextStyleFontSet()
The function ProTextFontDefaultIdGet() returns the identifier of the
default Creo Parametric text font.
The text fonts are identified in Creo Parametric by names, and in Creo Parametric
TOOLKIT by integer identifiers. To move between the two types of font
identifiers, use the functions ProTextFontNameGet() and

492 Creo® Parametric TOOLKITUser’s Guide

ProTextFontNameToId(). Because the internal font identifiers could change
between Creo Parametric sessions, it is important to call
ProTextFontNameToId() each time you want to modify the font in Creo
Parametric TOOLKIT.
The function ProTextFontRetrieve() loads a font with the specified name
that can be used to display the text.
The functions ProTextStyleFontGet() and ProTextStyleFontSet()
get and set the font used to display the text. The fonts are those available in the
Font selector in the Text Style dialog in Creo Parametric.

Validating Text Styles
Functions Introduced:

• ProTextStyleValidate()
The function ProTextStyleValidate() checks whether the properties of
text style applied to the specified object type are valid. The input arguments are:
• obj_type—Specifies the type of object on which the text style must be applied.

The enumerated data type ProTextStyleObjectType defines the object
type.

• r_text_style—Specifies the text style that should be applied on the specified
object type.

The function returns messages if it finds text styles which are not supported in the
specified object type. The message is returned as array of lines. Use the function
ProWstringArrayFree() to free memory.

Display Lists
Functions Introduced:

• ProDisplist2dCreate()
• ProDisplist2dDisplay()
• ProDisplist2dDelete()
• ProDisplist3dCreate()
• ProDisplist3dDisplay()
• ProDisplist3dDelete()
To generate the display of a solid in a window, Creo Parametric maintains two
display lists. A display list contains a set of vectors used to represent the shape of
the solid in the view.

User Interface: Basic Graphics 493

The 3-D display list contains a set of three-dimensional vectors that represent an
approximation to the geometry of the edges of the solid. It gets rebuilt every time
the solid is regenerated.
The 2-D display list contains the two-dimensional projections of the 3-D display
list onto the current window. It is rebuilt from the 3-D display list when the
orientation of the solid changes.
The functions in this section enable you to add your own vectors to the display
lists, so your own graphics will be redisplayed automatically by Creo Parametric,
until the display lists are rebuilt.
For example, if you just use the functions described in the section Displaying
Graphics on page 490, the items you draw remain on the screen only until the
window is repainted. Furthermore, the objects are not plotted with the rest of the
contents of the window because Creo Parametric does not know about them.
If, however, you add the same graphics items to the 2-D display list, they will
survive each repaint (when zooming and panning, for example) and will be
included in plots created by Creo Parametric.
If you add graphics to the 3-D display list, you get the further benefit that the
graphics survive a change to the orientation of the solid and are displayed, even
when you spin the solid dynamically.
To add graphics to a display list, you must write a function that displays the
necessary vectors in three dimensions, using the graphics display functions in the
usual way. For the 2-D display list, you call ProDisplist2dCreate() to tell
Creo Parametric to use your function to create the display list vectors, then call
ProDisplist2dDisplay() to ask it to display the new graphics those
vectors represent.

Note
If you save the display information, you can reuse it in any session. The
application should delete the display list data when it is no longer needed.

Using 3-D display lists is exactly analogous to using 2-D display lists.
Note that the function ProWindowRefresh() does not cause either of the
display lists to be regenerated, but simply repaints the window using the 2-D
display list.
The function ProSolidDisplay() regenerates both display lists, and
therefore not only recenters the solid in the view and removes any highlights, but
also removes any graphics you added using the 2-D display list functions.

494 Creo® Parametric TOOLKITUser’s Guide

Getting Mouse Input
Functions Introduced:

• ProMousePickGet()
• ProMouseTrack()
• ProMouseBoxInput()
The functions ProMousePickGet() and ProMouseTrack() are used to
read the position of the mouse, in screen coordinates. Each function outputs the
position and an enumerated type description of which mouse buttons were pressed
when the mouse was at that position. The values are defined in ProGraphic.h,
and are as follows:

• PRO_LEFT_BUTTON

• PRO_MIDDLE_BUTTON

• PRO_RIGHT_BUTTON

The functionProMousePickGet() reports the mouse position only when you
press a button. It has an input argument that is a description of the mouse buttons
you want to wait for (you must have at least one). For example, you can set the
expected_button argument to:
PRO_LEFT_BUTTON | PRO_RIGHT_BUTTON

In this example, the function does not return until you press either the left or right
button. You could also specify the value PRO_ANY_BUTTON.
The function ProMouseTrack()returns whenever the mouse is moved,
regardless of whether a button is pressed. Therefore, the function can return the
value PRO_NO_BUTTON. Its input argument enables you to control whether the
reported positions are snapped to grid.

Example 6: Drawing a Rubber-Band Line
The sample code in UgGraphPolyLineDrawUtil.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
graphics shows how to use the complement drawing mode. The example
follows the mouse position dynamically.

Cosmetic Properties
You can enhance your model using Creo Parametric TOOLKIT functions that
change the surface properties, or set different light sources. The following sections
describe these functions in detail.

User Interface: Basic Graphics 495

Surface Properties
Functions Introduced:

• ProSurfaceSideAppearancepropsGet()
• ProSurfaceSideAppearancepropsSet()
• ProTexturePathGet()
• ProSurfaceSideTextureplacementpropsGet()
• ProSurfaceSideTextureplacementpropsSet()
• ProSurfaceAppearanceDefaultPropsGet()
• ProSurfaceSideTexturepropsGet()
• ProSurfaceSideTexturepropsSet()
• ProPartTessellate()
• ProPartTessellationFree()
From Creo Parametric5.0.0.0 onwards, the following functions have been
deprecated:
• ProSurfaceAppearancepropsGet()

• ProSurfaceAppearancepropsSet()

• ProSurfaceTextureplacementpropsGet()

• ProSurfaceTextureplacementpropsSet()

• ProSurfaceTexturepropsGet()

• ProSurfaceTexturepropsSet()

The functions described in this section enable you to retrieve and set the surface
and texture properties for the first level models in the model hierarchy.
Use the functions ProSurfaceSideAppearancepropsGet() and
ProSurfaceSideAppearancepropsSet() to retrieve and set the surface
properties on a specified side of the surface for the specified element using the
ProSurfaceAppearanceProps data structure.
The data structure is defined as follows:
typedef struct pro_surf_appearance_props
{
double ambient;
double diffuse;
double highlite;
double shininess;
double transparency;
ProVector color_rgb;
ProVector highlight_color;
double reflection;
ProPath name;
ProPath label;

496 Creo® Parametric TOOLKITUser’s Guide

ProPath description;
ProPath keywords;

} ProSurfaceAppearanceProps;

The ProSurfaceAppearanceProps data structure contains the following
fields:

• ambient—Specifies the indirect, scattered light the model receives from its
surroundings. The valid range is 0.0 to 1.0.

• diffuse—Specifies the reflected light that comes from directional, point, or
spot lights. The valid range is 0.0 to 1.0.

• highlite—Specifies the intensity of the light reflected from a highlighted
surface area. The valid range is 0.0 to 1.0.

• shininess—Specifies the properties of a highlighted surface area. A plastic
model would have a lower shininess value, while a metallic model would have
a higher value. The valid range is 0.0. to 1.0.

• transparency—Specifies the transparency value, which is between 0
(completely opaque) and 1.0 (completely transparent).

• color_rgb[3]—Specifies the color, in terms of red, green, and blue. The
valid range is 0.0. to 1.0.

• highlight_color—Specifies the highlight color, in terms of red, green,
and blue. The valid range is 0.0 to 1.0.

• reflection—Specifies how reflective the surface is. The valid range is 0
(dull) to 100 (shiny).

• keywords—Mandatory field. Specifies how to set the texture on a model
surface. If you do not want to set a value for this field, set a NULL string to it.

Note
To set the default surface appearance properties, pass the argument
appearance_properties as NULL in the
ProSurfaceAppearancepropsSet() function.

The input arguments to the function
ProSurfaceSideAppearancepropsGet() are:
• item—Specifies the ProModelitem object that represents the part, assembly

component, subassembly, quilt, or surface.
• surface_side—Specifies the direction of the side for the surface or quilt. Pass

the value as 0 to specify the side which is along the surface normal. Pass 1 to
specify the side opposite to the surface normal.

User Interface: Basic Graphics 497

In cosmetic shade mode, Creo Parametric tessellates each surface by breaking it
into a set of connected triangular planes. The function
ProSurfaceTessellationGet() invokes this algorithm on a single
specified surface and provides the coordinates of the triangle corners and the
normal at each vertex. This function tessellates a single surface only.
You can use the function ProTexturePathGet() to retrieve the full path to
the texture, decal, or bump map file.
Refer to the Tessellation on page 181 section of Core: 3D Geometry on page 170
the chapter for functions ProPartTessellate() and
ProPartTessellationFree().
You can apply textures to the surfaces. Use the function
ProSurfaceSideTexturepropsGet() to get the texture properties for the
specified side of the surface. Use the function
ProSurfaceSideTexturepropsSet() to set the surface texture properties
for the specified side of the surface. Both these functions use the
ProSurfaceTextureProps data structure to retrieve and set the surface
texture properties.
The data structure is defined as follows:
typedef struct pro_surface_texture_props
{
ProCharPath decal;
ProCharPath texture_map;
ProCharPath bump_map;

} ProSurfaceTextureProps;

The ProSurfaceTextureProps data structure contains the following fields:

• decal—Specifies the full path to the texture map with the alpha channel
(transparency). Otherwise, use NULL.

• texture_map—Specifies the full path to the texture map.
• bump_map—Specifies the full path to the bump map. A bump map enables

you to create bumps on the surface of the texture map.
You can manipulate the placement of the surface textures. Use the function
ProSurfaceSideTextureplacementpropsGet() to get the properties
related to the placement of surface texture for the specified side of the surface.
Use the function ProSurfaceSideTextureplacementpropsSet() to
set the placement properties for the specified side of the surface texture. The
functions ProSurfaceSideTextureplacementpropsGet() and
ProSurfaceSideTextureplacementpropsSet() use the
ProSurfaceTexturePlacementProps data structure.
The data structure is defined as follows:
typedef struct pro_surface_texture_placement_props
{

498 Creo® Parametric TOOLKITUser’s Guide

ProTextureProjectionType projection;
ProTextureType texture_type;
ProLineEnvelope local_csys;
double horizontal_offset;
double vertical_offset;
double rotate;
double horizontal_scale;
double vertical_scale;
double bump_height;
double decal_intensity;
ProBoolean flip_horizontal;
ProBoolean flip_vertical;

} ProSurfaceTexturePlacementProps;

The ProSurfaceTexturePlacementProps data structure contains the
following fields:
• projection—Specifies the projection type—planar, spherical, cylindrical,

or box.
• texture_type—Specifies the type of texture.
• local_csys—Specifies the direction (for planar projection), or the whole

coordinate system (which defines the center for the other projection types).
• horizontal_offset and vertical_offset—Specifies the

percentage of horizontal and vertical shift of the texture map on the surface.
• rotate—Specifies the angle to rotate the texture map on the surface.
• horizontal_scale and vertical_scale—Specifies the horizontal

and vertical scaling of the texture map.
• bump_height—Specifies the height of the bump on the surface of the

texture map.
• decal_intensity—Specifies the alpha or transparency mask intensity on

the surface.
• flip_horizontal and flip_vertical—Specifies that the texture

map on the surface should be flipped horizontally or vertically.
Use the function ProSurfaceAppearanceDefaultPropsGet() to get the
default appearance properties of the specified type of surface. The input argument
appearance_type is specified by the enumerated data type
ProDefaultAppearanceType. The output argument appearance_
properties is specified by the data structure
ProSurfaceAppearanceProps.

Setting Light Sources
Functions Introduced:

User Interface: Basic Graphics 499

• ProLightSourcesGet()
• ProLightSourcesSet()
These functions retrieve and set the information associated with the specified
window, respectively, using the ProLightInfo data structure. The data structure is
defined as follows:
typedef struct pro_tk_light
{

wchar_t name
[PRO_NAME_SIZE];

ProLightType type;
ProBoolean status;

/* active or inactive */
double rgb[3];

/* for all types */
double position

[3]; /* for point and spot */
double

direction[3]; /* for direction and spot */
double spread_

angle; /* for spot, in radian */
ProBoolean cast_

shadows;
} ProLightInfo;

The Pro_light structure contains the following fields:

• name—Specifies the name of the light source.
• type—Specifies the light type—ambient, direction, point, or spot.
• status—Specifies whether the light source is active or inactive.
• rgb—Specifies the red, green, and blue values, regardless of the light type.
• position—Specifies the position of the light, for point and spot lights only.
• direction—Specifies the direction of the light, for direction and spot lights

only.
• spread_angle—Specifies the angle the light is spread, for spot lights only.
• cast_shadows—Specifies whether the light casts shadows. This applies to

Creo Render Studio only. Refer to the Creo Render Studio Help for more
information on Creo Render Studio.

Creating 3D Shaded Data for Rendering
The functions described in this section enable you to create 3D shaded data that
can be attached to a scene and rendered in Creo Parametric.
Functions Introduced:

500 Creo® Parametric TOOLKITUser’s Guide

• ProDispObjectCreate()
• ProDispObjectAttach()
• ProDispObjectDetach()
• ProDispObjectDelete()
• ProDispObjectSetTransform()
• ProDispObjectSetSurfaceAppearanceProps()
The function ProDispObjectCreate()creates a display object. A display
object collects user specified shaded triangle data. When you render an object in
Creo Parametric, rendering is done based on the triangle data using lights and
materials. The display object must be attached to the scene to be rendered. The
object is always displayed in shaded mode irrespective of the display mode of the
current view. No HLR operations are done on display objects. The input
arguments are:
• object_name—Specifies the name of the display object. The name must be

unique.
• flag—Specifies a bitmask that is used to set the property of the display object.

The bitmask has the following bit flags:
○ 0x0—This is the default value. No bit flag is passed. If no bit is set, the

display object behaves like a solid.
○ PRO_DISP_OBJECT_TWO_SIDED—When this bit flag is set, the

display object behaves like a quilt.
○ PRO_DISP_OBJECT_DYNAMIC_PREVIEW—When this bit flag is set,

the display object is considered temporary which will be deleted and
recreated frequently by the user application. When this flag is set, Creo
Parametric will not store the data on graphics card.

• num_strips—Specifies the number of triangle strips that will contain the
triangle data.

• strip_size—Specifies the number of vertices in each triangle strip. It is a
ProArray of size num_strips.

• strips_array—Specifies a ProArray of ProTriVertex structure. The
structure contains information about the position and normals of the vertices
for triangles.

The function ProDispObjectAttach() attaches the display object to a Creo
Parametric scene.

User Interface: Basic Graphics 501

After the object is attached, it will be rendered along with the Creo Parametric
graphics. If the scene is regenerated, the Creo Parametric TOOLKIT application
must reattach it. This API is supported only for 3D mode, that is, part, assembly,
and so on and does not work in 2D mode, that is, drawings, sketch, layout, and so
on. The input arguments are:
• window—Specifies the ID of the window in which the display object must be

attached to a Creo Parametric scene.
• obj—Specifies the handle to the display object.
• key_list—Specifies a ProArray which contains the member identifier table

of the component to which the display object will be attached. Specify NULL
if you want to attach the display object to the top level component.

• new_key—Specifies the ID of the new node in the scene graph where the
display object will be attached.

• transform—Specifies the position of the display object relative to its parent as
a ProMatrix object.

Use the function ProDispObjectDetach() to detach a display object from
the Creo Parametric scene. The input arguments are:
• window—Specifies the ID of the window from which the display object will

be detached from a Creo Parametric scene.
• key_list—Specifies a ProArray which contains the member identifier table

of the display object ProDispObject which will be detached from the
scene. Pass as input key_list along with new_key defined in the API
ProDispObjectAttach().

The function ProDispObjectDelete() deletes the specified display object.
You must detach the display object before deleting it.
The function ProDispObjectSetTransform() transforms a display object
relative to its parent in the scene. Specify the new position using the ProMatrix
object. It returns the original position of the display object as a ProMatrix
object.
Use the function ProDispObjectSetSurfaceAppearanceProps() to
set the display properties of the display object attached to a scene using the
ProSurfaceAppearanceProps data structure. Refer to the section Surface
Properties on page 496 for more information on
ProSurfaceAppearanceProps.

Example 1: Creating a Display Object
The sample code in TestDispObject.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_examples/pt_dispobj shows how to
create a display object and attach it to a scene. It also shows how to set the display
properties for the display object.

502 Creo® Parametric TOOLKITUser’s Guide

21
User Interface: Selection

The Selection Object ... 504
Interactive Selection .. 507
Highlighting... 511
Selection Buffer... 512

This chapter contains functions that enable you to select objects in Creo
Parametric from within the Graphics Window or the Model Tree using the mouse
or the keyboard.

503

The Selection Object
Like ProModelitem, the object ProSelection identifies a model item in the
Creo Parametric database. ProSelection, however, contains more information
than ProModelitem, and is therefore sometimes used instead of
ProModelitem in situations where the extra information is needed. The most
important use of ProSelection is as the output of the function for interactive
selection, ProSelect() (thus the name ProSelection).
ProSelection is declared as an opaque pointer, and is, strictly speaking, a
WHandle because, although the model item is a reference to a Creo Parametric
database item, the other information is not.
Functions Introduced:

• ProSelectionAlloc()
• ProSelectionSet()
• ProSelectionCopy()
• ProSelectionFree()
• ProSelectionAsmcomppathGet()
• ProSelectionModelitemGet()
• ProSelectionUvParamGet()
• ProSelectionViewGet()
• ProSelectionPoint3dGet()
• ProSelectionDepthGet()
• ProSelectionVerify()
• ProSelectionWindowIdGet()
• ProSelectionUvParamSet()
• ProSelectionViewSet()
• ProSelectionPoint3dSet()
• ProSelectionDrawingGet()
• ProSelectionDwgtblcellGet()

Unpacking a ProSelection Object
For each item of information that ProSelection can contain, there is a Creo
Parametric TOOLKIT function that extracts that information. The following table
lists these items.

504 Creo® Parametric TOOLKITUser’s Guide

Creo Parametric TOOLKIT
Function

Creo Parametric TOOLKIT
Object

Meaning

ProSelectionAsmcomp
pathGet()

ProAsmcomppath Assembly component path

ProSelectionModelitem
Get()

ProModelitem Model item

ProSelectionPoint3dG
et()

ProPoint3d 3-D point on the model item

ProSelectionUvParam
Set()

ProUvParam u and v, ort, of that point

ProSelectionDepthGet() double Selection depth
ProSelectionDistance
Eval()

double Distance between two selected
objects. The selection objects can
be surfaces, entities, surface-
curves, surface-nodes, or points.

ProSelectionViewGet() ProView Drawing view in which the
selection was made

ProSelectionWindow
IdGet()

int Window where a selection is done

ProSelectionDrawing
Get()

ProDrawing Drawing in which the selection
was made.

ProSelectionDwgtblcell
Get()

several integers Table segment, row, and column
of a selected drawing table cell

The assembly component path is the path down from the root assembly to the
model that owns the database item being referenced. It is represented by the object
ProAsmcomppath and is described fully in the Assembly: Basic Assembly
Access on page 1130 section.
The model item describes the database item in the context of its owning model,
but does not refer to any parent assembly.
The 3-D point is the location, in solid coordinates, of a selected point on the
model item, if it is a geometry object. The solid coordinates are those of the solid
directly owning the model item.
If the model item is a surface, ProUvParam contains the u and v values that
correspond to the 3-D selection point described above. If the item is an edge or
curve, ProUvParam contains the t value.
The selection depth is the distance between the selected point and the point from
which the selection search started. This is important only when you are using
ProSolidRayIntersectionCompute(), described in the section Ray
Tracing on page 194.
The view is used to distinguish different views of a solid in a drawing.

User Interface: Selection 505

Building a ProSelection Object
Some Creo Parametric TOOLKIT function require a ProSelection object as
an input. In many cases the assembly path—ProAsmcomppath—and the
modelitem will be all that is needed, so ProSelectionAlloc() or
ProSelectionSet() can be used. In other cases, for example when a
ProSelection needs to identify a specific drawing view, or a specific location
on a geometry item, you may also need to call functions
ProSelectionViewSet(), ProSelectionUvParamSet(), and
ProSelectionPoint3dSet().

ProSelection Function Examples
Examples of Creo Parametric TOOLKIT functions that use ProSelection are
as follows:

• ProSelect() uses ProSelection as its output to describe everything
about the selected item.

• ProGeomitemDistanceEval() uses ProSelection as its input,
instead of ProGeomitem, so it can measure the distance between model
items in different subassemblies.

• ProSelectionHighlight() and ProSelectionUnhighlight()
use ProSelection as inputs to distinguish different instances of the same
model item in different subassemblies, and also different drawing views of the
same model.

• ProFeatureCreate() usually uses ProSelection objects to identify
the geometry items the feature needs to reference.

• ProDrawingDimensionCreate() uses ProSelection objects to
identify the entities the dimension will attach to and the drawing view in
which the dimension is to be displayed.

In a case such as ProGeomitemDistanceEval(), which uses
ProSelection as an input, you might need to build a ProSelection object
out of its component data items. The function ProSelectionAlloc()
allocates a new ProSelection structure, and sets the ProAsmcomppath and
ProModelitem data in it. The function ProSelectionSet() sets that
information in a ProSelection object that already exists. The function
ProSelectionVerify() checks to make sure the contents of a
ProSelection are consistent.
The functionProSelectionCopy() copies one ProSelection object to
another. ProSelectionFree() frees the memory of a ProSelection
created by ProSelectionAlloc() or as output by a Creo Parametric
TOOLKIT function.

506 Creo® Parametric TOOLKITUser’s Guide

Interactive Selection
Function Introduced:

• ProSelect()
ProSelect() is the Creo Parametric TOOLKIT function that forces the user to
make an interactive graphics selection in Creo Parametric. Using this function the
user can specify filters which control the items that can be selected.
Typically, the user has control over the filter options available from the filter
menu located in the status bar at the bottom of the Creo Parametric graphics
window. A call to ProSelect() sets application desired filters for the next
expected selection.
The user interface shown when prompting for an interactive selection will be the
selection dialog, with OK or Cancel buttons. Depending on the selection types
permitted the user will be able to select items via:

• The graphics window
• The model tree
• The search tool
• External object
• Items external to the activated component
None of these selections or possible selections will provide guidance to the user
about what to select and why. Therefore, it is important to provide detailed
instructions to the user through the message window or dialog box that the
application expects the user to make a selection. Use the function
ProMessageDisplay() to explain to the user the type or purpose of the
selection you want them to make.

Note
When using this function in a UI command, make sure that the command
priority for the UI command is appropriate for using ProSelect().
Improper priority settings can cause unpredictable results. See also Normal
priority actions on page in the User Interface: Menu on page 301 chapter.

The synopsis of ProSelect() is as follows:
ProError ProSelect (
char option[], /* (In) The selection filter. */
int max_count, /* (In) The maximum number of

selections allowed. */
ProSelection *p_in_sel, /* (In) An array of pointers to

selection structures used
to initialize the array

User Interface: Selection 507

of selections. This can
be NULL. */

ProSelFunctions *sel_func, /* (In) A pointer to a structure
of filter functions. This
can be NULL. */

ProSelectionEnv sel_env, /* (In) Use attribute PRO_SELECT_ACTIVE_
COMPONENT_IGNORE to also select items
external to the activate component. */

ProSelAppAction appl_act_data, /* (In) Use NULL. */
ProSelection **p_sel_array, /* (Out) A pointer to an array of

pointers to selected items.
This argument points to static
memory allocated by the
function. It is reallocated
on subsequent calls to this
function.*/

int *p_n_sels /* (Out) The actual number of
selections made. The
function allocates the
memory for this function
and reuses it on
subsequent calls.*/

)

The first input argument to ProSelect(), option, is the set of item types that
can be selected. This is in the form of a C string which contains the names of the
types separated by commas (but no spaces). The following table lists the item
types that can be selected by ProSelect(), the name of the type that must
appear in the option argument, and the value of ProType contained in the
ProModelitem for the selected item.
Creo Parametric Database
Item

ProSelect() Option ProType

Geometry Items
Datum point point PRO_POINT

Datum axis axis PRO_AXIS

Datum plane datum PRO_SURFACE

Coordinate system datum csys PRO_CSYS

Coordinate System Axis csys_axis PRO_CSYS_AXIS_X PRO_
CSYS_AXIS_Y PRO_CSYS_
AXIS_Z

Edge (solid or datum surface) edge PRO_EDGE

Vertex edge_end PRO_EDGE_START, or PRO_
EDGE_END

Datum curve curve PRO_CURVE

Datum curve end curve_end PRO_CRV_START, or PRO_
CRV_END

Composite Curve comp_crv PRO_CURVE

Edge (solid only) sldedge PRO_EDGE

Edge (datum surface only) qltedge PRO_EDGE

508 Creo® Parametric TOOLKITUser’s Guide

Creo Parametric Database
Item

ProSelect() Option ProType

Pipe segment end pipeseg_end PRO_PSEG_START or PRO_
PSEG_END

Surface (solid or quilt) surface PRO_SURFACE

Surface (solid) sldface PRO_SURFACE

Surface (datum surface) qltface PRO_SURFACE

Surface (point) pntsrf PRO_SURFACE_PNT

Quilt dtmqlt PRO_QUILT

Annotations
Dimension dimension PRO_DIMENSION

Reference dimension ref_dim PRO_REF_DIMENSION

Geometric tolerance gtol PRO_GTOL

3D symbol symbol_3d PRO_SYMBOL_INSTANCE

Note any_note PRO_NOTE

3D Note note_3d PRO_NOTE

3D surface finish surffin_3d PRO_SURF_FIN

Annotation element annot_elem PRO_ANNOTATION_ELEM

Drawing Items
Drawing view dwg_view PRO_VIEW

Drawing table dwg_table PRO_DRAW_TABLE

Draft entity draft_ent PRO_DRAFT_ENTITY

Detail symbol dtl_symbol PRO_SYMBOL_INSTANCE

Detail note any_note PRO_NOTE

Table cell table_cell PRO_DRAW_TABLE

Solids and Features
Feature feature PRO_FEATURE

Part part PRO_PART

Component Feature membfeat PRO_FEATURE

Assembly component model component PRO_PART, PRO_ASSEMBLY

Part or subassembly prt_or_asm PRO_PART, or PRO_ASSEMBLY

Miscellaneous Items
Creo Simulate Items Refer to the table in the section Selection of Creo Simulate Items on

page 1855
External object ext_obj PRO_EXTOBJ

Diagram fixed connector, fixed
component, or parametric
connector

dgm_obj PRO_DIAGRAM_OBJECT

Diagram wire (not a cable) dgm_non_cable_wire PRO_DIAGRAM_OBJECT

Solid Body 3d_body PRO_BODY

ECAD conductor ecad_cu PRO_ECAD_CONDUCTOR

The second argument specifies the maximum number of items the user can select.
If there is no maximum, set this argument to -1.

User Interface: Selection 509

The third argument to ProSelect() is an expandable array of
ProSelection structures (created using ProArrayAlloc() and
ProSelectionAlloc()) used to initialize the selection list. For more
information refer to section Expandable Arrays on page 59 in the chapter
Fundamentals on page 22. This is used in situations like Feature, Define in Creo
Parametric where the user has the option of removing a default selection for a
feature reference.
The fourth argument is an optional structure that specifies three, user-defined filter
functions. These enable you to filter the items that are selectable in a customized
way. For example, you could arrange that only straight edges are selectable by
writing a filter that would check the type of the edge, and return an appropriate
status. This function would then be called within ProSelect() to prevent the
user from selecting a curved edge.
The fifth argument allows the user to pass a set of attributes to ProSelect()
using the function ProSelectionEnvAlloc(). The function
ProSelectionEnvAlloc() returns the ProSelectionEnv handle which
is given as input to ProSelect(). The attributes of
ProSelectionEnvAlloc() are:
• PRO_SELECT_DONE_REQUIRED—Specifies that user has to click OK in the

Select dialog box to get the selected items.
• PRO_SELECT_BY_MENU_ALLOWED—Specifies that search tool is available

in the function ProSelect() when the attribute value is set to True, which
is the default value.

• PRO_SELECT_BY_BOX_ALLOWED—Specifies that user must draw a
bounding box to get the items selected within the box.

Note
The attribute PRO_SELECT_BY_BOX_ALLOWED can be used only for
the types specified under “Geometry Items” in the above table.

• PRO_SELECT_ACTIVE_COMPONENT_IGNORE—Specifies that user can
select items external to the activate component.

• PRO_SELECT_HIDE_SEL_DLG—Specifies that the Select dialog box must
be hidden.

The sixth argument is not used in this release and should be set to NULL.
The final two arguments are the outputs, that is, an expandable array of
ProSelection structures, and the number of items in the array. The previous
section explains how to analyze the contents of a ProSelection object.

510 Creo® Parametric TOOLKITUser’s Guide

Note
The array of ProSelections is allocated and reused on subsequent calls to
ProSelect().

Therefore, you must not free the output array. Also, if you wish to preserve any of
the selections made, you should copy that selection using
ProSelectionCopy().

Note
• When using the function ProSelect() from within a loop, if you encounter

the error PRO_TK_PICK_ABOVE (-14), then you must handle this error by
returning control back to Creo Parametric.

• The function ProSelect() returns PRO_TK_NO_ERROR when you end the
command without making any selection in Creo Parametric. The function
returns the output argument p_n_sels as zero and the array p_sel_array
as NULL.

Highlighting
Functions Introduced:

• ProSelectionHighlight()
• ProSelectionDisplay()
• ProSelectionUnhighlight()
The function ProSelectionHighlight() highlights an item specified by a
ProSelection object in a color chosen from the enumerated type
ProColortype. This highlight is the same as the one used by Creo Parametric
(and ProSelect()) when selecting an item—it just repaints the wire-frame
display in the new color. The highlight is removed if you use the View Repaint
command or ProWindowRepaint(); it is not removed if you use
ProWindowRefresh().
The function ProSelectionUnhighlight() removes the highlight.
ProSelectionHighlight() will not change the highlight color of an item
already highlighted. If you need to do this, call
ProSelectionUnhighlight() on the first item.

User Interface: Selection 511

The function ProSelectionDisplay() does the same highlight as
ProSelectionHighlight() but uses the standard highlight color used by
Creo Parametric.

Note
For performance reasons, calls to ProSelectionHighlight() are
cached and executed after a short delay or after a window repaint.

Selection Buffer

Introduction to Selection Buffers
Selection is the process of choosing items on which you want to perform an
operation. In Creo Parametric, before a feature tool is invoked, the user can select
items to be used in a given tool's collectors. Collectors are like storage bins of the
references of selected items. The location where preselected items are stored is
called the selection buffer.
Depending on the situation, different selection buffers may be active at any one
time. In Part and Assembly mode, Creo Parametric offers the default selection
buffer, the Edit selection buffer, and other more specialized buffers. Other Creo
Parametric modes offer different selection buffers.
In the default Part and Assembly buffer there are two levels at which selection is
done:

• First Level Selection
Provides access to higher-level objects such as features or components. You can
make a second level selection only after you select the higher-level object.

• Second Level Selection
Provides access to geometric objects such as edges and faces.

Note
First-level and second-level objects are usually incompatible in the selection
buffer.

Creo Parametric TOOLKIT allows access to the contents of the currently active
selection buffer. The available functions allow your application to:

512 Creo® Parametric TOOLKITUser’s Guide

• Get the contents of the active selection buffer.
• Remove the contents of the active selection buffer.
• Add to the contents of the active selection buffer.

Reading the Contents of the Selection Buffer
Functions Introduced:

• ProSelbufferSelectionsGet()
• ProSelectionCollectionGet()
Use the function ProSelbufferSelectionsGet() to access the contents of
the current selection buffer. The function returns independent copies of the
selections in the selection buffer (if the buffer is cleared, this array is still valid).
If there is no active selection buffer this function returns an error.
Use the standard Creo Parametric TOOLKIT functions to parse the contents of the
ProSelection array.
However, the selection buffer stores chain and surface collections using a special
mechanism. The function ProSelectionCollectionGet() can be used to
extract the ProCollection object from a ProSelection.

Note
As per the manner of storage of the collection in the selection buffer, once the
collection has been cleared from the buffer the ProSelection referring to
the collection is no longer valid. Therefore it is recommended to extract the
ProCollection object from the ProSelection before there is a
possibility that it may be cleared from the selection buffer.

Removing the Items from the Selection Buffer
Functions Introduced:

• ProSelbufferClear()
• ProSelbufferSelectionRemove()
Use the function ProSelbufferClear() to clear the currently active
selection buffer of all contents. After the buffer is cleared, all contents are lost.
Use the function ProSelbufferSelectionRemove() to remove a specific
selection from the selection buffer. The input argument is the index of the item
(the index where the item was found in the call to
ProSelbufferSelectionsGet()).

User Interface: Selection 513

Note
Because of the specialized nature of the Edit buffer in Creo Parametric,
modification of the contents of the Edit buffer is not supported.

Adding Items to the Selection Buffer
Functions Introduced:

• ProSelbufferSelectionAdd()
• ProSelbufferCollectionAdd()
Use the function ProSelbufferSelectionAdd() to add an item to the
active selection buffer.

Note
The selected item must refer to an item that is in the current model such as its
owner, component path or drawing view.

This function may fail due to any of the following reasons:

• There is no current selection buffer active.
• The selection does not refer to the current model.
• The item is not currently displayed and so cannot be added to the buffer.
• The selection cannot be added to the buffer in combination with one or more

objects that are already in the buffer. For example: geometry and features
cannot be selected in the default buffer at the same time.

Use the function ProSelbufferCollectionAdd() to add a chain or surface
collection to the active selection buffer. It has similar restrictions as
ProSelbufferSelectionAdd().

Note
because of the specialized nature of the Edit buffer in Creo Parametric,
modification of the contents of the Edit buffer is not supported.

Refer to the sample code Example 3: Assigning Creo Parametric command to
popup menus on page 320. This example demonstrates the use of the selection
buffer to determine the context for a popup menu button.

514 Creo® Parametric TOOLKITUser’s Guide

22
User Interface: Curve and Surface

Collection
Introduction to Curve and Surface Collection ... 516
Interactive Collection ... 517
Accessing Collection object from Selection Buffer .. 520
Adding a Collection Object to the Selection Buffer.. 521
Programmatic Access to Collections ... 521
Access of Collection Object from Feature Element Trees.. 531
Programmatic Access to Legacy Collections ... 532
Example 1: Interactive Curve Collection using Creo Parametric TOOLKIT 533
Example 2: Interactive Surface Collection using Creo Parametric TOOLKIT................. 533

This chapter describes the Creo Parametric TOOLKIT functions to access the
details of curve and surface collections for query and modification. Curve and
surface collections are required inputs to a variety of Creo Parametric tools such
as Round, Chamfer, and Draft.

515

Introduction to Curve and Surface
Collection
A curve collection or chain is a group of separate edges or curves that are related,
for example, by a common vertex, or tangency. Once selected, these separate
entities are identified as a chain so they can be modified as one unit.
The different chain types are as follows:

• One-by-one—a chain of edges, curves or composite curves, each adjacent pair
of which has a coincident endpoint. Some applications may place other
conditions on the resulting chain.

• Tangent—a chain defined by the selected item and the extent to which
adjacent entities are tangent.

• Curve—an entire composite curve or some portion of it that is defined by two
component curves of the curve.

• Boundary—an entire loop of one-sided edges that bound a quilt or some
portion thereof defined by two edges of the boundary loop.

• Surf Chain—an entire loop of edges that bound a face (solid or surface) or
some portion of it that is defined by two edges of the loop.

• Intent Chain—an intent chain entity, usually created as the result of two
intersecting features.

• From/To—a chain that begins at a start-point, follows an edge line, and ends at
the end-point.

Surface sets are one or more sets of surfaces either for use within a tool, or before
entering a tool.
The definition of a surface set may not be independent in all respects from that of
any other. In other words, the ability to construct some types of surface sets may
depend on the presence of or on the content of others. On this account, we have
different surface sets as follows:

• One-by-One Surface Set—Represents a single or a set of single selected
surfaces, which belong to solid or surface geometry.

• Intent Surface Set—Represents a single or set of intent surfaces, which are
used for the construction of the geometry of features. This instruction
facilitates the reuse of the feature construction surface geometry as "intent"
reference. This is also known as "logical object surface set".

• All Solid or Quilt Surface Set—Represents all the solid or quilt surfaces in the
model.

516 Creo® Parametric TOOLKITUser’s Guide

• Loop Surface Set—Represents all the surfaces in the loop in relation with the
selected surface and the edge. This is also known as "neighboring surface set".

• Seed and Boundary Surface Set—Represents all the surfaces between the seed
surface and the boundary surface, excluding the boundary surface itself.

Surface set collection can be identified as a gathering a parametric set of surfaces
in the context of a tool that specifically requests surface sets and is nearly identical
to selection of a surface set.
Chain collection can be identified as a gathering a chain in the context of a tool
that specifically requests chain objects and is nearly identical to chain selection.
Collection is related to Selection as follows:
Selection is the default method of interaction with Creo Parametric system.
Selection is performed without the context of any tool. In other words, the system
does not know what to do with selected items until the user tells the system what
to do. Collection is essentially Selection within the context of a tool. Items are
gathered for a specific use or purpose as defined by the tool, which forms the
Collection. It is possible to convert the collections into the sets of selections using
the collection APIs.

The ProCollection object
A ProCollection object is an opaque pointer to a structure in which a surface
or curve collection is stored. It represents a chain or surface set and extracts the
details from an appropriate structure from Creo Parametric.

Interactive Collection
Functions Introduced:

• ProCurvesCollect()
• ProSurfacesCollect()
Use the function ProCurvesCollect() to interactively create a collection of
curves by invoking a chain collection user interface.

User Interface: Curve and Surface Collection 517

Chain collection User Interface

Use the function ProSurfacesCollect() to interactively create a collection
of surfaces by invoking a surface sets dialog.

518 Creo® Parametric TOOLKITUser’s Guide

Surface Sets dialog box

For the functions ProCurvesCollect() and ProSurfacesCollect()
the input arguments are as follows:

• types—Specifies an array defining the permitted instruction types. The
following instruction types are supported:

○ PRO_CHAINCOLLUI_ONE_BY_ONE—for creating "One by One" chain.
○ PRO_CHAINCOLLUI_TAN_CHAIN—for creating "Tangent" chain.
○ PRO_CHAINCOLLUI_CURVE_CHAIN—for creating "Curve" chain.
○ PRO_CHAINCOLLUI_BNDRY_CHAIN—for creating "Boundary Loop"

chain.
○ PRO_CHAINCOLLUI_FROM_TO—for creating "From-To" chain.

User Interface: Curve and Surface Collection 519

○ PRO_CHAINCOLLUI_ALLOW_LENGTH_ADJUSTMENT—for allowing
length adjustment in curves.

○ PRO_CHAINCOLLUI_ALLOW_ALL—for allowing all the supported
instruction types.

○ PRO_CHAINCOLLUI_ALLOW_EXCLUDED—for excluding chain.
○ PRO_CHAINCOLLUI_ALLOW_APPENDED—for appending chain.

• n_types—Specifies the size of the types array.
• filter_func—Specifies the filter function. The filter function is called before

each selection is accepted. If your application wishes to reject a certain
selection, it can return an error status from this filter. You may pass NULL to
skip the filter.

• app_data—Specifies the application data that will be passed to filter_func.
You may pass NULL when this is not required.

• collection—Specifies the collection object where the results will be stored.
This should be preallocated using ProCollectionAlloc() (for
ProCurvesCollect()) and ProSrfcollectionAlloc() (for
ProSurfacesCollect()) respectively. The collection properties and
instructions will be stored in this handle after the call to the functions
ProCurvesCollect() and ProSurfacesCollect(). Use the
functions for programmatic access to curve and surface collections and to
extract the required information.

The output arguments are as follows:

• sel_list—Specifies a pointer to an array of ProSelection objects
describing the current resulting curves and edges or surfaces resulting from the
collection. You may pass NULL if you are not currently interested in the
results of the collection.

• n_sel—Specifies the number of entries in sel_list.

Accessing Collection object from
Selection Buffer
Function Introduced:

• ProSelectionCollectionGet()
The selection buffer stores chain and surface collections using a special
mechanism. The function ProSelectionCollectionGet() can be used to
extract the ProCollection object from a ProSelection. The function
ProSelectionCollectionGet() may fail due to the following conditions:

520 Creo® Parametric TOOLKITUser’s Guide

• PRO_TK_INVALID_TYPE—The selection object does not contain a
collection.

• PRO_TK_INVALID_PTR—The selection object contains a chain, but this
chain reference is no longer valid. Chain references contained in ProSelections
are only valid for as long as the chain is selected in the selection buffer.

Note
It is recommended to extract the ProCollection object from the
ProSelection before it can be cleared from the selection buffer.

Adding a Collection Object to the
Selection Buffer
Function Introduced:

• ProSelbufferCollectionAdd()
Use the function ProSelbufferCollectionAdd() to add a chain or surface
collection to the active selection buffer. The function
ProSelbufferCollectionAdd() may fail due to the following conditions:

• PRO_TK_INVALID_ITEM—The collection does not correctly reference the
current model.

• PRO_TK_NOT_DISPLAYED—The collection contains one or more items that
are not currently displayed (for example, due to inactive geometry) and so
cannot be added to the buffer.

• PRO_TK_BAD_CONTEXT—The selection cannot be added to the buffer in
combination with one or more objects that are already in the buffer (for
example geometry and features selected at the same time).

For further information on related functions, refer to the section Selection Buffer
on page 512 of chapter User Interface: Selection on page 503.

Programmatic Access to Collections
A ProCollection object may be returned from some indeterminate contexts
or functions, however it can only be one of the following types:

User Interface: Curve and Surface Collection 521

• PRO_COLLECTION_LEGACY—legacy curve collection type (generated by
ProCurvesCollect() or a superseded function like
ProCollectionAlloc().

• PRO_COLLECTION_SRFCOLL—surface collection type.
• PRO_COLLECTION_CRVCOLL—curve collection type.
Function Introduced:

• ProCollectionTypeGet()
Use the function ProCollectionTypeGet()ProCollectionType

Contents of Curve Collection
Functions Introduced:

• ProCrvcollectionInstructionsGet()
• ProCrvcollinstrTypeGet()
• ProCrvcollinstrAttributeIsSet()
• ProCrvcollinstrReferencesGet()
• ProCrvcollinstrValueGet()
• ProCrvcollinstrFree()
• ProCrvcollinstrArrayFree()
Use the function ProCrvcollectionInstructionsGet() to get the
instructions from the curve collection.
Use the function ProCrvcollinstrTypeGet() to get the curve collection
instruction type.
Curve collection instructions can be of the following types:

• PRO_CURVCOLL_EMPTY_INSTR—to be used when you do not want to pass
any other instruction.

• PRO_CURVCOLL_ADD_ONE_INSTR—for creating "One by One" chain.
• PRO_CURVCOLL_TAN_INSTR—for creating "Tangent" chain.
• PRO_CURVCOLL_CURVE_INSTR—for creating "Curve" chain.
• PRO_CURVCOLL_SURF_INSTR—for creating "Surface Loop" chain.
• PRO_CURVCOLL_BNDRY_INSTR—for creating "Boundary Loop" chain.
• PRO_CURVCOLL_LOG_OBJ_INSTR—for creating "Logical Object" chain.
• PRO_CURVCOLL_PART_INSTR—for creating chain on all possible

references, or to choose from convex or concave only.

522 Creo® Parametric TOOLKITUser’s Guide

• PRO_CURVCOLL_FEATURE_INSTR—for creating chain from feature
curves.

• PRO_CURVCOLL_FROM_TO_INSTR—for creating "From-To" chain.
• PRO_CURVCOLL_EXCLUDE_ONE_INSTR—for excluding the entity from

the chain.
• PRO_CURVCOLL_TRIM_INSTR—to trim chain.
• PRO_CURVCOLL_EXTEND_INSTR—to extend chain.
• PRO_CURVCOLL_START_PNT_INSTR—to set the chain start point.
• PRO_CURVCOLL_ADD_TANGENT_INSTR—to add all edges tangent to the

ends of the chain.
• PRO_CURVCOLL_ADD_POINT_INSTR—to add selected point or points to

the collection.
• PRO_CURVCOLL_OPEN_CLOSE_LOOP_INSTR—to add a closed chain that

is considered as open.
• PRO_CURVCOLL_QUERY_INSTR—for creating “Query” chain.
• PRO_CURVCOLL_CNTR_INSTR—to add contours to the collection.
• PRO_CURVCOLL_SRFS_BNDRY_INSTR—to collect boundary of the given

set of surfaces.
• PRO_CURVCOLL_SRFS_BNDRY_ADJ_INSTR—to collect edges adjacent

to the boundary of the given surfaces.
• PRO_CURVCOLL_SKET_ADD_ONE_INSTR—for creating “One by One” in

sketcher.
• PRO_CURVCOLL_SKET_FROM_TO_INSTR—for creating “From-to”

sketcher chain.
• PRO_CURVCOLL_RESERVED_INSTR—to determine the number of

instructions defined in the curve instruction.
Use the function ProCrvcollinstrAttributeIsSet() to check whether
a special attribute is set for the curve collection instruction.
The curve collection instruction attributes can be of the following types:

• PRO_CURVCOLL_NO_ATTR—applicable when there are no attributes
present.

• PRO_CURVCOLL_ALL—applicable for all edges.
• PRO_CURVCOLL_CONVEX—applicable for convex edges only.
• PRO_CURVCOLL_CONCAVE—applicable for concave edges only.
Use the function ProCrvcollinstrReferencesGet() to get the
references contained in a curve collection instruction.

User Interface: Curve and Surface Collection 523

Use the function ProCrvcollinstrValueGet() to get the value of a curve
collection instruction. This is valid for instructions of PRO_CURVCOLL_TRIM_
INSTR and PRO_CURVCOLL_EXTEND_INSTR type.
Use the function ProCrvcollinstrFree() to release a curve collection
instruction.
Use the function ProCrvcollinstrArrayFree() to release the ProArray
of curve collection instructions.

Creation and Modification of Curve Collections
Functions Introduced:

• ProCrvcollectionAlloc()
• ProCrvcollectionCopy()
• ProCrvcollectionInstructionAdd()
• ProCrvcollectionInstructionRemove()
• ProCrvcollinstrAlloc()
• ProCrvcollinstrAttributeSet()
• ProCrvcollinstrAttributeUnset()
• ProCrvcollinstrReferenceAdd()
• ProCrvcollinstrReferenceRemove()
• ProCrvcollinstrValueSet()
• ProCrvcollectionRegenerate()
Use the function ProCrvcollectionAlloc() to allocate a curve collection.
Use the function ProCrvcollectionCopy() to copy a curve collection
which is a newly allocated collection object internally and can be freed from
memory using the function ProCollectionFree().

Note
ProCrvcollectionCopy() function should be used to convert the
collection object returned by ProCurvesCollect() to a PRO_
COLLECTION_CRVCOLL type of collection so that it can be used by the
curve collection access functions.

Use the function ProCrvcollectionInstructionAdd() to add an
instruction to a curve collection.
Use the function ProCrvcollectionInstructionRemove() to remove
an instruction from a curve collection.

524 Creo® Parametric TOOLKITUser’s Guide

Use the function ProCrvcollinstrAlloc()to allocate a curve collection
instruction.
Use the function CrvcollinstrAttributeSet() to add an attribute to the
curve collection instruction.
Use the function ProCrvcollinstrAttributeUnset() to remove an
attribute of a curve collection instruction.
Use the function ProCrvcollinstrReferenceAdd() to add a reference to
curve collection instruction references.
Use the function ProCrvcollinstrReferenceRemove() to remove a
reference to curve collection instruction.
Use the function ProCrvcollinstrValueSet() to set value of the curve
collection instruction.
Use the function ProCrvcollectionRegenerate() to generate an array of
objects based on the rules and information in the collection.

Contents of Surface Collection
Functions Introduced:

• ProSrfcollectionInstructionsGet()
• ProSrfcollinstrTypeGet()
• ProSrfcollinstrIncludeGet()
• ProSrfCollinstrInfoGet()
• ProSrfcollinstrReferencesGet()
• ProSrfcollinstrArrayFree()
• ProSrfcollinstrFree()
• ProSrfcollrefTypeGet()
• ProSrfcollrefItemGet()
• ProSrfcollrefArrayFree()
• ProSrfcollrefFree()
Use the function ProSrfcollectionInstructionsGet() to get an array
of instructions assigned to the surface collection.
Use the function ProSrfcollinstrTypeGet() to get the type of surface
collection instruction.
Surface collection instructions can be of the following types:

User Interface: Curve and Surface Collection 525

• PRO_SURFCOLL_SINGLE_SURF—Instruction specifying a set of single
surfaces.

• PRO_SURFCOLL_SEED_N_BND—Instruction specifying a combination of
Seed and Boundary type of surfaces.

• PRO_SURFCOLL_SEED_N_BND_INC_BND—Instruction specifying a
combination of Seed and Boundary type of surfaces and also includes the seed
surfaces.

• PRO_SURFCOLL_QUILT_SRFS—Instruction specifying quilt type of
surfaces.

• PRO_SURFCOLL_ALL_SOLID_SRFS—Instruction specifying all solid
surfaces in the model.

• PRO_SURFCOLL_NEIGHBOR—Instruction specifying neighbor type of
surfaces (boundary loop).

• PRO_SURFCOLL_NEIGHBOR_INC—Instruction specifying neighbor type of
surfaces (boundary loop) and also includes the seed surfaces.

• PRO_SURFCOLL_LOGOBJ_SRFS—Instruction specifying intent surfaces.
Intent surfaces are also known as "logical objects".

• PRO_SURFCOLL_GEOM_RULE—— Instruction specifying collection of
surfaces using geometry rules.

• PRO_SURFCOLL_SHAPE_BASED—Instruction specifying collection of
shape based surfaces.

• PRO_SURFCOLL_TANG_SRF—Instruction specifying collection of tangent
surfaces.

The following flags are used as an input to ProSurfacesCollect and drive
its behavior of the interactive collection.

• PRO_SURFCOLL_DISALLOW_QLT—Do not allow selections from quilts.
• PRO_SURFCOLL_DISALLOW_SLD—Do not allow selections from solid

geometry.
• PRO_SURFCOLL_DONT_MIX—Allow selections from only solid or only

quilt but no mixing.
• PRO_SURFCOLL_SAME_SRF_LST—Allow selections from same solid or

same quilt.
• PRO_SURFCOLL_USE_BACKUP—Prompts Creo Parametric to regenerate

using backups.
• PRO_SURFCOLL_DONT_BACKUP—Do not back up copy of references.

526 Creo® Parametric TOOLKITUser’s Guide

• PRO_SURFCOLL_DISALLOW_LOBJ—Do not allow selections from intent
surfaces or logical objects.

• PRO_SURFCOLL_ALLOW_DTM_PLN—Allows datum plane selection. It is
not supported in Pro/ENGINEERWildfire 2.0.

Use the function ProSrfcollinstrIncludeGet() to check whether the
include flag of the surface collection instruction is set. If the include flag is
PRO_B_TRUE, the surfaces generated by this instruction add surfaces to the
overall set. If the include flag is PRO_B_FALSE, the surfaces generated by
this instruction are removed from in the overall set.
Use the function ProSrfCollinstrInfoGet() to get the information about
the bit flags from the surface collection instruction. For more information on bit
flags, see the function ProSrfCollinstrInfoSet() in the section Creation
and Modification of Surface Collections on page 528.
Use the function ProSrfcollinstrReferencesGet() to get the
references contained in a surface collection instruction.
Use the function ProSrfcollinstrArrayFree() to free a ProArray of
surface collection reference handles.
Use the function ProSrfcollinstrFree() to release the surface collection
instructions.
Use the function ProSrfcollrefTypeGet() to get the type of reference
contained in the surface collection reference.
Surface collection references can be of the following types:

• PRO_SURFCOLL_REF_SINGLE—Specifying the collection reference
belonging to the "single surface set" type of instruction. This type of reference
can belong to single surface type of instruction.

• PRO_SURFCOLL_REF_SINGLE_EDGE—Specifying the collection
reference belonging to the an "single surface set" edge type of instruction.

• PRO_SURFCOLL_REF_SEED—Specifying the collection reference to be the
seed surface. This type of reference can belong to seed and boundary type of
instruction.

• PRO_SURFCOLL_REF_SEED_EDGE—Specifying the collection reference
of seed edge type. This type of reference can belong to seed and boundary
type of instruction.

• PRO_SURFCOLL_REF_BND—Specifying the collection reference to be a
boundary surface. This type of reference can belong to seed and boundary type
of instruction.

A single seed and boundary type of instruction will have at least one of each
seed and boundary type of reference.

User Interface: Curve and Surface Collection 527

• PRO_SURFCOLL_REF_NEIGHBOR—Specifying the collection reference to
be of neighbor type. This type of reference belongs neighbor type of
instruction.

• PRO_SURFCOLL_REF_NEIGHBOR_EDGE—Specifying the collection
reference of neighbor edge type. This type of reference belongs to neighbor
type of instruction.

A neighbor type of instruction will have one neighbor and one neighbor edge
type of reference.

• PRO_SURFCOLL_REF_GENERIC—Specifying the collection reference to be
of generic type. This type of reference can belong to intent surfaces , quilt and
all-solid type of instructions.

Use the function ProSrfcollrefArrayFree() to free a ProArray of
surface collection reference handles.
Use the function ProSrfcollrefFree() to free a surface collection reference
handle.
Use the function ProSrfcollrefItemGet() to get the geometry item
contained in the surface collection reference.

Creation and Modification of Surface Collections
Functions Introduced:

• ProSrfcollectionAlloc()
• ProSrfcollectionCopy()
• ProSrfcollectionInstructionAdd()
• ProSrfcollectionInstructionRemove()
• ProSrfcollinstrAlloc()
• ProSrfcollinstrIncludeSet()
• ProSrfCollinstrInfoSet()
• ProSrfcollinstrReferenceAdd()
• ProSrfcollinstrReferenceRemove()
• ProSrfcollrefAlloc()
• ProSrfcollectionRegenerate()
Use the function ProSrfcollectionAlloc() to allocate a surface
collection.
Use the function ProSrfcollectionCopy() to copy a surface collection into
a newly allocated ProCollection handle.

528 Creo® Parametric TOOLKITUser’s Guide

Use the function ProSrfcollectionInstructionAdd() to add an
instruction to surface collection.
Use the function ProSrfcollectionInstructionRemove() to remove
the instructions from surface collections.
The function ProSrfcollectionInstructionRemove() may fail due to
invalid index specifications for the instruction or if the collection contains
instruction for curves.
Use the function ProSrfcollinstrAlloc() to allocate a surface collection
instruction.
Use the function ProSrfcollinstrIncludeSet() to set the include
flag for a surface collection instruction.

Note
In the functions ProSrfcollinstrAlloc() and
ProSrfcollinstrIncludeSet() to exclude the surfaces generated in
the collection instruction pass the input arguments as follows:

• Specify the surface collection instruction as PRO_SURFCOLL_SINGLE_
SURF.

• Specify the include argument as PRO_B_FALSE.

Use the function ProSrfCollinstrInfoSet() to set the information about
the bit flags in the surface collection instruction. You can pass the bit maps
information as bitmask containing one or more bit flags.
The following bit flags can be passed as input argument:
• PRO_SURFCOLL_ALL_GEOM_RULE—Specifies that when this flag is

included with other rule flags, all the rules are applied. Otherwise, any
applicable geometry rule is applied.

• PRO_SURFCOLL_CO_PLANNAR_GEOM_RULE—Specifies that the surfaces
coplanar to the seed surface should be collected.

• PRO_SURFCOLL_PARALLEL_GEOM_RULE—Specifies that the surfaces
parallel to the seed surface should be collected.

• PPRO_SURFCOLL_CO_AXIAL_GEOM_RULE—Specifies that the surfaces
coaxial with the seed surface should be collected.

• PRO_SURFCOLL_EQ_RADIUS_GEOM_RULE—Specifies that the surfaces
with the same radius and type as the seed surface should be collected.

• PRO_SURFCOLL_SAME_CONVEXITY_GEOM_RULE—Specifies that the
surfaces that have the same convexity and type as the seed surface should be
collected.

User Interface: Curve and Surface Collection 529

Note
The bit flags PRO_SURFCOLL_ALL_GEOM_RULE, PRO_SURFCOLL_
CO_PLANNAR_GEOM_RULE, PRO_SURFCOLL_PARALLEL_GEOM_
RULE, PRO_SURFCOLL_CO_AXIAL_GEOM_RULE, PRO_SURFCOLL_
EQ_RADIUS_GEOM_RULE, and PRO_SURFCOLL_SAME_
CONVEXITY_GEOM_RULE are related to PRO_SURFCOLL_GEOM_
RULE, that is, the geometry rule surface set.

• PRO_SURFCOLL_SHAPE_CHAMFER—Collects surfaces with chamfered
edges. If used alone then only primary chamfer shapes are added to the
collection set.

• PRO_SURFCOLL_SHAPE_ROUND—Collects surfaces with round shape. If
used alone then only the primary round shapes are added to the collection set.

• PRO_SURFCOLL_SHAPE_PROTR_BOSS—Collects surfaces of the type
boss. The protrusion surfaces with the secondary shapes are also added to the
set.

• PRO_SURFCOLL_SHAPE_PROTR_RIB—Collects surfaces of the type rib.
The protrusion surfaces without the secondary shapes are added to set.

• PRO_SURFCOLL_SHAPE_CUT_POCKET—Collects cut surfaces with the
secondary shapes.

• PRO_SURFCOLL_SHAPE_CUT_SLOT—Collects cut surfaces without the
secondary shapes being added to set.

• PRO_SURFCOLL_SHAPE_MORE_SHAPES—Use this flag only with PRO_
SURFCOLL_SHAPE_CHAMFER and PRO_SURFCOLL_SHAPE_ROUND to
add the secondary chamfer and round shapes to the surface set.

Note
The bit flags PRO_SURFCOLL_SHAPE_ROUND, PRO_SURFCOLL_
SHAPE_PROTR_BOSS, PRO_SURFCOLL_SHAPE_PROTR_RIB, PRO_
SURFCOLL_SHAPE_CUT_POCKET, PRO_SURFCOLL_SHAPE_CUT_
SLOT, PRO_SURFCOLL_SHAPE_MORE_SHAPES and PRO_
SURFCOLL_SHAPE_CHAMFER are related to PRO_SURFCOLL_
SHAPE_BASED, that is, the shape surface set.

• PRO_SURFCOLL_TANGENT_NEIGBOURS_ONLY—Specifies that the
surfaces that have at least one tangent edge with another surface in the tangent
surface set, starting from the seed surface should be collected.

530 Creo® Parametric TOOLKITUser’s Guide

Note
The bit flag PRO_SURFCOLL_TANGENT_NEIGBOURS_ONLY is related
to PRO_SURFCOLL_TANG_SRF, that is, the tangent surface set.

Note
• Before you call ProSrfCollinstrInfoSet() function, you must set

the include flag (PRO_B_TRUE / PRO_B_FALSE) for the surface
collection instruction using the ProSrfcollinstrIncludeSet().

• For the geometry based, the shape based, and the tangent based surface
collections, the surface collection reference type (first input argument to
the function ProSrfcollrefAlloc()) must be PRO_SURFCOLL_
REF_SEED.

• If you want to apply all the geometry rule flags included in the info
argument of the function ProSrfCollinstrInfoSet(), the flag
PRO_SURFCOLL_ALL_GEOM_RULE must be included in info argument.
If you do not include the PRO_SURFCOLL_ALL_GEOM_RULE flag, any
of the geometry rule flags will be applied.

Use the function ProSrfcollinstrReferenceAdd() to add a reference to
the surface collection instruction.
Use the function ProSrfcollinstrReferenceRemove() to remove a
reference from the surface collection instruction.
Use the function ProSrfcollectionRegenerate() to generate an array of
objects based on the rules and information in the collection.

Access of Collection Object from Feature
Element Trees
Functions Introduced:

• ProElementCollectionGet()
• ProElementCollectionSet()
• ProElementCollectionProcess()
Use the function ProElementCollectionGet() to extract a collection
object from an element of a feature element tree of the following types:

User Interface: Curve and Surface Collection 531

• PRO_E_STD_CURVE_COLLECTION_APPL

• PRO_E_STD_SURF_COLLECTION_APPL

Use the function ProElementCollectionSet() to assign a collection
object into the appropriate elements of the above mentioned types.

Note
Point collections (PRO_E_POINT_COLLECTION_APPL) are accessed from
the element as normal ProReference object—by using
ProElementReferenceGet() and ProElementReferenceSet()
APIs.

Use the function ProElementCollectionProcess() to generate a list of
geometric items in the form of array of ProReference object constituting the
collection. It returns a ProArray of the selected curves, edges, or surfaces that
exist in the collection owned by the element. This function differs from
ProCrvcollectionRegenerate() and
ProSrfcollectionRegenerate() because those functions generate a list
of collected entities based on standard rules. The function
ProElementCollectionProcess(), if applied to a collection element
from a given feature, will use the feature's rules to process the collection and
return the exact geometric entities used by the feature.

Note
If this element is extracted from an existing feature tree using
ProFeatureElemtreeExtract(), the returned reference_array
will be on the basis of the feature rules. On the other hand, if this element is
newly created and not yet assigned to a feature, then the returned
reference_array will be as per the default rules.

Programmatic Access to Legacy
Collections
Functions Introduced:

• ProCollectionAlloc()
• ProCollectionrefAlloc()
• ProCollectionrefSelectionSet()

532 Creo® Parametric TOOLKITUser’s Guide

• ProCollectionrefTypeSet()
• ProCollectioninstrAlloc()
• ProCollectioninstrTypeSet()
• ProCollectioninstrRefAdd()
• ProCollectionInstrAdd()
• ProCollectionInstrVisit()
• ProCollectioninstrTypeGet()
• ProCollectioninstrRefVisit()
• ProCollectionrefSelectionGet()
• ProCollectionrefTypeGet()
• ProCollectionFree()
• ProCollectioninstrFree()
• ProCollectionrefFree()
• ProCollectionInstrRemove()
• ProCollectioninstrRefRemove()
• ProCrvcollectionInstrRegen()
The functions listed in this section have been superseded. PTC recommends using
the ProCrvcollection* and ProSrfcollection* functions instead of
these; documentation for these functions is provided for maintenance of existing
applications.

Example 1: Interactive Curve Collection
using Creo Parametric TOOLKIT
The sample code in the file UgGeomCurveLength.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
geometry demonstrates the interactive curves collection and computes the total
curve length - consisting of addition of lengths of individual curves in resulting
selection set. The collection filter function is set to allow only edge type of
selections.

Example 2: Interactive Surface Collection
using Creo Parametric TOOLKIT
The sample code in the file UgGeomSurfArea.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
geometry demonstrates the interactive surface collection and computes the total

User Interface: Curve and Surface Collection 533

area - consisting of addition of areas of individual surfaces in resulting selection
set. It also creates parameter of double type on the individual surfaces and assigns
it with the value of the individual surface area.

534 Creo® Parametric TOOLKITUser’s Guide

23
User Interface: Animation

Introduction... 536
Animation Objects ... 537
Animation Frames ... 537
Playing Animations.. 538

This chapter describes the Creo Parametric TOOLKIT functions that enable you to
create animation frames and movies.

535

Introduction
Creo Parametric TOOLKIT provides the functions that enable you to animate
parts and assemblies. Creo Parametric TOOLKIT handles lower-level
considerations, such as hardware-dependent graphics and the user interface.
Two animation techniques are available:

• Batch animation—You create an animation movie (ProAnimMovie object)
and users control the movie using an interface similar to a VCR. Users can
perform such operations as “Play”, “Fast-Forward”, “Rewind”, and so on. The
following figure shows the animation dialog box.

Animation Dialog Box

• Frame-by-frame (single) animation—You create a single animation
(ProSingleAnim object) and code the control loop into your application.
The batch animation interface does not appear. To replay the movie, you must
reexecute the control loop of your application.

For both batch and single animation, you must build the animation from two
important elements. These elements are:

• Animation object (ProAnimObj object)—Contains the object to be animated
and its transformation, with respect to its immediate parent. In constructing the
animation, you can show motion by creating a series of ProAnimObj
objects, each with a different transformation.

• Animation frame (ProAnimFrame object)—Captures the image of the
animation objects at one instance of the animation. Your final animation is a
series of animation frames shown in succession.

536 Creo® Parametric TOOLKITUser’s Guide

Animation Objects
Functions Introduced:

• ProAnimobjectCreate()
• ProAnimobjectDelete()
An animation object can be a part or an assembly. To create an animation object,
call the function ProAnimobjectCreate() and pass as input the component
path of the object to be animated. You must also supply the location of the
animation object with respect to its immediate parent—not with respect to the top-
level assembly. This distinction is important when the depth of the assembly
hierarchy is greater than 1.
To delete an animation object, use the function ProAnimobjectDelete().

Animation Frames
Functions Introduced:

• ProAnimframeCreate()
• ProAnimframeObjAdd()
• ProAnimframeObjRemove()
• ProAnimframeDelete()
• ProAnimframeObjVisit()
After you have created animation objects, you must create an animation frame in
which to store the objects. To create an animation frame, call the function
ProAnimframeCreate() and supply a frame view matrix. The frame view
matrix is a transformation from the top model coordinate system that allows you
to alter the view of the top-level model in your animation. This functionality could
be used, for example, to change the view of an assembly while the assembly
components (animation objects) move as specified in the call to
ProAnimobjectCreate().

Note
The frame view matrix is specified as a transformation from the root assembly.

Creating an animation frame does not cause the animation objects to be contained
in the frame. To add animation objects to a frame, you must call the function
ProAnimframeObjAdd().

User Interface: Animation 537

To remove an object from a frame, call the function
ProAnimframeObjRemove(). To delete a frame, call
ProAnimframeDelete().
The function ProAnimframeObjVisit() enables you to visit each animation
object in an animation frame. The input arguments of the function specify the
action and filtration functions, which are of type ProAnimObjAct.

Playing Animations
This section describes how to use your animation frames to construct and play the
animation. As previously mentioned, there are two types of animation—single and
batch.

Single Animation
Functions Introduced:

• ProSingleAnimationInit()
• ProSingleAnimationPlay()
• ProSingleAnimationClear()
If you want to use single animation, your Creo Parametric TOOLKIT application
must include a control loop that displays one animation frame after another.
Before executing your control loop, initialize the single animation by calling
ProSingleAnimationInit(). Within the loop, display each frame in turn
using the function ProSingleAnimationPlay().

Note
Single animation does not involve the batch animation user interface. The
control over a single animation is contained entirely within your application.

The function ProSingleAnimationClear() clears the specified single
animation.

Batch Animation
Batch animation implements the user interface shown in the Introduction on page
536 section. The interface enables users to control the playing of your animation
movie.

538 Creo® Parametric TOOLKITUser’s Guide

Animation Movies
Functions Introduced:

• ProAnimmovieCreate()
• ProAnimmovieFrameAdd()
• ProAnimmovieFrameRemove()
• ProAnimmovieDelete()
• ProAnimmovieFrameVisit()
The function ProAnimmovieCreate() creates an animation movie. At its
creation, a movie does not contain any frames. To add frames to the animation
movie, call the function ProAnimmovieFrameAdd().
To remove a frame from an animation movie, call the function
ProAnimmovieFrameRemove(). Note that this action does not cause the
frame to be deleted; use ProAnimmovieDelete() to release the memory of
the animation frame.
The function ProAnimmovieFrameVisit() enables you to visit each of the
frames in an animation movie. The input arguments to the function specify the
action and filtration functions, which are of type ProAnimFrameAct.

Playing a Batch Animation
Function Introduced:

• ProBatchAnimationStart()
• ProAnimmovieSpinflagSet()
Batch animation manages the display of animation frames inside Creo Parametric.
When you call ProBatchAnimationStart(), the system displays the VCR-
like user interface. This interface enables users to control the speed and direction
of the animation.
The function ProBatchAnimationStart() requires as input the animation
movie to be started (animated). In addition, you can supply a callback function to
be invoked before each animation frame is displayed. The callback function is of
type ProBatchAnimAct.
Use the function ProAnimmovieSpinflagSet() to set the ProBoolean
flag that allows spin in a batch animation process. If the animation includes view
modifications, this flag should be set to false, otherwise it can be true.

User Interface: Animation 539

Example 1: Creating a Batch Animation
The sample code in the file UgAnimAsmcompAnim.c located at <creo_
toolkit_loadpoint>\protk_appls\pt_userguide\ptu_anim,
shows how to animate an assembly component. The selected component rotates
about the x-axis.

540 Creo® Parametric TOOLKITUser’s Guide

24
Annotations: Annotation Features

and Annotations
Overview of Annotation Features.. 543
Creating Annotation Features... 543
Redefining Annotation Features ... 544
Visiting Annotation Features... 545
Creating Datum Targets ... 545
Visiting Annotation Elements.. 546
Accessing Annotation Elements ... 547
Modification of Annotation Elements ... 549
Automatic Propagation of Annotation Elements ... 552
Detail Tree .. 553
Access to Annotations ... 554
Converting Annotations to Latest Version .. 558
Annotation Text Styles ... 559
Annotation Orientation ... 559
Annotation Associativity ... 563
Annotation Security ... 564
Interactive Selection .. 565
Display Modes .. 565
Designating Dimensions and Symbols .. 565
Dimensions... 566
Notes ... 597
Geometric Tolerances.. 606
Accessing Set Datum Tags .. 606
Accessing Set Datums for Datum Axes or Planes .. 611
Surface Finish Annotations .. 612
Symbol Annotations... 614

541

This chapter describes how to access annotation features for special
customizations. It provides specific functions for creation, access, and
modification of annotation features and elements.

542 Creo® Parametric TOOLKITUser’s Guide

Overview of Annotation Features
An annotation feature is a new feature available in Pro/ENGINEERWildfire 2.0.
It is composed of one or more "annotation elements". Each annotation element is
composed of references, parameters and annotations (notes, symbols, geometric
tolerances, surface finishes, reference dimensions, driven dimensions, and
manufacturing template annotations). The annotation feature allows annotation
information to have the same benefits as geometry in Creo Parametric models,
that is, parameters can be assigned to these annotation elements, and missing
geometric references can cause features to fail in some situations.
The feature type PRO_FEAT_ANNOTATION represents an annotation feature.
Functions referring to annotation features use the structure
ProAnnotationfeat, which is identical to ProFeature.
Functions referring to annotation elements use the structure
ProAnnotationElem which is identical to the structure ProModelitem and
is defined as
typedef struct pro_model_item
{

ProType type;
int id;
ProMdl owner;

}ProAnnotationElem

Like other ProModelitem derivatives, each annotation element has a unique id
assigned to it in the model.
Annotation elements may belong to annotation features, or may also be found in
data-sharing features (features like Copy Geometry, Publish Geometry, Merge,
Cutout, and Shrinkwrap features).
Creo Parametric TOOLKIT does not expose the feature element tree for
annotation features because some elements in the tree are used for non-standard
purposes. Instead, Creo Parametric TOOLKIT provides specific functions for
creating, redefining, and reading the properties of annotation features and
annotation elements.

Creating Annotation Features
Functions Introduced:

• ProAnnotationfeatCreate()
• ProDatumtargetAnnotationfeatureCreate()
The function ProAnnotationfeatCreate() creates a new annotation
feature in the model. Specify the following as the input parameters for this
function:

Annotations: Annotation Features and Annotations 543

• model—Specify the solid model on which the feature will be created. Specify
the component path if the feature is created in an assembly context.

• use_ui—Specifies a boolean flag that determines how the annotation features
will be created. It can have the following values:

○ FALSE—Indicates that the feature will be a new empty annotation feature
with one general annotation element in it. Modify the new annotation
element and add others using subsequent steps.

○ TRUE—Indicates that Creo Parametric will invoke the annotation feature
creation user interface.

The function ProDatumtargetAnnotationfeatureCreate() creates a
new Datum Target Annotation Feature (DTAF) in the model. This function takes
the same input arguments as the earlier function
ProAnnotationfeatCreate().

Redefining Annotation Features
Redefining an annotation feature involves creation of new annotation elements,
deletion of elements that are not required and modification of the feature
properties.

Note
The functions in this section are shortcuts to redefining the feature containing
the annotation elements. Because of this, Creo Parametric must regenerate the
model after making the required changes to the annotation element. The
functions include a flag to optionally allow the Fix Model User Interface to
appear upon a regeneration failure.

Functions Introduced:

• ProAnnotationfeatElementAdd()
• ProAnnotationfeatElementArrayAdd()
• ProAnnotationfeatElementDelete()
• ProAnnotationfeatElementCopy()
The function ProAnnotationfeatElementAdd() adds a new non-
graphical annotation element to the feature.
The function ProAnnotationfeatElementArrayAdd() adds a series of
new annotation elements to the feature. Each element may be created as non-
graphical or may be assigned a pre-existing annotation.

544 Creo® Parametric TOOLKITUser’s Guide

Note
In case of Datum Target Annotation Features (DTAFs), you can add only one
set datum tag annotation element using the function
ProAnnotationfeatElementArrayAdd().

The function ProAnnotationfeatElementDelete() deletes an
annotation element from the feature. The function deletes the annotation element,
its annotations, parameters, references, and application data from the feature.

Note
In case of Datum Target Annotation Features (DTAFs),
ProAnnotationfeatElementDelete() allows you to delete only a
Datum Target Annotation Element (DTAE) from a DTAF. This function does
not allow deletion of a set datum tag annotation element from the DTAF.

The function ProAnnotationfeatElementCopy() copies and adds an
existing annotation element to the specified annotation feature.

Visiting Annotation Features
Functions Introduced:

• ProSolidFeatVisit()
• ProModelitemNameGet()
Use the function ProSolidFeatVisit() to visit the annotation features in the
specified model.
The function ProModelitemNameGet() returns the name of the annotation
feature.

Creating Datum Targets
Functions Introduced:

Annotations: Annotation Features and Annotations 545

• ProMdlDatumTargetCreate()
The function ProAnnotationfeatDatumtargetCreate() has been
deprecated. Use the function ProMdlDatumTargetCreate() instead. The
function ProMdlDatumTargetCreate() creates a new datum target. The
input arguments are:
• p_owner_mdl—Specifies the model in which the datum target will be created.
• type—Specifies the type of target area using the enumerated data type

ProDatumTargetType. The valid values are:
○ PRO_DATUM_TARGET_NONE

○ PRO_DATUM_TARGET_POINT

○ PRO_DATUM_TARGET_CIRCLE

○ PRO_DATUM_TARGET_RECTANGLE

• annot_plane—Specifies the annotation plane.
• attach_sels—Specifies the reference to which the datum target will be

attached. To specify a single reference, pass ProSelection for index 0 and
NULL for index 1.

For a pair of references, pass ProSelection for both indexes. In this case,
the datum target is attached to the solid at the intersection point of the two
references.

• text_pnt—Specifies the location of the text in the datum target.

Visiting Annotation Elements
The functions described in this section enable you to visit all the annotation
elements in a solid model.
Functions Introduced:

• ProFeatureAnnotationelemsVisit()
• ProSolidAnnotationelemsVisit()
The function ProFeatureAnnotationelemsVisit() visits the annotation
elements in the specified feature.
The function ProSolidAnnotationelemsVisit() visits the annotation
elements in a solid model.
The filter function ProAnnotationelemFilterAction() and the visit
function ProAnnotationelemVisitAction() are specified as input
arguments for the above functions.

546 Creo® Parametric TOOLKITUser’s Guide

The function ProAnnotationelemFilterAction() is a generic function
for filtering an annotation element. It returns the filter status of the specified
annotation element. The filter status is passed as the input argument to the
function ProAnnotationelemVisitAction() which is a generic function
for visiting annotation elements.

Accessing Annotation Elements
The following functions provide access to the properties of an annotation element.
Functions Introduced:

• ProAnnotationelemAnnotationGet()
• ProAnnotationelemCopyGet()
• ProAnnotationelemFeatureGet()
• ProAnnotationelemIsDependent()
• ProAnnotationelemIsIncomplete()
• ProAnnotationelemReferencesCollect()
• ProAnnotationelemQuiltreferenceSurfacesCollect()
• ProAnnotationelemTypeGet()
• ProAnnotationelemReferenceDescriptionGet()
• ProAnnotationelemReferenceIsStrong()
• ProAnnotationelemReferenceAutopropagateGet()
• ProAnnotationelemHasMissingrefs()
The function ProAnnotationelemAnnotationGet() returns the
annotation contained in an annotation element.
The function ProAnnotationelemCopyGet() returns the copy flag of the
annotation elements. This property is not supported for elements in data sharing
features.
The function ProAnnotationelemFeatureGet() returns the feature that
owns the annotation element.
The function ProAnnotationelemIsDependent() returns the value of the
dependency flag for the annotation element. This property is supported only for
the elements in data sharing features.
The function ProAnnotationelemIsIncomplete() returns a true value if
the annotation element has missing strong references.
The function ProAnnotationelemReferencesCollect() returns an
array of references contained in the specified annotation element. The input
arguments for this function are:

Annotations: Annotation Features and Annotations 547

• element—Specifies the annotation element.
• ref_type—Specifies the type of references and can have one of the following

values:

○ PRO_ANNOTATION_REF_ALL—All references
○ PRO_ANNOTATION_REF_WEAK—Weak references
○ PRO_ANNOTATION_REF_STRONG—Strong references

• source—Specifies the source of the references and can have one of the
following values:

○ PRO_ANNOTATION_REF_ALL—From both user and annotation.
○ PRO_ANNOTATION_REF_FROM_ANNOTATION—From the annotation

(or custom data) only.
○ PRE_ANNOTATION_REF_FROM_USER—From the user only.

Annotation elements have special default behavior for propagation of datum
points to features in other models. The flag that controls this behavior can
automatically propagate datum points or any other applicable items to data sharing
features after the user has selected all other strong references of the annotation
elements.
Here, applicable items are items that are designated to auto-propagate, using a
checkbox in the references collector, for specific annotation elements.
The function
ProAnnotationelemQuiltreferenceSurfacesCollect() returns
the surfaces which make up a quilt surface collection reference for the annotation
element.

Note
All the surfaces made inactive by features occurring after the annotation
element in the model regeneration are also returned.

The function ProAnnotationelemReferenceAutopropagateGet()
gets the autopropagate flag of the specified annotation element reference.
The function ProAnnotationelemTypeGet() returns the type of the
annotation contained in the annotation element. It can have one of the following
values:

• PRO_ANNOT_TYPE_NONE—Specifies a non-graphical annotation.
• PRO_ANNOT_TYPE_NOTE—Specifies a note. Refer to the section Notes on

page 597 for details.

548 Creo® Parametric TOOLKITUser’s Guide

• PRO_ANNOT_TYPE_GTOL—Specifies a geometric tolerance. Refer to the
chapter Geometric Tolerances on page 606 for details.

• PRO_ANNOT_TYPE_SRFFIN—Specifies a surface finish. Refer to the
section Surface Finish Annotations on page 612 for details.

• PRO_ANNOT_TYPE_SYMBOL—Specifies a symbol. Refer to the section
Symbol Annotations on page 614 for details.

• PRO_ANNOT_TYPE_DRVDIM—Specifies a driven dimension. Refer to the
section Accessing Reference and Driven Dimensions on page 590 for details.

• PRO_ANNOT_TYPE_REFDIM—Specifies a reference dimension. Refer to the
section Accessing Reference and Driven Dimensions on page 590 for details.

• PRO_ANNOT_TYPE_CUSTOM—Specifies a manufacturing template
annotation.

• PRO_ANNOT_TYPE_SET_DATUM_TAG—Specifies a set datum tag. Refer to
the section Accessing Set Datum Tags on page 606 for details.

• PRO_ANNOT_TYPE_DRIVINGDIM—Specifies a driving dimension
annotation element. Refer to the section Driving Dimension Annotation
Elements on page 590 for details.

The function ProAnnotationelemReferenceDescriptionGet() gets
the description property for a given annotation element reference.

Note
The description string is same as that of the tooltip text for the reference name
in the Annotation Feature UI.

The function ProAnnotationelemReferenceIsStrong() identifies if a
reference is weak or strong in a given annotation element.
The function ProAnnotationelemHasMissingrefs() enables you to
identify if an annotation element has missing references. The input parameters of
this function allow you to investigate specific types and sources of references, or
check all references simultaneously.

Modification of Annotation Elements
The functions described in this section allow you to modify the properties of an
annotation element.

Annotations: Annotation Features and Annotations 549

Note
The functions in this section are shortcuts to redefining the feature containing
the annotation elements. Because of this, Creo Parametric must regenerate the
model after making the indicated changes to the annotation element. The
functions include a flag to optionally allow the Fix Model User Interface to
appear upon a regeneration failure.

Functions Introduced:

• ProAnnotationelemAnnotationSet()
• ProAnnotationelemCopySet()
• ProAnnotationelemDependencySet()
• ProAnnotationelemReferenceAdd()
• ProAnnotationelemReferenceRemove()
• ProAnnotationelemReferenceStrengthen()
• ProAnnotationelemReferenceWeaken()
• ProAnnotationelemReferenceDescriptionSet()
• ProAnnotationelemReferenceAutopropagateSet()
• ProAnnotationelemReferencesSet()
• ProAnnotationelemArrayReferencesSet()
• ProAnnotationreferencesetAlloc()
• ProAnnotationreferencesetReferenceAdd()
• ProAnnotationreferencesetFree()
• ProAnnotationreferencesetProarrayFree()
The function ProAnnotationelemAnnotationSet() allows you to
modify the annotation contained in an annotation element. Specify the value for
the input argument annotation as NULL to modify the annotation element to be a
non-graphical annotation.

Note
The above function does not support Datum Target Annotation Elements
(DTAEs).

If you modify the annotation contained in the annotation element, the original
annotation is automatically removed from the element and is owned by the model.

550 Creo® Parametric TOOLKITUser’s Guide

The function ProAnnotationelemCopySet() provides write access to the
copy flag of the annotation element. This property is not supported for annotations
in data sharing features.
The function ProAnnotationelemDependencySet() sets the value for the
dependency flag. This property is supported only for annotations in data sharing
features.
The function ProAnnotationelemReferenceAdd() adds a strong user-
defined reference to the annotation element.
The function ProAnnotationelemReferenceRemove() removes the user
defined reference from the annotation element.
The function ProAnnotationelemReferenceStrengthen() converts a
weak reference to a strong reference.
The function ProAnnotationelemReferenceWeaken() converts a strong
reference to a weak reference.
The function ProAnnotationelemReferenceDescriptionSet() sets
the description property for a given annotation element reference.
The function ProAnnotationelemReferenceAutopropagateSet()
sets the autopropagate flag of the specified annotation element reference.
The function ProAnnotationelemReferencesSet() replaces all the user-
defined references in the annotation element with a ProArray of references
specified as the input argument.
The function ProAnnotationelemArrayReferencesSet() replaces all
the user-defined references for a ProArray of annotation elements with the
ProArray of reference sets specified as the input argument.

Note
All the annotation elements must belong to the same feature. The number of
reference sets should match the number of annotation elements to be modified.

The function ProAnnotationreferencesetAlloc() allocates a set of
user-defined references to be assigned to an annotation element.
The function ProAnnotationreferencesetReferenceAdd() adds a
new reference to an existing set of user-defined annotation references.
The function ProAnnotationreferencesetFree() releases the set of
user-defined references to be assigned to an annotation element.
The function ProAnnotationreferencesetProarrayFree() releases
an array of reference sets to be assigned to an annotation element.

Annotations: Annotation Features and Annotations 551

Parameters Assigned to Annotation Elements
The functions described in this section allow you to access parameters assigned to
the annotation element. Specify the annotation element as the parameter owner for
these functions.
Functions Introduced:

• ProParameterIsEnumerated()
• ProParameterRangeGet()
The function ProParameterIsEnumerated() identifies an enumerated
parameter and returns the available values assigned to it. The output of the
function is PRO_B_TRUE if the parameter is enumerated and PRO_B_FALSE if it
is not. The output argument also presents ProArray of values that can be
assigned to the enumerated parameter.
The function ProParameterRangeGet() identifies whether a parameter is
restricted to a range of values. It optionally provides the boundary conditions for
the range.
For more information on functions that allow you to view, create, delete, and
modify parameters, refer to Core: Parameters on page 210.

Automatic Propagation of Annotation
Elements
Automatic local propagation of annotation elements can be done based on some
specified conditions, using a Creo Parametric TOOLKIT application. A Creo
Parametric TOOLKIT application can register the following notification event
types (ProNotifyType):

• PRO_FEATURE_CREATE_POST

• PRO_FEATURE_REDEFINE_POST

When an appropriate event occurs during a Creo Parametric session, the
associated notification function can invoke a local propagation.
Functions Introduced:

• ProAnnotationelemAutopropagate()
The function ProAnnotationelemAutopropagate() causes the local and
automatic propagation of annotation elements to the currently selected feature
within the same model, after a supported feature has either been created or
modified. The propagation behavior is dependant on the standard Creo Parametric
algorithm and on the current contents of the selection buffer.
Following are the list of supported features:

• Draft

552 Creo® Parametric TOOLKITUser’s Guide

○ Surface
○ Solid

• Offset

○ Surface
○ With Draft
○ Expand

• Mirror Surface
• Copy Surface
• Move Surface
The Creo Parametric TOOLKIT application can be written so as to specify the
condition for the automatic propagation, based on created feature-type, subtype or
any other required properties.
The function propagates based on the current contents of the selection buffer.
For notification of type PRO_FEATURE_REDEFINE_POST, Creo Parametric
does not automatically populate the selection buffer with the feature that was
redefined. The Creo Parametric TOOLKIT application would be then required to
populate the selection buffer with the feature using the appropriate functions.
Refer to the section Selection Buffer on page 512 in the chapter User Interface:
Selection on page 503 for more information on selection buffer.

Note
The function ProAnnotationelemAutopropagate() works regardless
of the current value for the configuration option, auto_propagate_ae.
PTC advises that the Creo Parametric TOOLKIT application respect the
current value of this configuration option; otherwise, duplicate versions of the
propagated annotations can result.

Detail Tree
Creo Parametric 1.0 onwards, when the 3D Annotation tab is active, you can view
the active combination state of a model and the annotations assigned to it. This
representation is called a Detail Tree. For more information on Detail Tree, see the
Creo Parametric help. Use the following functions to refresh, expand, and collapse
the detail tree:
Functions Introduced:

Annotations: Annotation Features and Annotations 553

• ProDetailtreeRefresh()
• ProDetailtreeExpand()
• ProDetailtreeCollapse()
Use the function ProDetailtreeRefresh() to rebuild the detail tree in the
Creo Parametric window that contains the model.
Use the function ProDetailtreeExpand() to expand the detail tree in the
Creo Parametric window.
Use the function ProDetailtreeCollapse() to collapse all nodes of the
detail tree in the Creo Parametric window and make its child nodes invisible.
The input arguments to these functions are:
• solid—Handle to the model that contains the detail tree.
• window_id—ID of the Creo Parametric window in which you want to refresh,

expand, or collapse the detail tree.

Note
Use PRO_VALUE_UNUSED to refresh, expand, or collapse the detail tree
in the active window.

Access to Annotations
The structure for the annotations is similar to the structure ProModelitem and
is defined as
typedef struct pro_model_item
{

ProType type;
int id;
ProMdl owner;

}ProAnnotation

The value of type for different annotations is as follows:

• PRO_NOTE—Specifies a note. Functions specific to notes use the object type
ProNote.

• PRO_SYMBOL_INSTANCE—Specifies a symbol instance. Functions specific
to symbols use the object ProDtlsyminst.

• PRO_GTOL—Specifies a geometric tolerance. Functions specific to Gtols use
the object ProGtol.

• PRO_SURF_FIN—Specifies a surface finish. Functions specific to surface
finish use the object ProSurfFinish.

554 Creo® Parametric TOOLKITUser’s Guide

• PRO_REF_DIMENSION—Specifies a reference dimension.
• PRO_DIMENSION—Specifies a driving or driven dimension. Reference,

driven and driving dimension functions may use the object type
ProDimension.

• PRO_SET_DATUM_TAG—Specifies a set datum tag annotation. Functions
specific to set datum tag use the object type ProSetdatumtag.

• PRO_CUSTOM_ANNOTATION—Specifies a custom annotation type.
Currently, used only for manufacturing template annotations.

Functions Introduced:

• ProAnnotationElementGet()
• ProAnnotationByViewShow()
• ProAnnotationByFeatureShow()
• ProAnnotationByComponentShow()
• ProCombstateAnnotationErase()
• ProDrawingAnnotationErase()
• ProAnnotationShow()
• ProAnnotationIsShown()
• ProAnnotationIsInactive()
• ProAnnotationDisplay()
• ProAnnotationUndisplay()
• ProAnnotationUpdate()
• ProFeatureParamsDisplay()
The function ProAnnotationElementGet() returns the annotation element
that contains the annotation.
The function ProAnnotationByViewShow() displays the annotation of the
specified type in the selected view.
The function ProAnnotationByFeatureShow() displays the annotation of
the specified type for the selected feature.
The function ProAnnotationByComponentShow() displays the annotation
of the specified type for the selected component.
From Creo Parametric 2.0 M060 onward, you can specify the view in which the
annotations for the selected feature and component must be displayed. For the
functions ProAnnotationByFeatureShow() and

Annotations: Annotation Features and Annotations 555

ProAnnotationByComponentShow(), specify the view where the
annotations must be displayed. If you pass the input argument view as NULL, the
annotations are displayed in all the views.

Note
In Creo Parametric 2.0 M050, you must pass the input argument view as
NULL.

The following types of annotations are displayed for the functions
ProAnnotationByViewShow(), ProAnnotationByFeatureShow(),
and ProAnnotationByComponentShow():
• PRO_DIMENSION

• PRO_REF_DIMENSION

• PRO_NOTE

• PRO_GTOL

• PRO_SURF_FIN

• PRO_AXIS

• PRO_SET_DATUM_TAG

• PRO_SYMBOL_INSTANCE

• PRO_DATUM_TARGET

If you want to display an annotation which is dependent on another annotation for
its display in the drawing, then the Creo Parametric TOOLKIT application must
first display the parent annotation. Only after the parent annotation is displayed,
the application can display its dependent annotations. For example, if a geometric
tolerance is placed on a dimension, then the application must call the function
ProAnnotationByViewShow() for PRO_DIMENSION type. The dimension
is displayed. To display the geometric tolerance, call the function
ProAnnotationByViewShow() for PRO_GTOL. The same logic applies for
the functions ProAnnotationByFeatureShow(), and
ProAnnotationByComponentShow().
The function ProCombstateAnnotationErase() removes an annotation
from the display for the specified combined state.
The function ProDrawingAnnotationErase() removes an annotation from
the display for the specified drawing. The annotation is not shown in the specified
drawing.

556 Creo® Parametric TOOLKITUser’s Guide

Note
The annotation which was removed from the display using the functions
ProCombstateAnnotationErase() and
ProDrawingAnnotationErase() will become visible again, only if the
function ProAnnotationShow() is called to explicitly display the
annotation.

The function ProAnnotationShow() shows the annotation in the current
combined state. The annotation will be visible until it is explicitly erased from the
combined state . The function also adds the specified annotation to the current
combined state, if not added. If the specified annotation has been erased, then the
function changes the display status of the erased annotation and makes it visible in
the combined state, that is, it unerases the annotation.
This function is also capable of showing an annotation in a drawing view similar
to the Creo Parametric command Show and Erase. This function supersedes the
functions ProDimensionShow() and ProNoteDisplay().
The function ProAnnotationIsShown() returns the display status of the
annotation in the current combined state or drawing.

Note
To get the display status of set datum tags in a drawing, use the function
ProDrawingSetDatumTagIsShown().

The function ProAnnotationIsInactive() indicates whether the
annotation can be shown or not. An annotation becomes inactive if all the weak
references it points to have been lost or consumed.
The functions ProAnnotatonDisplay() and
ProAnnotationUndisplay() temporarily display and remove an annotation
from the display for the specified combined state or drawing. The functions
ProAnnotatonDisplay() and ProAnnotationUndisplay() should be
used together. To edit a shown annotation, it must be first removed temporarily
from display using the function ProAnnotationUndisplay() followed by
the editing function calls, and finally must be redisplayed using the function
ProAnnotationDisplay(), so that the updated annotation is correctly
visible to the user.
The function ProAnnotationUpdate() updates the display of an annotation,
but does not actually display it. If the annotation is not currently displayed
(because it is hidden by layer status or inactive geometry), the text extracted from
the annotation with the mode PRODISPMODE_NUMERIC may include callout

Annotations: Annotation Features and Annotations 557

symbols, instead of the text shown to the user. ProAnnotationUpdate()
informs Creo Parametric to update the contents of the annotation in order to cross-
reference these callout values. This function supports 3D model notes of the type
ProNote and detail notes of the type ProDtlnote.
When you want to force the display of dimensions or parameters, geometric
tolerances (gtols), and so on on a single feature, use the function
ProFeatureParamsDisplay().

Note
• The function ProAnnotationDisplay() supersedes the functions

ProDimensionShow() and ProGtolShow().
• The function ProAnnotationUndisplay() supersedes the functions

ProDimensionErase() and ProGtolErase().
• The function ProDimensionDisplayUpdate() is superseded by a

combination of ProAnnotationDisplay() and
ProAnnotationUndisplay().

Converting Annotations to Latest Version
Functions Introduced:

• ProAnnotationNeedsConversion()
• ProAnnotationLegacyConvert()
The function ProAnnotationNeedsConversion() returns true in the
following cases:
• Annotations created in releases earlier than Creo Parametric 4.0 F000
• Annotations created using the deprecated functions ProGtolCreate() or

ProSetdatumtagCreate()

The input argument annotation can be a gtol, reference dimension, driven
dimension, set datum tag, or datum tag which needs to be converted.
The function returns the following values for the output argument needs_
conversion:
• PRO_B_TRUE—When the annotation needs conversion.
• PRO_B_FALSE—When the annotation is already converted.
The function ProAnnotationLegacyConvert() converts annotations to
the latest Creo Parametric version.

558 Creo® Parametric TOOLKITUser’s Guide

You can call the function ProAnnotationLegacyConvert() only if the
function ProAnnotationNeedsConversion() returns true.

Annotation Text Styles
Functions Introduced:

• ProAnnotationTextstyleGet()
• ProAnnotationTextstyleSet()
• ProTextStyleFree()
The function ProAnnotationTextstyleGet() retrieves the text style for
the specified annotation. The input arguments are:
• annotation—Specifies the annotation.
• drawing—Specifies a drawing only when the annotation is owned by the solid,

but is displayed in the drawing.
• comp_path—Specifies the component path to the solid that owns the

annotation.
Use the function ProTextStyleFree() to free the allocated data structure.
The method ProAnnotationTextstyleSet() sets the text style for the
specified annotation.

Annotation Orientation
An Annotation Orientation refers to the annotation plane or the parallel plane in
which the annotation lies, the viewing direction, and the text rotation. You can
define the annotation orientation using a datum plane or flat surface, a named
view, or as flat to screen. If the orientation is defined by a datum plane, you can
set its reference to frozen or driven; where frozen indicates that the
reference to the datum plane or named view has been removed.
Functions Introduced:

• ProAnnotationplaneCreate()
• ProAnnotationplaneFromViewCreate()
• ProAnnotationplaneFlatToScreenCreate()
• ProAnnotationplaneTypeGet()
• ProAnnotationplaneReferenceGet()
• ProAnnotationplanePlaneGet()
• ProAnnotationplaneVectorGet()
• ProAnnotationplaneFrozenGet()

Annotations: Annotation Features and Annotations 559

• ProAnnotationplaneFrozenSet()
• ProAnnotationplaneForcetoplaneflagGet()
• ProAnnotationplaneForcetoplaneflagSet()
• ProAnnotationplaneViewnameGet()
• ProAnnotationplaneAngleGet()
• ProAnnotationplaneActiveGet()
• ProMdlAnnotplanesFromGalleryCollect()
• ProMdlAnnotationplanesCollect()
• ProAnnotationplaneNamesGet()
• ProAnnotationplaneByNameInit()
• ProAnnotationplaneNameAssign()
• ProAnnotationplaneAddToGallery()
• ProAnnotationplaneRemoveFromGallery()
• ProAnnotationRotate()
The function ProAnnotationplaneCreate() creates a new annotation
plane from either a datum plane, a flat surface, or an existing annotation that
already contains an annotation plane.
The function ProAnnotationplaneFromViewCreate() creates a new
annotation plane from a saved model view.
The function ProAnnotationplaneFlatToScreenCreate() returns the
annotation plane item representing a flat-to-screen annotation in the model. This
function takes a ProBoolean input argument by_screen_point, which identifies
whether the annotations on this plane are located by screen points, or by model
units.

Note
You can only place notes, surface finishes, and symbols as flat to screen.
Dimensions, geometric tolerances and set datum tags are not supported as flat-
to-screen annotations.

Use the function ProAnnotationplaneTypeGet() to obtain the annotation
plane type. It can have one of the following values:

560 Creo® Parametric TOOLKITUser’s Guide

• PRO_ANNOTATIONPLANE_REFERENCE—The annotation plane is created
from a datum plane or a flat surface, and can be frozen or be associative to the
reference.

• PRO_ANNOTATIONPLANE_NAMED_VIEW—The annotation plane is created
from a named view or a view in the drawing.

• PRO_ANNOTATIONPLANE_FLATTOSCREEN_BY_MODELPNT—The
annotation plane is flat-to-screen and annotations are located by model units.

• PRO_ANNOTATIONPLANE_FLATTOSCREEN_BY_SCREENPNT—The
annotation plane is flat-to-screen and annotations are located by screen points.

• PRO_ANNOTATIONPLANE_FLATTOSCREEN_LEGACY—The annotation
uses a legacy flat-to-screen format (located in model space).

The function ProAnnotationplaneReferenceGet() returns the planar
surface used as the annotation plane.
The function ProAnnotationplanePlaneGet() returns the geometry of
the annotation plane in terms of the ProPlanedata object containing the origin
and orientation of the annotation plane.
The functions ProAnnotationplaneFrozenGet() and
ProAnnotationplaneFrozenSet() determine and assign, respectively,
whether the annotation orientation is frozen or driven by reference to the plane
geometry. These functions are applicable only for annotation planes governed by
references.
The functions ProAnnotationplaneForcetoplaneflagGet() and
ProAnnotationplaneForcetoplaneflagSet() return and assign,
respectively, the value of the ProBoolean argument force_to_plane for an
annotation plane. If this argument is set to PRO_B_TRUE, then the annotations
that reference the annotation plane are placed on that plane. If the annotation
orientation is not frozen, that is, driven by the reference plane, and if the
reference plane is moved, then the annotations also move along with the plane.
The function ProAnnotationplaneViewnameGet() obtains the name of
the view that was originally used to determine the orientation of the annotation
plane.

Note
If the named view orientation has been changed after the annotation plane was
created, the orientation of the plane will not match the current orientation of
the view.

The function ProAnnotationplaneVectorGet() returns the normal vector
that determines the viewing direction of the annotation plane.

Annotations: Annotation Features and Annotations 561

The function ProAnnotationplaneAngleGet() returns the current
rotation angle in degrees for a given annotation plane and the text orientation of
all annotations on that plane.
The function ProAnnotationplaneActiveGet() returns the active
annotation plane in the specified model.
The function ProMdlAnnotplanesFromGalleryCollect() collects the
names of all the annotation planes in the gallery. The output argument names is a
ProArray of names in the gallery. Use the function
ProWstringArrayFree() to free the allocated memory. The function returns
the error PRO_TK_EMPTY if there are no annotation planes in the gallery.
The function ProMdlAnnotationplanesCollect() collects the names of
all the named annotation planes in the specified model. The function returns the
error PRO_TK_EMPTY if there are no annotation planes in the model.
The function ProAnnotationplaneNamesGet() returns the names of the
specified annotation plane.
The function ProAnnotationplaneByNameInit() finds and returns the
annotation plane with the specified name. The function returns the error PRO_
TK_E_NOT_FOUND if the annotation plane with the specified name does not
exist.
The function ProAnnotationplaneNameAssign() assigns a name to the
specified annotation plane. The function returns the error PRO_TK_E_NOT_
FOUND if the specified annotation plane does not exist in the model. The function
returns the error PRO_TK_E_FOUND if an annotation plane with the specified
name already exists in the model.
Use the function ProAnnotationplaneAddToGallery() to add an
annotation plane with the specified name to the gallery.
Use the function ProAnnotationplaneRemoveFromGallery() to
remove the annotation plane with the specified name from the gallery.
The function ProAnnotationRotate() rotates a given annotation by the
specified angle. This moves the annotation to a new annotation plane with the
appropriate rotation assigned. Other annotations on the annotation’s current plane
are unaffected by this function.

Note
You can only rotate annotations that belong to annotation elements using the
above function.

562 Creo® Parametric TOOLKITUser’s Guide

Annotation Associativity
The functions described in this section allow you to ensure associativity between
shown annotations in drawings and 3D models. You can independently control the
position associativity and attachment associativity of a drawing annotation.

Note
• Drawing annotations can have only uni-directional associativity, that is,

changes to the position and attachment of the annotation in the 3D model are
reflected for the annotation in the drawing view, but not vice-versa.

• You cannot modify the position associativity and attachment associativity of a
drawing annotation from the 3D model.

• You cannot make free, flat-to-screen annotations in a drawing view associative
to the annotations in the 3D model.

• Annotation properties such as text, jogs, breaks, skew, witness line clippings,
and flip arrow states are not associative.

Functions Introduced:

• ProAnnotationIsAssociative()
• ProAnnotationPositionUpdate()
• ProAnnotationAttachmentUpdate()
The function ProAnnotationIsAssociative() identifies if a given
annotation in a drawing view is associative to the annotation in the 3D model. It
has the following output arguments:

• assoc_position—Specifies if the position of the annotation is associative.
• assoc_attach—Specifies the attachment associativity. It takes one of the

following values:

○ PRO_ANNOTATTACH_ASSOCIATIVITY_PARTIAL—Specifies that the
drawing annotation is partially associative.

○ PRO_ANNOTATTACH_ASSOCIATIVITY_FULL—Specifies that the
drawing annotation is fully associative.

• future_use—This argument is for future use.
The function ProAnnotationPositionUpdate() updates the position of
the drawing annotation, and makes it associative to the position of the annotation
in the 3D model.

Annotations: Annotation Features and Annotations 563

Note
You can update the associative position only for drawing annotations that have
their placement based on model coordinates.

The function ProAnnotationAttachmentUpdate() updates the
attachment of the drawing annotation, and makes it associative to the attachment
of the annotation in the 3D model. Associative attachment of an annotation refers
to both – its references and its attachment point on its references.

Note
You can update the associative attachment only for drawing annotations that
are attached to the geometry.

Annotation Security
The functions described in this section allow you to manage whether an
annotation is designated as a security marking. You can independently control the
security marking option of a drawing annotation. You cannot copy such
annotations. Annotations designated as security markings have the following
characteristics:

• Always visible whenever the model is viewed in a product that supports the
security markings.

• Listed at the top of the detail tree in an active combined state.
• Shown by an icon in the Detail Tree and Model Tree.
Functions Introduced:

• ProAnnotationSecuritymarkingSet()
• ProAnnotationSecuritymarkingGet()
Use the function ProAnnotationSecuritymarkingSet() to set the
security marking option for notes and symbols. The input arguments follow:
• a
• annotation—Annotation must be flat to screen, unattached, and standalone

note or symbol.
• is_secure—Pass a ProBoolean value PRO_B_TRUE to designate security

marking.

564 Creo® Parametric TOOLKITUser’s Guide

Use the function ProAnnotationSecuritymarkingGet() to retrieve the
security marking option for notes and symbols.

Interactive Selection
Annotation features, annotation elements, and annotations can be selected
interactively using ProSelect() or can be obtained from the selection buffer
using the function ProSelbufferSelectionsGet().
For more information on interactive selection refer to chapter User Interface:
Selection on page 503.

Display Modes
Functions Introduced:

• ProDisplaymodeGet()
• ProDisplaymodeSet()
These functions specify whether the display of dimensions shows symbols or
values, and enables you to switch the mode. This is the equivalent to the Creo
Parametric command Switch Dimensions in the Relations dialog box.

Designating Dimensions and Symbols
Function Introduced:

• ProSymbolDesignate()
• ProSymbolUndesignate()
• ProSymbolDesignationVerify()
The function ProSymbolDesignate() designates a dimension, dimension
tolerance, geometric tolerance or surface finish symbol to the specified model.
The function ProSymbolUndesignate() undesignates the dimension,
dimension tolerance, geometric tolerance or surface finish symbol from the
specified model.
The function ProSymbolDesignationVerify() determines if a dimension,
dimension tolerance, geometric tolerance or surface finish symbol has been
designated to a model.

Annotations: Annotation Features and Annotations 565

Dimensions

The ProDimension Object
The ProDimension object handle is a DHandle that is equivalent to
ProModelitem. The owner field can be a solid or a drawing, depending upon
where the dimension is stored. Dimensions created in drawing mode may be
stored in the drawing or in the solid depending upon the setting of the
config.pro option CREATE_DRAWING_DIMS_ONLY. The type field is
either PRO_DIMENSION or PRO_REF_DIMENSION. The ID is the integer used
to identify the dimension inside Creo Parametric. It corresponds to the numerical
part of the default symbol assigned to the dimension when it is created.
The ProDimension object also inherits from ProModelitem, which means
that functions such as ProModelitemInit() and
ProSelectionModelitemGet() can be used for it
(ProDimensionSymbolGet() and ProDimensionSymbolSet() are
recommended for this purpose, instead of ProModelitemNameGet() and
ProModelitemNameSet()).

Visiting Dimensions
Functions Introduced:

• ProSolidDimensionVisit()
• ProDrawingDimensionVisit()
• ProDimensionSymbolGet()
• ProDimensionValueGet()
• ProDimensionParentGet()
• ProDimensionTypeGet()
• ProDimensionNomvalueGet()
• ProDimensionIsDisplayRoundedValue()
• ProDimensionDisplayRoundedValueSet()
• ProDimensionDisplayedValueGet()
• ProDimensionOverridevalueGet()
• ProDimensionValuedisplayGet()
• ProDimensionIsFractional()
• ProDimensionDecimalsGet()
• ProDimensionDenominatorGet()
• ProDimensionIsReldriven()

566 Creo® Parametric TOOLKITUser’s Guide

• ProDimensionIsRegenednegative()
• ProDimensionBoundGet()
• ProDimensionOwnerfeatureGet()
• ProDimensionIsAccessibleInModel()
• ProDimensionIsSignDriven()
• ProDimensionDisplayFormatGet()
• ProDimensionOriginSideGet()
• ProSelectionDimWitnessLineGet()
The two visit functions ProSolidDimensionVisit() and
ProDrawingDimensionVisit() conform to the usual style of visit
functions. (Refer to section Visit Functions on page 62 in the chapter
Fundamentals on page 22.) A dimension is stored in a solid if it is a “shown”
dimension, that is, if it was created automatically by Creo Parametric as part of the
feature definition. A dimension will also be stored in a solid if it was created in
drawing mode while the config.pro option CREATE_DRAWING_DIMS_
ONLY was set to NO.
The function ProDimensionSymbolGet() returns the symbol (the name) of
the specified dimension.
The function ProDimensionValueGet() returns the value of the dimension.
Some feature dimensions are dependent on dimensions of other features. To
modify the dependent dimension, you must get the parent dimension and modify
it. Use the function ProDimensionParentGet() to get the parent dimension
of the specified dependent dimension. For example, consider a sketch feature,
which is used to create an extrude feature. In this case, the section dimensions of
the extrude feature depend on the dimensions of the sketch feature. To modify the
section dimensions of extrude feature, the dimensions of the sketch feature must
be retrieved and modified.

Note
Multiple dimensions may depend on a single parent dimension.

The function ProDimensionTypeGet() returns the type of the dimension in
terms of the following values:

• PRODIMTYPE_LINEAR

• PRODIMTYPE_RADIUS

• PRODIMTYPE_DIAMETER

Annotations: Annotation Features and Annotations 567

• PRODIMTYPE_ANGLE

• PRODIMTYPE_ARC_LENGTH

The function ProDimensionNomvalueGet() returns the nominal value of a
dimension. The function returns the nominal value even if the dimension is set to
the upper or lower bound. The nominal value is returned in degrees for an angular
dimension and in the system of units for other types of dimensions.
Use the function ProDimensionIsDisplayRoundedValue() to
determine whether the specified dimension is set to display its rounded off value.
In Creo Parametric TOOLKIT, a rounded off value is a decimal value that
contains only the desired number of digits after the decimal point. For example, if
a dimension has the stored value 10.34132 and you want to display only two
digits after the decimal point, you must round off the stored value to two decimal
places. Thus, rounding off converts 10.34132 to 10.34.
Use the function ProDimensionDisplayRoundedValueSet() to set the
attribute of the given dimension to display either the rounded off value or the
stored value. You can use this function for all dimensions, except angular
dimensions created prior to Pro/ENGINEERWildfire 4.0, ordinate baseline
dimensions, and dimensions of type DIM_IPAR_INT. For these dimensions, the
functions returns an error status PRO_TK_NOT_VALID.
If you choose to display the rounded off value, the function
ProDimensionDisplayedValueGet() retrieves the displayed rounded
value of the specified dimension. Otherwise, it retrieves the stored value.
The function ProDimensionOverridevalueGet() returns the override
value for a dimension. The default override value is zero.

Note
The override value is available only for driven dimensions.

Use the function ProDimensionValuedisplayGet() to obtain the type of
value displayed for a dimension. The valid types are:

• PRO_DIMVALUEDISPLAY_NOMINAL—Displays the actual value of the
dimension along with the tolerance value.

• PRO_DIMVALUEDISPLAY_OVERRIDE—Displays the override value for
the dimension along with the tolerance value.

• PRO_DIMVALUEDISPLAY_HIDE—Displays only the tolerance value for the
dimension.

The function ProDimensionIsFractional() returns whether the
dimension is expressed in terms of a fraction rather than a decimal. If the
dimension is decimal, the function ProDimensionDecimalsGet() outputs

568 Creo® Parametric TOOLKITUser’s Guide

the number of decimals digits that are significant; if the dimension is fractional,
the function ProDimensionDenominatorGet() returns the value of the
largest possible denominator used to define the fractional value.
The function ProDimensionIsReldriven() returns whether the dimension
is driven by a relation.
The function ProDimensionIsRegenednegative() returns whether the
dimension really has a negative value in relation to its original definition.
Dimensions are always displayed in Creo Parametric with positive values, and
ProDimensionValueGet() will always return a positive value, so this
function is needed to show whether a dimension has been “flipped” as a result of
being assigned a negative value during the last regeneration.
The function ProDimensionBoundGet() returns the bound status of a
dimension.
The function ProDimensionFeatureGet() has been deprecated. Use the
function ProDimensionOwnerfeatureGet() instead.
The function ProDimensionOwnerfeatureGet() returns the feature that
owns the specified dimension.

Note
For dimensions or reference dimensions in annotation elements, the function
ProDimensionOwnerfeatureGet() returns the annotation feature that
directly owns the annotation element.

The function ProDimensionIsAccessibleInModel() identifies if a
specified dimension is owned by the model. By default, the dimension is
accessible in the model.
When you set a negative value to a dimension, it will either change the dimension
to this negative value, or flip the direction around its reference and show a
positive value dimension instead. Use the function
ProDimensionIsSignDriven() to check this. The function returns the
following values for the output argument is_sign_driven:
• PRO_B_TRUE—When the negative sign in the dimension value is used to flip

the direction.
• PRO_B_FALSE—When the negative sign is used to indicate a negative value,

that is, the dimension is negative.
The configuration option show_dim_sign when set to yes allows you to
display negative dimensions in the Creo Parametric user interface.
When the option is set no, the dimensions always show positive value. However,
in this case, if you set a negative value for the dimension, the direction is flipped.

Annotations: Annotation Features and Annotations 569

Note
Some feature types, such as, dimensions for coordinate systems and datum
point offsets, always show negative or positive values, even if the option is set
to no. These features do not depend on the configuration option.

The function ProDimensionDisplayFormatGet() retrieves the format in
which the specified dimension is displayed. The enumerated data type
ProDimensionDisplayFormat returns the following values:
• PRO_DIM_DISPLAY_DECIMAL—Specifies that the dimension is displayed

in decimal format.
• PRO_DIM_DISPLAY_FRACTIONAL—Specifies that the dimension is

displayed in fractional format.
For dimensions, sometimes it may be required to indicate the origin or start of
measurement. The origin is indicated by placing the dimension origin symbol on
the witness line. The function ProDimensionOriginSideGet() retrieves
the witness line which is set as the origin for a dimension. The output argument
dim_side returns the index of witness line. If dimension origin has not been set for
the specified dimension, the argument returns -1.
You can place annotations such as, geometric tolerances and datum feature
symbol, on the witness lines of dimensions. The function
ProSelectionDimWitnessLineGet() gets information about the
dimension which has an annotation attached to its witness line. You must get the
input object ProSelection from the annotation which is attached to the
witness line. For example, if the leader of a geometric tolerance is attached to the
witness line of a dimension, the ProSelection object is returned by the
function ProGtolAttachLeadersGet(). The output arguments are:
• dimension—Specifies a pointer to the dimension which is associated with the

selected witness line.
• wline_side—Specifies the index of the witness line to which the annotation is

attached.
• location—Specifies the location on the witness line where the annotation is

attached.

Example 2: Changing the Displayed Value of Selected
Model Dimension to Rounded or Non-Rounded
The sample code in the file UgDimDisplayRounded.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_dims,
shows the displayed value of a selected model dimension to rounded/non-rounded.

570 Creo® Parametric TOOLKITUser’s Guide

Modifying Dimensions
Functions Introduced:

• ProDimensionSymbolSet()
• ProDimensionValueSet()
• ProDimensionOverridevalueSet()
• ProDimensionValuedisplaySet()
• ProDimensionDecimalsSet()
• ProDimensionDenominatorSet()
• ProDimensionBoundSet()
• ProDimensionDimensionReset()
• ProDimensionBasicSet()
• ProDimensionInspectionSet()
• ProDimensionElbowSet()
• ProDimensionArrowtypeSet()
• ProDimensionSimpleBreakCreate()
• ProDimensionJogCreate()
• ProDimensionWitnesslineErase()
• ProDimensionWitnesslineShow()
• ProDimensionDisplayFormatSet()
• ProDimensionOriginSideSet()
• ProDimensionEnvelopeGet()
The function ProDimensionSymbolSet() allows you to change the symbol
(the name) of a dimension. You can use this function only with solid dimensions.

Note
The function will return the error PRO_TK_NO_CHANGE if the specified
symbol already exists for another dimension in the model.

The function ProDimensionValueSet() changes the value of a dimension.
It does not allow you to change the value of any dimension whose value is driven
in some other way, for example, a driven or reference dimension or a dimension
that is driven by a relation.
The function ProDimensionOverridevalueSet() assigns the override
value for a dimension. This value is restricted to real numbers. The default
override value is zero.

Annotations: Annotation Features and Annotations 571

Note
You can set the override value only for driven dimensions.

The function ProDimensionValuedisplaySet() sets the type of value to
be displayed for a dimension.
The function ProDimensionDecimalsSet() sets the number of decimal
places for a decimal dimension.
When you call the function ProDimensionDecimalsSet() for a driving
dimension:
• If the number of decimal places required to display the stored value of the

dimension is greater than the number of decimal places specified in the
function ProDimensionDecimalsSet() and the Round Displayed Value
attribute of the dimension is ON, the stored value is unchanged. Only the
displayed number of decimal places is changed and the displayed value is
updated accordingly.

For example, consider a dimension with its stored value as 12.12323 and the
Round Displayed Value attribute of the dimension is set to ON. If the function
ProDimensionDecimalsSet() sets the number of decimal places to 3,
the stored value of the dimension is unchanged, that is, the stored value will be
12.12323. The displayed value of the dimension is rounded to 3 decimal
places, that is, 12.123. The Round Displayed Value attribute is not changed.

• If the number of decimal places required to display the stored value of the
dimension is greater than the number of decimal places specified in the
function ProDimensionDecimalsSet() and the Round Displayed Value
attribute of the dimension is OFF, the number of decimal places of the
dimension is modified and the stored value is rounded to the specified number
of decimal places.

For example, consider a dimension with its stored value as 12.12323 and the
Round Displayed Value attribute of the dimension is OFF. If the function
ProDimensionDecimalsSet() sets the dimension to 3 decimal places,
then the stored value of the dimension is rounded to 3 decimal places and is
modified to 12.123. The dimension is displayed as 12.123.

• If the number of decimal places required to display the stored value of the
dimension is less than the number of decimal places specified in the function
ProDimensionDecimalsSet(), the number of decimal places is set to
the specified value. The status of the Round Displayed Value attribute is not
considered, as no change or an increase to the number of decimal places will
have no effect on the stored value.

572 Creo® Parametric TOOLKITUser’s Guide

For example, consider a dimension with its stored value as 12.12323. If the
function ProDimensionDecimalsSet() sets the dimension to 8 decimal
places and if trailing zeros are displayed, then the dimension is displayed as
12.12323000.

For a driven dimension:
• If the number of decimal places set by the function is greater than or equal to

the number of decimal places required to display the stored value of the
dimension, the decimal places value is changed and no change to the Round
Displayed Value attribute is made.

• If the number of decimal places of the dimension is less than the number
required to display the stored value of the dimension, the Round Displayed
Value attribute is AUTOMATICALLY set to ON as it is not possible to change
the stored value of a driven dimension.

Note
The value given for the input argument decimals of the function
ProDimensionDecimalsSet() should be a non-negative number. It
should be such that when you apply either the upper or the lower values of the
tolerance to the given dimension, the total number of digits before and after
the decimal point in the resulting values does not exceed 13.

The function ProDimensionDenominatorSet() sets the denominator for
the fractional dimensions. When you call the function
ProDimensionDenominatorSet():

• The stored value remains unchanged if,

○ it can be expressed as an exact fraction with the given denominator,
regardless of whether the round-off attribute is set or not.

○ the stored value cannot be expressed as an exact fraction, but the round-off
attribute is set. In this case, the fraction is the approximate representation
of the stored value.

• The stored value changes to the nearest fraction and triggers a regeneration of
the model, if it cannot be expressed as an exact fraction with the given
denominator and the round-off attribute is not set.

The functions ProDimensionBoundSet() sets the bound status of the
dimension.
The function ProDimensionDimensionReset() sets the dimension to the
value it had at the end of the last successful regeneration. You can use this
function to recover from a failed regeneration.

Annotations: Annotation Features and Annotations 573

The function ProDimensionBasicSet() and the function
ProDimensionInspectionSet() set the basic and inspection notations of
the dimension. These functions are applicable to both driven and driving
dimensions.

Note
The basic and inspection notations of the dimension are not available when
only the tolerance value for a dimension is displayed.

The function ProDimensionElbowSet() sets the length of the elbow for the
specified dimension in a solid. The function can also be used to set the length of
the elbow for a dimension in a drawing, where the dimension is created in a solid
and is displayed in a drawing. To work with dimensions shown in a drawing, pass
the name of the drawing in the input argument drawing.
The function ProDimensionSimpleBreakCreate() creates a simple break
on an existing dimension witness line. The input arguments are:
• dimension—Specifies a pointer to the dimension whose witness line is to

be broken.
• drawing—Specifies the drawing in which the dimension is present. You can

specify a NULL value.
• index—Specifies the index of the witness line. Depending on which side of

the dimension the witness line lies, specify the value as 1 or 2. Use the
method ProDimlocationWitnesslinesGet to get the location of the
witness line end points for a dimension.

Note
This argument is not applicable for ordinate, radius, and diameter
dimensions.

• break_start—Specifies the start point of the break.
• break_end—Specifies the end point of the break.
The function ProDimensionJogCreate() creates a jog on an existing
dimension witness line. The input arguments are:
• dimension—Specifies a pointer to the dimension where the jog will be

created.
• drawing—Specifies the drawing in which the dimension is present. You can

specify a NULL value.

574 Creo® Parametric TOOLKITUser’s Guide

• index—Specifies the index of the witness line. Depending on which side of
the dimension the witness line lies, specify the value as 1 or 2. Use the
method ProDimlocationWitnesslinesGet to get the location of the
witness line end points for a dimension.

Note
This argument is not applicable for ordinate, radius, and diameter
dimensions.

• jog_points—Specifies an array of points to position the jog. If the
specified witness line has no jog added to it, then you must specify minimum
two points that is, the start point and end point of the jog.

Note
The functions ProDimensionSimpleBreakCreate() and
ProDimensionJogCreate() return the error type PRO_TK_INVALID_
TYPE when breaks and jogs are not supported for the specified dimension
type, for example, diameter dimension.

The functions return the error type PRO_TK_ABORT when it is not possible to
create breaks or jogs for the specified dimension witness line. For example, if
you add a jog that is duplicate to an existing jog on the dimension witness line.

The function ProDimensionArrowtypeSet() sets the arrow type for the
specified arrow in a dimension. The input arguments are:
• dimension—Specifies the dimension.
• drawing—Specifies the drawing in which the dimension is displayed. To set

the arrow type in the owner model, specify the argument value as NULL.
• arrow_index—Specifies the index of the witness line. Depending on which

side of the dimension the witness line lies, specify the value as 1 or 2.

Note
The value of arrow_index is ignored for ordinate and radius dimensions.

• arrow_type—Specifies the type of arrow using the enumerated data type
ProLeaderType.

Annotations: Annotation Features and Annotations 575

The function ProDimensionWitnesslineErase() erases a specified
witness line from the dimension. The input arguments are:
• dimension—Specifies the dimension whose witness line must be erased. This

argument cannot be NULL.
• drawing—Specifies the drawing in which the dimension is displayed. To erase

a witness line from a solid, specify this argument as NULL.
• WitnesslineIndex—Specifies the index of the witness line. Specify the value as

1 or 2 depending on which side of the dimension the witness line lies. Use the
method ProDimlocationWitnesslinesGet() to get the location of
the witness line end points for a dimension.

Use the function ProDimensionWitnesslineShow() to show the erased
witness line for the specified dimension.

Note
The functions ProDimensionWitnesslineErase() and
ProDimensionWitnesslineShow() erase and show the witness lines
of dimensions and reference dimensions, respectively. These functions work
with both drawings and solids.

The function ProDimensionDisplayFormatSet() sets the format in
which the specified dimension must be displayed.
Use the function ProDimensionOriginSideSet() to set a witness line as
the origin or start of measurement for the specified dimension. Specify the index
of the witness line in the input argument dim_side. If a witness line is already set
as origin, pass dim_side as -1 to remove the origin.
The function ProDimensionEnvelopeGet() returns the envelope of a line
in the specified dimension. While retrieving coordinates of the dimension in a
specified solid, if the dimension is displayed in the solid as well as in the drawing,
the drawing must not be active. The input arguments follow:
• dimension—Dimension
• drawing—Drawing. The value for this input argument must be passed only if

the solid dimension is shown in the drawing. Else, pass it as NULL.
• line_number—The line number of the dimension. To get a full dimension

envelope, pass this value as PRO_VALUE_UNUSED.
The output argument envelope is the envelope surrounding the text line in the
model coordinate system. For drawing, the envelope surrounding the dimension is
in the screen coordinates.

576 Creo® Parametric TOOLKITUser’s Guide

Example 3: Modifying a Dimension
The sample code in the file UgDimsChange.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_dims demonstrates
how to modify a dimension. The dimensions belonging to a given feature are
displayed. You can choose the dimension you wish to modify.

Dimension References
The functions explained in this section enable you to work with semantic
dimension references.
Function Introduced:

• ProDimensionAdditionalRefsAdd()
• ProDimensionAdditionalRefsGet()
• ProDimensionAdditionalRefDelete()
The function ProDimensionAdditionalRefsAdd() adds additional
semantic references in the specified dimension. The input arguments are:
• dim—Specifies a dimension.
• type—Specifies the type of reference using the enumerated data type

ProDimensionReferenceType. The type is classified based on the list
to which the references are added. The valid values are:
○ PRO_DIM_REF_FIRST—Adds the semantic references to the first list of

references.
○ PRO_DIM_REF_SECOND—Adds the semantic references to the second

list of references.

Annotations: Annotation Features and Annotations 577

○ PRO_DIM_SRF_COLL—Adds the semantic references to the collection of
surfaces.

Note
When a reference includes more than one collection, the function
ProDimensionAdditionalRefsAdd() returns the error PRO_TK_
MAX_LIMIT_REACHED and no reference is added.

• refs —Specifies a ProArray of references that will be added to the specified
dimension.

Note
Currently, the reference types PRO_ANNOT_REF_SINGLE and PRO_
ANNOT_REF_SRF_COLLECTION are supported.

The function ProDimensionAdditionalRefsGet() returns a ProArray
of references of the specified type for a dimension. In the input argument type,
specify the type of reference using the enumerated data type
ProDimensionReferenceType. Use the function
ProAnnotationreferencearrayFree() to release the memory assigned
to the ProArray of references.
Use the function ProDimensionAdditionalRefDelete() to delete the
specified reference. The references are specified by their index number which start
from 0. You can get existing references from
ProDimensionAdditionalRefsGet(). The index is ignored if the type of
reference is surface collection, as only one reference of the type PRO_DIM_SRF_
COLL can exist.
The input argument for both the functions
ProDimensionAdditionalRefsGet() and
ProDimensionAdditionalRefDelete() specifies the type of reference
using the enumerated data type ProDimensionReferenceType. The type is
classified based on the list to which the references are added. The valid values are:
• PRO_DIM_REF_FIRST—Adds the semantic references to the first list of

references.
• PRO_DIM_REF_SECOND—Adds the semantic references to the second list

of references.
• PRO_DIM_SRF_COLL—Adds the semantic references to the collection of

surfaces.

578 Creo® Parametric TOOLKITUser’s Guide

Clean Up Dimensions
You can clean up the placement of dimensions in a drawing to meet the industry
standards, and enable easier reading of your model detailing. You can adjust the
location and display of dimensions by setting controls on the placement of a
dimension. You can also set the cosmetic attributes, like flip the direction of arrow
when the arrows do not fit between the witness lines and center the dimension text
between two witness lines.
Function Introduced:

• ProDrawingDimensionsCleanup()
Use the function ProDrawingDimensionsCleanup() to clean up the
dimensions in a drawing. The input arguments are:
• draw—Specifies the drawing.
• view—Specifies the view in which the dimensions must be cleaned. If you

pass the value as NULL, the dimensions are cleaned for all the views in the
specified drawing.

The dimensions are cleaned using the default values set in the Clean Dimensions
dialog box in Creo Parametric user interface.

Dimension Tolerances
Functions Introduced:

• ProToleranceDefaultGet()
• ProDimensionDisplayedToleranceGet()
• ProSolidToleranceGet()
• ProSolidToleranceSet()
• ProDimensionIsToleranceDisplayed()
• ProDimensionToltypeGet()
• ProDimensionToltypeSet()
• ProDimensionToleranceGet()
• ProDimensionToleranceSet()
• ProDimensionTolerancedecimalsGet()
• ProDimensionTolerancedecimalsSet()
• ProDimensionTolerancedenominatorGet()
• ProDimensionTolerancedenominatorSet()

Annotations: Annotation Features and Annotations 579

The function ProToleranceDefaultGet() tells you the current default
value for a given tolerance, that is, the value set in the configuration file to be used
for new models. There is a separate tolerance for linear and angular dimensions
(PROTOLERANCE_LINEAR and PROTOLERANCE_ANGULAR) and for each
number of decimal places in the range 1 to 6 (12 tolerance settings in all).
If the round off attribute for the given dimension is set, the function
ProDimensionDisplayedToleranceGet() retrieves the displayed
rounded values of the upper and lower limits of the specified dimension.
Otherwise, it retrieves the stored values of the tolerances as done by the function
ProSolidToleranceGet(). For example, consider a dimension that is set to
round off to two decimal places and has the upper and lower tolerances 0.123456.
By default, the tolerance values displayed are also rounded off to two decimal
places. In this case, the function
ProDimensionDisplayedToleranceGet() retrieves the upper and lower
values as 0.12.
The input argument of the function
ProDimensionDisplayedToleranceGet() is a dimension handle. The
output arguments of this function are pointers to the rounded values of the upper
and lower limits of the specified dimension. You must allocate a memory location
for each of the output arguments. Pass a NULL pointer if you do not want to use an
output argument. You cannot pass a null for both the output arguments.
The functions ProSolidToleranceGet() and
ProSolidToleranceSet() let you find and set the current value of the
specified dimensional tolerance. The function
ProDimensionIsToleranceDisplayed() tells you whether the
tolerances of the specified dimension are currently being displayed. Refer to the
Creo Parametric Detailed Drawings Help for more information.
The function ProDimensionToltypeGet() returns the display format for
the specified dimension tolerance using the enumerated data type
ProDimToleranceType. The valid values are:

• PRO_TOL_DEFAULT—Displays dimensions without tolerances. Similar to
the nominal option in Creo Parametric.

• PRO_TOL_LIMITS—Displays dimension tolerances as upper and lower
limits.

Note
This format is not available when only the tolerance value for a dimension
is displayed.

• PRO_TOL_PLUS_MINUS—Displays dimensions as nominal with plus-minus
tolerances. The positive and negative values are independent.

580 Creo® Parametric TOOLKITUser’s Guide

• PRO_TOL_PLUS_MINUS_SYM—Displays dimensions as nominal with a
single value for both the positive and the negative tolerance.

• PRO_DIM_TOL_SYM_SUPERSCRIPT—Displays dimensions as nominal
with a single value for positive and negative tolerance. The text of the
tolerance is displayed in a superscript format with respect to the dimension
text.

• PRO_DIM_TOL_BASIC—Displays dimensions as basic dimensions. Basic
dimensions are displayed in an enclosed feature control frame . Tolerances are
not displayed in basic dimensions, only the numerical part of the dimension
value and its symbol are enclosed in the rectangular box. Any additional text
in the dimension value is not included in the box.

Use the function ProDimensionToltypeSet() to set the display format for
the specified dimension tolerance.
The function ProDimensionToleranceGet() reports the deviation of the
upper and lower tolerances from the nominal value. The values are always
reported as independent upper and lower tolerance values; the actual display of the
tolerance is determined by ProDimensionToltypeGet(). Tolerances are not
applicable for reference dimensions.

Note
If the upper tolerance value is negative, it will be displayed with a ‘-’ sign. But
if the lower tolerance value is negative, it will be displayed with a ‘+’ sign.

The function ProDimensionToleranceSet() sets the upper and lower
tolerance limits. The values are always accepted as independent upper and lower
tolerance values; the actual display of the tolerance is determined by
ProDimensionToltypeSet(). It is not applicable to reference dimensions.
The functions ProDimensionTolerancedecimalsGet() and
ProDimensionTolerancedecimalsSet() obtain and assign the number
of decimal places shown for the upper and lower values of the dimension
tolerance. Thus, the decimals of the dimension tolerance can be set independent of
the number of dimension decimals. By default, the number of decimal places for
tolerance values is calculated based upon the “linear_tol” settings of the model.

Annotations: Annotation Features and Annotations 581

Note
The input tolerance_decimals to the
ProDimensionTolerancedecimalsSet() function should be a non-
negative number and it should be such that when you apply either the upper or
the lower values of the tolerance to the given dimension, the total number of
digits before and after the decimal point in the resulting values does not
exceed 13.

If the dimension tolerance value is a fraction, the functions
ProDimensionTolerancedenominatorGet() and
ProDimensiondenominatorSet() obtain and assign the value for the
largest possible denominator for the upper and lower tolerance values. By default,
this value is defined by the config.pro option, dim_fraction_
denominator.

ISO/DIN Tolerance Table Use
Functions Introduced:

• ProSolidModelclassGet()
• ProSolidModelclassSet()
• ProSolidTolclassLoad()
• ProDimensionTollabelGet()
• ProDimensionTollabelSet()
Creo Parametric TOOLKIT provides functions that programmatically set and
return ISO/DIN tolerance table data. These functions allow changes to values
before the label is set. For all other labels, use the
ProDimensionTollabelSet() command.
The functions ProSolidModelclassGet() and
ProSolidModelclassSet() respectively return or set the type of tolerance
to use for a particular model. Valid settings are:

• COARSE

• FINE

• MEDIUM

• VERY_COARSE

The function ProSolidTolclassLoad() loads a hole or shaft ISO/DIN
tolerance table into the current session memory.

582 Creo® Parametric TOOLKITUser’s Guide

The functions ProDimensionTollabelGet() and
ProDimensionTollabelSet() respectively get or set the ISO/DIN
tolerance table assigned to the specified dimension.

Dimension Text
Functions Introduced:

• ProDimensionTextWstringsGet()
• ProDimensionTextWstringsSet()
Superseded Functions:

• ProDimensionTextGet()
• ProDimensionTextSet()
The functions ProDimensionTextGet() and ProDimensionTextSet()
have been deprecated. Use the functions
ProDimensionTextWstringsGet() and
ProDimensionTextWstringsSet() instead.
The function ProDimensionTextWstringsGet() retrieves the text of the
specified dimension as a ProArray of wide character strings. Use the function
ProWstringproarrayFree() to release the memory allocated for the
ProArray.
The function ProDimensionTextWstringsSet() sets the text of the
specified dimension using a ProArray of wide character strings. This is
equivalent to editing dimensions in Creo Parametric.

Note
From Creo Parametric 2.0 onward, the functions
ProDimensionTextWstringsGet() and
ProDimensionTextGet() will always include the dimension value @D
that appears in the Dimension Properties dialog box.

Dimension Text Style
Functions Introduced:

• ProDimensionTextstyleGet()
• ProDimensionTextstyleSet()
The function ProDimensionTextstyleGet() returns the text style assigned
to a specified dimension or reference dimension.

Annotations: Annotation Features and Annotations 583

The function ProDimensionTextstyleSet() sets the text style assigned to
a specified dimension or reference dimension.

Note
Only some of the text style properties may be assigned to dimensions.

Dimension Prefix and Suffix
Functions Introduced:

• ProDimensionPrefixGet()
• ProDimensionPrefixSet()
• ProDimensionSuffixGet()
• ProDimensionSuffixSet()
The function ProDimensionPrefixGet() retrieves the prefix assigned to a
specified dimension. Use the function ProDimensionPrefixSet() to set the
prefix of the type ProLine for a dimension.
The function ProDimensionSuffixGet() retrieves the suffix assigned to a
specified dimension. Use the function ProDimensionSuffixSet() to set the
suffix of the type ProLine for a dimension.

Dimension Location
The functions described in this section extract the dimension location and
geometry in 3D space for solid model dimensions.
Functions Introduced:

• ProDimensionLocationGet()
• ProDimlocationFree()
• ProDimensionMove()
The function ProDimensionLocationGet() returns the location of the
elements that make up a solid dimension or reference dimension.
This function optionally takes a view used to determine the orientation of the
model when calculating the dimension locations. The orientation often determines
the text location, presence or absence of elbows, and other dimension location
properties.
Use the function ProDimlocationFree() to free the structure containing the
dimension location data.

584 Creo® Parametric TOOLKITUser’s Guide

The function ProDimensionMove() enables you to move the specified
dimension to the given location within its owner model.

Dimension Entity Location
The following functions extract the locations of geometric endpoints for the
dimension. You can calculate the dimension location plane, witness line, and
dimension orientation vectors from these points. The location of the points is
specified in the same coordinate system as the solid model.
Functions Introduced:

• ProDimlocationTextGet()
• ProDimlocationArrowsGet()
• ProDimlocationWitnesslinesGet()
• ProDimlocationArrowtypesGet()
• ProDimlocationCenterleadertypeGet()
• ProDimlocationZExtensionlinesGet()
• ProDimlocationNormalGet()
The function ProDimlocationTextGet() returns the location of the
dimension text in model coordinates. If the dimension contains an elbow, the
function returns the location of the elbow joint and the length of the elbow in
model coordinates.

Note
If the value of the elbow length was originally set by the function
ProDimensionElbowlengthSet(), then the value returned by
ProDimlocationTextGet() is equal to the value set by the function
ProDimensionElbowlengthSet() minus the padding around the text
for all dimension types.

The function ProDimlocationArrowsGet() returns the location of the
arrow heads for the dimension.
The function ProDimlocationWitnesslinesGet() returns the location of
the witness line ends for the dimension.
The function ProDimlocationArrowtypesGet() returns the type of
arrows used for the leader of a specified 3D dimension. The dimension location
obtained using the function ProDimensionLocationGet() serves as an
input argument for this function.

Annotations: Annotation Features and Annotations 585

Note
In case of radial dimensions where the arrow head type cannot be changed, the
function ProDimlocationArrowtypesGet() always returns the
“Arrow head” leader type.

The function ProDimlocationCenterleadertypeGet() obtains the type
of center leader used for the dimension, if the dimension uses a center leader. The
type of center leader is determined by the orientation of the dimension text. This
function also returns the length and direction of the elbow used by the center
leader and the leader end symbol.

• PRO_DIM_CLEADER_CENTERED_ELBOW—Specifies that the dimension
text is placed next to and centered about the elbow of the center leader.

• PRO_DIM_CLEADER_ABOVE_ELBOW—Specifies that the dimension text is
placed next to and above the elbow of the center leader.

• PRO_DIM_CLEADER_ABOVE_EXT_ELBOW—Specifies that the dimension
text is placed above the extended elbow of the center leader.

• PRO_DIM_PARALLEL_ABOVE—Specifies that the dimension text is placed
parallel to and above the center leader.

• PRO_DIM_PARALLEL_BELOW—Specifies that the dimension text is placed
parallel to and below the center leader.

Note
○ A center leader type is available only for linear and diameter dimensions.
○ The elbow length and direction is not available for PRO_DIM_

PARALLEL_ABOVE and PRO_DIM_PARALLEL_BELOW center leader
types.

The function ProDimlocationZExtensionlinesGet() obtains the
endpoints of the Z-extension line created for a specified dimension. Z-extension
lines are automatically created whenever the dimension’s attachment does not
intersect its reference in the Z-Direction. The Z-extension line is attached at the
edge of the surface at the closest distance from the dimension witness line.
The function ProDimlocationNormalGet() returns the vector normal to
the dimensioning plane for a radial or diameter dimension. This normal vector
should correspond to the axis normal to the arc being measured by the radial or
diameter dimension.

586 Creo® Parametric TOOLKITUser’s Guide

The following figures illustrate the potential location of the arrow heads and
witness lines for different dimension types.

Linear and psuedo-linear dimensions

For a linear type of dimension, there are typically two arrow locations A1 and A2
as shown in the above figure. w1 and w2 indicate the two witness line locations.
If the dimension type has an elbow joint indicated by E, the elbow length is the
distance between the text and E. If the dimension does not have an elbow, the text
occurs on the line between A1 and A2, and its position is returned by the function
ProDimensionTextGet(). Pattern parameter dimensions and length-of-arc
dimensions also typically return this dimension structure.

Annotations: Annotation Features and Annotations 587

Angular dimensions

For an angular type of dimension, there are two arrow locations A1 and A2 as
shown in the above figure. w1 and w2 indicate the two witness line locations. For
some angular dimensions the two witness line endpoints are coincident, but they
are returned as independent locations. This dimension type does not have an
elbow joint.

Diameter dimensions

For a diameter type of dimension, there are two arrow locations A1 and A2 as
shown in the above figure. The elbow joint for this dimension is indicated by E.
The elbow length is the distance between the text and the elbow joint. This
dimension type does not have any witness line locations.

588 Creo® Parametric TOOLKITUser’s Guide

Radius dimensions

For a radius type dimension, there is one arrow location indicated by A1 and an
elbow joint indicated by E. The elbow length is the distance between the text and
the elbow joint.
The function ProDimlocationArrowsGet() returns a NULL value for the
second arrow location. This dimension type does not have any witness line
locations.

Example 4: Dimension Location Properties
The sample code in the file UgDimLocationUtils.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_dims
demonstrates use of the dimension location properties. It finds linear dimensions
that are oriented parallel to a specified direction vector. It shows these dimensions
in the Creo Parametric user interface. The orientation of the dimension is
determined from the coordinates of the two dimension arrowheads.

Dimension Orientation
Functions Introduced:

• ProDimensionPlaneSet()
• ProDimensionPlaneGet()
The function ProDimensionPlaneSet() assigns an annotation plane as the
orientation of a specified dimension stored in an annotation element.
The function ProDimensionPlaneGet() obtains the orientation of a
specified dimension stored in an annotation element.

Annotations: Annotation Features and Annotations 589

Note
For dimensions that are not assigned a specific orientation, the orientation
obtained includes PRO_ID_NO_ANNOTATION_PLANE as its ID.

Driving Dimension Annotation Elements
You can convert driving dimensions created by features into annotation elements
and place them on annotation planes. However, you can create the driving
dimension annotation elements only in the features that own the dimensions.
These annotation elements cannot have any user defined or system references.
In Creo Parametric TOOLKIT, a driving dimension annotation element uses the
ProModelitem handle with the type field PRO_DIMENSION and the
appropriate dimension ID.
Functions such as ProSolidDimensionVisit() and
ProFeatureDimensionVisit() can be used to find both edit dimensions
and driving dimension annotation elements.
Functions Introduced:

• ProDimensionAnnotationelemCreate()
• ProDimensionAnnotationelemDelete()
The function ProDimensionAnnotationelemCreate() creates an
annotation element for a specified driving dimension, based on the desired
annotation orientation.
The function ProDimensionAnnotationelemDelete() removes the
annotation element containing the driving dimension. It deletes all the parameters
and relations associated with the annotation element.

Accessing Reference and Driven Dimensions
The functions described in this section provide additional access to reference and
driven dimension annotations.
Many functions listed in the previous sections that are applicable for driving
dimensions are also applicable for reference and driven dimensions.
Functions Introduced:

• ProDimensionIsDriving()
• ProDimensionCreate()
• ProDimensionAttachmentsGet()

590 Creo® Parametric TOOLKITUser’s Guide

• ProDimensionAttachmentsSet()
• ProDimensionDelete()
• ProDimensionCanRegenerate()
• ProDimensionCanRegen()
The function ProDimensionIsDriving() determines if a dimension is
driving geometry or is driven by it. If a dimension drives geometry, its value can
be modified and the model regenerated with the given change. If a dimension is
driven by geometry, its value is fixed but it can be deleted and redefined as
necessary. A driven dimension may also be included in an annotation element.
The function ProDimensionCreate() creates a new driven or reference
dimension. Specify the geometric references and parameters required to construct
the required dimension as the input parameters for this function. Once the
reference dimension is created, use the function ProAnnotationShow() to
display it. The input arguments of this function are as follows:

• model—Specifies the solid model.
• dimension_type—Specifies the type of dimension. This parameter can have

the following values:

○ PRO_REF_DIMENSION—Specifies a reference dimension.
○ PRO_DIMENSION—Specifies a driven dimension.

• annotation_plane—Specifies the annotation plane for the dimensions.
• attachments_arr—Specifies the points on the model where you want to attach

the dimension.

Note
The attachments structure is an array of two ProSelection entities. It
is provided to support options such as intersect where two entities must be
passed as input. From Creo Parametric 3.0 onward, you can create
dimensions that have intersection type of reference. The intersection type
of reference is a reference that is derived from the intersection of two
entities. Refer to the Creo Parametric Detailed Drawings Help for more
information on intersection type of reference.

• dsense_arr—Specifies more information about how the dimension attaches to
each attachment point of the model, that is, to what part of the entity

• orient_hint—Specifies the orientation of the dimension and has one of the
following values:

○ PRO_DIM_ORNT_HORIZ—Specifies a horizontal dimension.

Annotations: Annotation Features and Annotations 591

○ PRO_DIM_ORNT_VERT—Specifies a vertical dimension.
○ PRO_DIM_ORNT_SLANTED—Specifies the shortest distance between

two attachment points (available only when the dimension is attached to
points).

○ PRO_DIM_ORNT_ELPS_RAD1—Specifies the start radius for a
dimension on an ellipse.

○ PRO_DIM_ORNT_ELPS_RAD2—Specifies the end radius for a
dimension on an ellipse.

○ PRO_DIM_ORNT_ARC_ANG—Specifies the angle of the arc for a
dimension of an arc.

○ PRO_DIM_ORNT_ARC_LENGTH—Specifies the length of the arc for a
dimension of an arc.

○ PRO_DIM_ORNT_LIN_TANCRV_ANG—Specifies the value to
dimension the angle between the line and the tangent at a curve point (the
point on the curve must be an endpoint).

○ PRO_DIM_ORNT_RAD_DIFF—Specifies the linear dimension of the
radial distance between two concentric arcs or circles.

○ PRO_DIM_ORNT_NORMAL—Specifies the linear dimension between two
points to be placed normal to the selected reference.

○ PRO_DIM_ORNT_PARALLEL—Specifies the linear dimension between
two points to be placed parallel to the selected reference.

• location—Specifies the initial location of the dimension text.
The function ProDimensionAttachmentsGet() and
ProDimensionAttachmentSet() provide access to the geometric
references and parameters of the driven or reference dimension. These functions
support dimensions that are created with intersection type of reference.
The function ProDimensionDelete() deletes the driven or reference
dimension. Dimensions stored in annotation elements should be deleted using
ProAnnotationfeatElementDelete().
The function ProDimensionCanRegenerate() supersedes the function
ProDimensionCanRegen(). The function
ProDimensionCanRegenerate() checks if a driven dimension can be
regenerated. For driven dimensions created in drawing mode and owned by a
solid, which can be displayed only in the context of that drawing, specify the
name of the drawing in the input argument drawing. The function
ProDimensionCanRegen() is equivalent to
ProDimensionCanRegenerate() when the input argument drawing is
NULL.

592 Creo® Parametric TOOLKITUser’s Guide

45-degree Chamfer Dimensions
You can create 45-degree chamfer dimensions by referencing one of the following
items:

• Edges, including solid or surface edges, silhouette edges, curves, and sketches.
• Surfaces
• Revolve surfaces
The functions described in this section provide access to the display style of 45-
degree chamfer dimensions in a solid. These functions can also be used to access
the display style of the chamfer dimension in a drawing, where the dimension is
created in a solid and is displayed in a drawing. To work with dimensions shown
in a drawing, pass the name of the drawing in the input argument drawing in the
functions.

Note
The default display of a 45-degree chamfer dimension depends upon the
setting of the config.pro option, default_chamfer_text.

Functions Introduced:

• ProDimensionChamferLeaderGet()
• ProDimensionChamferLeaderSet()
• ProDimensionChamferTextGet()
• ProDimensionChamferTextSet()
• ProDimensionConfigGet()
• ProDimensionConfigSet()
From Creo Parametric 3.0 M060 onward, the functions
ProDimensionChamferLdrstyleGet() and
ProDimensionChamferLdrstyleSet() have been deprecated. Use the
functions ProDimensionChamferLeaderGet() and
ProDimensionChamferLeaderSet() instead.
The functions ProDimensionChamferLeaderGet() and
ProDimensionChamferLeaderSet() retrieve and set the style of the
leader for the specified 45-degree chamfer dimension. The valid values are as
follows:

Annotations: Annotation Features and Annotations 593

• PRO_DIM_CHMFR_LEADER_STYLE_NORMAL—Specifies that the leader of
a chamfer dimension is normal to the chamfer edge (ASME, ANSI, JIS, ISO
Standard).

• PRO_DIM_CHMFR_LEADER_STYLE_LINEAR—Specifies that the leader of
a chamfer dimension has linear style of display.

• PRO_DIM_CHMFR_LEADER_STYLE_DEFAULT—Specifies that the
chamfer dimension leader style should be displayed using the default value set
in the detail option default_chamfer_leader_style.

From Creo Parametric 3.0 M060 onward, the functions
ProDimensionChamferstyleGet() and
ProDimensionChamferstyleSet() have been deprecated. Use the
functions ProDimensionChamferTextGet() and
ProDimensionChamferTextSet() instead.
The functions ProDimensionChamferTextGet() and
ProDimensionChamferTextSet() retrieve and set the dimension scheme
for the specified 45-degree chamfer dimension. The valid values are as follows:

• PRO_DIM_CHMFRSTYLE_CD—Specifies that the chamfer dimension text
should be displayed in the C(Dimension value) format (JIS/GB Standard).

• PRO_DIM_CHMFRSTYLE_D_X_45—Specifies that the chamfer dimension
text should be displayed in the (Dimension value) X 45 format (ISO/DIN
Standards).

• PRO_DIM_CHMFRSTYLE_DEFAULT—Specifies that the chamfer dimension
text should be displayed using the default value set in the drawing detail
optiondefault_chamfer_text.

• PRO_DIM_CHMFRSTYLE_45_X_D—Specifies that the chamfer dimension
text should be displayed in the 45 X (Dimension value) format (ASME/ANSI
Standards).

From Creo Parametric 3.0 M060 onward, the functions
ProDimensionConfigurationGet() and
ProDimensionConfigurationSet() have been deprecated. Use the
functions ProDimensionConfigGet() and
ProDimensionConfigSet() instead.
The functions ProDimensionConfigGet() and
ProDimensionConfigSet() retrieve and set the dimension configuration for
chamfer dimensions. The dimension configuration defines the style in which the
dimension must be displayed. The valid values are as follows:

594 Creo® Parametric TOOLKITUser’s Guide

• PRO_DIMCONFIG_LEADER—Creates the dimension with a leader.
• PRO_DIMCONFIG_LINEAR—Creates a linear dimension.
• PRO_DIMCONFIG_CENTER_LEADER—Creates the dimension with the

leader note attached to the center of the dimension leader line.

Accessing Ordinate and Baseline Dimensions
The functions described in this section enable you to create 3D ordinate driven
dimensions in 3D models as model annotations or as annotation elements. They
also provide the ability to define a baseline annotation element, and then define
model ordinate dimension annotations and ordinate dimension annotation
elements that reference the baseline annotation element.

Baseline Dimensions
Functions Introduced:

• ProAnnotationfeatBaselineCreate()
• ProDimensionIsBaseline()
The function ProAnnotationfeatBaselineCreate() creates an ordinate
baseline annotation element and corresponding dimension. Specify the feature
reference geometry, text location, direction and annotation plane as input
arguments for this function.
The function ProDimensionIsBaseline() identifies whether a dimension
is a baseline dimension.

Ordinate Dimensions
Function Introduced:

• ProDimensionOrdinateCreate()
• ProDimensionOrdinatestandardGet()
• ProDimensionOrdinatestandardSet()
• ProDimensionOrdinatereferencesSet()
• ProDimensionMove()
• ProDimensionIsOrdinate()
• ProDimensionAutoOrdinateCreate()
The function ProDimensionOrdinateCreate() creates a new model
ordinate driven dimension or a model ordinate reference dimension in a solid
model. It requires the input of a reference baseline annotation as well as a

Annotations: Annotation Features and Annotations 595

geometry reference. The annotation plane for the new dimension will be inherited
from the baseline. Once the reference dimension is created, use the function
ProAnnotationShow() to display it.
To create an ordinate driven dimension element or a model ordinate reference
dimension pass the ordinate dimensions created by
ProDimensionOrdinateCreate() to the function
ProAnnotationelemAnnotationSet().
The function ProDimensionOrdinatestandardGet() returns the display
standard for the ordinate dimensions in the drawing. The style of the ordinate
dimension may be as follows:

• PRO_DIM_ORDSTD_DEFAULT—Specifies the default style for the ordinate
dimensions.

• PRO_DIM_ORDSTD_ANSI—Specifies the American National Standard style
for the ordinate dimension. It places the related ordinate dimensions without a
connecting line.

• PRO_DIM_ORDSTD_JIS—Specifies the Japanese Industrial Standard style
for the ordinate dimension. It places the ordinate dimensions along a
connecting line that is perpendicular to the baseline and starts with an open
circle.

• PRO_DIM_ORDSTD_ISO—Specifies the International Standard of
Organization style for the ordinate dimension.

• PRO_DIM_ORDSTD_DIN—Specifies the German Institute for
Standardization style for the ordinate dimension.

• PRO_DIM_ORDSTD_SAME_AS_3D—Specifies the ordinate dimension style
for 2D drawings. Not used in 3D ordinate dimensions.

The function ProDimensionOrdinatestandardSet() sets the style for
the specified ordinate dimension or a set of ordinate dimensions.
The function ProDimensionAttachmentsGet() returns the attachment
geometry for the dimension.
In order to change the dimension's attachments you must use the function
ProDimensionOrdinatereferencesSet().
The function ProDimensionMove() enables you to move the specified 3D
ordinate dimension to the specified location within its owner model. For ordinate
dimensions in the JIS or ISO/DIN style, all dimensions stay aligned during
movement. For ordinate dimensions in the ANSI style, each dimension can be
adjusted independent of the other dimensions. If the style is changed back to JIS
or ISO/DIN, all the dimensions become aligned with the baseline.
The function ProDimensionIsOrdinate() identifies if a dimension is
ordinate.

596 Creo® Parametric TOOLKITUser’s Guide

The function ProDimensionAutoOrdinateCreate() creates ordinate
dimensions automatically for the selected surfaces. The function returns a
ProArray of dimensions. The input arguments are:
• drawing—Specifies the drawing where the ordinate dimensions must be

automatically created.
• surface_array—Specifies a set of parallel surfaces for which the ordinate

dimensions must be created. This is a ProArray of selection handles. You
can free this array using the function ProSelectionarrayFree().

• baseline—Specifies a reference element used to create the baseline
dimension. The reference element can be an edge, a curve, or a datum plane.

Notes
The functions in this section enable you to access the notes created in Creo
Parametric .

Note
These functions are applicable to solids (parts and assemblies) only. However,
when notes on a solid are viewed from Drawing mode, they can also be
accessed using the ProDtlnote() functions described in the chapter
Drawings on page 1226.

A note is modeled in Creo Parametric TOOLKIT as an instance of
ProModelitem with the type PRO_NOTE. You can select a note by supplying
the selection option note_3d to ProSelect(). You can access the name of a
note using the functions ProModelitemNameGet() and
ProModelitemNameSet().

Creating and Deleting Notes
Functions Introduced:

• ProSolidNoteCreate()
• ProNoteDelete()
The function ProSolidNoteCreate() takes as input a ProMdl for the solid
(either a part or an assembly), a ProModelitem for the owner of the note, and
an expandable array ProLineList for the note text. The function outputs a
ProNote object for the created note. Once the note is created, use the function
ProAnnotationShow() to display it.

Annotations: Annotation Features and Annotations 597

The function ProNoteDelete() deletes the note specified by its ProNote
object. Notes stored in annotation elements should be deleted using
ProAnnotationfeatElementDelete().

Note Properties
Functions Introduced:

• ProNoteTextGet()
• ProNoteTextSet()
• ProNoteURLGet()
• ProNoteURLSet()
• ProNoteURLWstringGet()
• ProNoteURLWstringSet()
• ProNoteURLExtraInfoGet()
• ProNoteURLExtraInfoSet()
• ProNoteOwnerGet()
• ProNoteLeaderstyleGet()
• ProNoteLeaderstyleSet()
• ProNoteElbowlengthGet()
• ProNoteElbowlengthSet()
• ProNoteLineEnvelopeGet()
• ProNoteAttachNormtanleaderGet()
• ProNoteAttachScreenSet()
• ProNoteWrapTextGet()
• ProNoteWrapTextSet()
• ProNoteReferencesAdd()
• ProNoteReferencesGet()
• ProNoteReferenceDelete()
The function ProNoteTextGet() returns the text of a 3D model note. The
function ProNoteTextSet() modifies the text of an exisitng 3D model note.
You can also make symbols to be called out in the 3D notes using the function
ProNoteTextSet().
Use the function ProNoteUndisplay() followed by ProNoteDisplay()
to update the display status of the note.

598 Creo® Parametric TOOLKITUser’s Guide

The function ProNoteURLGet() retrieves the Uniform Resource Locator
(URL) associated with the specified note, whereas ProNoteURLSet() sets the
associated URL for the specified note. Specify the note and the URL wide string
or the name of the valid combined state as input arguments to the function
ProNoteURLWstringSet.

Note
The functions ProNoteURLGet() and ProNoteURLSet() have been
deprecated. Instead, use the functions ProNoteURLWstringGet() and
ProNoteURLWstringSet() that return and set, respectively, the Uniform
Resource Locator (URL) associated with the specified note as a widestring.

The function ProNoteURLExtraInfoGet() retrieves the information of
whether opening the URL for a specified note appends the extra information
"?<model name>+<note id>".
The function ProNoteURLExtraInfoSet() sets whether opening the URL
for a specified note should append the extra info "?<model name>+<note
id>".
The input argument p_note_item to both the functions is the note for which the
extra information needs to be appended.
The function ProNoteOwnerGet() retrieves the owner of the specified note.
The owner can be the solid model, a user-chosen feature, or the feature that
contains the note's annotation element.
The function ProNoteLeaderstyleGet() returns the leader style used for
the note. It can be either standard or ISO. The function
ProNoteLeaderstyleSet() sets the leader style of the note.
The function ProNoteElbowlengthGet() returns the elbow properties for
the specified note.
The function ProNoteElbowlengthSet() sets the elbow properties of the
note. This is equivalent to Move Text option in the Dimension Properties dialog
box in Creo Parametric.

Note
The elbow properties can be retrieved and set for the flat-to-screen notes and
the drawing notes.

The function ProNoteLineEnvelopeGet() returns the envelope of a line for
a specified note.

Annotations: Annotation Features and Annotations 599

The function ProNoteAttachNormtanleaderGet() returns the properties
of a leadered note which is normal/tangent to specified note.

Note
Creo Parametric adds hard line breaks to the multiple lines drawing notes
created in Creo Elements/Pro during retrieval. The hard line breaks display the
text of the note on separate lines in the Note Properties dialog box as they
actually appear in the drawing note.

The function ProNoteAttachScreenSet() sets the location of the note text
at the screen location. The input arguments follow:
• note_attach—Specifies the handle for ProNoteAttach.
• p1—The parameter in the X direction.
• p2—The parameter in the Y direction.
• p3—The parameter in the Z direction.
The functions ProNoteWrapTextGet() and ProNoteWrapTextSet()
get and set the wrap status of the text for a specified note in a solid. The function
ProDtlnoteWrapTextSet() sets the text wrapping status to ON or OFF.
The input arguments are listed below:
• note—Specifies the note for which the wrap status is to be set.
• wrap—Specifies if the text is wrapped. To wrap the text specify the value as

Pro_B_True.
• wrapwidth—Specifies the width of the wrapped text line, if the input argument

wrap is set to Pro_B_True.
The function ProNoteReferencesAdd() adds semantic references to a
specified note in a solid. The input arguments are as follows:
• note—Specifies the note to which the additional semantic references are to be

added.
• refs—Specifies the array of additional semantic references using the

enumerated data type ProAnnotationReference.

Note
When a reference includes more than one collection, the function
ProNoteReferencesAdd() returns the error PRO_TK_MAX_
LIMIT_REACHED and no reference is added.

600 Creo® Parametric TOOLKITUser’s Guide

The function ProNoteReferencesGet() returns a ProArray of additional
semantic references for a note.
The function ProNoteReferenceDelete() deletes the additional semantic
references. The input arguments are as follows:
• note —Specifies the note from which the additional semantic references are to

be deleted.
• index_ref—Specifies the index references. Indices start from 0.

Visiting Notes
Function introduced:

• ProMdlNoteVisit()
The function ProMdlNoteVisit() enables you to visit all the notes in the
specified solid model.

Note Text Styles
Functions Introduced:

• ProTextStyleAlloc()
• ProTextStyleFree()
• ProNoteTextStyleGet()
• ProNoteTextStyleSet()
The function ProTextStyleAlloc() allocates the opaque handle for a
ProTextStyle data structure. The function ProTextStyleFree() frees
the allocated data structure.
The function ProNoteTextStyleGet() enables you to retrieve the text style
of a specified note, whereas ProNoteTextStyleSet() enables you to set the
text style of the note.

Text Style Properties
Functions introduced

• ProTextStyleHeightGet()
• ProTextStyleHeightSet()
• ProTextStyleWidthGet()
• ProTextStyleWidthSet()
• ProTextStyleAngleGet()
• ProTextStyleAngleSet()

Annotations: Annotation Features and Annotations 601

• ProTextStyleSlantAngleGet()
• ProTextStyleSlantAngleSet()
• ProTextStyleThicknessGet()
• ProTextStyleThicknessSet()
• ProTextStyleUnderlineGet()
• ProTextStyleUnderlineSet()
• ProTextStyleMirrorGet()
• ProTextStyleMirrorSet()
• ProTextStyleJustificationGet()
• ProTextStyleJustificationSet()
• ProTextStyleVertJustificationGet()
• ProTextStyleVertJustificationSet()
• ProTextStyleColorGetWithDef()
• ProTextStyleColorSetWithDef()
• ProTextStyleIsHeightInModelUnits()
• ProTextStyleHeightInModelUnitsSet()
• ProSolidDefaulttextheightGet()
These functions enable you to retrieve and set the properties of the specified text
style. You can retrieve and set text properties such as the height, width factor,
angle, slant angle, thickness, underline, mirror.

Note
The system uses the value –1.0 for properties that use default values, or that
have not been set yet.

The function ProTextStyleJustificationGet() returns the horizontal
justification for the text style object.
The function ProTextStyleJustificationSet() sets the horizontal
justification for the text style object using the enumerated data type
ProTextHrzJustification. The values defined by the enumerated type are
as follows:
• PRO_TEXT_HRZJUST_DEFAULT—Aligns the text using the default

justification. The justification selected for the first note becomes the default
for all successive notes added during the current session.

• PRO_TEXT_HRZJUST_LEFT—Aligns the text style object to the left.

602 Creo® Parametric TOOLKITUser’s Guide

• PRO_TEXT_HRZJUST_CENTER—Aligns the text style object in the centre.
• PRO_TEXT_HRZJUST_RIGHT—Aligns the text style object to the right
The function ProTextStyleVertJustificationGet() returns the
vertical justification for the text style object.
The function ProTextStyleVertJustificationSet() sets the vertical
justification for the text style object using the enumerated data type
ProVerticalJustification. The values defined by the enumerated type
are as follows:
• PRO_VERTJUST_DEFAULT—Aligns the text using the default justification.

The justification selected for the first note becomes the default for all
successive notes added during the current session.

• PRO_VERTJUST_TOP—Aligns the text style object to the top.
• PRO_VERTJUST_MIDDLE—Aligns the text style object to the middle.
• PRO_VERTJUST_BOTTOM—Aligns the text style object to the bottom.
The function ProTextStyleColorGet() returns the color for the text style
object. If the text style object is of default color, the function returns PRO_
COLOR_METHOD_TYPE with undefined color. From Creo Parametric 2.0 M200
onward, the function ProTextStyleColorGetWithDef() supersedes the
function ProTextStyleColorGet(). The function
ProTextStyleColorGetWithDef() also supports default color. If the
specified text style object is of default color, PRO_COLOR_METHOD_DEFAULT
will be returned.
The function ProTextStyleColorSet() sets the color for the text style
object. From Creo Parametric 2.0 M200 onward, the function
ProTextStyleColorSetWithDef() supersedes the function
ProTextStyleColorSet(). The function
ProTextStyleColorSetWithDef() also supports default color and
enables you to set the text style object to the default color.
The functions ProTextStyleIsHeightInModelUnits() and
ProTextStyleHeightInModelUnitsSet() obtain and assign whether
the text height is in relation to the model units, or a fraction of the screen size.
These functions are applicable only for flat-to-screen annotations.
The function ProSolidDefaulttextheightGet() returns the default text
height for annotations and dimensions for a given solid model.

Accessing the Note Placement
The functions described in this section provide access to the properties of a 3D
note.
Functions Introduced:

Annotations: Annotation Features and Annotations 603

• ProNotePlacementGet()
• ProNoteAttachFreeGet()
• ProSolidDispoutlineGet()
• ProNoteAttachLeadersGet()
• ProNoteAttachOnitemGet()
• ProNoteAttachPlaneGet()
• ProNoteAttachRelease()
The function ProNotePlacementGet() retrieves the a ProNoteAttach
structure for the given note. The ProNoteAttach object is an opaque handle
that describes the location of a note and the leaders attached to it. The functions in
this section enable you to set up a ProNoteAttach object and assign it to a
note, and to read the ProNoteAttach information on a note.
The function ProNoteAttachFreeGet() retrieves the location of the note
text. The note text is stored in relative model coordinates, where {0.5, 0.5, 0.5}
indicates the exact center of the model's display bounding box obtained from
ProSolidDispoutlineGet(), and {0.0, 0.0, 0.0} and {1.0, 1.0, 1.0}
represent the corners of the box.
The function ProSolidDispoutlineGet() provides you with the maximum
and minimum values of X, Y, and Z occupied by the display outline of the solid,
with respect to the default provided coordinate system.
The function ProNoteAttachLeadersGet() returns the attachment points
and properties for the leaders stored in the specified note attachment data.

Note
The function ProNoteAttachLeadersGet() requires the owner of the
note to be displayed.

The functions ProNoteAttachOnitemGet() provides the location of an "On
Item" note attachment data.
The functions ProNoteAttachPlaneGet() returns the annotation plane
assigned to the note attachment data.
The function ProNoteAttachRelease() releases the allocated opaque
handle.

604 Creo® Parametric TOOLKITUser’s Guide

Modifying 3D Note Attachments
The actual note created in Creo Parametric will not be modified by the access
functions until the note attachment is assigned to the note using the modification
function ProNotePlacementSet().
Functions Introduced:

• ProNoteAttachAlloc()
• ProNoteAttachFreeSet()
• ProNoteAttachAddend()
• ProNoteAttachLeaderAdd()
• ProNoteAttachLeaderRemove()
• ProNoteAttachOnitemSet()
• ProNoteAttachPlaneSet()
• ProNotePlacementSet()
The function ProNoteAttachAlloc() allocates a ProNoteAttach object
for a note attachment.
To set the location of an attachment point, call the function
ProNoteAttachFreeSet(). See the description of
ProNoteAttachFreeGet() for an explanation of the coordinates used by
this function.
The function ProNoteAttachAddend() adds a leader to the specified
attachment. The leader points to a location on the parent model specified by an
argument of type ProSelection.
The attachment types are specified in ProNoteAttachAttr. The possible
values are as follows:

• PRO_NOTE_ATT_NONE

• PRO_NOTE_ATT_NORMAL

• PRO_NOTE_ATT_TANGENT

Use the function ProNoteAttachLeaderAdd() to specify the type of
arrowhead for the leader. This function supersedes the function
ProNoteAttachAddend().
The function ProNoteAttachLeaderAdd() adds a leader to the specified
attachment. The leader points to a location on the parent model specified by an
argument of type ProSelection. The selection UV parameters determine the
precise attachment point for the note leader. The attachment types are specified by
the parameter attr and can have one of the following values:

• PRO_NOTE_ATT_NORMAL—Specifies a normal attachment.
• PRO_NOTE_ATT_TANGENT—Specifies a tangent attachment.

Annotations: Annotation Features and Annotations 605

The function ProNoteAttachLeaderRemove() removes a leader from the
note attachment data.
The function ProNoteAttachOnitemSet() sets the location of an "On
Item" note placement. Using this function removes any leaders currently assigned
to the note attachment.
The function ProNoteAttachPlaneSet() sets the annotation plane of the
notes. The annotation plane of a note in an annotation element may not be
removed.
The function ProNotePlacementSet() assigns the a ProNoteAttach
structure for the given note, thus defining or redefining the placement for the note.

Note
If modifying an existing note, the functions ProNoteAttach*Set() do
not modify the note until the note attachment is reassigned to the note using
the modification function ProNotePlacementSet().

Geometric Tolerances
For more information on Geometric Tolerances refer to the chapter Annotations:
Geometric Tolerances on page 617.

Accessing Set Datum Tags
The functions described in this section provide the ability to access and display set
datum tag annotations in 3D models.
Functions Introduced:

• ProSolidSetdatumtagVisit()
• ProSetdatumtagReferenceGet()
• ProGeomitemSetdatumtagGet()
• ProSetdatumtagAttachmentGet()
• ProSetdatumtagAttachmentSet()
• ProSetdatumtagPlacementGet()
• ProSetdatumtagPlaneGet()
• ProSetdatumtagPlaneSet()
• ProSetdatumtagTextstyleGet()
• ProSetdatumtagTextstyleSet()

606 Creo® Parametric TOOLKITUser’s Guide

• ProMdlSetdatumtagCreate()
• ProMdlSetdatumtagDelete()
• ProSetdatumtagLabelGet()
• ProSetdatumtagLabelSet()
• ProSetdatumtagAdditionalTextGet()
• ProSetdatumtagAdditionalTextSet()
• ProSetdatumtagElbowGet()
• ProSetdatumtagElbowSet()
• ProSetdatumtagASMEDisplayGet()
• ProSetdatumtagASMEDisplaySet()
• ProSetdatumtagReferencesAdd()
• ProSetdatumtagReferencesGet()
• ProSetdatumtagReferenceDelete()
• ProSetdatumtagTextPointGet()
• ProSetdatumtagAdditionalTextLocationGet()
• ProDrawingSetDatumTagIsShown()
• ProDrawingSetdatumtagErase()
• ProDrawingSetdatumtagVisit()
The function ProSolidSetdatumtagVisit() enables you to visit the set
datum tag annotations in a solid model.
The function ProSetdatumtagCreate() is deprecated. Use the function
ProMdlSetdatumtagCreate() instead. The function
ProSetdatumtagCreate() creates a new set datum tag annotation. The
input arguments are as follows:

• reference—Specify a datum reference (plane or axis) from the model as the
geometric reference for the set datum tag. If you want to make this tag
reference model geometry, use Creo Parametric TOOLKIT to create a datum
plane or axis referencing the geometry first, and then use that datum in this
argument.

• annotation_plane—Specify an Annotation Plane for the annotation.
• attachment—Optionally, specify the location for placement of the set datum

tag. The argument can contain:

○ A dimension
○ A gtol.
○ A geometry selection to which the set datum will be attached.

Annotations: Annotation Features and Annotations 607

Note
Once the set datum tag annotation is created, use the function
ProAnnotationShow() to display it.

The function ProSetdatumtagAttachmentGet() returns the item on
which the datum tag is placed.
The function ProSetdatumtagAttachmentSet() specifies the item on
which the datum tag is placed.

Note
From Creo Parametric 2.0 M090 onward, to specify the datum plane or datum
axis as the attachment option, pass the input argument attachment as
NULL in the function ProSetdatumtagAttachmentSet(). The datum
tag is attached to the datum axis at the default location.

The function ProSetdatumtagPlacementGet() returns the item type, id,
and owner on which the set datum tag is placed. Use this function in cases where
it is not possible to construct the selection. For example, when the solid owned
datum feature symbol is attached to a solid owned dimension that is created in a
drawing. The function returns the attachment item contained in the
ProModelitem structure.
The function ProSetdatumtagPlaneGet() returns the annotation plane for
the specified set datum tag.
The function ProSetdatumtagPlaneSet() sets the annotation plane for the
set datum tag.
The function ProGeomitemSetdatumtagGet() returns the set datum tag
that uses the specified geometric item as the reference, if available.
The function ProSetdatumtagReferenceGet() returns the datum
specified as a reference for the set datum tag.

Note
The functions ProGeomitemSetdatumtagGet() and
ProSetdatumtagReferenceGet() return information only for datum
tags created in releases prior to Creo Parametric 4.0 F000.

608 Creo® Parametric TOOLKITUser’s Guide

The function ProSetdatumtagTextstyleGet() returns the text style
details for the set datum tag. The function
ProSetdatumtagTextstyleGet() is deprecated. Use the function
ProAnnotationTextstyleGet() instead.
The function ProSetdatumtagTextstyleSet() sets the text style details
for the set datum tag. The function ProSetdatumtagTextstyleSet() is
deprecated. Use the function ProAnnotationTextstyleSet() instead.
The function ProMdlSetdatumtagCreate() creates a datum feature symbol
in the specified drawing or solid. After creating a datum feature symbol, to display
it, call the function ProAnnotationShow(). The input arguments are as
follows:

• p_mdl—Specifies a drawing or solid.
• attachment—Specifies the location of the datum feature symbol on the

geometry. The argument can contain:

○ A dimension
○ A gtol
○ A geometry selection to which the set datum will be attached

• annotation_plane—Specifies an annotation plane for the annotation. If the
datum feature symbol is attached to a dimension or gtol, the argument can be
NULL. However, for a drawing, the argument must be passed as NULL.

• label—Specifies the label for the datum feature symbol.
Use the function ProMdlSetdatumtagDelete() to delete the specified
datum feature.
You can specify a string identifier as a label that will appear within the datum
feature symbol frame. The functions ProSetdatumtagLabelGet() and
ProSetdatumtagLabelSet() get and set the label for the specified datum
feature symbol.
You can also specify additional text that appears along with the datum feature
symbol instance. The label for the datum feature symbol and the additional text
appear horizontally aligned to the screen. The functions
ProSetdatumtagAdditionalTextGet() and
ProSetdatumtagAdditionalTextSet() get and set the additional text
for the specified datum feature symbol. The functions also enable you to get and
set the position of the additional text around the frame of the datum feature
symbol using the enumerated data type ProDtmFeatAddlTextPos. The valid
values are:
• PRO_DTM_FEAT_ADDL_TEXT_RIGHT

• PRO_DTM_FEAT_ADDL_TEXT_BOTTOM

• PRO_DTM_FEAT_ADDL_TEXT_LEFT

Annotations: Annotation Features and Annotations 609

• PRO_DTM_FEAT_ADDL_TEXT_TOP

• PRO_DTM_FEAT_ADDL_TEXT_DEFAULT

It is possible to set the display style of the leader which attaches the datum feature
symbol to the geometry. You can set the appearance of the leader as straight or
have an elbow. The function ProSetdatumtagElbowSet() enables you set
the display of the leader. Pass the input argument elbow as PRO_B_TRUE to set
the leader with an elbow. The function ProSetdatumtagElbowGet() checks
if the leader of the specified datum feature symbol has an elbow.
The function ProSetdatumtagASMEDisplaySet displays the datum feature
symbol according to the ASME standard. Use the function
ProSetdatumtagASMEDisplayGet() to check if the specified datum
feature symbol is displayed as per ASME standard.
The function ProSetdatumtagReferencesAdd() adds semantic references
to the specified datum feature symbol.

Note
When a reference includes more than one collection, the function
ProSetdatumtagReferencesAdd() returns the error PRO_TK_MAX_
LIMIT_REACHED and no reference is added.

The function ProSetdatumtagReferencesGet() returns a ProArray of
semantic references that were used to place the specified datum feature symbol.
Use the function ProAnnotationreferencearrayFree to free the
allocated memory. Use the function ProSetdatumtagReferenceDelete()
to delete semantic references in the specified datum feature symbol. The
references are specified by their index number.
In Creo Parametric 7.0.0.0 and later, the function
ProSetdatumtagTextLocationGet() is deprecated.
Use the function ProSetdatumtagTextPointGet() instead. The function
ProSetdatumtagTextPointGet() retrieves the text point for the specified
datum feature symbol.
The function ProSetdatumtagAdditionalTextLocationGet()
retrieves the location of additional text for the specified datum feature symbol.
The function ProDrawingSetDatumTagIsShown() returns the display
status of the set datum tag in the specified view of a drawing. The input arguments
are:
• set_datum_tag—Specifies the set datum tag.
• drawing—Specifies the drawing that shows the annotation.
• view—Specifies the drawing view.

610 Creo® Parametric TOOLKITUser’s Guide

The function returns PRO_B_TRUE if the set datum tag is shown in the specified
drawing view, and PRO_B_FALSE if it is not shown in the drawing view.
The function ProDrawingSetDatumTagIsShown() returns the error PRO_
TK_BAD_CONTEXT if the datum feature symbol cannot be shown in the specified
drawing view.
Use the function ProDrawingSetdatumtagErase() to set a set datum tag
to be erased from the specified view of a drawing. The annotation is not displayed
until it is explicitly displayed using the function ProAnnotationShow().
The function ProDrawingSetdatumtagVisit() enables you to visit the set
datum tag annotations in the specified drawing.

Accessing Set Datums for Datum Axes or
Planes
The functions described in this section provide access to the “Set Datum” status of
a datum axis or plane.

Note
These function support the “Set Datum” capability which existed before Set
Datum Tag annotations.

Functions Introduced:

• ProGeomitemSetdatumGet()
• ProGeomitemSetdatumSet()
• ProGeomitemSetdatumClear()
The function ProGeomitemSetdatumGet() specifies whether the datum
plane or axis is a “Set Datum”. This function supersedes the function
ProGeomitemIsGtolref().
The function ProGeomitemSetdatumSet() sets the datum plane or axis to
be a “Set Datum”. This function supersedes the function
ProGeomitemGtolrefSet().
The function ProGeomitemSetdatumClear() removes the “Set Datum”
status of a datum plane or axis. This function supersedes the function
ProGeomitemGtolrefClear().

Annotations: Annotation Features and Annotations 611

Surface Finish Annotations
The functions described in this section provide read access to the properties of the
surface finish object. They also allow you to create and modify surface finishes.
The style of surface finishes for releases previous to Pro/ENGINEERWildfire 2.0
was a flat-to-screen symbol attached to a single surface. From Pro/ENGINEER
Wildfire 2.0 onwards, the method for construction of surface finishes has been
modified. The new style of surface finish is a symbol instance that may be
attached on a surface or with a leader. The following functions support both the
old and new surface finish annotations, except where specified.
Functions Introduced:

• ProSolidSurffinishVisit()
• ProSurffinishCreate()
• ProSurffinishReferencesGet()
• ProSurffinishSrfcollectionGet()
• ProSurffinishSrfcollectionSet()
• ProSurffinishNameGet()
• ProSurffinishNameSet()
• ProSurffinishDataGet()
• ProSurffinishModify()
• ProSurffinishValueGet()
• ProSurffinishValueSet()
• ProSurffinishDelete()
The function ProSolidSurffinishVisit() visits the surface finishes
stored in the specified solid model. This function accepts a visit function
ProSurfaceVisitAction() and a filter function
ProSurfaceFilterAction() as the input arguments.
The function ProSurffinishCreate() creates a new symbol-based surface
finish annotation. The function requires a symbol instance data structure for
creation. Once the surface finish annotation is created, use the function
ProAnnotationShow() to display it.

Note
The data must conform to the requirements for surface finishes, that is,
attachment must be via leader to or on one or more surfaces.

612 Creo® Parametric TOOLKITUser’s Guide

You can use the standard surface finish symbol definitions from the symbol
instance data structure. Use the function ProSolidDtlsymdefRetrieve()
to retrieve the surface finish symbol definitions from the location PRO_
DTLSYMDEF_SRC_SURF_FINISH_DIR. The surface finish value should be set
using the variant text options for symbol instances.
The function ProSurffinishReferencesGet() returns the surface or
surfaces referenced by the surface finish.
The function ProSurffinishSrfcollectionGet() obtains a surface
collection which contains the references of the surface finish.
The function ProSurffinishSrfcollectionSet() assigns a surface
collection to be the references of the surface finish. This overwrites all current
surface finish references. The following types of surface collections are supported:

• One by one surface set
• Intent surface set
• Excluded surface set
• Seed and Boundary surface set
• Loop surface set
• Solid surface set
• Quilt surface set

Note
Only those surface finishes that are contained within annotation elements may
use a collection of references instead of a single surface reference.

The function ProSurffinishNameGet() returns the name of the surface
finish annotation.
The function ProSurffinishNameSet() sets the name of the surface finish
annotation.
The function ProSurffinishDataGet() returns the symbol instance data
for the surface finish. This function supports only new symbol-based surface
finishes.
The function ProSurffinishModify() modifies the symbol instance data
for the specified surface finish. This function supports only new symbol-based
surface finishes.
The function ProSurffinishValueGet() retrieves the value of a surface
finish annotation.

Annotations: Annotation Features and Annotations 613

The function ProSurffinishValueSet() sets the value of a surface finish
annotation.
The function ProSurffinishDelete() deletes the specified surface finish.
The functions described above supersede the Pro/Develop functions pro_surf_
finish_number(), pro_get_surf_finish(), pro_delete_
surface_finish() and pro_set_surface_finish().

Symbol Annotations
The functions described in this section provide support for 3D mode symbols.
Creo Parametric TOOLKIT functions for symbol instances are used in both 2D
and 3D modes. Symbols for a particular mode must conform to the requirements
for that mode. Some ProDtlsyminst functions have been modified to accept a
ProMdl object as the input instead of ProDrawing object to support 3D mode
operations.

Creating, Reading and Modifying 3D Symbols
Functions Introduced:

• ProDtlsyminstCreate()
• ProDtlsyminstDataGet()
• ProDtlsyminstModify()
• ProDtlsyminstdataPlaneGet()
• ProDtlsyminstdataPlaneSet()
The function ProDtlsyminstCreate() creates a symbol instance in the
specified model. Once the symbol instance is created, use the function
ProAnnotationShow() to display it.
The function ProDtlsyminstDataGet() returns the symbol instance data.
The function ProDtlsyminstModify() modifies the symbol instance.
For more information about creating, accessing and modifying symbols via the
ProDtlsyminst and ProDtlsyminstdata structures, refer to the Drawings
on page 1226 chapter.
The functions ProDtlsyminstdataPlaneGet() and
ProDtlsyminstdataPlaneSet() provide access to the symbol annotation
plane. Annotation planes are required for 3D symbol instances but are not
applicable for 2D symbol instances.

614 Creo® Parametric TOOLKITUser’s Guide

Locating and Collecting 3D Symbols and Symbol
Definitions
Functions Introduced:

• ProSolidDtlsymdefVisit()
• ProSolidDtlsyminstVisit()
• ProSolidDtlsymdefEntityVisit()
• ProSolidDtlsymdefNoteVisit()
• ProSolidDtlsymdefRetrieve()
• ProSolidDtlsyminstsCollect()
• ProSolidDtlsymdefsCollect()
The functions ProSolidDtlsymdefVisit() and
ProSolidDtlsyminstVisit() allow traversal of symbol definitions and
instances in a solid model.
The functions ProSolidDtlsymdefEntityVisit() and
ProSolidDtlsymdefNoteVisit() allow traversal of items contained in a
symbol definition stored in a solid model.
The function ProSolidDtlsymdefRetrieve() allows retrieval of a symbol
definition into a given solid model. The input arguments for this function are as
follows:

• solid—Specifies a handle to the solid model.
• location—Specifies the location of the symbol definition file. It can one of the

following values:

○ PRO_DTLSYMDEF_SRC_SYSTEM—Specifies the system symbol
definition directory.

○ PRO_DTLSTMDEF_SRC_SYMBOL_DIR—Specifies the system surface
finish symbol definition directory.

○ PRO_DTLSYMDEF_SRC_SYMBOL_DIR—Specifies the location
controlled by the configuration option pro_symbol_dir.

○ PRO_DTLSYMDEF_SRC_PATH—Specifies the absolute path to a
directory containing the symbol definition.

• filepath—Specifies the path to the file with a symbol definition. The path is
relative to the location specified in the argument location.

• filename—Specifies the name of the symbol definition file.

Annotations: Annotation Features and Annotations 615

• version—Specifies the version of the symbol definition file.
• update—Specifies the update flag. If TRUE, the definition will be loaded even

if a definition of that name already exists in the model. If FALSE, the retrieval
will not take place if the definition exists in the model.

You can use symbol instances from different symbol definitions in a solid. The
function ProSolidDtlsyminstsCollect() collects all the symbol
instances used in the specified solid as a ProArray. The function
ProSolidDtlsymdefsCollect() returns a ProArray of all the symbol
definitions used in the specified solid. The function returns symbol definitions
only for the symbol instances used in the solid. Use the function
ProArrayFree() to release the memory assigned to the ProArray of symbol
definitions and symbol instances.

616 Creo® Parametric TOOLKITUser’s Guide

25
Annotations: Geometric

Tolerances
Geometric Tolerance Objects ... 618
Visiting Geometric Tolerances .. 618
Reading Geometric Tolerances .. 619
Creating a Geometric Tolerance ... 623
Deleting a Geometric Tolerance.. 630
Validating a Geometric Tolerance ... 630
Geometric Tolerance Layout... 630
Additional Text for Geometric Tolerances... 631
Geometric Tolerance Text Style .. 632
Prefix and Suffix for Geometric Tolerances .. 633
Parameters for Geometric Tolerance Attributes.. 633

The functions in this chapter allow a Creo Parametric TOOLKIT application to
read, modify, and create geometric tolerances (gtols) in a solid or drawing. We
recommend that you study the Creo Parametric documentation on geometric
tolerances, and develop experience with manipulating geometric tolerances using
the Creo Parametric commands before attempting to use these functions.

617

Geometric Tolerance Objects

Overview
The geometric tolerance objects enable you to access internal data structure of
geometric tolerances (gtol). The object also references and gets attachment details
for gtols.
From Creo Parametric 4.0 F000 onward, the object Gtoldata has been
deprecated. All the ProGtolData* functions have also been deprecated. Use
the new ProGtol* functions instead. The new functions are defined in the
header files ProGtol.h and ProGtolAttach.h.

Note
Geometric tolerance functions deprecated in Creo Parametric 4.0 F000 must
not be used with the new geometric tolerance functions available from Creo
Parametric 4.0 F000 in a Creo Parametric TOOLKIT application. If the
functions are used together in an application, the results may be unpredictable.

ProGtol
Geometric tolerances in a Creo Parametric model are referenced by the data
handle, ProGtol. This handle is identical to ProModelitem, in which the
type field is set to PRO_GTOL. You can use ProSelect() with the option
gtol to select a gtol, after which you can extract the ProGtol handle using
ProSelectionModelitemGet().

ProGtolAttach
This is an opaque handle object that references an internal data structure which
provides complete attachment details for a gtol. The structure contains attachment
information such as, type of placement, annotation plane, location and references
and so on for a gtol.

Visiting Geometric Tolerances
Function Introduced:

618 Creo® Parametric TOOLKITUser’s Guide

• ProMdlGtolVisit()
The function ProMdlGtolVisit() visits geometric tolerances stored in a part,
assembly, or drawing. The forms of the visit and filter functions are similar to
those of most other visit functions-they receive a ProGtol pointer as input
argument to identify the gtol.

Reading Geometric Tolerances
The functions explained in this section enable you to access and read the
properties of a geometric tolerance.
Function Introduced:

• ProGtolNameGet()
• ProGtolTypeGet()
• ProGtolTopModelGet()
• ProGtolReferencesGet()
• ProGtolDatumReferencesGet()
• ProGtolValueStringGet()
• ProGtolCompositeGet()
• ProGtolCompositeShareRefGet()
• ProGtolSymbolStringGet()
• ProGtolIndicatorsGet()
• ProGtolAllAroundGet()
• ProGtolAllOverGet()
• ProGtolAddlTextBoxedGet()
• ProGtolBoundaryDisplayGet()
• ProGtolUnilateralGet()
The function ProGtolNameGet() returns the name of the geometric tolerance
(gtol) as a wchar_t* string. Use the function ProWstringFree() to free the
string.
The function ProGtolTypeGet() returns the type of the gtol using the
enumerated data type ProGtolType. The various types of gtol, are straightness,
flatness, and so on.
The function ProGtolTopModelGet() returns the model that defines the
origin of ProSelection structures used to define references inside the gtol.
This will usually be the model that contains the gtol; but if the gtol was created in
drawing mode and added to a solid in a drawing view, the owner will be the
drawing, while the model is the solid.

Annotations: Geometric Tolerances 619

ProGtolReferencesGet() returns a ProArray of the geometric entities
referenced by the specified gtol. The entities are additional references used to
create the gtol.
Use the function ProAnnotationreferencearrayFree() to free the
ProArray.
The function ProGtolDatumReferencesGet() returns the primary,
secondary, and tertiary datum references for a gtol as wchar_t* strings. Use the
function ProWstringFree() to free the strings.
The function ProGtolCompositeGet() retrieves the value and the datum
references, that is, the primary, secondary, and tertiary references for the specified
composite gtol.
The function ProGtolCompositeGet() returns an array of values in which
the first value is the primary value of the gtol and the rest are secondary, tertiary,
and so on.
The function ProGtolValueStringGet() retrieves the value specified in
the gtol as a wchar_t* string. Use the function ProWstringFree() to free
the string.
The function ProGtolValueStringGet() returns a value string which is the
primary value of the gtol and is displayed in the first box of the Composite Frame
in the gtol ribbon.
For more information about gtols and the ribbon tab, refer to the Creo Parametric
online help.
Use the function ProGtolSymbolStringGet() to retrieve the string value in
the specified font for the gtol symbol. The input arguments are:
• symbol—Specifies the type of symbol using the enumerated data type

ProGtolSymbol. The valid values are:
○ PRO_GTOL_SYMBOL_DIAMETER—Specifies the diameter for the

feature.
○ PRO_GTOL_SYMBOL_FREE_STATE—Specifies that the model is not

subjected to any force, except the gravitational force.
○ PRO_GTOL_SYMBOL_STAT_TOL—Specifies statistical tolerance.
○ PRO_GTOL_SYMBOL_TANGENT_PLANE—Specifies the tangent plane.
○ Material Symbols—The material conditions are represented using the

following values:

PRO_GTOL_SYMBOL_LMC—Specifies least material condition and is

displayed by the symbol .

620 Creo® Parametric TOOLKITUser’s Guide

○ PRO_GTOL_SYMBOL_MMC—Specifies maximum material condition and

is displayed by the symbol .
○ PRO_GTOL_SYMBOL_RFS—Specifies the material condition regardless

of the feature size and is displayed by the symbol .
○ PRO_GTOL_SYMBOL_DEFAULT_RFS—Specifies the material condition

regardless of the feature size, but does not show a symbol in the frame.
○ PRO_GTOL_SYMBOL_LMC_R—Specifies least material condition with

reciprocity. The reciprocity is displayed on drawings with the symbol ®

after the symbol .
○ PRO_GTOL_SYMBOL_MMC_R—Specifies maximum material condition

with reciprocity. The reciprocity is displayed on drawings with the symbol

® after the symbol .

Note
You can use the reciprocity condition together with the maximum
material condition or the minimum material condition to use the
maximum tolerance allowed for a feature. The material conditions with
reciprocity are applicable only for the ISO standard.

○ Indicator Symbols—Indicators are displayed after the gtol symbol
according to the standard. The Indicator symbols are represented using the
following values:

PRO_INDICATOR_SYMBOL_ANGULARITY—Specifies the angular
position of a feature to a reference.

○ PRO_INDICATOR_SYMBOL_PERPENDICULARITY—Specifies that the
two features must be perpendicular to each other. It is also used to indicate
perpendicularity for features such as axis to a reference.

○ PRO_INDICATOR_SYMBOL_PARALLELISM—Specifies that the two
features must be parallel to each other. It is also used to indicate
parallelism for features such as axis to a reference.

○ PRO_INDICATOR_SYMBOL_SYMMETRY—Specifies that the two
features must be symmetric about a center.

○ PRO_INDICATOR_SYMBOL_RUNOUT—Applicable only for direction

Annotations: Geometric Tolerances 621

feature. Specifies that the direction of the width of the tolerance zone is
equal to run-out, that is perpendicular to the surface of the tolerance
feature.

• font—Specifies the tolerancing font used for symbols. The valid values are
defined in the enumerated data ProSymbolFont:
○ PRO_FONT_LEGACY—Specifies that symbols use the legacy font.
○ PRO_FONT_ASME—Specifies that symbols use ASME font.
○ PRO_FONT_ISO—Specifies that symbols use ISO font.
○ PRO_FONT_STROKED_ASME—Specifies that symbols use stroked

ASME fonts that are native to Creo.
○ PRO_FONT_STROKED_ISO—Specifies that symbols use stroked ISO

fonts that are native to Creo.
The function ProGtolIndicatorsGet() retrieves all the indicators assigned
to the specified gtol. It returns ProArray of indicator types, symbols, and datum
feature symbols.
The function ProGtolCompositeShareRefGet() checks if the datum
references are shared between all the rows defined in the composite gtol.
The functions ProGtolSymbolStringGet() and
ProGtolValueStringGet(), provide information on the different symbolic
modifiers available to the gtol.
The function ProGtolAllOverGet() returns a boolean value that indicates if
the All Over symbol has been set in the specified gtol. The function
ProGtolAllAroundGet() checks if the All Around symbol has been set for
the specified gtol. The All Over symbol and All Around symbol specifies that the
profile tolerance must be applied to all the three dimensional profile of the part.
The symbol is available only for surface profile gtol, that is, of type
PROGTOLTYPE_SURFACE.
The function ProGtolAddlTextBoxedGet() checks if a box has been
created around the specified additional text in a geometric tolerance.
The function ProGtolBoundaryDisplayGet() checks if the boundary
modifier has been set for the specified gtol. Use the function
ProGtolUnilateralGet() to check if the profile boundary has been set to
unilateral in the specified gtol. If set to unilateral, the function also checks if the
tolerance disposition is in the outward direction of the profile.

622 Creo® Parametric TOOLKITUser’s Guide

Note
When the new ProGtol*Get() functions, except
ProGtolTopModelGet(), ProGtolReferencesGet(),
ProGtolReferenceDelete(), and ProGtolValidate() are called
on geometric tolerances created in releases prior to Creo Parametric 4.0 F000,
these legacy geometric tolerances are converted to the new Creo Parametric
4.0 geometric tolerances. In this case, the revision number of the model is also
incremented.

Creating a Geometric Tolerance
Functions Introduced:

• ProGtolTypeSet()
• ProGtolReferencesAdd()
• ProGtolReferenceDelete()
• ProGtolDatumReferencesSet()
• ProGtolValueStringSet()
• ProGtolCompositeSet()
• ProGtolCompositeShareRefSet()
• ProGtolAllAroundSet()
• ProGtolAllOverSet()
• ProGtolAddlTextBoxedSet()
• ProGtolElbowlengthSet()
• ProGtolBoundaryDisplaySet()
• ProGtolUnilateralSet()
• ProMdlGtolCreate()
• ProGtolDtlnotesCollect()
The basic steps in creating a gtol are:

1. Allocate a ProGtolAttach structure using ProGtolAttachAlloc().
2. Set the attachment properties using the ProGtolAttach*Set() functions.
3. Set tolerance properties using the ProGtol*Set() functions.

Annotations: Geometric Tolerances 623

4. Create the tolerance using ProMdlGtolCreate(). Once the tolerance is
created, you must use the function ProAnnotationShow() to display it.

5. Free ProGtolAttach using ProGtolAttachFree().
The function ProGtolTypeSet() sets the type of geometric tolerance using
the enumerated data type ProGtolType.
Use the function ProGtolReferencesAdd() to add datum references to the
specified gtol.

Note
When a reference includes more than one collection, the function
ProGtolReferencesAdd() returns the error PRO_TK_MAX_LIMIT_
REACHED and no reference is added.

Use the function ProGtolReferenceDelete() to delete the datum
references from the specified gtol.
The function ProGtolIndicatorsSet() sets the indicators for the specified
gtol. The input arguments are:
• gtol—Specifies the gtol.
• types—Specifies a ProArray of indicator types using the enumerated data

type ProGtolIndicatorType. Use the function ProArrayFree() to
free the array.

• symbols—Specifies a ProArray of strings for indicator symbols. Free the
array using the function ProWstringproarrayFree().

• dfs—Specifies a ProArray of strings for datum feature symbols. Free the
array using the function ProWstringproarrayFree().

The function ProGtolCompositeSet() sets the value and datum references,
primary, secondary, and tertiary for the specified composite gtol.
Use the function ProGtolCompositeShareRefSet() to specify if datum
references in a composite gtol must be shared between all the defined rows. Pass
the input argument share as PRO_B_TRUE to share the references.
The function ProGtolValueStringSet() sets the specified value for a gtol.
Use the function ProGtolDatumReferencesSet() to set the datum
references for the specified gtol. The datum references are set as wchar_t*
strings. Use the function ProWstringFree() to free the strings.
The datum references are given to ProGtolDatumReferencesSet() in the
form of wchar_t* strings. Use the function ProWstringFree() to free the
strings.

624 Creo® Parametric TOOLKITUser’s Guide

The function ProGtolElbowlengthSet() sets the elbow along with its
properties for a leader type of gtol. The function is supported for leader type gtols
which are placed on the annotation plane. The input arguments are:
• gtol—Specifies a gtol.
• elbow_length—Specifies the length of the elbow in model coordinates.
• elbow_direction—Specifies the direction of the elbow in model coordinates.

The gtol text also moves in this direction.
The function ProGtolBoundaryDisplaySet() sets the boundary modifier
for the specified gtol. Use the function ProGtolUnilateralSet() to set the
profile boundary as unilateral in the specified gtol. The function also sets the
tolerance disposition to the outward direction of the profile.
The function ProGtolAllAroundSet() sets the All Over symbol for the
specified geometric tolerance.
The function ProGtolAllAroundSet() sets the All Around symbol for the
specified geometric tolerance.
The function ProGtolAddlTextBoxedSet() creates a box around the
specified additional text in a geometric tolerance. Boxes can be created around
additional text added above and below the frame of the geometric tolerance.
From Creo Parametric 4.0 F000 onward, stacked geometric tolerance creates
separate notes for each tolerance. For a stacked geometric tolerance, the functions
ProGtolDtlnoteGet(), ProDtlnoteDataGet(), and
ProDtlnotedataLinesCollect() will return information about individual
notes for each geometric tolerance.
The function ProGtolDtlnotesCollect() returns the detail notes that
represent a geometric tolerance in the specified drawing. The input arguments
follow:
• solid_model_gtol—The handle to the geometric tolerance.
• drawing —The drawing where the note is displayed.
The function returns an array of drawing notes that represents the geometric
tolerance.

Attaching the Geometric Tolerances
The functions explained in this section enable you to access and set attachment
options for the geometric tolerance.
Function Introduced:
• ProGtolAttachGet()
• ProGtolAttachSuppressedLeadersGet()
• ProGtolAttachSet()

Annotations: Geometric Tolerances 625

• ProGtolAttachTypeGet()
• ProGtolAttachLeadersGet()
• ProGtolAttachLeadersSet()
• ProGtolleaderGet()
• ProGtolleaderZExtensionlineGet()
• ProGtolEnvelopeGet()
• ProGtolleadersFree()
• ProGtolAttachOffsetItemGet()
• ProGtolAttachOffsetItemSet()
• ProGtolAttachFreeGet()
• ProGtolAttachFreeSet()
• ProGtolleaderFree()
• ProGtolAttachOnDatumGet()
• ProGtolAttachOnDatumSet()
• ProGtolAttachOnAnnotationGet()
• ProGtolAttachOnAnnotationSet()
• ProGtolAttachMakeDimGet()
• ProGtolAttachMakeDimSet()
The function ProGtolAttachGet() retrieves all the attachment related
information for a gtol as a ProGtolAttach structure. Use the function
ProGtolAttachSet() to set the attachment options. If the function
ProGtolAttachSet() specifies one or more leaders, the leaders are described
by a separate opaque object called ProGtolleader. This object is allocated by
call to the function ProGtolleaderAlloc(). Use the function
ProGtolleaderFree() to free the allocated memory.
The function ProGtolAttachTypeGet() retrieves the type of attachment for
a gtol. It uses the enumerated data type ProGtolAttachType to provide
information about the placement of the gtol. The valid values are:
• PRO_GTOL_ATTACH_DATUM – Specifies that the gtol is placed on its

reference datum.
• PRO_GTOL_ATTACH_ANNOTATION—Specifies that the gtol is attached to

an annotation.
• PRO_GTOL_ATTACH_ANNOTATION_ELBOW—Specifies that the gtol is

attached to the elbow of an annotation.
• PRO_GTOL_ATTACH_FREE—Specifies that the gtol is placed as a free. It is

unattached to the model or drawing.

626 Creo® Parametric TOOLKITUser’s Guide

• PRO_GTOL_ATTACH_LEADERS—Specifies that the gtol is attached with
one or more leader to geometry such as, edge, dimension witness line,
coordinate system, axis center, axis lines, curves, or surface points, vertices,
section entities, draft entities, and so on. The leaders are represented using an
opaque handle, ProGtolleader.

• PRO_GTOL_ATTACH_OFFSET—Specifies that the gtol frame can be placed
at an offset from the following drawing objects: dimension, dimension arrow,
gtol, note, and symbol.

• PRO_GTOL_ATTACH_MAKE_DIM—Specifies that the gtol frame is attached
to a dimension line.

Use the function ProGtolAttachLeadersGet() to get attachment details
for leader type of gtol. The output arguments are:
• plane—Specifies the annotation plane. For gtols defined in drawing, it returns

NULL.
• type—Specifies the attachment type for the leader using the enumerated data

type ProGtolLeaderAttachType.
• leaders—Specifies a ProArray of gtol leaders.
• location—Specifies the location of gtol text in model coordinates.
Use the function ProGtolAttachSuppressedLeadersGet() to get the
number of leaders that are suppressed due to missing references.
Use the function ProGtolAttachLeadersSet() to set the attachment
options for leader type of gtol.
To unpack the information in the ProGtolleader handle, use the function
ProGtolleaderGet(). After reading the leaders, free the leader array by
calling ProGtolleadersFree().
The function ProGtolleaderZExtensionlineGet() retrieves the Z-
Extension line of the gtol leader. The leader location coordinates are required
when the gtol is moved to a different annotation plane.
The function ProGtolEnvelopeGet() returns the envelope of the gtol. The
output argument envelope is the envelope surrounding the gtol in the
coordinate system of the model. For drawing, the envelope of the gtol is in the
screen coordinates. While retrieving coordinates of the gtol in a specified solid, if
the gtol is displayed in the solid as well as in the drawing, the drawing must not be
active.

Annotations: Geometric Tolerances 627

The function ProGtolAttachOffsetItemGet() returns the offset
references for the specified ProGtolAttach structure. The function returns the
following output arguments:
• offset_ref—Specifies the offset reference as a ProSelection object. The

reference can be a dimension, arrow of a dimension, another geometric
tolerance, note, or a symbol instance. If there are no offset references, the
output argument returns NULL.

• offset—Specifies the position of the offset reference as model coordinates.
Use the function ProGtolAttachOffsetItemSet() to set the offset
references for the specified ProGtolAttach structure.
The function ProGtolAttachFreeGet() gets the details for free type of gtol.
It retrieves information about the annotation plane and location of the gtol text in
model coordinates. For gtols defined in drawing, the function returns NULL for
annotation plane. Use the function ProGtolAttachFreeSet() to set the
options for free type gtol.
The functions ProGtolAttachOnDatumGet() and
ProGtolAttachOnDatumSet() get and set datum symbol for the geometric
tolerance. From Creo Parametric 4.0 F000 onward, datum symbols are defined
using datum feature symbol. The functions work with the new datum feature
symbol along with the legacy datum tag annotations.
The function ProGtolAttachOnAnnotationGet() retrieves the annotation
for the specified ProGtolAttach structure. The function
ProGtolAttachOnAnnotationSet() sets the specified annotation to the
attachment structure. The input arguments are:
• gtol_attach—Specifies the attachment structure ProGtolAttach for a

geometric tolerance.
• p_annot—Specifies the annotation. For gtols in the solid you can set PRO_

DIMENSION, PRO_GTOL, and PRO_NOTE type of annotations. For drawing
gtols, you can set PRO_DIMENSION, PRO_GTOL, and PRO_NOTE type of
annotations.

• elbow—Specifies that the annotation must be placed on the elbow of the
leader instead of the gtol text. If the annotation type is set as PRO_NOTE, then
you must set elbow as PRO_B_TRUE.

The function ProGtolAttachMakeDimGet() gets all the information for a
geometric tolerance created with Make Dim type of reference. Make Dim type of
reference mode enables you to create a dimension line and place the gtol frame

628 Creo® Parametric TOOLKITUser’s Guide

attached to it. The geometric tolerance appears in standard dimension format, but
with the geometric tolerance instead of a dimension value. The output arguments
are:
• plane—Specifies the annotation plane for the gtol.
• attachments_arr—Specifies the points on the model or drawing where the gtol

is attached.
• dsense_arr—Specifies more information about how the gtol attaches to each

attachment point of the model or drawing.
• orient_hint—Specifies the orientation of the gtol using the enumerated data

type ProDimOrient. The valid values are
○ PRO_DIM_ORNT_HORIZ—Specifies a horizontal dimension.
○ PRO_DIM_ORNT_VERT—Specifies a vertical dimension.
○ PRO_DIM_ORNT_SLANTED—Specifies the shortest distance between

two attachment points. This value is available only when the dimension is
attached to points.

○ PRO_DIM_ORNT_ELPS_RAD1—Specifies the start radius for a
dimension on an ellipse.

○ PRO_DIM_ORNT_ELPS_RAD2—Specifies the end radius for a
dimension on an ellipse.

○ PRO_DIM_ORNT_ARC_ANG—Specifies the angle of the arc for a
dimension of an arc.

○ PRO_DIM_ORNT_ARC_LENGTH—Specifies the length of the arc for a
dimension of an arc.

○ PRO_DIM_ORNT_LIN_TANCRV_ANG—If the dimension is attached to a
line and an end point of a curve, the default dimension will be a linear
dimension showing the distance between the line and the curve point. Set
this value if you want the dimension to show instead the angle between the
line and the tangent at the curve point.

○ PRO_DIM_ORNT_RAD_DIFF—Specifies the linear dimension of the
radial distance between two concentric arcs or circles.

○ PRO_DIM_ORNT_NORMAL—Specifies the linear dimension between two
points to be placed normal to the selected reference.

○ PRO_DIM_ORNT_PARALLEL—Specifies the linear dimension between
two points to be placed parallel to the selected reference.

• location—Specifies the location of gtol text as model coordinates.
The function ProGtolAttachMakeDimSet() sets all the options to create a
geometric tolerance with Make Dim type of reference.

Annotations: Geometric Tolerances 629

Deleting a Geometric Tolerance
Function Introduced:

• ProGtolDelete()
The function ProGtolDelete permanently removes a gtol.

Validating a Geometric Tolerance
Function Introduced:

• ProGtolValidate()
The function ProGtolValidate checks if the specified geometric tolerance is
syntactically correct. For example, when a string is specified instead of a number
for a tolerance value, it is considered as syntactically incorrect. The input
arguments are:
• gtol—Specifies the geometric tolerance to be checked.
• ProGtolValidityCheckType—Specifies the type of check. Currently, the

tolerance is checked for correct syntax.

Geometric Tolerance Layout
The functions described in this section provide access to the layout for the text and
symbols in a geometric tolerance.
Functions Introduced:

• ProGtolElbowlengthGet()
• ProGtolLineEnvelopeGet()
• ProGtolRightTextEnvelopeGet()
The function ProGtolElbowlengthGet() returns the length and direction of
the geometric tolerance leader elbow.
The function ProGtolLineEnvelopeGet() returns the bounding box
coordinates for one line from the geometric tolerance.
The function ProGtolRightTextEnvelopeGet() returns the bounding box
coordinates for the right text in a specified geometric tolerance.

630 Creo® Parametric TOOLKITUser’s Guide

Note
The functions ProGtolLineEnvelopeGet() and
ProGtolRightTextEnvelopeGet() support the geometric tolerances
placed on annotation planes.

Additional Text for Geometric Tolerances
You can place multi-line additional text to the right, left, bottom, and above a
geometric tolerance control frame while creating and editing a gtol in both
drawing and model modes.
Functions Introduced:

• ProGtolRightTextGet()
• ProGtolRightTextSet()
• ProGtolLeftTextGet()
• ProGtolLeftTextSet()
• ProGtolTopTextGet()
• ProGtolTopTextSet()
• ProGtolBottomTextGet()
• ProGtolBottomTextSet()
The function ProGtolRightTextGet() retrieves the text added to the right
of the specified geometric tolerance.
Use the function ProGtolRightTextSet() to set the text to be added to the
right of the specified geometric tolerance.
The function ProGtolLeftTextGet() retrieves the text added to the left of
the specified geometric tolerance.
Use the function ProGtolLeftTextSet() to set the text to be added to the
left of the specified geometric tolerance.
The function ProGtolTopTextGet() retrieves the text added to the top of the
specified geometric tolerance.
Use the function ProGtolTopTextSet() to set the text to be added to the top
of the specified geometric tolerance.
The function ProGtolBottomTextGet() retrieves the text added to the
bottom of the specified geometric tolerance.
Use the function ProGtolBottomTextSet() to set the text to be added to the
bottom of the specified geometric tolerance.

Annotations: Geometric Tolerances 631

Note
If the additional text extends over multiple lines, the input string must contain
\n characters to indicate line breaks. The output string also contains \n
characters indicating line breaks. The text added to the top of a gtol cannot
extend beyond the length of the geometric tolerance control frame.

Geometric Tolerance Text Style
The functions described in this section access the text style properties of a
geometric tolerance.
Functions Introduced:

• ProGtolTextstyleGet()
• ProGtolTextstyleSet()
• ProGtoltextTextstyleGet()
• ProGtoltextTextstyleSet()
• ProGtolTopTextHorizJustificationSet()
• ProGtolTopTextHorizJustificationGet()
• ProGtolBottomTextHorizJustificationSet()
• ProGtolBottomTextHorizJustificationGet()
The function ProGtolTextstyleGet() returns the text style assigned of a
specified geometric tolerance.
The function ProGtolTextstyleSet() assigns the text style of a specified
geometric tolerance.
The function ProGtoltextTextstyleGet() retrieves the text style of the
additional text applied to the specified geometric tolerance.
The function ProGtoltextTextstyleSet() assigns the text style of the
additional text applied to the specified geometric tolerance. Specify the instance of
the additional text to be accessed using the enumerated data type
ProGtolTextType.
The function ProGtolTopTextHorizJustificationSet() sets the
horizontal justification for the additional text applied to the specified geometric
tolerance at the top.
The function ProGtolTopTextHorizJustificationGet() retrieves the
horizontal justification for the additional text applied to the specified geometric
tolerance at the top.

632 Creo® Parametric TOOLKITUser’s Guide

The function ProGtolBottomTextHorizJustificationSet() sets the
horizontal justification for the additional text applied to the specified geometric
tolerance at the bottom.
The function ProGtolBottomTextHorizJustificationGet() retrieves
the horizontal justification for the additional text applied to the specified
geometric tolerance at the bottom.

Prefix and Suffix for Geometric
Tolerances
You can easily add a prefix and suffix to a geometric tolerance in both drawing
and model modes. They have the same text style as the geometric tolerance text.
A prefix will be placed before the tolerance value; a suffix will be placed after the
material condition, if one exists.
Functions Introduced:

• ProGtolPrefixGet()
• ProGtolPrefixSet()
• ProGtolSuffixGet()
• ProGtolSuffixSet()
The function ProGtolPrefixGet() obtains the prefix text for the specified
geometric tolerance.
The function ProGtolPrefixSet() assigns the prefix set for the specified
geometric tolerance.
The function ProGtolSuffixGet() obtains the suffix text for the specified
geometric tolerance.
The function ProGtolSuffixSet() assigns the suffix text for the specified
geometric tolerance.

Parameters for Geometric Tolerance
Attributes
System parameters are automatically generated for the attributes of a geometric
tolerance upon the creation of the geometric tolerance. These parameters are used
for downstream processes such as Coordinate Measuring Machine (CMM)
operations, and in driving other annotation and feature relationships.

Annotations: Geometric Tolerances 633

Note
Parameters are generated only for geometric tolerances created within
annotation features because 2D or 3D geometric tolerances created outside
annotation elements do not have a placeholder for parameters.

The following table lists the various system parameters and the gtol attributes for
which the parameters are generated:
Parameter Gtol Attribute
PTC_GTOL_PRIMAY_TOL Primary tolerance value
PTC_GTOL_TYPE Geometric tolerance type
PTC_GTOL_MATERIAL_CONDITION Material condition for the primary tolerance value
PTC_GTOL_COMPOSITE_TOL Composite tolerance value; available only if the gtol

type is Surface or Position
PTC_GTOL_PERUNIT_TOL Pre-unit tolerance value; available only if the gtol

type is Straightness, Perpendicular, Surface, Parallel,
or Flatness

PTC_GTOL_UNITLENGTH_TOL Unit length value; available only if the gtol type is
Straightness, Perpendicular, Surface, or Parallel

PTC_GTOL_UNITAREA_TOL Unit area value; available only if the gtol type is
Flatness

PTC_GTOL_PROJECTEDTOLZONE_TOL Projected tolerance zone value; available only if the
gtol type is Angular, Perpendicular, Parallel, or
Position

PTC_GTOL_UNEQUALLYDISPOSED_TOL Unequally disposed tolerance value; available only if
the gtol type is Surface

You can access the parameters of gtol attributes by using the Creo Parametric
TOOLKIT parameter functions ProParameter*Get() and
ProParameter*Set(), and the UDF placement functions related to variable
parameters ProUdfvarparam*() and ProUdfdataVarparamAdd().
Refer to the chapter Core: Parameters on page 210 for more information on
parameters.

634 Creo® Parametric TOOLKITUser’s Guide

26
Annotations: Designated Area

Feature
Introduction to Designated Area Feature ... 636
Feature Element Tree for the Designated Area .. 636
Accessing Designated Area Properties ... 638

This chapter describes how to access designated area features through Creo
Parametric TOOLKIT.

635

Introduction to Designated Area Feature
A Designated Area is a “cosmetic surface" that can be referenced by annotations
(including driven dimensions), and propagates as you add geometry to the model.
It is used to indicate an area that needs to be closely examined or treated
differently.
The designated area is made up of sets of chains constructed by a selection of
edges or curves. The curves might lie on a solid (by default), a quilt, or on a plane.
If the chains lie on multiple object types, then you must decide on one object type
to place the target area.
You can attach an annotation to the created surface or to its boundaries. You can
also include the designated area as a reference in a data sharing feature, if its
parent surface is included. Geometry of this feature can be accessed using
standard Creo Parametric TOOLKIT functions such as
ProFeatureGeomitemVisit() and ProSolidQuiltVisit().

Feature Element Tree for the Designated
Area
The element tree for the Designated Area feature is documented in the header file
ProDesignatedArea.h. The following figure demonstrates the feature
element tree structure:

Feature Element Tree for a Designated Area

The following list details special information about the elements in this tree:

636 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_FEATURE_TYPE—Specifies the feature type, should always have
the value PRO_FEAT_DSGNT_AREA.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the designated area
feature.

• PRO_E_DSGNTAREA_CREATION—Specifies the data used for creation of
the designated area. It consists of the following elements:

○ PRO_E_DSGNTAREA_CREATION_TYPE—Specifies whether the
designated area lies on a solid, a quilt, or on a plane, where the new
surface will be constructed from a chain not related to existing surfaces. It
can have one of the following values:

○ PRO_DSGNTA_CR_SOLID— Specifies that the feature is created on a
solid model.

○ PRO_DSGNTA_CR_QUILT— Specifies that the feature is created on a
selected quilt

○ PRO_DSGNTA_CR_AIR— Specifies that the feature is created on a plane
from a chain of curves not lying on any model surface

○ PRO_E_DSGNTAREA_LIE_ON— Specifies the placement reference of
the feature. If the type is PRO_DSGNTA_CR_QUILT, the feature must
include the placement quilt. If the type is PRO_DSGNTA_CR_SOLID, it
can optionally include a single surface of the solid, which will be the only
surface of the solid used in constructing the feature. If you do not specify a
single surface, all solid surfaces will be included in the designated area
feature references.

○ PRO_E_DSGNTAREA_CREATION_FLIP— Specifies the flip option to
switch between inside and outside the boundary chains, and can be set to
either TRUE or FALSE.

• PRO_E_DSGNTAREA_SETS—Specifies an array of compound elements of
the type PRO_E_DSGNTAREA_SET that contain the designated area
boundaries.

Annotations: Designated Area Feature 637

Element Details of PRO_E_DSGNTAREA_SET
PRO_E_DSGNTAREA_SETS

Each PRO_E_DSGNTAREA_SET contains the following element:
PRO_E_DSGNTAREA_SET_REFS— Specifies the set of references to be used
for creation of the designated area and consists of the following element:

• PRO_E_STD_CHAIN_HOLDER— Specifies the set of chains and can
consists of one or more of the following element:

○ PRO_E_STD_CURVE_COLLECTION_APPL— Specifies the collection
of curves to be used as reference. Each curve set must consist of a closed
loop. For more information about curve collections, refer to the chapter,
User Interface: Curve and Surface Collection.

Accessing Designated Area Properties
The following functions determine the appearance of the designated area by
controlling its boundary properties such as the line style and the appearance of the
surface.
Functions Introduced:

• ProDesignatedareaStatusGet()
• ProDesignatedareaLinestyleGet()
• ProDesignatedareaLinestyleSet()
• ProDesignatedareaColorGet()
• ProDesignatedareaColorSet()
The function ProDesignatedareaStatusGet() identifies the current
status of the geometry of the created designated area. The input value to this
function is a quilt from the designated area, or from a data sharing feature
referencing the designated area.
The output geometry can have one of the following values:

638 Creo® Parametric TOOLKITUser’s Guide

• PRO_DSGNTAREA_STATUS_ACTIVE—Specifies that the geometry is
active in the indicated model.

• PRO_DSGNTAREA_STATUS_INACTIVE—Specifies that the geometry is
inactive due to geometry features occurring after the designated area feature in
the regeneration order.

• PRO_DSGNTAREA_STATUS_OUT_OF_COPIED_GEOM—Specifies that the
parent geometry used from the trimming was cut out from the model.

The function ProDesignatedareaLinestyleGet() returns the line style
used for the boundary of the designated area. Use the function
ProDesignatedareaLinestyleSet() to set the line style.
The function ProDesignatedareaColorGet() returns the color used for
the boundary of the designated area. Use the function
ProDesignatedareaColorSet() to set the color.

Annotations: Designated Area Feature 639

27
Data Management: Windchill

Operations
Introduction... 641
Accessing a Windchill Server from a Creo Parametric Session 641
Accessing the Workspace .. 644
Workflow to Register a Server .. 646
Aliased URL.. 646
Server Operations ... 647
Utility APIs .. 662
Sample Batch Workflow... 662

Creo Parametric has the capability to be directly connected to Windchill solutions,
including Windchill ProjectLink, Pro/INTRALINK and PDMLink servers. This
access allows users to manage and control the product data seamlessly from
within Creo Parametric.
This chapter lists Creo Parametric TOOLKIT APIs that support Windchill servers
and server operations in a connected Creo Parametric session.

640 Creo® Parametric TOOLKITUser’s Guide

Introduction
The functions introduced in this chapter provide support for the basic Windchill
server operations from within Creo Parametric. Refer to the compatibility matrix
on PTC.com for information on the versions of Windchill compatible with Creo
Parametric.
With these functions, operations such as registering a Windchill server, managing
workspaces, and check in or check out of objects will be possible via Creo
Parametric TOOLKIT.
The capabilities of the APIs described in this chapter are similar to the operations
available from within the Creo Parametric client, with some restrictions. Some of
the APIs specified in this section are supported in non-interactive mode, that is,
batch mode application or asynchronous application.

Note
When Creo Parametric applications are running in asynchronous non-
graphical mode, they require login credentials before execution. If you want to
override the requirement of specifying login credentials for Creo Parametric
applications, set the environment variable PROWT_AUTH_MODE to PROWT_
AUTH_UNATTENDED.

For more information about batch mode refer to the section Using Creo
Parametric TOOLKIT to Make a Batch Creo Parametric Session on page 52 and
for asynchronous mode refer to the chapter Core: Asynchronous Mode on page
277.

Accessing a Windchill Server from a Creo
Parametric Session
Creo Parametric allows you to register Windchill servers as a connection between
the Windchill database and Creo Parametric. Although the represented Windchill
database can be from ProjectLink, Pro/INTRALINK or PDMLink, all types of
databases are represented in the same way.
You can use the following identifiers when referring to Windchill servers in Creo
Parametric TOOLKIT:

• Codebase URL—This is the root portion of the URL that is used to connect
to a Windchill server. For example, http://wcserver.company.com/Windchill.

• Server Alias—A server alias is used to refer to the server after it has been
registered. The alias is also used to construct paths to files in the server
workspaces and commonspaces. The server alias is chosen by the user or

Data Management: Windchill Operations 641

http://wcserver.company.com/Windchill

application and it need not have any direct relationship to the codebase URL.
An alias can be any normal name, such as my_alias.

Accessing Information Before Registering a Server
To start working with a Windchill server, you must establish a connection by
registering the server in Creo Parametric. The functions described in this section
enable you to connect to a Windchill server and access information related to the
server.
Functions Introduced:

• ProBrowserAuthenticate()
• ProServerClassGet()
• ProServerVersionGet()
• ProServerContextsCollect()
• ProServerWorkspacesCollect()
Use the function ProBrowserAuthenticate() to set the authentication
context using a valid username and password. A successful call to this function
allows the Creo Parametric session to register with any server accepting the
username and password combination. A successful call to this function also
ensures that an authentication dialog box does not appear during the registration
process. You can call this function any number of times to set the authentication
context for any number of Windchill servers, provided that you register the
appropriate servers or servers immediately after setting the context.
The function ProServerClassGet() returns the class of the server. The
values are:

• Windchill—Denotes a WindchillPDMLink server.
• ProjectLink—Denotes WindchillProjectLink type of servers.
This function accepts the server codebase URL as the input.
The function ProServerVersionGet() returns the version of Windchill that
is configured on the server, for example, 9.0 or 10.0. This function accepts the
server codebase URL as the input.

Note
ProServerVersionGet() works only for Windchill servers and returns
the PRO_TK_UNSUPPORTED error, if the server is not a Windchill server.

642 Creo® Parametric TOOLKITUser’s Guide

The function ProServerContextsCollect() gives a list of all the
available contexts for a specified server. A context is used to associate a
workspace with a product, project, or library. This function accepts the server
codebase URL as the input.
The function ProServerWorkspacesCollect() returns the list of available
workspaces for the specified server. The workspace data returned contains the
name of the workspace and its context. This function accepts the server codebase
URL as the input.

Registering and Activating a Server
From Creo Parametric 2.0 onward, the Creo Parametric TOOLKIT APIs call the
same underlying API as Creo Parametric to register and unregister servers. Hence,
registering the servers using Creo Parametric TOOLKIT APIs is similar to
registering the servers using the Creo Parametric user interface. Therefore, the
servers registered by Creo Parametric TOOLKIT are available in the Creo
Parametric Server Registry. The servers are also available in other locations in the
Creo Parametric user interface such as, the Folder Navigator and the embedded
browser.
Functions Introduced:

• ProServerRegister()
• ProServerActivate()
• ProServerUnregister()
The function ProServerRegister() registers the specified server with the
codebase URL. You can automate the registration of servers in interactive mode.
To preregister the servers use the standard config.fld setup. If you do not
want the servers to be preregistered in batch mode, set the environment variable
PTC_WF_ROOT to an empty directory before starting Creo Parametric.
A successful call to ProBrowserAuthenticate() with a valid username
and password is essential for ProServerRegister() to register the server
without launching the authentication dialog box. Registration of the server
establishes the server alias.
The function ProServerActivate() sets the specified server as the active
server in the Creo Parametric session.
The function ProServerUnregister() unregisters the specified server. This
is similar to Server Registry ▶ Delete through the user interface.

Accessing Information From a Registered Server
Functions Introduced:

Data Management: Windchill Operations 643

• ProServerActiveGet()
• ProServerContextGet()
• ProServerAliasGet()
• ProServersCollect()
• ProServerLocationGet()
• ProServerIsOnline()
The function ProServerActiveGet() returns the primary server.
The function ProServerContextGet() returns the active context of the
active server.
The function ProServerAliasGet() returns the alias of a server if you
specify the codebase URL.
The function ProServersCollect() returns a list of the aliases of all the
registered servers.
The function ProServerLocationGet() returns the codebase URL for the
server if you specify the alias.
The function ProServerIsOnline() checks if the specified server is online
or offline. It returns PRO_B_TRUE if the server is online.

Accessing the Workspace
For every workspace, a new distinct storage location is maintained in the user’s
personal folder on the server (server-side workspace) and on the client (client-side
workspace cache). Together, the server-side workspace and the client-side
workspace cache make up the workspace.

Workspace Data
Functions Introduced:

• ProServerworkspacedataAlloc()
• ProServerworkspacedataNameGet()
• ProServerworkspacedataContextGet()
• ProServerworkspacedataFree()
• ProServerworkspacedataProarrayFree()
The workspace data is an opaque handle that contains the name and context of the
workspace. The function ProServerWorkspacesCollect() returns an
array of workspace data. Workspace data is also required for the function
ProServerWorkspaceCreate() to create a workspace with a given name
and a specific context.

644 Creo® Parametric TOOLKITUser’s Guide

The function ProServerworkspacedataAlloc() creates a workspace data
structure to describe a workspace. The workspace contains the name of the
workspace and the context in which the workspace is stored.
The function ProServerworkspacedataNameGet() retrieves the name of
the workspace from the workspace data.
The function ProServerworkspacedataContextGet() retrieves the
context of the workspace from the workspace data.
Use the function ProServerworkspacedataFree() to free the workspace
data structure from memory.
Use the function ProServerworkspacedataProarrayFree() to free the
workspace data array from the memory.

Creating and Modifying the Workspace
Functions Introduced

• ProServerWorkspaceCreate()
• ProServerWorkspaceGet()
• ProServerWorkspaceSet()
• ProServerWorkspaceDelete()
The function ProServerWorkspaceCreate() creates and activates a new
workspace.
The function ProServerWorkspaceGet() retrieves the name of the active
workspace.
The function ProServerWorkspaceSet() sets a specified workspace as an
active workspace.
The function ProServerWorkspaceDelete() deletes the specified
workspace. The function deletes the workspace only if the following conditions
are met:

• The workspace is not the active workspace.
• The workspace does not contain any checked out objects.
Use one of the following techniques to delete an active workspace:

• Make the required workspace inactive using
ProServerWorkspaceSet() with the name of some other workspace
and then call ProServerWorkspaceDelete().

• Unregister the server using ProServerUnregister() and delete the
workspace using the codebase URL instead of the alias.

Data Management: Windchill Operations 645

Workflow to Register a Server

To Register a Server with an Existing Workspace
Perform the following steps to register a Windchill server with an existing
workspace:

1. Set the appropriate authentication context using the function
ProBrowserAuthenticate() with a valid username and password.

2. Look up the list of workspaces using the function
ProServerWorkspacesCollect(). If you already know the name of
the workspace on the server, then ignore this step.

3. Register the workspace using the function ProServerRegister() with
an existing workspace name on the server.

4. Activate the server using the function ProServerActivate().

To Register a Server with a New Workspace
Perform the following steps to register a Windchill server with a new workspace:

1. Perform steps 1 to 4 in the preceding section to register the Windchill server
with an existing workspace.

2. Use the function ProServerContextsCollect() to choose the required
context for the server.

3. Create a new workspace with the required context using the function
ProServerWorkspaceCreate(). This function automatically makes the
created workspace active.

Note
You can create a workspace only after the server is registered.

Aliased URL
An aliased URL serves as a handle to the server objects. You can access the server
objects in the commonspace (shared folders) and the workspace using the aliased
URL. An aliased URL is a unique identifier for the server object and the format is
as follows:

• Object in workspace has a prefix wtws

646 Creo® Parametric TOOLKITUser’s Guide

wtws://<server_alias>/<workspace_name>/<object_
server_name>

where <object_server_name> includes <object_
name>.<object_extension>

For example, wtws://my_server/my_workspace/abcd.prt,
wtws://my_server/my_workspace/intf_file.igs

where

<server_alias> is my_server

<workspace_name> is my_workspace
• Object in commonspace has a prefix wtpub

wtpub://<server_alias>/<folder_location>/<object_
server_name>

For example, wtpub://my_server/path/to/cs_folder/
abcd.prt

where

<server_alias> = my_server

<folder_location> = path/to/cs_folder

Note
○ <object_server_name> must be in lowercase.
○ The APIs are case-sensitive to the aliased URL.
○ <object_extension> should not contain Creo Parametric versions,

for example, .1 or .2, and so on.

Server Operations
After registering the Windchill server with Creo Parametric, you can start
accessing the data on the Windchill servers. The Creo Parametric interaction with
Windchill servers leverages the following locations:

• Commonspace (Shared folders)
• Workspace (Server-side workspace)
• Workspace local cache (Client-side workspace)

Data Management: Windchill Operations 647

• Creo Parametric session
• Local disk
The functions described in this section enable you to perform the basic server
operations. The following diagram illustrates how data is transferred among these
locations.

Save
Functions Introduced:

• ProMdlSave()
The function ProMdlSave() stores the object from the session in the local
workspace cache, when a server is active.

648 Creo® Parametric TOOLKITUser’s Guide

Upload
An upload transfers Creo Parametric files and any other dependencies from the
local workspace cache to the server-side workspace.
Function Introduced:

• ProServerObjectsUpload()
The function ProServerObjectsUpload() uploads the specified object to
the workspace. The object to be uploaded must be present in the current Creo
Parametric session. Additionally, ensure that you save the object using the
function ProMdlSave() before you upload it.

Note
To upload all the objects to the workspace without retrieving them in the
current Creo Parametric session, use the function
ProServerObjectsCheckin() with the checkin option upload_only set
to PRO_B_TRUE.

CheckIn
After you have finished working on objects in your workspace, you can share the
design changes with other users. The checkin operation copies the information and
files associated with all changed objects from the workspace to the Windchill
database.
Functions Introduced

• ProServerObjectsCheckin()
• ProServercheckinoptsAlloc()
• ProServercheckinoptsDeflocationSet()
• ProServercheckinoptsLocationAdd()
• ProServercheckinoptsBaselineSet()
• ProServercheckinoptsKeepcheckedoutSet()
• ProServercheckinoptsAutoresolveSet()
• ProServercheckinoptsUploadonlySet()
• ProServercheckinoptsFree()

Data Management: Windchill Operations 649

The function ProServerObjectsCheckin() checks in or uploads an object
to the database. The object to be checked in or uploaded must be present in the
current Creo Parametric session. Changes made to the object are not included
unless you save the object to the workspace using the function ProMdlSave()
before it is checked in or uploaded.

Note
ProServerObjectsCheckin() checks in the target object by default. To
only upload the object, set the checkin option upload_only to PRO_B_TRUE.

If you pass NULL as the value of the input argument options, the checkin
operation is similar to the Auto Check In option in Creo Parametric. For more
details on Auto Check In, refer to the online help for Creo Parametric.
By using an appropriately constructed options argument, you can control the
checkin or upload operation. The APIs described in this section help in
constructing the options argument.
The function ProServercheckinoptsAlloc() allocates a set of checkin or
upload options for the object. These options are as follows:

• Default location—Specifies the default folder_location on the server for the
automatic checkin operation. Use the function
ProServercheckinoptsDeflocationSet() to set this location.

• Server location—Specifies the folder_location on the server in which an
object will be checked in or uploaded. Use the function
ProServercheckinoptsLocationAdd() to set this location.

• Baseline—Specifies the baseline information for the objects upon checkin.
This information does not apply to upload operations. Use the function
ProServercheckinoptsBaselineSet() to create a new baseline.
The baseline information for a checkin operation is as follows:

○ baseline_name—Specifies the name of the baseline.
○ baseline_number—Specifies the number of the baseline.

The default format for the baseline name and baseline number is Username
+ time (GMT) in milliseconds.

○ baseline_location—Specifies the location of the baseline.
○ baseline_lifecycle—Specifies the name of the lifecycle.

• keep_checked_out—If this option is set to PRO_B_TRUE, then the contents of
the selected object are checked in to the Windchill server and automatically
checked out again for further modification. The default value is PRO_B_
FALSE. This option does not apply to upload operations. Use the function

650 Creo® Parametric TOOLKITUser’s Guide

ProServercheckinoptsKeepcheckedoutSet() to set the keep_
checked_out flag.

• autoresolve—Specifies the option used to automatically resolve objects that
have not been completely checked in or uploaded to the database. The
autoresolve options specified by the enumerated type
ProServerAutoresolveOption are as follows:

○ PRO_SERVER_DONT_AUTORESOLVE—Model references missing from
the workspace are not automatically resolved. This may result in a conflict
upon checkin. This option is used by default.

○ PRO_SERVER_AUTORESOLVE_IGNORE—Missing references are
automatically resolved by ignoring them.

○ SERVER_AUTORESOLVE_UPDATE_IGNORE—Missing references are
automatically resolved by updating them in the database and ignoring them
if not found.

Use the function ProServercheckinoptsAutoresolveSet() to
assign the appropriate autoresolve option.

• upload_only—Specifies the option to fully check in the target object or only
upload the object to the server. Set this option to PRO_B_TRUE to only upload
and not check in the target objects and to PRO_B_FALSE to upload and check
in the objects. By default, this option is PRO_B_FALSE, if not explicitly set,
to cause a checkin. Use the function
ProServercheckinoptsUploadonlySet() to set the upload_only
flag.

Use the function ProServercheckinoptsFree() to free the memory of the
checkin options.

Notification Functions
A Creo Parametric TOOLKIT notification is called before you attempt to check in
a model through the Creo Parametric user interface. The notification functions are
established in a session using the function ProNotificationSet().
Function Introduced:

• ProCheckinUIPreAction()
The notification function ProCheckinUIPreAction() is called when you
select File>Auto Check In, File>Custom Check In, or the corresponding options on
the Model Tree menu in the Creo Parametric user interface. It is called before any
action is performed by the corresponding menu commands. This function is
available by calling ProNotificationSet() with the value of the notify
type as PRO_CHECKIN_UI_PRE.

Data Management: Windchill Operations 651

Retrieval
Standard Creo Parametric TOOLKIT provides several functions that are capable
of retrieving models. When using these functions with Windchill servers,
remember that these functions do not check out the object to allow modifications.
Functions Introduced:

• ProMdlnameRetrieve()
• ProMdlFiletypeLoad()
The function ProMdlnameRetrieve() loads an object into a session given its
name and type. This function searches for the object in the active workspace, the
local directory, and any other paths specified by the configuration option
search_path.
The function ProMdlFiletypeLoad() loads an object into session given its
path. The path can be a disk path, a workspace path, or a commonspace path.
Refer to the section Aliased URL on page 646 for examples of these types of
paths.

Checkout and Download
To modify an object from the commonspace, you must check out the object. The
process of checking out communicates your intention to modify a design to the
Windchill server. The object in the database is locked, so that other users can
obtain read-only copies of the object, and are prevented from modifying the object
while you have it checked out.
Checkout is often accompanied by a download action, where the objects are
brought from the server-side workspace to the local workspace cache. In Creo
Parametric TOOLKIT, both operations are covered by the same set of functions.
Functions Introduced:

• ProServerObjectsCheckout()
• ProServerMultiobjectsCheckout()
• ProServercheckoutoptsAlloc()
• ProServercheckoutoptsFree()
• ProServercheckoutoptsDependencySet()
• ProServercheckoutoptsIncludeinstancesSet()
• ProServercheckoutoptsVersionSet()
• ProServercheckoutoptsDownloadSet()
• ProServercheckoutoptsReadonlySet()

652 Creo® Parametric TOOLKITUser’s Guide

The function ProServerObjectsCheckout() checks out and optionally
downloads the object to the workspace based on the configuration specifications
of the workspace. It takes the following two potential identifiers for the model to
checkout:

• ProMdl handle—Specifies the object to be checked out. This is applicable if
the model has already been retrieved without checking out.

• Aliased URL—Specifies the commonspace path of the object.
Use the function ProServerMultiobjectsCheckout() to check out and
download a ProArray of objects to the workspace based on the configuration
specifications of the workspace.

Note
Creo Parametric TOOLKIT functions do not support the AS_STORED
configuration.

If you specify the value of the input argument checkout as PRO_B_TRUE in the
above functions, the selected object is checked out. Otherwise, the object is
downloaded without being checked out. The download action enables you to bring
read-only copies of objects into your workspace. This allows you to examine the
object without placing a lock on it.
If you pass NULL as the value of the input argument options in the above
functions, then the default Creo Parametric checkout rules apply.
The function ProServercheckoutoptsAlloc() allocates a set of checkout
options for the object. These options are as follows:

• dependency—Specifies the dependency rule used while checking out
dependents of the object selected for checkout. The function
ProServercheckoutoptsDependencySet() sets the dependency
rule for checkout. The types of dependencies specified by the enumerated type
ProServerDependency are as follows:

○ PRO_SERVER_DEPENDENCY_ALL—All the objects that are dependent
on the selected object are downloaded, that is, they are added to the
workspace.

○ PRO_SERVER_DEPENDENCY_REQUIRED—All the objects that are
required to successfully retrieve the selected object in the CAD application
are downloaded, that is, they are added to workspace.

○ PRO_SERVER_DEPENDENCY_NONE—None of the dependent objects

Data Management: Windchill Operations 653

from the selected object are downloaded, that is, they are not added to
workspace.

• include_option—Specifies the rule for including instances from the family
table during checkout. The function
ProServercheckoutoptsIncludeinstancesSet() sets the flag to
include instances during checkout. The type of instances specified by the
enumerated type ProServerInclude are as follows:

○ PRO_SERVER_INCLUDE_ALL—All the instances of the selected object
are checked out.

○ PRO_SERVER_INCLUDE_SELECTED—The application selects the
instance members from the family table to be included during checkout.

○ PRO_SERVER_INCLUDE_NONE—No additional instances from the
family table are added to the object list.

• version—Specifies the version of the object that is checked out or downloaded
to the workspace. If version is not set, the object is checked out according to
the current workspace configuration. The function
ProServercheckoutoptsVersionSet() sets the version of the
object.

• download—Specifies the checkout type as download or link. The value
download specifies that the object content is downloaded and checked out,
while link specifies that only the metadata is downloaded and checked out.
Use the function ProServercheckoutoptsDownloadSet() to set this
option.

• readonly—Downloads the file without checking out the file. To use this option
you must set the checkout argument of the function
ProServerObjectsCheckout() as PRO_B_FALSE. Use the function
ProServercheckoutoptsReadonlySet() to set the readonly flag to
PRO_B_TRUE.

Use the function ProServercheckoutoptsFree() to free the memory of
the checkout options.
The following truth table explains the dependencies of the different control factors
in ProServerObjectsCheckout() and the effect of different combinations
on the end result.
Argument checkout
in ProServerObjects
Checkout()

ProServer
checkoutopts
DownloadSet()

ProServer
checkoutopts
ReadonlySet()

Result

PRO_B_TRUE PRO_B_TRUE NA Object is checked out and its
content is downloaded.

PRO_B_TRUE PRO_B_FALSE NA Object is checked out but content is
not downloaded.

654 Creo® Parametric TOOLKITUser’s Guide

Argument checkout
in ProServerObjects
Checkout()

ProServer
checkoutopts
DownloadSet()

ProServer
checkoutopts
ReadonlySet()

Result

PRO_B_FALSE NA PRO_B_TRUE Object is downloaded without
checkout and as read-only.

PRO_B_FALSE NA PRO_B_FALSE This combination is invalid and is
not supported.

The function ProServercheckoutoptsReadonlySet() can be used to
download objects without checking them out. To download objects, you must set
the checkout argument of the function ProServerObjectsCheckout() as
PRO_B_FALSE before using ProServercheckoutoptsReadonlySet().
The following table describes the different values that can be specified for the
check out options for the functions
ProServercheckoutoptsReadonlySet() and
ProServerObjectsCheckout(). It also describes the actions that can be
performed on the downloaded or checked out object from the Creo Parametric
user interface or using the Creo Parametric TOOLKIT applications.
The following table explains the dependencies of the different control factors on
ProServercheckoutoptsReadonlySet():
Argument
readonly in
ProServer-
checkoutopts-
ReadonlySet()

Argument
checkout in
ProServerOb-
jectsCheck-
out()

State of Object
Content

Options
Available in
the Creo
Parametric
User Interface

Actions that can be
Performed Using Creo
Parametric TOOLKIT
Applications

PRO_B_TRUE PRO_B_FALSE Downloaded but
not checked out

The Conflicts
dialog box allows
you to perform
one of the
following
operations on the
object: check out,
revise and check
out, continue
with
modifications, or
make the object
read only.

Refer to the Creo
Parametric Help
for more
information on
resolving
conflicts.

Check out the object and
modify it

PRO_B_FALSE PRO_B_FALSE Checked out The object can be
modified.

The object can be modified.

Data Management: Windchill Operations 655

Argument
readonly in
ProServer-
checkoutopts-
ReadonlySet()

Argument
checkout in
ProServerOb-
jectsCheck-
out()

State of Object
Content

Options
Available in
the Creo
Parametric
User Interface

Actions that can be
Performed Using Creo
Parametric TOOLKIT
Applications

PRO_B_TRUE PRO_B_TRUE Checked out The object can be
modified.

The object can be modified.

No option set PRO_B_FALSE Downloaded but
not checked out

The Conflicts
dialog box allows
you to perform
one of the
following
operations on the
object: check out,
revise and check
out, continue
with
modifications, or
make the object
read only.

Check out the object and
modify it

Undo Checkout
Function Introduced:

• ProServerObjectsUndocheckout()
Use the function ProServerObjectsUndocheckout() to undo a checkout
of the specified object. When you undo a checkout, the changes that you have
made to the content and metadata of the object are discarded and the content, as
stored in the server, is downloaded to the workspace. This function is applicable
only for the model in the active Creo Parametric session.

Import and Export
Creo Parametric TOOLKIT provides you with the capability of transferring
specified objects to and from a workspace. Import and export operations must take
place in a session with no models.
Functions Introduced:

• ProCurrentWorkspaceImport()
• ProCurrentWorkspaceExport()
• ProCurrentWorkspaceImpexMessagesGet()
• ProWsimpexmessageDataGet()
• ProWsimpexmessageArrayFree()
• ProWsexportSecondarycontentoptionSet()

656 Creo® Parametric TOOLKITUser’s Guide

The function ProCurrentWorkspaceImport() imports specified objects
from disk to the current workspace in a linked session of Creo Parametric.
The function ProCurrentWorkspaceExport() exports the specified
objects from the current workspace to a location on disk in a linked session of
Creo Parametric.
Both ProCurrentWorkspaceImport() and
ProCurrentWorkspaceExport() allow you to specify a dependency
criterion to process the following items:

• All external dependencies
• Only required dependencies
• No external dependencies
All warnings, conflicts, or errors generated during import or export operations are
logged in the proimpex.errors file created in the Creo Parametric working
directory. Alternatively, you can obtain this information using the function
ProCurrentWorkspaceImpexMessagesGet(). This function returns a
ProArray of messages generated by the last call to
ProCurrentWorkspaceImport() or
ProCurrentWorkspaceExport().
The function ProWsimpexmessageDataGet() extracts the contents of the
message generated by ProCurrentWorkspaceImport() or
ProCurrentWorkspaceExport(). The message contains the following
items:

• type—Specifies the severity of the message in the form of the enumerated type
ProWSImpexMessageType. The severity is one of the following types:

○ PRO_WSIMPEX_MSG_INFO—Specifies an informational type of
message.

○ PRO_WSIMPEX_MSG_WARNING—Specifies a low severity problem that
can be resolved according to the configured rules.

○ PRO_WSIMPEX_MSG_CONFLICT—Specifies a conflict that can be
overridden.

○ PRO_WSIMPEX_MSG_ERROR—Specifies a conflict that cannot be
overridden or a serious problem that prevents processing of an object.

• object—Specifies the object name or the name of the object path described in
the message.

• description—Specifies the description of the problem or the message
information.

• resolution—Specifies the resolution applied to resolve a conflict that can be

Data Management: Windchill Operations 657

overridden. This is applicable when the message is of the type PRO_
WSIMPEX_MSG_CONFLICT.

• succeeded—Determines whether the resolution succeeded or not. This is
applicable when the message is of the type PRO_WSIMPEX_MSG_
CONFLICT.

Use the function ProWsimpexmessageArrayFree() to free the memory
allocated to the array of messages returned by
ProCurrentWorkspaceImpexMessagesGet().
The function ProWsexportSecondarycontentoptionSet() sets the
ProBoolean option that controls the export of secondary contents. If this option
is set to PRO_B_TRUE, secondary contents are exported along with the primary
Creo Parametric model files. By default, it is PRO_B_TRUE.

File Copy
Creo Parametric TOOLKIT provides you with the capability of copying a file
from the workspace or target folder to a location on the disk and vice-versa.
Functions Introduced:

• ProFileCopyToWS()
• ProFileCopyFromWS()
• ProFileCopyFromWSDocument()
• ProFileselectionDocNameGet()
• ProDocumentFileContentsRead()
Use the function ProFileCopyToWS() to copy a file from disk to the
workspace. The file can optionally be added as secondary content to a given
workspace file. If the viewable file is added as secondary content, a dependency is
created between the Creo Parametric model and the viewable file.
Use the function ProFileCopyFromWS() to copy a file from the workspace to
a location on disk.

658 Creo® Parametric TOOLKITUser’s Guide

Note
When importing or exporting Creo Parametric models, PTC recommends that
you use ProCurrentWorkspaceImport() and
ProCurrentWorkspaceExport(), respectively, to perform the
operation. Functions that copy individual files do not traverse Creo Parametric
model dependencies, and therefore do not copy a fully retrievable set of
models at the same time.

Additionally, only the functions ProCurrentWorkspaceImport() and
ProCurrentWorkspaceExport() provide full metadata exchange and
support. That means ProCurrentWorkspaceImport() can
communicate all the Creo Parametric designated parameters, dependencies,
and family table information to a PDM system while
ProCurrentWorkspaceExport() can update exported Creo Parametric
data with PDM system changes to designated and system parameters,
dependencies, and family table information. Hence PTC recommends the use
of ProFileCopyToWS() and ProFileCopyFromWS() to process only
non-Creo Parametric files.

The function ProFileCopyFromWSDocument() copies a primary or
secondary file from the workspace to the specified location on disk. The input
arguments are:
• source_file—Specifies the path to the primary or secondary file. The path

must be specified as wtws://<path to the file>.

Use the functions such as, ProFileMdlnameOpen() and
ProFileMdlfiletypeOpen(), to get the path to the files.

• document_name—Specifies the name of the primary file, which is associated
with the secondary file specified in the argument source_file. Use the function
ProFileselectionDocNameGet() to get the name of the primary file
for a secondary file.

In the argument source_file, if a primary file is specified, then pass the
argument document_name as NULL.

• target_directory—Specifies a path on the local disk where the file must be
copied.

The function ProFileselectionDocNameGet() returns the name of the
primary file for the selected secondary file. The secondary files are selected in the
file open functions. The functions such as, ProFileOpen(),
ProFileMdlnameOpen(), ProFileMdlfiletypeOpen() and so on, are
used to open the dialog box where you can browse and select a secondary file. The
function ProFileselectionDocNameGet() returns the name of the

Data Management: Windchill Operations 659

primary file for the last selected secondary file in the file open functions. If you
select a primary file in these file open functions, then the function
ProFileselectionDocNameGet() returns the error PRO_TK_E_NOT_
FOUND.
The function ProDocumentFileContentsRead() reads the contents of the
specified file. The file can be located on the local disk or Windchill. The function
returns a ProArray of characters. Declare the output variable as char* and
typecast it as ProArray* when you pass it to the API. Use the function
ProArrayFree() to free the ProArray.

Note
The function ProDocumentFileContentsRead() is not supported for
CAD models.

Server Object Status
Function Introduced:

• ProServerObjectIsModified()
The function ProServerObjectIsModified() verifies the current status of
the object in the workspace as well as in the local workspace cache. The status of
the object is as follows:

• checkout_status—Specifies whether the object is checked out for
modification. The value PRO_B_TRUE indicates that the specified object is
checked out to the active workspace.

The value PRO_B_FALSE indicates one of the following statuses:

○ The specified object is not checked out
○ The specified object is only uploaded to the workspace, but was never

checked in
○ The specified object is only saved to the local workspace cache, but was

never uploaded
• modifiedInWS—Specifies whether the object has been modified in the

workspace since checkout. The value of this argument is PRO_B_FALSE if
the newly created object has not been uploaded.

• modifiedLocally—Specifies whether the object has been modified in the local
workspace cache. The value of this argument is PRO_B_TRUE if the object
has been saved in the local workspace cache. The argument returns PRO_B_

660 Creo® Parametric TOOLKITUser’s Guide

FALSE if the object has not been saved after modifying it in the local
workspace cache.

Note
The function ProServerObjectStatusGet() is deprecated. Use the
function ProServerObjectIsModified() instead.

Delete Objects
Function Introduced:

• ProServerObjectsRemove()
The function ProServerObjectsRemove() deletes the array of objects from
the workspace. When passed with the mode_names array as NULL, this function
removes all the objects in the active workspace.

Conflicts During Server Operations
Functions Introduced:

• ProServerconflictsDescriptionGet()
• ProServerconflictsFree()
Conflict objects are provided to capture the error condition while performing the
following server operations using the specified APIs:
Operation API Error Object
Checkin an object or workspace ProServerObjectsCheckin

()
ProServerCheckinCon
flicts

Checkout an object ProServerObjects
Checkout()

ProServerCheckoutCon
flicts

Undo checkout of an object ProServerObjects
Undocheckout()

ProServerUndoCheckout
Conflicts

Upload object ProServerObjectsUp
load()

ProServerUploadCon
flicts

Download object ProServerObjects
Checkout() (with download as
PRO_B_TRUE)

ProServerCheckoutCon
flicts

Delete workspace ProServerWorkspaceDe
lete()

ProServerDeleteCon
flicts

Remove object ProServerObjectsRe
move()

ProServerRemoveCon
flicts

These APIs return a common status PRO_TK_CHECKOUT_CONFLICT and a
conflict object ProServerConflicts. The conflict object is used to get more
details about the error condition.

Data Management: Windchill Operations 661

Use the function ProServerConflictsDescriptionGet() to extract
details of the error condition. This description is similar to the description
displayed by the Creo Parametric HTML User Interface in the conflict report.
The function ProServerconflictsFree() frees the memory of the conflict
structure returned by the functions.

Utility APIs
The functions specified in this section enable you to obtain the handle to the
server objects to access them. The handle may be the Aliased URL or the model
name of the http URL. These utilities enable the conversion of one type of handle
to the other type.
Functions Introduced:

• ProServerModelNameToAliasedURL()
• ProServerAliasedURLToModelName()
• ProServerAliasedURLToURL()
The function ProServerModelNameToAliasedURL() enables you to
search for a server object by its name. Specify the complete file name of the object
as the input, for example, test_part.prt. The function returns the aliased
URL for a model on the server. For more information regarding the aliased URL,
refer to the section Aliased URL on page 646. During the search operation, the
workspace takes precedence over the shared space.
You can also use this function to search for files that are not in the Creo
Parametric format. For example, my_text.txt, prodev.dat, intf_
file.stp, and so on.
The function ProServerAliasedURLToModelName() returns the name of
the object from the given aliased URL on the server.
The function ProServerAliaseURLToURL() converts an aliased URL to a
standard URL to the objects on the server.
For example, wtws://my_alias/Wildfire/abcd.prt is converted to an
appropriate URL on the server as http://server.mycompany.com/Windchill.

Sample Batch Workflow
A typical workflow using the Windchill APIs for an asynchronous non-graphical
application is as follows:

662 Creo® Parametric TOOLKITUser’s Guide

http://server.mycompany.com/Windchill

1. Start a Creo Parametric session using the function
ProEngineerConnectionStart().

2. Authenticate the browser using the function
ProBrowserAuthenticate().

3. Register the server with the new workspace using the function
ProServerRegister().

4. Activate the server using the function ProServerActivate().
5. Check out and retrieve the model from the vault URL using the function

ProServerObjectsCheckout() followed by
ProMdlnameRetrieve().

6. Modify the model according to the application logic.
7. Save the model to the workspace using the function ProMdlSave().
8. Check in the modified model back to the server using the function

ProServerObjectsCheckin().
9. After processing all models, unregister from the server using the function

ProServerUnregister().
10. Delete the workspace using ProServerWorkspaceDelete().
11. Stop Creo Parametric using the function ProEngineerEnd().

Data Management: Windchill Operations 663

28
Interface: Data Exchange

Exporting Information Files... 665
Exporting 2D Models ... 667
Automatic Printing of 3D Models... 672
Exporting 3D Models ... 678
Shrinkwrap Export ... 694
Exporting to PDF and U3D... 698
Importing Parameter Files .. 706
Importing 2D Models ... 708
Importing 3D Models ... 709
Validation Score for Imports ... 718

This chapter describes various methods of importing and exporting files in Creo
Parametric TOOLKIT.

664 Creo® Parametric TOOLKITUser’s Guide

Exporting Information Files
Functions Introduced:

• ProOutputFileMdlnameWrite()
The function ProOutputFileMdlnameWrite() is used to create files of
several types from data in Creo Parametric. This function operates only on the
current object. The file types are declared in ProUtil.h. The export formats
and their type constants are as listed in the following table.
Export Format Creo Parametric TOOLKIT

function
Type Constant

Bills of material ProOutputFileMdlname
Write()

PRO_BOM_FILE

Drawing setup file PRO_DWG_SETUP_FILE

Feature identifier PRO_FEAT_INFO, PRO_FEAT_
INFO

Material file (currently assigned
material)

PRO_MATERIAL_FILE

CL Data output, NC Sequence file PRO_MFG_FEAT_CL

CL Data operation file PRO_MFG_OPER_CL

Information on Creo Parametric
Objects

PRO_MODEL_INFO

Program file PRO_PROGRAM_FILE

Cable Parameters file PRO_CABLE_PARAMS_FILE

Connector Parameters file PRO_CONNECTOR_PARAMS_FILE

Spool file PRO_SPOOL_FILE

Difference Report file PRO_DIFF_REPORT_FILE

IGES file PRO_IGES_FILE

DXF file PRO_DXF_FILE

DWG file PRO_DWG_FILE

Render file PRO_RENDER_FILE

SLA ASCII file PRO_SLA_ASCII_FILE

SLA Binary file PRO_SLA_BINARY_FILE

INVENTOR file PRO_INVENTOR_FILE

CATIA facets file PRO_CATIAFACETS_FILE

IGES 3D file PRO_IGES_3D_FILE

STEP file PRO_STEP_FILE

VDA file PRO_VDA_FILE

FIAT file PRO_FIAT_FILE

CATIA DIRECT file PRO_CATIA_DIRECT_FILE

ACIS file PRO_ACIS_FILE

CGM file PRO_CGM_FILE

The option PRO_RELATION_FILE creates a file that contains a list of all the
model relations and parameters.

Interface: Data Exchange 665

To access parameters on the connector entry ports, you must call the
functionProOutputFileMdlnameWrite() with the option PRO_
CONNECTOR_PARAMS_FILE. The function writes a text file to disk. This text
file is in the same format as the file that you edit when using the Creo Parametric
command Connector ▶ Modify Parameters ▶ Mod Param.
To generate and export a difference report to text or CSV format, call the function
ProOutputFileMdlnameWrite() with the option PRO_DIFF_REPORT_
FILE.

Note
As this report is generated and exported from the Creo Parametric embedded
browser, using this output type will cause Creo Parametric to show the
difference report in the browser.

For some of the options used with ProOutputFileMdlnameWrite(), you
must provide some more information, using the last four arguments. The
following list shows the arguments to be set and when:

• For PRO_RENDER_FILE, PRO_INVENTOR_FILE, PRO_CATIAFACETS_
FILE, PRO_SLA_ASCII_FILE, and PRO_SLA_BINARY_FILE, set the
following argument:

○ arg1—The name of the coordinate system. If this NULL, the function uses
the default coordinate system.

• For PRO_SPOOL_FILE, set arg1 to the spool name.
• For PRO_FEAT_INFO, PRO_MFG_FEAT_CL, and PRO_MFG_OPER_CL,

set the following argument:

○ arg2—The integer identifier of the feature.
• For PRO_IGES_3D_FILE, PRO_STEP_FILE, PRO_VDA_FILE, PRO_

FIAT_FILE, PRO_CATIA_DIRECT_FILE, or PRO_ACIS_FILE, set the
following argument:

○ arg2—The integer pointer to an odd or even number.
• For PRO_CGM_FILE, set the following arguments:

○ arg2—Represents the integer pointer to the export type PRO_EXPORT_
CGM_CLEAR_TEXT or PRO_EXPORT_CGM_MIL_SPEC.

○ arg3—Represents the integer pointer to the scalar type PRO_EXPORT_
CGM_ABSTRACT or PRO_EXPORT_CGM_METRIC.

• For PRO_CONNECTOR_PARAMS, set the following arguments:

666 Creo® Parametric TOOLKITUser’s Guide

○ arg1—Represents the integer pointer to ProIdTable. ProIdTable is
an integer array of component identifiers.

○ arg2—Represents the integer pointer to the number of component
identifiers.

• For PRO_CABLE_PARAMS_FILE, set the following arguments:

○ arg1—Represents a ProSolid (part pointer).
○ arg2—Represents the cable name.

• For PRO_DIFF_REPORT_FILE, set the following argument:

○ arg4—Represents the model to which the input model is compared to
generate the difference report.

• For PRO_RELATION_FILE, set the following argument:

○ arg2—Represents the individual feature relations. It is an integer pointer to
the feature identifier that gets the relations contained in a feature. If this is
NULL you get the relations contained in the model.

Exporting 2D Models
Functions Introduced:

• Pro2dExport()
• Pro2dExportdataAlloc()
• Pro2dExportdataFree()
• Pro2dExportdataSheetoptionSet()
• Pro2dExportdataSheetsSet()
• Pro2dExportdataModelspacesheetSet()
• ProProductviewexportoptsAlloc()
• ProProductviewexportoptsFree()
• ProProductviewexportoptsFormatSet()
• ProProductviewFormattedMdlnameExport()
• ProPrintPrinterOptionsGet()
• ProPrintMdlOptionsGet()
• ProPrintPlacementOptionsGet()
• ProPrintPCFOptionsGet()
• ProPrintExecute()

Interface: Data Exchange 667

Export Format Creo Parametric TOOLKIT
Functions

Type Constant

STEP Pro2dExport() PRO_STEP_FILE

IGES PRO_IGES_FILE

MEDUSA PRO_MEDUSA_FILE

DXF PRO_DXF_FILE

DWG PRO_DWG_FILE

CGM PRO_CGM_FILE

TIFF PRO_SNAP_TIFF_FILE

Stheno PRO_STHENO_FILE

DXF ProOutputFileMdlnameWrite() PRO_DXF_FILE

DWG PRO_DWG_FILE

CGM file PRO_CGM_FILE

PVS file, Plot file ProProductviewFormatted
Export()

PRO_PV_FORMAT_PVS

ED file, Plot file PRO_PV_FORMAT_ED

EDZ file PRO_PV_FORMAT_EDZ

PVZ file PRO_PV_FORMAT_PVZ

Plot file ProPrintExecute() N/A

The function Pro2dExport() exports existing two-dimensional models into a
single object file. The exported model can be a single drawing, notebook or
diagram, or multiple sheets of a drawing. It supports the STEP, SET, IGES,
Medusa, DXF, CGM, TIFF, Stheno,and DWG formats. The interface file obtained
using the function Pro2dExport() is controlled by one of its input argument
data, an instance of the Pro2dExportdata object. Note that the data argument
is optional; you do not have to specify it when exporting only the current sheet of
the 2D model. Additionally, several Creo Parametric configuration options related
to entity type export options can affect the results of the export operation. Refer to
the Creo Parametric Online Help for details on the configuration options.

Example 1 Publishing a Drawing
The sample code in UgDwgPublishContext.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_dwg
shows how to publish a drawing in the given context.
The functions Pro2dExportdataAlloc() and
Pro2dExportdataFree() allocate and free the memory for the
Pro2dExportdata object containing the 2D export options and flags.
The function Pro2dExportdataSheetoptionSet() assigns the sheet
export option for export to the specified 2D format. The sheet export option can
take one of the following values:

668 Creo® Parametric TOOLKITUser’s Guide

• PRO2DEXPORT_CURRENT_TO_MODEL_SPACE—Specifies that only the
drawing’s current sheet will be exported as model space into the specified 2D
format. This is the default value.

• PRO2DEXPORT_CURRENT_TO_PAPER_SPACE—Specifies that only the
drawing’s current sheet will be exported as paper space into the specified 2D
format. This value is only available for formats that support the concept of
model space and paper space, for example, DXF and DWG.

• PRO2DEXPORT_ALL—Specifies that all the sheets in a drawing will be
exported into the specified 2D format as paper space, if applicable to the
format type.

• PRO2DEXPORT_SELECTED—Specifies that selected sheets in a drawing
will be exported as paper space and one sheet will be exported as model space.

The function Pro2dExportdataSheetsSet() assigns the sheet numbers to
be exported as paper space to the specified 2D export format file. Use this
function only if the sheet export option is set to PRO2DEXPORT_SELECTED.
The function Pro2dExportdataModelspacesheetSet() assigns the
sheet number to be exported as model space. Use this function only if the export
format supports the concept of model space and paper space, and if the sheet
export option is set to PRO2DEXPORT_SELECTED.
The functions ProProductviewexportoptsAlloc() and
ProProductviewexportoptsFree() allocate and free the memory
assigned to the ProProductviewExportOptions object containing the
Creo View export formats.
The function ProProductviewexportoptsFormatSet() assigns the flag
specifying the Creo View export format.
The function ProProductviewFormattedMdlnameExport() exports a
drawing to one of the following user-defined Creo View formats:

• PRO_PV_FORMAT_PVS

• PRO_PV_FORMAT_ED

• PRO_PV_FORMAT_EDZ

• PRO_PV_FORMAT_PVZ

Use the function ProPrintPrinterOptionsGet() to get the options for a
specified printer. Specify the printer type as the input argument for this function.
The supported printer types are:

• POSTSCRIPT—Generic Postscript
• COLORPOSTSC—Color Postscript
• MS_PRINT_MGR—MS Print Manager

Interface: Data Exchange 669

Note
For a list of all supported printers, please refer to the Add Printer Type list
in the Printer Configuration dialog box of Creo Parametric.

The function gets the initialized printer options. The options include the file
related options, print command options and printer specific options as follows:

• File Related:

○ save_to_file—Saves a plot to a file.
○ save_method—Specifies if the plot is to be appended to a file, saved to a

single file, or saved to multiple files.
○ filename—Specifies the name of the file to which the plot is saved.
○ delete_after—Deletes the plot file after printing.

• Print Command:

○ send_to_printer—Sends the plot directly to the printer.
○ print_command—Specifies the complete command that you want to use

for printing.
○ pen_table—Specifies the complete path to the file containing the pen table.
○ paper_size—Specifies the size of the paper to be printed.
○ quantity—Specifies the number of copies to be printed.

• Printer Specific:

○ sw_handshake—Specifies the type of the handshake initialization
sequence. Specify the value as True to set the initialization sequence to
Software and as False to set it to Hardware.

Note
Consult your system administrator for more information on handshaking.

○ roll_media—Specifies whether to use roll-media or cut-sheet.
○ use_ttf—Specifies whether to use TrueType font or stroked text.
○ slew—Specifies the speed of the pen in centimeters per second in X and Y

direction.
○ rotate_plot—Specifies that the plot is to be rotated by 90 degrees.

670 Creo® Parametric TOOLKITUser’s Guide

Use the function ProPrintMdlOptionsGet() to get the initialized model
options for the model to be printed. The available model options are:

• mdl—Specifies the model to be printed.
• quality—Determines the quality of the model to be printed. It checks for no

line, no overlap, simple overlap, and complex overlap.
The model options specific to drawing objects are:

• use_drawing_size—Overrides the size of the paper specified in the Printer
options.

• draw_format—Prints the drawing format used.
• segmented—If true, that is the value is set to a boolean of 1, the printer prints

drawing full size, but in segments that are compatible with the selected paper
size. This option is available only if you are plotting a single page.

• layer_only—Prints the specified layer only.
• layer_name—Prints the name of the layer.
• sheets—Prints the current sheet, all sheets, or selected sheets.
• range—An array of two integers specifying the start and end sheet numbers.
The model option specific to solid objects is:

• use_solid_scale—Prints using the scale used in the solid model.
Use the function ProPrintPlacementOptionsGet() to get the current
print placement options such as print scale, offset, zoom, and so on. The options
available for the object placement are:

• Placement Options:

○ scale—Specifies the scale used for the selected plot.
○ offset—An array of two doubles representing the offset from the lower-left

corner of the plot.
○ keep_panzoom—Maintains the pan and zoom values of a window.

• Clipping Options:

○ clip_plot—Specifies whether you want to clip the plot.
○ shift_to_ll_corner—Shifts the clip area to the lower-left corner of the plot
○ clip_area—Two dimensional array of four double representing the area

that is clipped. The range of the values of this option is 0.0 through 1.0.
• Label Options:

○ place_label—Specifies whether you want to place the label on the plot.
○ label_height—Height of the label in inches.

Interface: Data Exchange 671

Use the function ProPrintPCFOptionsGet() to get the print options from a
specified Plotter Configuration File. Specify the name of the plotter configuration
file and the name of the model to be printed. The function gets the printer options,
model options and placement options.
Use the function ProPrintExecute() to print a Creo Parametric window
using the specified printer options, model options and placement options. The
drawing must be displayed in a window to be successfully printed.

Automatic Printing of 3D Models
Creo Parametric TOOLKIT provides the capability of automatically creating and
plotting a drawing of a solid model. The Creo Parametric TOOLKIT application
needs only to supply instructions for the print activity, and Creo Parametric will
automatically create the drawing, print it, and then discard it.
The methods listed here are analogous to the command File ▶ Print ▶ Quick
Drawing in Creo Parametric’s user interface.
Functions Introduced:

• ProQuickprintoptionsAlloc()
• ProQuickprintoptionsFree()
• ProQuickprintoptionsLayouttypeSet()
• ProQuickprintoptionsOrientationSet()
• ProQuickprintoptionsSizeSet()
• ProQuickprintoptionsViewAdd()
• ProQuickprintoptionsThreeviewlayoutSet()
• ProQuickprintoptionsProjectionsSet()
• ProQuickprintoptionsTemplateSet()
• ProQuickprintoptionsPrintFlatToScreenAnnotsSet()
• ProQuickprintExecute()
The function ProQuickprintoptionsAlloc() allocates a quick drawing
options handle.
Use the function ProQuickprintoptionsFree() to free a quick drawing
options handle.
Use the function ProQuickprintoptionsLayouttypeSet() to assign the
layout type for the quick drawing operation. You can either specify a drawing
layout using the instructions or use a template to define the drawing. The
following are the available layout types:

672 Creo® Parametric TOOLKITUser’s Guide

• PRO_QPRINT_LAYOUT_PROJ—Use a projected view-type layout.
• PRO_QPRINT_LAYOUT_MANUAL—Use a manually arranged layout.
• PRO_QPRINT_LAYOUT_TEMPLATE—Use a drawing template to define the

layout. If this option is used, only the template name is needed to define the
print; other options are not used.

Use the function ProQuickprintoptionsOrientationSet() to assign
the sheet orientation for the quick drawing operation. The following are the
available sheet orientation types:

• PRODEV_ORIENTATION_PORTRAIT

• PRODEV_ORIENTATION_LANDSCAPE

Use the function ProQuickprintoptionsSizeSet() to assign the size of
the print for the quick drawing operation. ProPlotPaperSize specifies the
paper size and can be any of the following types:

• A_SIZE_PLOT

• B_SIZE_PLOT

• C_SIZE_PLOT

• D_SIZE_PLOT

• E_SIZE_PLOT

• A4_SIZE_PLOT

• A3_SIZE_PLOT

• A2_SIZE_PLOT

• A1_SIZE_PLOT

• A0_SIZE_PLOT

• F_SIZE_PLOT

Note
Variable size plots are not supported by this utility.

Use the function ProQuickprintoptionsViewAdd() to add a new general
view. The input arguments of this function are:

• options—Specifies the options handle.
• location—Specifies the location of the view being added for projected view

layout. This option is ignored for a manual view layout. It can be of the
following types:

○ PRO_QPRINTPROJ_GENVIEW_MAIN

Interface: Data Exchange 673

○ PRO_QPRINTPROJ_GENVIEW_NW

○ PRO_QPRINTPROJ_GENVIEW_SW

○ PRO_QPRINTPROJ_GENVIEW_SE

○ PRO_QPRINTPROJ_GENVIEW_NE

The general view location options are analogous to the locations in the quick
drawing user_interface:

674 Creo® Parametric TOOLKITUser’s Guide

Note
For manual view layouts, the order in which the views are added determine
their final location in the drawing. For this configuration, PTC does not
support using more than four views.

• view_name—Specifies the name of the saved model view.
• scale—Specifies the view scale.
• display_style—Specifies the view display style to use and is of the following

types:

○ PRO_DISPSTYLE_DEFAULT

○ PRO_DISPSTYLE_WIREFRAME

○ PRO_DISPSTYLE_HIDDEN_LINE

○ PRO_DISPSTYLE_NO_HIDDEN

○ PRO_DISPSTYLE_SHADED

○ PRO_DISPSTYLE_FOLLOW_ENVIRONMENT

○ PRO_DISPSTYLE_SHADED_WITH_EDGES

Use the function ProQuickprintoptionsThreeviewlayoutSet() to
assign the layout type when three views are being used in a manual layout (PRO_
QPRINT_LAYOUT_MANUAL). The layout can be either of the following types:

• PRO_QPRINTMANUAL_3VIEW_1_23VERT

• PRO_QPRINTMANUAL_3VIEW_23_VERT1

• PRO_QPRINTMANUAL_3VIEW_123_HORIZ

These options correspond to the diagrams in the user interface:

Interface: Data Exchange 675

Use the function ProQuickprintoptionsProjectionsSet() assign the
projected views to be included in the quick drawing operation. The function
applies only to PRO_QPRINT_LAYOUT_PROJ. The projections are of the
following types:

• PRO_QPRINTPROJ_TOP_VIEW

• PRO_QPRINTPROJ_RIGHT_VIEW

• PRO_QPRINTPROJ_LEFT_VIEW

• PRO_QPRINTPROJ_BOTTOM_VIEW

• PRO_QPRINTPROJ_BACK_NORTH

• PRO_QPRINTPROJ_BACK_EAST

• PRO_QPRINTPROJ_BACK_SOUTH

• PRO_QPRINTPROJ_BACK_WEST

Note
Projection views takes the same view scale and display style as the main
view.

The options correspond to the projected members of the diagram in the user
interface:

676 Creo® Parametric TOOLKITUser’s Guide

Use the function ProQuickprintoptionsTemplateSet() to assign the
path to the drawing template file to be used for the quick drawing operation. The
function applies only to layout type PRO_QPRINT_LAYOUT_TEMPLATE.

Note
The quick drawing operation shows the exact image of the model as is shown
on-screen. Therefore, if the drawing template has drawing views set with
display options such as view clipping, simplified representations, or layers,
these settings are ignored while plotting. The resulting plot reflects whatever is
seen on-screen.

Use the function
ProQuickprintoptionsPrintFlatToScreenAnnotsSet() to set the
ProBoolean flag to print flat-to-screen annotations. The flat-to-screen
annotations created at screen locations in the Creo Parametric graphics window
are printed at their relative locations in the drawing. You can print flat-to-screen
annotations such as notes, symbols, and surface finish symbols.
Once the instructions have been prepared, use the function
ProQuickprintExecute() to execute a print operation for a given solid
model. It has the following input arguments:

Interface: Data Exchange 677

• solid—Specifies the solid model to be printed.
• pcf_path—Specifies the path to the plotter configuration file to use. If no path

is specified, then the path will have the value of the configuration option
quick_print_plotter_config_file.

• options—Specifies the details of the quick drawing operation given by the
ProQuickprintOptions handle.

Exporting 3D Models
Creo Parametric TOOLKIT provides export capabilities for three dimensional
geometry to various formats.
Functions Introduced:

• ProIntf3DFileWrite()
• ProIntf3DFileWriteWithDefaultProfile()
• ProIntf3DLayerSetupFileSet()
• ProIntf3DLayerSetupFileIsIgnored()
• ProIntf3DCsysSet()
• ProIntf3DCsysIsIgnored()
• ProIntf3DModelDataClear()
• ProOutputBrepRepresentationAlloc()
• ProOutputBrepRepresentationFlagsSet()
• ProIntfExportProfileLoad()
• ProOutputBrepRepresentationIsSupported()
• ProOutputBrepRepresentationFree()
• ProOutputInclusionAlloc()
• ProOutputInclusionFacetparamsSet()
• ProOutputInclusionWithOptionsSet()
• ProOutputInclusionFlagsSet()
• ProOutputInclusionFree()
• ProOutputLayerOptionsAlloc()
• ProOutputLayerOptionsAutoidSet()
• ProOutputLayerOptionsSetupfileSet()
• ProOutputLayerOptionsFree()
• ProOutputAssemblyConfigurationIsSupported()
• ProRasterFileWrite()

678 Creo® Parametric TOOLKITUser’s Guide

• ProIntfSliceFileWithOptionsMdlnameExport()
• ProExportVRML()
• ProProductviewexportoptsAlloc()
• ProProductviewexportoptsFree()
• ProProductviewexportoptsFormatSet()
• ProProductviewFormattedMdlnameExport()
Export Format Creo Parametric TOOLKIT

Functions
Type Constant

STEP file (Standard for the
Exchange of Product Model Data)

ProIntf3DFileWrite()

ProIntf3DFileWriteWith

DefaultProfile()

PRO_INTF_EXPORT_STEP

VDA file PRO_INTF_EXPORT_VDA

IGES (3D) file PRO_INTF_EXPORT_IGES

CATIA (.model) file PRO_INTF_EXPORT_CATIA_
MODEL

SAT file (ACIS format for Creo
Parametric)

PRO_INTF_EXPORT_SAT

NEUTRAL file (ASCII text) PRO_INTF_EXPORT_NEUTRAL

CADDS file PRO_INTF_EXPORT_CADDS

CATIA (.session) file PRO_INTF_EXPORT_CATIA_
SESSION

Parasolid file PRO_INTF_EXPORT_
PARASOLID

UG file PRO_INTF_EXPORT_UG

CATIAV5 Part file PRO_INTF_EXPORT_CATIA_
PART

CATIAV5 Assembly file PRO_INTF_EXPORT_CATIA_
PRODUCT

JT Open format PRO_INTF_EXPORT_JT

CATIA Graphical Representation
(CGR) format

PRO_INTF_EXPORT_CATIA_
CGR

DWG file PRO_INTF_EXPORT_DWG

DXF file PRO_INTF_EXPORT_DXF

SolidWorks Part File PRO_INTF_EXPORT_SW_PART

SolidWorks Assembly File PRO_INTF_EXPORT_SW_
ASSEM

3D Manufacturing Format (3MF) PRO_INTF_EXPORT_3MF

CATIA facets file ProIntfSliceFileWithOp
tionsMdlnameExport()

PRO_CATIAFACETS_FILE

INVENTOR file PRO_INVENTOR_FILE

Render file PRO_RENDER_FILE

SLA ASCII file PRO_SLA_ASCII_FILE

SLA Binary file PRO_SLA_BINARY_FILE

Additive manufacturing file PRO_AMF_FILE

JPEG file ProRasterFileWrite() PRORASTERTYPE_JPEG

BMP file PRORASTERTYPE_BMP

TIFF file PRORASTERTYPE_TIFF

Interface: Data Exchange 679

Export Format Creo Parametric TOOLKIT
Functions

Type Constant

EPS file (Postscript) PRORASTERTYPE_EPS

PVS file, OL file

(a separate OL file is created for
each PART in an assembly)

ProProductviewFormatted
Export()

PRO_PV_FORMAT_PVS

ED file, OL file

(a separate OL file is created for
each PART in an assembly)

PRO_PV_FORMAT_ED

EDZ file PRO_PV_FORMAT_EDZ

PVZ file PRO_PV_FORMAT_PVZ

VRML ProExportVRML() N/A
Shrinkwrap ProSolidShrinkwrap

Create()
N/A

The following data is included during the export of Creo Parametric models to
other formats:
• 3D Manufacturing Format (3MF)—From Creo Parametric 5.0.1.0 onward, you

can export Creo Parametric models to the 3MF format. The export includes
part-level colors, top-assembly parameters, facet geometry, and hidden
entities.

• JT—Creo Parametric models are exported to JT with their color overrides.
Components with color overrides at any level in an assembly structure are
supported.

From Creo Parametric 3.0 onward, the Product Manufacturing Information
(PMI) of the annotations is exported as semantic representation from Creo
Parametric to JT models. The semantic export is supported only for 3D notes
and basic dimensions. All the other types of annotations are exported as
graphical entities. You can export planar and zonal cross-sections attached to
combined states from Creo Parametric files to JT.

Note
From Creo Parametric 2.0 M200 onward the license INTF_for_JT is
required to export a Creo Parametric model to JT. If the license is not
available the functions return the error PRO_TK_NO_LICENSE.

• Creo View—You can export colors assigned to the components of assemblies
and their sub-assembly models, including the colors of the sub-level entities
such as parts, quilts, and faces from Creo Parametric to Creo View.

680 Creo® Parametric TOOLKITUser’s Guide

Creo Parametric models are exported to Creo View with their color overrides.
Components with color overrides at any level in an assembly structure are
supported. Along with components, color overrides are also supported for
component model items, such as, face and quilts.

• SolidWorks—From Creo Parametric 3.0 onward, you can export Creo
Parametric models to SolidWorks. The export includes basic geometry such as
datum features, colors, attributes, and layers, part models, assembly structures,
boundary representation geometry, and non-geometric data.

• Unigraphics—The export of Creo Parametric models to Unigraphics includes
the export of basic geometry such as datum features, colors, attributes, and
layers.

Note
Refer to the Creo Parametric Data Exchange Help for more information on
exporting geometry from Creo Parametric to other formats. Refer to the
compatibility matrix on PTC.com for the supported software versions.

The following functions will be deprecated in a future release of Creo Parametric.
Use the function ProIntf3DFileWriteWithDefaultProfile() instead
to export Creo Parametric models to other file formats. All the options that can be
set with these functions, can also be set using the export profile option in Creo
Parametric. Refer to the Creo Parametric Data Exchange Online Help for more
information.
• ProIntf3DFileWrite()

• ProOutputInclusionAlloc()

• ProOutputInclusionFree()

• ProOutputInclusionFlagsSet()

• ProOutputLayerOptionsAlloc()

• ProOutputLayerOptionsAutoidSet()

• ProOutputLayerOptionsSetupfileSet()

• ProOutputLayerOptionsFree()

• ProOutputInclusionWithOptionsSet()

The function ProIntf3DFileWriteWithDefaultProfile() exports a
Creo Parametric model to the specified output format using the default export
profile.

Interface: Data Exchange 681

The function ProIntf3DFileWrite() will be deprecated in a future release
of Creo Parametric. Use the function ProIntf3DFileWriteWithDefaultProfile()
instead. The function ProIntf3DFileWrite() exports a Creo Parametric
model to the specified output format. The following types of output formats are
supported:

• STEP
• VDA
• IGES
• CATIA MODEL
• SAT (ACIS format in Creo Parametric)
• NEUTRAL
• CADDS
• CATIA SESSION
• PARASOLID
• UG
• CATIAV5
• JT Open
• CATIA Graphical Representation
• DWG
• DXF
While exporting the model, you can specify the structure and contents of the
output files as:

• Flat File—Exports all of the geometry of the assembly to a single file as if it
were a part. This is similar to the Single File format in Creo Parametric for
STEP output.

• Single File—Exports an assembly structure to a file with external references to
component files. This file contains only top-level geometry. This is similar to
the Dittos format in Creo Parametric for CATIA, Separate Parts Only for
STEP and One Level for IGES outputs. A part or an assembly is exported as a
single file for the DXF and the DWG formats.

• Multi Files—Exports an assembly structure to a single file and the
components to component files. It creates component parts and subassemblies
with their respective geometry and external references. This option supports

682 Creo® Parametric TOOLKITUser’s Guide

all levels of hierarchy. This is similar to All Levels format for IGES and
Separate All Parts for STEP in Creo Parametric.

• Parts—Exports an assembly as multiple files containing geometry information
of its components and assembly features. This is similar to All Parts format for
IGES in Creo Parametric.

Some output formats support only certain types of assembly configurations. The
default assembly configuration is a flat file.

Interface: Data Exchange 683

Note
Using the Creo Parametric TOOLKIT function ProIntf3DFileWrite()
you can export a Creo Parametric 3D model to a JT file format.

From Creo Parametric 2.0 M200 onward, the function
ProIntf3DFileWrite() exports a Creo Parametric 3D model to JT file
format only if the license INTF_for_JT is available. If the license is not
available the function returns the error PRO_TK_NO_LICENSE.

Starting with Creo Parametric1.0, XT-brep data format is supported along with
the JT-brep format for storing the 3D model data to export. Use the new
configuration option intf3d_ out_jt_brep to export the Creo Parametric
model using the function ProIntf3DFileWrite(). This configuration option
takes the following values:

• NO—This is the default value. When you set the configuration option
intf3d_out_jt_brep as NO, the function
ProIntf3DFileWrite() exports the Creo Parametric model to JT
format as facet representation only.

• JT_BREP—When you set the configuration option intf3d_out_jt_
brep to JT_BREP, the exported Creo Parametric model has both the JT-
brep format and the faceted representation.

• XT_BREP—When you set the configuration option intf3d_out_jt_
brep to XT_BREP, the exported Creo Parametric model has both the XT-
brep format and the faceted representation.

• The export of a Creo Parametric 3D model to a JT file format using the
function ProIntf3DFileWrite() is also impacted by the following
configuration options:

○ intf3d_out_jt_auto_lods—It takes the values yes or no*. If you
set the configuration option intf3d_out_jt_auto_lods to yes,
you can export up to three Levels of Detail (LODs) to the JT format.

○ intf3d_out_jt_config_name—Name of the JT configuration file.
You can define a configuration file jt.config. You can define
parameters and export options in this file. You can also control the export
of the LODs to the JT format via Creo Parametric TOOLKIT using this
file. The options set in this file override the setting of the configuration
option intf3d_out_jt_auto_lods. Refer to the section Export
Options in the JT Configuration File on page 691 for more information
about the options that can be set in the jt.config file.

○ intf3d_out_jt_config_path—Path of the JT configuration file.

684 Creo® Parametric TOOLKITUser’s Guide

• The configuration option intf3d_out_export_as_facets is now
obsolete.

The function ProIntf3DLayerSetupFileSet() sets the layer setup file for
the export. The input arguments follow:
• model—The model used for export.
• layer_setup_file—The full path of the input layer setup file. Pass the value as

NULL to set default layer setup settings for input file_type. Layer setup
file is not supported for PRO_INTF_EXPORT_CADDS and PRO_INTF_
EXPORT_NEUTRAL file types.

The function ProIntf3DLayerSetupFileIsIgnored() checks if layer
setup file is ignored or not during export. This function returns if the layer setup
file is used for the last export, using the function
ProIntf3DFileWriteWithDefaultProfile().
For reliable results, call the function
ProIntf3DFileWriteWithDefaultProfile() before calling
ProIntf3DLayerSetupFileIsIgnored().
The output argument is_ignored returns PRO_B_TRUE if the layer setup file
is ignored and returns PRO_B_FALSE if layer setup file is not ignored.
The function ProIntf3DCsysSet() sets the reference coordinate system Csys
for the export. The input arguments follow:
• model—The model used for export.
• csys_sel—The reference coordinate system. Pass the value as NULL to set

default coordinate system. Reference Csys is not supported for PRO_INTF_
EXPORT_CADDS and PRO_INTF_EXPORT_NEUTRAL file types.

The function ProIntf3DCsysIsIgnored() checks if the reference
coordinate system is ignored or not during export. The function returns if the
reference Csys is used for the last export, using the function
ProIntf3DFileWriteWithDefaultProfile().
For reliable results, call the function
ProIntf3DFileWriteWithDefaultProfile() before calling
ProIntf3DLayerSetupFileIsIgnored().
The output argument is_ignored returns PRO_B_TRUE if the reference Csys
is ignored and returns PRO_B_FALSE if the reference Csys is not ignored.
The function ProIntf3DModelDataClear() clears the model data set by
the functions ProIntf3DLayerSetupFileSet() and
ProIntf3DCsysSet().

Interface: Data Exchange 685

Use the function ProOutputAssemblyConfigurationIsSupported()
to check if the specified assembly configuration is valid for the particular model
and the specified export format. This function must be called before exporting the
model to the specified output format using the function
ProIntf3DFileWrite() except for the CADDS and STEP2D formats.
The function ProOutputBrepRepresentationAlloc() allocates memory
for the geometric representation data structure. This data structure represents the
types of geometry supported by the export operation. The types of geometric
representations are:

• Wireframe
• Surfaces
• Solid
• Quilts (Shell in Creo Parametric)
These correspond to the options shown in the Creo Parametric dialog box for
export. Note that some formats allow a combination of types to be input.
The function ProOutputBrepRepresentationFlagsSet() sets the flags
for the geometric representation data structure. It specifies the type of geometry to
be exported.
The function ProIntfExportProfileLoad() loads the specified profile for
export. You can use this function when you want to use the export profile of your
choice instead of the default export profile in a particular Creo Parametric session.
The input argument profile is the full path to the profile along with the profile
name and extension.

Note
Once the export profile file is loaded in a Creo Parametric session, it will be
active in the interactive mode as well.

The function ProOutputBrepRepresentationIsSupported() checks
if the specified geometric representation is valid for a particular export format.
This function should be called before exporting the model to the specified output
format using the function ProIntf3DFileWrite(), to check if the planned
configuration is supported by the Creo Parametric interface options.
The function ProOutputBrepRepresentationFree() frees the memory
allocated for the geometry data structure.
The function ProOutputInclusionAlloc() will be deprecated in a future
release of Creo Parametric. The function ProOutputInclusionAlloc()
allocates memory for the inclusion structure to be used while exporting the model.

686 Creo® Parametric TOOLKITUser’s Guide

The function ProOutputInclusionFlagsSet() will be deprecated in a
future release of Creo Parametric. It is recommended that you set this option in
export profile file in Creo Parametric. The function
ProOutputInclusionFlagsSet() determines whether to include certain
entities during export. The types of entities are:

• Datums—Determines whether datum curves are included when exporting
files. If the flag is set to true the datum curve and point information is included
during export. The default value is false.

• Blanked—Determines whether entities on blanked layers are exported. If the
flag is set to true, entities on blanked layers are exported. The default value is
false.

• Facets—Determines whether faceted geometry is included when exporting the
models. The default value of the flag is false.

The function ProOutputInclusionFacetparamsSet() assigns the
parameters to use while exporting the model to a faceted format such as PRO_
INTF_EXPORT_CATIA_CGR. These parameters are as follows:

• chord_height—The chord height to use for the exported facets.
• angle_control—The angle control to use for the exported facets.

Note
The function ProOutputInclusionFacetparamsSet() has been
deprecated. Use the function
ProOutputInclusionWithOptionsSet() instead.

The function ProOutputInclusionWithOptionsSet() will be
deprecated in a future release of Creo Parametric. It is recommended that you set
this option in export profile file in Creo Parametric. Use the function
ProOutputInclusionWithOptionsSet() to set the parameters and
configuration flags used while exporting the model to a faceted format such as
PRO_INTF_EXPORT_CATIA_CGR. The input arguments are as follows:

• parameters—Specifies a ProArray of parameters that consists of the
following three elements:

○ chord_height—The chord height of the exported facets.
○ angle_control—The angle control of the exported facets. Specify a value

between 0.0 to 1.0. If the angle control is out of bounds, Creo Parametric
changes it to the closest limit without returning an error.

○ step_size—The step size of the exported facets. If the step size is less or
equal to 0, it is ignored.

Interface: Data Exchange 687

Note
If the chord height or step size are too small or too big, then Creo
Parametric resets it to the smallest or biggest acceptable value,
respectively, without returning an error.

• config_flags—Specifies the configuration flags that control the export
operation. They are as follows:

○ PRO_FACET_STEP_SIZE_OFF—Switches off the step size control.
○ PRO_FACET_FORCE_INTO_RANGE—Forces the out-of-range

parameters into range. If any of the PRO_FACET_*_DEFAULT option is
set, then the option PRO_FACET_FORCE_INTO_RANGE is not applied
on that parameter.

○ PRO_FACET_STEP_SIZE_ADJUST—Adjusts the step size according to
the component size.

○ PRO_FACET_CHORD_HEIGHT_ADJUST—Adjusts the chord height
according to the component size.

○ PRO_FACET_USE_CONFIG—If this flag is set, values of the flags PRO_
FACET_STEP_SIZE_OFF, PRO_FACET_STEP_SIZE_ADJUST, and
PRO_FACET_CHORD_HEIGHT_ADJUST are ignored and the
configuration settings from the Creo Parametric user interface are used
during the export operation

○ PRO_FACET_CHORD_HEIGHT_DEFAULT—Uses the default value set
in the Creo Parametric user interface for the chord height.

○ PRO_FACET_ANGLE_CONTROL_DEFAULT—Uses the default value set
in the Creo Parametric user interface for the angle control.

○ PRO_FACET_STEP_SIZE_DEFAULT—Uses the default value set in the
Creo Parametric user interface for the step size.

○ PRO_FACET_INCLUDE_QUILTS—Includes quilts in the export of Creo
Parametric model to the specified format.

688 Creo® Parametric TOOLKITUser’s Guide

○ PRO_EXPORT_INCLUDE_ANNOTATIONS—Includes annotations in the
export of Creo Parametric model to the specified format.

Note
To include annotations, during the export of Creo Parametric model,
you must call the function ProMdlDisplay() before calling
ProIntf3DFileWrite().

○ PRO_FACET_VISIBLE_MODELS—Exports models which have their
visibility status set to Show in Creo Parametric. Models that are hidden are
not exported.

Note
The behavior of the function
ProOutputInclusionWithOptionsSet() is similar to the function
ProOutputInclusionFacetparamsSet() if the configuration flag
PRO_FACET_STEP_SIZE_OFF is set.

The function ProOutputInclusionFree() will be deprecated in a future
release of Creo Parametric. The function ProOutputInclusionFree() frees
the memory allocated for the inclusion structure.
The function ProOutputLayerOptionsAlloc() will be deprecated in a
future release of Creo Parametric. The function
ProOutputLayerOptionsAlloc() allocates memory for the layer options
data structure. The layer options are:

• AutoId—A flag indicating whether layers should be automatically assigned
numerical ids when exporting.

• LayerSetupFile—The layer setup file contains the name of the layer, its
display status, the interface ID and number of sub layers.

Specify the name and complete path of the layer setup file. This file contains the
layer assignment information.
The function ProOutputLayerOptionsAutoidSet() will be deprecated
in a future release of Creo Parametric. It is recommended that you set this option
in export profile file in Creo Parametric. The function
ProOutputLayerOptionsAutoidSet() enables you to set or remove an
interface layer ID. If true, automatically assigns interface ids to layers not
assigned ids and exports them. The default value is false.

Interface: Data Exchange 689

The function ProOutputLayerOptionsSetupfileSet() will be
deprecated in a future release of Creo Parametric. It is recommended that you set
this option in export profile file in Creo Parametric. Use the function
ProOutputLayerOptionsSetupfileSet() to specify the name and
complete path of the layer setup file.
The function ProOutputLayerOptionsFree() will be deprecated in a
future release of Creo Parametric. The function
ProOutputLayerOptionsFree() frees the memory allocated for the layer
options structure.
Use function ProRasterFileWrite() to create a standard Creo Parametric
raster output file. Note that this function does not support output of drawings (2-
dimensional objects) in Drawing mode.
The PRO_SPOOL_FILE option reads in a Diagram spool file.
The function ProIntfSliceFileWithOptionsMdlnameExport()
exports to tesellated formats such as STL, Render, AMF, Inventor, CatiaFacets,
3MF, and Optegra Visualizer based on the values of a ProArray of parameters
and two configuration flags. These formats require the maximum chord height,
angle control, and transformation to be specified for the model being exported. If
the specified model is an assembly, the last input argument of the function is the
component path; if the model is a part, this argument is NULL. These parameters
and configuration flags are same as the ones assigned by the function
ProOutputInclusionWithOptionsSet() described earlier in this
section. Refer to its description for more information on the parameters and
configuration flags.
The function ProExportVRML() exports a solid from a Creo Parametric
session, or a Creo Parametric solid stored in a file, into a directory of VRML files.
This output directory contains assembly structure data, part and assembly names,
and geometrical data representing the parts. This function accepts as input only
Creo Parametric assemblies or parts.
ProExportVRML() supports creation of multiple output files from either parts
or assemblies. If you export an assembly, the function creates an output file for
each member of the assembly and one for the assembly itself. Default file names
are:
asm1_a.wrl, asm2_a.wrl, ... asmN_a.wrl

where asm is the assembly name.
If you export parts, ProExportVRML() creates an output file for each part.
Default names are part_p.wrl, where part is the part name. For more
information on ProExportVRML(), refer to “Exporting Files to VRML” or
“Batch Utilities” in the “Interface” section of Creo Parametric help.

690 Creo® Parametric TOOLKITUser’s Guide

The functions ProProductviewexportoptsAlloc() and
ProProductviewexportoptsFree() allocate and free the memory
assigned to the ProProductviewExportOptions object containing the
Creo View export formats.
The function ProProductviewexportoptsFormatSet() assigns the flag
specifying the Creo View export format.
The function ProProductviewFormattedMdlnameExport() exports a
part or an assembly to one of the following user-defined Creo View formats.

• PRO_PV_FORMAT_PVS

• PRO_PV_FORMAT_ED

• PRO_PV_FORMAT_EDZ

• PRO_PV_FORMAT_PVZ

Example 2: To Export a Model File to IGES Format
The sample code in UgInterfaceExport.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_interface shows
how to export a model file to IGES format using options similar to those seen in
the UI.

Export Options in the JT Configuration File
You can export up to three levels of detail (LODs) from Creo Parametric files to
the JT format. An LOD is a graphical representation of details such as the chord
height, angle control, and step size for faceted surfaces. Each faceted surface is
made up of a specific number of triangles. These shaded triangles represent the
object. The more triangles that describe the object, the more details you can view.
You can create and use a configuration file, jt.config, to control the export of
the LODs from Creo Parametric files to the JT format. The jt.config file is
located in the <creo_loadpoint>\<datecode>\Common Files\text\
jt\ directory. The options set in this file override the configuration options in the
config.pro configuration file.
You can include the following parameters or export options in the jt.config
file:
• EAITranslator—Specifies the setting for the export of control parameters.

○ chordalOption—Specifies whether to apply the chordal value as an
absolute value in model units or as a relative value that is a percentage of
the part size. The valid values are:
◆ RELATIVE—Tessellates all the parts in a model relative to their size

equally. The chordal value is applied as a fractional percentage.

Interface: Data Exchange 691

◆ ABSOLUTE—Tessellates all the parts in a model regardless of their
size. The chordal value is applied as an absolute value.

○ structureOption—Specifies the mapping of the JT product structure
to the JT file structure in the JT files after export. The supported product
structures are:
◆ JtkPER_PART—Specifies that the assembly is exported as a single

JT file. The parts in the assembly are exported and saved as individual
JT files in a sub-directory of the same name as the top-level assembly
file.

◆ JtkFULL_SHATTER—Specifies that each component of the
assembly is exported as a separate JT file.

◆ JtkMONOLITHIC—Specifies that the assembly is exported as a
single JT file.

○ writeWhichFiles—Specifies which components must be exported to
JT format.
◆ ALL—This is the default option. Specifies that the entire assembly

along with its parts must be exported.
◆ ASSEMBLY_ONLY—Specifies that only the product structure must be

exported.
◆ PARTS_ONLY—Specifies that only the parts in the assembly must be

exported without the assembly structure.
○ JtFileFormat—Specifies the version of the JT format in which the

files must be exported. Refer to the Creo Parametric Data Exchange Help,
for more information on AUTO option.

○ includeBrep—Specifies a boolean value to include the geometry
boundary representation definition, that is, JT-brep or XT-brep, in the files
exported to JT format. It controls the export of annotations as semantic
representations. You cannot include the JT-brep and the XT-brep data
structures in the same file. The valid values are true or false.

○ autoXtBrep—Specifies a boolean value to automatically convert the
boundary representation geometry to parasolid format during the export.
When you set the option to true, the boundary representation data is
converted to the parasolid format. When set to false, the boundary
representation data is stored in the proprietary JT format.

You can use the autoXtBrep option with the includeBrep option to
switch between the JT-brep and the XT-brep structures.

○ numLODs—Specifies the number of LOD definitions. PTC recommends
creating up to three LODs.

• LOD—Specifies a group of parameters that control tessellation for a specific
LOD. It also specifies the number of the current LOD.
○ Level—Specifies the current LOD number.

692 Creo® Parametric TOOLKITUser’s Guide

○ Chordal—Specifies the maximum distance that a tessellated line
segment deviates from the actual curve it approximates. It takes the value
as a floating number from [0.0,1.0]. The value specified is as determined
by the chordalOption option. If the chordal value exceeds the model
size, you can consider the model size as the chordal value.

Note
For best results, use chordal values in conjunction with the Angular
parameter. Chordal values primarily affect the larger features of the
model while the angular values affect the smaller features of the
model.

○ Length—Specifies the maximum absolute length of the tessellated line
segments in a curve approximation. If the Length value exceeds the
model size, consider the default value as (model_size/30).

○ Label—Specifies the user-defined name for the LOD.
○ Angular—Specifies the angle control value for LOD definitions and

triangulation export to JT format. This parameter sets the absolute
maximum angle between two adjacent line segments in a curve
approximation. The angle has its value between 0 and 90 degrees. The
maximum angle value indicates coarse tessellation while the lowest value
indicates fine tessellation and high quality LOD.

• proeConfig—Specifies the options that are specific to Creo Parametric.
○ autoLODgeneration—Specifies a boolean value to automatically

generate three LODs from Creo Parametric. The valid values are true or
false.

Note
When autoLODgeneration is set to true, the LOD options set in
the jt.config file are ignored.

Interface: Data Exchange 693

○ autoLODStepSize—Specifies a boolean value to use the step size
parameter during the automatic generation of LODs using the options set
in Creo Parametric. This option is available only when
autoLODgeneration is set to true.

Note
When autoLODStepSize is set to true, the step size set in the
jt.config file is ignored.

○ LOD[n]angle—Regulates the amount of additional improvement along
curves with small radii for LOD1, LOD2, and LOD3. It takes the value as
a floating number from [0.0,1.0]. This option is available only when
autoLODgeneration is set to false.

• UseJTAngularControl—Specifies the type of angle control to be used.
Angles can be controlled using the Creo Parametric angle control values or the
JT angle control values. Set this parameter to true to use the JT angle control
values. Specify the angle control values in the Angular option.

By default, this parameter is set to false. In this case, the Creo Parametric
angle control options, LOD1angle, LOD2angle, LOD3angle, and so on,
are used to define the LOD generation.

You must set the configuration options intf3d_out_jt_config_name and
intf3d_out_jt_config_path to specify the name and location of the
jt.config file.

Shrinkwrap Export
To improve performance in large assembly design, you can export lightweight
representations of models called Shrinkwrap models. A shrinkwrap model is
based on the external surfaces of the source part or assembly model and captures
the outer shape of the source model.
You can create the following types of non associative exported Shrinkwrap
models:

• Surface Subset—This type consists of a subset of the original model’s
surfaces.

• Faceted Solid—This type is a faceted solid representing the original solid.
• Merged Solid—The external components from the reference assembly model

are merged into a single part representing the solid geometry in all collected
components.

694 Creo® Parametric TOOLKITUser’s Guide

Export Format Creo Parametric TOOLKIT
Functions

Type Constant

Shrinkwrap ProSolidShrinkwrap
Create()

N/A

Function Introduced:

• ProSolidShrinkwrapMdlnameCreate()
You can export the specified solid model as a Shrinkwrap model using the
function ProSolidShrinkwrapMdlnameCreate(). This function requires:

• The model to be exported as Shrinkwrap
• The template model where the Shrinkwrap geometry will be created.
• The name of the exported file if the export format is VRML or STL.

Setting Shrinkwrap Options
Functions Introduced:

• ProShrinkwrapoptionsAlloc()
• ProShrinkwrapoptionsFree()
• ProShrinkwrapoptionsQualitySet()
• ProShrinkwrapoptionsAutoholefillingSet()
• ProShrinkwrapoptionsIgnoreskeletonsSet()
• ProShrinkwrapoptionsIgnorequiltsSet()
• ProShrinkwrapoptionsIgnoreconstrbodiesSet()
• ProShrinkwrapoptionsAssignmasspropsSet()
• ProShrinkwrapoptionsDatumrefsSet()
The function ProShrinkwrapoptionsAlloc() allocates memory for the
structure defining the shrinkwrap options. The types of shrinkwrap methods are:

• PRO_SWCREATE_SURF_SUBSET—Surface Subset
• PRO_SWCREATE_FACETED_SOLID—Faceted Solid
• PRO_SWCREATE_MERGED_SOLID—Merged Solid
The function returns the options handle which is used to set the members of the
structure defining the shrinkwrap options.
The function ProShrinkwrapoptionsFree() frees the memory allocated
by the function ProShrinkwrapoptionsAlloc().

Interface: Data Exchange 695

The function ProShrinkwrapoptionsQualitySet() specifies the quality
level for the system to use when identifying surfaces or components that will
contribute to the Shrinkwrap model. Quality ranges from 1 which produces the
coarsest representation of the model in the fastest time, to 10 which produces the
most exact representation. The default value is true.
The function ProShrinkwrapoptionsAutoholefillingSet() sets a
flag that forces Creo Parametric to identify all holes and surfaces that intersect a
single surface and fills those holes during shrinkwrap. The default value is true.
The function ProShrinkwrapoptionsIgnoreskeletonsSet()
determines whether the skeleton model geometry must be included in the
Shrinkwrap model.
ProShrinkwrapoptionsIgnorequiltsSet() determines whether
external quilts will be included in the Shrinkwrap model.
ProShrinkwrapoptionsIgnoreconstrbodiesSet() determines
whether construction bodies are included in the Shrinkwrap model.
ProShrinkwrapoptionsAssignmasspropsSet() assigns mass
properties to the Shrinkwrap model. The default value is false and the mass
properties of the original model is assigned to the Shrinkwrap model. If the value
is set to true, the user will have to assign a value for the mass properties.
ProShrinkwrapoptionsDatumrefsSet() selects the datum planes,
points, curves, axes, and coordinate system references to be included from the
Shrinkwrap model.

Surface Subset Options
Functions Introduced:

• ProShrinkwrapoptionsIgnoresmallsurfsSet()
• ProShrinkwrapoptionsAdditionalsurfacesSet()
The function ProShrinkwrapoptionsIgnoresmallsurfsSet() sets a
flag that forces Creo Parametric to skip surfaces smaller than a certain size. The
default value of this argument is false. The size of the surface is specified as a
percentage of the model’s size.
Use ProShrinkwrapoptionsAdditionalsurfacesSet() to select
individual surfaces to be included in the Shrinkwrap model.

Faceted Solid Options
Functions Introduced:

• ProShrinkwrapoptionsFacetedformatSet()
• ProShrinkwrapoptionsFramesFileSet()

696 Creo® Parametric TOOLKITUser’s Guide

Use the function ProShrinkwrapoptionsFacetedformatSet() to
specify the output file format of the Shrinkwrap model. The types of output format
are:

• PRO_SWFACETED_PART——Creo Parametric part with normal geometry.
This is the default format type.

• PRO_SWFACETED_LIGHTWEIGHT_PART—Lightweight Creo Parametric
part with lightweight, faceted geometry.

• PRO_SWFACETED_STL—An STL file
• PRO_SWFACETED_VRML—AVRML file
The function ProShrinkwrapoptionsFramesFileSet() enables you to
select a frame file to create a faceted solid motion envelope model that represents
the full motion of the mechanism captured in the frame file. Specify the name and
complete path of the frame file.

Merged Solid Options
Function Introduced:

• ProShrinkwrapoptionsAdditionalcomponentsSet()
Use the function
ProShrinkwrapoptionsAdditionalcomponentsSet() to select
individual components of the assembly to be merged into the Shrinkwrap model.

Example 3: To Export a Model to VRML Format
The sample code in UgInterfaceExport.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_interface shows
how to create a faceted shrinkwrap model in VRML format

Example 4: To Create a Shrinkwrap Part Model as a
Merged Solid
The sample code in UgInterfaceExport.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_interface shows
how to create a new empty model and copy the merged solid shrinkwrap
information into it.

Interface: Data Exchange 697

Exporting to PDF and U3D
The functions described in this section support the export of Creo Parametric
drawings and solid models to Portable Document Format (PDF) and U3D format.
You can export a drawing or a 2D model as a 2D raster image embedded in a PDF
file. You can export Creo Parametric solid models in the following ways:

• As a U3D model embedded in a one-page PDF file
• As 2D raster images embedded in the pages of a PDF file representing saved

views
• As a standalone U3D file
While exporting multiple sheets of a Creo Parametric drawing to a PDF file, you
can choose to export all sheets, the current sheet, or selected sheets.
These functions also allow you to insert a variety of non-geometric information to
improve document content, navigation, and search.
Functions Introduced:

• ProPDFoptionsAlloc()
• ProPDFoptionsIntpropertySet()
• ProPDFoptionsBoolpropertySet()
• ProPDFoptionsStringpropertySet()
• ProPDFoptionsDoublepropertySet()
• ProPDFExport()
• ProPDFWithProfileExport()
• ProPDFoptionsFree()
The function ProPDFoptionsAlloc() allocates memory for the PDF options
structure.
The function ProPDFoptionsIntpropertySet() sets the value for an
integer or enum property of the PDF options structure. The types of export options
are as follows:

• PRO_PDFOPT_EXPORT_MODE—Enables you to select the object to be
exported to PDF and the export format. The values are:

○ PRO_PDF_2D_DRAWING—Specifies that only 2D drawings will be
exported to PDF. This is the default.

○ PRO_PDF_3D_AS_NAMED_VIEWS—Specifies that Creo Parametric
models will be exported as 2D raster images embedded in PDF files.

○ PRO_PDF_3D_AS_U3D_PDF—Specifies that Creo Parametric models
will be exported as U3D models embedded in one-page PDF files.

698 Creo® Parametric TOOLKITUser’s Guide

○ PRO_PDF_3D_AS_U3D—Specifies that a Creo Parametric model will be
exported as a U3D (*.u3d) file. This value ignores the options available for
the PDF options structure.

• PRO_PDFOPT_PDF_SAVE—Enables you to specify the PDF format while
exporting 2D drawings and solid models. The values are:

○ PRO_PDF_ARCHIVE_1—Exports the 2D drawing to the PDF/A format.
This type is applicable only for 2D drawings, that is, when you set the
option PRO_PDFOPT_EXPORT_MODE to PRO_PDF_2D_DRAWING.

If you set the option PRO_PDFOPT_PDF_SAVE to PRO_PDF_
ARCHIVE_1, the following options are set as shown below:

◆ PRO_PDFOPT_LAYER_MODE is set to PRO_PDF_LAYERS_NONE.
◆ PRO_PDFOPT_HYPERLINKS is set to FALSE, that is, hyperlinks are

not created in the PDF.
◆ Shaded views will not be transparent and may overlap other data.
◆ PRO_PDFOPT_PASSWORD_TO_OPEN is set to NULL.
◆ PRO_PDFOPT_MASTER_PASSWORD is set to NULL.
◆ PRO_PDF_FULL—Exports the object to the standard PDF format.

This is the default value.
• PRO_PDFOPT_FONT_STROKE—Enables you to switch between using

TrueType fonts in the resulting document and drawing or "stroking" text as
line segments. The values are:

○ PRO_PDF_USE_TRUE_TYPE_FONTS—Specifies TrueType fonts. This
is the default.

○ PRO_PDF_STROKE_ALL_FONTS—Specifies the option to stroke all
fonts.

• PRO_PDFOPT_COLOR_DEPTH—Enables you to choose between color,
grayscale, or monochrome output. The values are:

○ PRO_PDF_CD_COLOR—Specifies color output. This is the default.
○ PRO_PDF_CD_GRAY—Specifies grayscale output.
○ PRO_PDF_CD_MONO—Specifies monochrome output.

• PRO_PDFOPT_HIDDENLINE_MODE—Enables you to set the style for
hidden lines in the resulting PDF document. The values are:

○ PRO_PDF_HLM_DASHED—Specifies dashed hidden lines. This is the
default.

○ PRO_PDF_HLM_SOLID—Specifies solid hidden lines.

Interface: Data Exchange 699

• PRO_PDFOPT_RASTER_DPI—Enables you to set the resolution for the
output of any shaded views in DPI. The value is restricted to the values in
ProDotsPerInch, and the default is PRORASTERDPI_300.

• PRO_PDFOPT_LAYER_MODE—Enables you to set the availability of layers
in the document. The values are:

○ PRO_PDF_LAYERS_VISIBLE—Exports only visible layers in a
drawing.

○ PRO_PDF_LAYERS_NONE—Exports only the visible entities in the
drawing, but not the layers on which they are placed.

○ PRO_PDF_LAYERS_ALL—Exports the visible layers and entities. This is
the default.

• PRO_PDFOPT_PARAM_MODE—Enables you to set the availability of model
parameters as searchable metadata in the PDF document. The values are:

○ PRO_PDF_PARAMS_DESIGNATED—Exports only the specified model
parameters in the PDF metadata.

○ PRO_PDF_PARAMS_NONE—Exports the drawing to PDF without the
model parameters.

○ PRO_PDF_PARAMS_ALL—Exports the drawing and the model
parameters to PDF. This is the default.

• PRO_PDFOPT_ALLOW_MODE—Defines the changes that you can make in
the PDF document. This option can be set only if PRO_PDFOPT_
RESTRICT_OPERATIONS is set to true. The permitted viewer operations are
given by the following values:

○ PRO_PDF_RESTRICT_NONE—This is the default value and it restricts
you from performing all operations in the PDF document.

○ PRO_PDF_RESTRICT_FORMS_SIGNING—Allows you to fill in the
fields of the form, create templates, and add digital signatures to the PDF
document.

○ PRO_PDF_RESTRICT_INSERT_DELETE_ROTATE—Allows you to
insert, delete, and rotate pages in the PDF document.

○ PRO_PDF_RESTRICT_COMMENT_FORM_SIGNING—Allows you to
add or edit comments, fill in the fields of the form, create templates, and
add digital signatures to the PDF document.

○ PRO_PDF_RESTRICT_EXTRACTING—Allows you to perform all
viewer operations, except for extracting pages from the PDF document.

• PRO_PDFOPT_ALLOW_PRINTING_MODE—Allows you to set the print
resolution. This option can be set only if the options PRO_PDFOPT_

700 Creo® Parametric TOOLKITUser’s Guide

RESTRICT_OPERATIONS and PRO_PDFOPT_ALLOW_PRINTING are set
to true. The values are:

○ PRO_PDF_PRINTING_LOW_RES—Specifies low resolution for
printing.

○ PRO_PDF_PRINTING_HIGH_RES—Specifies high resolution for
printing. This is the default.

• PRO_PDFOPT_LINECAP—Enables you to control the treatment of the ends
of the geometry lines exported to PDF. The values are:

○ PRO_PDF_LINECAP_BUTT—Specifies the butt cap square end. This is
the default.

○ PRO_PDF_LINECAP_ROUND—Specifies the round cap end.
○ PRO_PDF_LINECAP_PROJECTING_SQUARE—Specifies the

projecting square cap end.
• PRO_PDFOPT_LINEJOIN—Enables you to control the treatment of the

joined corners of connected lines exported to PDF. The values are:

○ PRO_PDF_LINEJOIN_MITER—Specifies the miter join. This is the
default.

○ PRO_PDF_LINEJOIN_ROUND—Specifies the round join.
○ PRO_PDF_LINEJOIN_BEVEL—Specifies the bevel join.

• PRO_PDFOPT_SHEETS—Enables you to specify the sheets from a Creo
Parametric drawing that are to be exported to PDF. The values are:

○ PRINT_CURRENT_SHEET—Specifies that only the current sheet will be
exported to the PDF file.

○ PRINT_ALL_SHEETS—Specifies that all the sheets will be exported to
the PDF file. This is the default.

○ PRINT_SELECTED_SHEETS—Specifies that sheets of a specified range
will be exported to the PDF file. If this value is assigned, then the value of
the string property PRO_PDFOPT_SHEET_RANGE must also be included.

• PRO_PDFOPT_LIGHT_DEFAULT—Enables you to set the default lighting
style used while exporting Creo Parametric models in the U3D format to a
one-page PDF file. The values are:

○ PRO_PDF_U3D_LIGHT_NONE—Specifies no lights.
○ PRO_PDF_U3D_LIGHT_WHITE—Specifies white lights.
○ PRO_PDF_U3D_LIGHT_DAY—Specifies day lights.
○ PRO_PDF_U3D_LIGHT_BRIGHT— Specifies bright lights.
○ PRO_PDF_U3D_LIGHT_PRIMARY—Specifies primary color lights.

Interface: Data Exchange 701

○ PRO_PDF_U3D_LIGHT_NIGHT—Specifies night lights.
○ PRO_PDF_U3D_LIGHT_BLUE—Specifies blue lights.
○ PRO_PDF_U3D_LIGHT_RED—Specifies red lights.
○ PRO_PDF_U3D_LIGHT_CUBE—Specifies cube lights.
○ PRO_PDF_U3D_LIGHT_CAD—Specifies CAD optimized lights. This is

the default value.
○ PRO_PDF_U3D_LIGHT_HEADLAMP—Specifies headlamp lights.

• PRO_PDFOPT_RENDER_STYLE_DEFAULT—Enables you to set the default
rendering style used while exporting Creo Parametric models in the U3D
format to a one-page PDF file. The values are:

○ PRO_PDF_U3D_RENDER_BOUNDING_BOX—Specifies bounding box
rendering.

○ PRO_PDF_U3D_RENDER_TRANSPARENT_BOUNDING_BOX—
Specifies transparent bounding box rendering.

○ PRO_PDF_U3D_RENDER_TRANSPARENT_BOUNDING_BOX_
OUTLINE—Specifies transparent bounding box outline rendering.

○ PRO_PDF_U3D_RENDER_VERTICES—Specifies vertices rendering.
○ PRO_PDF_U3D_RENDER_SHADED_VERTICES—Specifies shaded

vertices rendering.
○ PRO_PDF_U3D_RENDER_WIREFRAME—Specifies wireframe

rendering.
○ PRO_PDF_U3D_RENDER_SHADED_WIREFRAME—Specifies shaded

wireframe rendering.
○ PRO_PDF_U3D_RENDER_SOLID—Specifies solid rendering. This is the

default.
○ PRO_PDF_U3D_RENDER_TRANSPARENT—Specifies transparent

rendering.
○ PRO_PDF_U3D_RENDER_SOLID_WIREFRAME—Specifies solid

wireframe rendering.
○ PRO_PDF_U3D_RENDER_TRANSPARENT_WIREFRAME—Specifies

transparent wireframe rendering.
○ PRO_PDF_U3D_RENDER_ILLUSTRATION—Specifies illustrated

rendering.
○ PRO_PDF_U3D_RENDER_SOLID_OUTLINE—Specifies solid outlined

rendering.
○ PRO_PDF_U3D_RENDER_SHADED_ILLUSTRATION—Specifies

shaded illustrated rendering.

702 Creo® Parametric TOOLKITUser’s Guide

○ PRO_PDF_U3D_RENDER_HIDDEN_WIREFRAME—Specifies hidden
wireframe rendering.

• PRO_PDFOPT_SIZE—Enables you to specify the page size of the exported
PDF file. The values are restricted to the value of ProPlotPaperSize. If
the value is VARIABLE_SIZE_IN_MM_PLOT or VARIABLE_SIZE_PLOT,
the size must be specified in the PRO_PDFOPT_HEIGHT and PRO_
PDFOPT_WIDTH properties.

• PRO_PDFOPT_ORIENTATION—Enables you to specify the orientation of
the pages in the exported PDF file. The values are:

○ PRO_ORIENTATION_PORTRAIT—Exports the pages in portrait
orientation. This is the default.

○ PRO_ORIENTATION_LANDSCAPE—Exports the pages in landscape
orientation.

The option PRO_PDFOPT_ORIENTATION is not available if the property
PRO_PDFOPT_SIZE is set to VARIABLE_SIZE_IN_MM_PLOT or
VARIABLE_SIZE_PLOT

• PRO_PDFOPT_VIEW_TO_EXPORT—Enables you to specify the view or
views to be exported to the PDF file. The values are:

○ PRO_PDF_VIEW_SELECT_CURRENT—Exports the current graphical
area to a one-page PDF file.

○ PRO_PDF_VIEW_SELECT_BY_NAME—Exports the selected view to a
one-page PDF file with the view name printed at the bottom center of the
view port. If this value is assigned, then the value of the string property
PRO_PDFOPT_SELECTED_VIEW must also be included.

○ PRO_PDF_VIEW_SELECT_ALL—Exports all the views to a multi-page
PDF file. Each page contains one view with the view name displayed at
the bottom center of the view port.

• PRO_PDFOPT_INCL_ANNOT—Enables you to specify if annotations must
be included when Creo Parametric models are exported as U3D graphics in a
PDF file. The values are:

○ PRO_PDF_INCLUDE_ANNOTATION—Includes annotations when
models are exported.

○ PRO_PDF_EXCLUDE_ANNOTATION—Excludes annotations when
models are exported. This is the default value.

The function ProPDFoptionsBoolpropertySet() sets the value for a
boolean property of the PDF options structure. The types of export options are as
follows:

Interface: Data Exchange 703

• PRO_PDFOPT_SEARCHABLE_TEXT—If true, stroked text is searchable.
The default value is true.

• PRO_PDFOPT_LAUNCH_VIEWER—If true, launches the Adobe Acrobat
Reader. The default value is true.

• PRO_PDFOPT_HYPERLINKS—Sets Web hyperlinks to be exported as label
text only or sets the underlying hyperlink URLs as active. The default value is
true, specifying that the hyperlinks are active.

• PRO_PDFOPT_BOOKMARK_ZONES—If true, adds bookmarks to the PDF
showing zoomed in regions or zones in the drawing sheet. The zone on an A4-
size drawing sheet is ignored.

• PRO_PDFOPT_BOOKMARK_VIEWS—If true, adds bookmarks to the PDF
document showing zoomed in views on the drawing.

• PRO_PDFOPT_BOOKMARK_SHEETS—If true, adds bookmarks to the PDF
document showing each of the drawing sheets.

• PRO_PDFOPT_BOOKMARK_FLAG_NOTES—If true, adds bookmarks to the
PDF document showing the text of the flag note.

• PRO_PDFOPT_RESTRICT_OPERATIONS—If true, allows you to restrict or
limit operations on the PDF document using the
ProPDFRestrictOperationsMode modification flags. The default is
false.

• PRO_PDFOPT_ALLOW_PRINTING—If true, allows you to print the PDF
document. The default value is true.

• PRO_PDFOPT_ALLOW_COPYING—If true, allows you to copy content from
the PDF document. The default value is true.

• PRO_PDFOPT_ALLOW_ACCESSIBILITY—If true, enables visually-
impaired screen reader devices to extract data independent of the value of the
enum ProPDFRestrictOperationsMode. The default value is true.

• PRO_PDFOPT_PENTABLE—If true, uses the standard Creo Parametric
pentable to control the line weight, line style, and line color of the exported
geometry. The default value is false.

• PRO_PDFOPT_PENTAB_FOR_TEXT—If true, the standard Creo Parametric
pentable is used to control the thickness of the stroked text of the exported
geometry. If false, the stroked text will be exported with their original
thickness and the thickness value defined by the pentable will be ignored. The
default value is true.

• PRO_PDFOPT_ADD_VIEWS—If true, allows you to add view definitions to
the U3D model from a file. The default value is true.

704 Creo® Parametric TOOLKITUser’s Guide

The function ProPDFoptionsStringpropertySet() sets the value for a
string property of the PDF options structure. The types of export options are as
follows:

• PRO_PDFOPT_TITLE—Specifies a title for the PDF document.
• PRO_PDFOPT_AUTHOR—Specifies the name of the person generating the

PDF document.
• PRO_PDFOPT_SUBJECT—Specifies the subject of the PDF document.
• PRO_PDFOPT_KEYWORDS—Specifies relevant keywords in the PDF

document.
• PRO_PDFOPT_PASSWORD_TO_OPEN—Sets a password to open the PDF

document. If the value is not set or NULL, anyone can open the PDF document
without a password.

• PRO_PDFOPT_MASTER_PASSWORD—Sets a password to restrict or limit
the viewer operations that you can perform on the opened PDF document. If
the value is set to NULL, you can make any changes to the PDF document
regardless of the settings of the PRO_PDFOPT_ALLOW_* modification flags.

• PRO_PDFOPT_SHEET_RANGE—Specifies the range of sheets in a Creo
Parametric drawing that are to be exported to a PDF file. If this property is
assigned, then the integer property PRO_PDFOPT_SHEETS is set to the value
PRINT_SELECTED_SHEETS.

• PRO_PDFOPT_SELECTED_VIEW—Sets the option PRO_PDFOPT_VIEW_
TO_EXPORT to the value PRO_PDF_VIEW_SELECT_BY_NAME, if the
corresponding view is successfully found.

The function ProPDFoptionsDoublepropertySet()sets the value for a
double property of the PDF options structure. The types of export options are as
follows:

• PRO_PDFOPT_HEIGHT—Enables you to set the height for a user-defined
page size of the exported PDF file. The default value is 0.0. This option is
available only if the enum PRO_PDFOPT_SIZE is set to VARIABLE_
SIZE_IN_MM_PLOT or VARIABLE_SIZE_PLOT.

• PRO_PDFOPT_WIDTH—Enables you to set the width for a user-defined page
size of the exported PDF file. The default value is 0.0. This option is available
only if the enum PRO_PDFOPT_SIZE is set to VARIABLE_SIZE_IN_MM_
PLOT or VARIABLE_SIZE_PLOT.

• PRO_PDFOPT_TOP_MARGIN—Enables you to specify the top margin of the
view port. The default value is 0.0.

• PRO_PDFOPT_LEFT_MARGIN—Enables you to specify the left margin of
the view port. The default value is 0.0.

Interface: Data Exchange 705

• PRO_PDFOPT_BACKGROUND_COLOR_RED—Enables you to specify the
default red background color that appears behind the U3D model. You can set
any value within the range of 0.0 through 255.0. The default value is 255.0.

• PRO_PDFOPT_BACKGROUND_COLOR_GREEN—Enables you to specify the
default green background color that appears behind the U3D model. You can
set any value within the range of 0.0 through 255.0. The default value is 255.0.

• PRO_PDFOPT_BACKGROUND_COLOR_BLUE—Enables you to specify the
default blue background color that appears behind the U3D model. You can set
any value within the range of 0.0 through 255.0. The default value is 255.0.

The function ProPDFExport() exports the file to a PDF document based on
the export settings defined in the PDF options structure. Specify the complete
name and path, including the extension of the output file.
Use the function ProPDFWithProfileExport() to repeatedly export 2D
drawings to the PDF format with the same export options. These options are
stored in an XML file called a profile. You can have several such profiles. The
input arguments to this function are:

• model—A drawing model to export. This drawing model must be open and the
drawing window must be active.

• output_file—The complete path to the output file with extension.
• profile—The path to the profile to be used.
Use the function ProPDFoptionsFree() to free the memory contained in the
PDF options structure.

Importing Parameter Files
Functions Introduced:

• ProInputFileRead()
The function ProInputFileRead() imports files of several types to create
data in Creo Parametric. The file types are declared in ProUtil.h. The import
formats and their type constants are as listed in the following table:
Import Format Creo Parametric TOOLKIT

Functions
Type Constant

Relations file ProInputFileRead() PRO_RELATION_FILE

Program file PRO_PROGRAM_FILE

Configuration options file PRO_CONFIG_FILE

Setup file PRO_DWG_SETUP_FILE

Spool file PRO_SPOOL_FILE

Cable Parameters file PRO_CABLE_PARAMS_FILE

Connector Parameters file PRO_CONNECTOR_PARAMS_FILE

Model Tree Configuration PRO_ASSEM_TREE_CFG_FILE

706 Creo® Parametric TOOLKITUser’s Guide

Import Format Creo Parametric TOOLKIT
Functions

Type Constant

file
Wirelist file PRO_WIRELIST_FILE

SLD Variant file SLD_VARIANT_FILE

The option PRO_RELATION_FILE reads a text file that contains a list of all the
model relations and parameters relations in exactly the same format as the Creo
Parametric user enters them.
Use the function ProInputFileRead() with the argument PRO_
CONNECTOR_PARAMS to identify the connectors. To access parameters on
connectors and their entry ports use the following arguments:

• arg1—Represents the integer pointer to ProIdTable. ProIdTable is an
integer array of component identifiers.

• arg2—Represents the integer pointer to the number of component identifiers.
Use the function ProInputFileRead() with the argument PRO_CABLE_
PARAMS_FILE to read cable parameters. You need to set the following
arguments:

• arg1—Represents a ProSolid (part pointer).
• arg2—Represents the cable name.
Use the function ProInputFileRead() with the argument PRO_
WIRELIST_FILE to read files in Mentor Graphics LCABLE format. This
function does not create wires, but provides parameters from a wire list for use
when creating in a harness assembly a wire with the same name as that in the
LCABLE file.
Use the function ProInputFileRead() with the argument PRO_
RELATION_FILE to get the individual feature relations. To access feature
relations use the following arguments:

• arg2—Represents the individual feature relations. It is an integer pointer to the
feature identifier that gets the relations contained in a feature. If this is NULL
you get the relations contained in the model.

• arg3—It is an integer pointer. If it points to 1, then the relations in the file
must be added to the current relations, otherwise the relations in the file must
replace the current relations.

Use function ProInputFileRead() with argument PRO_SPOOL_FILE to
create new spools or update existing ones.

Interface: Data Exchange 707

Importing 2D Models
Import Format Creo Parametric TOOLKIT

Functions
Type Constant

STEP file Pro2dImportMdlnameCreate(),

Pro2dImportAppend()

PRO_STEP_FILE

IGES (2D) file PRO_IGES_FILE

DXF file PRO_DXF_FILE

DWG file PRO_DWG_FILE

CGM file PRO_CGM_FILE

MEDUSA file PRO_MEDUSA_FILE

Creo Elements/Direct
drafting files (.mi,
.bi, and .bdl)

PRO_CCD_DRAWING_FILE

IGES (2D) file ProInputFileRead() PRO_IGES_SECTION

Functions Introduced:

• Pro2dImportMdlnameCreate()
• Pro2dImportAllSheets()
• Pro2dImportAppend()
• ProInputFileRead()
The function Pro2dImportMdlnameCreate() imports interface files and
creates a new two-dimensional model with the specified name. The created
models can be drawings, layouts, diagrams, drawing formats. Use the argument to
control whether or not to import two-dimensional views.
If you want to import all the drawing sheets for formats that support multiple
drawing sheets, use the function Pro2dImportAllSheets(). The function
imports interface files with all the drawing sheets, and creates a new two-
dimensional model. For the model type PRO_MDL_DWGFORM, only the first two
drawing sheets are imported.
The function Pro2dImportAppend() appends a two-dimensional model to
the specified model.
You can import and append the Creo Elements/Direct drafting files using the
functions Pro2dImportMdlnameCreate() and
Pro2dImportAppend().
Use the function Pro2dImportMdlnameCreate() to import the Creo
Elements/Direct drafting file to a Creo Parametric drawing file. The following
data is imported from the .mi, .bi, and .bdl format files:
• Basic entities such as point, line, arc, fillet, circle, polygon, text, spline, b-

spline, center line, symmetry line, reference text line, and projected reference
points

• 2D construction geometry such as lines, arcs, circles, splines, and so on
• Linear, angular, radial, diameter, ordinate, and leader dimensions

708 Creo® Parametric TOOLKITUser’s Guide

• Tolerance values in dimensions
• Leader and non-leader notes
• Annotation views
• Drawing sheets, symbol, views, and layers
• The attributes of color, layers, line types, and text fonts
• All types of hatch including user-defined hatches
You can set the mapping options in the mapping file mi_import.pro. The
entity attributes such as color, line type, text fonts, leader arrow styles and so on
are imported from Creo Elements/Direct drafting files to Creo Parametric drawing
files depending on the settings in the mapping file.
Refer to the Creo Parametric Data Exchange Help for more information on
importing Creo/Elements Direct drafting files in Creo Parametric drawing file.
Use the function ProInputFileRead() with the argument PRO_IGES_
SECTION to import a 2D IGES section into a sketch.

Importing 3D Models
The functions described in this section are used to import files of different format
types into Creo Parametric.
Functions Introduced:

• ProIntfimportSourceTypeGet()
• ProIntfimportModelWithOptionsMdlnameCreate()
• ProIntfimportLayerFilter()
Import Format Creo Parametric TOOLKIT

Functions
Type Constant

ACIS file ProIntfimportModelWi
thOptionsMdlname
Create()

PRO_INTF_IMPORT_ACIS

CADDS file PRO_INTF_IMPORT_CADDS

CATIA (.model) file PRO_INTF_IMPORT_CATIA_
MODEL

CATIA (.session) file PRO_INTF_IMPORT_CATIA_
SESSION

DXF file PRO_INTF_IMPORT_DXF

ICEM file PRO_INTF_IMPORT_ICEM

IGES file PRO_INTF_IMPORT_IGES

Neutral file PRO_INTF_IMPORT_NEUTRAL

Parasolid-based CADDS system
file

PRO_INTF_IMPORT_PARASOLID

POLTXT file PRO_INTF_IMPORT_POLTXT

STEP file PRO_INTF_IMPORT_STEP

VDA file PRO_INTF_IMPORT_VDA

CATIA (.CATpart) file PRO_INTF_IMPORT_CATIA_
PART

Interface: Data Exchange 709

Import Format Creo Parametric TOOLKIT
Functions

Type Constant

UG file PRO_INTF_IMPORT_UG

Creo View (.ol and .ed) files PRO_INTF_IMPORT_
PRODUCTVIEW

JT Open format PRO_INTF_IMPORT_JT

CATIA Graphical Representation
(CGR) format

PRO_INTF_IMPORT_CATIA_CGR

SolidWorks Part (.sldprt) file PRO_INTF_IMPORT_SW_PART

SolidWorks Asembly (.sldasm)
file

PRO_INTF_IMPORT_SW_ASSEM

Inventor Part (.ipt) file PRO_INTF_IMPORT_INVENTOR_
PART

Inventor Assembly (.iam) file PRO_INTF_IMPORT_INVENTOR_
ASSEM

STL file PRO_INTF_IMPORT_STL

VRML file PRO_INTF_IMPORT_VRML

CATIA (.product) file PRO_INTF_IMPORT_CATIA_
PRODUCT

Creo Elements/Direct file
(Assemblies and parts)
• bundle—.bdl
• modeling —soliddesigner .sda,

.sdp,.sdac, and .sdpc
• package—.pkg

PRO_INTF_IMPORT_CC

Solid Edge Part (.par) file PRO_INTF_IMPORT_SEDGE_
PART

Solid Edge Assembly (.asm) file PRO_INTF_IMPORT_SEDGE_
ASSEMBLY

Solid Edge Sheet metal (.psm) file PRO_INTF_IMPORT_SEDGE_
SHEETMETAL_PART

3D Manufacturing Format (3MF) PRO_INTF_IMPORT_3MF

710 Creo® Parametric TOOLKITUser’s Guide

The following data is included during the import of models from other formats to
Creo Parametric:
• 3D Manufacturing Format (3MF)—From Creo Parametric 5.0.1.0 onward, you

can import 3MF files containing part and assembly models to Creo Parametric.
You can import part-level colors, top-assembly parameters, and facet geometry
from 3MF models to Creo Parametric.

• Autodesk Inventor—You can import Autodesk Inventor models to Creo
Parametric. The import includes basic geometry such as solids, quilts, and
surfaces from Autodesk Inventor models to Creo Parametric. You can also
import datum features, colors, attributes, and wire body datum curves from
Inventor part and assembly models.

Note
Depending on the Autodesk Inventor model, Creo Parametric imports the
model as a part or an assembly. To let Creo Parametric decide if the
Autodesk Inventor model must be imported as a part or assembly, in the
function
ProIntfimportModelWithOptionsMdlnameCreate(), you
must specify the input argument ProMdlType as PRO_MDL_UNUSED.

• JT—JT models are imported to Creo Parametric with their color overrides.
Components with color overrides at any level in an assembly structure are
supported.

From Creo Parametric 3.0 onward, the Product Manufacturing Information
(PMI) of the annotations is imported as semantic representation from JT
models to Creo Parametric models. The semantic import is supported only for
3D notes and basic dimensions. All the other types of annotations are imported
as graphical entities. You can import the planar and zonal cross-sections of
part and assembly models from JT files to Creo Parametric.

Note
From Creo Parametric 2.0 M200 onward, the license INTF_for_JT is
required to import a JT file to Creo Parametric. If the license is not
available the functions return the error PRO_TK_NO_LICENSE.

• Creo Elements/Direct—From Creo Parametric 3.0 onward, the Product
Manufacturing Information (PMI) of the annotations is imported as semantic
representation fromCreo Elements/Direct models to Creo Parametric models.
The semantic import is supported only for 3D notes and basic dimensions. All

Interface: Data Exchange 711

the other types of annotations are imported as graphical entities. You can also
import the clipping features owned by the Creo Elements/Direct part and
assembly models as cross-sections in Creo Parametric.

• Creo View—You can import colors assigned to the components of assemblies
and their sub-assembly models, including the colors of the sub-level entities
such as parts, quilts, and faces from Creo View to Creo Parametric. Creo View
models are imported to Creo Parametric with their color overrides.
Components with color overrides at any level in an assembly structure are
supported. Along with components, color overrides are also supported for
component model items, such as, face and quilts.

• SolidWorks—You can import basic geometry such as solids, quilts, and
surfaces from SolidWorks models to Creo Parametric. The import includes
datum features, colors, attributes, and layers.

Note
Depending on the SolidWorks model, Creo Parametric imports the model
as a part or an assembly. To let Creo Parametric decide if the SolidWorks
model must be imported as a part or assembly, in the function
ProIntfimportModelWithOptionsMdlnameCreate(), you
must specify the input argument ProMdlType as PRO_MDL_UNUSED.

• Solid Edge—From Creo Parametric 3.0 M010 onward, you can import Solid
Edge part and assembly models to Creo Parametric. The import includes
boundary representation geometry, datum features, colors, and attributes.

From Creo Parametric 3.0 M030 onward, Solid Edge models are imported to
Creo Parametric with their color overrides. Components with color overrides
at any level in an assembly structure are supported.

From Creo Parametric 3.0 M020 onward, you can also import a Solid Edge
sheet metal part to Creo Parametric.

712 Creo® Parametric TOOLKITUser’s Guide

Note
Depending on the Solid Edge model, Creo Parametric imports the model
as a part or an assembly. To let Creo Parametric decide if the Solid Edge
model must be imported as a part or assembly, in the function
ProIntfimportModelWithOptionsMdlnameCreate(), you
must specify the input argument ProMdlType as PRO_MDL_UNUSED.

• Unigraphics—You can import basic geometry such as solids, quilts, and
surfaces from Unigraphics models to Creo Parametric. The import includes
datum features, colors, attributes, and layers.

Note
Depending on the Unigraphics model, Creo Parametric imports the model
as a part or an assembly. To let Creo Parametric decide if the Unigraphics
model must be imported as a part or assembly, in the function
ProIntfimportModelWithOptionsMdlnameCreate(), you
must specify the input argument ProMdlType as PRO_MDL_UNUSED.

Note
Refer to the Creo Parametric Data Exchange Help for more information on
importing geometry to Creo Parametric. Refer to the compatibility matrix on
PTC.com for the supported software versions.

The function ProIntfimportSourceTypeGet() is a utility that returns the
type of model that can be created from the geometry file. This function is not
applicable for all formats. If this function is not valid for a geometric file, you will
need to know the type of model you want to create (part, assembly, or drawing).
The function ProIntfimportModelWithOptionsMdlnameCreate()
imports objects of other formats using a profile and creates a new model or set of
models with the specified name and representation. Once the profile is set, it
remains valid for the entire session unless it is reset with another profile. The
input arguments of this function are:

• import_file—Full path to file to be imported.
• profile—The import profile path. An import profile is an XML file with the

extension .dip. It contains the options that control an import operation. It
also contains all the options for the supported 3D import formats. Refer to the

Interface: Data Exchange 713

Creo Parametric Online Help for more information on creation and
modification of import profiles.

Note
The input argument profile allows you to include the import of Creo
Elements/Direct containers, face parts, wire parts, and empty parts.

• type—The type of file to be imported.

The following formats are supported for importing structure and graphics level
of details:

○ Creo View (i.e. Product View, .ol, .ed, .edz, .pvs, .pvz) files (PRO_INTF_
IMPORT_PRODUCTVIEW)

○ CATIAV5 (CATPart (PRO_INTF_IMPORT_CATIA_PART, CATProduct
(PRO_INTF_IMPORT_CATIA_PRODUCT), CGR (PRO_INTF_
IMPORT_CATIA_CGR)) files

○ SolidWorks (.sldprt (PRO_INTF_IMPORT_SW_PART), .sldasm(PRO_
INTF_IMPORT_SW_ASSEM)) files

○ Unigraphics NX (PRO_INTF_IMPORT_UG) files
• create_type—The type of model to create. This could be part, assembly, or

drawing (for STEP associative drawings).
• rep type—The representation type to be used for importing. The enumerated

type ProImportRepType defines the representation type and has the
following values:

○ PRO_IMPORTREP_MASTER—This is the default import type. It imports
the geometric and the nongeometric data (annotations, datums, coordinate
systems, creation of features and so on) of the assembly and displays the
full representation of the assembly.

○ PRO_IMPORTREP_STRUCTURE—Imports the product structure or the
meta data of the assemblies.

○ PRO_IMPORTREP_GRAPHICS—Imports the display data of the
assemblies.

714 Creo® Parametric TOOLKITUser’s Guide

Note
The import representation types PRO_IMPORTREP_STRUCTURE and
PRO_IMPORTREP_GRAPHICS do not create model geometry in Creo
Parametric, although they allow the import of the fully-functional
assemblies.

• new_model_name— The name of the new top level import model.
• filter_func—Callback to the function ProIntfimportLayerFilter()

that determines how to display and map layers from the imported model. If
this is NULL, the default layer handling will take place.

• application_data—The application data to be passed to the filter function. Can
be NULL.

• created_model—The handle to the created model (in case of an assembly – the
handle to the top assembly). Even if this is NULL, the model is created.

Interface: Data Exchange 715

Note
• When importing an assembly using the function

ProIntfimportModelWithOptionsMdlnameCreate() if any
component of the assembly is missing, then during import an empty
placeholder with the missing component name is created in the model tree. For
example, during import if the missing component is a part, an empty part is
created. Similarly, if the missing component is a subassembly, then an empty
subassembly is created. Placeholders for missing components are created only
for the following formats:
○ CATIAV5
○ CATIAV4
○ Unigraphics
○ CADDS 5
○ SolidWorks
○ Creo View (.ol and .ed) files
○ JT Open format

• The functions ProIntfimportModelCreate() and
ProIntfimportModelWithOptionsCreate() have been deprecated.

The function
ProIntfimportModelWithOptionsMdlnameCreate() supersedes
the functions ProIntfimportModelCreate() and
ProIntfimportModelWithOptionsCreate(). The deprecated
functions may not be supported in future releases of Creo Parametric It is
recommended that you rebuild your applications with the new function.

Use the function
ProIntfimportModelWithOptionsMdlnameCreate() instead with
profile as NULL and rep type (representation type) as PRO_IMPORTREP_
MASTER.

716 Creo® Parametric TOOLKITUser’s Guide

○ From Creo Parametric 3.0 M080 onward, the function
ProIntfimportModelWithOptionsMdlnameCreate() imports
a JT file to Creo Parametric only if the license INTF_for_JT is
available. If the license is not available the functions return the error PRO_
TK_NO_LICENSE.

○ From Creo Parametric 2.0 M200 onward, the functions
ProIntfimportModelCreate(),
ProIntfimportModelWithOptionsCreate() and
ProIntfimportModelWithProfileCreate() import a JT file to
Creo Parametric only if the license INTF_for_JT is available. If the
license is not available the functions return the error PRO_TK_NO_
LICENSE.

The function ProIntfimportModelWithProfileCreate() imports
objects of other formats using a profile and creates a new model or set of models
with the specified name.
The function ProIntfimportModelWithProfileCreate() has been
deprecated. Use the function
ProIntfimportModelWithOptionsMdlnameCreate() instead with
PRO_IMPORTREP_MASTER as the representation type.
The function ProIntfimportLayerFilter() is a callback function that
allows your application to determine the status of each of the imported layers. You
can modify the layer information using the functions described in the next section.

Modifying the Imported Layers
Layers help you organize model items so that you can perform operations on those
items collectively. These operations primarily include ways of showing the items
in the model, such as displaying or blanking, selecting, and suppressing. The
methods described in this section modify the attributes of the imported layers.
Functions Introduced:

• ProLayerfilterdataNameGet()
• ProLayerfilterdataNameSet()
• ProLayerfilterdataCountsGet()
• ProLayerfilterdataActionSet()
Imported layers are identified by their names. The function
ProLayerfilterdataNameGet() returns the name of the layer while the
function ProLayerfilterdataNameSet() can be used to set the name of
the layer.
The function ProLayerfilterdataCountsGet() specifies the following:

Interface: Data Exchange 717

• Number of curves on the specified layer
• Number of surfaces on the specified layer
• Number of trimmed surfaces on the specified layer
The function ProLayerfilterdataActionSet() sets the display status of
the imported layers. You can set the display status of the layers to one of the
following:

• Show—Display the specified layer.
• Blank—Make the specified layer blanked.
• Hidden—(Assembly mode only) Make the specified layer hidden.
• Skip—Do not import the entities on this layer.
• Ignore—Import only entities on this layer but not the layer

Example 5: Importing a 3D Model With Layer Filter Options
The sample code in UgInterfaceImport.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_interface shows
how to import from an IGES file while filtering out a certain layer to be renamed
and blanked, using the filter function UserLayerFilter(). It also
demonstrates how to use the function ProIntfimportSourceTypeGet() to
determine the type of the model.

Validation Score for Imports
Functions Introduced:

• ProIntfimportValidationscoreCalculate()
• ProIntfimportValidationscoreGet()
• ProIntfimportValidationpreferencesLoad()
You can import CATIAV5, NX, SolidWorks, SolidEdge, Autodesk Inventor, and
Creo View files with various properties such as surface area, volume, and the
coordinates for the center of gravity (COG) into Creo Parametric. After import,
Creo Parametric has to calculate the value of these properties and report if there
are any differences in the values. Also general failures during import, such as,
failure to import an assembly component or failure to solidify a part must be
reported.
To report the value differences and failures, the validation score for a model is
created. The validation score is created for imported, regenerated, or updated
models. The properties such as, surface area, volume, and the coordinates for the
center of gravity (COG) are converted in to geometrical validation properties.
Assembly models include the validation property that is related to the product
structure. Creo Parametric compares the validation properties of the imported

718 Creo® Parametric TOOLKITUser’s Guide

models with the mass properties of the source models and computes a score of the
data conversion. The validation score of a model PTC_VAL_IMP_SCORE is a
model parameter. The score is created for the parent assembly and its individual
components and has the following values:
• PASS

• PASS_WITH_WARNINGS

• FAIL

Use the function ProIntfimportValidationscoreCalculate() to
calculate the validation score for the specified model. The function
ProIntfimportValidationscoreGet() retrieves the validation score for
the specified model, where the score is already calculated using the function
ProIntfimportValidationscoreCalculate().
The validation score depends on the data conversion from source files to Creo
Parametric. If you want certain parameters to be ignored and passed, you can set
these preferences for validation data in the config.val file. Use the function
ProIntfimportValidationpreferencesLoad() to specify the
config.val file that must be used to load the preferences for data validation
while calculating validation score.
Refer to the Creo Parametric Data Exchange online help, for more information.

Interface: Data Exchange 719

29
Interface: Importing Features

Creating Import Features from Files.. 721
Creating Import Features from Arbitrary Geometric Data .. 724
Redefining the Import Feature .. 737
Import Feature Properties .. 738
Extracting Creo Parametric Geometry as Interface Data... 740
Associative Topology Bus Enabled Interfaces .. 741
Associative Topology Bus Enabled Models and Features ... 742

This chapter describes how to create import features in Creo Parametric.

Note
PTC strongly recommends that you create import features in a Creo
Parametric session that has only those models open where the feature is to be
created. It is also recommended not to follow the creation of import features
with calls to the functions ProMdlErase() or ProMdlEraseAll() until
the control returns to Creo Parametric, since this may interfere with erasing
temporary objects at the end of the import.

720 Creo® Parametric TOOLKITUser’s Guide

Creating Import Features from Files
To create import features in Creo Parametric from external format files use the
functions described in this section.
Functions Introduced:

• ProIntfDataSourceInit()
• ProImportfeatCreate()
• ProImportfeatureWithProfileCreate()
Superseded Functions

• ProImportfeatWithProfileCreate()
The function ProIntfDataSourceInit() is used to build the interface data
source required by the functions ProImportfeatCreate() and
ProImportfeatureWithProfileCreate().
The input arguments of this function are:

• intf_type—Specifies the type of file to import. The valid format files from
which the user can create the import features are specified in the enumerated
data type ProIntfType:

Type Constant Import Format
PRO_INTF_NEUTRAL_FILE Neutral file
PRO_INTF_IGES IGES 3D file
PRO_INTF_STEP STEP file
PRO_INTF_VDA VDA file
PRO_INTF_SET SET file
PRO_INTF_PDGS PDGS file
PRO_INTF_ICEM ICEM file
PRO_INTF_ACIS(*.sat) ACIS format file
PRO_INTF_DXF DXF file
PRO_INTF_CDRS CDRS file
PRO_INTF_STL STL file
PRO_INTF_VRML VRML file
PRO_INTF_PARASOLID Parasolid-based CADDS system file
PRO_INTF_AI AI file
PRO_INTF_CATIA_PART CATIA (.CATpart) file
PRO_INTF_UG UG file
PRO_INTF_PRODUCTVIEW Creo View (.ol) files
PRO_INTF_CATIA_PRODUCT CATIAV5 Assembly file
PRO_INTF_CATIA_CGR CATIA Graphical Representation (CGR) format
PRO_INTF_JT JT Open Interface
PRO_INTF_INVENTOR_PART Inventor Part (.ipt) file
PRO_INTF_INVENTOR_ASM Inventor Assembly (.iam) file

Interface: Importing Features 721

Type Constant Import Format
PRO_INTF_SE_PART Solid Edge part (.par) file
PRO_INTF_SE_SHEETMETAL_PART Solid Edge Sheet metal (.psm) file
PRO_INTF_3MF 3D Manufacturing Format (3MF)

• p_source—the name of the file with extension. The specified format file
should exist in the current working directory or in a path specified in the
search_path configuration option.

This function returns the handle to the ProIntfDataSource object, which
should be passed to the functions ProImportfeatCreate() and
ProImportfeatureWithProfileCreate().
The function ProImportfeatCreate() is used to create a new import
feature in the Creo Parametric solid model. The input arguments of this function
are:

• p_solid —Specifies the part in which the user wants to create the import
feature.

• data_source—Specifies a pointer to the interface data source. Use the function
ProIntfDataSourceInit() to get the handle to the
ProIntfDataSource object.

• p_csys — Specifies the coordinate system of the part with which the user
wants to align the import feature. If this is NULL, the function uses the default
coordinate system in the Creo Parametric model and the import feature will be
aligned with respect to this coordinate system.

• p_attributes—Specifies the attributes for the creation of the new import
feature. Please see the section Import Feature Attributes on page 736 for more
information.

Note
From Creo Parametric 2.0 M200 onward, the function
ProImportfeatCreate() imports a JT file to Creo Parametric only
if the license INTF_for_JT is available. If the license is not available
the function returns the error PRO_TK_NO_LICENSE.

The function ProImportfeatCreate() returns the ProFeature handle for
the created import feature.
In Creo Parametric 7.0.0.0 and later, the function
ProImportfeatWithProfileCreate() is deprecated. Use the function
ProImportfeatureWithProfileCreate() instead.

722 Creo® Parametric TOOLKITUser’s Guide

The function ProImportfeatureWithProfileCreate() is used to create
a new import feature in the Creo Parametric solid model. The input arguments
follow:

• p_solid—Pointer to the solid part. Assembly case is not supported.
• data_source—Source of data to create the import feature.
• p_csys—Pointer to the reference coordinate system. If this is NULL, the

function uses the default coordinate system.
• profile—Path to the import file. If this value is NULL, the function

ProImportfeatureWithProfileCreate() works same as
ProImportfeatCreate().

Note
An import profile is an XML file with the extension dip (Dex In Profile)
and contains the options that control an import operation. It contains all the
options for the supported 3D import formats. Refer to the Creo Parametric
Help for more information on creation and modification of import profiles.

• cut_or_add—Set to PRO_B_TRUE for imported geometry representing a cut
or PRO_B_FALSE otherwise.

• body_use_opt—Generic body options.
• body_arr—ProArray of bodies. Size of ProArray must be 1.
The output argument p_feat_handle is the handle to the new import feature.
If this is NULL, the feature is still created.

Note
• The function ProImportfeatureWithProfileCreate()(cannot

create an import feature using an import profile for the STL and VRML
formats. Once a profile is set, it remains valid for the entire session unless it is
reset with another profile.

• From Creo Parametric 2.0 M200 onward, the function
ProImportfeatureWithProfileCreate() imports a JT file to Creo
Parametric only if the license INTF_for_JT is available. If the license is not
available the function returns the error PRO_TK_NO_LICENSE.

The function ProDatumcurveFromfileCreate() creates a new import
feature containing a datum curve in the Creo Parametric model. The input
arguments of this function are:

Interface: Importing Features 723

• p_solid—Specifies the part in which you create the import feature.
• full_file_name—Specifies the name of the file from which you create the

import feature.
• file_type—Specifies the file type to import. It is given by the ProIntfType

enumerated type. The file types supported by this function are as follows.
Type Constant Import Format
PRO_INTF_NEUTRAL_FILE Neutral file
PRO_INTF_IGES IGES 3D file
PRO_INTF_STEP STEP file
PRO_INTF_VDA VDA file
PRO_INTF_ACIS ACIS format file
PRO_INTF_DXF DXF file
PRO_INTF_AI AI file
PRO_INTF_CATIA_PART CATIA (.CATpart) file
PRO_INTF_UG UG file
PRO_INTF_JT JT Open Interface
PRO_INTF_IBL IBL file
PRO_INTF_PTS PTS file

For all other file types that are not supported, the function
ProDatumcurveFromfileCreate() returns PRO_TK_INVALID_
TYPE.

• p_csys — Specifies the coordinate system of the part with which you align the
import feature If this is NULL, the function uses the default coordinate system
and the import feature is aligned with respect to this coordinate system.

Note
From Creo Parametric 2.0 M200 onward, the function
ProDatumcurveFromfileCreate() creates a new import JT feature
only if the license INTF_for_JT is available. If the license is not available
the function returns the error PRO_TK_NO_LICENSE.

Creating Import Features from Arbitrary
Geometric Data
You can create an import feature in a Creo Parametric model by building the
required entity data in the Creo Parametric TOOLKIT application.

724 Creo® Parametric TOOLKITUser’s Guide

The advantages of importing features from a Creo Parametric TOOLKIT
application are:

• You can create virtually non-parametric user-defined geometry at a desired
location. This is sometimes an alternative to parametric feature creation, which
can be more complicated.

• Import features are regenerated more quickly than corresponding groups of
parametric features.

• You can integrate Creo Parametric with non-Creo Parametric supported
geometry file formats.

The following sequence of steps is required to create the import feature from
memory:

• Allocate the interface data.
• Add surfaces, edges, quilts, and datums.
• Create the import feature from the interface data.
These steps are described in detail in the following sections.

Allocating ProInterfacedata
Function Introduced:

• ProIntfDataAlloc()
Use the function ProIntfDataAlloc() to allocate memory for the interface
data structure.

Adding Surfaces
Function Introduced:

• ProSurfacedataAlloc()
Use the function ProSurfacedataAlloc() to allocate memory for the
surface data. Once the surface data is initialized, it will be appended to the
interface data.

Initializing Surface Data
Functions Introduced:

• ProSurfacedataInit()
• ProPlanedataInit()
• ProCylinderdataInit()
• ProConedataInit()

Interface: Importing Features 725

• ProTorusdataInit()
• ProSrfrevdataInit()
• ProTabcyldataInit()
• ProRulsrfdataInit()
• ProSplinesrfdataInit()
• ProCylsplsrfdataInit()
• ProBsplinesrfdataInit()
• ProFilsrfdataInit()
Use the function ProSurfacedataInit() to initialize the surface data
structure.
The input arguments of this function are:

• Surface_type—Specifies the type of surface to be created. The types of
surfaces are:

○ PRO_SRF_PLANE—Plane
○ PRO_SRF_CYL—Cylinder
○ PRO_SRF_CONE—Cone
○ PRO_SRF_TORUS—Torus
○ PRO_SRF_COONS—Coons Patch
○ PRO_SRF_SPL—Spline Surface
○ PRO_SRF_FIL—Fillet Surface
○ PRO_SRF_RUL—Ruled Surface
○ PRO_SRF_REV—General Surface of Revolution
○ PRO_SRF_TABCYL—Tabulated Cylinder
○ PRO_SRF_B_SPL—B-spline surface
○ PRO_SRF_FOREIGN—Foreign Surface
○ PRO_SRF_CYL_SPL—Cylindrical Spline Surface

The type of the surface determines the function to be used to initialize the
surface data structure.For example, if the type of surface to be created is PRO_
SRF_PLANE, then the function ProPlanedataInit() should be used to
initialize the surface data structure

• surf_uv_min—Specifies the minimum uv extents of the surface.
• surf_uv_max—Specifies the maximum uv extents of the surface.
• surf_orient—Specifies the orientation of the surface. By default the value is

PRO_SURF_ORIENT_OUT

726 Creo® Parametric TOOLKITUser’s Guide

• p_surf_shape—The data containing the information about the shape of the
surface.

• Surface_Id—Specifies a unique identifier of the Surface.
Depending on the shape of the surface, call one of the following functions to
create the surface data structure ProSurfaceshapedata and assign it to
variable p_surf_shape of function ProSurfacedataInit(). Ensure that
the function used to create the ProSurfaceshapedata matches with the
ProSrftype value used in ProSurfacedataInit().

• ProPlanedataInit()

• ProCylinderdataInit()

• ProConedataInit()

• ProTorusdataInit()

• ProSrfrevdataInit()

• ProTabcyldataInit()

• ProRulsrfdataInit()

• ProSplinesrfdataInit()

• ProCylsplsrfdataInit()

• ProBsplinesrfdataInit()

Note
Set the configuration option intf_in_keep_high_deg_bspl_srfs
to YES to preserve the B-spline surfaces returned by
ProBsplinesrfdataInit() in the ProIntData data structure. If
this configuration option is not set, these surfaces are interpreted as spline
surfaces.

• ProFilsrfdataInit()

Refer to the Geometry Representations on page 2147 appendix for more
information on how to use the above functions.

Interface: Importing Features 727

Note
The following return values for the functions
ProBsplinesrfdataInit(), ProRulsrfdataInit(),
ProSrfrevdataInit(), and ProTabcyldataInit() should be
treated as warnings:

PRO_TK_BSPL_UNSUITABLE_DEGREE

PRO_TK_BSPL_NON_STD_END_KNOTS

PRO_TK_BSPL_MULTI_INNER_KNOTS

They indicate that the geometry finally imported in Creo Parametric is
different from the geometry initially supplied to the above functions. The
geometry is not rejected by the functions and is used to generate the
ProSurfaceshapedata data structure.

Surfacedata Contours
The geometric representation of the surface created above is unbounded, that is
the nature of the surface boundaries is determined by its array of contours.
Multiple contours can be used for surfaces with internal voids.
Functions Introduced:

• ProSurfacedataContourArraySet()
• ProContourdataAlloc()
• ProContourdataInit()
• ProContourdataEdgeIdArraySet()
Use the function ProSurfacedataContourArraySet() to set an array of
contours on the surface.
The input arguments of this function are:

• p_surf_data—Specifies the surface data to which the array of contour data is
to be set.

• contour_array—Specifies an array of contours on the surface. The
ProContourdata handle can be obtained by using the following functions
in sequence:

ProContourdataAlloc()

ProContourdataInit()

ProContourdataEdgeIdArraySet()

728 Creo® Parametric TOOLKITUser’s Guide

Use the function ProContourdataAlloc() to allocate memory to the
contour data structure.
Use the function ProContourdataInit() to initialize the contour data
structure. The input argument of this function is:

• contour_trav — Specifies the contour traversal. This parameter has the
following values:

○ PRO_CONTOUR_TRAV_INTERNAL—Internal Contour
○ PRO_CONTOUR_TRAV_EXTERNAL—External Contour

The function returns the allocated contour data structure.
Use the function ProContourdataEdgeIdArraySet() to set identifiers to
an array of edges, that form the boundary of the specified surface.
The input arguments of this function are:

• p_contour_data—Specifies the contour data to which the array of edge
identifiers have to be set.

• edge_id_arr—Specifies the array of edge identifiers. These identifiers must be
same as those provided in the ProEdgedata structures described below.

For example, if the surface is bounded by 4 edges, then the identifier of each
edge should be assigned to each element of an array of integers of size 4.

Appending the Surface Data to the Interface Data
Function Introduced:

• ProIntfDataSurfaceAppend()
Use the function ProIntfDataSurfaceAppend() to append the surface
data into the interface data.
Repeat the sequence for each surface desired in the import feature.

Adding Edges
Functions Introduced:

• ProEdgedataAlloc()
• ProEdgedataInit()
• ProCurvedataAlloc()
• ProLinedataInit()
• ProArcdataInit()
• ProEllipsedataInit()

Interface: Importing Features 729

• ProSplinedataInit()
• ProBsplinedataInit()
If the import feature to be created requires any edge information, then call the
functions list above in sequence, else skip this section.
Use the function ProEdgedataAlloc() to allocate memory for the edge data
structure. After initialization, this data will be appended to the interface data.
Use the function ProEdgedataInit() to initialize the edge data structure.
The following are the input arguments:

• edge_id — Specifies a unique identifier of the edge.
• edge_surf_ids—Specifies the ID of the surfaces on either side of the edge.
• edge_directions —Specifies the edge directions on the surface.
• edge_uv_point_arr —Specifies an array of UV points on the surfaces. The

value can be NULL.
• p_edge_uv_curve_data—Specifies the edge UV curves on the surfaces. The

value can be NULL.
• p_edge_curve_data—Specifies the curve data handle in the form of the

ProCurvedata structure. This data handle is returned by the functions
ProLinedataInit(), ProArcdataInit(),
ProEllipsedataInit(), ProSplinedataInit(), or
ProBsplinedataInit(). Use the function ProCurvedataFree to
free the ProCurvedata data handle.

Note
PTC recommends that you split the closed loop edge into two or more
continuous edges while specifying the inputs to the function
ProEdgedataInit(). For example, to create a circular edge, instead
of specifying the start angle as 0 and the end angle as 360, split the circular
edge into 2 or more edges. The angular measurements of the split edges
could be 0 to 30 for the first split and 30 to 360 for the second split. The
function ProEdgedataInit() must be called for each split.

Use the function ProCurvedataAlloc() to allocate memory for the curve
data structure. The curve data structure defines the edge profile.
Depending on the type of curve specified for the edge, call one of the following
functions to initialize the curve data.

• ProLinedataInit()

• ProArcdataInit()

730 Creo® Parametric TOOLKITUser’s Guide

• ProEllipsedataInit()

• ProSplinedataInit()

• ProBsplinedataInit()

Use the function ProLinedataInit() to initialize the line data structure.
Specify the start of the line and end of the line as inputs of this function.
Use the function ProArcdataInit() to initialize an arc data structure. The
input arguments of this function are:

• vector1—Specifies the first vector of the arc coordinate system.
• vector2—Specifies the second vector of the arc coordinate system.
• origin—Specifies the center of the arc coordinate system
• start_angle—Specifies the starting angle (in radians) of the arc.
• end_angle —Specifies the end angle (in radians) of the arc.
• radius —Specifies the radius of the arc.
Use the function ProEllipsedataInit() to initialize an ellipse data
structure. The input arguments of this function are:

• center—Specifies the center of the ellipse.
• x_axis—Specifies the first (x) axis vector of the ellipse.
• plane_normal—Specifies the axis vector that is normal to the plane of the

ellipse.
• x_radius—Specifies the radius of the ellipse in the direction of ‘x’ axis.
• y_radius—Specifies the radius of the ellipse in the direction of ‘y’ axis. The

‘y’ axis can be found as a vector product of the plane_normal on x_
axis.

• start_ang—Specifies the starting angle (in radians) of the ellipse.
• end_ang—Specifies the end angle (in radians) of the ellipse.
Use the function ProSplinedataInit() to initialize the spline data structure.
The input arguments of this function are:

• par_arr —Specifies an array of spline parameters
• pnt_arr—Specifies an array of spline interpolant points
• tan_arr—Specifies an array of tangent vectors at each point
• num_points—Specifies the size for all the arrays
Use the function ProBsplinedataInit() to initialize the B-spline data
structure. The input arguments of this function are:

• degree—Specifies the degree of the basis function.
• params —Specifies an array of knots on the parameter line.

Interface: Importing Features 731

• weights —In the case of rational B-splines, it specifies an array of the same
dimension as the array of c_pnts. Else, the value of this argument is NULL.

• c_pnts—Specifies an array of knots on control points.
• num_knots—Specifies the size of the params array.
• num_c_points—Specifies the size of the c_pnts and the size of weights if it is

not NULL.

Note
Although ProBsplinedataInit() returns B-spline curves, these
curves are interpreted as spline curves in the ProIntData data structure
used by the function ProImportfeatCreate() while creating the
import feature.

The values PRO_TK_BSPL_UNSUITABLE_DEGREE and PRO_TK_
BSPL_NON_STD_END_KNOTS returned by
ProBsplinedataInit() should be treated as warnings. These values
indicate that the geometry finally imported in Creo Parametric is different
from the geometry initially supplied to the function. The geometry is not
rejected by ProBsplinedataInit() and is used to generate the
ProCurvedata data structure.

Appending the Edge Data to the Interface Data
Function Introduced:

• ProIntfDataEdgeAppend()
Use the function ProIntfDataEdgeAppend() to append the edge data into
the interface data.
Repeat the sequence for each edge required by the import feature.

Adding Quilts
Functions Introduced:

• ProQuiltdataAlloc()
• ProQuiltdataInit()
• ProQuiltdataSurfArraySet()
• ProIntfDataQuiltAppend()
Use the function ProQuiltdataAlloc() to allocate memory to the quilt data
structure.

732 Creo® Parametric TOOLKITUser’s Guide

Use the function ProQuiltdataInit() to assign the user defined identity to
the quilt data structure. Specify a unique identity for the quilt as the input
argument. The function returns the handle to the quilt data structure.
Use the function ProQuiltdataSurfArraySet() to define an array of
surfaces as a quilt. The input arguments of this function are:

• p_quilt_data—Specifies a handle to the quilt data to which we want to assign
the set of surfaces.

• arr_p_surf—Specifies an array of surfaces that will be defined as a quilt.
Use the function ProIntfDataQuiltAppend() to append the quilt data to
the interface data. The input arguments of this function are:

• p_intfdata —Specifies a handle to the interface data to which you want to
append the quilt data.

• p_quiltdata —Handle to the quilt data.
Repeat the sequence for each quilt required in the import feature.

Adding Datums
Functions Introduced:

• ProDatumdataAlloc()
Use the function ProDatumdataAlloc() to allocate memory to the datum
data structure.

Initializing Datums
• ProDatumdataInit()
• ProDatumCsysdataInit()
• ProDatumCurvedataInit()
• ProDatumPlanedataInit()
• ProDatumdataMemoryFree()
Use the function ProDatumdataInit() to initialize the datum data structure.
The input arguments of this function are:

• datum_id—Specifies a unique identifier of the datum.
• datum_type—Specifies the datum type. The types of datums are:

○ PRO_CSYS

○ PRO_CURVE

○ PRO_DATUM_PLANE

Interface: Importing Features 733

• datum_name—Specifies the name to be assigned to the datum.
• p_datum_ob j—The datum object that contains the geometrical information

about the datum. Depending on the type of the datum to be created, one of the
following functions must be used to create the ProDatumobject data
structure.

○ ProDatumCsysdataInit()

○ ProDatumCurvedataInit()

○ ProDatumPlanedataInit()

Note
The value PRO_TK_BSPL_MULTI_INNER_KNOTS returned by
ProDatumCurvedataInit() should be treated as a warning. This
value indicates that the geometry finally imported in Creo Parametric is
different from the geometry initially supplied to the function. The
geometry is not rejected by ProDatumCurvedataInit() and is used
to generate the ProCurvedata data structure.

Use the function ProDatumdataMemoryFree() to free the top-level memory
used by the datum data structure.

Appending the Datum Data to the Interface Data
Use the function ProIntfDataDatumAppend() to append the datum data to
the interface data required to create the import feature. The input arguments are:

• p_intfdata—Specifies the interface data to which the datum data must be
appended.

• p_datumdata —Specifies a handle to the datum data obtained from the
function ProDatumdataInit().

• Repeat the sequence for each datum member required to be in the import
feature.

Creating Features from the Interface Data
Functions Introduced:

• ProIntfDataSourceInit()
• ProImportfeatCreate()
• ProIntfDataFree()

734 Creo® Parametric TOOLKITUser’s Guide

Use the function ProIntfDataSourceInit() to build the interface data
source required by the functions ProImportfeatCreate() and
ProImportfeatureWithProfileCreate(). The input arguments of this
function are:

• intf_type—Specifies the type of the interface. Since the user builds all the data
required by the interface, the value should be PRO_INTF_NEUTRAL.

• p_source—Specifies the handle to the interface data source.
The function returns the handle ProIntfDataSource, which must be passed
to the functions ProImportfeatCreate() and
ProImportfeatureWithProfileCreate().
Use the function ProImportfeatCreate() to create the import feature in the
Creo Parametric solid model. The input arguments of this function are:

• p_solid—Specifies the part or assembly in which the user wants to create the
import feature.

• data_source—Specifies a pointer to the interface data source. Use the function
ProIntfDataSourceInit() to get the handle to the interface data
source.

• p_csys—Specifies the co-ordinate system of the part with which you want to
align the import feature. If this is NULL, the function uses the default
coordinate system in the Creo Parametric model and the import feature will be
aligned with respect to that coordinate system.

• p_attributes—Specifies the attributes for the creation of the new import
feature. Refer to the section Import Feature Attributes on page 736 for more
information.

The function ProImportfeatCreate() returns the ProFeature handle for
the created import feature.
If your Creo Parametric TOOLKIT application is built using Creo Parametric 6.0
and you have the function ProImportfeatCreate() in your application,
then the same application works as it is in Creo Parametric 7.0.0.0.

Note
If you are planning to recompile your Creo Parametric TOOLKIT in Creo
Parametric 7.0.0.0, you must set the default value of the enumerated data type
body_use_opt to PRO_IMPORT_BODY_USE_DEFAULT, add_bodies to
0, and body_arr to NULL otherwise the behavior of Creo Parametric may be
unpredictable.

Interface: Importing Features 735

The function ProImportfeatureWithProfileCreate() is used to create
a new import feature in the Creo Parametric solid model. This function takes the
same input arguments as the function ProImportfeatCreate(), except for
the argument profile that specifies the path to the import profile used. An import
profile is an XML file with the extension .dip (Dex In Profile) and contains the
options that control an import operation. It contains all the options for the
supported 3D import formats. Refer to the Creo Parametric Online Help for more
information on creation and modification of import profiles.

Note
The function ProImportfeatureWithProfileCreate() cannot
create an import feature using an import profile for the STL and VRML
formats.

Use the function ProIntfDataFree() to release the memory occupied by the
interface data.

Import Feature Attributes
Attributes define the action to be taken when creating the import feature.
Following are the defined attributes:

• attempt_make_solid—Specifies whether the import feature is to be
created as a solid or a surface type. Set the value to 1 to create an import
feature of solid type. Set it to 0 to create a surface type of import feature.

Note
If the import feature is an open surface, setting attempt_make_solid
to 1 does not make the import feature of solid type.

• cut_or_add—Specifies whether the solid type of import feature is to be
created as a cut or a protrusion. This argument is valid only if attempt_
make_solid is set to 1. Set the value to 1 to cut the solid import feature
from the intersecting solid. Set it to 0 to create it as a protrusion.

Note
When attempt_make_solid is set to 0, the value assigned to cut_
or_add is not considered.

736 Creo® Parametric TOOLKITUser’s Guide

• join_surfaces—Specifies whether the import feature is created as a
single quilt (joined surface) or separate surfaces (as it was in the original file)
if it is of surface type. This argument is valid only if attempt_make_
solid is set to 0. If the value is set to 1, all surfaces that can be joined are
joined to form a single quilt.

• add_bodies— Creates the same body structure as is present in the source
file.

• body_use_opt—Specifies the body options you can use while importing a
feature and is defined by the enumerated data type
ProImportBodyUseOpts. The valid values are as follows:

○ PRO_IMPORT_BODY_USE_DEFAULT—Imports feature in the default
body.

○ PRO_IMPORT_BODY_USE_NEW—Imports feature in a new body.
○ PRO_IMPORT_BODY_USE_ALL—Currently not supported.
○ PRO_IMPORT_BODY_USE_SELECTED—Imports feature in a selected

body.
• body_arr—ProArray of bodies to be selected. By default, the size is 1.

Set this value as NULL if you do not want to use any bodies in the import
operation.

Redefining the Import Feature
Use the following functions in sequence to redefine the import feature.
Functions Introduced:

• ProImportfeatRedefSourceInit()
• ProImportfeatRedefine()
Use the function ProImportfeatRedefSourceInit() to initialize the
redefine source. Currently Creo Parametric TOOLKIT users may

• Redefine the attributes of any import feature.

Note
When redefining the attributes of the import feature, Creo Parametric will
not use the value of the attribute join_surfaces, because this attribute
is valid only for import feature creation.

• Redefine the geometry of an import feature created from a geometric file.
Import features created from memory may not be redefined.

Interface: Importing Features 737

The input arguments are:

• operation—Specifies the type of operation to use when redefining the import
feature.

• p_source—Specifies the handle to the new interface data or the new attributes
structure.

The function ProImportfeatRedefSourceInit() returns the handle to a
structure, that is passed as an input argument to the function
ProImportfeatRedefine().
Use the function ProImportfeatRedefine() to redefine the import feature.
The input arguments are:

• p_feat_handle—Specifies the handle for the import feature to be redefined.
• p_source—The handle to be used for redefinition from the function

ProImportfeatRedefSourceInit().

Note
ProImportfeatRedefine() does not support ATB-enabled features.
It returns PRO_TK_BAD_CONTEXT while accessing such features.

Import Feature Properties
Functions Introduced:

• ProImportfeatIdArrayCreate()
• ProImportfeatIdArrayMapCount()
• ProImportfeatIdArrayMapGet()
• ProImportfeatIdArrayFree()
• ProImportfeatUserIdToItemId()
• ProImportfeatItemIdToUserId()
• ProImportfeatDataGet()
Use the function ProImportfeatIdArrayCreate() to create an array of
mappings between the user defined ids and the ids assigned by Creo Parametric to
the entity items in the import feature.
Specify the handle to the feature, for which the user defined ids and ids assigned
by Creo Parametric have to be mapped, as the input argument of the function. The
function returns an array of mapped ids.

738 Creo® Parametric TOOLKITUser’s Guide

Use the function ProImportfeatIdArrayMapCount() to get the number
of elements in the array of mappings.Use the function
ProImportfeatIdArrayMapGet() to get the mapping of a particular
element in the array.
Use the function ProImportfeatIdArrayFree() to free the array.
Use the function to ProImportfeatUserIdToItemId() to obtain the id or
ids assigned by Creo Parametric for a user defined id. The function returns
multiple ids in an array if the import operation split a particular entity.
For example, if you create a circular edge as a single edge data defined by a single
id, Creo Parametric creates the circle by splitting it into two. If you pass the user
defined id as an input to the function ProImportfeatUserIdToItemId(),
the function will return an array of the ids assigned to each half of the circle.
The input arguments of this function are:

• p_feat_handle—Specifies the handle of the import feature.
• user_id—Specifies the identifier of the geometry item.
• item_type—Specifies the type of the geometry item. The types of geometry

are:

○ PRO_SURFACE

○ PRO_EDGE

○ PRO_QUILT

Use the function ProImportfeatItemIdToUserId() to convert a Creo
Parametric item id to an array of user defined ids.
For example, if the edges defined by the user are created as a single edge by Creo
Parametric, and you pass a single item id assigned by Creo Parametric to the
function ProImportfeatItemIdToUserId(), it will return an array of user
ids.

• p_feat_handle—Specifies the handle of the import feature.
• item_id—Specifies the identifier of the geometry item.
• item_type—Specifies the type of the geometry item. The types of geometry

are:

○ PRO_SURFACE

○ PRO_EDGE

○ PRO_QUILT

Use the function ProImportfeatDataGet() to retrieve the parameters
assigned to the import feature. The output returned by this function will contains
the following:

Interface: Importing Features 739

• Information about the interface type of the import feature.
• The filename from which the import feature is created. This is applicable for

import features created from a file.
• The coordinate system with respect to which the import feature is aligned.
• The attributes of the import feature.

Extracting Creo Parametric Geometry as
Interface Data
Functions Introduced:

• ProPartToProInterfaceData()
• ProIntfDataAccuracyGet()
• ProIntfDataAccuracytypeGet()
• ProIntfDataOutlineGet()
• ProIntfDataDatumCount()
• ProIntfDataDatumGet()
• ProIntfDataEdgeCount()
• ProIntfDataEdgeGet()
• ProIntfDataQuiltCount()
• ProIntfDataQuiltGet()
• ProIntfDataSurfaceCount()
• ProIntfDataSurfaceGet()
Superseded Functions:

• ProPartToProIntfData()
Use the function ProPartToProIntfData() to extract a ProIntfData
structure describing the geometry of a part as if it were an import feature. This
provides a single interface to extract all geometric data in order to convert it to
another geometric format. The function ProPartToProIntfData() extracts
the ProIntfData structure only if the model has a single body, else returns the
error PRO_TK_MULTIBODY_UNSUPPORTED.

740 Creo® Parametric TOOLKITUser’s Guide

In Creo Parametric 7.0.0.0 and later, the function ProPartToProIntfData()
has been deprecated. Use the function ProPartToProInterfaceData() to
convert a ProPart structure to a ProIntfData structure. The input arguments
follow:
• ptk_part—The ProPart data structure that needs to be converted.
• p_cnv_opts—The options for the conversion defined by the structure

ProPartConversionOptions.
The interface data is returned by the output argument p_intfdata. You must
preallocate the memory for this argument by calling the function
ProIntfDataAlloc().
The functions ProIntfDataAccuracytypeGet(),
ProIntfDataAccuracyGet(), and ProIntfDataOutlineGet()
provide access to properties of the interface data structure.
The other functions allow you to count and access each individual geometric data
structure in the interface data.

Associative Topology Bus Enabled
Interfaces
The following interfaces are ATB-enabled by default:
• CADDS 5
• CATIAV4
• CATIAV5
• Creo Elements/Direct
• Creo View
• Creo Granite file
• ICEM
• Neutral
• OPTEGRA
• SolidWorks
• NX
• Inventor
You can indicate in the import profile to disable ATB. You can do this in the
Import Profile Editor (under Tools ▶ Utilities in the Creo Parametric user interface)
by clearing the option Enable ATB.
Refer to the Creo Parametric Data Exchange Help for more information on profile
editing and ATB (Associative Topology Bus).

Interface: Importing Features 741

Associative Topology Bus Enabled
Models and Features
Associative Topology Bus (ATB) propagates changes made to the original CAD
system data in the heterogeneous design environment. All geometric IDs
preserved by the native system after the change to the native file are also
preserved in the imported geometry by the ATB update. With ATB, you can work
with Creo Parametric part or assembly that is:
• ATranslated Image Model (TIM) representation of a model imported from the

ATB interface, such as, CADDS or CATIA.
• A Creo Parametric assembly containing one or more components which are

models imported from an ATB Interface, such as, CADDS or CATIA.
• A Creo Parametric part containing an Import Feature that is imported from an

ATB Interface such as, ICEM.
Only import operations in Creo Parametric create TIM parts and assemblies. You
can open CATIA, CADDS model files as TIMs. Neutral part files and files of
other ATB-enabled formats are imported as native Creo Parametric parts with
ATB-enabled features.
The TIM parts and assemblies store their ATB information at the model level.
However, ATB-enabled import features store ATB information at the feature-level.
The TIMs are displayed in the Model Tree with ATB icons that indicate their
status with respect to their reference file as up-to-date, out-of-date, and so on.
The functions related to ATB models or features are available in the header file
ProATB.h. These functions enable you to perform the following actions on a
TIM model or ATB-enabled feature or the entire geometry of the imported model:
• Check the status of the TIMs or the ATB-enabled features.
• Update TIMs or ATB-enabled features that are identified as out-of-date.
• Change the link of a TIM or ATB-enabled feature.
• Break the association between a TIM or the ATB-enabled feature and the

original reference model.
Functions Introduced:

• ProModelIsTIM()
• ProModelHasTIMFeature()
• ProModelListTIMFeatures()
• ProATBMdlnameVerify()
• ProATBMarkAsOutOfDate()
• ProATBUpdate()
• ProATBRelink()

742 Creo® Parametric TOOLKITUser’s Guide

The function ProModelIsTIM() checks if the specified model is a TIM.
The function ProModelHasTIMFeature() checks if the specified model
contains a TIM feature.
The function ProModelListTIMFeatures() lists all the TIMs or ATB-
enabled features present in the specified model. This function can be called after
the function ProModelHasTIMFeature() which determines if the specified
model has one or more TIM features.
The function ProATBMdlnameVerify() verifies if the specified ATB model
is out of date with the source CAD model. The function first checks if the
specified model is a TIM. If the model is not a TIM, this function checks if the
ATB-enabled model was created by importing or appending ICEM or neutral
surfaces to existing Creo Parametric part models. The input arguments for this
function are:
• Model—Specify a Creo Parametric Part or Assembly that is—

○ ATranslated Image Model (TIM) representation of a model imported from
the ATB interface, such as, CADDS or CATIA.

○ A Creo Parametric assembly containing one or more components which
are models imported from an ATB Interface, such as, CADDS or CATIA.

○ A Creo Parametric part containing an Import Feature that is imported from
an ATB Interface such as, ICEM.

• feat_ids—Specify an array of feature ids for the ATB-enabled features in the
model. If a model contains more than one ATB-enabled feature, the verify
function works only on the specified feature. If you do not specify a feature id,
the ProATBMdlnameVerify() function verifies the entire model
including TIMs from non-native CAD models.

• search_paths—Specify the complete location to the source CAD model. You
can specify multiple directories to search for the model. If no search path is
specified, then the function will search in current working directory or
locations set in config-option atb_search_path.

The output arguments of this function represent the status of the TIMs and are as
follows:
• models_out_of_date—Specifies an array of TIMs or the ATB-enabled features

that are out-of-date with the source model and require an update. These
models are represented by a red icon in the Model Tree in the Creo Parametric
user interface.

• models_unlinked—Specifies an array of TIMs or the ATB-enabled features

Interface: Importing Features 743

that have missing links because the reference model is missing from the
designated search path. These models are represented by a yellow icon in the
Model Tree in the Creo Parametric user interface.

• models_old_version—Specifies an array of TIMs for which the source CAD
model is older than the one with which the TIM was last updated. These
models are represented by a yellow icon in the Model Tree in the Creo
Parametric user interface. Use the function ProArrayFree() to free the
array of output arguments.

The function ProATBMarkAsOutOfDate() identifies all the ATB-enabled
features that are out of date for the update operation.
The function ProATBUpdate() updates only those ATB-enabled models or
features that are displayed in the session. The update action synchronizes the
derived structure and the contents of the TIMs with the primary structure and the
content of the source non-native CAD models. This function returns an error if
there are non-displayed models in the session or if the input model is not
displayed.

Note
• If the link of a TIM or ATB-enabled feature is broken, you cannot re-

establish the link or update the part that is independent and has lost its
association with the reference model.

• The geometry added or removed from the model before the update is
added or removed from the TIM after the update.

• The geometry added or removed from the model before the update is
added or removed from the TIM after the update.

• ATB incorrectly identifies the imported geometry as up-to-date based on
the old reference file which is found before the updated reference file.

The function ProATBRelink() relinks a TIM to a source CAD model specified
by the input argument master_model_path. This function relinks all those models
or features that have lost their association or link with their master model. In order
to relink a model, provide the name and location of the master model, using the
master_model_path to which the specified model or feature is to be linked. If the
master model with the same name is found, the Creo Parametric TIM model is
linked to that master model.

744 Creo® Parametric TOOLKITUser’s Guide

30
Interface: Customized Plot Driver

Using the Plot Driver Functionality .. 746

This chapter describes the customized plot driver functions supported by Creo
Parametric TOOLKIT .

745

Using the Plot Driver Functionality
The functions described in this section enable you to plot the two-dimensional
entities, such as, lines, circles, arcs, and text that are used by Creo Parametric.
These functions enable you to implement a customized plot format in Creo
Parametric. You can do this by providing your own function for plotting each of
the two-dimensional entities and then binding them to Creo Parametric so that it
uses these functions to plot the contents of the object currently in session.
The following restrictions apply while using this functionality:

1. You cannot plot shaded models using these functions. This applies to plots of
models generated from 3D model modes as well as shaded drawing views.

2. The contents of OLE objects embedded in drawings will not be included in the
output.

3. Text contents provided to the implementation may include special Creo
Parametric symbols. The Creo Parametric TOOLKIT application must
transform this text into something that can be displayed correctly in the output
format.

4. User defined plotter formats registered using the functions listed here will not
be accessible from the Creo Parametric Print dialog box, or from the Creo
Parametric TOOLKIT function ProPrintExecute(). In order to export
the model with this custom plot driver, you must use
ProPlotdriverExecute().

Functions Introduced:

• ProPlotdriverInterfaceCreate()
• ProPlotdriverInterfaceobjectsSet()
• ProPlotdriverArcPlot()
• ProPlotdriverArcfunctionSet()
• ProPlotdriverCirclePlot()
• ProPlotdriverCirclefunctionSet()
• ProPlotdriverLinePlot()
• ProPlotdriverLinefunctionSet()
• ProPlotdriverPolygonPlot()
• ProPlotdriverPolygonfunctionSet()
• ProPlotdriverPolylinePlot()
• ProPlotdriverPolylinefunctionSet()
• ProPlotdriverTextPlot()

746 Creo® Parametric TOOLKITUser’s Guide

• ProPlotdriverTextfunctionSet()
• ProPlotdriverExecute()
The function ProPlotdriverInterfaceCreate() searches for a plot
interface with a specified name. If the interface does not exist, then the function
creates a new interface with this name. Each plot format that you define must have
a unique name. This name is referenced in calls to other functions described in
this section.
The function ProPlotdriverInterfaceobjectsSet() specifies the
types of objects that are supported by a particular plot format. Specify a list of file
extensions, such as, prt, drw, asm, and so on, that define the types of object to
plot.
Use the ProPlotdriver functions to plot circles, lines, arcs, polygons,
polylines, and text. These functions accept as input a call back function whose
signature matches the call backs specified in the table below. The input arguments
of the call back function describe the actual entity to be plotted.
The following table lists the names of the plot functions and their corresponding
call backs. For example, use the function
ProPlotdriverLinefunctionSet() to plot a line. The function accepts
as input a call back function whose signature matches
ProPlotdriverLinePlot(). The input arguments of the function
ProPlotdriverLinePlot() define the line to be plotted.
Plot Function Call Back Function
ProPlotdriverArcfunctionSet() ProPlotdriverArcPlot()

ProPlotdriverCirclefunctionSet() ProPlotdriverCirclePlot()
ProPlotdriverLinefunctionSet() ProPlotdriverLinePlot()

ProPlotdriverPolygonfunctionSet() ProPlotdriverPolygonPlot()

ProPlotdriverPolylinefunctionSet() ProPlotdriverPolylinePlot()

ProPlotdriverTextfunctionSet() ProPlotdriverTextPlot()

The function ProPlotdriverExecute() is used to invoke the user-defined
plot on the current object.

Example 1: Sample Plot Driver Program
The sample code in UgPlotUse.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_plot shows how to
use the customized plot driver functions.

Interface: Customized Plot Driver 747

31
Working with Multi-CAD Models

Using Creo Unite
Overview .. 749
Support for File Names in Non-Creo Models.. 750
Character Support for File Names in Non-Creo Models .. 750
Working with Multi-CAD Models in Creo Parametric TOOLKIT 751
Functions that Support Multi-CAD Assemblies... 754
Superseded Functions... 756
Restrictions on Character Length for Multi-CAD Functions.. 758
Functional Areas in Creo that do not Support Multi-CAD Assemblies........................... 762
Sample Applications for Multi-CAD Assemblies ... 762
Migrating Applications Using Tools.. 763

This chapter describes how to work with non-Creo parts and assemblies using
Creo Unite.

748 Creo® Parametric TOOLKITUser’s Guide

Overview
Creo Unite enables you to open non-Creo parts and assemblies in Creo Parametric
and other Creo applications, such as, Creo Simulate without creating separate
Creo models. You can then assemble the part and assembly models that you
opened as components of Creo assemblies to create multi-CAD assemblies of
mixed content.
The non-Creo components of these heterogeneous assemblies retain their original
names in Creo and continue to use their original source CAD applications as the
design tool. They appear as foreign models and not as native Creo models.
You can open the part and assembly models of the following non-Creo file
formats in Creo applications:
• CATIAV5 (.CATPart, .CATProduct)
• CATIAV5 CGR
• CATIAV4 (.Model)
• SolidWorks (.sldasm, .sldprt)
• NX (.prt)
• Autodesk Inventor (.ipt, .iam)
• Creo Elements/Direct (.sdpc, .sdac, .sdcc, and .sdrc)

From Creo Parametric 4.0 F000 onward, the following Creo Elements/Direct
files can be opened in Creo Parametric and other Creo applications, such as,
Creo Simulate without creating separate Creo models:

○ Part content file (.sdpc)
○ Assembly content file (.sdac)

You can modify the non-Creo models in Creo applications, without altering the
original design intent. For example, you can add annotations to the non-Creo
models in a Creo application.
You can also make design changes to the non-Creo models in a multi-CAD
assembly. Depending on the configuration options set in Creo, user confirmation
may be required to apply the design changes. Refer to the Creo Parametric Data
Exchange online help, for more information.
In applications where user confirmation cannot be obtained for design changes,
for example, when Creo is running in batch mode, the appropriate functions such
as, ProFeatureWithoptionsCreate(), return an error.
While working with a multi-CAD model, when you call the function
ProFeatureWithoptionsCreate(), the output may vary depending on the
value of the configuration option confirm_on_edit_foreign_models.

Working with Multi-CAD Models Using Creo Unite 749

The default value of the configuration option confirm_on_edit_foreign_
models is yes. The following scenarios are possible depending on the value of
the configuration option confirm_on_edit_foreign_models:
• If the configuration option confirm_on_edit_foreign_models is set

to no, the non-Creo model is modified without any notification.
• If the configuration option confirm_on_edit_foreign_models is set

to yes, or the option is not defined in the configuration file, then in batch mode
the application returns the error PRO_TK_GENERAL_ERROR.

• In some situations, you may need to provide input in the interactive mode with
Creo. Refer to the Creo Parametric Data Exchange online help, for more
information.

Support for File Names in Non-Creo
Models
Creo applications support the original file names of non-Creo models. File name
can contain a maximum of 80 characters and file paths can contain a maximum of
260 characters. The Creo Parametric TOOLKIT functions that work with multi-
CAD models support file names with a maximum of 31 or 80 characters,
depending on the type of function.
The functions that read information from Creo applications do not have any
restriction on character length. These functions can read file names of any length.
However, the functions that compute a result, or create or set features, item,
properties, and so on, may have restrictions on character length. Refer to the Creo
Parametric TOOLKIT header files, or the section Restrictions on Character
Length for Multi-CAD Functions on page 758, for more information on functions
that have restrictions on character length.

Character Support for File Names in Non-
Creo Models
The following special characters are supported for file names in non-Creo models:
• % (percent)
• ^ (caret)
• & (ampersand)
• + (plus)
• = (equal)
• ' (apostrophe)
• ` (grave accent)

750 Creo® Parametric TOOLKITUser’s Guide

• , (comma)
• ! (exclamation mark)
• $ (dollar sign)
• @ (at sign)
• ; (semicolon)
• # (hash)
• - (dash, hyphen)
• ~ (tilde)
• () (round brackets)
• [] (square brackets)
• { } (curly brackets)
• . (period)
• \ (backslash)
• / (forward slash)
• “ (quotation marks)
• (space)

Note
Do not use space as the first character in file names for models.

Working with Multi-CAD Models in Creo
Parametric TOOLKIT
Most of the Creo Parametric TOOLKIT functions support multi-CAD assemblies.
The functions, which do not support assemblies with mixed content, return the
error PRO_TK_UNSUPPORTED.
You can perform basic operations, such as, locating and retrieving non-Creo
models from Windchill and opening them in Creo applications. However, you
must use Windchill Workgroup Manager to initially check in the non-Creo models
to Windchill. After checking out models from Windchill, you can work on them in
Creo applications and then check in the models to Windchill.

Working with Notifications
Notifications allow the Creo Parametric TOOLKIT application to detect certain
types of events in Creo Parametric. You can call functions before or after such
events.

Working with Multi-CAD Models Using Creo Unite 751

Notifications to all of the file management operations in Creo Parametric, such as
save, retrieve, copy, rename, and so on, are supported for Creo assemblies with
non-Creo components.
The following types of file management notifications are supported for multi-
CAD assemblies:
• File Management Events—Notifications that are called after successful file

management operations in Creo Parametric.
○ Pre-file Management Events—Your callback function is called before the

file management event. The functions are called only for models that are
the explicit objects of the file management operation.

○ Pre-All File Management Events—Your callback function is called before
all file management events on models, even if those models were not
explicitly specified by the user.

○ Post-file Management Events—Your callback function is called after the
file management operation. The functions are called only for models that
are the explicit objects of the file management operation.

○ Post All File Management Events—Your callback function is called after
all file management events on models, even if those models were not
explicitly specified by the user.

• File Management Failure Events—Notifications that are called after the file
management operations in Creo Parametric fail.

The following events and callback functions are supported for multi-CAD
assemblies:
New Event New Signature
Pre-file Management Events
PRO_MODEL_RETRIEVE_PRE (*ProModelRetrievePreAction)
PRO_MODEL_SAVE_PRE (*ProModelSavePreAction)
PRO_MODEL_COPY_PRE (*ProModelCopyPreAction)
PRO_MODEL_RENAME_PRE (*ProModelRenamePreAction)
Pre-All File Management Events
PRO_MODEL_SAVE_PRE_ALL (*ProModelSavePreAllAction)
Post File Management Events
PRO_MODEL_COPY_POST (*ProModelCopyPostAction)
PRO_MODEL_RENAME_POST (*ProModelRenamePostAction)
PRO_MODEL_ERASE_POST (*ProModelErasePostAction)
PRO_MODEL_RETRIEVE_POST (*ProModelRetrievePostAction)
PRO_MODEL_SAVE_POST (*ProModelSavePostAction)
Post All File Management Events

752 Creo® Parametric TOOLKITUser’s Guide

New Event New Signature
PRO_MODEL_SAVE_POST_ALL (*ProModelSavePostAllAction)
PRO_MODEL_ERASE_POST_ALL (*ProModelErasePostAllAction)
PRO_MODEL_RETRIEVE_POST_
ALL

(*ProModelRetrievePostAllAction)

PRO_MODEL_COPY_POST_ALL (*ProModelCopyPostAllAction)
PRO_MODEL_RENAME_POST_
ALL

(*ProModelRenamePostAllAction)

File Management Failed Events
PRO_MODEL_DBMS_FAILURE (*ProModelDbmsFailureAction)

Working with Basic Graphics
You can create windows, which contain the specified multi-CAD assemblies. The
functions ProObjectwindowMdlnameCreate(),
ProAccessorywindowWithTreeMdlnameCreate(), and
ProBarewindowMdlnameCreate() are used to create windows. To use
these functions with non-Creo components, pass one of the following values as
the input argument object_type, depending on the type of non-Creo model:
• PRO_CATIA_PART

• PRO_CATIA_PRODUCT

• PRO_CATIA_CGR

• PRO_CATIA_MODEL

• PRO_UG

• PRO_SW_PART

• PRO_SW_ASSEM

• PRO_CC_ASSEMBLY

• PRO_CC_PART

Working with Simplified Representations
You can create simplified representations, that is, master, geometric, graphics, and
user-defined representations, for multi-CAD assemblies. You can also retrieve
these representations in the session using the Creo Parametric TOOLKIT
functions. You can edit a simplified representation created in a Creo application
for a non-Creo assembly.

Working with Multi-CAD Models Using Creo Unite 753

Note
The function ProSolidSimprepVisit() visits only user-defined
representations. Multi-CAD assemblies can have user-defined representations,
but the non-Creo parts cannot have user-defined representations. Therefore,
the function ProSolidSimprepVisit() returns PRO_TK_E_NOT_
FOUND error for non-Creo parts.

Working with Constraints
You can retrieve the constraints of non-Creo models in multi-CAD assemblies.
For retrieving the constraints, you must redefine the non-Creo models using the
Edit Definition command in the Creo Parametric user interface. After redefinition,
retrieve the constraints using the Creo Parametric TOOLKIT functions.

Working with User-Defined Features (UDF)
You can insert user-defined features created in Creo applications in a multi-CAD
assembly, only if it does not alter the structure of the non-Creo models. You
cannot create UDFs in a non-Creo model.

Functions that Support Multi-CAD
Assemblies
The following functions support working with Creo assemblies with mixed
content:
• ProIntfimportModelWithOptionsMdlnameCreate()
• ProMdlDependenciesDataList()
• ProMdlMdlnameGet()
• ProMdlfileMdlnameCopy()
• ProMdlnameBackup()
• ProMdlnameCopy()
• ProMdlnameInit()
• ProMdlnameRename()
• ProMdlnameRetrieve()
• ProMdlDirectoryPathGet()
• ProMdlExtensionGet()
• ProMdlDeclaredDataList()

754 Creo® Parametric TOOLKITUser’s Guide

• ProMfgMdlCreate()
• ProReferenceOriginalownerMdlnameGet()
• ProReferenceOwnerMdlnameGet()
• ProSolidShrinkwrapMdlnameCreate()
• ProAssemblySimprepMdlnameRetrieve()
• ProSimprepMdlnameRetrieve()
• ProAsmSkeletonMdlnameCreate()
• ProSolidMdlnameCreate()
• ProSolidMdlnameInit()
• ProUdfmdlMdlnamesAlloc()
• ProFileMdlnameParse()
• ProOutputFileMdlnameWrite()
• ProFileMdlnameOpen()
• ProFileMdlnameSave()
• ProIntfSliceFileWithOptionsMdlnameExport()
• Pro2dImportMdlnameCreate()
• ProPathMdlnameCreate()
• ProProductviewFormattedMdlnameExport()
• ProObjectwindowMdlnameCreate()
• ProAccessorywindowWithTreeMdlnameCreate()
• ProBarewindowMdlnameCreate()
• ProATBMdlnameVerify()
• ProAsmcompMdlMdlnameGet()
• ProAsmcompMdlnameCreateCopy()
• ProCavitylayoutLeaderMdlnameSet()
• ProCavitylayoutModelMdlnamesGet()
• ProCavitylayoutModelMdlnamesSet()
• ProMdlFiletypeLoad()
• ProMdlRepresentationFiletypeLoad()
For some of these functions, you may have to specify the type of the non-Creo
CAD model using the data type ProMdlfileType. The valid values of
ProMdlfileType are:
• PRO_CATIA_PART

• PRO_CATIA_PRODUCT

• PRO_CATIA_CGR

• PRO_CATIA_MODEL

Working with Multi-CAD Models Using Creo Unite 755

• PRO_UG

• PRO_SW_PART

• PRO_SW_ASSEM

• PRO_INVENTOR_PART

• PRO_INVENTOR_ASSEM

Superseded Functions
The following table lists the functions that have been superseded and the
corresponding new functions to support multi-CAD assemblies:

Superseded Function New Function
ProIntfimportModelWithOptionsCreate
()

ProIntfimportModelWithOptionsMdl-
nameCreate()

ProMdlDependenciesList() ProMdlDependenciesDataList()
ProMdlNameGet() ProMdlMdlnameGet()
ProMdlfileCopy() ProMdlfileMdlnameCopy()
ProMdlBackup() ProMdlnameBackup()
ProMdlCopy() ProMdlnameCopy()
ProMdlInit() ProMdlnameInit()
ProMdlRename() ProMdlnameRename()
ProMdlRetrieve() ProMdlnameRetrieve()
ProMdlDataGet() ProMdlOriginGet()

ProMdlMdlnameGet()
ProMdlExtensionGet()
ProFilenameParse()

ProMdlDeclaredList() ProMdlDeclaredDataList()
ProMfgCreate() ProMfgMdlCreate()
ProReferenceOriginalownernameGet() ProReferenceOriginalownerMdlname-

Get()
ProReferenceOwnernameGet() ProReferenceOwnerMdlnameGet()
ProSolidShrinkwrapCreate() ProSolidShrinkwrapMdlnameCreate()
ProAssemblySimprepRetrieve() ProAssemblySimprepMdlnameRetrieve

()
ProBoundaryBoxSimprepRetrieve() ProSimprepMdlnameRetrieve()
ProDefaultEnvelopeSimprepRetrieve() ProSimprepMdlnameRetrieve()
ProGraphicsSimprepRetrieve() ProSimprepMdlnameRetrieve()

ProSimprepMdlnameRetrieve()

756 Creo® Parametric TOOLKITUser’s Guide

Superseded Function New Function
ProLightweightGraphicsSimprepRe-
trieve()
ProPartSimprepRetrieve() ProSimprepMdlnameRetrieve()
ProSymbSimprepRetrieve() ProSimprepMdlnameRetrieve()
ProGeomSimprepRetrieve() ProSimprepMdlnameRetrieve()
ProAsmSkeletonCreate() ProAsmSkeletonMdlnameCreate()
ProSolidCreate() ProSolidMdlnameCreate()
ProSolidInit() ProSolidMdlnameInit()
ProUdfmdlNamesAlloc() ProUdfmdlMdlnamesAlloc()
ProFilenameParse() ProFileMdlnameParse()
ProOutputFileWrite() ProOutputFileMdlnameWrite()
ProFileOpen() ProFileMdlnameOpen()

ProFileMdlfiletypeOpen()
ProFileSave() ProFileMdlnameSave()

ProFileMdlfiletypeSave()
ProIntfSliceFileWithOptionsExport() ProIntfSliceFileWithOptionsMdlna-

meExport()
Pro2dImportCreate() Pro2dImportMdlnameCreate()
ProPathCreate() ProPathMdlnameCreate()
ProProductviewFormattedExport() ProProductviewFormattedMdlnameEx-

port()
ProObjectwindowCreate() ProObjectwindowMdlnameCreate()
ProAccessorywindowWithTreeCreate() ProAccessorywindowWithTreeMdlna-

meCreate()
ProBarewindowCreate() ProBarewindowMdlnameCreate()
ProATBVerify() ProATBMdlnameVerify()
ProAsmcompMdlNameGet() ProAsmcompMdlMdlnameGet()
ProAsmcompCreateCopy() ProAsmcompMdlnameCreateCopy()
ProCavitylayoutLeaderSet() ProCavitylayoutLeaderMdlnameSet()
ProCavitylayoutModelnamesGet() ProCavitylayoutModelMdlnamesGet()
ProCavitylayoutModelnamesSet() ProCavitylayoutModelMdlnamesSet()
ProMdlLoad() ProMdlFiletypeLoad()
ProMdlRepresentationLoad() ProMdlRepresentationFiletypeLoad()
(*ProMdlSavePreAction) (*ProModelSavePreAction)
(*ProMdlCopyPreAction) (*ProModelCopyPreAction)
(*ProMdlRenamePreAction) (*ProModelRenamePreAction)

Working with Multi-CAD Models Using Creo Unite 757

Superseded Function New Function
(*ProMdlRetrievePreAction) (*ProModelRetrievePreAction)
(*ProMdlSavePostAction) (*ProModelSavePostAction)
(*ProMdlCopyPostAction) (*ProModelCopyPostAction)
(*ProMdlRenamePostAction) (*ProModelRenamePostAction)
(*ProMdlErasePostAction) (*ProModelErasePostAction)
(*ProMdlRetrievePostAction) (*ProModelRetrievePostAction)
(*ProMdlSavePostAllAction) (*ProModelSavePostAllAction)
(*ProMdlCopyPostAllAction) (*ProModelCopyPostAllAction)
(*ProMdlErasePostAllAction) (*ProModelErasePostAllAction)
(*ProMdlRetrievePostAllAction) (*ProModelRetrievePostAllAction)
(*ProMdlDbmsFailureAction) (*ProModelDbmsFailureAction)

Restrictions on Character Length for
Multi-CAD Functions
This section describes the restriction on character lengths for Creo Parametric
TOOLKIT functions that support Creo assemblies with mixed content.
The following table lists the maximum number of characters supported by these
functions:
Function Name Character Length

Supported
Additional Comment

ProSolidShrinkwrapMdl-
nameCreate()

31 characters

ProSolidMdlnameCreate
()

31 characters

ProSolidMdlnameInit() 80 characters
ProAssemblySim-
prepMdlnameRetrieve()

80 characters

ProSimprepMdlnameRe-
trieve()

80 characters

ProAsmSkeletonMdlna-
meCreate()

31 characters

ProOutputFileMdlname-
Write()

31 characters

ProFileMdlnameParse() 80 characters
ProFileMdlnameOpen() 80 characters
ProFileMdlnameSave() 80 characters

758 Creo® Parametric TOOLKITUser’s Guide

Function Name Character Length
Supported

Additional Comment

ProFileMdlfiletypeOpen() 80 characters
ProFileMdlfiletypeSave() 80 characters
ProMdlDependenciesDa-
taList()

80 characters

ProMdlfileMdlnameCopy
()

31 characters In Creo Parametric 3.0,
this API is functionally
similar to the superseded
function
ProMdlfileCopy().
It returns an error for
model names longer than
31 characters.

ProMdlnameBackup() 80 characters
ProMdlnameCopy() 31 characters In Creo Parametric 3.0,

this API is functionally
similar to the superseded
function
ProMdlCopy(). It
returns an error for model
names longer than 31
characters.

Note
This function is not
supported for non-
Creo models and Creo
assemblies with
mixed content.

ProMdlnameInit() 80 characters
ProMdlnameRetrieve() 80 characters
ProMdlnameRename() 31 characters In Creo Parametric 3.0,

this API is functionally
similar to the superseded
function
ProMdlRename(). It
returns an error for model
names longer than 31
characters.

Working with Multi-CAD Models Using Creo Unite 759

Function Name Character Length
Supported

Additional Comment

Note
This function is not
supported for non-
Creo models and Creo
assemblies with
mixed content.

ProMdlDeclaredDataList
()

80 characters

ProMfgMdlCreate() 31 characters
ProIntfimportModelWi-
thOptionsMdlnameCreate
()

31 characters In Creo Parametric 3.0,
this API is functionally
similar to the superseded
function
ProIntfimportMo
delWithOption
sCreate(). It returns
an error for model names
longer than 31 characters.

ProIntfSliceFileWithOp-
tionsMdlnameExport()

31 characters

Pro2dImportMdlname-
Create()

31 characters

ProProductviewFormat-
tedMdlnameExport()

31 characters

ProObjectwindowMdlna-
meCreate()

80 characters

ProAccessorywindow-
WithTreeMdlnameCreate
()

80 characters

ProBarewindowMdlna-
meCreate()

80 characters

ProATBMdlnameVerify() 80 characters
ProAsmcompMdlname-
CreateCopy()

31 characters

ProCavitylayoutLea-
derMdlnameSet()

31 characters In Creo Parametric 3.0,
this API is functionally
similar to the superseded
function
ProCavitylayout

760 Creo® Parametric TOOLKITUser’s Guide

Function Name Character Length
Supported

Additional Comment

LeaderSet(). It
returns an error for model
names longer than 31
characters.

ProCavitylayoutMo-
delMdlnamesSet()

31 characters In Creo Parametric 3.0,
this API is functionally
similar to the superseded
function
ProCavitylayoutMo
delnamesSet(). It
returns an error for model
names longer than 31
characters.

ProUdfmdlMdlnamesAl-
loc()

31 characters In Creo Parametric 3.0,
this API is functionally
similar to the superseded
function
ProUdfmdlNamesAl
loc(). It returns an error
for model names longer
than 31 characters.

Note
This function is not
supported for non-
Creo models and Creo
assemblies with
mixed content.

ProPathMdlnameCreate() No restriction on
character length

ProCavitylayoutMo-
delMdlnamesGet()

No restriction on
character length

ProMdlDirectoryPathGet
()

No restriction on
character length

ProMdlFiletypeLoad() No restriction on
character length

ProMdlRepresentationFi-
letypeLoad()

No restriction on
character length

ProMdlFileTypeGet() No restriction on
character length

ProMdlExtensionGet() No restriction on
character length

Working with Multi-CAD Models Using Creo Unite 761

Function Name Character Length
Supported

Additional Comment

ProReferenceOriginalow-
nerMdlnameGet()

No restriction on
character length

ProReferenceOwnerMdl-
nameGet()

No restriction on
character length

ProMdlMdlnameGet() No restriction on
character length

ProAsmcompMdlMdlna-
meGet()

No restriction on
character length

Functional Areas in Creo that do not
Support Multi-CAD Assemblies
You cannot work with multi-CAD assemblies in the following functional areas:
• Family tables
• Flexible components
• Rename, delete, and copy operations for non-Creo models in a multi-CAD

assembly

Note
When you save a copy, the non-Creo models are saved as Creo models.

• Add, delete, replace, reorder, and supress components in a non-Creo assembly
• Move components to a new subassembly in a non-Creo assembly
• Creation of external references. However, you can create external references,

only if you have set the external reference option in Creo Parametric user
interface.

Sample Applications for Multi-CAD
Assemblies
The sample applications provided with the Creo Parametric TOOLKIT 3.0
installation use the functions that support multi-CAD assemblies. The sample
applications are available at <creo_loadpoint>\<datecode>\Common
Files\protoolkit\protk_appls. See the sample examples for more
information on how to migrate your existing applications to support multi-CAD
assemblies using the Creo Parametric TOOLKIT 3.0 functions.

762 Creo® Parametric TOOLKITUser’s Guide

Migrating Applications Using Tools
PTC recommends migrating your applications to the new interfaces, which would
support multi-CAD models in future releases.
A mapping table mcm_map.txt, provided with the Creo Parametric TOOLKIT
3.0 installation, lists all the functions that support multi-CAD assemblies and also
lists the deprecated functions.
You can migrate the applications using the perl script mark_deprecated.pl,
which is available at the location <creo_loadpoint>\<datecode>\
Common Files\protoolkit\scripts. Refer to the section Tools Available
for Migration on page 2085 in the appendix Migrating Older Applications on page
2084, for more information on the script.

Working with Multi-CAD Models Using Creo Unite 763

32
Element Trees: Principles of

Feature Creation
Overview of Feature Creation... 765
Feature Inquiry.. 785
Feature Redefine .. 786
XML Representation of Feature Element Trees.. 787

This chapter describes the basic principles of programmatic feature creation that
are applicable to all types of feature that can be created in the current version of
Creo Parametric TOOLKIT. This chapter also describes how to extract the
internal description of features of those feature types in the Creo Parametric
TOOLKIT database, and how to modify them.

764 Creo® Parametric TOOLKITUser’s Guide

Overview of Feature Creation
This section provides references to additional material on feature creation and an
overview of creating features.

References to Feature Creation Data
The creation of specific feature types is dealt with in more detail in the following
chapters:

• Element Trees: Datum Features on page 804
• Element Trees: Sketched Features on page 1004
• Production Applications: Manufacturing on page 1439
This chapter defines and describes the following Creo Parametric TOOLKIT
objects:

• ProElement

• ProElempath

• ProValue

For a definition of the ProFeature object, see the chapter Core: Features on
page 131.

Feature Creation
There are many kinds of feature in Creo Parametric and each one can contain a
large and varied amount of information. All this information must be complete
and consistent before a feature can be used in regeneration and give rise to
geometry. This raises several problems for programmatic creation of features
through an API.
It is necessary to build all the information needed by a feature into a data structure
before passing that whole structure to Creo Parametric. However, the object-
oriented style of Creo Parametric TOOLKIT requires that such a data structure is
not directly visible to the application. Therefore, Creo Parametric TOOLKIT
defines this structure as a workspace object that can be allocated and filled using
special functions for that purpose, but that is not part of the Creo Parametric
database.
There are three steps in creating a feature in Creo Parametric:

1. Allocate the workspace structure.
2. Fill the workspace structure.
3. Pass the workspace structure to Creo Parametric to create the feature.

Element Trees: Principles of Feature Creation 765

Note
Creating sketched features requires a few more steps. For detailed
information, see the chapter Element Trees: Sketched Features on page
1004.

The procedure described above allows a feature of arbitrary complexity to be built
up in a sequence of manageable steps, with the maximum of error checking along
the way.
Although it is not yet possible to create all feature types using Creo Parametric
TOOLKIT, the workspace structure must be capable of defining any feature type
so the range of features can be extended without affecting the techniques already
in use. For this reason, the workspace structure for feature creation takes the form
of a tree of data elements. This has the advantage of being simple for simple
features, yet is flexible enough to provide for all possible feature types without
introducing new principles.
The root and branch points in the tree are called “elements,” and the complete tree
is called the “feature element tree.” Each element is modeled by the object
ProElement, which is a pointer to an opaque structure.
The feature element tree contains all the information required to define the feature.
This includes the following:

• All options and attributes, such as the material side and depth type for an
extrusion or slot, placement method for a hole, and so on.

• All references to existing geometry items, such as placement references, “up
to” surfaces, sketching planes, and so on.

• References to Sketcher models used for sections in the feature.
• All dimension values.

Note
Because Creo Parametric TOOLKIT is the same toolkit used to build Creo
Parametric, improvements to Creo Parametric may require the definition of
the element tree to be altered for some features. PTC will make every
effort to maintain upward compatibility. However, there may be cases
where the old application will not run with the new version of Creo
Parametric, unless you rewrite the application's code to conform to the new
definition of the feature tree.

766 Creo® Parametric TOOLKITUser’s Guide

Note that although the values of dimensions used by the feature are in the element
tree, there are no descriptions of, or references to, the dimension objects
themselves. The only exception is as follows: for an element tree for a feature
already in the Creo Parametric database, you can ask the identifier of the
dimension used for a particular element using the function
ProFeatureElemDimensionIdGet(). This is explained in detail in the
section Feature Inquiry on page 785. For more general functions that access
dimensions, see the chapter Core: Relations on page 204.
Each element in the tree is assigned an element ID, which is really a description of
the role it is playing in this feature—the kind of information it is supplying. It is
called an element ID because no two elements at the same level in the tree will
have the same identifier, unless they belong to an array element, so the element ID
also acts as a unique identifier.
The possible element roles are values in an enumerated type called ProElemId,
declared in ProElemId.h. Example values are as follows:

• PRO_E_FEATURE_TYPE

• PRO_E_FEATURE_FORM

• PRO_E_EXT_DEPTH

• PRO_E_THICKNESS

• PRO_E_4AXIS_PLANE

There are four different element types:

• Single-valued
• Multivalued
• Compound
• Array
A single-valued element can contain various types of value. The simplest is an
integer used to define, for example, the type of the feature, or one of the option
choices, such as the material side for a thin protrusion. The value can be a wide
string (for example, the name of the feature), or a double (for example, the depth
of a blind extrusion). If the element defines a reference to an existing geometry
item in the solid, its value contains an entire ProSelection object so it can
refer to anything in an entire assembly.
A multivalued element contains several values of one of these types. Multivalued
elements occur at the lowest level of the element tree—the “leaves.” An example
is the element with the identifier PRO_E_FIXT_COMPONENTS in a Fixture
Setup feature in Creo NC. That element specifies the components in the assembly
that belong to the fixture; in general, there can be any number of such
components, so the element contains several component identifiers.

Element Trees: Principles of Feature Creation 767

A compound element is one that acts as a branch point in the tree. It does not have
a value of its own, but acts as a container for elements further down in the
hierarchy.
An array element is also a branch point, but one that contains many child elements
of the same element ID. An example of this is the PRO_E_DTMPLN_
CONSTRAINTS element in a datum plane feature, which contains an array of
elements of type PRO_E_DTMPLN_CONSTRAINT (note the singular), each of
which is a compound element whose contents describe one of the constraints that
determine the position of the datum plane.
The feature element tree enables you to build a complex feature in stages, with
only a small set of functions. However, the form of the tree required for a
particular feature needs to be clearly defined so you know exactly what elements
and values to add, and so Creo Parametric TOOLKIT can check for errors each
time you add a new element to the tree.
Creo Parametric TOOLKIT documents the necessary contents of the element tree
for each type of feature that can be created programmatically. It does this through
two types of description:

• Feature element tree
• Feature element table
The feature element tree defines the structure of the tree, specifying the element
ID (or role) for the elements at all levels in the tree, and which elements are
optional.
The feature element table defines the following for each of the element IDs in the
tree:

• A description of its role in the feature
• The value type it has (that is, whether it is single value or compound; or an

array of integer, double, or string)
• The range of values valid for it in this context
Each type of feature that can be created using Creo Parametric TOOLKIT has its
own header file that contains the feature element tree and table, in the form of
code comments. The header files for the feature types that can be created in the
current version are as follows:
Header File Feature Type
ProAnalysis.h External Analysis
ProAsmcomp.h Assembly component, mechanism connection
ProChamfer.h Chamfer or corner chamfer
ProDataShareFeat.h General merge (merge, cutout, inheritance), copy

geom., publish geom., shrinkwrap
ProDraft.h Draft
ProDtmAxis.h Datum axis
ProDtmCrv.h Datum curve

768 Creo® Parametric TOOLKITUser’s Guide

Header File Feature Type
ProDtmCsys.h Datum coordinate system
ProDtmPln.h Datum plane
ProDtmPnt.h Datum point
ProExtrude.h Extruded protrusion, cut, surface, surface trim, thin,

sheetmetal wall, or sheetmetal cut
ProFixture.h Fixture (for Creo NC)
ProFlatSrf.h Fill surface or sheetmetal flat wall
ProForeignCurve.h Foreign datum curve
ProHole.h Hole
ProMerge.h Merge
ProMirror.h Mirror (geometry only)
ProMove.h Move and copy (geometry only)
ProMfgoper.h Manufacturing operation
ProNcseq.h Manufacturing Creo NC sequence
ProProcstep.h Process step
ProReplace.h Surface replacement feature
ProRevolve.h Revolved protrusion, cut, surface, surface trim or

thin
ProRib.h Rib
ProRound.h Round
ProShell.h Shell
ProSmtFlangeWall.h Sheetmetal flange wall
ProSmtFlatWall.h Sheetmetal flat wall
ProSolidify.h Solidify
ProStdSection.h Standard section
ProSweep.h Simple swept protrusion, cut
ProThicken.h Thicken
ProTrim.h Trim
ProWcell.h Manufacturing workcell

The feature element tree for the Fixture Setup feature defined in the header file
ProFixture.h is deprecated. Use the element tree defined in the header file
ProMfgFeatFixture.h instead. For more information, please refer to the
section Manufacturing Holemaking Step on page 1578.
The first two elements are common to all features. The root of a feature tree is
always a compound element with the identifier PRO_E_FEATURE_TREE. The
first element within the root always specifies the feature type; it is a single-valued
element with the element ID PRO_E_FEAT_TYPE, whose value is one of the
integers in the list of feature types in ProFeatType.h. In this case, the element
table shows that the value must be PRO_FEAT_FIXSETUP.
The next element in a fixture setup gives the name of the feature; its element ID is
PRO_E_FEAT_NAME, and it contains a single wide string. The element tree
shows that this is optional.

Element Trees: Principles of Feature Creation 769

The PRO_E_FIXT_COMPONENTS is a multivalued element, with the value type
integer, which contains the identifiers of the assembly components that belong to
the fixture.
The last element in a fixture setup is PRO_E_SETUP_TIME, which contains a
double.
As you build the elements into the workspace element tree, Creo Parametric
TOOLKIT checks the correctness of their types against the structure described by
the element tree and table in the corresponding header file. This makes it easy to
diagnose errors when you are creating features. The geometrical correctness is
checked only when you try to create the feature in the Creo Parametric database.
The following sections of this chapter describe the functions used to build an
element tree and create a feature. The sections are as follows:

• Feature Element Values on page 770—Introduces the object ProValue, used
to represent the value of a feature element.

• Feature Element Paths on page 772—Introduces the object ProElempath,
used to describe the location of an element in an element tree.

• Feature Elements on page 774—Introduces the ProElement functions used
to build and analyze an element tree.

• Feature Element Diagnostics on page 778—Introduces the
ProElementDiagnostics functions used to obtain the diagnostics for a
feature element.

• Calling ProFeatureCreate() on page 779—Describes the
ProFeatureCreate() function in detail.

• Example of Complete Feature Creation on page 781—Shows how to use
functions from the other sections to perform all the steps needed to create a
feature.

Feature Element Values
Functions introduced:

• ProValueAlloc()
• ProValueDataGet()
• ProValueDataSet()
• ProValueFree()
• ProWstringArrayToValueArray()
• ProValueArrayToWstringArray()
• ProValuedataTransformGet()
• ProValuedataTransformSet()

770 Creo® Parametric TOOLKITUser’s Guide

The object ProValue is an opaque workspace handle used to contain the value
of a feature element. It is the output of the functions ProElementValueGet()
and ProElementValuesGet(), which read the values of a feature element,
and is the input to ProElementValueSet() and
ProElementValuesSet().
You can access the contents of a ProValue object by translating it into an object
of type ProValueData, which is declared as a visible data structure. The
declaration is as follows:
typedef struct pro_value_data
{
ProValueDataType type;
union
{

int i; /* integer */
double d; /* double */
void *p; /* pointer or reference */
char *s; /* string */
wchar_t *w; /* wchar_t */
ProSelection r; /* selection */

} v;
} ProValueData;
typedef enum pro_value_data_type
{

PRO_VALUE_TYPE_INT = 1,
PRO_VALUE_TYPE_DOUBLE,
PRO_VALUE_TYPE_POINTER,
PRO_VALUE_TYPE_STRING,
PRO_VALUE_TYPE_WSTRING,
PRO_VALUE_TYPE_SELECTION

} ProValueDataType;

ProValueData is simply a holder for data values of many different types.

Note
From Pro/ENGINEERWildfire 2.0 onwards, elements with multiple values,
for example, PRO_E_FIXT_COMPONENTS, are deprecated. In subsequent
releases, these elements will be superseded by reference elements or single-
value, type-specific elements. Use the function
ProElementValuetypeGet() to determine the type of the element.

Element Trees: Principles of Feature Creation 771

Note
To access reference elements use the functions
ProElementReferencesGet() or ProElementReferencesSet().
To access single-value, type-specific elements, use the functions
ProElement<type>Get() or ProElement<type>Set(), such as,
ProElementDoubleGet(), ProElementIntegerGet() and so on.

The functions in this section access the contents of a ProValue through the
ProValueData object.
The function ProValueDataGet()provides the ProValueData object for
the specified ProValue object.
The function ProValueAlloc() allocates a new ProValue in memory, as
the first step towards setting the value of a feature element.
The function ProValueDataSet() sets the value of a ProValue object
using the contents of a ProValueData structure.
The function ProValueFree() frees a ProValue object in memory.
The function ProWstringArrayToValueArray() provides a convenient
way to allocate and fill an array of ProValue structures that all contain wide
string values.
The function ProValueArrayToWstringArray() performs the reverse
translation, allocating and filling an array of wide strings. In both cases, the output
array is an expandable array, so you should release the memory using
ProArrayFree().
The transform member of the union ProValueData is declared as double**. It must
be passed a double[][] (a ProMatrix structure). The utility functions
ProValuedataTransformGet() and
ProValuedataTransformSet() specify how to assign the
ProValueData in order to access the matrix correctly.

Feature Element Paths
Functions introduced:

• ProElempathAlloc()
• ProElempathFree()
• ProElempathDataSet()
• ProElempathDataGet()
• ProElempathCopy()

772 Creo® Parametric TOOLKITUser’s Guide

• ProElempathCompare()
• ProElempathSizeGet()
An element path is used to describe the location of an element in an element tree.
It is used by some of the ProElement functions as a convenient way to refer to
elements already in a tree.
The object ProElempath is declared as an opaque pointer. It contains a
description of the path from the root of the tree down to the element referred to.
At most levels in the tree hierarchy, the relevant path member is the element ID of
the element (which is unique at that level). When the path steps from an array
element to one of its member arrays, the element path instead contains the array
index of that element.
To be able to set the value of a ProElempath, Creo Parametric TOOLKIT
provides a structure called ProElempathItem that can describe an element ID,
or the index into an array element. An array of ProElempathItem structures is
therefore a visible equivalent to the opaque contents of ProElempath.
The declaration of ProElempathItem is as follows:
typedef struct path
{
ProElempathItemtype type;
union
{

int elem_id;
int elem_index;

} path_item;
} ProElempathItem;
typedef enum
{

PRO_ELEM_PATH_ITEM_TYPE_ID,
PRO_ELEM_PATH_ITEM_TYPE_INDEX

} ProElempathItemtype;

The object ProElempath, the structure ProElempathItem, and all the
functions in this section are declared in the header file ProElempath.h.
The function ProElempathAlloc() allocates a new empty ProElempath
object, whereas ProElempathFree() frees a ProElempath.
The function ProElempathDataSet() enables you to set the contents of a
ProElempath by copying from an array of ProElempathItem structures.
The function ProElempathDataGet() reads the contents of a
ProElempath into an array of ProElempathItem structures. The array is an
expandable array that must be allocated by a call to ProArrayAlloc() before
you call the function.
The function ProElempathCopy() copies the contents of one ProElempath
object into another. The output object is allocated by the function.

Element Trees: Principles of Feature Creation 773

The function ProElempathCompare() tells you whether two
ProElempath objects refer to the same element.
The function ProElempathSizeGet() tells you the length of the element
path contained in a ProElempath object.

Feature Elements
Functions introduced:

• ProElementAlloc()
• ProElementFree()
• ProElementIdGet()
• ProElementIdSet()
• ProElemIdStringGet()
• ProElemtreeElementGet()
• ProElemtreeElementAdd()
• ProElemtreeElementRemove()
• ProElementIsMultival()
• ProElementIsCompound()
• ProElementIsArray()
• ProElementChildrenGet()
• ProElementChildrenSet()
• ProElementArraySet()
• ProElementArrayGet()
• ProElementArrayCount()
• ProElemtreeElementVisit()
The function ProElementAlloc() allocates a new ProElement object with
a specified element ID. The function ProElementFree() frees a
ProElement.
The function ProElementIdGet() outputs the element ID of a specified
ProElement. The function ProElementIdSet() enables you to set the
element ID of a specified ProElement.
The function ProElemIdStringGet() returns the string representation of the
specified element ID.
The function ProElemtreeElementGet() enables you to read a specified
element in a tree. The inputs are the root of the tree, specified as a ProElement
object, and the path to the element, specified by a ProElempath. The output is a
ProElement object.

774 Creo® Parametric TOOLKITUser’s Guide

The function ProElemtreeElementAdd() adds a new element to the
specified element tree. The inputs are the ProElement for the tree root, the
ProElempath to the new element, and the ProElement for the new element.
The function ProElemtreeElementRemove() removes an element from a
specified tree and path. It outputs a ProElement for the element removed.
The functions ProElementIsMultival(), ProElementIsCompound(),
and ProElementIsArray() tell you the type of a specified element in a tree.
See the section Overview of Feature Creation on page 765 for an explanation of
the types.
The function ProElementChildrenGet()provides an expandable array of
ProElement objects for the children of the specified compound element in a
tree. The array must be allocated using ProArrayAlloc() before you call this
function. The function ProElementChildrenSet()adds a set of elements,
specified by an expandable array of ProElement objects, as the children of the
specified element in a tree.
The function ProElementArraySet() adds an expandable array of
ProElement objects as the members of a specified array element in an element
tree.
The function ProElementArrayGet() fills an expandable ProElement
array with the members of an array element in an element tree. The function
ProElementArrayCount() tells you how many members are in an array
element in the specified element tree.
The function ProElemtreeElementVisit() visits the elements that are
members of the specified array element in an element tree.

Access to ProElement Data
In earlier releases, Pro/TOOLKIT recommended using functions that access the
element value(s) as ProValue objects. These functions are maintained for
compatibility. PTC recommends using the functions in this section to provide
greater flexibility for all new development related to any Pro/ENGINEER feature
type. Use of these new functions is required for features first supported in Pro/
ENGINEERWildfire 2.0 and later.
Functions introduced:

• ProElementValuetypeGet()
• ProElementReferenceGet()
• ProElementReferenceSet()
• ProElementReferencesGet()
• ProElementReferencesSet()
• ProElementIntegerGet()

Element Trees: Principles of Feature Creation 775

• ProElementIntegerSet()
• ProElementDoubleGet()
• ProElementDoubleSet()
• ProElementDecimalsGet()
• ProElementDecimalsSet()
• ProElementwstroptsAlloc()
• ProElementwstroptsExpressionsSet()
• ProElementwstroptsSignoptionsSet()
• ProElementwstroptsFree()
• ProElementWstringGet()
• ProElementWstringSet()
• ProElementStringGet()
• ProElementStringSet()
• ProElementSpecialvalueGet()
• ProElementSpecialvalueSet()
• ProElementBooleanGet()
• ProElementBooleanSet()
• ProElementTransformGet()
• ProElementTransformSet()
These functions are the preferred method of accessing element values information
over ProElementValueGet() or ProElementValueSet() and
ProValueDataGet() or ProValueDataSet().
The function ProElementValuetypeGet() returns the nominal value type
for the element.
The functions ProElementReferenceGet() and
ProElementReferenceSet() returns and sets a single reference value for
the element.
The function ProElementReferencesGet() returns an array of reference
values for the element. The function outputs a reference array, which is a
ProArray. Free this output using ProReferencearrayFree().
The function ProElementReferencesSet() sets the multiple reference
values for the element.
The function ProElementIntegerGet() returns an integer value
representation for the element. The function ProElementIntegerSet() sets
the integer value for the element.

776 Creo® Parametric TOOLKITUser’s Guide

The function ProElementDoubleGet() returns a double value representation
for the element. The function ProElementDoubleSet() sets the double
value for the element.
The function ProElementDecimalsGet() obtains the number of decimal
places to be used for the double value of an element in the feature.
The function ProElementDecimalsSet() assigns the number of decimals to
be used for the double value of an element in the feature. The double value is used
in the feature dimension related to this element.

Note
Use the function ProElementDecimalsSet() before using the function
ProElementDoubleSet() to ensure that the double value is assigned
with the correct number of decimal places.

The following functions show how options are constructed and set for
ProElement*Get() functions.
The function ProElementwstroptsAlloc() allocates the options used to
retrieve wide string values.
The function ProElementwstroptsExpressionsSet() sets the options
to retrieve values as expressions or relations, if they exist, instead of a string
representations of the actual value. This function is applicable to nominal double
and integer value elements only.
The function ProElementwstroptsSignoptionsSet() sets the options
to retrieve values with special sign formatting (+/-), etc. This function is
applicable to nominal double and integer value elements only.
The function ProElementwstroptsFree() frees the options used to retrieve
string values.
The function ProElementWstringGet() returns a string value
representation for the element. The function allows, optionally, a
ProElementWstrOpts() structure that dictates the format of the output. Use
the function ProWstringFree() to free this string.
The function ProElementWstringSet() sets the string value for the
element.
The function ProElementStringGet() returns an ASCII string value
representation for the element. The inputs for this function are the element and
options for how the string should be obtained. The output is the ASCII string
value. Free this string using ProStringFree().
The function ProElementStringSet() sets the ASCII string value for the
element.

Element Trees: Principles of Feature Creation 777

The function ProElementSpecialvalueGet() returns the pointer
representation for the element and the function
ProElementSpecialvalueSet() sets the pointer representation for the
element.
The function ProElementBooleanGet() returns the boolean representation
for the element and the function ProElementBooleanSet() sets the boolean
value for the element.
The function ProElementTransformGet() returns the transform
representation for the element and the function
ProElementTransformSet() sets the transform value for the element.

Feature Element Diagnostics
Functions Introduced:

• ProElementDiagnosticsCollect()
• ProElemdiagnosticProarrayFree()
• ProElemdiagnosticSeverityGet()
• ProElemdiagnosticMessageGet()
• ProElemdiagnosticFree()
• ProReferenceDiagnosticsCollect()
The function ProElementDiagnosticsCollect() obtains a ProArray
of diagnostics for the element. These diagnostics include warnings and errors
regarding the value of the element within the context of the feature and remainder
of the element tree. Use the function
ProElemdiagnosticProarrayFree() to free the ProArray of
diagnostic items.
The function ProElemdiagnosticSeverityGet() returns the severity of
the diagnostic item for the element.
The function ProElemdiagnosticMessageGet() obtains the message
describing the diagnostic item for the element. This message is in the user’s
localized language.
The function ProElemdiagnosticFree() frees the diagnostic item for the
element.
The function ProReferenceDiagnosticsCollect() obtains a
ProArray of diagnostics for the reference element. These diagnostics include
warnings and errors regarding the state of the reference element within the context
of the feature.

778 Creo® Parametric TOOLKITUser’s Guide

Calling ProFeatureCreate()
Function introduced:

• ProFeatureCreate()
The syntax of ProFeatureCreate() is as follows:
ProError ProFeatureCreate (
ProSelection model, /* (In) The part on which the

feature is being
created. If the feature
is created in an
assembly, you must
specify the component
path. */

ProElement elemtree, /* (In) The element tree. */
ProFeatureCreateOptions options[], /* (In) An array of user

options. */
int num_opts, /* (In) The number of options

in the options array. */
ProFeature *p_feature, /* (Out) The feature handle. */
ProErrorlist *p_errors /* (Out) The list of errors. */

)

The first input argument to ProFeatureCreate() identifies the solid that is
to contain the new feature. This is expressed in the form of a ProSelection
object.

Note
The ProSelection object input to ProFeatureCreate(), and all the
ProSelection objects assigned to elements in the feature element tree,
must all refer to the same root assembly.

The second input argument is the ProElement object that forms the root of the
feature element tree.
The next two inputs are an array of creation options and the size of the array. The
creation options specify what ProFeatureCreate()should do if the element
tree is incomplete, or if the geometry cannot be constructed. Each option is one of
the following values of the enumerated type ProFeatureCreateOptions:

• PRO_FEAT_CR_NO_OPTS—No options were chosen.
• PRO_FEAT_CR_DEFINE_MISS_ELEMS—Prompt the user to complete the

feature if any elements are missing.
• PRO_FEAT_CR_INCOMPLETE_FEAT—Create the feature, even if some

Element Trees: Principles of Feature Creation 779

elements are missing. The feature will appear in the Creo Parametric feature
list and model tree, but will not be used in regeneration.

• PRO_FEAT_CR_FIX_MODEL_ON_FAIL—If the feature geometry cannot
be constructed, prompt the user to fix the problem.

If no options are needed, you can set the array to NULL, and the size to zero. If
you do not specify any options, ProFeatureCreate() fails and reports errors
if the element tree is incomplete, or if the geometry cannot be constructed.
To check whether a feature is incomplete, use the function
ProFeatureIsIncomplete().
The next argument is an output that provides a ProFeature object that
identifies the newly created feature.
The final argument is an output that reports errors found in the feature element
tree. This is designed as an aid to application developers because it is reporting
errors that occur only as a result of incorrect application code; it is not designed as
a way of reporting errors to the Creo Parametric user. The errors are written to a
structure called ProErrorlist whose declaration, in ProItemerr.h, is as
follows:
typedef struct
{

ProItemerror *error_list;
int error_number;

} ProErrorlist;
typedef struct
{

int err_item_id;
ProErritemType err_item_type;
ProError error;

} ProItemerror;
typedef enum ProErritemTypes
{

PRO_ERRITEM_NONE = -1,
PRO_ERRITEM_FEATELEM = 1

} ProErritemType;

The field error_list is an array of all the errors in the feature element tree
found by ProFeatureCreate(). Each error has a value expressed in terms of
the standard Creo Parametric TOOLKIT error type ProError, and can refer to
an element of a specified identifier, or be a more general error.

780 Creo® Parametric TOOLKITUser’s Guide

Note
• There are many useful utilities located in the Creo Parametric TOOLKIT

sample code under the Creo Parametric TOOLKIT loadpoint. Utilities such as
ProUtilElementtreePrint() are particularly useful when building
and debugging element trees.

• From Pro/ENGINEERWildfire 5.0 onward, the function
ProFeatureCreate() has been deprecated. Instead, use the function
ProFeatureWithoptionsCreate() with its input argument flags set to
PRO_REGEN_NO_FLAGS for the equivalent behavior.
ProFeatureWithoptionsCreate() has been described in detail in the
Manipulating Features based on Regeneration Flags on page 141 section in the
Core: Features on page 131 chapter.

Example of Complete Feature Creation
This section illustrates all the techniques explained so far in this chapter by
showing the code required to create a datum plane in a part or an assembly. The
datum plane created here is offset from a plane surface, and therefore has the
following element tree:

Example Element Tree: Offset Datum Plane

Element Trees: Principles of Feature Creation 781

(The full element tree for datum plane features is described in the chapter Element
Trees: Datum Features on page 804.)
In the code examples that follow, no checks of function return statuses are shown,
for clarity. No variable declarations are shown, but the style of the code samples
should make these self-explanatory.
The example assumes that the datum plane is being created by a utility function
that has two inputs describing the offset surface as a ProSelection relative to
the current part or assembly, and the offset distance, as follows:
int ProDatumPlaneCreate (ProSelection offset_surface,

double offset_dist);

The first step is to create the element that forms the root of the element tree. This
element has the element ID PRO_E_FEATURE_TREE but has no value, so it can
be created simply by a call to ProElementAlloc():
/*---*\

Create the root of the element tree.
---/

ProElementAlloc (PRO_E_FEATURE_TREE, &elem_tree);

The first element inside the root is, as for all features, the feature type. Its ID is
PRO_E_FEATURE_TYPE, and it has the single value PRO_FEAT_DATUM. To
set the value, you must first create a ProValue object of type integer.
/*---*\

Allocate the feature type element.
---/

ProElementAlloc (PRO_E_FEATURE_TYPE, &elem_ftype);
/*---*\

Set the value of the feature type element.
---/

value_data.type = PRO_VALUE_TYPE_INT;
value_data.v.i = PRO_FEAT_DATUM;
ProValueAlloc (&value);
ProValueDataSet (value, &value_data);
ProElementValueSet (elem_ftype, value);

/*---*\
Add the feature type element as a child of the tree root.

---/
ProElemtreeElementAdd (elem_tree, NULL, elem_ftype);

The next element is simply the holder for the datum plane constraints, and this in
turn contains a single constraint element (to be used for the offset constraint).
/*---*\

Add a PRO_E_DTMPLN_CONSTRAINTS element to the root of the
tree.

---/
ProElementAlloc (PRO_E_DTMPLN_CONSTRAINTS, &elem_consts);
ProElemtreeElementAdd (elem_tree, NULL, elem_consts);

/*---*\
Add a PRO_E_DTMPLN_CONSTRAINT element to the constraints
element.

782 Creo® Parametric TOOLKITUser’s Guide

---/
ProElementAlloc (PRO_E_DTMPLN_CONSTRAINT, &elem_offset);
ProElemtreeElementAdd (elem_consts, NULL, elem_offset);

Inside the single constraint element, add an element of type PRO_E_DTMPLN_
CONSTR_TYPE that specifies the constraint type to be PRO_DTMPLN_OFFS.
/*---*\

Allocate the constraint type element.
---/

ProElementAlloc (PRO_E_DTMPLN_CONSTR_TYPE,
&elem_const_type);

/*---*\
Set its value to be PRO_DTMPLN_OFFS.

---/
value_data.type = PRO_VALUE_TYPE_INT;
value_data.v.i = PRO_DTMPLN_OFFS;
ProValueAlloc (&value);
ProValueDataSet (value, &value_data);
ProElementValueSet (elem_const_type, value);

/*---*\
Add it as a member of the constraint element.

---/
ProElemtreeElementAdd (elem_offset, NULL, elem_const_type);

Also in the constraint element, you need an element to identify the reference plane
surface, PRO_E_DTMPLN_CONSTR_REF, with value type ProSelection.
/*---*\

Allocate the offset reference element.
---/

ProElementAlloc (PRO_E_DTMPLN_CONSTR_REF, &elem_offset_ref);
/*---*\

Set its value to be the ProSelection for the offset
reference surface.

---/
value_data.type = PRO_VALUE_TYPE_SELECTION;
value_data.v.r = offset_surface;
ProValueAlloc (&value);
ProValueDataSet (value, &value_data);
ProElementValueSet (elem_offset_ref, value);

/*---*\
Add it to the constraint element.

---/
ProElemtreeElementAdd (elem_offset, NULL, elem_offset_ref);

Finally, you need an element of type PRO_E_DTMPLN_CONSTR_REF_OFFSET
to contain the double value of the offset distance.
/*---*\

Allocate the offset distance element.
---/

ProElementAlloc (PRO_E_DTMPLN_CONSTR_REF_OFFSET,
&elem_offset_dist);

/*---*\

Element Trees: Principles of Feature Creation 783

Set its value to be the offset distance.
---/

value_data.type = PRO_VALUE_TYPE_DOUBLE;
value_data.v.d = offset_dist;
ProValueAlloc (&value);
ProValueDataSet (value, &value_data);
ProElementValueSet (elem_offset_dist, value);

/*---*\
Add it to the constraint element.

---/
ProElemtreeElementAdd (elem_offset, NULL, elem_offset_dist);

The element tree is complete.
The next step is to set up a ProSelection object that refers to the solid in
which you will create the datum plane.
You have the information about the context, in the form of the ProSelection
object, for the offset surface that was an input to the function you are writing. The
component path you need is the same one used to specify that surface. The solid to
contain the new feature is the one that owns the offset surface. Therefore, you can
build the ProSelection object for it as follows:
/*---*\

Get the component path for the offset surface.
---/

ProSelectionAsmcomppathGet (offset_surface, &comppath);
/*---*\

Get the model item for the offset surface.
---/

ProSelectionModelitemGet (offset_surface, &surf_modelitem);
/*---*\

Make a ProModelitem that refers to the owner of the offset
surface.

---/
ProMdlToModelitem (surf_modelitem.owner, &model_modelitem);

/*---*\
Make a ProSelection for the solid that will contain the
new feature.

---/
ProSelectionAlloc (&comppath, &model_modelitem, &featsel);

If the offset surface belongs to a part in a current assembly, and your function is
required to add the datum plane not to the part but to the assembly, the code above
would be replaced by this:
/*---*\

Get the component path for the offset surface.
---/

ProSelectionAsmcomppathGet (offset_surface, &comppath);
/*---*\

Make a ProModelitem that refers to the root of the assembly.
---/

ProMdlToModelitem (comppath.owner, &model_modelitem);

784 Creo® Parametric TOOLKITUser’s Guide

/*---*\
Make a ProSelection for the root of the assembly.

---/
ProSelectionAlloc (NULL, &model_modelitem, &featsel);

Finally, call ProFeatureCreate().
/*---*\

Create the datum plane feature.
---/

ProFeatureCreate (featsel, elem_tree, NULL, 0, &feature,
&errors);

Feature Inquiry
Functions introduced:

• ProFeatureElemtreeCreate()
• ProFeatureElemtreeExtract()
• ProFeatureElemtreeFree()
• ProFeatureElemValueGet()
• ProFeatureElemValuesGet()
• ProFeatureElemDimensionIdGet()
• ProFeatureElemIsVisible()
• ProFeatureIsIncomplete()
• ProFeatureElemIsIncomplete()
This section describes how to extract the element tree from a feature and analyze
it. To find out how to inquire about the feature as a whole and its role in the
owning solid, see the section Feature Inquiry on page 785.in the Core: Features on
page 131.
The function ProFeatureElemtreeCreate() creates a copy of the feature
element tree that describes the contents of a specified feature in the Creo
Parametric database. It is applicable only to those feature types that can be created
using ProFeatureCreate() (as described in Overview of Feature Creation
on page 765). The tree can then be analyzed using the read-access functions, such
as ProElement*Get(),ProElement*Visit(), and
ProElementArrayCount() described in the sections Feature Elements on
page 774 and Feature Element Paths on page 772.

Element Trees: Principles of Feature Creation 785

Note
The function ProFeatureElemtreeCreate() has been deprecated as it
does not provide options to resolve the paths of external references of the
feature in case of assemblies. Use ProFeatureElemtreeExtract()
instead.

The function ProFeatureElemtreeExtract() creates a copy of the feature
element tree of a specified feature. It also provides options to resolve the paths of
external references of the feature in case of assemblies.
Use the function ProFeatureElemtreeFree()to free a copy of the feature
element tree extracted using
ProFeatureElemtreeCreate()ProFeatureElemtreeExtract().
The function ProElementFree() does not free all of the feature-specific
runtime data associated with the element tree, and thus can result in a memory
leak for certain features.
Instead of copying the entire element tree to analyze it, you can extract
information about particular elements directly from the feature. The remaining
functions in this section serve that purpose.
The function ProFeatureElemValueGet() provides the value of a single-
valued element specified by the ProFeature object and a ProElempath. The
function ProFeatureElemValuesGet() provides the values of a
multivalued element in a feature.
The function ProFeatureElemDimensionIdGet() gives you the integer
identifier of the dimension in the Creo Parametric database used to define the
value of the specified single-valued element.
The function ProFeatureElemIsVisible() distinguishes elements added
to the tree by Creo Parametric for internal reasons only, and are neither defined as
needed for creation of that type of feature, nor otherwise documented.
The function ProFeatureIsIncomplete() identifies features in the Creo
Parametric database whose element trees are still incomplete. Such a feature can
arise by using the option PRO_FEAT_CR_INCOMPLETE_FEAT when calling
ProFeatureCreate(), and does not give rise to geometry until completed. If
a feature is incomplete, you can find out which element in its tree is at fault using
the function ProFeatureElemIsIncomplete(). Its input is a
ProFeature and a ProElempath.

Feature Redefine
Function introduced:

786 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureRedefine()
The function ProFeatureRedefine() enables you to redefine a feature. It is
applicable only to those feature types that can be created using
ProFeatureCreate().
The function ProFeatureRedefine() has arguments for the create options
and for the resulting element errors, like those for ProFeatureCreate()

To Redefine a Feature
1. Call ProFeatureElemtreeExtract() to get a copy of the element tree.
2. Analyze and modify the tree using functions ProFeatureElem*(),

ProElement*(), and ProElempath*()
3. Call ProFeatureRedefine() to replace the old element tree with the

new one.

XML Representation of Feature Element
Trees
Creo Parametric TOOLKIT offers the capability of representing most feature
element trees in the XML format. The XML representation of element trees
simplifies the procedure of using Creo Parametric TOOLKIT access to Creo
Parametric features. The Creo Parametric TOOLKIT API’s that access the XML
for element trees are capable of converting the XML content to and from an
element tree structure (ProElement.)
In Pro/ENGINEERWildfire 2.0, PTC recommends the use of XML representation
for the core Pro/ENGINEER features and for the new sheetmetal wall features.
Manufacturing features support is not available in this release.

Introduction to Feature Element Trees in XML
In Creo Parametric TOOLKIT, the access to Creo Parametric features is available
using a generic data-structure called element tree. You can use the element tree
APIs to query, modify, and redefine the Creo Parametric features. To simplify the
access to Creo Parametric feature using Creo Parametric TOOLKIT, the concept
of XML representation of the element trees has been introduced. The XML
representation shows the details of the element tree in text format. The XML files
are easy to edit and you can recycle them back to create or to redefine features. All
the Creo Parametric TOOLKIT supported features have support for their
respective XML representations.

Element Trees: Principles of Feature Creation 787

The function ProElemtreeWrite() writes the XML version of the element
tree in a text file and the function ProElemtreeFromXMLCreate() is used
to convert the XML version from a text file to the Creo Parametric TOOLKIT
native element trees.
Functions Introduced:

• ProElemtreeWrite()
• ProElemtreeFromXMLCreate()
• ProXmlerrorlistProarrayFree()
The function ProElemtreeWrite() writes the feature element tree in XML
format to the specified file. This function uses the Creo Parametric TOOLKIT
native element tree as an input. The type of output required should be specified.
Currently only XML format for the output is supported. The only output argument
is the name of the output file included with the location and the extension.
The function ProElemtreeFromXMLCreate() reads in the XML file and
converts into a corresponding Creo Parametric TOOLKIT native element tree.
This function takes the name with location of the output XML file as an input and
returns the generated element tree as the output.
The created element tree can be used as an input to ProFeatureCreate or
ProFeatureRedefine.
In case of error in execution of this function, an error objects is populated and
returned. This error object is a ProArray of errors. It contains the information like
type of the error, path of the XML file, line number, column number, and the error
message. The memory for the error object is allocated by the function is required
to be freed in the Creo Parametric TOOLKIT application using
ProXmlerrorlistProarrayFree(). The function has three levels of error
on the basis of the severity warning, general error and fatal error. Upon
encountering warning and general errors, the function continues parsing the input
XML till the end and collects all the errors in the error object. For a fatal error, the
function stops the parsing and returns immediately.

Validation Using XML Schema
XML schemas are used for validation of element tree which is used for feature
creation. Element tree in the form of XML representations are validated and
passed to ProFeatureCreate() and ProFeatureRedefine().
To use the Schema validation, the following config option must be set

The XML Schema defines the structure and data type for XML. The element
name is compared with the element specified in schema for validation. In the case
of compound elements, validation is done for name, order and number of the sub-

788 Creo® Parametric TOOLKITUser’s Guide

elements. The Schema validates the accuracy of data to be passed as it supports
the data type of the element. The Schema also checks whether the element is
optional or compulsory.
The location of the Schema is <install_dir>/proe/xmlelem/schema/
ProTKFeature.xsd contains the representation of different feature element.
ProTKObjects.xsd contains the representation of basic and Creo Parametric
TOOLKIT objects.
The schema validation of element tree takes place if the config option enable_
protk_xml_schema is set to "yes" before passing XML file to
ProElemtreeFromXMLCreate().
If the validation fails, the corresponding error is populated into the error object
which can be printed out and can be used to correct the input XML file. The error
object contains the line number, column number and the error message as debug
information.
The following is an example of Schema for Solidify Feature:
<xsd:sequence>

<xsd:element name="PRO_E_FEATURE_TYPE"
type="StringData"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="PRO_E_FEATURE_FORM" type="StringData"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="PRO_E_PATCH_QUILT" type="Selection"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="PRO_E_PATCH_TYPE" type="IntegerData"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="PRO_E_PATCH_MATERIAL_SIDE" type="IntegerData"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="PRO_E_STD_FEATURE_NAME" type="StringData"

minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

<!-- End Solidify -->

Following code demonstrate how to use the error object to print the information
status = ProElemtreeFromXMLCreate (input_file, &elemtree, &errors);
if ((status == PRO_TK_GENERAL_ERROR) || (status == PRO_TK_BAD_CONTEXT))
{
printf ("ProElemtreeFromXMLCreate FAILURE :: %d \n", status);
status = ProArraySizeGet (errors, &size_errors);
printf("Size of the Error Object is %d \n", size_errors);
printf("Content of the Error Object are \n");
for (error_count = 0; error_count < size_errors; error_count++)

{
printf("Error No = %d\n", error_count);
printf("\t+ Error Type = %d\n", errors[error_count].error_type);
if (status == PRO_TK_GENERAL_ERROR)

{
printf("\t+ Error Path = %s\n",

Element Trees: Principles of Feature Creation 789

ProWstringToString (temp_string, errors[error_count].error_source));
printf("\t+ Line No = %d\n", errors[error_count].line_number);
printf("\t+ Column No = %d\n", errors[error_count].column_number);
}

else if (status == PRO_TK_BAD_CONTEXT)
{
printf("\t+ Element Sr No = %d\n",

errors[error_count].line_number);
printf("\t+ Element ID = %d\n",

errors[error_count].column_number);
}

ProWstringLengthGet (errors[error_count].message,
&string_length);

temp_message_string = (char *) calloc (1, (string_length+1) * sizeof (char));
printf("\t+ Error Message = %s\n",

ProWstringToString (temp_message_string,
errors[error_count].message));

free (temp_message_string);
}

}

The list of features supported for XML schema validation are as follows:
Feature Type Feature Name
PRO_FEAT_DATUM_AXIS Datum Axis Feature
PRO_FEAT_DATUM Datum Plane Feature
PRO_FEAT_CSYS Datum Coordinate System Feature
PRO_FEAT_CURVE Datum Curve Feature
PRO_FEAT_DATUM_POINT Datum Point Feature
PRO_FEAT_CHAMFER Chamfer Feature
PRO_FEAT_ROUND Round Feature
PRO_FEAT_DRAFT Draft Feature
PRO_FEAT_HOLE Hole Feature
PRO_FEAT_WALL Sheetmetal Flat or Flange Wall Feature
PRO_FEAT_COMPONENT Assembly Component Feature
PRO_FEAT_DATUM_QUILT Surface Merge Feature
PRO_FEAT_PATCH Solidify Feature of the type Patch
PRO_FEAT_GEN_MERGE General Merge Feature
PRO_FEAT_SRF_MDL Mirror or Move Feature
PRO_FEAT_PROTRUSION Solidify Feature of the type Protrusion
PRO_FEAT_SHELL Shell Feature
PRO_FEAT_FIRST_FEAT First Feature
PRO_FEAT_CUT Solidify Feature of the type Cut
PRO_FEAT_SLOT Slot Feature
PRO_FEAT_GEOM_COPY Copy Geometry Feature
PRO_FEAT_RIB Rib Feature
PRO_FEAT_REPLACE_SURF Replace Surface Feature

790 Creo® Parametric TOOLKITUser’s Guide

XML Representations for Common Elements
The following section gives details about the XML representation of the common
elements. The elements can represent a primitive type e.g. an integer or some
complex Creo Parametric TOOLKIT object e.g. ProReference or
ProCollection. The purpose of this representation is to enable externalize
these objects in a model specific text format. The examples of the XML
representations are also provided for easier understanding.

Single Valued Element
A single valued element contains an element of type Integer, Double, String, or
Boolean. Its value will be shown as the XML tags. For example:
<PRO_E_REV_ANGLE_FROM_VAL type="double">0.00</PRO_E_REV_ANGLE_FROM_VAL>

Empty or Optional Element
An empty element in XML does not have any data value, but just the opening and
closing XML tags. Empty elements are ignored by
ProElemtreeFromXMLCreate(). Unusedoptional elements in the feature’s
element tree appear as empty in the XML output from ProElemtreeWrite().
<PRO_E_REV_ANGLE_FROM_REF type="selection" />

OR
<PRO_E_REV_ANGLE_FROM_REF type="selection"></PRO_E_REV_ANGLE_FROM_REF type>

XML Representation for ProSelection or ProReference
This represents the contents of the ProSelection or ProReference object.
If the reference is currently not active or fully available, the reference is included.
Consult the function ProReferenceStatusGet() for more information.The
reference XML includes details like UV parameters and 3D point for specific
elements that require them. The assembly component path will be available for
references that include the assembly context.
<PRO_E_DPOINT_PLA_CONSTR_REF type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_STATUS type= “int”>PRO_REF_NOT_FOUND</PRO_XML_REFERENCE_STATUS>
<PRO_XML_REFERENCE_OWNER type="owner">COMP2.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">46</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_EDGE</PRO_XML_REFERENCE_TYPE>
<PRO_XML_ASMCOMP_PATH comppath="compound">
<PRO_XML_ASMCOMP_PATH_OWNER type="model">ASM_PNT.asm</PRO_XML_ASMCOMP_PATH_OWNER>
<PRO_XML_ASMCOMP_PATH_ARRAY type="array">
<PRO_XML_ASMCOMP_PATH_ITEM index="1">40</PRO_XML_ASMCOMP_PATH_ITEM>

</PRO_XML_ASMCOMP_PATH_ARRAY>
</PRO_XML_ASMCOMP_PATH>

<PRO_XML_UV_PARAM uv_parameter="array">
<PRO_XML_DOUBLE_VALUE type="u">0.000000</PRO_XML_DOUBLE_VALUE>
<PRO_XML_DOUBLE_VALUE type="v">0.000000</PRO_XML_DOUBLE_VALUE>

Element Trees: Principles of Feature Creation 791

</PRO_XML_UV_PARAM>
</PRO_XML_REFERENCE>
</PRO_E_DPOINT_PLA_CONSTR_REF>

XML Representation for ProCollection
This represents the contents of the ProCollection object. Collection type,
collection instructions, instruction types, references, reference types are some of
the contents. These are classified into surface and curve collections. Surface
collection represents a set of surfaces in the model governed by rules like seed and
boundary. Curve collection represents a set of edges or curves in the model
governed by rules like one-by-one, surface-loop etc. The instruction type for the
particular collection identifies the rule.

Curve Collection
<PRO_E_STD_CURVE_COLLECTION_APPL type="collection">
<PRO_XML_COLLECTION type="curve">

<PRO_XML_COLLECTION_INSTRUCTIONS type="array">
<PRO_XML_COLLECTION_INSTRUCTION type="compound">
<PRO_XML_COLLECTION_INSTRUCTION_TYPE type="int">105</PRO_XML_COLLECTION_

INSTRUCTION_TYPE>
<PRO_XML_CRVCOLL_REFS type="array">
<PRO_XML_CRVCOLL_REF type="selection">
<PRO_XML_REFERENCE type="reference">

<PRO_XML_REFERENCE_OWNER type="owner">CRV_COLLECTION_PART.prt
</PRO_XML_REFERENCE_OWNER>

<PRO_XML_REFERENCE_ID type="id">703</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_QUILT</PRO_XML_REFERENCE_TYPE>

</PRO_XML_REFERENCE>
</PRO_XML_CRVCOLL_REF>
<PRO_XML_CRVCOLL_REF type="selection">

<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">CRV_COLLECTION_PART.prt

</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">679</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_EDGE</PRO_XML_REFERENCE_TYPE>

</PRO_XML_REFERENCE>
</PRO_XML_CRVCOLL_REF>

</PRO_XML_CRVCOLL_REFS>
</PRO_XML_COLLECTION_INSTRUCTION>

</PRO_XML_COLLECTION_INSTRUCTIONS>
</PRO_XML_COLLECTION>
</PRO_E_STD_CURVE_COLLECTION_APPL>

Surface Collection
<PRO_E_STD_SURF_COLLECTION_APPL type="collection">
<PRO_XML_COLLECTION type="surface">
<PRO_XML_COLLECTION_INSTRUCTIONS type="array">

792 Creo® Parametric TOOLKITUser’s Guide

<PRO_XML_COLLECTION_INSTRUCTION type="compound">
<PRO_XML_COLLECTION_INSTRUCTION_TYPE type="int">2
</PRO_XML_COLLECTION_INSTRUCTION_TYPE>

<PRO_XML_SRFCOLL_INCLUDE type="boolean">1</PRO_XML_SRFCOLL_INCLUDE>
<PRO_XML_SRFCOLL_REFS type="array">
<PRO_XML_SRFCOLL_REF type="compound">
<PRO_XML_SRFCOLL_REFITEM_TYPE type="int">3</PRO_XML_SRFCOLL_REFITEM_TYPE>
<PRO_XML_SRFCOLL_REFITEM type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">
SRF_COLLECTION_PART.prt</PRO_XML_REFERENCE_OWNER>

<PRO_XML_REFERENCE_ID type="id">17</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>

</PRO_XML_SRFCOLL_REFITEM>
</PRO_XML_SRFCOLL_REF>
<PRO_XML_SRFCOLL_REF type="compound">

<PRO_XML_SRFCOLL_REFITEM_TYPE type="int">4</PRO_XML_SRFCOLL_REFITEM_TYPE>
<PRO_XML_SRFCOLL_REFITEM type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">
SRF_COLLECTION_PART.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">26</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>

</PRO_XML_REFERENCE>
</PRO_XML_SRFCOLL_REFITEM>
</PRO_XML_SRFCOLL_REF>
</PRO_XML_SRFCOLL_REFS>
</PRO_XML_COLLECTION_INSTRUCTION>
</PRO_XML_COLLECTION_INSTRUCTIONS>
</PRO_XML_COLLECTION>
</PRO_E_STD_SURF_COLLECTION_APPL>

Pointer Element
Most pointer elements are written with their value appearing as “**”. Elements
with this value type are not supported by ProElemtreeFromXMLCreate()
(this element is not added to the created element tree.) The most common pointer
element of this type is the Creo Parametric sketch element PRO_E_SKETCHER.
<PRO_E_SKETCHER type="pointer">**</PRO_E_SKETCHER>

Compound Element
A compound element represents a collection of different types of sub-elements.
Following is an example in XML format.
<PRO_E_REV_ANGLE type="compound">

<PRO_E_REV_ANGLE_FROM type="compound">
<PRO_E_REV_ANGLE_FROM_TYPE type="int">262144</PRO_E_REV_ANGLE_FROM_TYPE>
<PRO_E_REV_ANGLE_FROM_VAL type="double">0.00</PRO_E_REV_ANGLE_FROM_VAL>
<PRO_E_REV_ANGLE_FROM_REF type="selection" />

Element Trees: Principles of Feature Creation 793

<PRO_E_REV_ANGLE_FROM_LIMIT type="int">0</PRO_E_REV_ANGLE_FROM_LIMIT>
</PRO_E_REV_ANGLE_FROM>
<PRO_E_REV_ANGLE_TO type="compound">
<PRO_E_REV_ANGLE_TO_TYPE type="int">4194304</PRO_E_REV_ANGLE_TO_TYPE>
<PRO_E_REV_ANGLE_TO_VAL type="double">120.00</PRO_E_REV_ANGLE_TO_VAL>
<PRO_E_REV_ANGLE_TO_REF type="selection" />
<PRO_E_REV_ANGLE_TO_LIMIT type="int">0</PRO_E_REV_ANGLE_TO_LIMIT>

</PRO_E_REV_ANGLE_TO>
</PRO_E_REV_ANGLE>

Array Element
An array element represents a collection of elements of the same type. Following
is an example of an array of PRO_E_RNDCH_RADIUS elements in XML format.
<PRO_E_RNDCH_RADII type="array">

<PRO_E_RNDCH_RADIUS type="compound">
<PRO_E_STD_POINT_COLLECTION_APPL type="selection">

<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">K01_X_COLLECTION_PART.prt

</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">1268</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_CRV_END</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>
</PRO_E_STD_POINT_COLLECTION_APPL>
<PRO_E_RNDCH_LEG1 type="compound">
<PRO_E_RNDCH_LEG_TYPE type="int">1</PRO_E_RNDCH_LEG_TYPE>
<PRO_E_RNDCH_LEG_VALUE type="double">36.00</PRO_E_RNDCH_LEG_VALUE>
<PRO_E_RNDCH_REFERENCE_EDGE type="selection" />
<PRO_E_RNDCH_REFERENCE_POINT type="selection" />
</PRO_E_RNDCH_LEG1>
<PRO_E_RNDCH_LEG2 type="compound">
<PRO_E_RNDCH_LEG_TYPE type="int">0</PRO_E_RNDCH_LEG_TYPE>
<PRO_E_RNDCH_LEG_VALUE type="double">0.00</PRO_E_RNDCH_LEG_VALUE>
<PRO_E_RNDCH_REFERENCE_EDGE type="selection" />
<PRO_E_RNDCH_REFERENCE_POINT type="selection" />
</PRO_E_RNDCH_LEG2>
</PRO_E_RNDCH_RADIUS>
<PRO_E_RNDCH_RADIUS type="compound">
<PRO_E_STD_POINT_COLLECTION_APPL type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">K01_X_COLLECTION_PART.prt

</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">1268</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_CRV_START</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>
</PRO_E_STD_POINT_COLLECTION_APPL>
<PRO_E_RNDCH_LEG1 type="compound">
<PRO_E_RNDCH_LEG_TYPE type="int">1</PRO_E_RNDCH_LEG_TYPE>
<PRO_E_RNDCH_LEG_VALUE type="double">55.39</PRO_E_RNDCH_LEG_VALUE>
<PRO_E_RNDCH_REFERENCE_EDGE type="selection" />

794 Creo® Parametric TOOLKITUser’s Guide

<PRO_E_RNDCH_REFERENCE_POINT type="selection" />
</PRO_E_RNDCH_LEG1>
<PRO_E_RNDCH_LEG2 type="compound">
<PRO_E_RNDCH_LEG_TYPE type="int">0</PRO_E_RNDCH_LEG_TYPE>
<PRO_E_RNDCH_LEG_VALUE type="double">0.00</PRO_E_RNDCH_LEG_VALUE>
<PRO_E_RNDCH_REFERENCE_EDGE type="selection" />
<PRO_E_RNDCH_REFERENCE_POINT type="selection" />
</PRO_E_RNDCH_LEG2>
</PRO_E_RNDCH_RADIUS>
</PRO_E_RNDCH_RADII>

Multivalued Element
The multi-valued element represents an array of same types of elements. The
difference between the array and multi-valued elements lies in the Creo
Parametric TOOLKIT handling of these elements. In the XML format both the
representations are similar.
<PRO_E_SHELL_SRF type="multivalue">

<PRO_E_SHELL_SRF_MULTI type="selection">
<PRO_XML_REFERENCE type="reference">

<PRO_XML_REFERENCE_OWNER type="owner">X_SHELL_REDEF.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">76</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>
</PRO_E_SHELL_SRF_MULTI>
<PRO_E_SHELL_SRF_MULTI type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">X_SHELL_REDEF.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">72</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>
</PRO_E_SHELL_SRF_MULTI>
<PRO_E_SHELL_SRF_MULTI type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">X_SHELL_REDEF.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">68</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>
</PRO_E_SHELL_SRF_MULTI>
</PRO_E_SHELL_SRF>

Tips for Recycling XML Output of Element Trees
The easiest way to create an XML file for any feature element tree is to call
ProFeatureElemtreeExtract() followed by ProElemtreeWrite().
The pt_userguide application includes this capability. While running this
application, select a feature. Click the right mouse button and choose Export XML.
The output XML produced can be used and reused with modifications by passing
it to ProElemtreeFromXMLCreate() to create an element tree. The

Element Trees: Principles of Feature Creation 795

resulting element tree can be used for new feature creation or redefinition of an
existing feature. The following tips would help easier reuse and understanding
failures.

• Creo Parametric models can have only a single feature with a specific name -
before using the XML for creating a new feature, modify the value of the
element PRO_E_STD_FEATURE_NAME appropriately. Since, feature name is
an optional element, the XML tag for this element can be deleted from the
XML file to promote reuse.

• The function ProElemtreeWrite() writes all of the elements in the input
Creo Parametric TOOLKIT native element tree. Optional elements with empty
data within XML tags from the XML file can be removed before reusing the
XML file. It is also permitted to keep the optional elements as they are in the
XML, but these elements are ignored by
ProElemtreeFromXMLCreate().

• ProElemtreeFromXMLCreate() converts the XML file to an element
tree without validating that the data is appropriate for that feature type (for
example, ensuring that the correct type is selected for references.) The error is
detected when the element tree is used by ProFeatureCreate() or
ProFeatureRedefine().

• ProElemtreeFromXMLCreate() supports some enumerated symbols or
the actual integer values. Use the output XML file as a guide to see which
enumerated type names are accepted.

• The tag names used in the XML representation are derived from the list of
ProElemId from ProElemId.h.These names must be used exactly as
found in the ProElemId.h file.

• XML files created by one version of Creo Parametric are not guaranteed to be
usable by other Creo Parametric versions, because the structure of the element
tree also change between versions.

A Sample Element Tree in XML for a Shell Feature
<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML File for shell feature -->
<PRO_E_FEATURE_TREE AppName="Creo Parametric" AppVersion="2003440"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ProTKFeature.xsd" type="compound">
<PRO_E_FEATURE_TYPE type="int">PRO_FEAT_SHELL</PRO_E_FEATURE_TYPE>
<PRO_E_STD_FEATURE_NAME type="wstring">SHELL</PRO_E_STD_FEATURE_NAME>
<PRO_E_SHELL_SRF type="multivalue">

<PRO_E_SHELL_SRF_MULTI type="selection">
<PRO_XML_REFERENCE type="reference">

<PRO_XML_REFERENCE_OWNER type="owner">X_SHELL.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">76</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>

796 Creo® Parametric TOOLKITUser’s Guide

</PRO_XML_REFERENCE>
</PRO_E_SHELL_SRF_MULTI>
</PRO_E_SHELL_SRF>
<PRO_E_SHELL_THICK type="double">4.02</PRO_E_SHELL_THICK>
<PRO_E_SHELL_FLIP type="int">1</PRO_E_SHELL_FLIP>

<PRO_E_ST_SHELL_LOCL_LIST type="array">
<PRO_E_ST_SHELL_LOCL_CMPD type="compound">

<PRO_E_ST_SHELL_SPEC_SRF type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">X_SHELL.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">53</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>
</PRO_E_ST_SHELL_SPEC_SRF>
<PRO_E_ST_SHELL_SPEC_THCK type="double">10.00</PRO_E_ST_SHELL_SPEC_THCK>
</PRO_E_ST_SHELL_LOCL_CMPD>
<PRO_E_ST_SHELL_LOCL_CMPD type="compound">
<PRO_E_ST_SHELL_SPEC_SRF type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">X_SHELL.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">66</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>
</PRO_E_ST_SHELL_SPEC_SRF>
<PRO_E_ST_SHELL_SPEC_THCK type="double">9.00</PRO_E_ST_SHELL_SPEC_THCK>
</PRO_E_ST_SHELL_LOCL_CMPD>
<PRO_E_ST_SHELL_LOCL_CMPD type="compound">
<PRO_E_ST_SHELL_SPEC_SRF type="selection">
<PRO_XML_REFERENCE type="reference">
<PRO_XML_REFERENCE_OWNER type="owner">X_SHELL.prt</PRO_XML_REFERENCE_OWNER>
<PRO_XML_REFERENCE_ID type="id">74</PRO_XML_REFERENCE_ID>
<PRO_XML_REFERENCE_TYPE type="protype">PRO_SURFACE</PRO_XML_REFERENCE_TYPE>
</PRO_XML_REFERENCE>
</PRO_E_ST_SHELL_SPEC_SRF>
<PRO_E_ST_SHELL_SPEC_THCK type="double">15.00</PRO_E_ST_SHELL_SPEC_THCK>
</PRO_E_ST_SHELL_LOCL_CMPD>
</PRO_E_ST_SHELL_LOCL_LIST>
</PRO_E_FEATURE_TREE>

The following example shows how to use ProElemtreeWrite() to export a
feature element tree to XML.
#include <ProToolkit.h>
#include <ProMenuBar.h>
#include <ProMdl.h>
#include <ProSelection.h>
#include <ProFeature.h>
#include <ProWstring.h>
static
wchar_t MSGFIL[] = {'u','t','i','l','i','t','i','e','s','.','t','x','t','\0'};
/*===*\
FUNCTION: UserFeatXMLWrite

Element Trees: Principles of Feature Creation 797

PURPOSE: Write a feature's element tree to an XML file.
===/
int UserFeatXMLWrite (ProFeature* feat)
{
ProElement elemtree;
wchar_t wFilename [PRO_FILE_NAME_SIZE];

/*--*\
Prompt for the filename
--/
ProMessageDisplay (MSGFIL, "USER Enter the XML file name:");
if (ProMessageStringRead (PRO_FILE_NAME_SIZE, wFilename)

!= PRO_TK_NO_ERROR)
return (0);

/*--*\
Extract the element tree and convert it to XML
--/
status = ProFeatureElemtreeExtract (feat,NULL,PRO_FEAT_EXTRACT_NO_OPTS,

&elemtree);
if (status == PRO_TK_NO_ERROR)
{

status = ProElemtreeWrite (elemtree, PRO_ELEMTREE_XML, wFilename);
ProElementFree (&elemtree);

}
return status;

}

798 Creo® Parametric TOOLKITUser’s Guide

33
Element Trees: References

Overview of Reference Objects .. 800
Reading References.. 800
Modifying References .. 803

This chapter describes functions that provide access to reference objects as an
alternative for accessing the information as selections.

799

Overview of Reference Objects
Reference objects are an alternative method for representing a geometric reference
in Creo Parametric. Geometric references are usually represented using the
ProSelection structure. Since ProSelection is designed as the result of
an interactively selected item, it lacks some capabilities to provide complete
meaning as a geometric reference.
The opaque handle ProReference provides complete functionality for
geometric referencing including functions to access multiple or missing
references.

Reading References
Functions Introduced:

• ProReferenceStatusGet()
• ProReferenceIsLocalcopy()
• ProReferenceTypeGet()
• ProReferenceIdGet()
• ProReferenceOwnerGet()
• ProReferenceOwnerMdlnameGet()
• ProReferenceOriginaltypeGet()
• ProReferenceOriginalidGet()
• ProReferenceOriginalownerGet()
• ProReferenceOriginalownerMdlnameGet()
• ProReferenceAsmcomppathGet()
• ProReferenceParamsGet()
• ProReferencePointGet()
• ProReferenceToSelection()
• ProSelectionToReference()
• ProReferencearrayToSelections()
• ProSelectionarrayFree()
• ProSelectionarrayToReferences()
• ProReferenceFree()
• ProReferencearrayFree()

800 Creo® Parametric TOOLKITUser’s Guide

The function ProReferenceStatusGet() identifies the status of the
reference. Typically references are of status PRO_REF_ACTIVE, indicating that
the reference is available and its geometry is usable for construction of features.
Other reference statuses include:

• PRO_REF_MISSING – The reference is to geometry that is inactive in the
model. When reading the element tree of a feature that modifies the geometry
it references (for example, a round of edge removes the edge) the references
will have this status.

• PRO_REF_NOT_FOUND – Similar to PRO_REF_MISSING. The function
indicates a reference that is critical to the feature that uses the function.

• PRO_REF_FROZEN – The reference is to geometry in a component frozen
due to other missing references.

• PRO_REF_FROZEN_PLACE, PRO_REF_SUPPRESSED,PRO_REF_
EXCLUDED – Not returned by ProReferenceStatusGet().

• PRO_REF_INVALID – The reference is invalid in the context of the feature
and the element in which it is used (for example, a non-linear edge used as
direction reference for drafts or translations.)

• PRO_REF_ALTERNATE – The reference is using an alternate reference. The
original reference information is available.

Note
Reference status is highly dependent on the model state at the time the
reference was obtained. References obtained from a feature via
ProFeatureElemtreeExtract() may become “Missing” or “Not
found” due to changes in the geometry applied later in the feature list. To
obtain the reference status for a given reference as it is seen by a feature,
use ProInsertModeActivate() to revert the model to the state just
after that feature is created.

• PRO_REF_WARNING—The referenced entity has a warning.

Note
References obtained from a feature that removes a geometric empty body
can have a “Warning” or “Invalid” state. The statuses of the references are
not stored in the models and are thrown at run time during feature creation,
redefinition, or regeneration.

Element Trees: References 801

The function ProReferenceIsLocalcopy() identifies if the reference is a
local copy of the external reference. If the reference is a local copy, the original
reference information is available as well.
The function ProReferenceTypeGet() gets the type of handle that is
referenced.
The function ProReferenceIdGet() gets the item identity of the reference
handle.
The function ProReferenceOwnerGet() gets the ProMdl handle of the
owner model for the reference. The output of these three functions provides access
to the basic ProModelitem referenced by the ProReference handle. If the
reference status is not PRO_REF_ACTIVE, some or all of this information may
not be accessible (for example, the reference owner model is not accessible if the
reference is to a geometry item in an unretrieved component). The function
ProReferenceOwnerMdlnameGet() gets the reference owner name of the
referenced geometry item, which may be available even if the model itself has not
been retrieved.
The functions ProReferenceOriginaltypeGet(),
ProReferenceOriginalidGet(),
ProReferenceOriginalownerGet(),
ProReferenceOriginalownerMdlnameGet() get the original properties
of a geometric reference handle. These could be different from the actively used
type if the reference has been backed up, copied locally, or replaced with an
alternate.
The function ProReferenceAsmcomppathGet() gets the component path
of a reference handle.
The function ProReferenceParamsGet() gets the u-v parameters of a
reference handle.
The function ProReferencePointGet() gets the selected point of a
reference handle.
The function ProReferenceToSelection() gets and allocates a
ProSelection containing a representation for this reference. The output of this
function is the resulting ProSelection handle. This selection is independently
allocated and should be freed using ProSelectionFree().
The function ProSelectionToReference() gets and allocates a
ProReference containing a representation for this selection. The output of this
function is the resulting ProReference handle. This reference is independently
allocated and should be freed using ProReferenceFree().

802 Creo® Parametric TOOLKITUser’s Guide

The function ProReferencearrayToSelections() converts a reference
ProArray to a selection ProArray. The input arguments for this function are
• references – The ProArray of reference handles.
• skip_unusable – PRO_B_TRUE to skip the processing of missing references

that cannot be valid selections. PRO_B_FALSE to process all references.
The output for this function is a selection that is a ProArray of selection
handles. You can free this array using the function
ProSelectionarrayFree().
The function ProSelectionarrayToReferences() converts a selection
ProArray to a reference ProArray. ProArray of selection handles is given
as the input and the ProArray of reference handles is the output. Free this array
using ProReferencearrayFree().
The function ProReferenceFree() frees a reference handle.
The function ProReferencearrayFree() frees a reference ProArray.
This function also free each ProReference handle using
ProReferenceFree().

Modifying References
Functions Introduced:

• ProReferenceAlloc()
• ProReferenceSet()
• ProReferenceParamsSet()
• ProReferencePointSet()
The function ProReferenceAlloc() allocates a reference handle.
The function ProReferenceSet() sets the referenced model item and
optionally component path for the reference handle.
The function ProReferenceParamsSet() sets the u-v parameters of a
reference handle.
The function ProReferencePointSet() sets the selected point of a
reference handle.

Element Trees: References 803

34
Element Trees: Datum Features

Datum Plane Features ... 805
Datum Point Features.. 816
Datum Axis Features ... 830
Datum Coordinate System Features ... 838

This chapter describes how to use the include files ProDtmPln.h,
ProDtmPnt.h, ProDtmAxis.h, and ProDtmCsys.h to create datum
features programmatically. The chapter on Element Trees: Principles of Feature
Creation on page 764 provides necessary background for creating datum features;
we recommend you read that material first.

804 Creo® Parametric TOOLKITUser’s Guide

Datum Plane Features
The element tree for a datum plane feature is documented in the header file
ProDtmPln.h, and has a simple structure. Apart from the usual elements for the
tree root and feature type, a datum plane contains the positioning constraints, an
optional flip direction, and an optional fit type.
The constraints element PRO_E_DTMPLN_CONSTRAINTS is an array element
that contains a PRO_E_DTMPLN_CONSTRAINT element for each constraint.
Many elements forming the constraint element PRO_E_DTMPLN_CONSTRAINT
are used only for certain constraint types, so any given datum plane may contain
fewer elements than are shown in the tree. Similarly, all the elements forming the
constraint element PRO_E_DTMPLN_FIT are not always essential.
The following figure shows the element tree for datum planes.

Many elements forming the constraint element PRO_E_DTMPLN_CONSTRAINT
are used only for the following constraint types:

Element Trees: Datum Features 805

• PRO_E_DTMPLN_CONSTR_REF_OFFSET—Used if the constraint type is
“offset.”

• PRO_E_DTMPLN_CONSTR_REF_ANGLE—Used if the constraint type is
“angle.”

• PRO_E_DTMPLN_CONSTR_SEC_IND—Used if the constraint type is
“section.”

• PRO_E_DTMPLN_OFF_CSYS—Used if the constraint type is “offset” and
the reference is “Csys.”

• PRO_E_DTMPLN_OFF_CSYS_OFFSET—Used if the constraint type is
“offset” and the reference is “Csys.”

Similarly, elements of the optional element PRO_E_DTMPLN_FIT are used for
the following fit types:

• PRO_E_DTMPN_FIT_REF—Used if the fit type is not “default” or “fit.”
• PRO_E_DTMPLN_FIT_DIM_RAD—Used if the fit type is “fit radius.”
The following table describes the tree elements in detail:
Element ID Element Name Data Type Valid Value
PRO_E_FEATURE_
TYPE

Feature type PRO_VALUE_TYPE_
INT

PRO_FEAT_DATUM

PRO_E_STD_
FEATURE_NAME

Feature Name PRO_VALUE_TYPE
_WSTRING

PRO_E_DTMPLN_
CONSTRAINTS

Constraints Array

PRO_E_DTMPLN_
CONSTRAINT

Constraints Compound

PRO_E_DTMPLN_
CONSTR_TYPE

Type PRO_VALUE_TYPE_
INT

See
ProDtmplnConstr
Type

PRO_E_DTMPLN_
CONSTR_REF

References PRO_VALUE_TYPE_
SELECTION

See Constraint Reference
Types on page 807

PRO_E_DTMPLN_
CONSTR_REF_OFFSET

Offset PRO_VALUE_TYPE
_DOUBLE

Any

PRO_E_DTMPLN_
CONSTR_REF_ANGLE

Angle PRO_VALUE_TYPE
_DOUBLE

(-360.0, 360.0)

PRO_E_DTMPLN_SEC_
IND

Section index PRO_VALUE_TYPE_
INT

[0, sec num - 1]

PRO_E_DTMPLN_OFF_
CSYS

Offset coordinate system PRO_VALUE_TYPE_
INT

See
ProDtmplnOffCsy
sAxis

PRO_E_DTMPLN_OFF_
CSYS_OFFSET

Offset coordinate system
value

PRO_VALUE_TYPE
_DOUBLE

Any

PRO_E_DTMPLN_
FLIP_DIR

Flip direction PRO_VALUE_TYPE_
INT

ProDtmplnFlipDir

PRO_E_DTMPLN_FIT Fit Compound
PRO_E_DTMPLN_FIT_
TYPE

Fit type PRO_VALUE_TYPE_
INT

ProDtmplnFitType

806 Creo® Parametric TOOLKITUser’s Guide

Element ID Element Name Data Type Valid Value
PRO_E_DTMPLN_FIT_
REF

Reference PRO_VALUE_TYPE_
SELECTION

See Fit Reference Types
on page 808

PRO_E_DTMPLN_FIT_
DTM_RAD

Datum radius PRO_VALUE_TYPE_
DOUBLE

>= 0.0

Constraint Reference Types
The following table does not describe the entire list of combinations of
geometrical constraints that can be applied, or the rules for what geometry items
they can refer to. These are partially documented in Note 1 of the elements table
in ProDtmPln.h, which includes the following information:
Constraint Type Valid Reference Types
PRO_DTMPLN_THRU PRO_AXIS, PRO_EDGE, PRO_CURVE, Channel,

PRO_POINT, PRO_EDGE_START, PRO_EDGE_
END, PRO_CRV_START, PRO_CRV_END, PRO_
SURFACE (Plane, Cylinder)

PRO_DTMPLN_NORM PRO_AXIS, PRO_EDGE, PRO_CURVE, Channel
PRO_SURFACE (plane)

PRO_DTMPLN_PRL PRO_SURFACE (plane)
PRO_DTMPLN_OFFS PRO_SURFACE (plane), PRO_CSYS
PRO_DTMPLN_ANG PRO_SURFACE (plane)
PRO_DTMPLN_TANG PRO_SURFACE (cylinder)
PRO_DTMPLN_SEC PRO_FEATURE (blend)
PRO_DTMPLN_DEF_X No reference needed
PRO_DTMPLN_DEF_Y No reference needed
PRO_DTMPLN_DEF_Z No reference needed
PRO_DTMPLN_THRU_CSYS_XY PRO_CSYS

PRO_DTMPLN_THRU_CSYS_YZ PRO_CSYS

PRO_DTMPLN_THRU_CSYS_ZX PRO_CSYS

PRO_DTMPLN_MIDPLN Planar reference type: PRO_SURFACE

Linear reference types: PRO_AXIS, PRO_EDGE,
PRO_CURVE

Point reference types: PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END, PRO_CRV_START,
PRO_CRV_END

PRO_DTMPLN_BISECTOR1 Planar reference type: PRO_SURFACE

Linear reference types: PRO_AXIS, PRO_EDGE,
PRO_CURVE

PRO_DTMPLN_BISECTOR2 Planar reference type: PRO_SURFACE

Linear reference types: PRO_AXIS, PRO_EDGE,
PRO_CURVE

Element Trees: Datum Features 807

Note
For constraint type PRO_DTMPLN_TANG, there can be two tangents to a
cylindrical surface passing through a single point. Specify a point on the
cylindrical surface so that the tangent plane is created through this point or a
point nearer to this specified point keeping the tangency condition.

See Creo Parametric online help on datum planes for a detailed description of the
valid constraint combinations and references.

Fit Reference Types
The following table describes the corresponding rules for the fit options in detail:
Fit Type Valid Reference Types
PRO_DTMPLN_FIT_DEFAULT —
PRO_DTMPLN_FIT_PART PRO_PART

PRO_DTMPLN_FIT_FEATURE PRO_FEATURE

PRO_DTMPLN_FIT_SURFACE PRO_SURFACE

PRO_DTMPLN_FIT_EDGE PRO_EDGE

PRO_DTMPLN_FIT_AXIS PRO_AXIS

PRO_DTMPLN_FIT_RADIUS —
PRO_DTMPLN_FIT_POINT PRO_POINT

Example 1: Creating a Datum Plane
The sample code in the file UgDatumCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_datum shows how to
create a datum plane that is offset from the specified plane. The user selects the
reference plane and supplies the offset.

Examples

Example 1: Through a Plane
The element tree structure of a plane through a plane or planar surface is shown in
the following figure:

808 Creo® Parametric TOOLKITUser’s Guide

The following table specifies the element tree constraints for this type:
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT
(Constraint 1)

PRO_E_DTMPLN_CONSTR_
TYPE

PRO_DTMPLN_THRU

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane)

Example 2: Offset to a Plane
The element tree structure of a plane offset to a plane or to a planar surface is
shown in the following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_OFFS

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane)

PRO_E_DTMPLN_CONSTR_

REF_OFFSET

Offset value

Example 3: Offset along a Csys Axis
The element tree structure of a plane offset along the coordinate system axis is
shown in the following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_E_DTMPLN_OFF_CSYS_

OFFSET
PRO_E_DTMPLN_CONSTR_REF PRO_CSYS

Element Trees: Datum Features 809

Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_OFF_CSYS PRO_DTMPLN_OFF_CSYS_X or
PRO_DTMPLN_OFF_CSYS_Y or
PRO_DTMPLN_OFF_CSYS_Z

PRO_E_DTMPLN_OFF_CSYS_

OFFSET

Offset value

Example 4 : Through a Csys Plane
The element tree structure of a plane passing through a coordinate system plane
(XY/YZ/ZX) is shown in the following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU_CSYS_XY

or PRO_DTMPLN_THRU_CSYS_
YZ or PRO_DTMPLN_THRU_
CSYS_ZX

PRO_E_DTMPLN_CONSTR_REF PRO_CSYS

Example 5: Parallel to a Plane and Through a Point
The element tree structure of a plane parallel to a plane or a planar surface and
passing through a point is shown in the following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_PRL

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane)

PRO_E_DTMPLN_CONSTRAINT

(Constraint 2)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU

810 Creo® Parametric TOOLKITUser’s Guide

Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTR_REF PRO_POINT,PRO_EDGE_
START,
PRO_EDGE_END,
PRO_CRV_START,PRO_CRV_
END

Example 6 : Through an Axis and Angle to a Plane
The element tree structure of a plane passing through an axis and at an angle to a
plane is shown in the following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU

PRO_E_DTMPLN_CONSTR_REF PRO_AXIS, PRO_CURVE
(STRAIGHT), PRO_EDGE
(STRAIGHT)

PRO_E_DTMPLN_CONSTRAINT

(Constraint 2)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_ANG

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane),
PRO_E_DTMPLN_CONSTR_

REF_ANGLE
Angle value (-360.0,

360.0)

Element Trees: Datum Features 811

Example 7: Through a Linear Reference (Axis, Inferred Axis, Straight Edge
or Curve) and a Point
The element tree structure of a plane passing through an axis or an inferred axis
and a point is shown in the following figure. An inferred axis is the axis of a
surface of revolution like, Cylinder, Cone, Sphere, Torus or any other general
surface of revolution.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU

PRO_E_DTMPLN_CONSTR_REF PRO_AXIS, PRO_CURVE
(STRAIGHT), PRO_EDGE
(STRAIGHT, PRO_
SURFACE(CYLINDER/CONE/

SPHERE/TORUS/General

surface of revolution)
PRO_E_DTMPLN_CONSTRAINT

(Constraint 2)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU

PRO_E_DTMPLN_CONSTR_REF PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END, PRO_
CRV_START, PRO_CRV_END

Example 8: Normal to a Linear Reference (Axis, Inferred Axis, Straight
Edge or Curve) and a Point
The element tree structure of a plane normal to an axis or inferred axis and
passing through a point is shown in the following figure.

812 Creo® Parametric TOOLKITUser’s Guide

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_NORM

PRO_E_DTMPLN_CONSTR_REF PRO_AXIS, PRO_CURVE
(STRAIGHT), PRO_EDGE
(STRAIGHT), PRO_
SURFACE(CYLINDER/CONE/

SPHERE/TORUS/

General surface of

revolution)
PRO_E_DTMPLN_CONSTRAINT

(Constraint 2)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU

PRO_E_DTMPLN_CONSTR_REF PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END, PRO_
CRV_START, PRO_CRV_END

Example 9: Midplane to a Plane and Parallel to Another Plane
The element tree structure of a midplane to a plane or a planar surface and parallel
to another plane or planar surface, when these two references are parallel, is
shown in the following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_MIDPLN

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane)
PRO_E_DTMPLN_CONSTRAINT

(Constraint 2)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_PRL

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane)

Element Trees: Datum Features 813

Example 10: Midplane to a Plane and at an Angle to Another Plane
The element tree structure of a midplane to a plane or a planar surface and angular
to another plane or planar surface, when these two references are intersecting, is
shown in the following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_MIDPLN

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane)
PRO_E_DTMPLN_CONSTRAINT

(Constraint 2)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_BISECTOR1

PRO_DTMPLN_BISECTOR2

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane)

Example 11: Midplane to a Plane and Midplane to a Point
The element tree structure of a midplane to a plane or a planar surface and
midplane to a point, where the point does not lie on the plane, is shown in the
following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_MIDPLN

PRO_E_DTMPLN_CONSTR_REF PRO_SURFACE (Plane)
PRO_E_DTMPLN_CONSTRAINT

(Constraint 2)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_MIDPLN

814 Creo® Parametric TOOLKITUser’s Guide

Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTR_REF PRO_POINT,

PRO_EDGE_START,

PRO_EDGE_END,

PRO_CRV_START,

PRO_CRV_END

Example 12: Through Three Points
The element tree structure of a plane passing through three non-collinear points is
shown in the following figure.

The following table specifies the element tree constraints for this type.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMPLN_CONSTRAINT

(Constraint 1)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU

PRO_E_DTMPLN_CONSTR_REF PRO_POINT, PRO_EDGE_
START,
PRO_EDGE_END,
PRO_CRV_START,PRO_CRV_
END

PRO_E_DTMPLN_CONSTRAINT

(Constraint 2)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU

PRO_E_DTMPLN_CONSTR_REF PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END, PRO_
CRV_START, PRO_CRV_END

PRO_E_DTMPLN_CONSTRAINT

(Constraint 3)

PRO_E_DTMPLN_CONSTR_

TYPE

PRO_DTMPLN_THRU

PRO_E_DTMPLN_CONSTR_REF PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END, PRO_
CRV_START, PRO_CRV_END

Element Trees: Datum Features 815

Example 13: To Flip Direction
The datum plane normal that is the Z-direction can be flipped for any of the types.
The following table specifies the element tree to flip the plane.
Element ID Valid Value
PRO_E_DTMPLN_FLIP_DIR PRO_DTMPLN_FLIP_DIR_NO or PRO_DTMPLN_

FLIP_DIR_YES

Example 14: To Fit Outline to a Reference
The datum plane outline can be fit to a reference. The following figure shows the
element tree structure using the fit elements.

The following table specifies the element tree to use fit elements.
Fit Compound Element Fit Member Elements Valid Value
PRO_E_DTMPLN_FIT PRO_E_DTMPLN_FIT _TYPE PRO_DTMPLN_FIT_PART

PRO_E_DTMPLN_FIT _REF PRO_PART

Datum Point Features
The element tree for a datum point feature is documented in the header file
ProDtmPnt.h. Apart from the usual elements for the tree root and feature type,
a datum point contains the datum point type. The types of datum points available
are:

• Sketched Datum Point on page 817
• Field Datum Point on page 818
• Offset Csys Datum Point on page 819
• General Datum Point on page 820

816 Creo® Parametric TOOLKITUser’s Guide

Sketched Datum Point
A sketched datum point is created by sketching the point in the sketcher mode
after specifying the plane on which the user wants to create a point.

Note
The sketched datum point is obsolete. Hence, the element tree for sketched
datum point defined in the header file ProDtmPnt.h is no longer supported.
The sketched datum points are consolidated within the sketched feature as a
geometry point. The geometry entities within the sketched feature generate the
corresponding datum entities. To create new sketched datum points, you must
use the element tree for sketched datum curves defined in the header file
ProDtmCrv.h. Refer to the section Sketched Datum Curves on page 848,
for more information on sketched datum curves.

The following figure shows the element tree for a sketched datum point.

Define the following sub elements of PRO_E_STD_SECTION to complete the
sketched datum point feature.

See the chapter Element Trees: Sketched Features on page 1004 for techniques
that must be used to create a sketched feature, like a sketched datum point.

Feature Elements
The following table describes the elements of the element tree for sketched datum
points:

Element Trees: Datum Features 817

Element ID Element Name Data Type Valid Value
PRO_E_FEATURE_
TYPE

Feature Type PRO_VALUE_TYPE_
INT

PRO_FEAT_DATUM_
POINT

PRO_E_DPOINT_TYPE Datum Point Type PRO_VALUE_TYPE_
INT

PRO_DPOINT_TYPE
_SKETCHED

PRO_E_STD_
FEATURE_NAME

Feature Name PRO_VALUE_TYPE
_WSTRING

PRO_E_STD_SECTION Section Compound See
ProStdSection.h

Example 2: Creating a Sketched Datum Point
The sample code in the file UgSketchedPointCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a Sketched Datum Point. The user is prompted
to select the sketching planes, orientation planes, and then the reference edges for
the sketch. The user is also required to enter the X and Yoffsets to be applied to
the sketch from the projected edges.

Field Datum Point
A field datum point is created by selecting any point on a surface, edge, curve, or
quilt. The point is located depending on the UV parameters. The location of the
field point depends on the UV values of the point on the surface, edge, curve, or
quilt.
The following figure shows the element tree for the field datum point.

Feature Elements
The following table describes the elements of the element tree for the field datum
points:
Element ID Element Name Data Type Valid Value
PRO_E_FEATURE_
TYPE

Feature Type PRO_VALUE_TYPE_
INT

PRO_FEAT_DATUM_
POINT

PRO_E_DPOINT_TYPE Datum Point Type PRO_VALUE_TYPE_
INT

PRO_DPOINT_
TYPE_FIELD

818 Creo® Parametric TOOLKITUser’s Guide

Element ID Element Name Data Type Valid Value
PRO_E_STD_
FEATURE_NAME

Feature Name PRO_VALUE_TYPE_
WSTRING

PRO_E_DPOINT_
FIELD_REF

Placement reference PRO_VALUE_TYPE_
SELECTION

Surface, Edge, Curve, or
Quilt. Note: UV is used
to specify exact location.

Example 3: Creating a Field Datum Point
The sample code in the file UgFieldPointCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a Field Datum Point on an edge or surface. The
user is prompted to select a point on a curve or a surface.

Offset Csys Datum Point
An Offset Csys Datum point is created using the coordinate system and values
along the coordinate axes. Three types of coordinate systems can be used:

• Cartesian—Requires values along X, Y, Z axis.
• Cylindrical—Requires values along R, theta, Z axis.
• Spherical—Requires values along r,phi theta axis.
The following figure shows the element tree for Offset Csys Datum Point.

Feature Elements
The following table describes the elements in the element tree for datum points.

Element Trees: Datum Features 819

Element ID Element Name Data Type Valid Value
PRO_E_FEATURE_
TYPE

Feature Type PRO_VALUE_TYPE_
INT

PRO_FEAT_DATUM_
POINT

PRO_E_DPOINT_TYPE Datum Point Type PRO_VALUE_TYPE_
INT

PRO_DPOINT_TYPE_
OFFSET_CSYS

PRO_E_STD_
FEATURE_NAME

Feature Name PRO_VALUE_TYPE_
WSTRING

PRO_E_DPOINT_OFST
_CSYS_TYPE

Reference Csys Type PRO_VALUE_TYPE_
INT

See
ProDtmpntOffCsys
Type

PRO_E_DPOINT_OFST
_CSYS_REF

Reference Csys PRO_VALUE_TYPE_
SELECTION

Csys

PRO_E_DPOINT_OFST
_CSYS_WITH_DIMS

Parametric or Explicit
with or without
dimensions

PRO_VALUE_TYPE_
INT

PRO_B_TRUE or PRO_
B_FALSE

PRO_E_DPOINT_OFST
_CSYS_PNTS_ARRAY

Array of Points List

PRO_E_DPOINT_OFST
_CSYS_PNT

One Point Compound

PRO_E_DPOINT_OFST
_CSYS_PNT_NAME

Point Name PRO_VALUE_TYPE_
WSTRING

PRO_E_DPOINT_OFST
_CSYS_DIR1_VAL

X, R, or pi PRO_VALUE_TYPE
_DOUBLE

Depends on PRO_E_
DPOINT_OFST
_CSYS_TYPE

PRO_E_DPOINT_OFST
_CSYS_DIR2_VAL

Y, theta, or phi PRO_VALUE_TYPE
_DOUBLE

Depends on PRO_E_
DPOINT_OFST
_CSYS_TYPE

PRO_E_DPOINT_OFST
_CSYS_DIR3_VAL

Z, Z, or theta PRO_VALUE_TYPE
_DOUBLE

Depends on PRO_E_
DPOINT_OFST
_CSYS_TYPE

Example 4: Creating an Offset Csys Datum Point
The sample code in the file UgOffsetPointCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create an Offset Datum Point at an offset from a
specified coordinate system. The user is prompted to select the coordinate system.

General Datum Point
A general datum point is created and constrained based on the selection context.
The supported types are:

• Point on vertex
• Offset point
• Project point
• Point at intersection of three surfaces

820 Creo® Parametric TOOLKITUser’s Guide

• On or Offset surface
• Point at intersection of curve and surface
• Center of curve or surface
• Point at intersection of two curves
• Point on curve
When there are multiple intersections, the point location of general datum point
depends on the following:

• Point at intersection of edge and edge—t value of point on second edge
• Point at intersection of edge and plane—t value of point on edge
• Point at intersection of curve and plane—t value of point on curve
• Point at intersection of two curves—t value of point on second curve
• Point at intersection of curve and surface—t value of point on curve
• Point at intersection of curve and axis—t value of point on curve
The following figure shows the element tree of a general datum point.

Feature Elements
The following table describes the elements of the element tree for datum points.

Element Trees: Datum Features 821

Element ID Element Name Data Type Valid Value
PRO_E_FEATURE_
TYPE

Feature Type PRO_VALUE_TYPE_
INT

PRO_FEAT_DATUM_
POINT

PRO_E_DPOINT_TYPE Datum Point Type PRO_VALUE_TYPE_
INT

PRO_DPOINT_TYPE
_GENERAL

PRO_E_STD_
FEATURE_NAME

Feature Name PRO_VALUE_TYPE
_WSTRING

PRO_E_DPOINT_
POINTS
_ARRAY

Points List Array Not applicable

PRO_E_DPOINT_
POINT

One Point Compound Not applicable

PRO_E_DPOINT
_POINT_NAME

Point Name PRO_VALUE_TYPE
_WSTRING

PRO_E_DPOINT_PLA
_CONSTRAINTS

Placement Constraints Array Not applicable

PRO_E_DPOINT_PLA
_CONSTRAINT

One Placement
Constraint

Compound Not applicable

PRO_E_DPOINT_PLA
_CONSTR_REF

Placement Reference PRO_VALUE_TYPE_
SELECTION

Depends on the context.
See PRO_E_DPOINT_
PLA
_CONSTR_REF.

PRO_E_DPOINT_PLA
_CONSTR_TYPE

Constraint Type PRO_VALUE_TYPE_
INT

See
ProDtmpntConstr
Type.

PRO_E_DPOINT_PLA
_CONSTR_VAL

Value PRO_VALUE_TYPE
_DOUBLE

PRO_E_DPOINT_DIM
_CONSTRAINTS

Dimension Constraints Array Not applicable

PRO_E_DPOINT_DIM
_CONSTRAINT

One Dimension
Constraint

Compound Not applicable

PRO_E_DPOINT_DIM
_CONSTR_REF

Dimension Reference PRO_VALUE_TYPE_
SELECTION

See Placement Constraint
References on page 822.

PRO_E_DPOINT_DIM
_CONSTR_TYPE

Constraint Type PRO_VALUE_TYPE_
INT

Depends on the context.
See Constraint Type on
page 823.

PRO_E_DPOINT_DIM
_CONSTR_VAL

Value PRO_VALUE_TYPE_
DOUBLE

See
ProDtmpntConstr
Type

Placement Constraint References
Valid values for the PRO_E_DPOINT_PLA_CONSTR_REF placement reference
are as follows:

• Curve—SEL_3D_CURVE, SEL_3D_CABLE, SEL_IGES_WF
• Edge—SEL_3D_EDG

• Axis—SEL_3D_AXIS

• Vertex—SEL_3D_VERT or SEL_CURVE_END

822 Creo® Parametric TOOLKITUser’s Guide

• CSYS—SEL_3D_CSYS

• Surface—SEL_3D_SRF, SEL_3D_SRF_LIST
• Datum Pnt—SEL_3D_PNT

Placement Constraint Type
Valid values for PRO_E_DPOINT_PLA_CONSTR_TYPE are as follows:

• PRO_DTMPNT_CONSTR_TYPE_ON

• PRO_DTMPNT_CONSTR_TYPE_OFFSET

• PRO_DTMPNT_CONSTR_TYPE_CENTER

• PRO_DTMPNT_CONSTR_TYPE_PARALLEL

• PRO_DTMPNT_CONSTR_TYPE_NORMAL

• PRO_DTMPNT_CONSTR_TYPE_PROJECT

• PRO_DTMPNT_CONSTR_TYPE_CARTESIAN

• PRO_DTMPNT_CONSTR_TYPE_CYLINDRICAL

• PRO_DTMPNT_CONSTR_TYPE_SPHERICAL

The last three are used when defining a point offset to a coordinate system.

Constraint References
Valid values for the PRO_E_DPOINT_DIM_CONSTR_REF dimension references
are as following:

• Curve—SEL_3D_CURVE, SEL_3D_CABLE, SEL_CRV_PNT, SEL_IGES_
WF

• Edge—SEL_3D_EDG, SEL_EDG_PNT
• Axis—SEL_3D_AXIS

• Coordinate system—SEL_3D_CSYS

• Vertex—SEL_3D_VERT or SEL_CURVE_END
• Surface—SEL_3D_SRF, SEL_SRF_PNT, SEL_3D_SRF_LIST
• Coordinate system axis—SEL_3D_CSYS_AXIS

• Datum Point—SEL_3D_PNT

Constraint Type
Valid values for PRO_E_DPOINT_DIM_CONSTR_TYPE are as follows:

• PRO_DTMPNT_CONSTR_TYPE_OFFSET

• PRO_DTMPNT_CONSTR_TYPE_LENGTH

• PRO_DTMPNT_CONSTR_TYPE_RATIO

Element Trees: Datum Features 823

• PRO_DTMPNT_CONSTR_TYPE_LENGTH_END

• PRO_DTMPNT_CONSTR_TYPE_RATIO

• PRO_DTMPNT_CONSTR_TYPE_RATIO_END

• PRO_DTMPNT_CONSTR_TYPE_ALONG_X

• PRO_DTMPNT_CONSTR_TYPE_ALONG_Y

• PRO_DTMPNT_CONSTR_TYPE_ALONG_Z

Example 5: Creating General Datum Point
The sample code in the file UgGeneralPointCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a General Datum Point formed at the
intersection of three selected surfaces. The user is prompted to select the three
surfaces.

Examples

Example 1: Point on a Vertex
To create a datum point on the vertex, the following constraints are required.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Vertex

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

Example 2: Offset Point
To create one or more datum points at an offset, the following constraints are
required.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Vertex, Csys, or DPnt

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
OFFSET

PRO_E_DPOINT_PLA_
CONSTR_VAL

Offset value.

The following tables provide valid values for Constraint 2. You can create a point
at an offset using values from one of the following tables for Constraint 2.

824 Creo® Parametric TOOLKITUser’s Guide

Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Curve, Edge or Axis

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
PARALLEL

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

OR
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Surface

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
NORMAL

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

OR
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Csys Axis

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
PARALLEL

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

OR
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Csys

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
CARTESIAN or

PRO_DTMPNT_CONSTR_TYPE_

CYLINDRICAL or PRO_
DTMPNT_CONSTR_TYPE_

SPHERICAL
PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

The following table provides valid values for dimension constraints.
Dimension Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_DIM_
CONSTRAINT (Constraint 3)

PRO_E_DPOINT_DIM_
CONSTR_REF

Not applicable

PRO_E_DPOINT_DIM_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ALONG_X

Element Trees: Datum Features 825

Dimension Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_DIM_
CONSTR_VAL

Offset Value

PRO_E_DPOINT_DIM_
CONSTRAINT (Constraint 4)

PRO_E_DPOINT_DIM_
CONSTR_REF

Not applicable

PRO_E_DPOINT_DIM_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ALONG_Y

PRO_E_DPOINT_DIM_
CONSTR_VAL

Offset Value

PRO_E_DPOINT_DIM_
CONSTRAINT (Constraint 5)

PRO_E_DPOINT_DIM_
CONSTR_REF

Not applicable

PRO_E_DPOINT_DIM_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ALONG_Z

PRO_E_DPOINT_DIM_
CONSTR_VAL

Offset Value

As per Offset types the values are as follows:
CARTESIAN CYLINDRICAL SPHERICAL

PRO_DTMPNT_
CONSTR_TYPE_
ALONG_X

X R RHO

PRO_DTMPNT_
CONSTR_TYPE_
ALONG_Y

Y THETA PHI

PRO_DTMPNT_
CONSTR_TYPE_
ALONG_Z

Z Z THETA

Example 3: Point at Intersection of Three Surfaces
To create a datum point at the intersection of three surfaces, use the following
constraints. Each surface can be a part surface, surface feature, or datum plane.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Surface

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Surface

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 3)

PRO_E_DPOINT_PLA_
CONSTR_REF

Surface

826 Creo® Parametric TOOLKITUser’s Guide

Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

Example 4: Point On a Surface or Offset from a Surface
The following constraints are required to create a point on a surface or at an offset
distance from a surface:
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Surface

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON or PRO_DTMPNT_CONSTR_
TYPE_OFFSET

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Edge or Surface

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
OFFSET

PRO_E_DPOINT_PLA_
CONSTR_VAL

Offset value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 3)

PRO_E_DPOINT_PLA_
CONSTR_REF

Edge or Surface

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
OFFSET

PRO_E_DPOINT_PLA_
CONSTR_VAL

Offset value

Example 5: Point at Intersection of a Curve and a Surface
To create a datum point at the intersection of a curve and a surface, use the
following constraints. The curve can be a part edge, surface feature edge, datum
curve, axis, or an imported datum curve. The surface can be a part surface, surface
feature, or datum plane.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Curve, axis, edge, or

surface
PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

- If value of constraint 1 is Curve,
Axis, or Edge, the value of

Element Trees: Datum Features 827

Placement Constraint
Element

Reference Element Valid Value

constraint 2 is surface.

- If value of constraint 1 is surface,
the value of constraint 2 is Curve,
Axis, or Edge.

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

Note
If more than one intersections exist, the point is created at the intersection
nearest to the curve reference parameter value.

Example 6: Point At Center of Curve or Surface
To create a datum point at the center of an arc or circle entity, use the following
constraints.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Curve, edge, or surface (Sphere)

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
CENTER

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

Example 7: Point at Intersection of Two Curves
To create a point at intersection of two curves, use the following constraints.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Curve, edge, or axis

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Curve, edge, or axis

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

828 Creo® Parametric TOOLKITUser’s Guide

Note
If more than one intersections exist, the point is created at the intersection
nearest to the second reference parameter value.

Example 8: Point On Curve
To create a datum point on a curve, the following constraints are required.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Curve, edge, or axis (It is valid
with offset plane)

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

The following tables provide valid values for constraint 2. You can create a point
on curve using values from one of the following tables for constraint 2.
Use the following values for constraint 2 if the length of curve from the start point
or the end point is used to locate the point.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_DIM_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_DIM_
CONSTR_REF

Curve (Use the same curve as used
in Constraint 1)

PRO_E_DPOINT_DIM_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
LENGTH or PRO_DTMPNT_
CONSTR_TYPE_LENGTH_END

PRO_E_DPOINT_DIM_
CONSTR_VAL

Length value (from curve start
point or end point)

Use the following values for constraint 2 if the ratio of distance from the start
point or the end point is used to locate the point.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_DIM_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_DIM_
CONSTR_REF

Curve (Use the same curve as used
in contrarian 1)

PRO_E_DPOINT_DIM_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
RATIO or PRO_DTMPNT_
CONSTR_TYPE_RATIO_END

PRO_E_DPOINT_DIM_
CONSTR_VAL

Ratio value (from curve start or
end)

Use the following values for constraint 2 if the offset surface is used to locate the
point on curve.

Element Trees: Datum Features 829

Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_DIM_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_DIM_
CONSTR_REF

Surface

PRO_E_DPOINT_DIM_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
OFFSET

PRO_E_DPOINT_DIM_
CONSTR_VAL

Offset value

Example 9: Project Datum Point On a Planar surface, Datum Plane, Datum
Axis, Linear Curve or Linear Edge
To project a datum point on a planar surface, datum plane, or datum axis, the
following constraints are required.
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 1)

PRO_E_DPOINT_PLA_
CONSTR_REF

Datum point, end of curve, or
vertex

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
PROJECT

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Axis, curve, or edge

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

OR
Placement Constraint
Element

Reference Element Valid Value

PRO_E_DPOINT_PLA_
CONSTRAINT (Constraint 2)

PRO_E_DPOINT_PLA_
CONSTR_REF

Surface

PRO_E_DPOINT_PLA_
CONSTR_TYPE

PRO_DTMPNT_CONSTR_TYPE_
ON

PRO_E_DPOINT_PLA_
CONSTR_VAL

Not applicable

Datum Axis Features
The basic element tree for creating axes is available in the include file
ProDtmAxis.h. The following figure shows the basic structure of the element
tree.

830 Creo® Parametric TOOLKITUser’s Guide

Creo Parametric TOOLKIT supports creation of the following types of datum
axes:

• Point on Surface on page 832
• Tangent on page 834
• Example 3: Normal to a Linear Reference (Axis, Inferred Axis, Straight Edge

or Curve) on page 833
• Example 4: Parallel to a Linear Reference (Axis, Inferred Axis, Straight Edge

or Curve) on page 834
• Example 5: Through Edge or Surface on page 835
• Two Planes on page 836
• Two Points on page 836
• Normal Planes on page 837
There is no single element that indicates the type in constraints element tree. The
type is determined implicitly based on the constraint type and references. The
types of the datum axis constraints for the references are defined by the
enumerated type ProDtmaxisConstrType and are as follows:
• PRO_DTMAXIS_CONSTR_TYPE_NORMAL— Positions the datum axis

normal to the selected reference.
• PRO_DTMAXIS_CONSTR_TYPE_THRU— Positions the datum axis through

the selected reference.
• PRO_DTMAXIS_CONSTR_TYPE_TANGENT— Positions the datum axis

tangent to the selected reference.

Element Trees: Datum Features 831

• PRO_DTMAXIS_CONSTR_TYPE_CENTER— Positions the datum axis
through the center of the selected planar circular edge or curve and normal to
the plane on which the selected curve or edge lies.

• PRO_DTMAXIS_CONSTR_TYPE_PARALLEL— Positions the datum axis
parallel to the selected reference.

Example 6: Creating a Datum Axis
The sample code in the file UgDatumAxisCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a datum axis at the intersection of two selected
surfaces. The user is prompted to select the two surfaces.

Examples

Example 1: Point on Surface
The element tree structure of the axis, created with type as PRO_DTMAXIS_
PNT_SURF, is shown in the following figure.

The following table specifies the constraints for the PRO_E_DTMAXIS_
CONSTRAINT elements in the element tree for the point on surface type of axis.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 1)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

PRO_E_DTMAXIS_CONSTR_
REF

PRO_POINT

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 2)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_NORMAL

PRO_E_DTMAXIS_CONSTR_
REF

PRO_SURFACE

832 Creo® Parametric TOOLKITUser’s Guide

Example 2: Tangent
The element tree structure of the axis, created with type as Tangent, is shown in
the following figure.

The following table specifies the constraints for the PRO_E_DTMAXIS_
CONSTRAINT elements in the element tree for the tangent type of axis.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 1)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_TANGENT

PRO_E_DTMAXIS_CONSTR_
REF

PRO_EDGE, PRO_CURVE

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 2)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

PRO_E_DTMAXIS_CONSTR_
REF

PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END,PRO_
CRV_
START, PRO_CRV_END

Example 3: Normal to a Linear Reference (Axis, Inferred Axis, Straight
Edge or Curve)
The element tree structure of the axis, created with type as Normal, is shown in
the following figure.

Element Trees: Datum Features 833

The following table specifies the constraints for the PRO_E_DTMAXIS_
CONSTRAINT elements in the element tree for the Normal type of axis.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 1)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

PRO_E_DTMAXIS_CONSTR_
REF

PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END, PRO_
CRV_START, PRO_CRV_END

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 2)

PRO_E_DTMAXIS_CONSTR_
TYPE
PRO_E_DTMAXIS_CONSTR_
REF

PRO_EDGE (STRAIGHT), PRO_
CURVE (STRAIGHT), PRO_
AXIS, PRO_SURFACE
(CYLINDER/CONE/SPHERE/
TORUS/
General surface of
revolution). The inferred axis
will be used as the reference.

Note
For the Normal type of datum axis creation, the reference provided for the first
constraint that is, PRO_DTMAXIS_CONSTR_TYPE_THRU should not lie on
the reference provided for second constraint that is PRO_DTMAXIS_
CONSTR_TYPE_NORMAL.

Example 4: Parallel to a Linear Reference (Axis, Inferred Axis, Straight
Edge or Curve)
The element tree structure of the axis, created with type as Parallel, is shown in
the following figure.

834 Creo® Parametric TOOLKITUser’s Guide

The following table specifies the constraints for the PRO_E_DTMAXIS_
CONSTRAINT elements in the element tree for the Parallel type of axis.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 1)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

PRO_E_DTMAXIS_CONSTR_
REF

PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END,PRO_
CRV_START, PRO_CRV_END

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 2)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_PARALLEL

PRO_E_DTMAXIS_CONSTR_
REF

PRO_EDGE (STRAIGHT), PRO_
CURVE (STRAIGHT), PRO_
AXIS, PRO_SURFACE
(CYLINDER/CONE/SPHERE/
TORUS/
General surface of
revolution). The inferred axis
will be used as reference.

Example 5: Through Edge or Surface
The element tree structure of the axis, created with type Through an Edge or a
Surface, is shown in the following figure.

The following table specifies the constraints for the PRO_E_DTMAXIS_
CONSTRAINT elements in the element tree for the through type of axis.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 1)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

Element Trees: Datum Features 835

Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_CONSTR_
REF

PRO_EDGE (Straight), PRO_
SURFACE (Cylinder)

Example 6: Two Planes
The element tree structure of the axis, created using the type as two planes, is as
shown in the following figure.

The following table specifies the constraints for the PRO_E_DTMAXIS_
CONSTRAINT elements in the element tree for the two planes reference scheme.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 1)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

PRO_E_DTMAXIS_CONSTR_
REF

PRO_SURFACE (Planar)

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 2)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

PRO_E_DTMAXIS_CONSTR_
REF

PRO_SURFACE (Planar)

Example 7: Two Points
The element tree structure of the axis, created using the type as two points, is
shown in the following figure.

836 Creo® Parametric TOOLKITUser’s Guide

The following table specifies the constraints for the PRO_E_DTMAXIS_
CONSTRAINT elements in the element tree for the two points type of axis.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 1)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

PRO_E_DTMAXIS_CONSTR_
REF

PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END, PRO_
CRV_START, PRO_CRV_END

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 2)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_THRU

PRO_E_DTMAXIS_CONSTR_
REF

PRO_POINT, PRO_EDGE_
START, PRO_EDGE_END, PRO_
CRV_START, PRO_CRV_END

Example 8: Normal Planes
The element tree structure of the axis, created using the type as Normal Planes, is
shown in the following figure.

Element Trees: Datum Features 837

The following table specifies the constraints for the PRO_E_DTMAXIS_
CONSTRAINT elements in the element tree for the normal plane type of axis.
Placement Constraint
Element

Placement Constraint
Member Elements

Valid Value

PRO_E_DTMAXIS_
CONSTRAINT (Constraint 1)

PRO_E_DTMAXIS_CONSTR_
TYPE

PRO_DTMAXIS_CONSTR_
TYPE_NORMAL

PRO_E_DTMAXIS_CONSTR_
REF

PRO_SURFACE (Planar)

PRO_E_DTMAXIS_DIM_
CONSTRAINT (Constraint 2)

PRO_E_DTMAXIS_DIM_
CONSTR_REF

PRO_SURFACE (Planar), PRO_
AXIS, PRO_EDGE

PRO_E_DTMAXIS_DIM_
CONSTR_VAL

Valid dimension

PRO_E_DTMAXIS_DIM_
CONSTRAINT (Constraint 3)

PRO_E_DTMAXIS_DIM_
CONSTR_REF

PRO_SURFACE (Planar), PRO_
AXIS, PRO_EDGE

PRO_E_DTMAXIS_DIM_
CONSTR_VAL

Valid dimension

Datum Coordinate System Features
The following figure illustrates the general structure of the element tree for
coordinate system features.

838 Creo® Parametric TOOLKITUser’s Guide

Element Trees: Datum Features 839

Feature Elements
The following table describes the elements in the element tree for coordinate
system feature.
Element Id Element Name Data Type Valid Values
PRO_E_FEATURE_
TYPE

Feature Type PRO_VALUE_TYPE_
INT

PRO_FEAT_CSYS

PRO_E_STD_
FEATURE_NAME

Feature Name PRO_VALUE_TYPE
_WSTRING

PRO_E_CSYS_
ORIGIN_CONSTRS

Origin Constraints Array

PRO_E_CSYS_
ORIGIN_CONSTR

Origin Constraint Compound

PRO_E_CSYS_
ORIGIN_CONSTR_REF

Origin Reference PRO_VALUE_TYPE_
SELECTION

PRO_E_CSYS_
OFFSET_TYPE

Origin Offset Type PRO_VALUE_TYPE_
INT

ProCsysOffsetType

PRO_E_CSYS_
ONSURF_TYPE

On Surface Type PRO_VALUE_TYPE_
INT

ProCsysOnSurfType

PRO_E_CSYS_DIM_
CONSTRS

Dimension Constraints Array

PRO_E_CSYS_DIM_
CONSTR

Dimension Constraint Compound

PRO_E_CSYS_DIM_
CONSTR_REF

Dimension Constraint
Reference

PRO_VALUE_TYPE_
SELECTION

PRO_E_CSYS_DIM_
CONSTR_TYPE

Dimension Constraint
Type

PRO_VALUE_TYPE_
INT

ProCsysDimConstr
Type

PRO_E_CSYS_DIM_
CONSTR_VAL

Dimension Constraint
Value

PRO_VALUE_TYPE
_DOUBLE

PRO_E_CSYS_
ORIENTMOVES

Orientation Moves Array

PRO_E_CSYS_
ORIENTMOVE

Compound

PRO_E_CSYS_
ORIENTMOVE_MOVE_
TYPE

Move Type PRO_VALUE_TYPE_
INT

ProCsysOrientMove
MoveOpt

PRO_E_CSYS_
ORIENTMOVE_MOVE_
VAL

Move Value PRO_VALUE_TYPE
_DOUBLE

PRO_E_CSYS_
NORMAL_TO_SCREEN

Set Z Normal To Screen PRO_VALUE_TYPE_
INT

ProCsysOrientMo
vesNrmScrnOpt

PRO_E_CSYS_
ORIENT_BY_METHOD

Orient By Method PRO_VALUE_TYPE_
INT

ProCsysOrientByMe
thod

PRO_E_CSYS_
ORIENTSELAXIS1_
REF

First Axis Reference PRO_VALUE_TYPE_
SELECTION

PRO_E_CSYS_
ORIENTSELAXIS1_
REF_OPT

First Axis Reference
Option

PRO_VALUE_TYPE_
INT

ProCsysDirCsysRe
fOpt

PRO_E_CSYS_
ORIENTSELAXIS1_

First Axis Option PRO_VALUE_TYPE_
INT

ProCsysOrientMo
veAxisOpt

840 Creo® Parametric TOOLKITUser’s Guide

Element Id Element Name Data Type Valid Values
OPT
PRO_E_CSYS_
ORIENTSELAXIS1_
FLIP

Flip first direction -

PRO_E_CSYS_
ORIENTSELAXIS2_
REF

Second Axis Reference PRO_VALUE_TYPE_
SELECTION

PRO_E_CSYS_
ORIENTSELAXIS2_
REF_OPT

Second Axis Reference
Option

PRO_VALUE_TYPE_
INT

ProCsysDirCsysRe
fOpt

PRO_E_CSYS_
ORIENTSELAXIS2_
OPT

Second Axis Option PRO_VALUE_TYPE_
INT

ProCsysOrientMo
veAxisOpt

PRO_E_CSYS_
ORIENTSELAXIS2_
FLIP

Flip second direction -

PRO_E_CSYS_
ORIENTSELAXIS2_
ROT_OPT

Second Axis Rotation
Option

PRO_VALUE_TYPE_
INT

ProCsysOrientSe
lAxisRotOpt

PRO_E_CSYS_
ORIENTSELAXIS2_
ROT

Second Axis Rotation PRO_VALUE_TYPE_
DOUBLE

Axisopt1 != AxisOpt2

PRO_E_CSYS_TYPE
_MECH

Coordinate System Type
(available in Creo
Simulatemode only)

PRO_VALUE_TYPE_
INT

ProCsysType

PRO_E_CSYS_
FOLLOW_SRF_OPT

Follow Surface Option
(available in Creo NC
Sheetmetal mode only)

PRO_ELEM_TYPE_
OPTION

ProCsysFollowSr
fOpt

PRO_E_CSYS_NAME_
DISPLAY_OPT

Name display option

Specifies if the name of
the coordinate system
must be displayed in the
graphics window. The
valid values are defined
in the enumerated data
type
ProCsysNameDis

playOpt:

PRO_VALUE_TYPE_
INT

ProCsysNameDis
playOpt

Element Trees: Datum Features 841

Element Id Element Name Data Type Valid Values
• PRO_CSYS_NAME_

DISPLAY_NO—This
is the default value.
Specifies that the
name of the
coordinate system
must not be displayed
in thw graphics
window.

• PRO_CSYS_NAME_

DISPLAY_YES—
Specifies that the
name of the
coordinate system
must be displayed in
the graphics window.

PRO_E_CSYS_
DISPLAY_ZOOM_DEP_
OPT

Display zoom dependent
option

Specifies if the size of the
coordinate system is
dependent on the zoom
of the model. The valid
values are defined in the
enumerated data type
ProCsysDisplay

ZoomDepOpt:
• PRO_CSYS_

DISPLAY_ZOOM_

DEP_NO—This is the
default value.
Specifies that the
coordinate system is
independent of the
zoom of the model.
The coordinate
system does not zoom
when the model is
zoomed.

• PRO_CSYS_

DISPLAY_ZOOM_

DEP_YES—Specifies
that the size of the
coordinate system is
dependent on the

PRO_VALUE_TYPE_
INT

ProCsysDisplay
ZoomDepOpt

842 Creo® Parametric TOOLKITUser’s Guide

Element Id Element Name Data Type Valid Values
zoom of the model.
The coordinate
system zooms when
the model zooms.

PRO_E_CSYS_AXIS_
LENGTH

Axis length

Specifies the default
length for the coordinate
system axes.

PRO_VALUE_TYPE_
DOUBLE

Note
To determine whether a coordinate system is a default coordinate system,
query the number of PRO_E_CSYS_ORIGIN_CONSTRS and the number of
PRO_E_CSYS_ORIENTMOVES. If both of the numbers are zero, then Csys is
the default coordinate system.

The following elements are common for all the cases of the coordinate system
feature creation:
Element ID Value Comments
PRO_E_FEATURE_TYPE PRO_FEAT_CSYS Mandatory
PRO_E_STD_FEATURE_NAME Feature Name Optional

Example 7: Creating a Datum Coordinate System
The sample code in the file UgGeneralCsysCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a General Csys at an offset to the specified
Csys. The user is prompted to select a Csys.

Examples

Example 1: Using Three Planes or Two Edges and Axes
Use the following elements if the origin of the coordinate system is defined using
three planes or using two edges and axes:
Element ID Comments
PRO_E_CSYS_ORIGIN_CONSTRS Mandatory
PRO_E_CSYS_ORIGIN_CONSTR Mandatory
PRO_E_CSYS_ORIGIN_CONSTR_REF Mandatory
PRO_E_CSYS_ORIENTSELAXIS1_REF Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_REF_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_OPT Mandatory if PRO_E_CSYS_ORIENTSELAXIS1_

Element Trees: Datum Features 843

Element ID Comments
REF is a Csys reference

PRO_E_CSYS_ORIENTSELAXIS1_FLIP Optional
PRO_E_CSYS_ORIENTSELAXIS2_REF Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS2_REF_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_OPT Mandatory if PRO_E_CSYS_ORIENTSELAXIS2_

REF is a Csys reference
PRO_E_CSYS_ORIENTSELAXIS2_FLIP Optional
Others Not applicable

Example 2: Using Curve, Edges, or Plane and Axis
Use the following elements if the origin of the coordinate system is defined with a
plane and an axis, curve, or edges:
Element ID Comments
PRO_E_CSYS_ORIGIN_CONSTRS Mandatory
PRO_E_CSYS_ORIGIN_CONSTR Mandatory
PRO_E_CSYS_ORIGIN_CONSTR_REF Mandatory
PRO_E_CSYS_ORIENTSELAXIS1_REF Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_REF_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_OPT Mandatory if PRO_E_CSYS_ORIENTSELAXIS1_

REF is a Csys reference
PRO_E_CSYS_ORIENTSELAXIS1_FLIP Optional
PRO_E_CSYS_ORIENTSELAXIS2_REF Mandatory
PRO_E_CSYS_ORIENTSELAXIS2_REF_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_OPT Mandatory if PRO_E_CSYS_ORIENTSELAXIS2_

REF is a Csys reference
PRO_E_CSYS_ORIENTSELAXIS2_FLIP Optional
Others Not applicable

Example 3: Using a Vertex or a Datum Point
Use the following elements if the origin of the coordinate system is defined using
a vertex or a datum point:
Element ID Comments
PRO_E_CSYS_ORIGIN_CONSTRS Mandatory
PRO_E_CSYS_ORIGIN_CONSTR Mandatory
PRO_E_CSYS_ORIGIN_CONSTR_REF Mandatory
PRO_E_CSYS_ORIENTSELAXIS1_REF Mandatory
PRO_E_CSYS_ORIENTSELAXIS1_REF_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_OPT Mandatory if PRO_E_CSYS_ORIENTSELAXIS1_

REF is a Csys reference
PRO_E_CSYS_ORIENTSELAXIS1_FLIP Optional
PRO_E_CSYS_ORIENTSELAXIS2_REF Mandatory
PRO_E_CSYS_ORIENTSELAXIS2_REF_OPT Optional, using default if not set

844 Creo® Parametric TOOLKITUser’s Guide

Element ID Comments
PRO_E_CSYS_ORIENTSELAXIS1_OPT Mandatory if PRO_E_CSYS_ORIENTSELAXIS2_

REF is a Csys reference
PRO_E_CSYS_ORIENTSELAXIS2_FLIP Optional
Others Not applicable

Example 4: Orienting by Selecting References
Use the following elements if PRO_E_CSYS_ORIENT_BY_METHOD is PRO_
CSYS_ORIENT_BY_SEL_REFS:
Element ID Comments
PRO_E_CSYS_ORIENTSELAXIS1_REF Mandatory
PRO_E_CSYS_ORIENTSELAXIS1_REF_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS1_FLIP Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS2_REF Mandatory
PRO_E_CSYS_ORIENTSELAXIS2_REF_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS2_OPT Optional, using default if not set
PRO_E_CSYS_ORIENTSELAXIS2_FLIP Optional, using default if not set
Others Not applicable

Example 5: Orienting by Selecting Coordinate System Axes
Use the following elements if PRO_E_CSYS_ORIENT_BY_METHOD is PRO_
CSYS_ORIENT_BY_SEL_CSYS_AXES:
Element ID Comments
PRO_E_CSYS_NORMAL_TO_SCREEN Optional, valid only if PRO_E_CSYS_ORIENT_

BY_METHOD = PRO_CSYS_ORIENT_BY_SEL_
CSYS_AXES. Otherwise, it is ignored.

Others Not applicable

Example 6: Using a Coordinate System
Use the following elements if the origin of the coordinate system is determined
using a Csys:
Element ID Comments
PRO_E_CSYS_ORIGIN_CONSTRS Mandatory
PRO_E_CSYS_ORIGIN_CONSTR Mandatory
PRO_E_CSYS_ORIGIN_CONSTR_REF Mandatory
PRO_E_CSYS_OFFSET_TYPE Optional, using default PRO_CSYS_OFFSET_

CARTESIAN if not set
PRO_E_CSYS_ORIENTMOVES Mandatory for non PRO_CSYS_OFFSET_

CARTESIAN
PRO_E_CSYS_ORIENTMOVE Mandatory for non PRO_CSYS_OFFSET_

CARTESIAN

Element Trees: Datum Features 845

Element ID Comments
PRO_E_CSYS_ORIENTMOVE_MOVE_TYPE Mandatory for non PRO_CSYS_OFFSET_

CARTESIAN
PRO_E_CSYS_ORIENTMOVE_MOVE_VAL Mandatory for non PRO_CSYS_OFFSET_

CARTESIAN
For PRO_CSYS_OFFSET_CYLINDRICAL, the
elements PRO_CSYS_ORIENTMOVE_MOVE_OPT_
RAD, PRO_CSYS_ORIENTMOVE_MOVE_OPT_
THETA, and PRO_CSYS_ORIENTMOVE_MOVE_
OPT_ZI are required.
For PRO_CSYS_OFFSET_SPHERICAL, the
elements PRO_CSYS_ORIENTMOVE_MOVE_OPT_
RAD, PRO_CSYS_ORIENTMOVE_MOVE_OPT_
PHI, and PRO_CSYS_ORIENTMOVE_MOVE_OPT_
THETA are required.

PRO_E_CSYS_ORIENT_BY_METHOD Mandatory, using default PRO_CSYS_ORIENT_
BY_SEL_REFS if not set

The function ProDtmcsysTransformfileRead() allocates required steps
of the element tree to create CSYS from a transformation file.
The input file name to ProDtmcsysTransformfileRead() should have the
name of a .trf file, with the extension. The name must be lowercase only. The
file should contain a coordinate transform such as:
X1 X2 X3 Tx
Y1 Y2 Y3 Ty
Z1 Z2 Z3 Tz

where

• X1 Y1 Z1 is the X-axis direction,
• X2 Y2 Z2 is the Y-axis direction,
• X3 Y3 Z3 is not used (the right hand rule determines the Z direction), and
• Tx Ty Tz is the origin of the coordinate system.

846 Creo® Parametric TOOLKITUser’s Guide

35
Element Trees: Datum Curves

Datum Curve Features... 848
Datum Curve Types... 848
Other Datum Curve Types.. 852

This chapter describes how to create, redefine, and access data for datum curve
features using Creo Parametric TOOLKIT. The chapter Element Trees: Datum
Features on page 804 provides necessary background for creating features; we
recommend you read that material first.

847

Datum Curve Features
The element trees for datum curve features supported in Creo Parametric
TOOLKIT are documented in the header file ProDtmCrv.h. Each datum feature
type has a unique element tree containing the parameters and references necessary
to create that type of feature.
Not all datum curve types are currently supported in Creo Parametric TOOLKIT.
Some curve feature types are yet to be converted into element tree form. Other
curve types have element trees with data that is not yet accessible through Creo
Parametric TOOLKIT.

Common Elements
All datum curve features support the following common elements.
Element ID Value
PRO_E_FEATURE_TYPE PRO_FEAT_CURVE

PRO_E_CURVE_TYPE As listed in ProCurveType. This element identifies
the subtree to be used.

PRO_E_STD_FEATURE_NAME Wstring (feature name)

Datum Curve Types
Creo Parametric TOOLKIT considers the following curve types for providing
element tree access:

• Sketched Datum Curves on page 848
• Trim Datum Curves on page 849
• Intersect Datum Curves on page 849
• Wrap Datum Curves on page 850
• Offset Datum Curves on page 850
• Tangent Offset Datum Curves on page 851
• Datum Curves from Cross Section on page 851
• Datum Curves from Equation on page 852

Sketched Datum Curves
Creo Parametric TOOLKIT provides complete element tree access to the sketched
datum curves. The sketched datum curves are sketched features, and therefore
must be created using the techniques described in the chapter Element Trees:
Sketched Features on page 1004.

848 Creo® Parametric TOOLKITUser’s Guide

Element ID Value
PRO_E_CURVE_TYPE PRO_CURVE_TYPE_SKETCHED

PRO_E_STD_SECTION Section element tree
PRO_E_DTMCRV_DISPLAY_HATCH Integer (PRO_B_TRUE, PRO_B_FALSE)
PRO_E_DTMCRV_HATCH_DENSITY Double (if DISPLAY_HATCH = PRO_B_TRUE)

Trim Datum Curves
Creo Parametric TOOLKIT provides complete element tree access to trim datum
curves (previously called Split datum curve).
Element ID Value
PRO_E_CURVE_TYPE PRO_CURVE_TYPE_SPLIT

PRO_E_STD_CRV_SPLIT_CURVE The PRO_CURVE geometric item selected for
splitting.

PRO_E_STD_CRV_DIVIDER The geometric item used to divide the curve.
PRO_E_STD_CRV_SPLIT_SIDE One of the ProSplit Sides enumerations

Intersect Datum Curves
Creo Parametric TOOLKIT provides complete element tree access to intersect
datum curves. In the user interface, the intersect curve type results in one of the
following curve types depending upon the references selected:

• A curve based on the intersection of two surfaces
• A curve based on the projections of two sections
The feature element tree for Intersect curve type contains two independent sets of
elements to support both these feature types. The curve type determines which
elements are required. As the two projections curve type contains two independent
PRO_E_STD_SECTION elements, it must be created using the techniques
described in the chapter Element Trees: Sketched Features on page 1004.
Element ID Value
PRO_E_CURVE_TYPE PRO_CURVE_TYPE_INTSRF

PRO_E_CRV_IP_REF_TYPE PRO_CURVE_TYPE_INTSRF

PRO_E_CRV_IP_COMP_REF1 Compound
PRO_E_CRV_IP_REF_SEL1_TYPE PRO_CURVE_TYPE_WHOLE for the whole surface

selection; PRO_CURVE_TYPE_MULTIPLE_SEL
for multiple independent surface selections.

PRO_E_CRV_IP_REF1 Based on the value of PRO_E_CRV_IP_SEL1_
TYPE.

If the value is whole, specifies a single selection of a
datum plane, quilt, or solid geometry entity.

If the value is multiple, specifies a multi-valued
element containing any number of surface items.

Element Trees: Datum Curves 849

Element ID Value
PRO_E_CRV_IP_COMP_REF2 Compound
PRO_E_CRV_IP_REF_SEL2_TYPE PRO_CURVE_TYPE_WHOLE for the whole surface

selection; PRO_CURVE_TYPE_MULTIPLE_SEL
for multiple independent surface selections.

PRO_E_CRV_IP_REF2 Based on the value of PRO_E_CRV_IP_SEL1_
TYPE.

If the value is whole, specifies a single selection of a
datum plane, quilt, or solid geometry entity.

If the value is multiple, specifies a multi valued
element containing any number of surface items.

PRO_E_CURVE_TYPE PRO_CURVE_TYPE_TWO_PROJ

PRO_E_CRV_IP_REF_TYPE PRO_CURVE_TYPE_TWO_PROJ

PRO_E_CRV_IP_COMP_SEC1 Compound
PRO_E_STD_SECTION Section element tree
PRO_E_CRV_IP_COMP_SEC2 Compound
PRO_E_STD_SECTION Section element tree

Wrap Datum Curves
Creo Parametric TOOLKIT provides complete element tree access to wrap datum
curves (also called Formed datum curves). Because the curve type contains a
PRO_E_STD_SECTION element, you must create it using the techniques
described in the chapter Element Trees: Sketched Features on page 1004.
Element ID Value
PRO_E_CURVE_TYPE PRO_CURVE_TYPE_WRAP

PRO_E_CRV_WRAP_SRF_TYPE One of ProWrapSrfType
PRO_E_CRV_WRAP_SRF Selection containing the wrap surface (surface, quilt

or solid geometry)
PRO_E_STD_SECTION Section
PRO_E_CRV_WRAP_FLIP One of ProWrapFlip
PRO_E_CRV_WRAP_COORD_SYS ID of the section coordinate system

Offset Datum Curves
Creo Parametric TOOLKIT provides partial element tree access to offset datum
curves. In the user interface, the Offset curve type results in one of the following
curve types depending upon the selected references:

• A curve offset normal to a surface
• A curve offset along a quilt
The feature element tree for Offset curve type contains elements that support both
these feature types. The curve type determines which elements are required:

850 Creo® Parametric TOOLKITUser’s Guide

• PRO_CURVE_TYPE_OFFSET is offset normal to a surface
• PRO_CURVE_TYPE_OFFSET_IN_QUILT is offset along a quilt. Offset

along a quilt is not supported in Creo Parametric TOOLKIT.

Creation, redefinition or inspection of the curve type PRO_CURVE_TYPE_
OFFSET_IN_QUILT is not supported. This is because the curve type
contains elements that require data at run-time, which is not currently
accessible to Creo Parametric TOOLKIT.

The following table lists all the elements that are used to create the curve type
PRO_CURVE_TYPE_OFFSET.
Element ID Value
PRO_E_CURVE_TYPE PRO_CURVE_TYPE_OFFSET

PRO_E_CRV_OFFS_FEAT_TYPE PRO_OFFSET_FROM_SURFACE

PRO_E_CRV_OFFS_SRF_REF Selection of surface or quilt
PRO_E_CRV_OFFS_DIR_FLIP One of ProOffsetDirFlip
PRO_E_DATUM_CURVE_OFFSET_VAL The offset value or scale if a graph is used for offset
PRO_E_CRV_OFFS_CRV_REF Selection of datum curve to be offset
PRO_E_CRV_OFFS_GRAPH_REF Selection of graph used for offset calculation

(optional)
PRO_E_CRV_OFFS_ST_END One of ProOffsetStEnd

Tangent Offset Datum Curves
The curve type Tangent Offset is obsolete in Creo Parametric. As the existing
models created in earlier releases may contain this curve type, Creo Parametric
TOOLKIT provides read and redefine access only for these curves.
Element ID Value
PRO_E_CURVE_TYPE PRO_CURVE_TYPE_TANGENT_OFFSET

PRO_E_CRV_TANG_OFFSET_CURVE Selection of curve to be offset
PRO_E_CRV_TANG_OFFSET_SURF Selection of surface in which to create the offset
PRO_E_CRV_TANG_OFFSET_DIR One of ProOffsetDirection
PRO_E_CRV_TANG_OFFSET_DIST Offset value

Datum Curves from Cross Section
Creo Parametric TOOLKIT provides complete element tree access to datum
curves created using existing planar cross sections in the model. The elements for
this feature type are described below:
Element ID Value
PRO_E_CURVE_TYPE PRO_CURVE_TYPE_FROM_XSEC

PRO_E_CRV_FROM_XSEC_REF_XSEC Mandatory element. Specifies the selection of a cross
section to be used to create the datum curve.

Element Trees: Datum Curves 851

Datum Curves from Equation
Creo Parametric TOOLKIT provides complete element tree access to datum
curves created using an equation. Some of the elements for this feature type are
described below:
Element ID Value
PRO_E_CURVE_TYPE PRO_CURVE_TYPE_FROM_EQUATION

PRO_E_CRV_FR_EQ_REF_CSYS Selection of coordinate system used as a reference.
The coordinate system represents the location of the
‘zero point’ of the equation.

PRO_E_CRV_FR_EQ_CSYS_TYPE One of ProCrvFrEquatCsysTypes
PRO_E_CRV_FR_EQ_PARAM_MIN Value of the lower limit for the domain of the curve
PRO_E_CRV_FR_EQ_PARAM_MAX Value of the upper limit for the domain of the curve
PRO_E_CRV_ENTER_EQUATION Parametric equation in terms the variables of the

selected coordinate system type

Other Datum Curve Types
The following curve types contain run-time data in their element trees that is not
currently accessible by Creo Parametric TOOLKIT. Currently, Creo Parametric
TOOLKIT does not provide element tree access to the following curve types:

• Copy
• Project
• Boundary Offset
Some other curve types, including Thru Points, From File, and Use Xsec do not
currently use element trees in Creo Parametric, and are therefore not accessible via
Creo Parametric TOOLKIT.

852 Creo® Parametric TOOLKITUser’s Guide

36
Element Trees: Edit Menu Features
Mirror Feature ... 854
Move Feature.. 856
Fill Feature ... 859
Intersect Feature ... 861
Merge Feature .. 861
Pattern Feature ... 864
Wrap Feature.. 864
Trim Feature ... 865
Offset Feature ... 870
Thicken Feature .. 870
Solidify Feature ... 873
Remove Feature ... 876
Attach Feature .. 881

This chapter describes how to construct and access the element tree for some Edit
Menu features in Creo Parametric TOOLKIT. It also shows how to redefine,
create and access the properties of these features.

853

Mirror Feature
The Mirror feature creates a copy of the selected geometry by mirroring about a
mirror plane. Creo Parametric TOOLKIT supports Mirror features where the
initial selection of items was of geometry (curves and /or surfaces).Creo
Parametric TOOLKIT does not support the element tree for Mirror features where
the initial selection was of one or more features. Mirror features made from other
features will have subfeatures listed under the Mirror entry in the Creo Parametric
model tree, while Mirror features made from geometry will not include any sub-
features.
Mirroring

Entity before Mirroring

Entity after Mirroring

where,
1—Specifies original entity such as plane, surfaces, axes or parts.
2—Specifies mirror line (mirror plane).
3—Specifies the copy of the original entity.

The Feature Element Tree for Mirror feature in Creo
Parametric
The element tree for a Mirror feature is documented in the header file
ProMirror.h, and has a simple structure. The following figure demonstrates
the feature element tree structure:

854 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Mirror Feature

The Mirror element tree contains no non-standard element types. The following
list details special information about some of the elements in this tree:

• PRO_E_FEATURE_TYPE—Must be PRO_FEAT_SRF_MDL.
• PRO_E_STD_FEATURE_NAME—Specifies the feature name.
• PRO_E_MIRROR_REF_ITEMS—A multivalued element that includes the

mirror item reference. It must be references of the following types: PRO_
CURVE, PRO_COMP_CRV, PRO_AXIS, PRO_QUILT, PRO_PART.

• PRO_E_MIRROR_REF_PLANE—Specifies the mirror plane and is a
mandatory element and must be PRO_DATUM_PLANE or PRO_SURFACE
(only planar surfaces).

• PRO_E_COPY_NO_COPY—Specifies the option to create a copy or not and is
a mandatory element. It can have either of the following values:

○ PRO_MIRROR_KEEP_ORIGINAL

○ PRO_MIRROR_HIDE_ORIGINAL

Creating a Mirror Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Mirror Feature based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 of chapter Element
Trees: Principles of Feature Creation on page 764.

Redefining a Mirror Feature
Function Introduced

Element Trees: Edit Menu Features 855

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Mirror Feature based
on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a Mirror Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Mirror Feature and to retrieve the
element tree description of a Mirror Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

Move Feature
The Move feature can be used to create and move a copy of an existing surface or
curve rather than moving the original. Using the Move feature saves time because
it enables you to create simple patterns with surfaces and curves.
The Move feature is available for both part and assembly modes. You can apply
this feature in different modes:

• Translate mode—Translate surfaces, datum curves, and axes in a direction
perpendicular to a reference plane. You can also translate along a linear edge,
axis, perpendicular to plane, two points, or coordinate system.

• Rotate mode—Rotate surfaces, datum curves, and axes about an existing axis,
linear edge, perpendicular to plane, two points, or coordinate system.

To move a surface or curve relative to its original position, define a move
reference. In the Translate mode, the move reference is typically a plane or edge
that is perpendicular to the direction in which you want to translate the moved
feature. In Rotate mode, the move reference is typically an axis or edge about
which you want to rotate the moved feature. In this mode, the moved object
moves about the direction reference.
Following types of move references exists in Translate mode:

• Linear curve
• Linear edge
• Axis
• Axis of a coordinate system

856 Creo® Parametric TOOLKITUser’s Guide

• Plane
• Two points

Note
The direction reference is always perpendicular to the direction in which
you want to move.

Following types of move references exists in Rotate mode:

• Linear curve
• Edge
• Axis
• Axis of a coordinate system
• Two points

Note
You can flip the direction of the move in the Rotate mode.

Creo Parametric TOOLKIT supports Move features where the initial selection of
items was of geometry (curves and /or surfaces). Creo Parametric TOOLKIT does
not support the element tree for Move features where the initial selection was of
one or more features. Move features made from other features will have
subfeatures listed under the Move entry in the Creo Parametric model tree, while
Move features made from geometry will not include any sub-features.

The Feature Element Tree for Move feature in Creo
Parametric
The element tree for a Move feature is documented in the header file
ProMove.h, and has a simple structure. The following figure demonstrates the
feature element tree structure:

Element Trees: Edit Menu Features 857

Feature Element Tree for Move Feature

The move element tree contains no non-standard element types. The following list
details special information about some of the elements in this tree:

• PRO_E_FEATURE_TYPE—Must be PRO_FEAT_SRF_MDL.
• PRO_E_STD_FEATURE_NAME—Specifies the feature name.
• PRO_E_SRF_TR_SURF_SELECTION—Specifies whether to move or copy

the selected geometry. Curves, composite curves, axes and quilts are eligible
to for this element.

• PRO_E_MOVE_NO_COPY—Specifies an option to control copy of the
original geometry.

• Provides the ability to transform geometry with or without a copy.
• PRO_E_MOVE_WITH_COPY—Specifies whether to hide or display the

original geometry after copy.
• PRO_E_MOVE_GEOM_TRF_ARR—Contains an array of movements applied

to the selected entities. This can be a combination of translational and
rotational transformations.

• PRO_E_DIRECTION_COMPOUND—Specifies the direction reference for the
translation or rotational movement. This compound element is a standard Creo
Parametric element subtree and is described in ProDirection.h.

Creating a Move Feature
Function Introduced

858 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Move Feature based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 of chapter Element
Trees: Principles of Feature Creation on page 764.

Redefining a Move Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Move Feature based
on the changes made in the element tree. For more information
aboutProFeatureRedefine(), refer to the section Feature Redefine on page
786 of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a Move Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Move Feature and to retrieve the
element tree description of a Move Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

Fill Feature
Creo Parametric TOOLKIT enables you to create and redefine flat surface features
called fill features. A fill feature is simply a flat surface feature that is defined by
its boundaries and is used to thicken surfaces.

Note
All fill features must consist of a flat, closed-loop sketched feature.

The Feature Element Tree for Fill feature in Creo
Parametric
The element tree for a Fill feature is documented in the header file
ProFlatSrf.h, and has a simple structure.

Element Trees: Edit Menu Features 859

The following figure demonstrates the feature element tree structure:

Feature Element Tree for Fill Feature

The fill element tree contains no non-standard element types. The following list
details special information about some of the elements in this tree:

• PRO_E_FEATURE_TYPE—It should be PRO_FEAT_DATUM_SURF.
• PRO_E_FEATURE_FORM—Specifies feature form and should be of PRO_

FLAT type only.
• PRO_E_STD_SECTION—Specifies a sketched section. Refer to the section

Creating Features Containing Sections on page 1006 for details on how to
create features that contain sketched sections.

The element tree for the Fill feature also supports access to Flat Sheetmetal Wall
features. Refer to the chapter Production Applications: Sheetmetal on page 1310
for element details.

Creating a Fill Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Fill Feature based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 of chapter Element
Trees: Principles of Feature Creation on page 764.

860 Creo® Parametric TOOLKITUser’s Guide

Redefining a Fill Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Fill Feature based on
the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a Fill Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Fill Feature and to retrieve the
element tree description of a Fill Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

Intersect Feature
Refer to the section Intersect Datum Curves on page 849 in the chapter Element
Trees: Datum Curves on page 847 for details about this feature.

Merge Feature
The Merge Feature is created by merging two or more selected quilts. In case of
more than two quilts, every input quilt should have at least one of its edges
adjacent to the edge of any other input quilt, and the surfaces must not overlap.
You can merge a number of input quilts by joining two adjacent quilts one after
another, that is, by aligning the edges of one quilt to the edges of the other. The
first quilt selected for the merge operation becomes the primary reference quilt.
The second adjacent quilt is joined to the primary quilt, forming the main body or
a newly formed primary quilt. The third quilt is, then, joined to the main body.
This process continues until all the input quilts are joined together.

Element Trees: Edit Menu Features 861

Note
• For a successful merge, the selected quilts must be ordered based upon

their adjacency.
• The merge operation fails in case of intersecting quilts, and quilts that are

not adjacent to any other input quilt. In either case, remove the problematic
quilt to complete the merge.

You can also select the input quilts for the merge operation using region selection.
In case of region selection, only box selection is available and the quilts to be
selected must be completely inside the region. The selected quilts are ordered
based on the feature number of the quilt’s parent feature.
You can merge only two quilts by intersecting. You can specify which portion of
the quilt to include in the merge feature by selecting the sides for each of the
quilts.
A merged quilt consists of two or more original quilts that provide the geometry,
and a merge feature that contains the information for the surface joining. The
input quilts are retained, even if you delete the Merge feature.

Note
In Assembly mode, you can merge only assembly-level quilts. If you want to
create component-level merge features, you must first activate the component,
and then merge the quilts in the component. Surface merge is available only
for surfaces that belong to the same component.

Feature Element Tree for Merge feature in Creo
Parametric
The element tree for the Merge feature is documented in the header file
ProMerge.h, and has a simple structure. The following figure demonstrates the
feature element tree structure:

862 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Merge Feature

The following list details special information about the elements in this tree:

• PRO_E_FEATURE_TYPE—Specifies the feature type; must be PRO_FEAT_
DATUM_QUILT.

• PRO_E_SRF_MRG_QUILT_ARR—Specifies an array of the following
compound element. The array must have atleast two elements to create the
Merge feature.

○ PRO_E_SRF_MRG_QUILT_CMPD—Specifies the set of references and
sides to be used for the merge operation. The set consists of the following
two elements:

◆ PRO_E_SRF_MRG_QUILT_REF—Specifies the quilt of the type
PRO_QUILT selected for the merge operation. This is a mandatory
element.

◆ PRO_E_SRF_MRG_QUILT_SIDE—Specifies the side of the selected
quilt that should be included in the merge feature in case of
intersecting quilts. This element is ignored when the quilt array PRO_
E_SRF_MRG_QUILT_ARR contains more than two elements.

• PRO_E_SRF_MRG_TYPE—Specifies the merge type and can have following
merge type options:

○ PRO_SRF_MRG_JOIN—For joining quilts.
○ PRO_SRF_MRG_INTSCT—For merging two quilts at the intersection.

This is the default option.
The merge type must be PRO_SRF_MRG_JOIN when the quilt array PRO_
E_SRF_MRG_QUILT_ARR contains more than two elements.

• PRO_E_STD_FEATURE_NAME—Specifies the merge feature name.

Element Trees: Edit Menu Features 863

Creating a Merge Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Merge Feature based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 of chapter Element
Trees: Principles of Feature Creation on page 764.

Redefining a Merge Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Merge Feature based
on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a Merge Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Merge Feature and to retrieve the
element tree description of a Merge Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

Pattern Feature
Refer to the chapter Element Trees: Patterns on page 963 for details about this
feature.

Wrap Feature
Refer to the section Wrap Datum Curves on page 850 in the chapter Element
Trees: Datum Curves on page 847 for details about this feature.

864 Creo® Parametric TOOLKITUser’s Guide

Trim Feature
Trim feature is applied to remove portions of an existing surface feature. A trim
feature is similar to a solid cut. Following are the existing types of feature creation
for the trimming of a surface or a quilt.

• Use Quilts—Cuts a piece from a surface using an intersecting quilt. Creo
Parametric consumes the quilt that is used to trim a surface and allows you to
keep either or both sides of the trimmed surface. You can trim quilts in the
following ways:

○ By adding a cut or slot as you do to remove material from solid features
○ By trimming the quilt at its intersection with another quilt or to its own

silhouette edge as it appears in a certain view
○ By filleting corners of the quilt
○ By trimming along a datum curve lying on the quilt

• Use Curves—Trims a surface using selected curves and edges.

The rules for defining a surface trim using a datum curve are as follows:

○ You can use a continuous chain of datum curves, inner surface edges, or
solid model edges to trim a quilt.

○ Datum curves used for trimming must lie on the quilt to be trimmed and
should not extend beyond the boundaries of this quilt.

○ If the curve does not extend to the boundaries of the quilt, the system
calculates the shortest distance to the quilt boundary and continues the trim
in this direction.

• Silhouette—Trims a surface at its silhouette edge from a specified direction.

The Feature Element Tree for Trim feature in Creo
Parametric
The element tree for a Trim feature is documented in the header file ProTrim.h,
and has a simple structure. The following figure demonstrates the feature element
tree structure:

Element Trees: Edit Menu Features 865

Feature Element Tree for Trim Feature

The trim element tree contains no non-standard element types. The following list
details special information about some of the elements in this tree:

• PRO_E_FEATURE_TYPE—It should be PRO_FEAT_CUT.
• PRO_E_FEATURE_FORM—Specifies feature form and is a mandatory

element applicable only for use quilt and thin types. It has PRO_USE_SURFS
and PRO_NOTYPE as their valid values.

• PRO_E_SRF_TRIM_TYPE—Specifies trim type identity and is a non-
redefinable mandatory element. The trim type determines the required

866 Creo® Parametric TOOLKITUser’s Guide

structure for the remaining elements in the element tree. Each type requires
different mandatory elements. The different trim types are as follows:

○ PRO_SURF_TRIM_USE_CRV—use curves to trim the quilt.
○ PRO_SURF_TRIM_USE_QLT—use another quilt to trim the given quilt.
○ PRO_SURF_TRIM_THIN

○ PRO_SURF_TRIM_SILH—trim quilt using silhouette edges.
• PRO_E_TRIM_QUILT—Specifies trimmed quilt and should be of type PRO_

SURFACE or PRO_QUILT only.
• PRO_E_STD_USEQLT_QLT—Specifies trimming quilts and trimming

planes. It should have PRO_SURFACE, PRO_QUILT and PRO_DATUM_
PLANE values only. It is applicable for use quilt and thin types only.

• PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the trimming curves
and is applicable for use curve only.

• PRO_E_TRIM_SILH_PLANE—Specifies silhouette plane and can be of type
PRO_SURFACE or PRO_DATUM_PLANE only.

• PRO_E_MATERIAL_SIDE—Specifies material side options and has the
following values:

○ PRO_TRIM_MATL_SIDE_ONE

○ PRO_TRIM_MATL_SIDE_TWO

○ PRO_TRIM_MATL_BOTH_SIDES

• PRO_E_PRIMARY_QLTSIDE—Specifies the primary quilt side options and
they are listed as follows:

○ PRO_TRIM_PRIM_QLT_SIDE_ONE

○ PRO_TRIM_PRIM_QLT_SIDE_TWO

• PRO_E_STD_USEQLT_SIDE—Specifies thickness direction options for thin
trims and can only be as follows:

○ PRO_TRIM_STD_QUILT_SIDE_ONE

○ PRO_TRIM_STD_QUILT_SIDE_TWO

○ PRO_TRIM_STD_QUILT_BOTH_SIDES

• PRO_E_KEEP_TRIM_SURF_OPT—Specifies to keep trimming surface
option and is valid only when the trimming quilt is a surface or quilt. It has the
following values:

○ PRO_KEEP_TRIM_SURF_OPT_NO

○ PRO_KEEP_TRIM_SURF_OPT_YES

• PRO_E_THICKNESS—Specifies thickness for thin trims.

Element Trees: Edit Menu Features 867

• PRO_E_SRF_OFFS_METHOD—Specifies the types of offset for thin trims
and are as follows:

○ PRO_TRIM_SRF_OFFS_METH_NORMTOSURF—The surface or quilt is
thickened in a direction normal to the surface.

○ PRO_TRIM_SRF_OFFS_METH_AUTOSCALE—The surface or quilt is
thickened by automatically determining scaling coordinate system and fit
along all three axes.

○ PRO_TRIM_SRF_OFFS_METH_MANUALSCALE—The surface or quilt
is thickened by specifying the scaling coordinate system and control fitting
motion.

• PRO_E_SRF_OFFS_CTRLFIT—Specifies the control fit and is applicable
for thin trims only. It offsets the surface by creating a best-fit offset that is
scaled with respect to a selected coordinate system. It allows you to define the
axis for translation. It consists of the following elements:

○ PRO_E_SRF_OFFS_SCALINGCSYS specifies the control fit coordinate
system and should have a value of PRO_CSYS.

○ PRO_E_SRF_OFFS_AXISES specifies the control fit axes having the
following values:

◆ PRO_TRIM_OFFS_TRF_NONE

◆ PRO_TRIM_OFFS_TRF_X

◆ PRO_TRIM_OFFS_TRF_Y

◆ PRO_TRIM_OFFS_TRF_Z

◆ PRO_TRIM_OFFS_TRF_XY

◆ PRO_TRIM_OFFS_TRF_YZ

◆ PRO_TRIM_OFFS_TRF_ZX

◆ PRO_TRIM_OFFS_TRF_ALL

• PRO_E_SRF_OFFS_HANDLINGS—Specifies an array of PRO_E_SRF_
OFFS_HANDLING and is applicable for thin trims only.

• PRO_E_SRF_OFFS_HANDLING—Specifies special handling item and
consists of PRO_E_SRF_OFFS_REF_SEL which are special handling faces
which should be from the trimming quilt.

A list of elements required for different types of trims:
Trim type Element Id
Quilt Type PRO_E_FEATURE_TYPE

PRO_E_FEATURE_FORM

PRO_E_SRF_TRIM_TYPE

PRO_E_STD_FEATURE_NAME

868 Creo® Parametric TOOLKITUser’s Guide

Trim type Element Id
PRO_E_SURF_TRIM_TYPE

PRO_E_TRIM_QUILT

PRO_E_STD_USEQLT_QLT

PRO_E_MATERIAL_SIDE

PRO_E_PRIMARY_QLTSIDE

PRO_E_KEEP_TRIM_SURF_OPT

Use Curve PRO_E_FEATURE_TYPE

PRO_E_SRF_TRIM_TYPE

PRO_E_STD_FEATURE_NAME

PRO_E_SURF_TRIM_TYPE

PRO_E_TRIM_QUILT

PRO_E_STD_CURVE_COLLECTION_APPL

PRO_E_MATERIAL_SIDE

PRO_E_PRIMARY_QLTSIDE

Thin PRO_E_FEATURE_TYPE

PRO_E_FEATURE_FORM

PRO_E_SRF_TRIM_TYPE

PRO_E_STD_FEATURE_NAME

PRO_E_SURF_TRIM_TYPE

PRO_E_TRIM_QUILT

PRO_E_STD_USEQLT_QLT

PRO_E_STD_USEQLT_SIDE

PRO_E_KEEP_TRIM_SURF_OPT

PRO_E_THICKNESS

PRO_E_SRF_OFFS_METHOD

PRO_E_SRF_OFFS_CTRLFIT

PRO_E_SRF_OFFS_HANDLINGS

Silhouette PRO_E_FEATURE_TYPE

PRO_E_SRF_TRIM_TYPE

PRO_E_STD_FEATURE_NAME

PRO_E_SURF_TRIM_TYPE

PRO_E_TRIM_QUILT

PRO_E_TRIM_SILH_PLANE

PRO_E_MATERIAL_SIDE

PRO_E_PRIMARY_QLTSIDE

PRO_E_KEEP_TRIM_SURF_OPT

Creating a Trim Feature
Function Introduced

Element Trees: Edit Menu Features 869

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Trim Feature based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765of chapter Element Trees:
Principles of Feature Creation on page 764.

Redefining a Trim Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Trim Feature based
on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a Trim Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Trim Feature and to retrieve the
element tree description of a Trim Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

Offset Feature
Refer to the section Offset Datum Curves on page 850 in the chapter Element
Trees: Datum Curves on page 847 for details about this feature.

Thicken Feature
The Thicken feature is available for both part and for assembly modes and can be
defined with respect to coordinate systems, axes, and surfaces. You can apply this
feature to check the thickness of a part in the model. This feature also forms the
basis for model analysis and thickness check. The result of the thickness analysis
is as follows:

• The thickness is between the design range.
• The thickness exceeds the maximum design value.
• The thickness is below the minimum design value.

870 Creo® Parametric TOOLKITUser’s Guide

Thicken features use predetermined surface features or quilt geometry to add or
remove thin material sections in the design. The surface features or quilt geometry
provide greater flexibility within the design and enable you to transform the
geometry to better meet the design needs.

The Feature Element Tree for Thicken feature in
Creo Parametric
The element tree for a Thicken feature is documented in the header file
ProThicken.h, and has a simple structure. The following figure demonstrates
the feature element tree structure:

Feature Element Tree for Thicken Feature

The Thicken element tree contains no non-standard element types. The following
list details special information about some of the elements in this tree:

• PRO_E_FEATURE_TYPE—PRO_FEAT_PROTRUSION or PRO_FEAT_
CUT.

• PRO_E_FEATURE_FORM—Must be PRO_E_SURFS.

Element Trees: Edit Menu Features 871

• PRO_E_FEAT_FORM_ALWAYS_THIN—Must be PRO_THIN.
• PRO_SRF_OFFS_METHOD—Offset method that can be enumerated as

follows:

○ PRO_OFFS_METH_NORMTOSURF— Specifies the offset of the thickened
surface normal to the original surface.

○ PRO_OFFS_METH_AUTOSCALE— Specifies autoscale and translates the
thickened surface with respect to an automatically determined coordinate
system.

○ PRO_OFFS_METH_MANUALSCALE— Specifies manual scale.

Note
If you change the offset method for a particular feature, all children of this
feature fail.

Creating a Thicken Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Thicken Feature based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 of chapter Element
Trees: Principles of Feature Creation on page 764.

Redefining a Thicken Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Thicken Feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a Thicken Feature
Function Introduced

872 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Thicken Feature and to retrieve the
element tree description of a Thicken Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter . Element Trees: Principles of Feature Creation on page 764

Solidify Feature
Solidify features are used to create complex geometry that would be difficult to
create using regular solid features.
Solidify features use predetermined surface features or quilt geometry and convert
them into solid geometry. You can use Solidify features to add, remove, or replace
solid material in the designs. The quilt geometry provides greater flexibility within
the design, and the Solidify feature enables the designer to transform the geometry
to meet design needs.
The attributes of the Solidify feature are:

• Patch—Replaces a portion of the surface with quilt. The quilt boundary must
lie on the surface.

• Add Material—Fills a quilt with solid material.
• Remove Material—Removes material from inside or outside a quilt.

Note
add material and remove material attributes are always available. Patch is
available only if the selected quilt boundaries lie on solid geometry.

The Feature Element Tree for Solidify Feature in
Creo Parametric
The element tree for a Solidify feature is documented in the header file
ProSolidify.h, and has a simple structure. The following figure demonstrates
the feature element tree structure:

Element Trees: Edit Menu Features 873

Feature Element Tree for Solidify Feature

The solidify element tree contains no non-standard element types. The following
list details special information about some of the elements in this tree:

• PRO_E_STD_FEATURE_TYPE—Must be one of the following types—

○ Protrusion—PRO_FEAT_PROTRUSION

○ Cut—PRO_FEAT_CUT

○ Patch—PRO_FEAT_PATCH

• PRO_E_FEATURE_FORM—Must be of the following types:

○ PRO_USE_SURFS— Represents protrusion (PRO_FEAT_PROTRUSION)
and cut (PRO_FEAT_CUT).

○ PRO_NOTYPE— Represents patch (PRO_FEAT_PATCH).
• PRO_E_PATCH_QUILT— Specifies the reference quilt and is a mandatory

element. A valid quilt or surface satisfies any of the following contexts:
Quilt is open

• CASE 1
○ All boundaries lie on solid surfaces.
○ Solid geometry does not intersect quilt.
○ Solid geometry and quilt form closed empty volume.

• CASE 2
○ All boundaries lie on solid surfaces.
○ Solid geometry intersects quilt.

• CASE 3
○ All one sided edges are inside solid geometry.

• CASE 4
○ All one sided edges are outside solid geometry.

874 Creo® Parametric TOOLKITUser’s Guide

○ Solid geometry intersects quilt.
• CASE 5

○ Solid geometry and quilt form closed empty volume.
○ At least, one sided edge intersects geometry.

• CASE 6
○ Quilt intersects geometry.
○ None of the one sided edges intersect geometry.

• CASE 7
○ Solid geometry does not intersect quilt.

Quilt is closed

• CASE 1
○ Solid geometry does not intersect quilt.

• CASE 2
○ Quilt completely buried inside Material.

• CASE 3
○ Solid geometry partly intersects quilt.

Creating a Solidify Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Solidify Feature based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 of chapter Element
Trees: Principles of Feature Creation on page 764.

Redefining a Solidify Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Solidify Feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Element Trees: Edit Menu Features 875

Accessing a Solidify Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Solidify Feature and to retrieve the
element tree description of a Solidify Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

Remove Feature
Use the Remove feature to remove geometry without disturbing the feature
history. It allows you to modify existing imported geometry or delete some
geometry from a part (not necessarily formed by a single feature) without having
to reroute and refine a number of features.
You can select one of the following items for removal:

• Surfaces, surface sets, or intent surfaces
• One closed loop chain of one-sided edges from a single quilt
Geometry removal results in neighboring surfaces being extended or trimmed to
converge and close the void. The extended geometry is attached as a solid or
surface to the selected surfaces. In case of a one-sided edge chain selected as the
reference, the extended geometry can be attached to the selected quilt, or created
as a new quilt.
You can exclude contours in multi-contour surfaces from being removed. For
periodic features separated by artificial edges (for example, extruded cylinders or
revolved features), the feature internally references all the surfaces, even if one of
them is selected.

876 Creo® Parametric TOOLKITUser’s Guide

Note
• All surfaces that are extended or trimmed must be adjacent to the boundary

defined by references.
• If an adjacent surface does not need to be extended, it will not be copied.
• Surfaces that are to be extended must be extendable.
• Extended surfaces must converge to form a defined volume.
• No new patches are created when the surfaces are extended.
• If the modified geometry cannot be attached as a solid, it can be manually

attached as a quilt.
• Feature operations such as Suppress, Delete, Redefine, Reroute, Copy/Paste,

and Pattern (limited to reference pattern if patterning by itself) are supported.
• Transformation of this feature by itself is not applicable and allowed.

Feature Element Tree for the Remove Feature
The element tree for the Remove feature is documented in the header file
ProRemoveSurf.h. The following figure demonstrates the element tree
structure:

Element Trees: Edit Menu Features 877

Feature Element Tree for Remove Feature

The Remove element tree contains standard element types. The following list
details special information about the elements in this tree:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should always
have the value PRO_FEAT_RM_SURF.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the remove feature.
• PRO_E_RM_SURF_REF_TYPE—Specifies the reference type. This element

decides the type of references that you can select for removal. It can have the
following values:

○ PRO_RM_SURF_SRF_REF—Specifies that surface sets can be selected as
the references.

○ PRO_RM_SURF_CRV_REF—Specifies that a chain of one-sided edges
can be selected as the reference.

878 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_RM_SURF_ATTACH_TYPE—Specifies the attachment type. It can
have the following values:

○ FM_RM_SURF_ATTACH_SAME—Specifies that the extended geometry
will be attached to the selected surfaces if PRO_E_RM_SURF_REF_
TYPE is equal to PRO_RM_SURF_SRF_REF, or to the selected quilt if
PRO_E_RM_SURF_REF_TYPE is equal to PRO_RM_SURF_CRV_REF.

○ FM_RM_SURF_ATTACH_SEP—Specifies that the extended geometry
will be created as a separate quilt if PRO_E_RM_SURF_REF_TYPE is
equal to PRO_RM_SURF_CRV_REF.

• PRO_E_RM_SURF_SRF_REFS—Specifies the set of surface references. This
element is required if PRO_E_RM_SURF_REF_TYPE is equal to PRO_RM_
SURF_SRF_REF. It consists of the following elements:

○ PRO_E_STD_SURF_COLLECTION_APPL—Specifies the surfaces
selected for removal. You can select multiple surfaces. This element is
required if PRO_E_RM_SURF_REF_TYPE is equal to PRO_RM_SURF_
SRF_REF.

○ PRO_E_STD_EXCL_CNTRS—Specifies an array of excluded contours of
the type PRO_E_STD_EXCL_CNTRS_ONE_CNTR.

○ PRO_E_KEEP_REMOVED_SRFS_OPT—Specifies the ProBoolean
option that allows you to retain the removed surfaces as a separate quilt.

• PRO_E_RM_SURF_CRV_REFS—Specifies the set of curve references. This
element is required if PRO_E_RM_SURF_REF_TYPE is equal to PRO_RM_
SURF_CRV_REF. It consists of the following element:

○ PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the single
closed loop chain of one-sided edges. This element is required if PRO_E_
RM_SURF_REF_TYPE is equal to PRO_RM_SURF_CRV_REF.

• PRO_E_RM_SURF_LEAVE_OPEN_OPT—Specifies if the hole that is created
after surfaces are removed must be kept open. The solids are converted to
quilts and closed quilts are converted to open quilts.

• PRO_E_RM_SURF_AUTO_SPLIT_SRF—Specifies if the extending surface
for the selected shape surface must be automatically split when geometry is
removed. The splitting surface is automatically selected.

• PRO_E_RM_SURF_MAINTAIN_TOPO—Specifies if the regeneration must
fail when the model changes and the same solution type cannot be
reconstructed. It is used to indicate if the topology in the model must be
maintained.

Element Trees: Edit Menu Features 879

Note
The Remove feature is available in the parametric modeling environment as
well as in the flexible modeling environment. In the parametric modeling
environment, a collection of surfaces or curves are used as the references. In
the flexible modeling environment, a region or a collection of surfaces that
include regions is used as the reference. In the flexible modeling environment
with a surface collection that includes regions, the Remove feature replaces
each region by the surface it belongs to. The contours that define other regions
of the same surface are automatically saved as the PRO_E_STD_EXCL_
CNTRS_ONE_CNTR element.

Element Details of PRO_E_STD_EXCL_CNTRS_ONE_CNTR
Each PRO_E_STD_EXCL_CNTRS_ONE_CNTR specifies one excluded contour.
It consists of the following elements:

PRO_E_STD_EXCL_CNTRS_ONE_CNTR

• PRO_E_STD_EXCL_CNTR_SRF_REF—Specifies the surface reference for
the excluded contour.

• PRO_E_STD_EXCL_CNTR_EDGE_REF—Specifies the edge reference for
the excluded contour. This element can be any edge of the contour.

Creating the Remove Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create the Remove feature based
on the element tree input. For more information about ProFeatureCreate(),
refer to the section Overview of Feature Creation on page 765 in the chapter
Element Trees: Principles of Feature Creation on page 764.

880 Creo® Parametric TOOLKITUser’s Guide

Redefining the Remove Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine the Remove feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing the Remove Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of the Remove feature, and to retrieve the
element tree description of the Remove feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

Example 1: Creating a Remove Surface Feature
The sample code in UgRemoveSurfCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a remove Surface feature.

Attach Feature
The Attach feature allows you to attach open quilts to solid or quilt geometry, if
the open quilt does not intersect the solid or quilt geometry. You can select an
open quilt and attach it to another quilt or solid geometry within the same model.
You can also select two open quilts within the same model which do not intersect
and attach them.
This feature is useful in case of UDF placement when the geometry of the UDF
does not intersect the part.

Feature Element Tree for Attach Feature
The element tree for a Attach feature is documented in the header file
ProFlexAttach.h and has a simple structure. The following figure
demonstrates the structure of the feature element tree.

Element Trees: Edit Menu Features 881

Attach Feature Element Tree

The elements in this tree are described below:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_FLXATTACH.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_ATTACH_QLT_REFS—Specifies the open quilts you select for

attachment.
• PRO_E_ATTACH_OPT_TYPE—Specifies the attachment type. It is given by

the enumerated type ProFlexAttachOptType and is of the following
types:

○ PRO_FLXATT_SOLID_OPT—Specifies the solid to which the open
quilts are attached.

○ PRO_FLXATT_SURF_OPT—Specifies the quilt surface to which the
open quilts are attached.

Creating the Attach Feature
Function Introduced

882 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureCreate()
Use the function ProFeatureCreate() to create the Attach feature based on
the element tree input. For more information about ProFeatureCreate(),
refer to the section Overview of Feature Creation on page 765 in the chapter
Element Trees: Principles of Feature Creation on page 764.

Redefining the Attach Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine the Attach feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing the Attach Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to to retrieve the
element tree description of the Attach feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

Element Trees: Edit Menu Features 883

37
Element Trees: Replace

Introduction... 885
The Feature Element Tree ... 885

This chapter describes the basic principles of creating a tweak surface replacement
feature. The chapter Element Trees: Principles of Feature Creation on page 764 is
a necessary background for this topic. Read that chapter before this one.

884 Creo® Parametric TOOLKITUser’s Guide

Introduction
The surface replacement functionality enables you to replace the specified surface
on a model with a datum plane or quilt. This is similar to the Replace option from
TWEAK menu in Creo Parametric. See the corresponding section in the Part
Modeling User’s Guide for a detailed description of the restrictions and
requirements of the feature.

The Feature Element Tree
The element tree for a surface replacement feature is documented in the header
file ProReplace.h, and is shown in the following figure.

Element Tree for Surface Replacement

The following table describes the elements in the element tree for the surface
replacement feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT PRO_FEAT_REPLACE_SURF

PRO_E_STD_REPLACED_SURF PRO_VALUE_TYPE_
SELECTION

The surface to be removed

PRO_E_STD_REPLACEMENT_
SURF

PRO_VALUE_TYPE_
SELECTION

The replacement surface

PRO_E_STD_KEEP_QUILT PRO_VALUE_TYPE_INT Specifies whether to keep the quilt

To keep the replacement surface (datum plane or quilt), add the element PRO_E_
STD_KEEP_QUILT and set its value to 1. If you omit the element, or its value is
0, the replacement surface will be consumed by the replacement feature.
After you have defined the element tree, call the function
ProFeatureCreate() to create the tweak surface replacement feature.

Element Trees: Replace 885

38
Element Trees: Draft Features

Draft Feature... 887
Variable Pull Direction Draft Feature ... 894

This chapter introduces and shows how to create, redefine and access draft
features.

886 Creo® Parametric TOOLKITUser’s Guide

Draft Feature
The Draft feature adds a draft angle between -89.9° and +89.9° to individual
surfaces or to a series of surfaces.
You can draft either solid surfaces or quilt surfaces, but not a combination of both.
The first selected surface determines the type of additional surfaces (solid or
quilts) that can be selected as draft surfaces for this feature.
Some of the terms associated with the Draft feature are:

• Draft surfaces—The surfaces of the model to be drafted.
• Draft hinges—Lines and curves on the draft surfaces that the surfaces are

pivoted about (also called neutral curves), or quilt of surfaces. Draft hinges
can be defined by:

○ A plane, in which case the draft surfaces are pivoted about their
intersection with the plane.

○ Individual curve chains on the draft surfaces.
○ A quilt, in which case the draft surfaces are pivoted about their intersection

with the quilt.
• Draft direction—Direction used to measure the draft angle and can be defined

in terms of:

○ A plane, in which case the draft direction is normal to this plane.
○ A straight edge or a datum axis, in which case the draft direction is parallel

to the edge or axis.
○ Two points, such as datum points or model vertices, in which case the draft

direction is parallel to the line connecting the two points.
○ A coordinate system, in which case the draft direction initially defaults to

the direction of its x-axis.
• Draft angle—The angle between the draft direction and the resulting drafted

surfaces. If the draft surfaces are split, you can define two independent angles
for each side of the drafted surface. Draft angles must be within the range of
-89.9° and +89.9°.

Feature Element Tree for the Draft Feature
The element tree for a draft feature is documented in the header file
ProDraft.h, and has a simple structure. The following figure demonstrates the
feature element tree structure:

Element Trees: Draft Features 887

Feature Element tree for Draft Features

888 Creo® Parametric TOOLKITUser’s Guide

The feature element tree contains no non-standard element types. The following
list details special information about some of the elements in this tree:

• PRO_E_FEATURE_TYPE—Specifies the feature type.
• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_DRAFT_TWEAK_OR_INTERSEC—Specifies tweak or intersect

depending on whether the resulting draft surface encounters an edge of the
model or not suggesting the presence of the extend option. It can have any of
the following values:

○ PRO_DRAFT_UI_TWEAK for creating regular draft geometry.
○ PRO_DRAFT_UI_INTERSECT for adjusting the draft geometry to

intersect an existing edge of the model.
○ PRO_DRAFT_UI_INTERSECT_EXTEND specifies intersect with extend,

when the draft does not extend to the adjacent model surface.

Note
It is an option for the earlier versions of Pro/ENGINEER.

• PRO_E_DRAFT_EXTEND—Specifies extend option of the draft. It is of the
following types:

○ PRO_DRAFT_UI_NO_EXTEND—Intersect without Extend.
○ PRO_DRAFT_UI_EXTEND—Intersect with Extend.

Note
It is applicable for features created using Pro/ENGINEER version prior to
Pro/ENGINEERWildfire2.0 Release and is available only when PRO_E_
DRAFT_TWEAK_OR_INTERSEC is equal to PRO_DRAFT_UI_
INTERSECT.

• PRO_E_DRAFT_SPLIT—Specifies split details of the draft. It can be any of
the following types:

○ PRO_DRAFT_UI_SPLIT_NONE

○ PRO_DRAFT_UI_SPLIT_NEUT specifies split on draft hinge.
○ PRO_DRAFT_UI_SPLIT_SURF specifies split at surface.
○ PRO_DRAFT_UI_SPLIT_SCTCH specifies split at sketch.

Element Trees: Draft Features 889

Note
Draft surfaces can be split either by the draft hinge or by a different curve
on the draft surface, such as an intersection with a quilt, or a sketched
curve. If you are splitting by a sketch that does not lie on the draft surface,
Creo Parametric projects it on the draft surface in the direction normal to
the sketching plane.

• PRO_E_STD_SURF_COLLECTION_APPL—Specifies drafted surfaces.
• PRO_E_DIRECTION_COMPOUND—Specifies the direction utility for the

draft.
• PRO_E_DRAFT_CONSTANT_OR_VARIABLE—Specifies constant or

variable draft. For variable draft one can specify more than one angle per draft
side. It can be one of the following types:

○ PRO_DRAFT_UI_VARIABLE

○ PRO_DRAFT_UI_CONSTANT

• PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the exclude loop or
the draft hinges.

• PRO_E_DRAFT_SPLIT_GEOM—Specifies split geometry (sketch, plane, or
quilt used for splitting) and is an optional element.

• PRO_E_STD_SECTION—Specifies the split geometry and is an optional
element. It contains the following element:

○ PRO_E_SEC_USE_SKETCH—Specifies the selected split geometry and
is an optional element.

• PRO_E_DRAFT_INCLUDE_TANGENT—Specifies included tangent. It can
be any of the following types:

○ PRO_DRAFT_UI_NOT_INC_TANG specifies the non-included tangents.
○ PRO_DRAFT_UI_INC_TANG specifies the included tangents.

• PRO_E_DRAFT_SIDE_1—Specifies details about first draft’s side.
• PRO_E_DRAFT_SIDE_2—Specifies details about second draft’s side.

Element Details of PRO_E_DRAFT_SIDE_1
Each PRO_E_DRAFT_SIDE_1 has the following elements:

• PRO_E_DRAFT_NEUTRAL_OBJECT_TYPE_1—Specifies the type of draft
hinge. It can be any of the following types:

890 Creo® Parametric TOOLKITUser’s Guide

○ PRO_DRAFT_UI_NO_NEUT—Specifies that no draft hinge have been
fixed.

○ PRO_DRAFT_UI_PLANE—Specifies a plane. In this case, the draft
surfaces are pivoted about their intersection with this plane.

○ PRO_DRAFT_UI_CURVE—Specifies a curve chain located on the draft
surfaces.

○ PRO_DRAFT_UI_QUILT—Specifies a quilt of surfaces. In this case, the
draft surfaces are pivoted about their intersection with the quilt.

○ PRO_DRAFT_UI_RND_HINGE—Specifies a round surface that must be
adjacent to the draft surface.

• PRO_E_DRAFT_NEUTRAL_PLANE_1—Specifies the plane selected as the
draft hinge.

• PRO_E_STD_CURVE_COLLECTION_APPL—Specifies exclude loop or
draft hinges.

• PRO_E_DRAFT_DEPENDENT_1—Specifies the dependence and controls
whether the corresponding sides are drafted and depends on the type of the
draft hinge. It can be any of the following types:

○ PRO_DRAFT_UI_INDEPENDENT specifies that two independent draft
angles for each side of the drafted surface.

○ PRO_DRAFT_UI_DEPENDENT specifies a single draft angle, with the
second side drafted in the opposite direction.

○ PRO_DRAFT_UI_NONE specifies that none of the sides be drafted.
• PRO_E_DRAFT_ANGLE_1—Specifies the draft angle and is a constant

value.
• PRO_E_DRAFT_ANGLES—This is an option for a variable draft. It specifies

a collection of draft angles and points PRO_E_DRAFT_ANG_PNT. Each
PRO_E_DRAFT_ANG_PNT consists of the following elements:

○ PRO_E_STD_POINT_COLLECTION_APPL—Specifies the point
collection for the angle.

○ PRO_E_DRAFT_ANGLE—Specifies the draft angle.
• PRO_E_DRAFT_NEUTRAL_QUILT_1—Specifies the quilt of surfaces

selected as the draft hinge.

Element Details of PRO_E_DRAFT_SIDE_2
Each PRO_E_DRAFT_SIDE_2 has the following elements:

• PRO_E_DRAFT_NEUTRAL_OBJECT_TYPE_2—Specifies the type of draft
hinge. It can be any of the following types:

Element Trees: Draft Features 891

○ PRO_DRAFT_UI_NO_NEUT—Specifies that no draft hinge has been
fixed.

○ PRO_DRAFT_UI_PLANE—Specifies a plane. In this case, the draft
surfaces are pivoted about their intersection with this plane.

○ PRO_DRAFT_UI_CURVE—Specifies a curve chain located on the draft
surfaces.

○ PRO_DRAFT_UI_QUILT—Specifies a quilt of surfaces. In this case, the
draft surfaces are pivoted about their intersection with the quilt.

• PRO_E_DRAFT_NEUTRAL_PLANE_2—Specifies the plane selected as the
draft hinge.

• PRO_E_STD_CURVE_COLLECTION_APPL—Specifies exclude loop or
draft hinges.

• PRO_E_DRAFT_DEPENDENT_2—Specifies the dependence and controls
whether the corresponding sides are drafted and depends on the type of the
draft hinge. It can be any of the following types:

○ PRO_DRAFT_UI_INDEPENDENT specifies that two independent draft
angles for each side of the drafted surface.

○ PRO_DRAFT_UI_DEPENDENT specifies a single draft angle, with the
second side drafted in the opposite direction.

○ PRO_DRAFT_UI_NONE specifies that none of the side be drafted.
• PRO_E_DRAFT_ANGLE_2—Specifies the draft angle and is a constant

value.
• PRO_E_DRAFT_ANGLES—This is an option for a variable draft. It specifies

a collection of draft angles and points PRO_E_DRAFT_ANG_PNT. Each
PRO_E_DRAFT_ANG_PNT consists of the following elements:

○ PRO_E_STD_POINT_COLLECTION_APPL—Specifies the point
collection for the angle.

○ PRO_E_DRAFT_ANGLE—Specifies the draft angle.
• PRO_E_DRAFT_NEUTRAL_QUILT_2—Specifies the quilt of surfaces

selected as the draft hinge.

Creating a Draft
Function Introduced:

892 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Draft based on element
tree input. For more information about ProFeatureCreate(), refer to the
section Overview of Feature Creation on page 765 of the chapter Element Trees:
Principles of Feature Creation on page 764.

Redefining a Draft
Function Introduced:

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Draft based on the
changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of the chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a Draft
Function Introduced:

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Draft and to retrieve the element tree
description of a Draft. For more information about
ProFeatureElemtreeExtract() refer to the section Feature Inquiry on
page 785 of the chapter Element Trees: Principles of Feature Creation on page
764.

Example 1: Creation of a Draft Feature
The sample code in the file UgSimpleDraftCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a Simple Draft feature.
The user is prompted to select:

1. The surface to be drafted
2. The hinge (edge / curve)
3. The direction of the draft (axis, edge)

Element Trees: Draft Features 893

Example 2: Creation of a Draft Feature using
interactive collection
The sample code in the file UgIntcollectionDraftCreate.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a draft feature using interactive collection.
The user is prompted to create a collection of:

1. The surface to be drafted ("ProSurfacesCollect")
2. The direction of the draft (axis, edge - "ProSelect")
3. The hinge (edge / curve - "ProCurvesCollect")

Example 3: Creation of a Draft Feature based on the
Object-Action paradigm
The sample code in the file UgOADraftCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat demonstrates creation of a simple Draft feature based on the Object-
Action paradigm using selection buffer access. The user is expected to populate
the selection buffer in Creo Parametric user interface with
1. A surface collection for the surfaces to be drafted
2. A curve collection for the hinge (edge / curve)
3. A selection for the direction of the draft (axis, edge)
This example parses the selection buffer and uses the information for the
programmatic creation of draft feature. The selection buffer may be populated
with the above three entries in any order. The success of feature creation depends
upon the appropriateness of the data in the selection buffer.

Variable Pull Direction Draft Feature
The Variable Pull Direction Draft (VPDD) feature differs from the regular Draft
feature where the pull direction is restricted to be constant. AVPDD is defined by
an edge or curve, a surface that specifies the variable pull direction, a depth
option, and optionally, splitting surfaces.

Feature Element Tree for the Variable Pull Direction
Draft Feature
The element tree for the Variable Pull Direction Draft feature is documented in the
header file ProVPDD.h. The following figure demonstrates the feature element
tree structure:

894 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Variable Pull Direction Draft Feature

Element Trees: Draft Features 895

PRO_E_VPDD_SET_CMP

The elements in this tree are as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_VPDD.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_VPDD_PULL_DIR_CMP—Specifies the pull direction reference.

This compound element consists of the following elements:

○ PRO_E_VPDD_PULL_DIR_REF—Specifies the selected reference
surface. It could be a single PRO_QUILT, a single PRO_DATUM_PLANE,
a single PRO_LOG_SRF, or multiple PRO_SURFACE references that are
tangent to each other.

○ PRO_E_VPDD_PULL_DIR_FLIP—Specifies the pull direction defined
by the normal vectors of the selected reference surfaces. By default, this
element is PRO_B_TRUE and the pull direction is along the normal
vectors. The pull direction can be flipped.

896 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_VPDD_SETS_ARR—Specifies an array of the elements of the type
PRO_E_VPDD_SET_CMP. PRO_E_VPDD_SET_CMP is a compound element
and specifies a draft set. For more information on the elements contained by
this compound element, refer to the section Element Details of the Subtree
PRO_E_VPDD_SET_CMP on page 898.

• PRO_E_VPDD_ATTACH_OPTS—Specifies the attachment option. When all
the draft hinges are two-sided edges, you can specify whether to attach the
draft geometry to the existing solid or quilt, or create the draft geometry as a
separate quilt. The attachment options, specified by the enumerated type Pro_
vpdd_attach_type, are as follows:

○ PRO_VPDD_ATTACH_NEW_QUILT—Creates the draft geometry as a
separate quilt.

○ PRO_VPDD_ATTACH_SAME_QUILT—Attaches the draft geometry to
the existing solid or quilt.

• PRO_E_VPDD_EXTENT_CMP—Specifies the extent (depth) option when
unattached draft geometry is created. This compound element is available only
if the element PRO_E_VPDD_ATTACH_OPTS is set to PRO_VPDD_
ATTACH_NEW_QUILT.

○ PRO_E_VPDD_EXT_OPTS—Specifies the extent options. These options,
specified by the enumerated type Pro_vpdd_extent_type, are as
follows:

◆ PRO_VPDD_EXT_LENGTH—Specifies the length dimension option.
◆ PRO_VPDD_EXT_TO_SEL—Select the reference bottom surface upto

which the draft geometry is extended.
◆ PRO_VPDD_EXT_TO_NEXT—The draft geometry is extended up to

the next surface it intersects. This excludes any surface or quilt used as
a parting surface for a different draft set.

◆ PRO_VPDD_EXT_UNATTACHED—Creates the draft geometry ready
for attachment but as a separate quilt.

◆ PRO_E_VPDD_EXT_LENGTH—Specifies the length value. This
element is available only when the element PRO_E_VPDD_EXT_
OPTS is set to PRO_VPDD_EXT_LENGTH.

◆ PRO_E_VPDD_EXT_REF—Specifies the selected bottom surface
upto which the draft geometry is extended. The valid references are
PRO_QUILT, PRO_SURFACE, and PRO_DATUM_PLANE. This
element is available only when the element PRO_E_VPDD_EXT_
OPTS is set to PRO_VPDD_EXT_TO_SEL.

Element Trees: Draft Features 897

Element Details of the Subtree PRO_E_VPDD_SET_
CMP
The compound element PRO_E_VPDD_SET_CMP contains the following
elements:

• PRO_E_VPDD_HINGES_ARR—Specifies an array of elements of the type
PRO_E_VPDD_HINGE_CMP. PRO_E_VPDD_HINGE_CMP is a compound
element and specifies a collection of draft hinges used to generate the draft
geometry.

○ PRO_E_STD_CURVE_COLLECTION_APPL—Specifies a chain of two-
sided edges, one-sided edges, curves, or a combination of one-sided edges
and curves.

○ PRO_E_VPDD_HINGE_FLIP—Specifies the ProBoolean option to
select the sets of surfaces to be drafted on each side of a draft hinge
defined by two-sided edges.

• PRO_E_VPDD_SPLIT_SRFS_OPTS—Specifies the ProBoolean option
to specify if splitting surfaces are used while generating the draft geometry. If
this option is set to the default value PRO_B_FALSE, then the element PRO_
E_VPDD_SPLIT_SRFS_REFS becomes unavailable.

• PRO_E_VPDD_SPLIT_SRFS_REFS—Specifies a collection of splitting
surface references. You can select upto two references that are either PRO_
QUILT or PRO_DATUM_PLANE.

• PRO_E_VPDD_CONST_OR_VAR—Specifies a constant or variable draft. For
a variable draft, there are variable angle attachment points. The values for this
element, specified by the enumerated type Pro_vpdd_const_var_type,
are as follows:

○ PRO_VPDD_CONST

○ PRO_VPDD_VAR

• PRO_E_VPDD_ANGLES_AND_POINTS_ARR—Specifies an array of
elements of the type PRO_E_VPDD_POINT_AND_ANGLES_CMP. PRO_E_
VPDD_POINT_AND_ANGLES_CMP is a compound element and specifies a
collection of points and angles.

○ PRO_E_STD_POINT_COLLECTION_APPL—Specifies the selection
references (curves, edges, or datum points) where the draft angles are
defined.

898 Creo® Parametric TOOLKITUser’s Guide

Note
◆ If PRO_E_VPDD_CONST_OR_VAR is set to PRO_VPDD_CONST,

then the element PRO_E_STD_POINT_COLLECTION_APPL
becomes unavailable and the element PRO_E_VPDD_ANGLES_AND_
POINTS_ARR contains only a single element.

◆ A reference is valid when it belongs to or lies on a draft hinge that
belongs to the same draft set.

○ PRO_E_VPDD_ANGLES_ARR—Specifies an array of elements of the
type PRO_E_VPDD_ONE_ANGLE_CMP. The size of the array is one plus
the number of splitting references. PRO_E_VPDD_ONE_ANGLE_CMP is a
compound element and specifies the draft angle for the active draft set.

◆ PRO_E_VPDD_ANG_VAL—Specifies the value of the draft angle.
This value lies in the range of -90 degrees through 90 degrees.

Creating a VPDD
Function Introduced:

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a VPDD based on element
tree input. For more information about ProFeatureCreate(), refer to the
section Overview of Feature Creation on page 765 of the chapter Element Trees:
Principles of Feature Creation on page 764.

Redefining a VPDD
Function Introduced:

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a VPDD based on the
changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of the chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a VPDD
Function Introduced:

Element Trees: Draft Features 899

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a VPDD and to retrieve the element tree
description of a Draft. For more information about
ProFeatureElemtreeExtract() refer to the section Feature Inquiry on
page 785 of the chapter Element Trees: Principles of Feature Creation on page
764.

900 Creo® Parametric TOOLKITUser’s Guide

39
Element Trees: Round and

Chamfer
Round Feature .. 902
Modify Round Radius Feature .. 913
Auto Round Feature .. 916
Chamfer Feature ... 916
Corner Chamfer Feature .. 929

This chapter describes how to create, redefine, and query round and chamfer
features through element trees and element tree functions. The section Overview
of Feature Creation on page 765 of the chapter Element Trees: Principles of
Feature Creation on page 764 provides a necessary background information for
this topic.
See the Part Modeling module in Creo Parametric for further details on round and
chamfer feature creation.
The following sections describe the procedure for accessing the chamfers and
round features in detail.

901

Round Feature

Feature Element Tree for Round Feature
The element tree for a round is documented in the header file ProRound.h, and
has a simple structure. The following figure demonstrates the feature element tree
structure:

Feature Element Tree for Round

902 Creo® Parametric TOOLKITUser’s Guide

PRO_E_RNDCH_SETS

Element Trees: Round and Chamfer 903

PRO_E_RNDCH_RADIUS

PRO_E_RNDCH_TRANSITIONS

The following list details special information about the elements in this tree:

904 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_FEATURE_TYPE—Specifies feature type and should have the value
as PRO_FEAT_ROUND only.

• PRO_E_STD_FEATURE_NAME—Specifies the name to the feature. This is
an optional element. If not specified then a default name will be assigned
internally to the feature.

• PRO_E_RNDCH_SETS—Specifies an array of PRO_E_RNDCH_SET.
• PRO_E_RNDCH_ATTACH_TYPE—Specifies the attachment type and has the

following values:

○ PRO_ROUND_ATTACHED—Specifying this option, the created round
feature consumes the model geometry.

○ PRO_ROUND_UNATTACHED

○ PRO_ROUND_CAPPED_ENDS

• PRO_E_RNDCH_TRANSITIONS—Specifies a set of transition PRO_E_
RNDCH_TRANSITION.

Element Details of PRO_E_RNDCH_SET for Round
Each PRO_E_RNDCH_SET specifies a round set, which is a round piece
(geometry) created as per the placement references and consists of the following
elements:

• PRO_E_RNDCH_SHAPE_OPTIONS—Specifies the shape options and have
the following values:

○ PRO_ROUND_TYPE_CONSTANT—Specifies a round piece having a
constant radius.

○ PRO_ROUND_TYPE_VARIABLE—Specifies a round piece having
multiple radii.

○ PRO_ROUND_TYPE_FULL—Specifies full round which replaces the
selected surface.

○ PRO_ROUND_TYPE_THROUGH_CURVE—Allows the radius of the active
round to be driven by the selected datum curve.

• PRO_E_RNDCH_VARIABLE_RADIUS—Specifies if the round is of a
constant or variable type.

• PRO_E_RNDCH_COMPOUND_CONIC—Specifies if the round uses a conic
section for the shape. It can be defined as:

○ PRO_E_RNDCH_CONIC_TYPE—Specifies conic type and can have the
following valid values:

◆ PRO_ROUND_CONIC_ENABLE

Element Trees: Round and Chamfer 905

◆ PRO_ROUND_CONIC_DISABLE

◆ PRO_ROUND_CURV_CONTINUOUS—Used to specify curvature
continuous rounds.

○ PRO_E_RNDCH_CONIC_VALUE—Specifies conic value, that controls
the sharpness of the conic shape and is required if PRO_E_RNDCH_
CONIC_TYPE is equal to PRO_ROUND_CONIC_ENABLE.

○ PRO_E_RNDCH_CONIC_DEP_OPT—Specifies independent options and
is required if PRO_E_RNDCH_CONIC_TYPE is equal to PRO_ROUND_
CONIC_ENABLE.

○ The values of ProRoundConicIndependentType are as follows:

◆ PRO_ROUND_CONIC_DEPENDENT

◆ PRO_ROUND_CONIC_INDEPENDENT

◆ PRO_ROUND_CONIC_INDEPENDENT is the default type.
• PRO_E_RNDCH_REFERENCES—Specifies a set of valid references of the

round feature.
• PRO_E_RNDCH_COMPOUND_SPINE—This is another option for defining

the shape of the round. Specifies the spine and has the following elements:

○ PRO_E_RNDCH_BALL_SPINE—Specifies rolling ball or normal to
spine. Valid values of PRO_E_RNDCH_BALL_SPINE are:

◆ PRO_ROUND_ROLLING_BALL—Specifies a round surface and is
created by rolling a spherical ball along the surfaces.

◆ PRO_ROUND_NORMAL_TO_SPINE—Specifies a round surface and
is created by sweeping a conic or arc cross-section normal to a spine.

◆ PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the spine
curve and is required if PRO_E_RNDCH_BALL_SPINE is equal to
PRO_ROUND_NORMAL_TO_SPINE.

Note
During the creation of rounds, the options D1 x D2 Conic and Normal to
spine cannot be used together. Due to this restriction, the existing rounds
with their conic type option set as PRO_ROUND_CONIC_INDEPENDENT
and with the round creation method set to PRO_ROUND_NORMAL_TO_
SPINE are reset to PRO_ROUND_ROLLING_BALL when the round is
redefined. Therefor, for the conic type option PRO_ROUND_CONIC_
INDEPENDENT you must specify the round creation method as PRO_
ROUND_ROLLING_BALL.

906 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_RNDCH_AUTO_CONTINUE—Specifies whether surfaces will be
extended to meet the designated round radius. The valid values are:

○ PRO_ROUND_AUTO_CONT_DISABLE—This is the default value.
○ PRO_ROUND_AUTO_CONT_ENABLE

This element is required if PRO_E_RNDCH_REFERENCE_TYPE = PRO_
ROUND_REF_EDGE.

• PRO_E_RNDCH_COMPOUND_EXT_OPTIONS—Specifies the external
options. This is an optional element. It has the following elements:

○ PRO_E_RNDCH_AUTO_BLEND—Specifies auto blend.
○ PRO_E_RNDCH_TERM_SURFACE—Specifies the terminating surface.

• PRO_E_RNDCH_RADII—Specifies the radii, as an array of radius or PRO_
E_RNDCH_RADIUS and is required if PRO_E_RNDCH_SHAPE_OPTIONS is
not equal to PRO_ROUND_TYPE_THROUGH_CURVE and PRO_E_RNDCH_
SHAPE_OPTIONS is not equal to PRO_ROUND_TYPE_FULL.

• PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the curve collection
and is required if PRO_E_RNDCH_SHAPE_OPTIONS is equal to PRO_
ROUND_TYPE_THROUGH_CURVE.

• PRO_E_RNDCH_AMBIGUITY—Specifies round set ambiguity.

Note
Ambiguity occurs in round features when other placement locations exist
for the round set. The ambiguity condition occurs when two surfaces
intersect in multiple locations.

Element Details of PRO_E_RNDCH_REFERENCES for
Round
Each PRO_E_RNDCH_REFERENCES specifies a set of valid references of the
round feature and has the following elements:

• PRO_E_RNDCH_REFERENCE_TYPE—Specifies the reference types and
valid values are:

○ PRO_ROUND_REF_EDGE—Specifies that the surfaces border the edge
reference and form the rolling tangent attachment for the round.

○ PRO_ROUND_REF_SURF_SURF—Specifies that the edges of the round
remain tangent to the reference surfaces.

Element Trees: Round and Chamfer 907

○ PRO_ROUND_REF_EDGE_SURF—Specifies that the round remains
tangent to the surface. The edge reference does not maintain tangency.

○ PRO_ROUND_REF_EDGE_EDGE—Specifies that the surfaces bordering
the edge reference form the rolling tangent attachment for the round.

• PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the reference edges
of the chain collection. It is required if PRO_E_RNDCH_REFERENCE_TYPE
is equal to PRO_ROUND_REF_EDGE.

In Creo Parametric TOOLKIT 7.0.0.0 and later, you can select the reference
edges from both different solid bodies as well as quilts. The resulting
geometry is attached back to the same solid body or quilt from where the
referenced edges were selected.

• PRO_E_RNDCH_REFERENCE_SURFACE1—Specifies the first reference
surface and is required if PRO_E_RNDCH_REFERENCE_TYPE is equal to
PRO_ROUND_REF_SURF_SURF.

• PRO_E_RNDCH_REFERENCE_SURFACE2—Specifies the second reference
surface and is required if PRO_E_RNDCH_REFERENCE_TYPE is equal to
PRO_ROUND_REF_SURF_SURF or PRO_E_RNDCH_REFERENCE_TYPE
is equal to PRO_ROUND_REF_EDGE_SURF.

• PRO_E_RNDCH_REFERENCE_EDGE1—Specifies the first reference edge
and is required if PRO_E_RNDCH_REFERENCE_TYPE is equal to PRO_
ROUND_REF_EDGE_SURF or PRO_E_RNDCH_REFERENCE_TYPE is
equal to PRO_ROUND_REF_EDGE_EDGE and PRO_E_RNDCH_SHAPE_
OPTIONS is equal to PRO_ROUND_TYPE_FULL.

• PRO_E_RNDCH_REFERENCE_EDGE2—Specifies the second reference edge
and is required if PRO_E_RNDCH_REFERENCE_TYPE is equal to PRO_
ROUND_REF_EDGE_EDGE and PRO_E_RNDCH_SHAPE_OPTIONS is
equal to PRO_ROUND_TYPE_FULL.

• PRO_E_RNDCH_REPLACE_SURFACE—Specifies the surface to be replaced
and is required if PRO_E_RNDCH_REFERENCE_TYPE is equal to PRO_
ROUND_REF_SURF_SURF and PRO_E_RNDCH_SHAPE_OPTIONS is
equal to PRO_ROUND_TYPE_FULL.

Element Details of PRO_E_RNDCH_RADIUS for Round
Each PRO_E_RNDCH_RADIUS has the following elements:

908 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_STD_POINT_COLLECTION_APPL—Specifies a point, which
governs the value of the radius.

• PRO_E_RNDCH_LEG1—Specifies the leg1.
• PRO_E_RNDCH_LEG2—Specifies the leg2 and is required if PRO_E_

RNDCH_CONIC_DEP_OPT is equal to PRO_ROUND_CONIC_
INDEPENDENT.

Each PRO_E_RNDCH_LEG1 or PRO_E_RNDCH_LEG2 has the following
elements:

• PRO_E_RNDCH_LEG_TYPE—ProRoundRadiusType specifies leg type
and is a mandatory element. It is of the following types:

○ PRO_ROUND_RADIUS_TYPE_VALUE

○ PRO_ROUND_RADIUS_THROUGH_POINT

• PRO_E_RNDCH_LEG_VALUE—Specifies leg value and is required if PRO_
E_RNDCH_LEG_TYPE is equal to PRO_ROUND_RADIUS_TYPE_VALUE.

• PRO_E_RNDCH_REFERENCE_EDGE—Specifies reference edge having the
value as PRO_E_EDGE and is required if PRO_E_RNDCH_LEG_TYPE is
equal to PRO_ROUND_RADIUS_THROUGH_POINT.

• PRO_E_RNDCH_REFERENCE_POINT—Specifies reference point having the
value as PRO_E_POINT and is required if PRO_E_RNDCH_LEG_TYPE is
equal to PRO_ROUND_RADIUS_THROUGH_POINT.

Element Details of PRO_E_RNDCH_TRANSITION for Round
Each PRO_E_RNDCH_TRANSITION represents user-defined transitions for the
entire round feature and consists of the following elements:

• PRO_E_RNDCH_TRANS_TYPE specifies the type of the transition type. Valid
values are:

○ PRO_ROUND_TRANS_INTERSECT—Used to extend two or more
overlapping round pieces towards each other until they merge forming a
sharp boundary.

○ PRO_ROUND_TRANS_BLEND—Used to create a fillet surface between
the round pieces using an edge reference.

○ PRO_ROUND_TRANS_STOP—Used to terminate the round geometry at
the specified datum point or datum plane.

○ PRO_ROUND_TRANS_CONTINUE—Used to extend round geometry into
two round pieces.

Element Trees: Round and Chamfer 909

○ PRO_ROUND_TRANS_SPHERE_CORNER—Used to create a round from
the corner transition formed by three overlapping pieces by a spherical
corner.

○ PRO_ROUND_TRANS_PATCH—Used to create a patched surface at the
location where three or four round pieces overlap at a corner.

○ PRO_ROUND_TRANS_BLEND_3SRF—Used to create a triangular patch
as a transition of three rounds.

○ PRO_ROUND_TRANS_RBALL—Used to create a rolling ball transition
for three or more rounds.

○ PRO_ROUND_TRANS_STOP_0_SIDE—Used to terminate the round
using geometry configured by Creo Parametric.

○ PRO_ROUND_TRANS_STOP_1_SIDE—Used to terminate the round
using geometry configured by Creo Parametric.

○ PRO_ROUND_TRANS_STOP_2_SIDE—Used to terminate the round
using geometry configured by Creo Parametric.

○ PRO_ROUND_TRANS_STOP_AT_REF—Used to terminate round
geometry at the selected datum point or datum plane.

○ PRO_ROUND_TRANS_STOP_FULL—Used to keep the stop transition
close to the boundary of the removed surface.

○ PRO_ROUND_TRANS_STOP_2_WE—Used to create a stop transition
with maximum possible extension of the round by freezing one of round's
references and changing the other reference at intersection with tangent
edges.

• PRO_E_RNDCH_TRANS_CAP—Specifies the capping surface for round
feature. It has the following values:

○ PRO_ROUND_CAPPING_SURF_DISABLE = PRO_B_FALSE
○ PRO_ROUND_CAPPING_SURF_ENABLE = PRO_B_TRUE

• PRO_E_RNDCH_TRANS_SPHERE_DATA—Specifies sphere data and
consists of the following elements:

○ PRO_E_RNDCH_TRANS_RADIUS_OPTIONS—Specifies radius options
and is a mandatory element.

○ PRO_E_RNDCH_TRANS_SPHERE_RADIUS—Specifies sphere radius
and is required if PRO_E_RNDCH_TRANS_RADIUS_OPTIONS is equal
to PRO_ROUND_TRANS_RADIUS_ENTER_VALUE.

○ PRO_E_RNDCH_TRANS_LEG1_OPTIONS—Specifies leg1 options and
is a mandatory element.

910 Creo® Parametric TOOLKITUser’s Guide

○ PRO_E_RNDCH_TRANS_LEG1_VALUE—Specifies the value of leg1 and
is required if PRO_E_RNDCH_TRANS_LEG1_OPTIONS is equal to
PRO_ROUND_TRANS_RADIUS_ENTER_VALUE.

○ PRO_E_RNDCH_TRANS_LEG2_OPTIONS—Specifies leg2 options and
is a mandatory element.

○ PRO_E_RNDCH_TRANS_LEG2_VALUE—Specifies the value of leg2 and
is required if PRO_E_RNDCH_TRANS_LEG2_OPTIONS is equal to
PRO_ROUND_TRANS_RADIUS_ENTER_VALUE.

○ PRO_E_RNDCH_TRANS_LEG3_OPTIONS—Specifies leg3 options and
is a mandatory element.

○ PRO_E_RNDCH_TRANS_LEG3_VALUE—Specifies the value of leg3 and
is required if PRO_E_RNDCH_TRANS_LEG3_OPTIONS is equal to
PRO_ROUND_TRANS_RADIUS_ENTER_VALUE.

• PRO_E_RNDCH_TRANS_PATCH_DATA—Specifies the patch data and is
required if PRO_E_RNDCH_TRANS_TYPE is equal to PRO_ROUND_
TRANS_PATCH. It has the following elements:

○ PRO_E_RNDCH_TRANS_PATCH_REF_SURF—Specifies the arc
surface, which indicates that a valid surface reference has been selected to
place a fillet for the active patch transition. It should have the value as
PRO_SURFACE only.

○ PRO_E_RNDCH_TRANS_PATCH_RAD_OPT—Specifies the arc radius
options. It indicates the fillet radius for the active patch transition and has
following options:

◆ PRO_ROUND_TRANS_RADIUS_ENTER_VALUE— Specifies a new
radius value.

◆ PRO_ROUND_TRANS_RADIUS_AUTOMATIC— Specifies the most
recently used radius value.

◆ PRO_E_RNDCH_TRANS_ARC_RADIUS—Specifies the arc radius.
• PRO_E_RNDCH_TRANS_STOP_DATA—Specifies the capping surface. It has

the following elements:

○ PRO_E_RNDCH_TRANS_STOP_REF_TYPE—Specifies the reference
type. Valid values are:

◆ PRO_ROUND_TRANS_REF_NO_REF

○ PRO_ROUND_TRANS_REF_GEOM

○ PRO_ROUND_TRANS_REF_PNTVTX

○ PRO_ROUND_TRANS_REF_DTMPLN

○ PRO_ROUND_TRANS_REF_ISOLINE

Element Trees: Round and Chamfer 911

○ PRO_E_RNDCH_TRANS_STOP_REFERENCE—Specifies the references
for the active stop at reference transition. It can either be PRO_SURFACE
or PRO_POINT.

Creating a Round
Function Introduced:

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a round based on element
tree input. For more information about ProFeatureCreate(), refer to the
section Overview of Feature Creation on page 765 in the Element Trees:
Principles of Feature Creation on page 764 chapter.

Note
In Pro/ENGINEERWildfire 2.0,

• Pro/TOOLKIT does not support the temporary geometry required for user-
specified ambiguity and non-default transitions. Therefore, these elements
cannot be used for creation of new rounds.

• If transitions are specified in the input element tree, a round feature with the
default transition will be created.

• In case of ambiguous situation (where more than one valid solutions exist, e.g.
for surface-surface round - surfaces having discontinuous edges of
intersection), a round feature with default solution will be created.

Redefining a Round
Function Introduced:

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a round based on the
changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
in the Element Trees: Principles of Feature Creation on page 764 chapter.

912 Creo® Parametric TOOLKITUser’s Guide

Note
In Pro/ENGINEERWildfire 2.0,

• A round feature having default transition, can not be redefined to have any
transition.

• A round feature having a Pro/ENGINEER user interface defined transition can
be redefined to other type of transition, for example, from intersect type to
spherical type. The input element tree must have a valid transition of the
required type.

Accessing a Round
Function Introduced:

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a round and to retrieve the element tree
description of a round. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 in the Element Trees: Principles of Feature Creation on page 764
chapter.

Example 1: Sample code for creation of a Round
Feature
The sample code in UgEdgeRoundCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create an Edge Round feature. The user is prompted for three edges to be
rounded.

Modify Round Radius Feature
As a part of the flexible modeling capabilities the Modify Round Radius
feature allows you to modify the radius of existing round geometry. You can
modify the radius of both constant and variable rounds, however variable radius
rounds are converted to constant radius rounds upon modification. You can also
modify the radii of multiple round shape sets.
The creation of the Modify Round Radius feature includes the following
steps:

Element Trees: Round and Chamfer 913

1. Identify the round geometry to be modified and its radius value.
2. Creo Parametric removes the identified round geometry using the remove

surface algorithm and recreates the rounded edges with the desired radius
value.

3. The feature IDs of recreated rounds are updated.

Feature Element Tree for Modify Round Radius
Feature
The element tree for a Modify Round Radius feature is documented in the
header file ProModifyRound.h and has a simple structure. The following
figure demonstrates the structure of the feature element tree.

Modify Round Radius Element Tree

The elements in this tree are described as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_MOD_ROUND.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature. The
default value of this element is MODIFY_ROUND.

• PRO_E_STD_SURF_COLLECTION_APPL—Specifies a collection of
reference surfaces the includes the rounds to be modified.

914 Creo® Parametric TOOLKITUser’s Guide

In Creo Parametric TOOLKIT 7.0.0.0 and later, you can select the reference
surfaces from both different solid bodies as well as quilts. The resulting
geometry is attached back to the same solid body or quilt from where the
referenced surfaces were selected.

• PRO_E_MODRND_RAD_VAL—Specifies the new radius value. This value
falls in the range [(part epsilon / 10.0), 1.0e+06].

• PRO_E_MODRND_OPTS—Specifies the modification options for each round
to be recreated. This compound element consists of the following elements:

○ PRO_E_MODRND_ATTACH—Specifies whether the recreated round
geometry is attached to the selected reference surface upon creation. The
values for this element, specified by the enumerated type
ProModRndAttach, are as follows:

◆ PRO_MODRND_ATTACH_GEOM

◆ PRO_MODRND_DONOT_ATTACH_GEOM

○ PRO_E_MODRND_CLOSEGEOM—Specifies if end surfaces are created for
the recreated rounds. The values for this element, specified by the
enumerated type ProModRndCloseGeom, are as follows:

◆ PRO_MODRND_CLOSE_GEOM

◆ PRO_MODRND_DONOT_CLOSE_GEOM

Note
The element PRO_E_MODRND_CLOSEGEOM is applicable only if the
element PRO_E_MODRND_ATTACH has the value PRO_MODRND_
DONOT_ATTACH_GEOM, meaning that the rounds are recreated as
new surfaces or quilts.

○ PRO_E_MODRND_RECR_INTERF_RND—Specifies whether interfering
rounds are removed and recreated in order to recreate the modified round
geometry. The values for this element, specified by the enumerated type
ProModRndRecrRounds, are as follows:

◆ PRO_MODRND_RECR_INTERF_RNDS

◆ PRO_MODRND_DONOT_RECR_INTERF_RNDS

• PRO_E_STD_FLEX_PROPAGATION—Specifies a Pattern feature, a
Symmetry Recognition feature, or a Mirror Geometry feature that contains the
reference surfaces specified by the element PRO_E_STD_SURF_
COLLECTION_APPL. If such surfaces exist, then the modification of the
round radius is propagated to all corresponding surfaces in the instances of the

Element Trees: Round and Chamfer 915

Pattern feature, the Symmetry Recognition feature, or the Mirror Geometry
feature, in order to maintain the pattern or symmetry.

Auto Round Feature
The Auto Round feature enables you to create round geometry of a constant radius
on solid geometry or on a quilt of a part or assembly. The Auto Round Feature
creates Round features called Auto-Round Members (ARMs) that are represented
in the Model Tree as subnodes of the Auto Round feature, or as groups of
individual independent round features. Refer to the Creo Parametric Online Help
for more details about this feature type.
Pro/TOOLKIT does not provide access to the Auto Round feature via an element
tree for the Wildfire 4.0 release. Some Creo Parametric TOOLKIT functionality
such as feature deletion, suppression and redefinition are not supported for
individual ARMs within an Auto Round feature.
Functions Introduced:

• ProRoundIsAutoRoundMember()
The function ProRoundIsAutoRoundMember() identifies if the specified
round feature is a member of the Auto Round feature.

Chamfer Feature

Feature Element Tree for Chamfer Feature
The element tree for a chamfer is documented in the header file ProChamfer.h,
and has a simple structure. The following figure demonstrates the feature element
tree structure:

Feature Element Tree for Chamfer

916 Creo® Parametric TOOLKITUser’s Guide

PRO_E_RNDCH_SETS

PRO_E_RNDCH_TRANSITIONS

The following list details special information about some of the elements in this
tree:

Element Trees: Round and Chamfer 917

• PRO_E_FEATURE_TYPE—Specifies feature type and has the value of PRO_
FEAT_CHAMFER.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_RNDCH_SETS—Specifies an array of PRO_E_RNDCH_SET.
• PRO_E_RNDCH_ATTACH_TYPE—Specifies the attachment type and has the

following values:

○ PRO_ROUND_ATTACHED

○ PRO_ROUND_UNATTACHED

○ PRO_ROUND_CAPPED_ENDS

• PRO_E_RNDCH_TRANSITIONS—Specifies a set of transition PRO_E_
RNDCH_TRANSITION.

Element Details of PRO_E_RNDCH_SET for Chamfer
Each PRO_E_RNDCH_SET specifies a chamfer set for the chamfer feature and
must have the following elements:

• PRO_E_RNDCH_DIMENSIONAL_SCHEMA—Specifies the type of chamfer
or the dimensional schema PRO_E_RNDCH_DIMENSIONAL_SCHEMA using
the enumerated type ProChmSchema. The different types of PRO_E_
RNDCH_DIMENSIONAL_SCHEMA is as follows:

○ PRO_CHM_45_X_D—Specifies a chamfer that is at an angle of 45
degrees to both surfaces and at a distance D from the edge along each
surface.

○ PRO_CHM_D_X_D—Specifies a chamfer that is at a distance D from the
edge along each surface. This is the default type.

○ PRO_CHM_D1_X_D2—Specifies a chamfer at a distance D1 from the
selected edge along one surface and at a distance D2 from the selected
edge along the other surface.

○ PRO_CHM_ANG_X_D—Specifies a chamfer at a distance D from the
selected edge along one adjacent surface, at a specified angle to that
surface.

○ PRO_CHM_O_X_O—Provides direct control of the surface offset
distances.

○ PRO_CHM_O1_X_O2—Provides direct control of the surface offset
distances.

918 Creo® Parametric TOOLKITUser’s Guide

Note
For Surf-Surf chamfer, the available schemes are:

○ Offset Surface method—PRO_CHM_O_X_O, PRO_CHM_O1_X_O2,
PRO_CHM_D_X_D, PRO_CHM_D1_X_D2 are available.

○ Tangent Dist method—PRO_CHM_D_X_D, PRO_CHM_D1_X_D2, PRO_
CHM_45_X_D, PRO_CHM_ANG_X_D are available.

For Surface-to-Edge chamfer the available schemes are:

○ Offset Surface: PRO_CHM_O_X_O, PRO_CHM_O1_X_O2.
○ Tangent Distance: PRO_CHM_D_X_D, PRO_CHM_D1_X_D2.

These schemes are applicable for constant angle planes or constant 90
degree surfaces and are also available if all members of the edge chain are
formed by exactly 2 planes or exactly 2 surfaces at 90 degree, as in the
ends of a cylinder.

• PRO_E_RNDCH_CHAMFER_SHAPE—Specifies the shape of the chamfer
feature. PRO_E_RNDCH_CHAMFER_SHAPE has the following valid values:

○ PRO_CHM_TANGENT_LEGS—Specifies the chamfer distance between
vectors that are tangent to the neighboring surface of the reference edge.

○ PRO_CHM_OFFSET_SURFACE—Specifies the offset surfaces.
• PRO_E_RNDCH_REFERENCES—Specifies a set of valid references of the

chamfer feature and has the following elements:

○ PRO_E_STD_CURVE_COLLECTION_APPL—Specifies reference edges
and is a required element for edge chamfer.

In Creo Parametric TOOLKIT 7.0.0.0 and later, you can select the
reference edge chamfers from both different solid bodies as well as quilts.
The resulting geometry is attached back to the same solid body or quilt
from where the referenced edges were selected.

○ PRO_E_RNDCH_REFERENCE_SURFACE—Specifies reference surfaces
and is required if either PRO_E_RNDCH_DIMENSIONAL_SCHEMA is
equal to PRO_CHM_D1_X_D2 or PRO_E_RNDCH_DIMENSIONAL_
SCHEMA is equal to PRO_CHM_ANG_X_D.

• PRO_E_RNDCH_COMPOUND_EXT_OPTIONS—Specifies the external
options. This is an optional element and has the following elements:

○ PRO_E_RNDCH_AUTO_BLEND—Specifies the auto blend.
○ PRO_E_RNDCH_TERM_SURFACE—Specifies terminating surface.

Element Trees: Round and Chamfer 919

• PRO_E_RNDCH_RADII—Specifies an array of radius PRO_E_RNDCH_
RADIUS.

• PRO_E_RNDCH_AMBIGUITY—Specifies the ambiguity in the chamfer set.

Note
The chamfer set can contain ambiguity if the chamfer set contains chamfer
pieces that co-exist and can be placed in various locations in the selected
references and in part geometry.

Element Details of PRO_E_RNDCH_RADIUS for Chamfer
Each PRO_E_RNDCH_RADIUS has the following elements:

• PRO_E_RNDCH_LEG1—Specifies leg1 of the chamfer feature.
• PRO_E_RNDCH_LEG2—Specifies leg2 of the chamfer feature and is a

required element if either PRO_E_RNDCH_DIMENSIONAL_SCHEMA is
equal to PRO_CHM_D1_X_D2 or PRO_E_RNDCH_DIMENSIONAL_
SCHEMA is equal to PRO_CHM_ANG_X_D.

Each PRO_E_RNDCH_LEG1 or PRO_E_RNDCH_LEG2 has the following
elements:

• PRO_E_RNDCH_LEG_TYPE—Specifies leg type and is a mandatory element.
It is of the following types:

○ PRO_ROUND_RADIUS_TYPE_VALUE

○ PRO_ROUND_RADIUS_THROUGH_POINT

The definition of ProRoundRadiusType is as follows:

• PRO_E_RNDCH_LEG_VALUE—Specifies leg value and is required if PRO_
E_RNDCH_LEG_TYPE is equal to PRO_ROUND_RADIUS_TYPE_VALUE.

• PRO_E_RNDCH_REFERENCE_EDGE—Specifies reference edge and is
required if PRO_E_RNDCH_LEG_TYPE is equal to PRO_ROUND_RADIUS_
THROUGH_POINT.

• PRO_E_RNDCH_REFERENCE_POINT—Specifies reference point and is
required if PRO_E_RNDCH_LEG_TYPE is equal to PRO_ROUND_RADIUS_
THROUGH_POINT.

920 Creo® Parametric TOOLKITUser’s Guide

Element Details of PRO_E_RNDCH_TRANSITION for
Chamfer
Each PRO_E_RNDCH_TRANSITION represents user-defined transitions for the
entire chamfer feature and consists of the following elements:

• PRO_E_RNDCH_TRANS_TYPE—Specifies the type of the transition type.
Valid values are:

○ PRO_ROUND_TRANS_INTERSECT—Used to extend two or more
overlapping chamfer pieces towards each other until they merge forming a
sharp boundary.

○ PRO_ROUND_TRANS_BLEND—Used to create a fillet surface between
the chamfer pieces using an edge reference.

○ PRO_ROUND_TRANS_STOP—Used to terminate the chamfer geometry at
the specified datum point or datum plane.

○ PRO_ROUND_TRANS_CONTINUE—Used to extend chamfer geometry
into two chamfer pieces.

○ PRO_ROUND_TRANS_PATCH—Used to create a patched surface at the
location where three or four chamfer pieces overlap.

○ PRO_ROUND_TRANS_BLEND_3SRF—Used to create a triangular patch
as a transition of three chamfers.

○ PRO_ROUND_TRANS_PLANE_CORNER—Used to chamfer the corner
transition formed by three overlapping chamfer pieces with a plane.

○ PRO_ROUND_TRANS_RBALL—Used to create a rolling ball transition
for three or more chamfers.

○ PRO_ROUND_TRANS_STOP_0_SIDE—Used to terminate the chamfer
using geometry configured by Creo Parametric.

○ PRO_ROUND_TRANS_STOP_1_SIDE—Used to terminate the chamfer
using geometry configured by Creo Parametric.

○ PRO_ROUND_TRANS_STOP_2_SIDE—Used to terminate the chamfer
using geometry configured by Creo Parametric.

○ PRO_ROUND_TRANS_STOP_AT_REF—Used to terminate the chamfer
geometry at the selected datum point or datum plane.

Element Trees: Round and Chamfer 921

Note
Only some of the transition types listed above are available for a given
context.

• PRO_E_RNDCH_TRANS_CAP—Specifies the capping surface for chamfer
pieces of the chamfer feature. It has the following values:

○ PRO_ROUND_CAPPING_SURF_DISABLE = PRO_B_FALSE.
○ PRO_ROUND_CAPPING_SURF_ENABLE = PRO_B_TRUE.

• PRO_E_RNDCH_TRANS_PATCH_DATA—Specifies the patch data and is
required if PRO_E_RNDCH_TRANS_TYPE is equal to PRO_ROUND_
TRANS_PATCH. It has the following elements:

○ PRO_E_RNDCH_TRANS_PATCH_REF_SURF—Specifies the arc
surface, which indicates that a valid surface reference has been selected to
place a fillet for the active patch transition. It should have the value as
PRO_SURFACE only.

○ PRO_E_RNDCH_TRANS_PATCH_RAD_OPT—Specifies the arc radius
options. It indicates the fillet radius for the active Patch transition and has
following options:

◆ PRO_ROUND_TRANS_RADIUS_ENTER_VALUE— Specifies a new
radius value.

◆ PRO_ROUND_TRANS_RADIUS_AUTOMATIC— Specifies the most
recently used value.

◆ PRO_E_RNDCH_TRANS_ARC_RADIUS—Specifies the arc radius.
• PRO_E_RNDCH_TRANS_STOP_DATA—Specifies the capping surface. It has

the following elements:

○ PRO_E_RNDCH_TRANS_STOP_REF_TYPE—Specifies the reference
type. Valid values are:

◆ PRO_ROUND_TRANS_REF_NO_REF

◆ PRO_ROUND_TRANS_REF_GEOM

◆ PRO_ROUND_TRANS_REF_PNTVTX

◆ PRO_ROUND_TRANS_REF_DTMPLN

◆ PRO_ROUND_TRANS_REF_ISOLINE

◆ PRO_E_RNDCH_TRANS_STOP_REFERENCE—Specifies the
references for the active stop at reference transition. It can either be
PRO_SURFACE or PRO_POINT.

922 Creo® Parametric TOOLKITUser’s Guide

Creating a Chamfer
Function Introduced:

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Chamfer based on element
tree input. For more information about ProFeatureCreate(), refer to the
section Overview of Feature Creation on page 765 of chapter Element Trees:
Principles of Feature Creation on page 764.

Note
In Pro/ENGINEERWildfire 2.0,

1. Pro/TOOLKIT does not support the temporary geometry required for user-
specified ambiguity and non-default transitions. Therefore, these elements
cannot be used for creation of new chamfers.

2. If transitions are specified in the input element tree, a chamfer feature with the
default transition will be created.

3. In case of ambiguous situation (where more than one valid solutions exist, e.g.
for surface-surface chamfer - surfaces having discontinuous edges of
intersection), a chamfer feature with default solution will be created.

Redefining a Chamfer
Function Introduced:

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Chamfer based on the
changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
in the Element Trees: Principles of Feature Creation on page 764 chapter.

Element Trees: Round and Chamfer 923

Note
In Pro/ENGINEERWildfire 2.0,

1. A chamfer feature having default transition, can not be redefined to have any
transition.

2. A chamfer feature having a Pro/ENGINEER user interface defined transition
can be redefined to other type of transition, for example, from intersect type to
corner type. The input element tree must have a valid transition of the required
type.

Accessing a Chamfer
Function Introduced:

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Chamfer and to retrieve the element
tree description of a Chamfer. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 in the Element Trees: Principles of Feature Creation on page 764
chapter.

Example 2: Sample code for creation of a Chamfer
Feature
The sample code in UgChamferTemplate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a Chamfer feature. It includes all possible element assignments. By
following the instructions for the feature you want to create, it should be possible
to remove element settings not appropriate for your use.

Example 3: Sample code for creation of a Edge
Chamfer Feature
The sample code in UgEdgeChamferCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a Edge Chamfer feature. The user is prompted
to select an edge on which the chamfer will be created.

924 Creo® Parametric TOOLKITUser’s Guide

Edit Chamfer Feature
As a part of the flexible modeling capabilities the Edit Chamfer feature allows you
to modify the existing chamfer geometry of an edge chamfer. You can modify the
distance (D) from the edge along each surface, the D1 and D2 values, and so on
and also the offset distance (O) from the edge along each surface. The ability to
switch from chamfer by offset (O) to chamfer by extension (D) will have the same
restrictions as in the chamfer feature.
To create the Edit Chamfer feature follow the steps:

1. Identify the chamfer geometry to be modified and its D or O value.
2. Modify the specified chamfer geometry by using Creo Parametric. The

application removes the identified chamfer geometry and recreates the
chamfered edges with the desired values. The feature IDs of recreated
chamfers are updated.

Feature Element Tree for Edit Chamfer Feature
The element tree for an Edit Chamfer feature is documented in the header file
ProModifyChamfer.h and is as shown in the following figure.

Element Trees: Round and Chamfer 925

Edit Chamfer Element Tree

The following table describes the elements in the element tree:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of feature. The value of this
feature must be PRO_FEAT_
MOD_CHAMFER.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Mandatory element. Specifies the
name of the feature. The default
value is EDIT_CHAMFER.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies a
collection of reference surfaces
that include the chamfer geometry
to be modified.

926 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

In Creo Parametric TOOLKIT
7.0.0.0 and later, you can select
the reference surfaces from both
different solid bodies as well as
quilts. The resulting geometry is
attached back to the same solid
body or quilt from where the
referenced surfaces were selected.

PRO_E_MODRND_REMOVE PRO_VALUE_TYPE_INT Mandatory element. Specifies if
the existing chamfer must be
removed.

PRO_E_MODRND_
DIMENSIONAL_SCHEMA

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of chamfer or the dimension
schema. The values for this
element are defined by the
enumerated type
ProChmSchema. For more
information on the chamfer types,
refer to section Element Details of
PRO_E_RNDCH_SET for
Chamfer on page 918.

PRO_E_MODRND_RAD_VAL PRO_VALUE_TYPE_BOOLEAN Mandatory element. Specifies the
first distance or the offset value
depending on the type of chamfer
defined by the enumerated type
ProChmSchema.

Specify a value in the range of
[(part epsilon / 10.0),

1.0e+06] for D type schemas
and [-1.0e+06, 1.0e+06]
for O type schemas.

PRO_E_MODRND_DIM2_VAL PRO_VALUE_TYPE_BOOLEAN Specifies the second distance,
offset or angular value of the
chamfer.

Mandatory element if the value of
the enumerated type
ProChmSchema is one of the
following:
• PRO_CHM_D1_X_D2

• PRO_CHM_O1_X_O2

• PRO_CHM_ANG_X_D

Specify a value in the range of:

Element Trees: Round and Chamfer 927

Element ID Data Type Description
• [(part epsilon /

10.0), 1.0e+06] for D
type schemas

• [-1.0e+06, 1.0e+06] for
O type schemas

• [0, 180] for chamfer angle
ANG.

PRO_E_MODRND_OPTS Compound Mandatory element. Specifies the
modification options for each
chamfer to be recreated.

PRO_E_MODRND_ATTACH PRO_VALUE_TYPE_INT Mandatory element. Specifies if
the chamfer geometry must be
attached to the selected reference
surface once the chamfer is
recreated. The values for this
element are defined by the
enumerated type
ProModRndAttach.

PRO_E_MODRND_CLOSEGEOM PRO_VALUE_TYPE_INT Mandatory element.

Use this element only if the
chamfers are recreated as new
surfaces or quilts, that is, if the
element PRO_E_MODRND_
ATTACH has the value PRO_
MODRND_DONOT_ATTACH_

GEOM.

Specifies if end surfaces must be
created for the recreated chamfer
geometry. The values for this
element are defined by the
enumerated type
ProModRndCloseGeom.

928 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MODRND_RMV_
INTERF_RND

PRO_VALUE_TYPE_INT Mandatory element. Specifies if
the interfering chamfers must be
removed and recreated in order to
recreate the modified chamfer
geometry. The values for this
element are defined by the
enumerated type
ProModRndRecrRounds.

PRO_E_STD_FLEX_
PROPAGATION

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies a
Pattern feature, a Symmetry
Recognition feature, or a Mirror
Geometry feature that contains the
reference surfaces specified by the
element PRO_E_STD_SURF_
COLLECTION_APPL. If such
surfaces exist, then the
modification of the chamfer is
propagated to all corresponding
surfaces in the instances of the
specified feature to maintain the
pattern or symmetry.

Corner Chamfer Feature

Feature Element Tree for Corner Chamfer
The element tree for a corner chamfer is documented in the header file
ProCornerChamfer.h, and has a simple structure. The following figure
demonstrates the feature element tree structure:

Corner Chamfer Element Tree

The elements in this tree are described as follows:

Element Trees: Round and Chamfer 929

• PRO_E_STD_FEATURE_TYPE—Specifies the feature type and should be
PRO_FEAT_CORN_CHAMF.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature. The
default value for this element is CORNER_CHAMFER_#, where # specifies the
feature number.

• PRO_E_STD_CORNER_CHAMF_CORNER—Specifies the vertex on which
the corner chamfer is placed and can be selection of the type PRO_EDGE,
PRO_EDGE_PNT, PRO_EDGE_START or PRO_EDGE_END. When using
PRO_EDGE and PRO_EDGE_PNT type of reference, an appropriate parameter
should be set using the function ProReferenceParamsSet().

• PRO_E_STD_CORNER_CHAMF_EDGE1— Specifies the first distance value
from the vertex to the chamfer along first direction edge.

• PRO_E_STD_CORNER_CHAMF_EDGE2— Specifies the second distance
value from the vertex to the chamfer along the second direction edge.

• PRO_E_STD_CORNER_CHAMF_EDGE3— Specifies the third distance value
from the vertex to the chamfer along the third direction edge.

Creating a Corner Chamfer
Function Introduced:

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Corner Chamfer based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 in the Element Trees:
Principles of Feature Creation on page 764.chapter.

Redefining a Corner Chamfer
Function Introduced:

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Corner Chamfer
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
in the Element Trees: Principles of Feature Creation on page 764 chapter.

Accessing a Corner Chamfer
Function Introduced:

930 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Corner Chamfer and to retrieve the
element tree description of a Corner Chamfer. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 in the Element Trees: Principles of Feature Creation on page 764
chapter.

Element Trees: Round and Chamfer 931

40
Element Trees: Hole

Overview .. 933
Feature Element Tree for Hole Features.. 933
Feature Element Data Types .. 936
Common Element Values... 939
PRO_E_HLE_COM Values .. 940
Valid PRO_E_HLE_COM Sub-Elements ... 947
Hole Placement Types... 951
Miscellaneous Information ... 955

This chapter describes the programmatic creation of Hole features using the Creo
Parametric TOOLKIT include file ProHole.h.
We recommend you read the section, Overview of Feature Creation on page 765
in the chapter, Element Trees: Principles of Feature Creation on page 764 It
provides the necessary background for creating features using Creo Parametric
TOOLKIT.

932 Creo® Parametric TOOLKITUser’s Guide

Overview
Creo Parametric TOOLKIT supports four types of Holes:

• Straight
• Standard
• Sketched
• Custom
The Standard Hole type is sub-divided into two categories:

• Standard Clearance Hole
• Standard Threaded Hole
This chapter details the procedure and the sequence of the creation of the element
tree for all of the above types.
All Hole types and placement types require entry of specific elements during
element tree creation. Elements must be entered in the specified order.
To create a Hole feature, first add to the element tree all elements related to the
hole type. Then, add the elements required for Hole placement. Creating Sketched
Holes uses techniques similar to creation of the other sketched features (see
Element Trees: Sketched Features on page 1004).

Note
All angle elements are specified in degrees.

You can use Intent Datums such as Intent Point, Intent Axis, and Intent Plane for
hole placement in parts.
Lightweight holes can be created only in parts and not in assemblies. You can
toggle between a lightweight and regular hole, only in case of simple holes and
not in sketched, standard, or custom holes.

Feature Element Tree for Hole Features
The element tree for the Hole feature is documented in the Creo Parametric
TOOLKIT header file ProHole.h.

Element Trees: Hole 933

Feature Element Tree for Hole Feature

934 Creo® Parametric TOOLKITUser’s Guide

Common Elements for Hole Types

Element Trees: Hole 935

Common Elements for Hole Placement

Feature Element Data Types
The following table lists data types for hole type and placement elements.
Element values must be of the specified type.
Hole Element Table
Element Id Element Name Data Type
PRO_E_FEATURE_TYPE Feature Type PRO_VALUE_TYPE_INT

PRO_E_FEATURE_FORM Feature Form PRO_VALUE_TYPE_INT

PRO_E_HLE_COM Hole Compound

PRO_E_HLE_TYPE_NEW Hole Type PRO_VALUE_TYPE_INT

PRO_E_HLE_STAN_TYPE Standard Type PRO_VALUE_TYPE_INT

PRO_E_HLE_THRDSERIS Thread Series PRO_VALUE_TYPE_INT

PRO_E_HLE_FITTYPE Fit Type PRO_VALUE_TYPE_INT

936 Creo® Parametric TOOLKITUser’s Guide

Element Id Element Name Data Type
PRO_E_HLE_SCREWSIZE Screw Size PRO_VALUE_TYPE_INT

PRO_E_HLE_ADD_THREAD Add Thread PRO_VALUE_TYPE_INT

PRO_E_HLE_ADD_CBORE Add Counterbore PRO_VALUE_TYPE_INT

PRO_E_HLE_ADD_CSINK Add Countersink PRO_VALUE_TYPE_INT

PRO_E_HLE_MAKE_LIGHTWT Make lightweight
hole

PRO_VALUE_TYPE_INT (It is given by the
enumerated type ProHleLightWtFlag)

PRO_E_DIAMETER Diameter PRO_VALUE_TYPE_DOUBLE

PRO_E_HOLE_STD_DEPTH Depth Element Compound

PRO_E_HOLE_DEPTH_TO Depth Two Compound

PRO_E_HOLE_DEPTH_TO_
TYPE

Depth Two PRO_VALUE_TYPE_INT

PRO_E_EXT_DEPTH_TO_
VALUE

Depth Value PRO_VALUE_TYPE_DOUBLE

PRO_E_EXT_DEPTH_TO_REF Reference PRO_VALUE_TYPE_SELECTION

PRO_E_HOLE_DEPTH_FROM Depth One Compound

PRO_E_HOLE_DEPTH_FROM
_TYPE

Depth One PRO_VALUE_TYPE_INT

PRO_E_EXT_DEPTH_FROM
_VALUE

Depth Value PRO_VALUE_TYPE_DOUBLE

PRO_E_EXT_DEPTH_FROM_
REF

Reference PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_HOLEDIAM Diameter PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_DEPTH Depth PRO_VALUE_TYPE_INT

PRO_E_HLE_CSINKANGLE Csink Angle PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_CBOREDEPTH Counterbore Depth PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_CBOREDIAM Counterbore
Diameter

PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_CSINKDIAM Csink Diameter PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_DEPTH_DIM_
TYPE

Depth Dim
Scheme

PRO_VALUE_TYPE_INT

PRO_E_HLE_THRD_DEPTH Thread Depth PRO_VALUE_TYPE_INT

PRO_E_HLE_THRDDEPTH Thread Depth PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_DRILLANGLE Drillhead Angle PRO_VALUE_TYPE_DOUBLE

RO_E_HLE_DRILLDEPTH Drill Depth PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_TAPERED_STRT_
DEPTH_OPT

Straight Depth
Options

PRO_VALUE_TYPE_INT

PRO_E_STD_HOLE_DEPTH_
REF

Reference PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_ADD_TAPERED_
TIP_ANGLE

Tapered Tip PRO_VALUE_TYPE_INT

PRO_E_HLE_TAPERED_STRT_
DIA

Straight Diameter PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_TAPERED_STRT_
DEPTH

Straight Depth PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_TAPERED_TIP_
ANGLE

Tapered Tip Angle PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_SKETCHER Sketcher N/A

Element Trees: Hole 937

Element Id Element Name Data Type
PRO_E_HLE_CRDIR_FLIP Creation Direction PRO_VALUE_TYPE_INT

PRO_E_HLE_ADD_EXIT_
CSINK

Add Exit Csink PRO_VALUE_TYPE_INT

PRO_E_HLE_EXIT_
CSINKANGLE

Exit Csink Angle PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_EXIT_
CSINKDIAM

Exit Csink
Diameter

PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_ADD_NOTE Add Hole Note PRO_VALUE_TYPE_INT

PRO_E_HOLE_NOTE Hole Note The element is not accessible through Creo
Parametric TOOLKIT

PRO_E_HLE_TOP_CLEARANCE Top Clearance PRO_VALUE_TYPE_INT

PRO_E_HLE_THRDTOSEL Reference PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_PLACEMENT Placement N/A
PRO_E_HLE_PRIM_REF Primary Reference PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_PL_TYPE Placement Options PRO_VALUE_TYPE_INT

PRO_E_HLE_DIM_REF1 DimensionRef 1 PRO_VALUE_TYPE_SELECTION

PRO_E_STD_SECTION Section Compound

PRO_E_HOLE_SKDP_OPTIONS Use Options PRO_VALUE_TYPE_INT.

This element allows you to select sketched datum
point options on which the holes can be placed.
The element PRO_E_HOLE_SKDP_OPTIONS is
defined by the enumerated data type
ProHleSkdpOption and the valid values are:
• PRO_HLE_SKDP_POINT_OPT—Points

entities from sketch

• PRO_HLE_SKDP_ENDPT_OPT—End points
of line entities from sketch

• PRO_HLE_SKDP_MID_OPT—Mid Points of
line entities from sketch

PRO_E_HLE_PLC_ALIGN_
OPT1

Alignment for
placement
reference 1

PRO_VALUE_TYPE_INT

PRO_E_HLE_DIM_DIST1 Distance 1 PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_DIM_REF2 DimensionRef 2 PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_PLC_ALIGN_
OPT2

Alignment for
placement
reference 2

PRO_VALUE_TYPE_INT

PRO_E_LIN_HOLE_DIR_REF Reference
Direction

PRO_VALUE_TYPE_SELECT

PRO_E_HLE_DIM_DIST2 Distance 2 PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_AXIS Axis PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_REF_PLANE Reference Plane PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_REF_ANG Angle PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_DIM_DIA Diameter PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_DIM_RAD Radius PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_DIM_LIN Linear Distance PRO_VALUE_TYPE_DOUBLE

938 Creo® Parametric TOOLKITUser’s Guide

Element Id Element Name Data Type
PRO_E_HLE_NORM_PLA Normal Plane PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_NORM_OFFST Offset PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_PLCMNT_PLANE Placement Plane PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_REF_PLANE_1 Reference Plane PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_REF_ANG_1 Angle PRO_VALUE_TYPE_DOUBLE

PRO_E_HLE_FT_DIR_REF Direction
reference

PRO_VALUE_TYPE_SELECTION

PRO_E_HLE_FT_DIR_OPT Direction option PRO_VALUE_TYPE_INT

PRO_E_INT_PARTS Intsct Parts N/A
PRO_E_PATTERN Pattern N/A
PRO_E_STD_FEATURE_NAME Feature Name PRO_VALUE_TYPE_WSTRING

PRO_E_BODY Compound Compound element that holds Body options. For
more information, refer to the ProBodyOpts.h
element tree.

PRO_E_BODY_USE PRO_VALUE_
TYPE_INT

Mandatory element. Specifies the bodies on which
the hole feature is created. The valid values are:
• PRO_BODY_USE_ALL—Hole is creating on

all the existing bodies.

Note

This option is not available for the
following hole depth options:

○ To Next

○ Through Until

• PRO_BODY_USE_SELECTED—Hole is
created on the selected bodies.

PRO_E_BODY_SELECT PRO_VALUE_
TYPE_
SELECTION

Specifies the reference to the selected body.
Mandatory if the value of PRO_E_BODY_USE is
set to PRO_BODY_USE_SELECTED.

Note

Multiple references are allowed.

Common Element Values
All holes require definition of the feature type and feature form. The following
table shows valid values for the common elements in the hole element tree.
Common Element Values
Element ID Value
PRO_E_FEATURE_TYPE PRO_FEAT_HOLE

PRO_E_FEATURE_FORM PRO_HLE_TYPE_STRAIGHT (for straight holes)
PRO_HLE_TYPE_SKETCHED (for other hole types)

PRO_E_STD_FEATURE_NAME Wstring (feature name)
PRO_E_BODY Compound element that holds Body options.

Element Trees: Hole 939

PRO_E_HLE_COM Values
Values required for PRO_E_HLE_COM compound element vary for different hole
types. The following tables show the PRO_E_HLE_COM element values required
to define different hole types. Be sure to enter the elements into the element tree in
the order specified by these tables.

Straight Hole
The following table shows elements for creating a straight hole.
Straight Hole Elements
Element Status
PRO_E_HLE_TYPE_NEW PRO_HLE_NEW_TYPE_STRAIGHT

PRO_E_HLE_MAKE_LIGHTWT Mandatory
PRO_E_DIAMETER Mandatory
PRO_E_HOLE_STD_DEPTH Mandatory
PRO_E_HOLE_DEPTH_TO Mandatory
PRO_E_HOLE_DEPTH_TO_TYPE Mandatory
PRO_E_EXT_DEPTH_TO_VALUE Depends on PRO_E_HOLE_DEPTH_TO_TYPE
PRO_E_EXT_DEPTH_TO_REF Depends on PRO_E_HOLE_DEPTH_TO_TYPE
PRO_E_HOLE_DEPTH_FROM Mandatory
PRO_E_HOLE_DEPTH_FROM_TYPE Mandatory
PRO_E_EXT_DEPTH_FROM_VALUE Depends on PRO_E_HOLE_DEPTH_FROM_TYPE
PRO_E_EXT_DEPTH_FROM_REF Depends on PRO_E_HOLE_DEPTH_FROM_TYPE
PRO_E_HLE_TOP_CLEARANCE Mandatory

Figure Straight Hole with Linear Placement on page 940 shows code for creating
a straight hole with linear placement and through-all depth. The hole has 100 units
diameter, and is placed 100 units distant from the first reference and 200 units
distance from the second.
The function ProDemoHoleCreate() builds the complete element tree
serially. First add all elements required for the straight hole under the PRO_E_
HLE_COM element. Then enter the placement elements under the PRO_E_HLE_
PLACEMENT element. Use element PRO_E_HOLE_DEPTH_TO_TYPE to specify
the hole as 'through all'.
The function UserElemtreeElementAdd() is a small utility that add an
element to the element tree.

Straight Hole with Linear Placement
The sample code in UgHoleCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a straight linear hole.

940 Creo® Parametric TOOLKITUser’s Guide

Sketched Hole
Creo Parametric TOOLKIT supports two methods for creating sketched holes.
The first is as described in Element Trees: Sketched Features on page 1004, the
second uses the function ProFeatureCreate() more directly.
The following table describes the required elements for sketched hole features.
Sketched Hole Elements
Element Status
PRO_E_HLE_TYPE_NEW PRO_HLE_NEW_TYPE_SKETCH

PRO_E_SKETCHER Mandatory
PRO_E_HLE_CRDIR_FLIP Mandatory
PRO_E_HLE_TOP_CLEARANCE Mandatory

Procedure Using Techniques from Creating Sketched
Features
1. Add the required elements for the sketched feature as outlined in the table in

section Sketched Hole on page 941.
2. Add all the placement elements.
3. Set the argument ProFeatureCreateOptions for

ProFeatureCreate() to PRO_FEAT_CR_INCOMPLETE_FEAT and
call ProFeatureCreate() with the created element tree.

4. Fetch the section handle for the section of the incomplete feature, using the
sequence of calls ProElempathAlloc(), ProElempathDataSet(),
and ProFeatureElemValueGet().

5. Create a 2D revolved section with the retrieved section handle. Add the center-
line for the axis of revolution as required for the section for revolved feature in
Creo Parametric user interface.

6. Attach the new section to the element tree, then call
ProFeatureRedefine() with the element tree created in these steps.

Refer to Sketched Hole with Conventional Approach on page 941 for a code
example of this technique of hole creation.

Sketched Hole with Conventional Approach

Example 1: Creating a Standard Sketched Hole with Linear Placement
The sample code in UgHoleCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a standard sketched hole with linear placement. In the conventional
approach:

Element Trees: Hole 941

• Use ProFeatureCreate() to create incomplete feature
• Use the feature handle to get the section handle
• Build the section
• Give a call to ProFeatureRedefine() to redefine
• Complete the feature.

Procedure Using ProFeatureCreate()
In this approach to sketched hole creation, populate the required elements in the
element tree (as shown in the table in section Sketched Hole on page 941), and
then call ProFeatureCreate().
Refer to Standard Threaded Hole on page 942 for a code example for creation of
this type of hole.
Refer to Sketched Hole with ProFeatureCreate() on page 942 for a code example
of this technique of hole creation.

Sketched Hole with ProFeatureCreate()

Example: Creating a Standard Sketched Hole with Linear Placement
The sample code in UgHoleCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a standard sketched hole with linear placement. Using new
approach:

• Create the complete element tree with the sketcher element
• Call ProFeatureCreate() to create the hole feature

Standard Threaded Hole
The following table shows elements for creating a standard threaded hole.
Refer to Example 2: Creating a Standard Threaded Hole with Linear Placement on
page 943 for a code example on creating this type of hole.
Element Status
PRO_E_HLE_TYPE_NEW Mandatory
PRO_E_HLE_STAN_TYPE Mandatory
PRO_E_HLE_THRDSERIS Mandatory
PRO_E_HLE_FITTYPE Mandatory: set to PRO_HLE_CLOSE_FIT
PRO_E_HLE_SCREWSIZE Mandatory
PRO_E_HLE_ADD_THREAD Mandatory
PRO_E_HLE_ADD_CBORE Mandatory
PRO_E_HLE_ADD_CSINK Mandatory

942 Creo® Parametric TOOLKITUser’s Guide

Element Status
PRO_E_HLE_HOLEDIAM Mandatory
PRO_E_HLE_DRILLANGLE Required for variable depth hole
PRO_E_HLE_CSINKANGLE Required for countersink option
PRO_E_HLE_CBOREDEPTH Required for counterbore option
PRO_E_HLE_CBOREDIAM Required for counterbore option
PRO_E_HLE_CSINKDIAM Required for countersink option
PRO_E_HLE_THRDDEPTH Mandatory, even for a non-threaded hole or a thru-

threaded hole.

This element is required. If not added, hole creation
will succeed but the feature cannot be redefined in
the Creo Parametric user interface.

PRO_E_HLE_DRILLDEPTH Mandatory, even for a through-all hole.

This element is required. If not added, hole creation
will succeed but the feature cannot be redefined in
the Creo Parametric user interface.

PRO_E_HLE_THRD_DEPTH Mandatory
PRO_E_HLE_TAPERED_STRT_DEPTH_OPT Mandatory
PRO_E_HLE_DEPTH Mandatory
PRO_E_STD_HOLE_DEPTH_REF Depends on PRO_E_HLE_DEPTH
PRO_E_HLE_ADD_TAPERED_TIP_ANGLE Mandatory
PRO_E_HLE_TAPERED_STRT_DIA Depends on PRO_E_HLE_TAPERED_STRT_

DEPTH_OPT

PRO_E_HLE_TAPERED_STRT_DEPTH Depends on PRO_E_HLE_TAPERED_STRT_
DEPTH_OPT

PRO_E_HLE_TAPERED_TIP_ANGLE Depends on PRO_E_HLE_ADD_TAPERED_TIP_
ANGLE

PRO_E_HLE_DEPTH_DIM_TYPE Depends on PRO_E_HLE_DEPTH
PRO_E_HLE_CRDIR_FLIP Mandatory
PRO_E_HLE_ADD_EXIT_CSINK Required for Thru all hole
PRO_E_HLE_EXIT_CSINKANGLE Required for exit countersink option
PRO_E_HLE_EXIT_CSINKDIAM Required for exit countersink option
PRO_E_HLE_ADD_NOTE Required for Hole note
PRO_E_HOLE_NOTE Depends on PRO_E_HLE_ADD_NOTE
PRO_E_HLE_TOP_CLEARANCE Mandatory

Example 2: Creating a Standard Threaded Hole with Linear
Placement
The sample code in UgHoleCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a standard threaded hole with linear placement.

Element Trees: Hole 943

Standard Clearance Hole
The following table outlines elements for standard clearance holes.
Standard Clearance Hole Elements
Element Status
PRO_E_HLE_TYPE_NEW Mandatory
PRO_E_HLE_STAN_TYPE Mandatory
PRO_E_HLE_THRDSERIS Mandatory
PRO_E_HLE_FITTYPE Mandatory
PRO_E_HLE_SCREWSIZE Mandatory
PRO_E_HLE_ADD_THREAD Mandatory
PRO_E_HLE_ADD_CBORE Mandatory
PRO_E_HLE_ADD_CSINK Mandatory
PRO_E_HLE_HOLEDIAM Mandatory
PRO_E_HLE_DRILLANGLE Required for variable depth hole
PRO_E_HLE_CSINKANGLE Required for countersink option
PRO_E_HLE_CBOREDEPTH Required for counterbore option
PRO_E_HLE_CBOREDIAM Required for counterbore option
PRO_E_HLE_CSINKDIAM Required for countersink option
PRO_E_HLE_DEPTH Mandatory
PRO_E_HLE_CRDIR_FLIP Mandatory
PRO_E_HLE_ADD_EXIT_CSINK Required for Thru all hole
PRO_E_HLE_EXIT_CSINKANGLE Required for exit countersink option
PRO_E_HLE_EXIT_CSINKDIAM Required for exit countersink option
PRO_E_HLE_ADD_NOTE Required for Hole note
PRO_E_HOLE_NOTE Depends on PRO_E_HLE_ADD_NOTE
PRO_E_HLE_TOP_CLEARANCE Mandatory

Custom Hole
The following table outlines the elements for creating a custom hole.
Custom Hole Elements
Element Status
PRO_E_HLE_TYPE_NEW Mandatory
PRO_E_HLE_ADD_CBORE Mandatory
PRO_E_HLE_ADD_CSINK Mandatory
PRO_E_HLE_HOLEDIAM Mandatory
PRO_E_HLE_DRILLANGLE Required for variable depth hole
PRO_E_HLE_CSINKANGLE Required for countersink option
PRO_E_HLE_CBOREDEPTH Required for counterbore option
PRO_E_HLE_CBOREDIAM Required for counterbore option
PRO_E_HLE_CSINKDIAM Required for countersink option

944 Creo® Parametric TOOLKITUser’s Guide

Element Status
PRO_E_HLE_DEPTH Mandatory
PRO_E_HLE_DEPTH_DIM_TYPE Depends on PRO_E_HLE_DEPTH
PRO_E_HLE_CRDIR_FLIP Mandatory
PRO_E_HLE_ADD_EXIT_CSINK Required for Thru all hole
PRO_E_HLE_EXIT_CSINKANGLE Required for exit countersink option
PRO_E_HLE_EXIT_CSINKDIAM Required for exit countersink option
PRO_E_HLE_TOP_CLEARANCE Mandatory

Standard Tapered Hole
The following table outlines the elements for creating a standard tapered hole.
Standard Tapered Hole Elements

Element Status
PRO_E_HLE_TYPE_NEW Mandatory
PRO_E_HLE_STAN_TYPE Mandatory
PRO_E_HLE_THRDSERIS Mandatory
PRO_E_HLE_THRDSERIS Mandatory
PRO_E_HLE_ADD_THREAD Mandatory
PRO_E_HLE_ADD_CBORE Mandatory
PRO_E_HLE_ADD_CSINK Mandatory
PRO_E_HLE_HOLEDIAM Mandatory
PRO_E_HLE_DRILLANGLE Required for variable depth hole
PRO_E_HLE_CSINKANGLE Required for countersink option
PRO_E_HLE_CBOREDEPTH Required for counterbore option
PRO_E_HLE_CBOREDIAM Required for counterbore option
PRO_E_HLE_CSINKDIAM Required for countersink option
PRO_E_HLE_THRDDEPTH Mandatory
PRO_E_HLE_DRILLDEPTH Mandatory
PRO_E_HLE_TAPERED_STRT_
DEPTH_OPT

It is an option for different straight drill
depth types of type
ProHleTaperStrDepType. The
valid values are:
• PRO_HOLE_NONE_DEPTH_TYPE

• PRO_HOLE_BLIND_DEPTH_
TYPE—blind

• PRO_HOLE_THRUNEXT_DEPTH_
TYPE—through next

Element Trees: Hole 945

Element Status
• PRO_HOLE_THRUALL_DEPTH_

TYPE—through all
• PRO_HOLE_THRUNTIL_DEPTH_

TYPE—through until
• PRO_HOLE_TOREF_DEPTH_

TYPE—upto reference
PRO_E_HLE_ADD_TAPERED_TIP_
ANGLE

It is an option for tapered tip of type
ProHleAddTaperedTipAngFlag.
The valid values are:
• PRO_HLE_NO_TAPERED_TIP_

ANGL—No tip angle in the tapered
hole.

• PRO_HLE_ADD_TAPERED_TIP_
ANGLE—Add tip angle in the
tapered hole.

PRO_E_HLE_TAPERED_STRT_DIA Stores taper straight hole diameter
double value.

PRO_E_HLE_TAPERED_STRT_
DEPTH

Stores taper straight hole depth double
value. Available for tapered hole, with
blind depth option, that is
• PRO_E_HLE_STAN_TYPE

==PRO_HLE_TAPERED_TYPE
• PRO_E_HLE_TAPERED_STRT_

DEPTH_OPT==HOLE_BLIND_
DEPTH_TYPE

PRO_E_HLE_TAPERED_TIP_
ANGLE

Stores tapered tip angle double value.
Available for tapered tip option, that is
• PRO_E_HLE_ADD_TAPERED_

TIP_ANGLE==PRO_HLE_ADD_
TAPERED_TIP_ANGLE

PRO_E_HLE_CRDIR_FLIP Mandatory
PRO_E_HLE_ADD_EXIT_CSINK Required for Thru all hole
PRO_E_HLE_EXIT_CSINKANGLE Required for exit countersink option
PRO_E_HLE_EXIT_CSINKDIAM Required for exit countersink option
PRO_E_HLE_ADD_NOTE Required for Hole note
PRO_E_HOLE_NOTE Depends on PRO_E_HLE_ADD_NOTE

946 Creo® Parametric TOOLKITUser’s Guide

Element Status
PRO_E_HLE_TOP_CLEARANCE Mandatory
PRO_E_HLE_THRDTOSEL Stores reference when PRO_E_HLE_

THRD_DEPTH==PRO_HLE_TO_
SELECTED_THREAD

Valid PRO_E_HLE_COM Sub-Elements
The following table gives the description of all the elements for all the hole types.
Element ID Comment/Description
Straight Hole
PRO_E_HLE_TYPE_NEW = PRO_HLE_NEW_TYPE_STRAIGHT

PRO_E_DIAMETER Stores the diameter double value
PRO_E_HOLE_STD_DEPTH Depth (compound element)
PRO_E_HOLE_DEPTH_TO First Side depth info (compound element)
PRO_E_HOLE_DEPTH_TO_TYPE Type ProHleStraightDepType/* Blind*/ PRO_

HLE_STRGHT_BLIND_DEPTH /*Thru Next*/ PRO_
HLE_STRGHT_THRU_NEXT_DEPTH /* Thru All*/
PRO_HLE_STRGHT_THRU_ALL_DEPTH /*Thru
Until*/ PRO_HLE_STRGHT_THRU_UNTIL_DEPTH
/*Upto Ref*/ PRO_HLE_STRGHT_UPTO_REF_DEPTH
/*None */ PRO_HLE_STRGHT_NONE_DEPTH
/*Symmetric*/ PRO_HLE_STRGHT_SYM_DEPTH

PRO_E_EXT_DEPTH_TO_VALUE Stores variable depth double value when PRO_E_
HOLE_DEPTH_TO_TYPE equals PRO_HLE_STRGHT_
BLIND_DEPTH.

PRO_E_EXT_DEPTH_TO_REF Stores the upto reference when PRO_E_HOLE_DEPTH_
TO_TYPE is not PRO_HLE_STRGHT_BLIND_DEPTH
and not PRO_HLE_STRGHT_NONE_DEPTH.

PRO_E_HOLE_DEPTH_FROM Second Side depth info (compound element).
PRO_E_HOLE_DEPTH_FROM_TYPE Type ProHleStraightDep

/* Blind*/
PRO_HLE_STRGHT_BLIND_DEPTH

/*Thru Next*/
PRO_HLE_STRGHT_THRU_NEXT_DEPTH

/* Thru All*/
PRO_HLE_STRGHT_THRU_ALL_DEPTH

/*Thru Until*/
PRO_HLE_STRGHT_THRU_UNTIL_DEPTH

/*Upto Ref*/
PRO_HLE_STRGHT_UPTO_REF_DEPTH

/*None */
PRO_HLE_STRGHT_NONE_DEPTH

Element Trees: Hole 947

Element ID Comment/Description

/*Symmetric*/
PRO_HLE_STRGHT_SYM_DEPT

PRO_E_EXT_DEPTH_FROM_VALUE Stores variable depth double value when PRO_E_
HOLE_DEPTH_FROM_TYPE equals PRO_HLE_
STRGHT_BLIND_DEPTH.

PRO_E_EXT_DEPTH_FROM_REF Stores the upto reference when PRO_E_HOLE_DEPTH_
FROM_TYPE is not PRO_HLE_STRGHT_BLIND_
DEPTH and is not PRO_HLE_STRGHT_NONE_DEPTH
and not PRO_HLE_STRGHT_SYM_DEPTH.

Sketch Hole
PRO_E_HLE_TYPE_NEW set to PRO_HLE_NEW_TYPE_SKETCH

PRO_E_HLE_SKETCHER 2D Sketcher Element
PRO_E_HLE_CRDIR_FLIP Direction of creation, type ProHleCrDir
Standard Hole
PRO_E_HLE_TYPE_NEW set to PRO_HLE_NEW_TYPE_STANDARD

PRO_E_STAN_TYPE = PRO_HLE_TAPPED_TYPE /* Tapped hole */

= PRO_HLE_CLEARANCE_TYPE/* Clearance hole */
PRO_E_HLE_STAN_TYPE type ProHleStandType
PRO_E_HLE_THRDSERIS Integer. The *.hol files get loaded as specified in Hole

Parameter Files on page 955. From the *.holfiles,
different THREAD_SERIES information are gathered
and a list is formed. This element stores the current
index to the list.

PRO_E_HLE_FITTYPE type ProHleFittype. Available for clearance hole
(when PRO_E_HLE_STAN_TYPE is PRO_HLE_
CLEARANCE_TYPE).

/* Close Fit */
PRO_HLE_CLOSE_FIT

/* Free Fit */
PRO_HLE_FREE_FIT

/* Medium Fit */
PRO_HLE_MEDIUM_FIT

PRO_E_HLE_SCREWSIZE Integer Stores an index to the screw_size list. Selecting a
thread series, choose one of the .hol files. From that file
screw-size list is extracted.

PRO_E_HLE_DEPTH It is an option for different type drill depth, that is, of
type ProHleStdDepType.

Note

PRO_HLE_STD_VAR_DEPTH is not available for
clearance hole (not for PRO_E_HLE_STAN_TYPE
== PRO_HLE_CLEARANCE_TYPE).

PRO_E_STD_HOLE_DEPTH_REF Stores reference, when PRO_E_HLE_DEPTH equals
toPRO_HLE_STD_THRU_UNTIL_DEPTH

948 Creo® Parametric TOOLKITUser’s Guide

Element ID Comment/Description

or PRO_HLE_STD_TO_SEL_DEPTH
PRO_E_HLE_HOLEDIAM Stores Drill Diameter double value. See Hole Diameter.
PRO_E_HLE_DRILLANGLE Stores Drill Angle. Double value. Available for tapped

hole with variable depth (when PRO_E_HLE_STAN_
TYPE equals PRO_HLE_TAPPED_TYPE and PRO_E_
HLE_DEPTH is PRO_HLE_STD_VAR_DEPTH.

PRO_E_HLE_ADD_THREAD Option for adding thread. Available for tapped hole
(when PRO_E_HLE_STAN_TYPEequals PRO_HLE_
TAPPED_TYPE). Type ProHleAddThrdFlag. For
add thread option it's value is PRO_HLE_ADD_
THREAD. For no thread option, the value is PRO_HLE_
NO_THREAD.

PRO_E_HLE_THRD_DEPTH Option for different type of thread depth. Type
ProHleThrdDepType. Available for tapped hole with
thread option, when PRO_E_HLE_STAN_TYPE equals
PRO_HLE_TAPPED_TYPE and PRO_E_HLE_ADD_
THREAD equals PRO_HLE_ADD_THREAD.

Note

All options are available in both assembly & part
level.

PRO_E_HLE_THRDDEPTH Stores thread depth. Double value. Available for tapped
hole, with variable thread option. That is, when PRO_E_
HLE_STAN_TYPE equals PRO_HLE_TAPPED_TYPE,
PRO_E_HLE_ADD_THREAD equals PRO_HLE_ADD_
THREAD, and PRO_E_HLE_THRD_DEPTHequals
PRO_HLE_VARIABLE_THREAD.

PRO_E_HLE_ADD_CBORE Option for Counter Bore. Type
ProHleAddCboreFlag. For counter bore it's value is
PRO_HLE_ADD_CBORE. For the no counterbore option,
set to PRO_HLE_NO_CBORE.

PRO_E_HLE_CBOREDEPTH Stores counterbore depth. Double value. Available for
counterbore option, when PRO_E_HLE_ADD_CBORE
equals PRO_HLE_ADD_CBORE.

PRO_E_HLE_CBOREDIAM Stores counterbore diameter. Double value. Available for
counterbore option, when PRO_E_HLE_ADD_CBORE is
PRO_HLE_ADD_CBORE.

PRO_E_HLE_ADD_CSINK It is an option for Counter Sink. Type
ProHleAddCsinkFlag. For counter sink it's value is
PRO_HLE_ADD_CSINK. For no countersink, set to
PRO_HLE_NO_CSINK.

PRO_E_HLE_CSINKANGLE Stores counter sink angle. Double value. Available for
countersink option, when PRO_E_HLE_ADD_CSINK
equals PRO_HLE_ADD_CSINK.

PRO_E_HLE_CSINKDIAM Stores countersink diameter. Double value. Available for
countersink option, when PRO_E_HLE_ADD_CSINK
PRO_HLE_ADD_CSINK.

PRO_E_HLE_DRILLDEPTH Stores drill depth double value. Available for tapped
hole, with variable depth option. That is, when PRO_E_

Element Trees: Hole 949

Element ID Comment/Description
HLE_STAN_TYPE equals PRO_HLE_TAPPED_TYPE,
and PRO_E_HLE_DEPTH equals PRO_HLE_STD_
VAR_DEPTH.

PRO_E_HLE_ADD_EXIT_CSINK An option for Exit Counter Sink of type
ProHleAddExitCsinkFlag.

For exit counter sink it's value is PRO_HLE_ADD_
EXIT_CSINK.

For no countersink, value is PRO_HLE_NO_EXIT_
CSINK.

It is not available for assembly mode.

In part mode will fail if entry and exit surfaces of hole
are non-planar and non-parallel.

PRO_E_HLE_EXIT_CSINKANGLE Stores exit countersink angle double value. Available for
exit countersink option, that is, PRO_E_HLE_ADD_
EXIT_CSINK == PRO_HLE_ADD_EXIT_CSINK.

PRO_E_HLE_EXIT_CSINKDIAM Stores exit countersink diameter double value. Available
for exit countersink option, that is, PRO_E_HLE_ADD_
EXIT_CSINK == PRO_HLE_ADD_EXIT_CSINK.

PRO_E_HLE_ADD_NOTE It is an option for add note. Of type
ProHleAddNoteFlag. The default value is add note,
i.e.PRO_HOLE_ADD_NOTE_FLAG For no note, the
value is PRO_HOLE_NO_NOTE_FLAG.

PRO_E_HOLE_NOTE This element is not accessible through Creo Parametric
TOOLKIT. Default note will be created when PRO_E_
HLE_ADD_NOTE is set to PRO_HOLE_ADD_NOTE_
FLAG.

PRO_E_HLE_THRDTOSEL This element stores reference when PRO_E_HLE_
THRD_DEPTH==PRO_HLE_TO_SELECTED_
THREAD.

Custom Hole
PRO_E_HLE_TYPE_NEW PRO_HLE_CUSTOM_TYPE

PRO_E_HLE_ADD_CBORE The description of these items are same as described in
Standard Hole section.PRO_E_HLE_ADD_CSINK

PRO_E_HLE_HOLEDIAM

PRO_E_HLE_DRILLANGLE

PRO_E_HLE_CSINKANGLE

PRO_E_HLE_CBOREDEPTH

PRO_E_HLE_CBOREDEPTH

PRO_E_HLE_CSINKDIAM

PRO_E_HLE_DRILLDEPTH

PRO_E_HLE_DEPTH

PRO_E_STD_HOLE_DEPTH_REF

PRO_E_HLE_DEPTH_DIM_TYPE

PRO_E_HLE_CRDIR_FLIP

PRO_E_HLE_ADD_EXIT_CSINK

950 Creo® Parametric TOOLKITUser’s Guide

Element ID Comment/Description
PRO_E_HLE_EXIT_CSINKANGLE

PRO_E_HLE_EXIT_CSINKDIAM

Hole Placement Types
Creo Parametric TOOLKIT supports several placement types for holes.

Hole Placement
The elements discussed in the following sections specify how to place a hole in
relation to the model geometry. The reference entity elements are carried as
selection objects, and the other elements carrying actual values of distances,
offsets or angles.
Creo Parametric TOOLKIT supports the following types of hole placement:

• Linear Hole on a Plane on page 951
• Radial Hole on Plane with Radial Dimensioning on page 952
• Radial Hole on Plane with Diameter Dimensioning on page 953
• Radial Hole on Plane with Linear Dimensioning on page 953
• Radial Hole on Cone or Cylinder on page 953
• Coaxial Hole with Axis as Primary Reference on page 954
• Coaxial Hole with Primary Reference not Axis on page 954
• Onpoint Hole with Primary Reference as a Point on Surface on page 954
• Onpoint Hole with Primary Reference as Datum Point on page 954
• Onpoint Hole with Primary Reference as Datum Point with Orientation

References on page 955
• Hole with Primary Reference as Sketch on page 955

Linear Hole on a Plane
Linear placement requires as references either

• Two linear non-parallel edges in the plane of placement
or

• Two planar non-parallel surfaces, both normal to the plane of placement.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary selection, that is, planar surface or datum

plane.
PRO_E_HLE_PL_TYPE Set to PRO_HLE_PL_TYPE_LIN

Element Trees: Hole 951

Element ID Comment/Description
PRO_E_HLE_DIM_REF1 First secondary selection, that is, plane, edge, or axis.

If edge or axis is normal to placement plane, another
selection is required for dimensioning the hole. So
this may require two selections.

PRO_E_HLE_PLC_ALIGN_OPT1 - Set to PRO_HLE_PLC_ALIGN to align the hole to
the reference.

- Set to PRO_HLE_PLC_NOT_ALIGN to use the
DIST1 reference.

PRO_E_HLE_DIM_DIST1 Distance with regard to PRO_E_HLE_DIM_REF1.
PRO_E_HLE_DIM_REF2 Second secondary selection, that is, plane, edge, or

axis.

- If edge or axis is normal to placement plane another
selection is required for dimensioning the hole. So
this may require two selections.

PRO_E_HLE_PLC_ALIGN_OPT2 - Set to PRO_HLE_PLC_ALIGN to align the hole to
the reference.

- Set to PRO_HLE_PLC_NOT_ALIGN to use the
DIST2 reference.

PRO_E_HLE_DIM_DIST2 Distance with regard to PRO_E_HLE_DIM_REF2.
PRO_E_LIN_HOLE_DIR_REF Uses this reference to define the direction of the

placement dimension scheme. This element is
available if the secondary element PRO_E_HLE_
DIM_REF1 contains an axis reference normal to the
current hole's primary reference.

Radial Hole on Plane with Radial Dimensioning
Locating radial holes requires the first reference to be the axis of placement. This
axis is a polar placement (r-theta), where r is the radial distance from a plane, and
theta is the angle with respect to a plane.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, planar surface/datum plane
PRO_E_HLE_PL_TYPE set to PRO_HLE_PL_TYPE_RAD
PRO_E_HLE_AXIS Axis for radial hole
PRO_E_HLE_DIM_RAD Radial distance with regard to PRO_E_HLE_AXIS
PRO_E_HLE_REF_PLANE_1 Reference plane against which angular distance will

be measured
PRO_E_HLE_REF_ANG_1 Angular distance with regard to PRO_E_HLE_REF_

PLANE_1

952 Creo® Parametric TOOLKITUser’s Guide

Radial Hole on Plane with Diameter Dimensioning
Locating these holes is similar to radial holes with radial dimensioning. The
difference is the distance specified is in the form of diametrical distance.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, planar surface/datum plane
PRO_E_HLE_PL_TYPE set to PRO_HLE_PL_TYPE_RAD_DIA_DIM
PRO_E_HLE_AXIS Axis for radial hole
PRO_E_HLE_DIM_DIA Diameter distance with regard to PRO_E_HLE_

AXIS
PRO_E_HLE_REF_PLANE_1 Reference plane against which angular distance will

be measured
PRO_E_HLE_REF_ANG_1 Angular distance with regard to PRO_E_HLE_REF_

PLANE_1

Radial Hole on Plane with Linear Dimensioning
This type of hole placement uses an angle with respect to a plane and a linear
distance from the axis of placement.
This placement type is available when you set the configuration option radial_
hole_linear_dim to “YES”.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, planar surface/datum plane
PRO_E_HLE_PL_TYPE is set to PRO_HLE_PL_TYPE_RAD_LIN_DIM
PRO_E_HLE_AXIS Axis for radial hole
PRO_E_HLE_DIM_LIN Linear distance with regard to PRO_E_HLE_AXIS
PRO_E_HLE_REF_PLANE_1 Reference plane against which angular distance will

be measured
PRO_E_HLE_REF_ANG_1 Angular distance with regard to PRO_E_HLE_REF_

PLANE_1

Radial Hole on Cone or Cylinder
This hole placement type requires the selection of a cone or cylinder for primary
placement.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, Cone or Cylinder
PRO_E_HLE_PL_TYPE is set to PRO_HLE_PL_TYPE_RAD
PRO_E_HLE_REF_PLANE Reference plane against which angular distance will

be measured
PRO_E_HLE_REF_ANG Angular distance with regard to PRO_E_HLE_REF_

PLANE
PRO_E_HLE_NORM_PLA Reference plane for linear measurement
PRO_E_HLE_NORM_OFFST Distance with regard to PRO_E_HLE_NORM_PLA

Element Trees: Hole 953

Coaxial Hole with Axis as Primary Reference
Coaxial hole placement requires an axis and a placement plane to complete the
placement.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, Axis
PRO_E_HLE_PL_TYPE is set to PRO_HLE_PL_
TYPE_COAX

PRO_E_HLE_PLCMNT_PLANE Placement surface

Coaxial Hole with Primary Reference not Axis
This is a special case of coaxial hole in which the primary selection is a surface.
The axis must be normal to the selected surface:
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, Surface
PRO_E_HLE_PL_TYPE is set to PRO_HLE_PL_TYPE_COAX
PRO_E_HLE_AXIS Axis

Onpoint Hole with Primary Reference as a Point on
Surface
This placement type requires a point of type ‘On Surface Point’. The hole is
placed normal to the surface on which the point was created. The hole passes
through the selected point. The depth of hole is measured from the datum point.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, on Surface Created Datum Point
PRO_E_HLE_PL_TYPE is set to PRO_HLE_PL_TYPE_ON_PNT

Onpoint Hole with Primary Reference as Datum
Point
This placement type requires a point of type ‘Datum Point’. It also requires a
surface reference. The datum point is projected on the surface. The depth of the
hole is measured from the projected point.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, Datum Point
PRO_E_HLE_PL_TYPE is set to PRO_HLE_PL_TYPE_ON_PNT
PRO_E_HLE_PLCMNT_PLANE Placement surface

954 Creo® Parametric TOOLKITUser’s Guide

Hole with Primary Reference as Sketch
This placement type requires a point of type ‘Sketch’. The offset references are
used as Sketch references.
Element ID Comment/Description
PRO_E_STD_SECTION Primary Selection, Sketch
PRO_E_HLE_PL_TYPE is set to PRO_HLE_PL_TYPE_SKT_DTM_PNT
PRO-E_HOLE_SKDP_OPTIONS Sketched datum point hole option

Onpoint Hole with Primary Reference as Datum
Point with Orientation References
This placement type requires a point of type ‘Datum Point’. The direction of hole
is defined using the orientation references. The hole passes through the selected
point. The depth of hole is measured from the datum point.
Element ID Comment/Description
PRO_E_HLE_PRIM_REF Primary Selection, Datum Point
PRO_E_HLE_PL_TYPE is set to PRO_HLE_PL_TYPE_ON_PNT
PRO_E_HLE_FT_DIR_REF References to define the orientation of the hole.
PRO_E_HLE_FT_DIR_OPT Option to define the direction in which the hole is

oriented, perpendicular or parallel, to the orientation
references.

Miscellaneous Information
The following sections discuss important issues relating to hole feature creation.

Hole Parameter Files
Hole parameter files are setup files used to build the user interface for the hole.
Programmatic hole creation uses the same files. New sets of customized files can
be added as required. The values assigned to the elements PRO_E_HLE_
THRDSERIS, PRO_E_HLE_SCREWSIZE, and therefore PRO_E_HLE_
HOLEDIAM depend on these files.
Creo Parametric and Creo Parametric TOOLKIT load the hole parameter file
(*.hol) in following order:

1. Directory specified in configuration option hole_parameter_file_
path

2. Current Directory
3. System hole parameter directory, that is,
4. [PROE DIR]/text/hole

Element Trees: Hole 955

Find the hole diameter from the values of PRO_E_HLE_THRDSERIS and PRO_
E_HLE_SCREWSIZE specified in the *hol files. In the Creo Parametric User
Interface, element PRO_E_HLE_THRDSERIS is represented as the selection
between UNC, UNF or ISO.

Hole Diameter
The drill diameter PRO_E_HLE_HOLEDIAM, as required for the Standard Type
of holes, must be smaller than the thread diameter calculated from the .hol file
for the threaded hole. As specified in the *.hol files, the thread diameter is the
element corresponding to BASIC_DIAM column and the selected screw size row
in the table, as specified in the selected .hol file. If the PRO_E_HLE_
HOLEDIAM is not smaller than the thread diameter, the ProFeatureCreate()
function fails and returns a PRO_TK_GENERAL_ERROR.
Follow these steps to enter the proper value for PRO_E_HLE_HOLEDIAM:

1. Determine the values to pass from the Creo Parametric user interface to the
following elements:

• PRO_E_HLE_THRDSERIS. Note that UNC corresponds to 0, UNF to 1,
and ISO to 2. These values change if you create a local .hol file.

• PRO_E_HLE_SCREWSIZE (the values start with zero).
2. From the Creo Parametric User Interface, set the options to be passed to the

elements PRO_E_HLE_THRDSERIS and PRO_E_HLE_SCREWSIZE. For
example, ISO with M1X25 or UNC with 1-64.

3. Observe the value hole diameter in the dialog box. The dialog box appears
grayed out unless you set the configuration option hole_diameter_
override to yes.

4. The value thus obtained for the hole diameter should be greater than the value
defined for element PRO_E_HLE_HOLEDIAM.

Order of Element Specification
Be sure to enter the elements into the element tree in the order specified by the
tables in PRO_E_HLE_COM Values on page 940. Failure to follow these
sequences may result in either ProFeatureCreate() failing with a PRO_
TK_GENERAL_ERROR error return, or in creation of a feature which fails to get
redefined.

Hole-specific Functions
Functions Introduced:

956 Creo® Parametric TOOLKITUser’s Guide

• ProHolePropertyGet()
• ProElementHoleThreadSeriesGet()
• ProElementHoleThreadSeriesSet()
• ProElementHoleScrewSizeGet()
• ProElementHoleScrewSizeSet()
You can use the function ProHolePropertyGet() to retrieve the value of the
indicated hole value property. Only properties listed in the enum
ProHoleProperty are supported.
The function ProElementHoleThreadSeriesGet() returns the type of
thread from the hole feature element tree as a wide string.
Use the function ProElementHoleThreadSeriesSet() to set the type of
thread in the hole feature element tree. The thread type is updated in the element
PRO_E_HLE_THRDSERIS.
The function ProElementHoleScrewSizeGet() gets the size of screw
from the hole feature tree elements PRO_E_HLE_THRDSERIS and PRO_E_
HLE_SCREWSIZE as a wide string.
Use the function ProElementHoleScrewSizeSet() to set the size of screw
in the hole feature element tree. The screw size is updated in the element PRO_E_
HLE_SCREWSIZE.

Note
The screw size depends on the type of thread. Therefore, before you call the
function ProElementHoleScrewSizeSet() you must ensure that the
thread type is set in the element PRO_E_HLE_THRDSERIS.

Element Trees: Hole 957

41
Element Trees: Shell

Introduction to Shell Feature .. 959
Feature Element Tree for the Shell Feature ... 960
Creating a Shell Feature .. 961
Redefining a Shell Feature... 962
Accessing a Shell Feature.. 962

Thischapter introduces and shows how to create, redefine and access Shell
features in Creo Parametric TOOLKIT.

958 Creo® Parametric TOOLKITUser’s Guide

Introduction to Shell Feature
When Creo Parametric makes a shell, all features that were added to the solid
before creating the Shell feature are hollowed. Therefore, the order of feature
creation is very important when you use the Shell feature.
The Shell feature hollows the inside of the solid, leaving a shell of a specified wall
thickness. It allows you to remove a surface or surfaces from the shell. If you do
not select a surface to remove, a “closed shell” is created, with the inside of the
part completely hallowed out and no access to the hollow. When defining a shell,
you can also select surfaces with different thickness values. On flipping the
thickness side, the shell thickness is added to the outside of the part.
You can also shell surfaces that are tangent to their neighbors at one or more
boundaries. At the tangent edge where the separation of the shell offset occurs, a
normal capping surface is constructed to close the gap.
You can also exclude one or more surfaces from being shelled. This process is
called partial shelling. There are two different algorithms for partial shelling – one
for concave corner surfaces and the other for convex corner surfaces. These
algorithms prevent the shell subtraction volume from penetrating through the
solid. In case of a part where both concave and convex corner surfaces are to be
excluded, the exclusion can be achieved in multiple partial shells, each using
different algorithms.
The following are the restrictions on Shell feature creation:

• You cannot add shells to any part that has a surface that moves from tangency
to a point.

• You cannot select a surface to be removed that has a vertex created by the
intersection of three curved surfaces.

• The surface to be removed must be surrounded by edges (a fully revolved
surface of revolution is not valid) and the surfaces that intersect the edge must
form an angle of less than 180 degrees through the solid geometry. As long as
this condition is met, you can select any sculpted surface as the surface to be
removed.

• When you select surfaces that have other surfaces tangent to them for
independent thickness, all surfaces that are tangent must have the same
thickness. Otherwise, the Shell feature fails.

For example, if you shell a part that contains a hole and you want the thickness
of the hole wall to be different from the overall thickness, you must select both
surfaces (cylinders) that make up the hole and offset them at the same
distance.

• By default, a shell creates geometry with a constant wall thickness. If the
system cannot create a constant thickness, the Shell feature fails.

Element Trees: Shell 959

Feature Element Tree for the Shell
Feature
The element tree for the Shell feature is documented in the header file
ProShell.h, and has a simple structure. The following figure demonstrates the
element tree structure:

Feature Element Tree for Shell Feature

The shell element tree contains standard element types. The following list details
special information about the elements in this tree:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should have the
value PRO_FEAT_SHELL.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the Shell feature.
• PRO_E_BODY—Specifies the body options and is a branch of the general

body options elements defined in the ProBodyOpts.h as follows:

○ PRO_E_BODY_USE—The valid value is PRO_BODY_USE_SELECTED

960 Creo® Parametric TOOLKITUser’s Guide

○ PRO_E_BODY_SELECTED—Must contain a single selected body to shell.
• PRO_E_SHELL_SRF— Specifies the selected surfaces to be removed from

the part to create the Shell feature. This element is optional.
• PRO_E_SHELL_THICK—Specifies the default thickness for the shell. It

must be positive and greater than zero.
• PRO_E_SHELL_FLIP—Specifies the side of the shell to be flipped and has

the following values:

○ PRO_SHELL_OUTSIDE

○ PRO_SHELL_INSIDE

• PRO_E_STD_SURF_COLLECTION_APPL—Specifies the surfaces to be
excluded during the Shell feature creation.

• PRO_E_SHELL_LACE_BNDRY—Specifies the lace boundary that forms the
closure of excluded surfaces or inner surfaces. It has the following values:

○ PRO_SHELL_LACE

○ PRO_SHELL_DONT_LACE

• PRO_E_SHELL_ALT_CUT_METHOD—Specifies the alternate cut method
used for partial shell volume subtraction. It has the following values:

○ PRO_SHELL_ALT_CUT_METHOD_NO—Specifies the algorithm for
concave corner surfaces.

○ PRO_SHELL_ALT_CUT_METHOD_YES—Specifies the algorithm for
convex corner surfaces.

• PRO_E_ST_SHELL_LOCL_LIST—Specifies an array of local thickness of
the type PRO_E_ST_SHELL_LOCL_CMPD which consists of the following
elements:

○ PRO_E_ST_SHELL_SPEC_SRF—Specifies the surface selected for
specifying the local thickness value. This surface cannot be one of the
surfaces selected to be removed.

○ PRO_E_ST_SHELL_SPEC_THCK—Specifies the local thickness value
of the selected surface (initially equal to default shell thickness). It must be
positive and greater than zero.

Creating a Shell Feature
Function Introduced

Element Trees: Shell 961

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Shell feature based on the
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 of chapter Element
Trees: Principles of Feature Creation on page 764.

Redefining a Shell Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Shell feature based
on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
of chapter Element Trees: Principles of Feature Creation on page 764.

Accessing a Shell Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Shell feature and to retrieve the
element tree description of a Shell feature. For more information about
ProFeatureElemtreeExtract() refer to the section Feature Inquiry on
page 785 of chapter Element Trees: Principles of Feature Creation on page 764.

962 Creo® Parametric TOOLKITUser’s Guide

42
Element Trees: Patterns

Introduction... 964
The Element Tree for Pattern Creation .. 964
Obtaining the Element Tree for a Pattern... 985
Visiting and Creating a Pattern ... 985

This chapter describes the element tree structure required to create patterns of
features. The chapter on Element Trees: Principles of Feature Creation on page
764 is a necessary background for this topic. Read that chapter before this one.

963

Introduction
Using Creo Parametric TOOLKIT, you can create patterns of features, including
those not supported by Creo Parametric TOOLKIT feature creation. Consequently,
you can programmatically create patterns of any feature that can be patterned in
Creo Parametric.
The creation and manipulation of patterns use the following Creo Parametric
TOOLKIT objects:

• ProPattern—A structure that contains the type and owner of the pattern,
and an opaque pattern handle

• ProPatternClass—An enumerated type that contains the pattern class,
which specifies either a feature pattern (PRO_FEAT_PATTERN) or a group
pattern (PRO_GROUP_PATTERN)

The procedure for creating a pattern is similar to creating features, in that you
construct an element tree and pass this element tree to Creo Parametric. When you
pass the tree to Creo Parametric, you also specify the feature to be patterned.

The Element Tree for Pattern Creation
Unlike the element tree for features, the element tree for a pattern does not contain
information about the construction of new features. Rather, the element tree
contains information needed to make copies of existing features at specified
locations on the model. For example, the element tree for a pattern of holes does
not contain the geometry (such as edges) used to place the holes, but contains the
dimensions and dimension variations used to pattern the specified hole.
You construct the element tree for a pattern by following the procedure described
in chapter Element Trees: Principles of Feature Creation on page 764:

1. Allocate tree elements using the function ProElementAlloc().
2. Set values of the elements using the function ProElementValueSet().
3. Add elements to the tree using ProElemtreeElementAdd().
As with feature creation, the system cannot create your pattern unless the element
tree is correct.
The element tree for a pattern is documented in the header file ProPattern.h.
This tree contains the same information required when you create a pattern in an
interactive session of Creo Parametric. Therefore, you should be familiar with
how to create a pattern interactively before you try to understand the element tree.

964 Creo® Parametric TOOLKITUser’s Guide

Note
It is highly recommended that you use the new element tree from
ProPattern.h. The old element tree is only for your reference.

The following figure shows a part of the element tree for patterns. All elements
are described in detail in the following sections.

Element Trees: Patterns 965

A Part of the Element Tree for Patterns

966 Creo® Parametric TOOLKITUser’s Guide

The element with the identifier PRO_E_GENPAT_TYPE sets the type of the
pattern to be created. The structure of the rest of the element tree depends strongly
on the value of this element. Valid values for the PRO_E_GENPAT_TYPE
element are as follows:

• PRO_GENPAT_REF_DRIVEN—Reference pattern
• PRO_GENPAT_DIM_DRIVEN—Dimension pattern
• PRO_GENPAT_TABLE_DRIVEN—Table pattern
• PRO_GENPAT_FILL_DRIVEN—Fill pattern
• PRO_GENPAT_DIR_DRIVEN—Direction pattern
• PRO_GENPAT_AXIS_DRIVEN—Axis pattern
• PRO_GENPAT_POINT_DRIVEN—Point pattern
• PRO_GENPAT_CRV_DRIVEN—Curve pattern
The element with the identifier PRO_E_GENPAT_REGEN_METHOD sets the
regeneration method for the pattern. The regeneration method varies with the
complexity of the pattern. Valid values for the PRO_E_GENPAT_REGEN_
METHOD element are as follows:

• PRO_PAT_GENERAL—General pattern. This is the most complex type of
pattern.

• PRO_PAT_VARYING—Varying pattern.
• PRO_PAT_IDENTICAL—Identical pattern. This is the least complex type of

pattern.
For more information on regeneration methods, see the Part Modeling User’s
Guide.
You must populate the element PRO_E_STD_SECTION with a valid reference
sketch and other related elements for the following pattern types:

• a point pattern that uses an element of type PRO_GENPAT_REF_SKETCH
• a fill pattern
• a curve pattern
For more information on how to populate the section elements with the valid
sketched reference, refer to the Element Trees: Sketched Features on page 1004
chapter.
The following sections describe the types of pattern in more detail.

Element Trees: Patterns 967

Reference Patterns
A reference pattern uses an existing pattern as a guide for the placement of the
new pattern members. Consequently, if the pattern type is PRO_GENPAT_REF_
DRIVEN, the element tree requires only that you specify the type of the reference
pattern.

Element Tree for a Reference Pattern

The element with identifier PRO_E_GENPAT_REF specifies the type of pattern to
be created. The valid values are as follows:

• PRO_PAT_FEATURE—Use feature pattern references.
• PRO_PAT_GROUP—Use group pattern references.
• PRO_PAT_BOTH—Use feature and group pattern references.

Dimension Patterns
If the pattern type is PRO_GENPAT_DIM_DRIVEN, the element tree must
include information about the dimensions used to drive the pattern. You must
specify this information for each direction in which the feature is to be patterned.

968 Creo® Parametric TOOLKITUser’s Guide

Element Tree for a Dimension Pattern

The elements with identifiers PRO_E_GENPAT_DIM_FIRST_DIR and PRO_E_
GENPAT_DIM_SECOND_DIR contain information about the pattern dimensions.
These elements are array elements that contain as many PRO_E_GENPAT_DIM_
DIR_COMPOUND elements as are required to complete the pattern. The following
table describes the contents of the PRO_E_GENPAT_DIM_DIR_COMPOUND
element.
Element ID Values Element Name Data Type Valid Values
PRO_E_GENPAT_DIR_
DIMENSION

Dimension PRO_VALUE_TYPE_
SELECTION

PRO_E_GENPAT_DIR_
VAR_TYPE

Variation type PRO_VALUE_TYPE_
INT

PRO_PAT_RELATION_
DRIVEN,

PRO_PAT_VALUE

_DRIVEN

PRO_E_GENPAT_DIR_
VAR_VALUE

Variation value
(increment)

PRO_VALUE_TYPE_
DOUBLE

PRO_E_GENPAT_
RELATION_EDIT

Relation Application (PRO_
VALUE_TYPE
_POINTER)

The element PRO_E_GENPAT_DIR_VAR_TYPE specifies whether the pattern
increment is relation-driven or value-driven. If the increment is relation-driven,
the element PRO_E_GENPAT_RELATION_EDIT contains an array of wide
strings whose members are individual relations.

Element Trees: Patterns 969

The elements PRO_E_GENPAT_DIM_FIRST_DIR_NUM_INST and PRO_E_
PAT_SECOND_DIR_NUM_INST specify the number of instances in each of the
pattern dimensions.
Even if the pattern extends in only one direction, you must specify elements for
the second direction. In this case, add an empty PRO_E_PAT_SECOND_DIR
element and set the value of the PRO_E_PAT_SECOND_DIR_NUM_INST
element to 1 (not 0).

Table Patterns
If the pattern type is PRO_GENPAT_TABLE_DRIVEN, your element tree must
contain the table-driven dimensions and table information (variation in
dimensions for each instance). The following figure shows the elements of the
Table pattern:

Element Tree for a Table Pattern

The PRO_E_GENPAT_TABLE_DIMS element is an array that contains one table
dimension (PRO_E_GENPAT_TABLE_DIM) element for each dimension to be
varied in the tables. The value of each PRO_E_GENPAT_TABLE_DIM element is
a ProSelection object for the corresponding dimension.
The PRO_E_GENPAT_TABLE_LIST element is an array element that contains
all the tables that control the pattern. This element should contain one PRO_E_
GENPAT_TABLE_ENTRY element for each table.
Each PRO_E_GENPAT_TABLE_ENTRY element contains the name of the table
(PRO_E_GENPAT_TABLE_NAME) and table instances (PRO_E_GENPAT_
TABLE_INSTANCES).

970 Creo® Parametric TOOLKITUser’s Guide

Each PRO_E_GENPAT_TABLE_INSTANCE element contains an index number
(PRO_E_GENPAT_TABLE_INSTANCE_INDEX) element and a dimensions
(PRO_E_GENPAT_TABLE_INSTANCE_DIMS) element. The PRO_E_
GENPAT_TABLE_INSTANCE_DIMS element is an array element that must
contain one dimension value (PRO_E_GENPAT_TABLE_INSTANCE_DIM_
VALUE) element for each of the selected dimensions in the PRO_E_PAT_MULT_
TABLE_DIMS element. Note that the dimension value specifies the value of the
selected dimension, not the dimension increment.
The following table lists the contents of each PRO_E_GENPAT_TABLE_ENTRY
element.
Element ID Values Element Name Data Type
PRO_E_GENPAT_TABLE_NAME Table name PRO_VALUE_TYPE_WSTRING

PRO_E_GENPAT_TABLE_
INSTANCES

Table instances Array

PRO_E_GENPAT_TABLE_
INSTANCE

Table instance Compound

PRO_E_GENPAT_TABLE_
INSTANCE_INDEX

Instance index PRO_VALUE_TYPE_INT

PRO_E_GENPAT_TABLE_
INSTANCE_DIMS

Dimension variations Compound

PRO_E_GENPAT_TABLE_
INSTANCE_DIM_VALUE

Dimension value PRO_VALUE_TYPE_DOUBLE

The element PRO_E_GENPAT_TABLE_SET_ACTIVE sets the active table for
the pattern. Valid values are 0 (for the first table) through (num_tables – 1),
where num_tables is the number of tables in the element tree.

Fill Patterns
A fill pattern controls the pattern by filling an area with pattern members. You can
select a grid to define this area.
If the pattern type in your element tree is PRO_GENPAT_FILL_DRIVEN, the
element tree must contain information about the grid and pattern members. The
following figure shows the elements of the Fill pattern:

Element Tree for a Fill Pattern

Element Trees: Patterns 971

The element PRO_E_GENPAT_FILL_TEMPLATE_TYPE specifies the type of
grid template that you want to use to create a fill pattern.
The element PRO_E_GENPAT_FILL_SPACING specifies the spacing between
the pattern members.
The element PRO_E_GENPAT_FILL_BORDERING specifies the minimum
distance between the centers of the pattern members and the area boundary.
The element PRO_E_GENPAT_FILL_ROT_ANG specifies the rotation angle of
the grid about the Csys origin.
The element PRO_E_GENPAT_FILL_RADIUS_INC specifies the radial spacing
for circular and spiral grids.
The following table lists the contents of each PRO_E_GENPAT_FILL element.
Element ID Values Element Name Data Type Valid Values
PRO_E_GENPAT_
FILL_TEMPLATE_
TYPE

Fill template PRO_VALUE_TYPE_
INT

PRO_GENPAT_
SQUARE_FILL, PRO_
GENPAT_DIAMOND_
FILL, PRO_GENPAT_
TRIANGLE_FILL,
PRO_GENPAT_
CIRCLE_FILL, PRO_
GENPAT_CURVE_
FILL, PRO_GENPAT_
SPIRAL_FILL

PRO_E_GENPAT_
FILL_SPACING

Fill spacing PRO_VALUE_TYPE
_DOUBLE

PRO_E_GENPAT_
FILL_BORDERING

Fill bordering PRO_VALUE_TYPE
_DOUBLE

PRO_E_GENPAT_
FILL_ROT_ANG

Fill angle PRO_VALUE_TYPE
_DOUBLE

PRO_E_GENPAT_
FILL_RADIUS_INC

Fill radius increment PRO_VALUE_TYPE
_DOUBLE

Direction Patterns
A direction pattern adds pattern members in one or two selected directions.
If the pattern type in the element tree is PRO_GENPAT_DIR_DRIVEN, the
element tree must contain the information about the two directions and the pattern
members.
The following figure shows the elements of a direction pattern:

972 Creo® Parametric TOOLKITUser’s Guide

Element Tree for a Direction Pattern

For a direction patter, use the elements PRO_E_DIR_PAT_DIR1_OPT and
PRO_E_DIR_PAT_DIR2_OPT to specify the pattern orientation in the first and
second direction, respectively. The orientation options are translation, rotation,
and coordinate system.
Depending on the selected orientation, choose references for the two directions
using the element PRO_E_DIRECTION_REFERENCE. To flip the selected
directions, use the elements PRO_E_DIR_PAT_DIR1_FLIP and PRO_E_DIR_

Element Trees: Patterns 973

PAT_DIR2_FLIP. The values of the references and the choice to flip the
direction are stored in the elements PRO_E_GENPAT_DIR1 and PRO_E_
GENPAT_DIR2.
The elements PRO_E_GENPAT_DIR1_INC and PRO_E_GENPAT_DIR2_INC
specify the spacing between the pattern members in the first and second
directions, respectively.
The elements with identifiers PRO_E_GENPAT_DIM_FIRST_DIR and PRO_E_
GENPAT_DIM_SECOND_DIR contain dimension information for the pattern
members in the first and second direction, respectively. These elements are array
elements that contain as many PRO_E_GENPAT_DIM_DIR_COMPOUND
elements as required to complete the pattern. For more information on the
elements PRO_E_GENPAT_DIR_DIM_COMPOUND, PRO_E_GENPAT_FIRST_
DIR_NUM_INST, and PRO_E_GENPAT_SECOND_DIR_NUM_INST, refer to
the section on Dimension Patterns on page 968.
The following table lists the contents of each PRO_E_GENPAT_DIR element.
Element ID Values Element Name Data Type Valid Values
PRO_E_DIR_PAT
_DIR1_OPT

Direction 1st option PRO_VALUE_TYPE_
INT

PRO_GENPAT_
TRANSLATIONAL,
PRO_GENPAT_DIR1_
ROTATIONAL

PRO_E_DIR_PAT
_DIR2_OPT

Direction 2nd option PRO_VALUE_TYPE_
INT

PRO_GENPAT_
TRANSLATIONAL,
PRO_GENPAT_DIR2_
ROTATIONAL

PRO_E_GENPAT_DIR1
and PRO_E_GENPAT_
DIR2

1st direction and 2nd
direction

Compound

PRO_E_DIRECTION_
COMPOUND

PRO_E_DIRECTION_
COMPOUND

Compound

PRO_E_DIRECTION_
REFERENCE

Direction reference PRO_VALUE_TYPE_
SELECTION

PRO_E_DIRECTION_
FLIP

Direction flip PRO_VALUE_TYPE_
INT

Value ignored

PRO_E_DIR_PAT
_DIR1_FLIP and PRO_
E_DIR_PAT
_DIR2_FLIP

1st direction flip and 2nd
direction flip

PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_GENPAT_
DIR1_INC and PRO_E_
GENPAT_DIR2_INC

1st direction increment
and 2nd direction
increment

PRO_VALUE_TYPE
_DOUBLE

PRO_E_GENPAT_DIM_
FIRST_DIR
and PRO_E_GENPAT_
DIM_SECOND_DIR

1st direction dimensions Array

974 Creo® Parametric TOOLKITUser’s Guide

Axis Patterns
Use the axis pattern to create a pattern by revolving a feature around a selected
axis. An axis pattern allows you to place members in the first direction or angular
direction and in the second direction or radial direction.
If the pattern type in your element tree is PRO_GENPAT_AXIS_DRIVEN, the
element tree must contain information about the pattern members in the two
directions and the axis around which you want to create a pattern.

Element Tree for an Axis Pattern

The element PRO_E_GENPAT_AXIS_REF specifies the axis around which you
want to create the pattern. The value of this element is PRO_VALUE_TYPE_
SELECTION, which is of type ProSelection.
The element PRO_E_GENPAT_AXIS1_INC specifies the spacing between the
pattern members in the first direction and is of type PRO_VALUE_TYPE_
DOUBLE. The first direction being angular, this distance is the angular distance
and the range is -360 through +360.

Element Trees: Patterns 975

The element PRO_E_GENPAT_AXIS2_INC specifies the spacing between the
pattern members in the second direction and is of type PRO_VALUE_TYPE_
DOUBLE. The second direction being radial, this distance is the linear distance and
the range is -999999999.9999 through +999999999.9999.
The elements PRO_E_AXIS_PAT_DIR1_FLIP and PRO_E_AXIS_PAT_
DIR2_FLIP flip the pattern members in the first and second direction,
respectively, around the axis. These elements are of type PRO_VALUE_TYPE_
INT.
The element PRO_E_GENPAT_AXIS_ANG_WHOLE specifies the angular extent
of the pattern members and is of type PRO_VALUE_TYPE_DOUBLE. The range
for this element is 0.0000 through 999999999.9999.
The value of each PRO_E_GENPAT_DIR_DIMENSION element is a
ProSelection object for the corresponding dimensions.
The elements with identifiers PRO_E_GENPAT_DIM_FIRST_DIR and PRO_E_
GENPAT_DIM_SECOND_DIR contain dimension information for the pattern
members in the first and second direction, respectively. For more information on
these elements, refer to the section on Dimension Patterns on page 968.

Curve Patterns
A curve pattern creates instances of a feature along a sketched curve or a datum
curve.
If the pattern type in your element tree is PRO_GENPAT_CRV_DRIVEN, the
element tree must contain information about the curve and the pattern members.

Element Tree for a Curve Pattern

The element PRO_E_GENPAT_CRV_PNT_REF specifies the curve to be used as
a reference.
After you select the reference, you can either select a sketched curve or draw a
curve using Sketcher. The element PRO_E_GENPAT_CRV_PLC_TYPE specifies
the curve types.
The element PRO_E_GENPAT_CRV_SPACING specifies the separation between
the pattern members.

976 Creo® Parametric TOOLKITUser’s Guide

The element PRO_E_GENPAT_CRV_NUMBER specifies the number of pattern
members to be created.
The element PRO_E_GENPAT_CRV_FLIP specifies flipping the curve used in
patterning.
The following table lists the contents of each PRO_E_GENPAT_CRV element.
Element ID Values Element Name Data Type Valid Values
PRO_E_GENPAT_CRV_
PNT_REF

Curve reference PRO_VALUE_TYPE_
SELECTION

PRO_E_GENPAT_CRV_
PLC_TYPE

Curve type PRO_VALUE_TYPE_
INT

PRO_E_GENPAT_CRV_
SPACING

Curve spacing PRO_VALUE_TYPE
_DOUBLE

0.0000 to
1000000.0000

PRO_E_GENPAT_CRV_
NUMBER

Curve number PRO_VALUE_TYPE_
INT

PRO_E_GENPAT_CRV_
FLIP

Curve flip PRO_VALUE_TYPE_
INT

0 or 1

Point Patterns
A point pattern creates a pattern by placing a pattern member at a particular point.
The following figure shows the elements of a point pattern:

Element Tree for a Point Pattern

If the pattern type in the element tree is PRO_GENPAT_POINT_DRIVEN, the
element tree must contain the information about the reference point and the actual
point at which you want to draw the pattern.
Use the element PRO_E_GENPAT_POINT_REF_TYPE to select the type of the
point at which you want to repeat the selected feature. This selected point is the
reference point for creating the pattern. You can select a point from the following
options:

• Internal or External sketch
• Datum point feature
After the type of the reference point is set, use the element PRO_E_GENPAT_
POINT_REF to select the actual point.
The following table lists the contents of each PRO_E_GENPAT_POINT element.

Element Trees: Patterns 977

Element ID Values Element Name Data Type Valid Values
PRO_E_GENPAT_
POINT_REF_TYPE

Point type PRO_VALUE_TYPE_
INT

PRO_GENPAT_REF_
SKETCH, PRO_
GENPAT_REF_POINT

PRO_E_GENPAT_
POINT_REF

Point reference PRO_VALUE_TYPE_
SELECTION

Selecting References for Pattern
The compound element PRO_E_PAT_GEOM_REFS contains information about
the references selected for the pattern leader.
The element PRO_E_PAT_GEOM_REFS allows you to only read the references
selected for pattern leader. You cannot select the references in Creo Parametric
TOOLKIT using these elements.
The following figure shows the element tree for selecting references for pattern
leader:

The compound element PRO_E_PAT_GEOM_REFS contains the following
elements:
• PRO_E_STD_SURF_COLLECTION_APPL—Specifies the collection of

surfaces that define the leader of the geometry pattern.
• PRO_E_PAT_CRV_DTM_REFS—Specifies the collection of curves and

datums that define the leader of the geometry pattern.
The following table lists the contents of PRO_E_PAT_GEOM_REFS element:
Element ID Values Element Name Data Type
PRO_E_STD_SURF_
COLLECTION_APPL

Reference Surfaces PRO_VALUE_TYPE_
SELECTION

PRO_E_PAT_CRV_DTM_REFS Reference Curves and Datums PRO_VALUE_TYPE_
SELECTION

Attachment Options for Pattern
The compound element PRO_E_FLEX_OPTS_CMPND contains information
about the attachment options for the pattern.

978 Creo® Parametric TOOLKITUser’s Guide

The element PRO_E_FLEX_OPTS_CMPND allows you to only read the
attachment options selected for a pattern. You cannot set the attachment option in
Creo Parametric TOOLKIT using these elements.
The following figure shows the element tree for attachment options for the
pattern:

The compound element PRO_E_FLEX_OPTS_CMPND contains the following
elements:
• PRO_E_FLEX_TRF_SEL_ATT_GEOM—Specifies if the selected rounds and

chamfers that attach the patterned geometry to the model must be patterned. 1
specifies that the rounds and chamfers are patterned. When you specify 0, the
selected attaching rounds and chamfers are removed.

• PRO_E_FLEX_ATTACH_GEOM—Specifies if the geometry of the pattern
members must be reattached to the model after patterning. 1 specifies that the
pattern geometry is attached to the model.

• PRO_E_FLEX_CR_RND_GEOM—Specifies if the round or chamfer geometry
of the pattern members must be recreated after patterning. 1 specifies that the
pattern geometry is recreated with rounds or chamfers.

The following table lists the contents of PRO_E_FLEX_OPTS_CMPND element:
Element ID Values Element Name Data Type Valid Values
PRO_E_FLEX_TRF_
SEL_ATT_GEOM

Transform selected
attachment geometry

PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_FLEX_
ATTACH_GEOM

Attachment option PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_FLEX_
CR_RND_GEOM

Round option PRO_VALUE_TYPE_
INT

0 or 1

Pattern Features
The compound element PRO_E_PAT_APPLICATIONS contains elements for
pattern applications. You can create a NC sequence using the elements under the
compound element PRO_E_PAT_MFG_TOOL_PATH. You can view the various
parameters of a pattern using the Pattern Recognition feature elements under the
compound element PRO_E_PAT_GPRF.

Element Trees: Patterns 979

NC Sequence Pattern
You can create an NC sequence by using the element tree for pattern applications.
The compound element PRO_E_PAT_MFG_TOOL_PATH described in this
section allows you to set various options related to manufacturing order and
fixtures used to pattern an NC sequence.
The following figure shows the element tree for pattern applications.

Pattern Element Tree for NC Sequence

The compound element PRO_E_PAT_MFG_TOOL_PATH contains the following
elements of type integer:

• PRO_E_PAT_MFG_ORD_LEADER—Specifies the number of the pattern
member that you want to use as the manufacturing leader. The default value of
this element is zero, which indicates that the pattern leader itself is the
manufacturing leader.

• PRO_E_PAT_MFG_ORDER_OPT—Specifies the criteria for selecting the
manufacturing order. The valid values are:

○ 1— Specifies the manufacturing order based on the pattern order. Set the
values of the following elements as:

◆ PRO_E_PAT_MFG_ORD_REVERSE—Specify 1 to reverse the order
of the pattern for the CL output.

980 Creo® Parametric TOOLKITUser’s Guide

◆ PRO_E_PAT_MFG_ORD_ALT_ROWS—Specify 1 to set the alternate
rows of the pattern in the same direction for the CL output. Here the
first and the second rows are in opposite directions with the first row
being in the direction of the pattern. The manufacturing leader is the
first tool path in the CL output.

◆ PRO_E_PAT_MFG_ORD_ALT_DIR—Specify 1 to generate the CL
output with the direction of the first row being treated as the direction
of the second row and the direction of second row treated as the
direction of the first row until the tool paths for all the pattern members
are generated. The manufacturing leader is the first tool path in the CL
output.

○ 2—Specifies the manufacturing order based on the shortest distance
between the pattern members.

○ 3—Select the manufacturing order for each of the pattern member from
the pattern UI.

Note
The functionality to select the manufacturing order for each pattern
member is currently not supported through Creo Parametric TOOLKIT.

• PRO_E_PAT_MFG_ORD_SHARED—Specify 1 to sequentially set the orders
for the 4-axis or 5-axis tool paths with a common Z-axis orientation.

• PRO_E_PAT_MFG_FIX_OFFSET—Specifies the parameters for the fixture
offset. Specify 1 to set the following fixture options:

○ PRO_E_PAT_MFG_FIX_OFF_INIT—Specifies the initial value of the
fixture Offset.

○ PRO_E_PAT_MFG_FIX_OFF_INCR—Specifies the increment value for
the fixture offset.

• PRO_E_PAT_MFG_SUB_OUTPUT—Specifies if subroutine pattern must be
created. Subroutines enable you to create NC sequences, place them as macros
at the beginning of the CL file, and then call them from the main body of the
CL file as many times as needed.

• PRO_E_PAT_MFG_SUB_OUT_MODE—Specifies the output mode for the CL
data for the subroutine. Pass the value 1 for absolute mode and 2 for
incremental mode.

• PRO_E_PAT_MFG_SUB_OUT_MULTAX—Specifies if the Multax mode must
be selected. Multax is related to cutter location output format where it puts the
post-processor in the multi-axis output mode to process the i, j, k vector. When

Element Trees: Patterns 981

in multi-axis output mode, Creo NC outputs the i, j, k vector even when the
tool is in 0, 0, 1 orientation.

In Multax mode, the system will output transformed CL data rather than
outputting rotate table commands.

• PRO_E_PAT_MFG_SUB_OUT_COPYCL—Specifies if the subroutine pattern
definitions in CL output must be temporarily suppressed. The system will
output CL data without the subroutine definitions and calls.

Refer to Creo NC online Help for more information on subroutines.
The following table lists the contents of each PRO_E_PAT_MFG_TOOL_PATH
element.
Element ID Values Element Name Data Type Valid Values
PRO_E_PAT_MFG_
ORD_LEADER

Number of the leader PRO_VALUE_TYPE_
INT

0 <= value < number
of instances

PRO_E_PAT_MFG_
ORDER_OPT

Order options PRO_VALUE_TYPE_
INT

1, 2, 3 (if you specify 3,
order may be selected
only through Creo
Parametric UI)

PRO_E_PAT_MFG_
ORD_REVERSE

Reverse option PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_PAT_MFG
_ORD_ALT_ROWS

Alternate rows PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_PAT_MFG
_ORD_ALT_DIR

Alternate direction PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_PAT_MFG
_ORD_SHARED

Shared orientation PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_PAT_MFG
_FIX_OFFSET

Fixture offsets PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_PAT_MFG
_FIX_OFF_INIT

Initial fixture offsets PRO_VALUE_TYPE_
INT

1 <= value

PRO_E_PAT_MFG
_FIX_OFF_INCR

Fixture offsets increment PRO_VALUE_TYPE_
INT

1 <= value

PRO_E_PAT_MFG_
SUB_OUTPUT

Subroutine option PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_PAT_MFG_
SUB_OUT_MODE

Subroutine mode PRO_VALUE_TYPE_
INT

1 or 2

PRO_E_PAT_MFG_
SUB_OUT_MULTAX

Subroutine multax PRO_VALUE_TYPE_
INT

0 or 1

For more information on the patterning options related to an NC sequence, refer to
Manufacturing section of the Creo Parametric help.

Geometry Pattern Recognition
You can read the Pattern Recognition feature parameters using the element PRO_
E_PAT_GPRF described in this section. You cannot create the Pattern
Recognition feature in Creo Parametric TOOLKIT using these elements.

982 Creo® Parametric TOOLKITUser’s Guide

The following figure shows the element tree for Geometry Pattern Recognition
application:

Pattern Element Tree for Geometry Pattern Recognition

The pattern recognition compound element PRO_E_PAT_GPRF contains the
following elements:

• PRO_E_PAT_GPRF_TYPE—Specifies the type of geometry pattern to be
recognized: Identical or Similar. It takes the integer values: 0 for Identical and
1 for Similar.

• PRO_E_PAT_GPRF_TRF_TYPE—Specifies the recognized geometry
patterns. It takes the integer value: 0 for Direction, 1 for Axis and 2 for Spatial.

• PRO_E_PAT_GPRF_DIR1_TRF—Specifies the first direction of
transformation. It takes the following integer values from the enumerated type
ProGenPatternDirectionType:

○ PRO_GENPAT_TRANSLATIONAL—Specifies –1 for translational
pattern.

○ PRO_GENPAT_DIR1_ROTATIONAL—Specifies 58 for first direction
for rotational pattern.

Element Trees: Patterns 983

• PRO_E_PAT_GPRF_DIR1_NUM_INST—Specifies the number of members
in the first direction or in the angular direction.

• PRO_E_PAT_GPRF_DIR1_SPACING—Specifies the spacing between
members in the first direction or the angle between members in the angular
direction.

• PRO_E_PAT_GPRF_DIR2_TRF—Specifies the second direction of
transformation. It takes the following integer values from the enumerated type
ProGenPatternDirectionType:

○ PRO_GENPAT_TRANSLATIONAL—Specifies –1 for translational
pattern.

○ PRO_GENPAT_DIR2_ROTATIONAL—Specifies 60 for second direction
for rotational pattern.

• PRO_E_PAT_GPRF_DIR2_NUM_INST—Specifies the number of members
in the second direction or in the angular direction.

• PRO_E_PAT_GPRF_DIR2_SPACING—Specifies the spacing between
members in the second direction or the angle between members in the angular
direction.

• PRO_E_DIR_GPRF_MOVE_OPT—Specifies if a pattern of copy-move
features must be created by the geometry pattern recognition feature. Specify
1 if you want the number of pattern members and spacing to be modified.

• PRO_E_PAT_GPRF_USE_SRF—Specifies 1 if the members in the geometry
pattern recoginition feature have been limited with surfaces. This element
restricts the pattern recognition to a limited region on the model.

• PRO_E_STD_SURF_COLLECTION_APPL—Specifies the collection of
surfaces that define the leader of the geometry pattern to be recognized.

• PRO_E_PAT_GPRF_USE_SEC—Specifies 1 if a sketch has been used to
limit the members in the geometry pattern recognition feature.

The following table lists the contents of each PRO_E_PAT_GPRF element.
Element ID Values Element Name Data Type Valid Values
PRO_E_PAT_GPRF_
TYPE

Type of recognized
pattern

PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_PAT_GPRF_
TRF_TYPE

Type of transformation PRO_VALUE_TYPE_
INT

0, 1 or 2

PRO_E_PAT_GPRF
_DIR1_TRF

First transformation
direction

PRO_VALUE_TYPE_
INT

—1, 58 or 60

PRO_E_PAT_GPRF_
DIR1_NUM_INST

Number of instances in
the first direction

PRO_VALUE_TYPE_
INT

PRO_E_PAT_GPRF_
DIR1_SPACING

Spacing in the first
direction

PRO_VALUE_TYPE
_DOUBLE

PRO_E_PAT_
GPRF_DIR2_TRF

Second transformation
direction

PRO_VALUE_TYPE_
INT

—1, 58 or 60

984 Creo® Parametric TOOLKITUser’s Guide

Element ID Values Element Name Data Type Valid Values
PRO_E_PAT_GPRF_
DIR2_NUM_INST

Number of instances in
the second direction

PRO_VALUE_TYPE_
INT

PRO_E_PAT_GPRF_
DIR2_SPACING

Spacing in the second
direction

PRO_VALUE_TYPE
_DOUBLE

PRO_E_DIR
_GPRF_MOVE_OPT

Create pattern of move
features

PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_PAT_
GPRF_USE_SRF

Use surface for region
definition

PRO_VALUE_TYPE_
INT

0 or 1

PRO_E_STD_SURF_
COLLECTION_APPL

Reference surfaces PRO_VALUE_TYPE_
SELECTION

PRO_E_PAT_
GPRF_USE_SEC

Sketch for region
definition

PRO_VALUE_TYPE_
INT

0 or 1

For more information on the geometry pattern recognition, refer to the Creo
Parametric help.

Obtaining the Element Tree for a Pattern
Function Introduced:

• ProPatternElemtreeCreate()
To obtain the element tree for a pattern, call the function
ProPatternElemtreeCreate(). You can then use the element tree read-
access functions described in the sections Feature Elements on page 774 (on
page 29 - 13) and Feature Element Paths on page 772 (on page 29 - 11), such as
the functions ProElement*Get(), ProElement*Visit(), and
ProElementArrayGet()).

Note
Inspection of Fill, Axis, and Directional patterns is not supported via the
element tree in Pro/ENGINEER Wildfire 2.0.
ProPatternElemtreeCreate() returns PRO_TK_NOT_
IMPLEMENTED for fill patterns.

Visiting and Creating a Pattern
Functions Introduced:

• ProPatternMemberVisit()
• ProPatternMembersGet()

Element Trees: Patterns 985

• ProPatternCreate()
• ProPatternInAssemblyCreate()
The function ProPatternMemberVisit() visits the feature members in a
pattern. This function takes the visit action function
ProFeatureVisitAction() and the filter action function
ProFeatureFilterAction() as its input arguments. The function
ProFeatureFilterAction() is a generic action function for filtering
features from a pattern. It returns the filter status of the features in the pattern.
This status is used as an input argument by the function
ProFeatureVisitAction().
The function ProPatternMembersGet() returns the feature members in a
pattern. For a group pattern, the output argument is a group pattern feature.
When your element tree is complete, create the pattern by calling the function
ProPatternCreate(). This function requires as input the feature
(ProFeature) to be patterned and the pattern class (feature or group) of the new
pattern.
To obtain the ProPattern handle for the new pattern, call the function
ProFeaturePatternGet() with the same input feature as
ProPatternCreate(). For more information on the function
ProFeaturePatternGet(), refer to the section Manipulating Patterns on
page 144 in the Core: Features on page 131 chapter.
The function ProPatternInAssemblyCreate() creates a pattern in the
assembly that is provided in the element tree. The input parameters are as follows:

• p_component_path—The component path specified using the structure
ProAsmcomppath.

• pattern_feature—Feature defined by the ProFeature object.
• pat_class—Pattern class defined by the enumerated data type

ProPatternClass.
• elem_tree—The root element of the pattern element tree.
You must specify the pattern object for this function because a feature pattern can
be a part of both a group pattern and a feature pattern.
The function returns the error PRO_TK_ABORT if the pattern feature creation
failed. You must ensure that you use a new pattern name every time you create a
new pattern.

986 Creo® Parametric TOOLKITUser’s Guide

43
Element Trees: Sections

Overview .. 988
Creating Section Models .. 988

A section is a parametric two-dimensional cross section used to define the shape
of three-dimensional features, such as extrusions. In Creo Parametric, you create a
section interactively using Sketcher mode. In a Creo Parametric TOOLKIT
application, you can create sections completely programmatically using the
functions described in this section.

987

Overview
A section is a parametric two-dimensional model used to define the shape of
three-dimensional features in parts and assemblies. When using Creo Parametric
interactively, you create a section using Sketcher mode. In a Creo Parametric
TOOLKIT application, you can create sections completely programmatically
using the functions described in this section.
Sections fall into two types: 2D and 3D. Both types are represented by the object
ProSection (an opaque handle) and manipulated by the same functions.
The difference between the types arises out of the context in which the section is
being used, and affects the requirements for the contents of the section and also of
the feature element tree in which it is placed when creating a sketched feature.
Put simply, a 2D section is self-contained, whereas a 3D section contains
references to 3D geometry in a parent part or assembly.
You can use Intent Datums such Intent Axis, Intent Point, Intent Plane, and Intent
Coordinate System as references for sketcher dimensions. You can use Intent
Point and Intent Axis to create sections using projections.
In a Creo Parametric TOOLKIT application, you can work with a section either in
an Intent Manager or a non-Intent Manager mode. In the non-Intent Manager
mode, if you make any changes to the section, you must solve and regenerate the
section to apply the changes. On the other hand, in the Intent Manager mode, all
the changes are applied immediately.
You can create section constraints programmatically using the Intent Manager
property. This corresponds to creating sections within the Intent Manager mode in
Creo Parametric.
This chapter is concerned with 2D sections, which are the simplest. The extra
steps required to construct a 3D section are described in the chapter Element
Trees: Sketched Features on page 1004, which follows this one.

Creating Section Models
A 2D section, because it is self-contained, may be stored as a Creo Parametric
model file. It then has the extension .sec.
The steps required to create and save a section model using Creo Parametric
TOOLKIT follow closely those used in creating a section interactively using
Sketcher mode in Creo Parametric.

988 Creo® Parametric TOOLKITUser’s Guide

To Create and Save a Section Model
1. Allocate the two-dimensional section and define its name.
2. Add section entities (lines, arcs, splines, and so on) to define the section

geometry, in section coordinates.
3. Add section dimensions that parametrically drive the shape of the entities.
4. Solve and regenerate the section.
5. Save the section.
When you are creating a section that is to be used in a sketched feature, Steps 1
and 5 will be replaced by different techniques. these techniques are described fully
in the chapter on Element Trees: Sketched Features on page 1004.
The steps are described in more detail in the following sections.

Allocating a Two-Dimensional Section
Functions Introduced:

• ProSection2DAlloc()
• ProSectionFree()
• ProSectionNameSet()
• ProSectionNameGet()
A two-dimensional section is identified in Creo Parametric TOOLKIT by an
opaque pointer called ProSection. This type, and the functions in this section,
are declared in the include file ProSection.h.
The function ProSection2DAlloc() allocates memory for a new, standalone
section and outputs a ProSection handle to identify it. All the other Creo
Parametric TOOLKIT functions that operate on sections take this ProSection
as their first input argument.
The function ProSectionNameSet() enables you to set the name of a
section. Calling this function places the section in the Creo Parametric namelist
and enables it to be recognized by Creo Parametric as a section model in the
database.
The following code fragment shows how to use these two functions.

ProSection section;
ProName wname;

ProSection2DAlloc (§ion);
ProStringToWstring (wname, "demo");
ProSectionNameSet (section, wname);

Element Trees: Sections 989

Such sections created programmatically are in the non-Intent Manager mode by
default.
To free a section allocated with ProSection2DAlloc(), you must use
ProSectionFree().

Setting the Mode of a Section
Functions Introduced:

• ProSectionIntentManagerModeGet()
• ProSectionIntentManagerModeSet()
Use the function ProSectionIntentManagerModeGet() to check if the
Intent Manager property is ON or OFF for the specified section.
Use the function ProSectionIntentManagerModeSet() to set the Intent
Manager property to ON or OFF for the specified section. This function must be
called before using the other Creo Parametric TOOLKIT functions to access
sections with the Intent Manager property set to ON.

Copying the Current Section
Functions Introduced:

• ProSectionActiveGet()
• ProSectionActiveSet()
Use the function ProSectionActiveGet() to create a copy of the section
that you are using currently; this copy is created within the same Sketcher session.
The mode of such a section depends on the current Sketcher mode. Starting from
Pro/ENGINEERWildfire 5.0, the Intent Manager mode is the default sketcher
mode. Use the function ProSectionFree() to free the memory allocated to
the section obtained with the function ProSectionActiveGet().
Use the function ProSectionActiveSet() to set the specified section as the
current active Sketcher section.

Note
The function call ProSectionActiveSet() makes the Undo and Redo
menu options available in Creo Parametric.

Section Constraints
Functions Introduced:

990 Creo® Parametric TOOLKITUser’s Guide

• ProSectionConstraintsIdsGet()
• ProSectionConstraintsGet()
• ProSectionConstraintDeny()
• ProSectionConstraintCreate()
• ProSectionConstraintDelete()
The function ProSectionConstraintsIdsGet() returns an array of
section constraint identifiers that currently exist in the specified section.

Note
You must solve the section first by calling the function
ProSectionSolve() to get the section constraints. Because adding or
deleting section entities might invalidate the current list of section constraint
identifiers, you must solve the section again to get the up-to-date list.

If a section has not been fully dimensioned with dimensions created explicitly by
the user, the Sketcher will make assumptions in order to solve the section. If the
Sketcher can assume enough constraints to find a unique solution to the section, it
solves the section successfully.
However, you might want to disable certain Sketcher constraints to have more
control over the way the section is dimensioned and solved. To do this, use the
function ProSectionConstraintDeny() to deny a certain section
constraint.

Note
The function ProSectionConstraintDeny() is not supported for
sections that have the Intent Manager property set to ON.

The function ProSectionConstraintsGet() returns information about the
specified section constraint. It takes as input the section handle and the constraint
identifier for which the information is requested. The function returns details
about the section constraint including its type, status, and references. The
constraint types are defined in the include file ProSecConstr.h. The
following table lists the possible constraint types.
Constraint Type Description
PRO_CONSTRAINT_SAME_POINT Make the points coincident.
PRO_CONSTRAINT_HORIZONTAL_ENT Make the entity horizontal.
PRO_CONSTRAINT_VERTICAL_ENT Make the entity vertical.
PRO_CONSTRAINT_PNT_ON_ENT Place the point on the entity.

Element Trees: Sections 991

Constraint Type Description
PRO_CONSTRAINT_TANGENT_ENTS Make the entities tangent.
PRO_CONSTRAINT_ORTHOG_ENTS Make the entities perpendicular.
PRO_CONSTRAINT_EQUAL_RADII Make the arcs or circles of equal radius.
PRO_CONSTRAINT_PARALLEL_ENTS Make the entities parallel.
PRO_CONSTRAINT_EQUAL_SEGMENTS Make the segments of equal length.
PRO_CONSTRAINT_COLLINEAR_LINES Make lines co-linear.
PRO_CONSTRAINT_90_ARC Make the arcs 90 degrees.
PRO_CONSTRAINT_180_ARC Make the arcs 180 degrees.
PRO_CONSTRAINT_HORIZONTAL_ARC Make the arcs horizontal.
PRO_CONSTRAINT_VERTICAL_ARC Make the arcs vertical.
PRO_CONSTRAINT_SYMMETRY Impose symmetry.
PRO_CONSTRAINT_SAME_COORD Assume the endpoints and centers of arcs to have the

same coordinates.

The possible types of constraint status are as follows:

• PRO_TK_CONSTRAINT_DENIED—The constraint is denied. This gives you
more control over the section.

• PRO_TK_CONSTRAINT_ENABLED—The constraint is enabled. The
Sketcher uses the predefined assumption.

Use the function ProSectionConstraintCreate() to create constraints
between entities in the specified section. Use the function
ProSectionConstraintDelete() to delete the specified section
constraint.

Note
The function ProSectionConstrainCreate() works only if the Intent
Manager property of the specified section is set to ON.

Solving and Regenerating a Section
Functions Introduced:

• ProSectionEpsilonGet()
• ProSectionEpsilonSet()
• ProSectionSolve()
• ProSectionSolveRigid()
• ProSecdimValueGet()

992 Creo® Parametric TOOLKITUser’s Guide

• ProSecdimValueSet()
• ProSectionRegenerate()
Although the action of the Regenerate command in Sketcher mode is seen as a
single operation by the Creo Parametric user, it is in fact composed of two distinct
actions. These two operations are invoked separately from a Creo Parametric
TOOLKIT application. The two operations are as follows:

• Solving—Calculating the way in which the geometry of the entities is driven
by the dimensions. It is at this stage that Sketcher constraints are applied,
under- or over-dimensioning is discovered and reported, and values are
assigned to new dimensions.

• Regenerating—Reconstructing the geometry of the section to obey the current
dimension values.

You invoke these stages using the functions ProSectionSolve() and
ProSectionRegenerate(), respectively.

Note
The ProSectionSolve() and ProSectionRegenerate() are not
supported for sections that have the Intent Manager property set to ON.

You must solve a programmatically-created section before using it to build three-
dimensional geometry. You need to regenerate the section only if you have
explicitly modified the dimension values since you solved the section.
When you create a section interactively using Sketcher mode, you normally adjust
the values of dimensions after the first regeneration, because the initial values
assigned to them correspond to the free-hand, initial sketch and are therefore not
exact. When you create a section with Creo Parametric TOOLKIT , the entities are
usually created with exactly the geometry needed in the finished section.
Therefore, although solving is always necessary, it is not usually necessary to
explicitly reset dimension values or regenerate the section.
Solving a section in Creo Parametric TOOLKIT involves applying the same
constraints used in interactive Sketcher mode. Creo Parametric TOOLKIT , like
the Sketcher, identifies situations of near symmetry in the section, assumes them
to be intended as exact symmetry, and constrains them to be symmetrical in future
regenerations. For example, lines that are nearly the same length are assumed to
be intended to be the same length, and are therefore constrained to be so.
The function ProSectionSolveRigid() solves the specified section by
fixing the coordinates of all the section entities with respect to a coordinate
system. In this way, the section entities do not have to be solved individually. To
use this function, a coordinate system within the section must exist; the function
uses the first coordinate system found in the section.

Element Trees: Sections 993

Note
You must ensure that the added section entities are correct because potential
errors will not be solved and may show up only during later stages.

When there are a lot of section entities, this function dramatically reduces the
amount of time required to solve a section.

Note
The function ProSectionSolveRigid() is not supported for sections
that have the Intent Manager property set to ON.

Epsilon is the tolerance value, which is used to set the proximity for automatic
finding of constraints. Use the function ProSectionEpsilonSet() to set the
value for epsilon. For example, if your section has two lines that differ in length
by 0.5, set the epsilon to a value less than 0.5 to ensure that
ProSectionSolve() does not constrain the lines to be the same length. To get
the current epsilon value for the section, use the function
ProSectionEpsilonGet().
Please note the following important points related to epsilon:
• Epsilon determines the smallest possible entity in a section. If an entity is

smaller than epsilon, then the entity is considered to be a degenerate entity.
Degenerate entity is an entity which cannot be solved. It causes solving and
regenerating of the section to fail. For example, a circle with radius 0 or line
with length 0 are considered as degenerate entities.

• There are many types of constraints, and epsilon has a different meaning for
each type. For example, consider two points. For the constraint PRO_
CONSTRAINT_SAME_POINT, epsilon is the minimum distance between the
two points beyond which the points will be treated as separate points. If the
distance between the two points is within the epsilon value, the two points are
treated as coincident points.

• Creo Parametric has a default value set for epsilon. This value is also used in
the Sketcher user interface.

• If the input geometry is accurate and the user does not want the solver to
change it by adding constraints, then set the value of epsilon to 1E-9.

• If the input geometry is nearly accurate and the user wants the solver to guess

994 Creo® Parametric TOOLKITUser’s Guide

the intent by adding constraints and further aligning the geometry, then in this
case epsilon should reflect the maximal proximity between geometry to be
constrained.

• You cannot set the value of epsilon to zero.
The functions ProSecdimValueGet() and ProSecdimValueSet()
enable you to access the value of a dimension. If you change dimension values,
you must call ProSectionRegenerate() to recalculate the new section
shape.

Automatic Section Dimensioning
Function Introduced:

• ProSectionAutodim()
The function ProSectionAutodim() is used to automatically add needed
dimensions to a section to make it fully constrained. It takes as input a
ProSection handle and a pointer to the opaque structure called
ProWSecerror. Before calling this function, be sure to allocate the pointer to
ProWSecerror using ProSecerrorAlloc(). Any errors resulting from the
call to the function ProSectionAutodim() are stored in the
ProWSecerror structure. To free the allocated memory, call the function
ProSecerrorFree().
The ProSectionAutodim() function can be used on a section where no
dimensions have been created yet, as well as on a partially dimensioned section.
If dimensions have been added successfully, the function
ProSectionAutodim() also solves the input section.

Note
The function ProSectionAutodim() is not supported for sections that
have the Intent Manager property set to ON.

Adding Section Entities
Functions Introduced:

• ProSectionEntityAdd()
• ProSectionEntityDelete()
• ProSectionEntityReplace()

Element Trees: Sections 995

The function ProSectionEntityAdd() takes as input the ProSection
that identifies the section, and a pointer to a user-visible structure called
Pro2dEntdef, which defines the entity.
The Pro2dEntdef structure is a generic structure that contains only a field
indicating the type of entity. For each type of entity, there is a dedicated structure
that has the entity type as its first field; these structures are named
Pro2dLinedef, Pro2dArcdef, and so on. The Creo Parametric TOOLKIT
application builds up the structure appropriate to the entity to be added, and inputs
it to ProSectionEntityAdd() by casting its address to (Pro2dEntdef*).
The entity structures are declared in the include file Pro2dEntdef.h.
The function ProSectionEntityAdd() outputs an integer that is the
identifier of the new entity within the section. The Creo Parametric TOOLKIT
application needs these values because they are used to refer to entities when
adding dimensions.
The following code fragment demonstrates how to add a single line entity.

Pro2dLinedef line;
int line_id;

line.type = PRO_2D_LINE;
line.end1[0] = 0.0;
line.end1[1] = 0.0;
line.end2[0] = 10.0;
line.end2[1] = 0.0;

ProSectionEntityAdd (section,
(Pro2dEntdef*)&line, &line_id);

The function ProSectionEntityDelete() enables you to delete a section
entity from the specified section.
The function ProSectionEntityReplace() enables you to replace an
existing entity from the specified section with another entity in the same section.
This functionality enables you to redefine an existing section programmatically.
To use the function ProSectionEntityReplace(), you must first add the
new entity to the section (to get its identifier), then replace the old entity identifier
with the new one.

Accessing Selection Reference of the Entity
Functions Introduced:

• ProSectionEntityGetSelected()
The function ProSectionEntityGetSelected() provides the references
of the selected entity. The input arguments of this function are:

996 Creo® Parametric TOOLKITUser’s Guide

• handle—The section handle.
• entity_id—The identifier of the section entity.
• pnt_type—Specifies the type of point selection on the entity. The valid values

are:

○ PRO_ENT_WHOLE—Specifies the whole entity.
○ PRO_ENT_START—Specifies the start point of the entity.
○ PRO_ENT_END—Specifies the end point of the entity.
○ PRO_ENT_CENTER—Specifies the center of the entity.
○ PRO_ENT_LEFT_TANGENT—Specifies the point on the entity, where the

normalized param value is 0.5.
○ PRO_ENT_RIGHT_TANGENT—Specifies the point on the entity, where

the normalized param value is 0.0.
○ PRO_ENT_TOP_TANGENT—Specifies the point on the entity, where the

normalized param value is 0.25.
○ PRO_ENT_BOTTOM_TANGENT—Specifies the point on the entity, where

the normalized param value is 0.75.
• pnt—Specifies the location of the point on the entity geometry.
• idx_pnt—Specifies the index of interpolation point relative to pnt_type, if the

section entity is a spline. In this case the value of the argument pnt is ignored.
Specify PRO_VALUE_UNUSED if the entity is not a spline.

This function creates the selection object programmatically for use in functions
that require selection references of entities as the input.

Construction Entities
Functions Introduced:

• ProSectionEntityIsConstruction()
• ProSectionEntityConstructionSet()
Use the function ProSectionEntityIsConstruction() to determine if
the specified entity is a construction entity. Construction entities are used for
reference and are not used to create feature geometry.
The function ProSectionEntityConstructionSet() sets the specified
entity to be of type construction.

Modifying Entities
Functions Introduced:

Element Trees: Sections 997

• ProSectionEntityIntersectionGet()
• ProSectionEntityParamEval()
• ProSectionEntityCorner()
• ProSectionEntityDivide()
The function ProSectionEntityIntersectionGet() returns the
intersection points between the two section entities. Use the function
ProArrayFree() to free the memory.
The function ProSectionEntityParamEval() to find the corresponding
normalized parameter on the curve, given the XYpoint.
The function ProSectionEntityCorner() trims the selected entities to
each other. The selected entities may not intersect with each other. The entities
may be trimmed by either cutting them or extending them.
Use the function ProSectionEntityDivide() to divide a section entity
into two or more new entities. If the entity is dimensioned then delete the
dimensions before dividing it.

Adding Section Dimensions
Functions Introduced:

• ProSecdimCreate()
• ProSecdimDelete()
• ProSecdimDiameterSet()
• ProSecdimDiameterClear()
• ProSecdimDiameterInquire()
• ProSecdimStrengthen()
• ProSecdimLockSet()
• ProSecdimIsLocked()
When you create a dimension interactively in Sketcher mode, you select entities
and points on entities and Creo Parametric deduces from those picks what type of
dimension is being added. When you add a dimension using the function
ProSecdimCreate(), you must specify the dimension type. The dimension
types are defined in the include file ProSecdimTypes.h. The following table
lists the possible values.
Constant Description
PRO_TK_DIM_LINE Length of a line
PRO_TK_DIM_LINE_POINT Distance between a line and a vertex
PRO_TK_DIM_RAD Radius of an arc or a circle
PRO_TK_DIM_DIA Diameter of an arc or a circle

998 Creo® Parametric TOOLKITUser’s Guide

Constant Description
PRO_TK_DIM_LINE_LINE Distance between two lines
PRO_TK_DIM_PNT_PNT Distance between two points
PRO_TK_DIM_PNT_PNT_HORIZ Distance between two points (X coordinates)
PRO_TK_DIM_PNT_PNT_VERT Distance between two points (Y coordinates)
PRO_TK_DIM_AOC_AOC_TAN_HORIZ Horizontal distance between two arcs or circles
PRO_TK_DIM_AOC_AOC_TAN_VERT Vertical distance between two arcs or circles
PRO_TK_DIM_ARC_ANGLE Angle of an arc
PRO_TK_DIM_LINES_ANGLE Angle between two lines
PRO_TK_DIM_LINE_AOC Distance between a line and an arc or a circle
PRO_TK_DIM_LINE_CURVE_ANGLE Angle between a spline and a line
PRO_TK_DIM_3_PNT_ANGLE Angular dimension defined by three points
PRO_TK_DIM_DIA_LINEAR Linear diameter dimension
PRO_TK_DIM_PNT_PNT_ORI Distance between two points in specified orientation
PRO_TK_DIM_AOC_AOC_ORI Distance between two arcs or circles in specified

orientation
PRO_TK_DIM_TOT_INC_ANG Total included angle
PRO_TK_DIM_ANG_POLAR Angle between the x-axis and a vector. The vector is

defined by two points

The function ProSecdimCreate() takes several input arguments, including
the following:

• int entity_ids[]—An array of integers that are the identifiers of the section
entities to which the dimension refers.

• ProSectionPointType point_types[]—A dimension can reference a
vertex (the end of an entity), the center of an arc or a circle, a line or circle
itself (the whole entity), or tangent points on an arc or a circle. To specify
these types of dimension reference points, specify the appropriate point type
constant for each dimension in the entity_ids array. These constants are
listed in the include file ProSecdimType.h.

• int num_ids—The number of section dimension identifiers in the entity_
ids array. This is typically 1 or 2 (line length versus a point-to-point
dimension).

• ProSecdimType dim_type—The type of section dimension to create, as
listed in the ProSecdimType.h file.

• Pro2dPnt place_pnt—The two-dimensional location of the dimension label.
This is equivalent to the middle mouse button pick when you are using
Sketcher mode.

Note that the position of this label can sometimes determine the exact role of
the dimension. For example, a dimension of type PRO_TK_DIM_LINES_
ANGLE may refer to the acute or obtuse angle between two lines, depending
on where the label is positioned.

Element Trees: Sections 999

The ProSecdimCreate() function outputs the identifier of the dimension,
which is needed to identify the dimension if its value needs to be changed at a
later time.

Note
The dimensions do not need to be given values to create a complete and
correct section of any form. See the section Solving and Regenerating a
Section on page 992 for a detailed explanation of the assignment of values.

The following code fragment shows how to create a dimension for the length of a
line entity.

int line_id[1], width_dim;
Pro2dPnt point;
ProSectionPointType pnt_type[1];

line_id[0] = 1;
point[0] = 5.0;
point[1] = 1.0;
pnt_type[0] = PRO_ENT_WHOLE;

ProSecdimCreate (section, line_id, pnt_type, 1,
PRO_TK_DIM_LINE, point,
&width_dim);

The following code fragment shows how to create a dimension for the horizontal
distance between two arc ends.

int arc1_id, arc2_id, arc1_end2, arc2_end1,
dist_dim;

Pro2dPnt point;
int entities[2];
ProSectionPointType pnt_types[2];

pnt_types[0] = PRO_ENT_START;
pnt_types[1] = PRO_ENT_END;
entity[0] = arc1_end2;
entity[1] = arc2_end1;
point[0] = 5.0;
point[1] = 5.0;

ProSecdimCreate (section, entities, pnt_types, 2,
PRO_TK_DIM_PNT_PNT_HORIZ, point, &dist_dim);

The ProSecdimDiam...() functions extend the dimension creation
functionality to include diameters for sections used to create revolved features.
Function ProSecdimDiamSet() converts a specified section dimension
(between a centerline and another entity) into a diameter dimension.

1000 Creo® Parametric TOOLKITUser’s Guide

ProSecdimDiamClear() does the opposite, converting a diameter dimension
into a regular one. Use function ProSecdimDiamInquire() to determine if a
dimension is a diameter dimension.
The function ProSecdimStrengthen() converts a weak dimension to a
strong dimension.
You can lock or unlock sketch dimensions. Locking of dimensions avoids
modifications to the sections outside the sketcher mode. The function
ProSecdimIsLocked() determines whether a sketch dimension is locked.
Use the function ProSecdimLockSet() to lock or unlock a specified
dimension.

Example 1: Creating Spline Point Dimensions in
Sections
The sample code in Ug3DSectSplineDim.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a Section dimension between the first and last interpolation point of
a Spline.

Error Reporting
Functions Introduced:

• ProSecerrorAlloc()
• ProSecerrorCount()
• ProSecerrorMsgGet()
• ProSecerrorItemGet()
• ProSecerrorAdd()
• ProSecerrorFree()
Both ProSectionSolve() and ProSectionRegenerate() might result
in a list of errors about the entities in the section. These errors are stored in an
opaque structure called ProWSecerror. Before calling one of these functions,
use ProSecerrorAlloc() to allocate memory for an error structure, then pass
the pointer to the error structure to ProSectionSolve() or
ProSectionRegenerate().
You can add application-specific section errors to an error structure. To do this,
call the function ProSecerrorAdd().
The function ProSecerrorCount() tells you how many error messages are
contained in the error structure. The errors themselves are identified by sequential
integers, so you can step through the list. Use the function
ProSecerrorMsgGet() to get the text of each message. Use the function

Element Trees: Sections 1001

ProSecerrorItemGet() to get the identifier of the problem entity that
caused a specific error message. To free the allocated memory, call the function
ProSecerrorFree().
A Creo Parametric TOOLKIT application that builds sections generally aims to
make them complete and correct without any interactive help from the Creo
Parametric user. Therefore, the errors reported by the functions
ProSectionSolve() and ProSectionRegenerate() are directed at the
Creo Parametric TOOLKIT developer as a debugging aid, rather than at the final
Creo Parametric user.
The following code fragment shows a call to ProSectionSolve() and an
analysis of the errors produced.
ProWSecerror errors;
int n_errors, e;
ProError status;
ProMsg wmsg;
char msg[PRO_PATH_SIZE];
int ent_id;

ProSecerrorAlloc (&errors);
status = ProSectionSolve (section, &errors);
if (status != PRO_TK_NO_ERROR)
{

ProSecerrorCount (&errors, &n_errors);
for (e = 0; e < n_errors; e++)
{

ProSecerrorMsgGet (errors, e, wmsg);
ProWstringToString (msg, wmsg);
ProSecerrorItemGet (errors, e, &ent_id);
printf ("%s: Problem ID, %d\n", msg, ent_id);

}
ProSecerrorFree (&errors);
return (-1);

}

Retrieving and Saving a Section
Functions Introduced:

• ProFeatureNumSectionsGet()
• ProFeatureSectionCopy()
To retrieve a section from disk, use the function ProMdlnameRetrieve()
with the model type PRO_2DSECTION. You can save a section to a file using the
function ProMdlSave().
You can also retrieve or copy a section from a feature. The function
ProFeatureNumSectionsGet() finds the number of sections in the
specified feature. Given a feature handle and section index,

1002 Creo® Parametric TOOLKITUser’s Guide

ProFeatureSectionCopy() initializes and returns a section handle to a
section copied from the specified feature. Memory for this section is controlled by
the Creo Parametric TOOLKIT application and must therefore be freed by a call
to ProSectionFree().

Example 1: Creating a Section Model
The sample code in UgSectModelCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat
illustrates how to use all the functions described in this chapter to create a section
model.

Element Trees: Sections 1003

44
Element Trees: Sketched Features

Overview .. 1005
Creating Features Containing Sections ... 1006
Creating Features with 2D Sections ... 1007
Verifying Section Shapes ... 1008
Creating Features with 3D Sections .. 1009
Reference Entities and Use Edge ... 1009
Reusing Existing Sketches... 1011

This chapter describes the Creo Parametric TOOLKIT functions that enable you to
create and manipulate sketched features.
Sketched features are features that require one or more sections to completely
define the feature, such as extruded and revolved protrusions.
This chapter outlines the necessary steps to programmatically create sketched
features using Creo Parametric TOOLKIT.

1004 Creo® Parametric TOOLKITUser’s Guide

Overview
The chapter Element Trees: Principles of Feature Creation on page 764 explains
how to create a simple feature using the feature element tree, and the
documentation in the chapter on Element Trees: Sections on page 987 explains
how to create a section. This chapter explains how to put these methods together,
with a few additional techniques, to create features that contain sketched sections.

Element Tree for Sketched Features
The element tree of any feature that contains a sketch contains a subtree that
identifies the sketch object and describes how it is positioned in the model. As this
subtree is the same for every sketched feature, it is documented in its own header
file, called ProStdSection.h. The diagram below shows the structure of that
subtree.

Element Tree for Sketched Features

The subtree of the PRO_E_STD_SEC_SETUP_PLANE element defines the
sketch plane, the location of the sketch plane, the orientation plane and the
orientation direction, and the viewing direction. You can use Intent Planes as
sketch orientation or placement references.
The element PRO_E_SKETCHER is of type POINTER, and its value is the object
ProSection, introduced in the documentation in the chapter on Sections.
The element PRO_E_SEC_USE_SKETCH refers to any valid selected 'Sketch'
(sketched datum curve) suitable to the current Sketch Based Feature. When this
element is used, the sketch will be stored in the feature as a reference to the sketch
feature, and no internal section, sketch plane or orientation will be required. Using
this element in the PRO_E_STD_SECTION element tree allows a feature to be
created in one step, without creating the feature first as incomplete.

Element Trees: Sketched Features 1005

Note
The use of internal sections, and the process by which an internal-section
based feature is created, remains unchanged in Pro/ENGINEERWildfire 2.0.

The following table shows the sketched features that are supported by Creo
Parametric TOOLKIT, the names of the corresponding header files which show
their element trees, and the IDs of the elements in each tree which contain the
standard sketch subtree as shown in the above figure Element Tree for Sketched
Features
Feature Header Element containing Subtree
Extrude ProExtrude.h PRO_E_STD_SECTION

Revolve ProRevolve.h PRO_E_STD_SECTION

Rib ProRib.h PRO_E_STD_SECTION

Hole ProHole.h PRO_E_SKETCHER (2D)

PRO_E_STD_SECTION

Fill (Flat datum surface) ProFlatSrf.h PRO_E_STD_SECTION

Draft ProDraft.h PRO_E_STD_SECTION

Sketched datum curve ProDtmCrv.h PRO_E_STD_SECTION

Sketched datum point ProDtmCrv.h PRO_E_STD_SECTION

Simple (constant) sweep ProSweep.h PRO_E_SWEEP_SPINE

PRO_E_SWEEP_SECTION(2D)

Creating Features Containing Sections
The chapter Element Trees: Principles of Feature Creation on page 764 explained
that to create a feature from an element tree, you build the tree of elements using
ProElementAlloc(), ProElemtreeElementAdd(), and so on, and then
call ProFeatureCreate() to create the feature using the tree. If the feature is
to contain a sketch, the sequence is a little more complex.
As explained in the documentation in the section chapter on Element Trees:
Sections on page 987, a 2D section stored in a model file can be allocated by
calling ProSection2dAlloc(). Instead, Creo Parametric must allocate as
part of the initial creation of the sketched feature, a section that will be part of a
feature. The allocation is done by calling ProFeatureCreate() with an
element tree which describes at minimum the feature type and form, in order to
create an incomplete feature. In creating the feature, Creo Parametric calculates
the location and orientation of the section, and allocates the ProSection object.
This section is then retrieved from the value of the PRO_E_SKETCHER element
that is found in the element tree extracted from the created feature. Fill the empty
section using ProSection related functions.

1006 Creo® Parametric TOOLKITUser’s Guide

After adding the section contents and the remaining elements in the tree, add the
new information to the feature using ProFeatureRedefine().

To Create Sketched Features Element Trees
1. Build an element tree but do not include the element PRO_E_SKETCHER.
2. Call ProFeatureCreate() with the option PRO_FEAT_CR_

INCOMPLETE_FEAT, so that the incomplete element tree is accepted.
3. Extract the value of the element PRO_E_SKETCHER created by Creo

Parametric from an element tree extracted using
ProFeatureElemtreeExtract() on the incomplete feature.

4. Using that value as the ProSection object, create the necessary section
entities and dimensions, and solve the section.

5. Add any other elements not previously added to the tree, such as extrusion
depth. The depth elements may also be added before the creation of
incomplete feature (before step 2).

6. Call ProFeatureRedefine() with the completed element tree.

Creating Features with 2D Sections
Sketched features using 2D sections do not require references to other geometry in
the Creo Parametric model. Some examples of where 2D sections are used are:

• Base features, sometimes called first features. This type of feature must be the
first feature created in the model, and be of type PRO_FEAT_FIRST_FEAT.

• Sketched hole features.
• The PRO_E_SWEEP_SECTION section of a simple sweep feature.
To create 2D sketched features, follow the steps outlined in the section To Create
Sketched Features Element Trees on page 1007.

Note
For 2D sketched features, you need not specify section references or use
projected 3D entities. Entities in a 2D section are dimensioned to themselves
only. A 2D section does not require any elements in the tree to setup the sketch
plane or the orientation of the sketch. Thus, the PRO_E_STD_SEC_SETUP_
PLANE subtree is not included.

Element Trees: Sketched Features 1007

Verifying Section Shapes
Function Introduced:

• ProSectionShapeGet()
Certain features may or may not be able to use a section due to the shape of the
section. Different sketched feature tools such as extrude and revolve have
different requirements for sections. For example, solid protrusions contain only
closed and non-intersecting sections. Solid cuts or datum surfaces have open non-
intersecting sections. Fill features must have closed sections.
After the section is regenerated, ProSectionShapeGet() obtains the shape
of a given section. This information is used to determine if the section is
acceptable for feature creation.
The section shapes are as follows:
Constant Function Description
PRO_SECSHAPE_EMPTY ProSectionShapeGet() An empty section
PRO_SECSHAPE_POINTS ProSectionShapeGet() Section contains only sketched

datum points
PRO_SECSHAPE_1_OPEN_
LOOP

ProSectionShapeGet() Section contains a single open
loop (and possibly points)

PRO_SECSHAPE_1_CLOSED_
LOOP

ProSectionShapeGet() Section contains a single closed
loop (and possibly points)

PRO_SECSHAPE_MIXED_
LOOPS

ProSectionShapeGet() Section contains at least one open
and one closed loop (and possibly
points)

PRO_SECSHAPE_MULTI_
OPEN_LOOPS

ProSectionShapeGet() Section contains multiple open
loops (and possibly points)

PRO_SECSHAPE_MULTI_
CLOSED_LOOPS

ProSectionShapeGet() Section contains multiple closed
loops (and possibly points)

PRO_SECSHAPE_
INTERSECTING

ProSectionShapeGet() Section contains loops that
intersect each other (and possibly
points)

Note
Use geometry entities and not construction entities to define section shapes
that are then used to create solid or surface geometry. To convert the
construction entities to geometry entities, use the function
ProSectionEntityConstructionSet() with the input argument
construction set to PRO_B_FALSE.

1008 Creo® Parametric TOOLKITUser’s Guide

Creating Features with 3D Sections
A 3D section needs to define its location with respect to the existing geometrical
features. The subtree contained in the element PRO_STD_SEC_SETUP_PLANE
defines the location of the sketch planeEdge entities; any other 2D entities in the
sketch must be dimensioned to those entities, so that their 3D location is fully
defined.

3D Section Location in the Owning Model
Function Introduced:

• ProSectionLocationGet()
For a 2D section in a feature, Creo Parametric decides where the section will be
positioned in 3D.
If the section is 3D, the feature tree elements below PRO_E_STD_SEC_SETUP_
PLANE specify the sketch plane, the direction from which it is being viewed, an
orientation reference, and a direction which that reference represents (TOP,
BOTTOM, LEFT or RIGHT). When you call ProFeatureCreate(), this
information is used to calculate the 3D plane in which the section lies, and its
orientation in that plane.
The position of the section origin in the plane is not implied by the element tree,
and cannot be specified by the Creo Parametric TOOLKIT application: position is
chosen arbitrarily by Creo Parametric. This is because the interactive user of Creo
Parametric never deals in absolute coordinates, and doesn’t need to specify, or
even know, the location of the origin of the section. In Creo Parametric TOOLKIT
describe all section entities in terms of their coordinate values, so you need to find
out where Creo Parametric has put the origin of the section. This is the role of the
function ProSectionLocationGet().
ProSectionLocationGet() provides the transformation matrix that goes
from 2D coordinates within the section to 3D coordinates of the owning part or
assembly. This is equivalent to describing the position and orientation of the 2D
section coordinate system with respect to the base coordinate system of the 3D
model.
So ProSectionLocationGet() can be called in order to calculate where to
position new section entities so that they are in the correct 3D position in the part
or assembly.

Reference Entities and Use Edge
Functions introduced:

• ProSectionEntityFromProjection()
• ProSectionEntityIsProjection()

Element Trees: Sketched Features 1009

• ProSectionEntityUseEdge()
• ProSectionEntityUseEdgeLoop()
• ProSectionEntityUseEdgeChain()
• ProSectionEntityReferenceGet()
The previous section explained how to set the correct 3D position of new section
entities. You also need to make the entities parametric, that is, to ensure that Creo
Parametric knows how to calculate their new positions during regeneration.
When sketching a section using Creo Parametric, entities are positioned
parametrically by dimensioning them or aligning them to items in the 3D model.
Creo Parametric TOOLKIT does not allow you to explicitly align section entities,
but you can add dimensions which relate section entities to 3D entities in the
owning model. You can do this using references. A reference entity represents a
position in the section of an item in a 3D model that is used as a dimension
reference. The reference entity itself does not give rise to 3D geometry in the
owning feature. Reference entities are visible in interactive sketcher operations;
they are shown as dashed and are used during autodimensioning and alignment
operations.
In Creo Parametric TOOLKIT reference entities are created using
ProSectionEntityFromProjection(). This function takes as input a
ProSelection describing the 3D model entity being projected, and outputs the
integer ID of the resulting known section entity. This ID is used to specify the
attachment of a section dimension, as described in the documentation in the
section chapter Element Trees: Sections on page 987. Reference entities are
included in the output of ProSectionEntityIdsGet(), but can be
distinguished from regular section entities by calling the function
ProSectionEntityIsProjection().
To align a section entity with a 3D model entity, project the 3D entity to create a
reference entity, and then either add a dimension between this reference entity and
the one to be aligned or use ProSectionAutodim() to do this.
To create a regular section entity whose geometry is itself an exact projection of a
3D model entity, create it and align it in a single step using the function
ProSectionEntityUseEdge(). This function has the same arguments as
ProSectionEntityFromProjection(), and it creates a reference entity
in the same way, but it requires an additional step of copying the reference entity
to a regular entity with the same geometry. It outputs the ID of the regular entity it
creates. The ID of the reference entity is always 1 less than the ID of the regular
entity.
ProSectionEntityUseEdge() is equivalent to the Creo Parametric
sketcher command Use Edge. The functions
ProSectionEntityUseEdgeLoop() and
ProSectionEntityUseEdgeChain() allow you to execute a Use Edge
operation on multiple edges simultaneously.

1010 Creo® Parametric TOOLKITUser’s Guide

Note
If you create the known and projected entities first, you need not call
ProSectionLocationGet() as described above; instead you can look at
the geometry of the known and projected entities, and then position the new
entities relative to the projected entities.

The function ProSectionEntityReferenceGet() provides 3D geometry
that is a reference for a projected entity in a given section.

Creating Geometry by Offsetting
The functions described in this section enable you to create offset entities from
edges and 3D curve segments from normal, chain and loop selection.
Functions Introduced:

• ProSectionEntityUseOffset()
• ProSectionEntityUseOffsetChain()
• ProSectionEntityUseOffsetLoop()
The function ProSectionEntityUseOffset() creates a sketched entity
that is offset at a specified distance from a single edge. This function takes as
input a ProSelection object describing the 3D model entity.
The function ProSectionEntityUseOffsetChain() creates sketched
entities that are offset from a chain of edges or entities and the function
ProSectionEntityUseOffsetLoop() creates sketched entities offset
from a loop of edges or entities.
The behavior of the functions in this section is similar to the offset operation
achieved using Sketch ▶ Offset in Creo Parametric.

Reusing Existing Sketches
Functions introduced:

• ProFeatureSketchAdd()
• ProFeatureSketchedWithOptionsCreate()
Creo Parametric allows you to copy sections from previously created features into
new sketched features.
The function ProFeatureSketchAdd() copies the selected section from one
feature to another feature.

Element Trees: Sketched Features 1011

The function ProFeatureSketchedCreate() has been deprecated. Use the
function ProFeatureSketchedWithOptionsCreate() instead. The
function ProFeatureSketchedWithOptionsCreate() creates a feature
from the element tree, and also copies the sketched sections to the new feature.
This reduces the sketched feature creation effort to a single Creo Parametric
TOOLKIT function call. The element tree must contain all of the required
elements except the PRO_E_STD_SECTION subtree.

Example 1: Creating an Extruded Protrusion Base
Feature
The sample code in UgSktExtrusionCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows the creation of an extruded protrusion as a base feature.

Example 2: Creating a Sketched Datum Curve
The sample code in UgSketchedCurveCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows the creation of a sketched datum curve using the
conventional approach.

1012 Creo® Parametric TOOLKITUser’s Guide

45
Element Trees: Extrude and

Revolve
The Element Tree for Extruded Features... 1014
The Element Tree for Revolved Features .. 1025
The Element Tree for First Features.. 1034

This chapter describes how to use the include files ProExtrude.h, and
ProRevolve.h so that you can create extruded and revolved features
programmatically. As Extrude and Revolve features are sketched features; we
recommend you to read the chapters Element Trees: Principles of Feature Creation
on page 764 and Element Trees: Sketched Features on page 1004 before referring
to this chapter.

1013

The Element Tree for Extruded Features
The element tree for extrude features is documented in the header file
ProExtrude.h. The functions ProFeatureTypeGet() and
ProFeatureSubtypeGet() return an Extrude feature. The types of Extrude
features are:

• Protrusion
• Cut
• Surface
• Surface Trim
• Thin Protrusion
• Thin Cut
• Sheetmetal Cut
• Sheetmetal Unattached Wall
Refer to the chapter Production Applications: Sheetmetal on page 1310 for
element details on sheetmetal features.
The extrude element tree contains toggles to switch between different feature
types. An extruded feature tree also contains subtrees supporting the section and
depth parameters for the feature.
You can use Intent Datums such as Intent Point, Intent Axis, and Intent Plane for
depth reference in extrude features.
The following figure shows the element tree for extruded features.

1014 Creo® Parametric TOOLKITUser’s Guide

The Element Tree for Extruded Feature

Element Trees: Extrude and Revolve 1015

The elements are assigned values depending on the type of extrusion you want to
create.
The following table lists the common elements for all types of extrusions and their
permissible values:
Element ID Value
PRO_E_FEATURE_TYPE Feature type, not required for creation: PRO_FEAT_

PROTRUSION

PRO_FEAT_CUT

PRO_FEAT_DATUM_SURFN

PRO_E_FEATURE_FORM Mandatory = PRO_EXTRUDE
PRO_E_EXT_SURF_CUT_SOLID_TYPE Mandatory

Of type ProExtFeatType

= PRO_EXT_FEAT_TYPE_SOLID

for Solid feature type

= PRO_EXT_FEAT_TYPE_SURFACE

for Surface feature type
PRO_E_REMOVE_MATERIAL Material Removal

Of type ProExtRemMaterial

= PRO_EXT_MATERIAL_ADD

for a Protruded feature

= PRO_EXT_MATERIAL_REMOVE

for a Cut feature
PRO_E_STD_SECTION Standard section elements
PRO_E_BODY Compound Element. Specifies the body options.
PRO_E_STD_DIRECTION* Direction of creation.

Of type ProExtDirection

= PRO_EXT_CR_IN_SIDE_ONE

for depth in side one

= PRO_EXT_CR_IN_SIDE_TWO

for depth in side two
PRO_E_STD_MATRLSIDE* Direction of material affected with respect to the

sketch. Required for all cuts, all thin features, and for
solid protrusions with open sections.

PRO_E_STD_EXT_DEPTH Compound Element. Specifies the depth type and
value for the extrude feature.

PRO_E_EXT_DEPTH_TO Compound Element. Specifies the depth type and
value for Side 1, that is, extrusion in the first
direction from the sketch plane.

1016 Creo® Parametric TOOLKITUser’s Guide

Element ID Value
PRO_E_EXT_DEPTH_TO_TYPE Mandatory element. Specifies the type of depth for

Side 1. The depth type is specified using the
enumerated data type ProExtDepthToType. The
valid values are:
• PRO_EXT_DEPTH_TO_BLIND—Extrudes a

section from the sketching plane to the specified
depth value.

• PRO_EXT_DEPTH_TO_NEXT—Extrudes a
section from the sketching plane to the first
surface that it reaches.

• PRO_EXT_DEPTH_TO_ALL—Extrudes a
section from the sketching plane to the last
surface it reaches.

• PRO_EXT_DEPTH_TO_UNTIL—Extrudes a
section to intersect with a selected surface.

• PRO_EXT_DEPTH_TO_REF—Extrudes a
section to a selected point, curve, plane, or
surface.

• PRO_EXT_DEPTH_SYMMETRIC—Extrudes a
section on each side of the sketching plane by
half of the specified depth value in each
direction.

PRO_E_EXT_DEPTH_TO_REF Specifies the reference element for Side 1, when the
depth type is PRO_EXT_DEPTH_TO_REF or PRO_
EXT_DEPTH_TO_UNTIL. The valid reference
types are:
• PRO_SURFACE

• PRO_AXIS

• PRO_EDGE

• PRO_CURVE

• PRO_POINT

• PRO_EDGE_START

• PRO_EDGE_END

• PRO_CRV_START

• PRO_CRV_END

• PRO_BODY

PRO_E_EXT_DEPTH_TO_REF_TRF Specifies the options available for the depth type
PRO_EXT_DEPTH_TO_REF for Side 1. The depth
type is specified using the enumerated data type
ProExtDepthRefOpt. The valid values are:
• PRO_EXT_DEPTH_REF_NONE—Extrudes a

section to a selected point, curve, plane, or
surface.

• PRO_EXT_DEPTH_REF_OFFS—Extrudes a
section to an offset of the selected point, curve,
plane, or surface.

• PRO_EXT_DEPTH_REF_TRNSLT—Extrudes a
section to a translation of the selected point,
curve, plane, or surface.

Element Trees: Extrude and Revolve 1017

Element ID Value
PRO_E_EXT_DEPTH_TO_REF_TRF_VAL Specifies the offset or translation value for Side 1,

when the depth type is PRO_EXT_DEPTH_TO_
REF, and the option type is PRO_EXT_DEPTH_
REF_OFFS or PRO_EXT_DEPTH_REF_TRNSLT.

PRO_E_EXT_DEPTH_TO_VALUE Specifies the value of depth for Side 1, when the
depth type is PRO_EXT_DEPTH_TO_BLIND or
PRO_EXT_DEPTH_SYMMETRIC.

PRO_E_EXT_DEPTH_FROM Compound Element. Specifies the depth type and
value for Side 2, that is, extrusion in the second
direction from the sketch plane.

PRO_E_EXT_DEPTH_FROM_TYPE Mandatory element. Specifies the type of depth for
Side 2. The depth type is specified using the
enumerated data type ProExtDepthFromType.
The valid values are:
• PRO_EXT_DEPTH_FROM_BLIND—Extrudes a

section from the sketching plane to the specified
depth value.

• PRO_EXT_DEPTH_FROM_NEXT—Extrudes a
section from the sketching plane to the first
surface that it reaches.

• PRO_EXT_DEPTH_FROM_ALL—Extrudes a
section from the sketching plane to the last
surface it reaches.

• PRO_EXT_DEPTH_FROM_UNTIL—Extrudes a
section to intersect with a selected surface.

• PRO_EXT_DEPTH_FROM_REF—Extrudes a
section to a selected point, curve, plane, or
surface.

• PRO_EXT_DEPTH_FROM_NONE—Extrudes a
section only on Side 1 from the sketch plane, no
extrusion on Side 2.

PRO_E_EXT_DEPTH_FROM_REF Specifies the reference element for Side 2, when the
depth type is PRO_EXT_DEPTH_FROM_REF or
PRO_EXT_DEPTH_FROM_UNTIL. The valid
reference types are:
• PRO_SURFACE

• PRO_AXIS

• PRO_EDGE

• PRO_CURVE

• PRO_POINT

• PRO_EDGE_START

• PRO_EDGE_END

• PRO_CRV_START

• PRO_CRV_END

• PRO_BODY

PRO_E_EXT_DEPTH_FROM_REF_TRF Specifies the options available for the depth type
PRO_EXT_DEPTH_FROM_REF for Side 2. The
depth type is specified using the enumerated data

1018 Creo® Parametric TOOLKITUser’s Guide

Element ID Value
type ProExtDepthRefOpt. The valid values are:
• PRO_EXT_DEPTH_REF_NONE—Extrudes a

section to a selected point, curve, plane, or
surface.

• PRO_EXT_DEPTH_REF_OFFS—Extrudes a
section to an offset of the selected point, curve,
plane, or surface.

• PRO_EXT_DEPTH_REF_TRNSLT—Extrudes a
section to a translation of the selected point,
curve, plane, or surface.

PRO_E_EXT_DEPTH_FROM_REF_TRF_VAL Specifies the offset or translation value for Side 2,
when the depth type is PRO_EXT_DEPTH_FROM_
REF, and the option type is PRO_EXT_DEPTH_
REF_OFFS or PRO_EXT_DEPTH_REF_TRNSLT.

PRO_E_EXT_DEPTH_FROM_VALUE Specifies the value of depth for Side 2, when the
depth type is PRO_EXT_DEPTH_FROM_BLIND.

PRO_E_STD_FEATURE_NAME Default given by application depending

on the feature type. Can be modified by the user.
PRO_E_EXT_COMP_DRFT_ANG Draft Compound Element that allows you to add a

draft on the extrude feature.
PRO_E_EXT_DRFT_ANG Draft of type ProExtDrftAng.

• PRO_EXT_DRFT_ANG_NO_DRAFT—To create
extruded features without a draft.

• PRO_EXT_DRFT_ANG_DRAFT—To create
extruded features with a draft.

PRO_E_EXT_DRFT_ANG_VAL The draft angle. The draft angle can have value
between [-89.9, 89.9].

PRO_E_FEAT_THIN Compound element. It specifies how to close a thin
feature when one or more surfaces can be used to
cap, that is, close the feature and attach it to the solid
geometry. Here the sketch is an open sketch.

PRO_E_FEAT_THIN_STRT Compound element. It specifies the options for the
first end point of the thin feature.

PRO_E_FEAT_THIN_STRT_OPT Specifies how to cap the first end point of the thin
feature using the enumerated data type
ProFeatThinOpt. The valid values are:
• PRO_FEAT_THIN_IGNORE—Caps the feature

as a free end. When you specify this value, the
feature is created with a free end even if a
reference edge or surface is available to cap the
feature.

• PRO_FEAT_THIN_DEFAULT—Caps the
feature to the specified edge or surface.

PRO_E_FEAT_THIN_STRT_REF Specifies the edge or surface that must be used to cap
and attach the first end point of the feature to the
solid geometry.

PRO_E_FEAT_THIN_END Compound element. It specifies the options for the
second end point of the feature.

Element Trees: Extrude and Revolve 1019

Element ID Value
PRO_E_FEAT_THIN_END_OPT Specifies how to cap the second end point of the thin

feature using the enumerated data type
ProFeatThinOpt. The valid values are:
• PRO_FEAT_THIN_IGNORE—Caps the feature

as a free end. When you specify this value, the
feature is created with a free end even if a
reference edge or surface is available to cap the
feature.

• PRO_FEAT_THIN_DEFAULT—Caps the
feature to the specified edge or surface.

PRO_E_FEAT_THIN_END_REF Specifies the edge or surface that must be used to cap
and attach the second end point to the solid
geometry.

Elements identified with ‘*’ depend on the definition of the standard section.
These elements are not assigned values until the standard section has been
completely allocated (which typically happens during redefine of the feature).
Values assigned to these elements while the section is not complete are ignored.
The following table lists the elements needed to create extruded features, in
addition to those already discussed:
Feature Type Element ID Comment
Solid PRO_E_EXT_COMP_DRFT_ANG Compound element to specify

draft options.
PRO_E_BODY Compound element
PRO_E_BODY_USE Mandatory. Specifies the body to

add geometry to.

The valid values are:
• PRO_BODY_USE_NEW—The

geometry in the feature is
stored in the new body.

• PRO_BODY_USE_

SELECTED—The geometry in
the feature is stored in the
single selected body.

PRO_E_BODY_SELECTED Specifies the reference to the
selected body.

Mandatory if PRO_E_BODY_USE
is set to PRO_BODY_USE_
SELECTED

Note

Only single reference is
allowed.

Thin PRO_E_THICKNESS Mandatory >= 0.0

1020 Creo® Parametric TOOLKITUser’s Guide

Feature Type Element ID Comment

Of type PRO_VALUE_TYPE_
DOUBLE

PRO_E_BODY Compound element
PRO_E_BODY_USE Mandatory. The valid values for

PRO_BODY_USE_NEW and PRO_
BODY_USE_SELECTED are same
as Solid.

PRO_E_BODY_SELECTED Same as Solid.
PRO_E_FEAT_FORM_IS_THIN Of Type ProExtFeatForm

= PRO_EXT_FEAT_FORM_NO_
THIN for a feature not having
Thin

= PRO_EXT_FEAT_FORM_THIN
for a Thin feature

PRO_E_STD_MATRLSIDE Mandatory

Of type ProExtMatlSide
PRO_E_FEAT_THIN Compound element to specify

options to cap and attach thin
features to solid geometry.

Solid Cut PRO_E_BODY Compound element
PRO_E_BODY_USE Mandatory. Specifies the body

features that cuts the geometry.

The valid values are:
• PRO_BODY_USE_ALL—The

geometry in the feature is cut
by all the existing bodies.

• PRO_BODY_USE_

SELECTED—The geometry in
the feature is stored in the
selected bodies.

PRO_E_BODY_SELECTED Specifies the reference to the
selected bodies.

Mandatory if PRO_E_BODY_USE
is set to PRO_BODY_USE_
SELECTED

Note

Multiple references are
allowed.

PRO_E_STD_MATRLSIDE Mandatory

Of type ProExtMatlSide
PRO_E_EXT_COMP_DRFT_ANG Draft compound element for

features that do not have feature

Element Trees: Extrude and Revolve 1021

Feature Type Element ID Comment
form as Thin.

PRO_E_FEAT_FORM_IS_THIN Of Type ProExtFeatForm

= PRO_EXT_FEAT_FORM_NO_
THIN for a feature not having
Thin

= PRO_EXT_FEAT_FORM_THIN
for a Thin feature

Thin Cut PRO_E_BODY Compound element
PRO_E_BODY_USE Same as Solid Cut
PRO_E_BODY_SELECTED Same as Solid Cut
PRO_E_STD_MATRLSIDE Mandatory

Of type ProExtMatlSide
PRO_E_THICKNESS Mandatory >= 0.0

Of type PRO_VALUE_TYPE_
DOUBLE

PRO_E_FEAT_FORM_IS_THIN Of Type ProExtFeatForm

= PRO_EXT_FEAT_FORM_NO_
THIN for a feature not having
Thin

= PRO_EXT_FEAT_FORM_THIN
for a Thin feature

Surface PRO_E_SRF_END_
ATTRIBUTES

Mandatory

Of type ProExtSurfEndAttr

It must be assigned at the same
time or after the section is fully
completed.

PRO_E_EXT_COMP_DRFT_ANG Draft compound element for
features that do not have feature
form as Thin.

PRO_E_FEAT_FORM_IS_THIN Of Type ProExtFeatForm

= PRO_EXT_FEAT_FORM_NO_
THIN for a feature not having
Thin

= PRO_EXT_FEAT_FORM_THIN
for a Thin feature

Surface Trim PRO_E_STD_MATRLSIDE Mandatory

Of type ProExtMatlSide
PRO_E_TRIM_QUILT Mandatory

Of type Quilt
PRO_E_TRIM_QLT_SIDE Mandatory

1022 Creo® Parametric TOOLKITUser’s Guide

Feature Type Element ID Comment

Of typeProExtTrimQltSide
PRO_E_FEAT_FORM_IS_THIN Of Type ProExtFeatForm

= PRO_EXT_FEAT_FORM_NO
_THIN for a feature not having
Thin

= PRO_EXT_FEAT_FORM
_THIN for a Thin feature

PRO_E_EXT_COMP_DRFT_ANG Draft compound element for
features that do not have feature
form as Thin.

Thin Surface Trim PRO_E_STD_MATRLSIDE Mandatory

Of type ProExtMatlSide
PRO_E_THICKNESS Mandatory >= 0.0

Of type PRO_VALUE_TYPE_
DOUBLE

PRO_E_TRIM_QUILT Mandatory

Of type Quilt
PRO_E_TRIM_QLT_SIDE Mandatory

Of type ProExtTrimQltSide

if PRO_E_STD_MATRLSIDE is
“both”. Must be assigned at the
same time as PRO_E_STD_
MATRLSIDE.

PRO_E_FEAT_FORM_IS_THIN Of Type ProExtFeatForm

= PRO_EXT_FEAT_FORM_NO
_THIN for a feature not having
Thin

= PRO_EXT_FEAT_FORM_THIN
for a Thin feature

Examples: Creating Extruded Features
The following examples demonstrate creation of extrude features of various
forms. These examples are adapted from an example template file
UgSktExtrusionTemplate.c available on the Creo Parametric load point
under protoolkit/protk_appls/pt_userguide/ptu_featcreat.

• Example 1: Creating an Extruded Feature on page 1024
• Example 2: To Create an Extruded Cut with Two-sided Thru-all Depth on

page 1024

Element Trees: Extrude and Revolve 1023

• Example 3: To Create an Extruded Thin Cut on page 1024
• Example 4: To Create an Extruded Datum Surface Feature on page 1024
• Example 5: To Create a Surface Trim Extruded Feature on page 1025

Conventional Approach

Example 1: Creating an Extruded Feature
The sample code in the file UserSktExtrusionProtrusion.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create an Extruded Protrusion by the conventional
approach for sketched features. The example creates an incomplete feature using
ProFeatureCreate(), extracts the section from the element tree of the
incomplete feature, builds the section on the section handle obtained, and,
completes the feature using ProFeatureRedefine().
The user is prompted to select the sketching and the orientation planes and then
the reference edges for the sketch. The user is also required to enter the X and Y
offsets to be applied to the sketch from the projected edges.

Example 2: To Create an Extruded Cut with Two-sided Thru-
all Depth
The sample code in the file UgSktExtrusionCut.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create an extruded cut with two-sided thru-all depth.

Example 3: To Create an Extruded Thin Cut
The sample code in the file UgSktExtrusionCut.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create an extruded thin cut. Its depth is two-sided, up
to a selected reference.

Example 4: To Create an Extruded Datum Surface Feature
The sample code in the file UgSktExtrusionSurfaceCapped.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create an extruded datum surface feature. Its depth is
one-side blind.

1024 Creo® Parametric TOOLKITUser’s Guide

Example 5: To Create a Surface Trim Extruded Feature
The sample code in the file UgSktExtrusionSurfaceTrim.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create an extruded surface trim. Its depth is one-side
blind.

Direct Creation Approach
The sample code in the file UgSktExtrusionCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create an extruded protrusion by the direct approach
for sketched features introduced in Pro/ENGINEERWildfire. The user is
prompted to select a sketched datum curve feature that is used as a section for the
created protrusion.

The Element Tree for Revolved Features
The element tree for revolved features is documented in the header file
ProRevolve.h, and has a fairly simple structure. It shows that, apart from the
usual elements for the tree root and feature name, a revolved feature tree contains
the elements to make the feature a solid protrusion, a thin protrusion, a solid cut, a
thin cut, a surface, a surface trimmed feature, or a thin surface trimmed feature.
You can use Intent Datums such as Intent Axis, Intent Plane, and Intent Point for
placement references.
The following figure shows the element tree for revolved features.

Element Trees: Extrude and Revolve 1025

Element Tree for Revolved Feature

1026 Creo® Parametric TOOLKITUser’s Guide

The elements are assigned values depending on the type of revolved feature you
want to create.
The following table lists the common elements for all types of revolved features
and their permissible values:
Element ID Value
PRO_E_FEATURE_TYPE Feature type:

PRO_FEAT_PROTRUSION

PRO_FEAT_CUT

PRO_FEAT_DATUM_SURF

Not required for creation.
PRO_E_FEATURE_FORM Mandatory= PRO_REVOLVE
PRO_E_EXT_SURF_CUT_SOLID_TYPE Mandatory

Of type ProRevFeatType

= PRO_REV_FEAT_TYPE_SOLID

for Solid feature type

= PRO_REV_FEAT_TYPE_SURFACE

for Surface feature type
PRO_E_FEAT_FORM_IS_THIN Feature Form

Of Type ProRevFeatForm

= PRO_REV_FEAT_FORM_NO
_THIN

for a Solid feature

= PRO_REV_FEAT_FORM_THIN

for a Thin feature
PRO_E_REMOVE_MATERIAL Material Removal

Of type ProRevRemMaterial

= PRO_REV_MATERIAL_ADD

for a Protruded feature

= PRO_REV_MATERIAL_REMOVE

for a Cut feature
PRO_E_STD_SECTION Standard section elements.
PRO_E_BODY Compound Element
PRO_E_STD_DIRECTION* Direction of creation.

Of type ProRevDirection

= PRO_REV_CR_IN_SIDE_ONE

Element Trees: Extrude and Revolve 1027

Element ID Value

for angle in side one

= PRO_REV_CR_IN_SIDE_TWO

for angle in side two
PRO_E_STD_MATRLSIDE* Direction of material affected with respect to the

sketch. It is required for all cuts, all thin features, and
for solid protrusions with open sections.

PRO_E_REVOLVE_AXIS_OPT Optional, of the type ProRevAxisOptAttr.
Identifies if the axis to revolve about is a part of the
sketch or an external datum axis.

PRO_E_REVOLVE_AXIS Optional. Reference to external datum axis, if PRO_
E_REVOLVE_AXIS = PRO_REV_AXIS_EXT_
REF.

PRO_E_REV_ANGLE Compound Element
PRO_E_REV_ANGLE_TO Compound Element
PRO_E_REV_ANGLE_TO_TYPE Mandatory

Of type ProRevAngleToType
PRO_E_REV_ANGLE_TO_VAL Depends on PRO_E_REV_ANGLE_TO_TYPE

Of type PRO_VALUE_TYPE_DOUBLE (in degrees)
PRO_E_REV_ANGLE_TO_REF Depends on PRO_E_REV_ANGLE_TO_TYPE

Of type listed in the Angle Type table that follows.
PRO_E_REV_ANGLE_FROM Compound Element
PRO_E_REV_ANGLE_FROM_TYPE Mandatory

Of type ProRevAngleFromType
PRO_E_REV_ANGLE_FROM_VAL Depends on PRO_E_REV_ANGLE_FROM_TYPE

Of type PRO_VALUE_TYPE_DOUBLE (in degrees)
PRO_E_REV_ANGLE_FROM_REF Depends on PRO_E_REV_ANGLE_FROM_TYPE

Of type listed in the Angle Type table that follows.
PRO_E_STD_FEATURE_NAME Default given by application depending

on the feature type. Can be modified by the user.
PRO_E_FEAT_THIN Compound element. It specifies how to close a thin

feature when one or more surfaces can be used to
cap, that is, close the feature and attach it to solid
geometry. Here the sketch is an open sketch.

PRO_E_FEAT_THIN_STRT Compound element. It specifies the options for the
first end point of the thin feature.

PRO_E_FEAT_THIN_STRT_OPT Specifies how to cap the first end point of the thin
feature using the enumerated data type
ProFeatThinOpt. The valid values are:

1028 Creo® Parametric TOOLKITUser’s Guide

Element ID Value
• PRO_FEAT_THIN_IGNORE—Caps the feature

as a free end. When you specify this value, the
feature is created with a free end even if a
reference edge or surface is available to cap the
feature.

• PRO_FEAT_THIN_DEFAULT—Caps the
feature to the specified edge or surface.

PRO_E_FEAT_THIN_STRT_REF Specifies the edge or surface that must be used to cap
and attach the first end point to the solid geometry.

PRO_E_FEAT_THIN_END Compound element. It specifies the options for the
second end point of the thin feature.

PRO_E_FEAT_THIN_END_OPT Specifies how to cap the second end point of the thin
feature using the enumerated data type
ProFeatThinOpt. The valid values are:
• PRO_FEAT_THIN_IGNORE—Caps the feature

as a free end. When you specify this value, the
feature is created with a free end even if a
reference edge or surface is available to cap the
feature.

• PRO_FEAT_THIN_DEFAULT—Caps the
feature to the specified edge or surface.

PRO_E_FEAT_THIN_END_REF Specifies the edge or surface that must be used to cap
and attach the second end point to the solid
geometry.

Elements identified with ‘*’ depend on the definition of the standard section.
These elements may not be assigned values until the standard section has been
completely allocated (which typically happens during redefine of the feature).
Values assigned to these elements while the section is not complete are ignored.
The following table lists the angle types for revolved features along with possible
valid references:
Angle Type Valid Reference Types
PRO_REV_ANGLE_TO_REF PRO_POINT, PRO_EDGE_START, PRO_EDGE_

END, PRO_CRV_START, PRO_CRV_END, PRO_
SURFACE (Plane).

PRO_REV_ANGLE_FROM_REF PRO_POINT, PRO_EDGE_START, PRO_EDGE_
END, PRO_CRV_START, PRO_CRV_END, PRO_
SURFACE (Plane).

The following table lists the elements needed to create revolved features, in
addition to those already discussed:
Feature Type Element ID Comment
Solid PRO_E_BODY Compound element

PRO_E_BODY_USE Mandatory. Specifies the body to
add geometry to.

The valid values are:

Element Trees: Extrude and Revolve 1029

Feature Type Element ID Comment
• PRO_BODY_USE_NEW—The

geometry in the feature is
stored in the new body.

• PRO_BODY_USE_

SELECTED—The geometry in
the feature is stored in the
single selected body.

PRO_E_BODY_SELECTED Specifies the reference to the
selected body.

Mandatory if PRO_E_BODY_USE
is set to PRO_BODY_USE_
SELECTED

Note

Only single reference is
allowed.

Thin PRO_E_STD_MATRLSIDE Mandatory

Of type ProRevMatlSide
PRO_E_BODY Compound element
PRO_E_BODY_USE Same as Solid
PRO_E_BODY_SELECTED Same as Solid
PRO_E_THICKNESS Mandatory >= 0.0

Of type PRO_VALUE_TYPE_
DOUBLE

PRO_E_FEAT_FORM_IS_THIN Of Type ProRevFeatForm

= PRO_REV_FEAT_FORM_NO
_THIN for feature not having
Thin

= PRO_REV_FEAT_FORM_THIN
for a Thin feature

PRO_E_FEAT_THIN Compound element to specify
options to cap and attach thin
features to solid geometry.

Solid Cut PRO_E_BODY Compound element
PRO_E_BODY_USE Mandatory. Specifies the body

features that cuts the geometry.

The valid values are:

1030 Creo® Parametric TOOLKITUser’s Guide

Feature Type Element ID Comment
• PRO_BODY_USE_ALL—The

geometry in the feature is cut
by all the existing bodies.

• PRO_BODY_USE_

SELECTED—The geometry in
the feature is stored in the
selected bodies.

PRO_E_BODY_SELECTED Specifies the reference to the
selected bodies.

Mandatory if PRO_E_BODY_USE
is set to PRO_BODY_USE_
SELECTED

Note

Multiple references are
allowed.

PRO_E_STD_MATRLSIDE Mandatory

Of type ProRevMatlSide
PRO_E_FEAT_FORM_IS_THIN Of Type ProRevFeatForm

= PRO_REV_FEAT_FORM_NO
_THIN for feature not having
Thin

= PRO_REV_FEAT_FORM_THIN
for a Thin feature

Thin Cut PRO_E_BODY Compound element

PRO_E_BODY_USE Same as Solid Cut

PRO_E_BODY_SELECTED Same as Solid Cut

PRO_E_STD_MATRLSIDE Mandatory

Of type ProRevMatlSide

PRO_E_THICKNESS Mandatory >= 0.0

Of type PRO_VALUE_TYPE_
DOUBLE

Element Trees: Extrude and Revolve 1031

Feature Type Element ID Comment
PRO_E_FEAT_FORM_IS_THIN Of Type ProRevFeatForm

= PRO_REV_FEAT_FORM_NO_
THIN for feature not having Thin

= PRO_REV_FEAT_FORM_THIN
for a Thin feature

Surface PRO_E_SRF_END_
ATTRIBUTES

Mandatory

Of type ProRevSurfEndAttr

Must be assigned at the same time
or after the section is fully
completed.

PRO_E_FEAT_FORM_IS_THIN Of Type ProRevFeatForm

= PRO_REV_FEAT_FORM_NO
_THIN for feature not having
Thin

= PRO_REV_FEAT_FORM_THIN
for a Thin feature

Surface Trim PRO_E_STD_MATRLSIDE Mandatory

Of type ProRevMatlSide
PRO_E_TRIM_QUILT Mandatory

Of type Quilt
PRO_E_TRIM_QLT_SIDE Mandatory

Of type ProRevTrimQltSide
if PRO_E_STD_MATRLSIDE is
“both”. Must be assigned at the
same time as PRO_E_STD_
MATRLSIDE.

PRO_E_FEAT_FORM_IS_THIN Of Type ProRevFeatForm

= PRO_REV_FEAT_FORM_NO
_THIN for feature not having
Thin

= PRO_REV_FEAT_FORM_THIN
for a Thin feature

Thin Surface Trim PRO_E_STD_MATRLSIDE Mandatory

Of type ProRevMatlSide
PRO_E_THICKNESS Mandatory >= 0.0

Of type PRO_VALUE_TYPE_
DOUBLE

PRO_E_TRIM_QUILT Mandatory

Of type Quilt

1032 Creo® Parametric TOOLKITUser’s Guide

Feature Type Element ID Comment
PRO_E_TRIM_QLT_SIDE Mandatory

Of type ProRevTrimQltSide
PRO_E_FEAT_FORM_IS_THIN Of Type ProRevFeatForm

= PRO_REV_FEAT_FORM_NO
_THIN for feature not having
Thin

= PRO_REV_FEAT_FORM_THIN
for a Thin feature

Examples: Creating Revolved Features
The following examples demonstrate creation of revolved features of various
forms. These examples are adapted from an example template file
UgSktRevolveTemplate.c available on the Creo Parametric loadpoint under
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat.

• Example 6: To Create a Revolved Protrusion on page 1033
• Example 7: To Create a Revolved Thin Cut on page 1033
• Example 8: To Create a Revolved Surface on page 1033

Example 6: To Create a Revolved Protrusion
The sample code in the file UgSktRevolveProtrusion.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a revolved protrusion feature with symmetric
depth.

Example 7: To Create a Revolved Thin Cut
The sample code in the file UserSktRevolveThinCut.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a revolved thin cut, with independent angular
dimensions for both sides.

Example 8: To Create a Revolved Surface
The sample code in the file UgSktRevolveSurface.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a revolved surface. It includes all possible
element assignments. By following the instructions for the feature you want to
create, it is possible to remove element settings not appropriate for your use.

Element Trees: Extrude and Revolve 1033

The Element Tree for First Features
First features (extrude and revolve solids created as the first feature in a part)
require a subset of the standard element tree and some special handling for the
section pointer.
The following table lists the elements applicable to first feature creation (extrude
or revolve):
Element ID Value
PRO_E_FEATURE_TYPE Feature type: PRO_FEAT_FIRST
PRO_E_FEATURE_FORM PRO_EXTRUDE / PRO_REVOLVE
PRO_E_FEAT_FORM_IS_THIN Feature Form

Of Type ProRevFeatForm

= PRO_REV_FEAT_FORM_NO_THIN for a Solid
feature = PRO_REV_FEAT_FORM_THIN for a Thin
feature

PRO_E_BODY_USE Mandatory. Specifies the body to add geometry to.

The valid values are:
• PRO_BODY_USE_NEW—The geometry in the

feature is stored in the new body.

• PRO_BODY_USE_SELECTED—The geometry
in the feature is stored in the single selected
body.

PRO_E_BODY_SELECT Specifies the reference to the selected body.

Mandatory if PRO_E_BODY_USE is set to PRO_
BODY_USE_SELECTED

Note

Only single reference is allowed.
PRO_E_SKETCHER Sketcher pointer. Used because the standard section

requires selected references not available in an empty
model.

PRO_E_STD_MATRLSIDE* Mandatory if thin

Of type ProExtMatlSide (Extrude)

Of type ProRevMatlSide (Revolve)
PRO_E_THICKNESS Mandatory >= 0.0 if thin

Of type PRO_VALUE_TYPE_DOUBLE
PRO_E_EXT_DEPTH_FROM Compound Element (Extrude only)
PRO_E_EXT_DEPTH_FROM_VAL Depth dimension (of type PRO_VALUE_TYPE_

DOUBLE) (Extrude only)
PRO_E_REV_ANGLE_FROM Compound Element (Revolve only)

1034 Creo® Parametric TOOLKITUser’s Guide

Element ID Value
PRO_E_REV_ANGLE_FROM_VAL Angular dimension (of type PRO_VALUE_TYPE_

DOUBLE)

(Revolve only)
PRO_E_STD_FEATURE_NAME Default given by application depending on the

feature type. Can be modified by the user.

Elements identified with ‘*’ depend on the definition of the standard section.
These elements may not be assigned values until the standard section has been
completely allocated (which typically happens during redefine of the feature).
Values assigned to these elements while the section is not complete are ignored.

Example 9: Creating the First Extruded Protrusion
Feature by Conventional Approach
The sample code in the file UgSktFirstFeatureCreate.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create the first extruded protrusion using the approach
for the sketched features.
The following example:

• Creates an incomplete feature using ProFeatureCreate(),
• Extracts the section from the element tree of the incomplete feature,
• Builds the section on the section handle obtained, and,
• Completes the feature using ProFeatureRedefine().
Following is the change in the approach for Pro/ENGINEER Wildfire release:

1. Level of PRO_E_SKETCHER in an element tree is changed.

For any Pro/ENGINEER release previous to Wildfire:
PRO_E_FEATURE_TREE -> PRO_E_STD_SECTION -> PRO_E_SKETCHER

For Pro/ENGINEERWildfire release:
PRO_E_FEATURE_TREE -> PRO_E_SKETCHER

2. Value of PRO_E_SKETCHER—A new ProValue is to be allocated and then
assigned to the element (rather than the old approach of reusing the value
extracted from the element tree).

Element Trees: Extrude and Revolve 1035

Example 10: Creating the First Thin Revolve
Protrusion Feature by Conventional Approach
The sample code in the file UgSktFirstFeatureRevCreate.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat shows how to create a thin first revolve Protrusion using the
approach for sketched features.
The following example:

• Creates an incomplete feature using ProFeatureCreate(),
• Extracts the section from the element tree of the incomplete feature,
• Builds the section on the section handle obtained, and,
• Completes the feature using ProFeatureRedefine().
Following is the change in the approach for Pro/ENGINEERWildfire release:

1. Level of PRO_E_SKETCHER in an element tree is changed.

For any Pro/ENGINEER release previous to Wildfire:
PRO_E_FEATURE_TREE -> PRO_E_STD_SECTION -> PRO_E_SKETCHER

For Pro/ENGINEERWildfire release:
PRO_E_FEATURE_TREE -> PRO_E_SKETCHER

2. Value of PRO_E_SKETCHER—A new ProValue is to be allocated and then
assigned to the element (rather than the old approach of reusing the value
extracted from the element tree).

1036 Creo® Parametric TOOLKITUser’s Guide

46
Element Trees: Ribs

The Element Tree for Rib Features ... 1038

This chapter describes how to use the include files ProRib.h, so that you can
create ribs programmatically. As ribs are sketched features; we recommend you to
read the chapters Element Trees: Principles of Feature Creation on page 764 and
Element Trees: Sketched Features on page 1004 before referring to this chapter.

1037

The Element Tree for Rib Features
The element tree for Rib features is documented in the Creo Parametric header file
ProRib.h.
The following figure shows the element tree for rib features.

The Element Tree for Rib Feature

The following table lists the data types for rib feature and their permissible values:

Element ID Data Type Description
PRO_E_FEATURE_
TYPE

PRO_VALUE_TYPE_
INT

Feature type: PRO_
FEAT_RIB

PRO_E_FEATURE_
FORM

PRO_VALUE_TYPE_
INT

Mandatory= PRO_
EXTRUDE

PRO_E_STD_
FEATURE_NAME

PRO_VALUE_TYPE_
WSTRING

Name of the rib feature.
The default value is RIB.

PRO_E_BODY Compound Compound element that
holds Body options. For
more information, refer to
the ProBodyOpts.h
element tree.

PRO_E_BODY_USE PRO_VALUE_TYPE_
INT

Holds Body use options.
The valid value is PRO_
BODY_USE_SELECTED.

PRO_E_BODY_SELECT PRO_VALUE_TYPE_
SELECTION

Specifies the reference to
the selected body.

1038 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note
Only single reference
is allowed.

PRO_E_RIB_
SECTION_COMP

Compound Element Holds section related
elements.

PRO_E_RIB_
THICKNESS

PRO_VALUE_TYPE_
DOUBLE

Thickness of the rib. The
value of the thickness
should be positive and
bigger than zero. The
default value depends on
part epsilon.

PRO_E_STD_SECTION PRO_VALUE_TYPE_
INT

Compound Element

Element Trees: Ribs 1039

Element ID Data Type Description
PRO_E_STD_
MATRLSIDE

PRO_VALUE_TYPE_
INT

Material side options of
the rib:
• PRO_RIB_SEC_

SIDE_ONE—Rib
will be on side one of
the section

• PRO_RIB_SEC_
SIDE_TWO—Rib
will be on side two of
the section
Note
The element PRO_E_
STD_MATRLSIDE is
directly dependent
upon the presence of a
fully defined PRO_E_
STD_SECTION
element tree. Any
value assigned to this
element before fully
defining the PRO_E_
STD_SECTION, will
be ignored. The
default value depends
on the sketch under
the PRO_E_STD_
SECTION element.

PRO_E_RIB_SIDE_
OPTS

PRO_VALUE_TYPE_
INT

Side options of the rib:
• PRO_RIB_

SYMMETRIC— Rib
will be symmetric to
the sketch. This is the
default value.

PRO_RIB_SIDE_
ONE—Rib will be on
Side One of the
sketch.

1040 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_RIB_SIDE_

TWO—Rib will be on
Side Two of the
sketch.

Element Trees: Ribs 1041

47
Element Trees: Sweep

Sweeps in Creo Parametric TOOLKIT... 1043
Sweep Feature.. 1043
Creating a Sweep Feature ... 1051
Simple Sweep Feature... 1052

This chapter describes the principles of creating a sweep feature. The chapters
Element Trees: Principles of Feature Creation on page 764 and Element Trees:
Sketched Features on page 1004 provide the necessary background for this topic.
Read those chapters before this one.

1042 Creo® Parametric TOOLKITUser’s Guide

Sweeps in Creo Parametric TOOLKIT
Creo Parametric provides access and creates a constant section sweep feature. You
can create a solid or surface feature. You can also add or remove material while
sweeping a section along one or more selected trajectories by controlling the
section’s orientation, rotation, and geometry.

Sweep Feature
The element tree for the sweep feature is documented in the header file
ProSweep.h, and is shown in the following figure.

Element Tree for Sweep Feature

The following table describes the elements in the element tree for sweeps:
Element ID Data Type Description
PRO_E_FEATURE_FORM PRO_VALUE_TYPE_INT Specifies the feature form. The

valid value is PRO_SWEEP
defined in the enumerated data
type ProFeatFormType in
ProFeatForm.h.

PRO_E_SWEEP_TYPE PRO_VALUE_TYPE_INT Specifies the type of sweep. The
valid value is PRO_SWEEP_

Element Trees: Sweep 1043

Element ID Data Type Description
TYPE_MULTI_
TRAJ defined in the enumerated
data type ProSweepType.

PRO_E_SWEEP_FRAME_COMP Compound This compound element specifies
the trajectories and orientation of
the section plane. For more
information on this element, refer
to the section Element Tree for
PRO_E_SWEEP_FRAME_
COMP on page 1046.

PRO_E_SWEEP_PROF_COMP Compound This compound element defines
the sweep type and holds the
sketch related elements for the
sweep cross section.

PRO_E_SWP_SEC_TYPE PRO_VALUE_TYPE_INT Specifies the type of sweep. The
valid value is PRO_SWEEP_
CONST_SECTION defined in the
enumerated data type
ProSweepSecType.

The option specifies a constant
section sweep.

PRO_E_SWEEP_SECTION Compound This compound element contains
the sketch for the sweep cross
section.

PRO_E_SKETCHER PRO_VALUE_TYPE_POINTER Specifies a sketcher pointer. The
user defined sketch can be directly
retrieved from this element.

PRO_E_SWP_ATTR Compound This compound element defines
the sweep attributes. The element
is available only for surface
sweeps.

PRO_E_END_SRF_ATTR PRO_VALUE_TYPE_INT Specifies the option to keep the
end of sweep feature open or
capped. The enumerated data type
ProSweepEndSrfAttr
contains the valid values for this
element:
• PRO_SWEEP_END_SRF_

OPEN

• PRO_SWEEP_END_SRF_
CAPPED

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is SWEEP.

PRO_E_EXT_SURF_CUT_
SOLID_TYPE

PRO_VALUE_TYPE_INT Specifies a solid or surface feature
type. The enumerated data type
ProSweepFeatType contains
the following valid values for this
element:
• PRO_SWEEP_FEAT_TYPE

_SOLID

• PRO_SWEEP_FEAT_TYPE

1044 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
_SURFACE

PRO_E_REMOVE_MATERIAL PRO_VALUE_TYPE_INT Specifies whether to extrude or
remove the material along the
sweep. The enumerated data type
ProSweepRemMaterial
contains the following valid values
for this element:
• PRO_SWEEP_MATERIAL_

ADD

• PRO_SWEEP_MATERIAL_
REMOVE

PRO_E_FEAT_FORM_IS_THIN PRO_VALUE_TYPE_INT Specifies whether to create a thin
section. The enumerated data type
ProSweepFeatForm contains
the following valid values for this
element:
• PRO_SWEEP_FEAT_FORM

_NO_THIN

• PRO_SWEEP_FEAT_FORM
_THIN

PRO_E_STD_MATRLSIDE PRO_VALUE_TYPE_INT Specifies the direction in which
material will be added with respect
to the sketch. This element is
mandatory for all cuts and thin
features. The enumerated data type
ProSweepMatlSide contains
the following valid values for this
element:
• PRO_SWEEP_MATERIAL_

SIDE_ONE

• PRO_SWEEP_MATERIAL_
SIDE_TWO

• PRO_SWEEP_MATERIAL_
BOTH_SIDES

PRO_E_THICKNESS PRO_VALUE_TYPE_DOUBLE Specifies the thickness for the thin
feature. This element is mandatory
for thin features.

PRO_E_TRIM_QUILT PRO_VALUE_TYPE_
SELECTION

Specifies the selection of quilt to
be trimmed.

PRO_E_TRIM_QLT_SIDE PRO_VALUE_TYPE_INT Specifies the side of the quilt to be
trimmed. This element is relevant
when the element PRO_E_STD_
MATRLSIDE has its value as
PRO_SWEEP_MATERIAL_
BOTH_SIDES.

The enumerated data type
ProSweepTrimQltSide

contains the following valid values
for this element:

Element Trees: Sweep 1045

Element ID Data Type Description
• PRO_SWEEP_TRIMQLT

_SIDE_ONE

• PRO_SWEEP_TRIMQLT

_SIDE_TWO

PRO_E_BODY Compound element Compound element for body
options.

PRO_E_BODY_USE PRO_VALUE_TYPE_INT Mandatory. Specifies the body to
add geometry to.

Defined by the enumerated data
type ProBodyUseOpts and the
valid values follow:
• PRO_BODY_USE_NEW—

Feature stores its geometry in
the new body.

• PRO_BODY_USE_

SELECTED—Feature adds its
geometry to single selected
body.

PRO_E_BODY_SELECT PRO_VALUE_TYPE_
SELECTION

Specifies the reference to the
selected bodies.

Mandatory if PRO_E_BODY_USE
is set to PRO_BODY_USE_
SELECTED.

For elements specific to sheetmetal, refer to the chapter Production Applications:
Sheetmetal on page 1310.

Element Tree for PRO_E_SWEEP_FRAME_COMP
The element PRO_E_SWEEP_FRAME_COMP is a compound element, which
defines the sweep type and holds the sketch related elements for the sweep cross
section. The element tree for PRO_E_SWEEP_FRAME_COMP is as shown in the
figure below:

1046 Creo® Parametric TOOLKITUser’s Guide

The following table describes the sub elements of the PRO_E_SWEEP_FRAME_
COMP:
Element ID Data Type Description
PRO_E_FRM_OPT_TRAJ Array Specifies an array of single

trajectory that is only one element.
PRO_E_OPT_TRAJ Compound This compound element specifies

the trajectory.
PRO_E_STD_SEC_METHOD PRO_VALUE_TYPE_INT Specifies that the trajectory is

selected. The valid value is PRO_
SEC_SELECT defined in the
enumerated data type
ProSecMethod in
ProStdSection.h.

PRO_E_STD_SEC_SELECT Compound This compound element specifies
the collection of trajectory.

PRO_E_STD_CURVE_ PRO_VALUE_TYPE_ Specifies the collection of curves

Element Trees: Sweep 1047

Element ID Data Type Description
COLLECTION_APPL SELECTION and edge chains for the trajectory.
PRO_E_FRAME_SETUP Compound This compound element specifies

the orientation of the section
plane.

PRO_E_FRM_NORMAL PRO_VALUE_TYPE_INT Specifies the orientation of the
section plane normal. The
enumerated data type
ProFrameNormal contains the
valid values for this element:
• PRO_FRAME_NORM_

ORIGIN—The section plane
normal is perpendicular to the
origin trajectory throughout
the sweep.

• PRO_FRAME_PIVOT_DIR—
The z-axis is tangent to the
projection of the origin
trajectory at the direction
specified in the element PRO_
E_FRM_PIVOT_DIR.

• PRO_FRAME_CONST_Z_
DIR
—The section plane remains
parallel to the specified
direction reference vector.

PRO_E_FRM_PIVOT_DIR Compound This compound element for the
direction reference is relevant
when the element PRO_E_FRM_
NORMAL has its value as PRO_
FRAME_PIVOT_DIR.

PRO_E_DIRECTION_
COMPOUND

Compound This compound element specifies
the direction reference for PRO_
E_FRM_PIVOT_DIR. The
compound element is a standard
Creo Parametric element subtree
and is described in
ProDirection.h.

PRO_E_FRM_CONST_Z Compound This compound element for the
direction reference is relevant
when the element PRO_E_FRM_
NORMAL has its value as PRO_
FRAME_CONST_Z_DIR.

PRO_E_DIRECTION_
COMPOUND

Compound This compound element specifies
the direction reference for PRO_
FRAME_CONST_Z_DIR. The
compound element is a standard
Creo Parametric element subtree
and is described in
ProDirection.h.

PRO_E_FRM_ORIENT PRO_VALUE_TYPE_INT Specifies how the rotation of the
frame around the sketch plane's
normal is oriented along the

1048 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
sweep. The enumerated data type
ProFrameOrient contains the
valid vales for this element:
• PRO_FRAME_MIN—

Corresponds to the
Automatic option in Creo
Parametric user interface. The
direction of the x-vector is
calculated so that the swept
geometry is minimally twisted.

• PRO_FRAME_NORM_SURF
—Orients the y-axis of the
section plane to be normal to
the surface on which the origin
trajectory lies.

• PRO_FRAME_CONSTANT—
This option must be set when
the element PRO_E_FRM_
NORMAL has its value as PRO_
FRAME_PIVOT_DIR.

• PRO_FRAME_X_TRAJ—This
option is not supported as Creo
Parametric supports only
single trajectory in sweep
feature.

PRO_E_FRM_NORM_SURF Compound This compound element for the
edge chains is relevant when the
element PRO_E_FRM_ORIENT
has its value as PRO_E_FRAME_
NORM_SURF.

PRO_E_SURF_CHAIN_CMPND Compound This compound element specifies
the surface edge collection and the
collection method.

PRO_E_SURF_CHAIN_METHOD PRO_VALUE_TYPE_INT Specifies the collection method for
the surface edges. The valid values
for this element are:
• PRO_SURF_CHAIN_

METHOD
_DEFAULT1

• PRO_SURF_CHAIN_
METHOD
_DEFAULT2

Note

Both the options are available
only if the trajectory is a two-
sided edge of a surface. In
case of one-sided edge, only
one option is available.

PRO_E_SURF_CHAIN_REF
_SURFS

Array Specifies an array of surface
edges.

Element Trees: Sweep 1049

Element ID Data Type Description
PRO_E_SURF_CHAIN_SURF Compound This compound element specifies

the surface edge collection.
PRO_E_SURF_CHAIN_REF PRO_VALUE_TYPE_

SELECTION
Specifies the collection of two-
sided edge of a surface.

PRO_E_FRM_NORM_SURF_
SIDE

PRO_VALUE_TYPE_INT This element is relevant when the
element PRO_E_FRM_ORIENT
has its value as PRO_E_FRAME_
NORM_SURF.

Specifies the normal surface
direction. The enumerated data
type ProFrmNormSrfSide
contains the valid vales for this
element:
• PRO_FRAME_NORM_SRF

_SIDE_INSIDE

• PRO_FRAME_NORM_SRF

_SIDE_OUTSIDE

PRO_E_FRM_USER_X PRO_VALUE_TYPE_INT This element is relevant when the
element PRO_E_FRM_ORIENT
has its value as PRO_FRAME_
MIN.

Specifies if the direction of x-axis
at start is automatically computed
or is user defined. The enumerated
data type ProFrameStartX
contains the valid values for this
element:
• PRO_FRAME_DEFAULT_

START_X

• PRO_FRAME_USER_

START_X

Note

It is sometimes necessary to
specify the x-axis direction,
for example, for straight line
trajectories or trajectories that
have a straight segment at the
start.

1050 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FRM_START_X Compound This compound element for the

direction reference is relevant
when the element PRO_E_FRM_
USER_X has its value as PRO_
FRAME_USER_START_X.

PRO_E_DIRECTION_
COMPOUND

Compound This compound element specifies
the direction reference for PRO_
FRAME_USER_START_X. The
compound element is a standard
Creo Parametric element subtree
and is described in
ProDirection.h.

Creating a Sweep Feature

To Create a Sweep Feature
1. Create an incomplete feature without the PRO_E_SKETCHER element.
2. Call ProFeatureElemtreeExtract() with the feature handle to get the

new feature tree. This results in an initialized PRO_E_SKETCHER element
and sketch handle.

3. Create the section with the initialized sketch handle.
4. Call ProFeatureWithoptionsRedefine() to put the section in the

Creo Parametric database to complete the sweep feature.

Note
If these elements PRO_E_FRAME_SETUP and PRO_E_FRM_ORIENT are
not defined, you have to redefine the feature twice to get the valid initiated
sketch handle.

Example 1: Creating a Sweep Feature
The sample code in UgCreoSweepCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a sweep feature.

Element Trees: Sweep 1051

Simple Sweep Feature
The simple sweep element tree documented in the header file ProSweep.h is
obsolete. Use the sweep element tree instead to create and access the SWEEP
feature.
The element tree for the simple sweep feature is shown in the following figure.

Element Tree for Simple Sweep Feature

The following table describes the elements in the element tree for simple sweeps:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Feature type
PRO_E_FEATURE_FORM PRO_VALUE_TYPE_INT Feature form (PRO_SWEEP)
PRO_E_SWEEP_SPINE Compound Trajectory (like (PRO_E_STD_

SECTION)
PRO_E_SWEEP_SECTION Compound Section (like PRO_E_STD_

SECTION)

The element tree definitions of PRO_E_SWEEP_SPINE and PRO_E_SWEEP_
SECTION take on the same form as the element PRO_E_STD_SECTION
(documented in the header file ProStdSection.h).

Note
Release 20 of Pro/TOOLKIT supports only sketched, constant cross-sectional
sweeps.

The following figure shows the valid elements within this subtree.

1052 Creo® Parametric TOOLKITUser’s Guide

Element Subtree for Simple Sweep

Swept, constant, cross-sectional feature forms are supported for the following
feature types:

• PRO_FEAT_FIRST_FEAT

• PRO_FEAT_PROTRUSION

• PRO_FEAT_CUT

• PRO_FEAT_DATUM_SURF

Creating a Simple Sweep Feature

To Create a Simple Sweep Feature
1. Create an incomplete feature with the PRO_E_FEATURE_TYPE and PRO_E_

FEATURE_FORM elements defined. Also define the compound elements
PRO_E_SWEEP_SPINE and PRO_E_SWEEP_SECTION, down to the PRO_
E_STD_SEC_METHOD element (see the subtree for details).

2. Call ProFeatureElemtreeExtract() with the feature handle to get the
new feature tree. This results in an initialized PRO_E_SWEEP_SPINE
subtree and sketch handle.

3. Create the spine section with the initialized sketch handle.
4. Call ProFeatureWithoptionsRedefine() as an incomplete feature to

put the spine section in the Creo Parametric database.

Element Trees: Sweep 1053

5. Call ProFeatureElemtreeExtract() to get the new feature tree. This
results in an initialized PRO_E_SWEEP_SECTION subtree and sketch handle.
This step is necessary because the sweep section is dependent on the spine
section.

6. Create the sweep section with the initialized sketch handle. This section
automatically contains the centerline cross hairs of the sweep section.

The cross hairs can be used to locate and dimension the section.
7. Call ProFeatureWithoptionsRedefine() with any option except

incomplete to complete the simple sweep feature.

Example 1: Creating a Simple Sweep First Feature
Protrusion
The sample code in UgSweepCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a simple sweep first feature protrusion using the Creo Parametric
functions.

Example 2: Creating a Simple Sweep Protrusion Feature by
Conventional Approach
The sample code in Ug3DSweepCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a simple sweep protrusion feature by the conventional approach for
the sketched features.
The user is prompted to select the following:

• Sketching plane
• Orientation plane
• Orthogonal edge for the dimensioning of the spine (trajectory - PRO_E_

SWEEP_SPINE) section
• Orthogonal edge for the sweep section (PRO_E_SWEEP_SECTION)

1054 Creo® Parametric TOOLKITUser’s Guide

48
Element Trees: Solid Body

Introduction... 1056
The Element Tree for Body Options .. 1056
The Element Tree for Body Copy Feature.. 1057
The Element Tree for Body Split Feature ... 1058
The Element Tree for Body Remove Feature ... 1061
The Element Tree for Boolean Body Operations .. 1062

This chapter describes the element tree structure for body options that can be
selected while creating a feature. You can perform geometric operations such as
splitting a body or merging with other bodies and boolean operations such as
merge, intersect, and subtract.
The following sections describe the procedure for performing Boolean operations
such as intersect, subtract, and, merge bodies in a model. This chapter also
describes how to copy, remove, and split bodies.

1055

Introduction
Using Creo Parametric TOOLKIT, you can create bodies. The creation and
manipulation of bodies use the following Creo Parametric TOOLKIT objects:

• ProSolid
• ProSolidBody

The Element Tree for Body Options
The element tree for Body options is documented in the Creo Parametric header
file ProBodyOpts.h.
The following figure shows the element tree for body options feature.

The Element Tree for Body Options Feature

The following table describes the elements in the element tree:

1056 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_BODY Compound element Compound element for

body options.
PRO_E_BODY_USE PRO_VALUE_TYPE_

INT
Mandatory. Specifies the
body to add geometry to.
Defined by the
enumerated data type
ProBodyUseOpts and
the valid values follow:
• PRO_BODY_USE_

NEW— Feature stores
its geometry in the
new body.

• PRO_BODY_USE_
ALL—Feature cuts
from all existing
bodies.

• PRO_BODY_USE_
SELECTED—Feature
adds or removes its
geometry to or from
selected bodies.

PRO_E_BODY_SELECT PRO_VALUE_TYPE_
SELECTION

Specifies the reference to
the selected bodies.
Mandatory if PRO_E_
BODY_USE is set to
PRO_BODY_USE_
SELECTED.

The Element Tree for Body Copy Feature
You can perform copy operation on bodies. When you copy bodies in a part, a
new body is created for each source body. The element tree for the body copy
feature is documented in the Creo Parametric header file ProBodyCopy.h.

The Element Tree for Body Copy Feature
The following figure shows the element tree for the body copy feature.

Element Trees: Solid Body 1057

The following table describes the elements in the element tree:

Element ID Data Type Description
PRO_E_FEATURE_
TYPE

PRO_VALUE_TYPE_
INT

Specifies the feature type.
Valid value is PRO_
FEAT_BODY_COPY.

PRO_E_STD_
FEATURE_NAME

PRO_VALUE_TYPE_
WSTRING

Specifies the feature
name.

PRO_E_BODY_COPY_
REFS

PRO_VALUE_TYPE_
SELECTION

Mandatory. Specifies the
bodies to copy. Only
bodies from the same
model are allowed.

Note
Use the function
ProElementRefer
encesSet(), if you
need to set multiple
reference values for
PRO_E_BODY_
COPY_REFS.

The Element Tree for Body Split Feature
You can split a body into two bodies. The geometry of the original body is divided
between the original body and the new body. The element tree for the body split
feature is documented in the Creo Parametric header file ProSplitbody.h.

The Element Tree for Body Split Feature
The following figure shows the element tree for the split body feature.

1058 Creo® Parametric TOOLKITUser’s Guide

The following table describes the elements in the element tree:

Element ID Data Type Description
PRO_E_STD_
FEATURE_NAME

PRO_VALUE_TYPE_
WSTRING

Name of the feature.

PRO_E_SPLIT_BY_
OPTION

PRO_VALUE_TYPE_
INT

Mandatory element.
Split by option.

PRO_E_SPLIT_BODY Compound element Split by object.
PRO_E_SPLIT_
TARGET_BODY

PRO_VALUE_TYPE_
SELECTION

Target body to be split.

PRO_E_SPLIT_BODY_
REF

PRO_VALUE_TYPE_
SELECTION

Split by body reference.

PRO_E_SPLIT_BODY_
SLICE_OPT

PRO_VALUE_TYPE_
INT

Split by slice direction.

PRO_E_SPLIT_TOOL_
EXTEND_OPT

PRO_VALUE_TYPE_
INT

Split by extended object.

PRO_E_SPLIT_OUT Compound element Split by volume.
PRO_E_SPLIT_VOL_
SRFS

PRO_VALUE_TYPE_
SELECTION

Split by surfaces.

Splitting by Object
You can split one body into two bodies using a plane, surface, or quilt as the
splitting object. The following table lists the mandatory element types for splitting
a body by object:

Element Trees: Solid Body 1059

Element ID Data Type
PRO_E_SPLIT_BY_OPTION The valid value is PRO_SPLIT_BY_

SPLITTING_OBJ of the enumerated
data type ProSplitByType.

PRO_E_SPLIT_TARGET_BODY Target bodies to be split.
PRO_E_SPLIT_BODY_REF Split by body reference.
PRO_E_SPLIT_BODY_SLICE_OPT Side 1 / Side 2 of the enumerated data

type ProSplitBodySliceOpt.
PRO_E_SPLIT_TOOL_EXTEND_
OPT

Extend option of the enumerated data
type
ProSplitBodyToolExtendOpt.

Splitting by Volume type
When the geometry of the original body has disjoint volumes, you can split out
one or more of these volumes into a new body. Select one or more body surfaces
to define that volume as a new body. The following table lists the mandatory
element types for splitting a body by volume type:

Element ID Data Type
PRO_E_SPLIT_BY_OPTION The valid value is PRO_SPLIT_BY_

VOLUME of the enumerated data type
ProSplitByType.

PRO_E_SPLIT_VOL_SRFS Split by surfaces or surface regions.

A body can be divided into two bodies by an intersecting object or by volume.
The enumerated data type ProSplitByType defines the way the body is split
and has the following valid values:
• PRO_SPLIT_BY_SPLITTING_OBJ—A body can be split by an

intersecting object.
• PRO_SPLIT_BY_VOLUME—A body that has more than one disjoint volume

can be split by picking up the surface or surface regions of the desired portion
to split out as a new body.

The splitting side of the body is defined by the enumerated data type
ProSplitBodySliceOpt. When a single body is split, an additional body is
created. The valid values follow:
• PRO_E_SPLIT_BODY_SLICE_FIRST_OPT—Side 1 is the default option

and the value is 0.
• PRO_E_SPLIT_BODY_SLICE_SECOND_OPT—Flips the default body

creation and creates a body in the other side.

1060 Creo® Parametric TOOLKITUser’s Guide

The extend object is available for splitting by object and is defined by the
enumerated data type ProSplitBodyToolExtendOpt and has the following
valid values:
• PRO_E_SPLIT_TOOL_EXTEND_OPT_NO—The splitting object intersects

the body graphically.
• PRO_E_SPLIT_TOOL_EXTEND_OPT_YES—The splitting object is

extended to intersect with the bodies. The extend option is available for the
geometrically extendable objects such as a plane.

The Element Tree for Body Remove
Feature
As part of multibody design, there could be bodies that you want to remove from
the model. For example, you created bodies as tools in the design process and you
do not need them in the final model, or the system created bodies when you
imported geometry from other models. You cannot delete these bodies, because
they have contributing features. In such cases, you can remove the bodies.

Note
Bodies that are removed do not contribute to mass properties.

The element tree for the body remove feature is documented in the Creo
Parametric header file ProRemoveBody.h. Using this element tree you can
remove bodies in a model.

The Element Tree for Body Remove Feature
The following figure shows the element tree for the body remove feature.

The following table describes the elements in the element tree:

Element Trees: Solid Body 1061

Element ID Data Type Description
PRO_E_FEATURE_
TYPE

PRO_VALUE_TYPE_
INT

Specifies the feature type.
The valid value is PRO_
FEAT_REMOVEBODY.

PRO_E_STD_
FEATURE_NAME

PRO_VALUE_TYPE_
WSTRING

Specifies the feature
name. Default value is
Remove body.

PRO_E_BODY_SELECT PRO_VALUE_TYPE_
SELECTION

Mandatory. Specifies the
references for the bodies
that needs to be removed.
The valid selection
reference is from PRO_
BODY type only.

Note
Use the function
ProElementRefer
encesSet(), if you
need to set multiple
reference values for
PRO_E_BODY_
SELECT.

The Element Tree for Boolean Body
Operations
When a part contains more than one body, you can use the Boolean Operations
feature to perform geometric operations such as Merge, Intersect, and Subtract.
The element tree for Boolean body operations is documented in the Creo
Parametric header file ProBooleanBodies.h. You can perform subtract,
merge, and intersect operations on bodies.

The Element Tree for The Element Tree for Boolean Body Operation
The following figure shows the element tree for Boolean body operation.

1062 Creo® Parametric TOOLKITUser’s Guide

The following table describes the elements in the element tree:

Element ID Data Type Description
PRO_E_FEATURE_
TYPE

PRO_VALUE_TYPE_
INT

Specifies the feature type.
The valid value is PRO_
FEAT_
BOOLEANBODIES.

PRO_E_STD_
FEATURE_NAME

PRO_VALUE_TYPE_
WSTRING

Specifies the feature
name for combined
Boolean body.
Default value depends on
the operation type:
• Body Merge
• Body Intersect
• Body Subtract

PRO_E_BOOLEAN_
TYPE

PRO_VALUE_TYPE_
INT

Specifies the Boolean
operation type that needs
to be performed on the
bodies and is defined by
the enumerated data type
ProBooleanbodies
TypeOption. The valid
values are:
• MERGE_BOOL_

TYPE—Body Merge
• INTERSECT_BOOL_

Element Trees: Solid Body 1063

Element ID Data Type Description
TYPE—Body
Intersect

• SUBTRACT_BOOL_
TYPE—Body
Subtract

PRO_E_TARGET_BODY PRO_VALUE_TYPE_
SELECTION

Specifies the reference to
the modified bodies.
Mandatory element and
can be filled with single
body MERGE_BOOL_
TYPE or INTERSECT_
BOOL_TYPE or multiple
bodies SUBTRACT_
BOOL_TYPE .
The valid selection
reference is from PRO_
BODY type only.

Note
Use the function
ProElementRefer
encesSet(), if you
need to set multiple
reference values for
PRO_E_TARGET_
BODY.

PRO_E_TOOL_BODIES PRO_VALUE_TYPE_
SELECTION

Specifies the reference to
the modifying bodies.
Mandatory element and
can be filled with single
body SUBTRACT_
BOOL_TYPE or multiple
bodies MERGE_BOOL_
TYPE or INTERSECT_
BOOL_TYPE.
The valid selection
reference is from PRO_
BODY type only.

PRO_E_KEEP_TOOLS PRO_VALUE_TYPE_
INT

This element type is
available only for
SUBTRACT_BOOL_

1064 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
TYPE Boolean body
operation. It specifies the
body options that need to
be kept. This element
type is defined by the
enumerated data type
ProBooleanbodie
sKeepBodyOption
and the valid values are:
• KEEP_TOOL_NO—

default value. Deletes
the modifying bodies.

• KEEP_TOOL_YES—
keeps the modifying
bodies.

PRO_E_IS_SMT_CUT PRO_VALUE_TYPE_
INT

This element is applicable
in sheetmetal parts only
and it controls the cut
type as follows:
• PRO_B_TRUE—

SMT cut type
• PRO_B_FALSE—

Solid cut type

Element Trees: Solid Body 1065

Element ID Data Type Description
PRO_E_SMT_CUT_
NORMAL_DIR

PRO_VALUE_TYPE_
INT

This element is applicable
in sheetmetal parts only
and it controls the SMT
cut geometry driving
surface.
The element type is
defined by the
enumerated data type
ProSmtCutNormDir
and the valid values are:
• PRO_SMT_CUT_

DRVSIDE_GREEN—
For normal to Driven
surface.

• PRO_SMT_CUT_
DRVSIDE_WHITE
—For normal to
Offset surface.

1066 Creo® Parametric TOOLKITUser’s Guide

49
Element Trees: Creo Flexible

Modeling Features
Move and Move-Copy Features.. 1068
3D Transformation Set Feature... 1074
Attachment Geometry Feature ... 1082
Offset Geometry Feature ... 1094
Modify Analytic Surface Feature ... 1096
Tangency Propagation ... 1099
Mirror Feature ... 1105
Substitute Feature ... 1107
Planar Symmetry Recognition Feature...1110
Attach Feature ...1112
Example 1: Creating a Flexible Model Feature..1115

This chapter describes how to construct and access the element tree for some Creo
Flexible Modeling features in Creo Parametric TOOLKIT. It also shows how to
redefine, create and access the properties of these features.

1067

Move and Move-Copy Features
This section describes how to construct and access the element tree for Move and
Move-Copy features. It also shows how to create, redefine, and access the
properties of these features.

Introduction
The Move and the Move-Copy features allow a rigid transformation to a geometry
selection or its copy. The surfaces within the geometry selection must belong
either to the solid geometry or to a single quilt. You can move the following the
geometry selection:
• Any surface collection within the solid geometry or a single quilt.
• An intent surface within the solid geometry or a single quilt.
• Regular or intent datums (planes, axes, points and coordinate systems).
• Regular or intent curves.
• Any combination of the above geometries.
When you create a move feature at assembly level, the following types of
references can be moved:
• Geometry of assembly components—Part level geometry only, that is,

surfaces, quilts, curves, datums
• Assembly components—Parts and subassemblies
The moved entities are copies of the original entities and will have new IDs. The
original entities can be removed (Move) or kept (Copy-Move).
A Move feature will act on a single set of objects. To move different geometry
selections, multiple move features must be created.

The Element Tree for Move and Move-Copy
The element tree for the Move and Move-Copy feature is documented in the
header file ProFlexMove.h, and is shown in the following figure:

1068 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Move and Move-Copy

The following table describes the elements in the element tree for the Move and
Move-Copy features:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature.
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.

The default value is Flex_Move.
PRO_E_FLEXMOVE_MOVED_
GEOMETRY

Compound Specifics the geometry to be
moved.

PRO_E_FLEXMOVE_MOVED_
COMPS

PRO_ELEM_TYPE_MULTI_
VALUE

Optional element. This element is
available only when you create the
move feature at the assembly
level. Specifies the collection of
component references, that is,
parts and subassemblies in an
assembly, which are moved by the
assembly level move feature.

Element Trees: Creo Flexible Modeling Features 1069

Element ID Data Type Description

Note

The data type PRO_ELEM_
TYPE_MULTI_VALUE

enables you to assign
multiple values to the
element, though the data type
is not an array.

PRO_E_FLEXMOVE_DEFINE_
METHOD

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
method to be used to move the
entities. It takes the following
values:
• PRO_FLEXMOVE_DEF_

METHOD_3D
_DRAG—You can use the 3D
transformation sets (in Creo
Parametric interface using 3D
Dragger) to define the flexible
move feature.

• PRO_FLEXMOVE_DEF_
METHOD_DIMENSIONS—
You can specify up to three
constraining nonparallel linear
dimensions or angular
dimensions to define the
flexible move feature.

• PRO_FLEXMOVE_DEF_
METHOD_CONSTRAINTS—
You can specify component-
like (assembly-like) constraints
to define the flexible move
feature.

PRO_E_D3ELEM_SETS Array holder Mandatory element when the
definition method is PRO_
FLEXMOVE_DEF_METHOD_3D_
DRAG. An array holder of PRO_
E_D3ELEM_SET elements.. The
elements for 3D transformation
sets are defined in
ProD3Elem.h.

For more information, see the
section 3D Transformation Set
Feature on page 1074.

PRO_E_FLEXMOVE_DIMS_
COMPOUND

Compound Mandatory element when the
definition method is PRO_
FLEXMOVE_DEF_METHOD_
DIMENSIONS. Specifies the
dimension references and arrays
for the dimension definition
method.

1070 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FLEX_OPTS_CMPND Compound Mandatory element that contains

the flexible modeling geometry
attachment options to attach the
moved surfaces. Specifies the
integer and chain collection type
elements. The elements related to
reattachment of geometry in
flexible modeling are defined in
ProFlxmdlOpts.h.

For more information, see the
section Attachment Geometry
Feature on page 1082.

PRO_E_FLXSLV_PROP_
CONSTRS

Array Optional element. Specifies an
array that contains the tangency
conditions and the reference
geometry elements for tangency
propagation.

The elements related to
propagation of tangency in flexible
modeling are defined in
ProFlexTanPropOpts.h. For
more information, see the section
Tangency Propagation on page
1099.

PRO_E_COMPONENT_SETS Array holder Mandatory element when the
definition method is PRO_
FLEXMOVE_DEF_METHOD_
CONSTRAINTS. Specifies the
constraint sets. The elements for
constraint sets are defined in
ProAsmcomp.h. For more
information, see the section
Constraint Sets and Mechanism
Connections on page 1167 of
chapter Assembly: Assembling
Components on page 1159.

Element Trees: Creo Flexible Modeling Features 1071

Element ID Data Type Description
PRO_E_COMPONENT_
CONSTRAINTS

Array holder Mandatory element when the
definition method is PRO_
FLEXMOVE_DEF_METHOD_
CONSTRAINTS. Specifies the
constraints. The elements for
constraints are defined in
ProAsmcomp.h. For more
information, see the section
Placement Constraints on page
1172 of chapter Assembly:
Assembling Components on page
1159.

PRO_E_STD_FLEX_
PROPAGATION

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies a
pattern or mirror recognition
feature to propagate the move
feature changes.

Moved Geometry
The feature PRO_E_FLEXMOVE_MOVED_GEOMETRY is a compound element
that allows you to select the geometries to be moved and the geometries to be
excluded.

PRO_E_FLEXMOVE_MOVED_GEOMETRY

The following table lists the contents of PRO_E_FLEXMOVE_MOVED_
GEOMETRY element.
Element ID Data Type Description
PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
collection of surface sets of the
geometries to be moved. It may
also include surface regions.

PRO_E_FLEXMOVE_
EXCLUDED_GEOMETRY

Compound Optional element to exclude
surfaces.

1072 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
collection of surfaces from the
move surfaces collector which
should be excluded from the move
operation.

PRO_E_FLEXMOVE_DTM_REF PRO_ELEM_TYPE_MULTI_
VALUE

Note

The data type PRO_ELEM_
TYPE_MULTI_VALUE

allows you to assign multiple
values to the element, though
the data type is not an array.

Optional element. Specifies the
collection of datum entities that
should be moved with the moved
geometry.

Dimension Elements
The element PRO_E_FLEXMOVE_DIMS_COMPOUND is a compound element
that allows you to specify the dimensions to move the geometries.

PRO_E_FLEXMOVE_DIMS_COMPOUND

The following table lists the contents of PRO_E_FLEXMOVE_DIMS_COMPOUND
element. All the elements are mandatory for the PRO_FLEXMOVE_DEF_
METHOD_DIMENSIONS definition method type.
Element ID Data Type Description
PRO_E_FLEXMOVE_DIMS_
ARRAY

Array holder Mandatory element. The
dimensions array can contain up to
three dimensions of PRO_
FLEXMOVE_ DIM_TYPE_
LINEAR type or a single
dimension of PRO_FLEXMOVE_
DIM_TYPE_ANGULAR type.

PRO_E_FLEXMOVE_DIM_
COMPOUND

Compound Mandatory element. Specifies the
constraining dimensions to move

Element Trees: Creo Flexible Modeling Features 1073

Element ID Data Type Description
the geometries.

PRO_E_FLEXMOVE_DIM_REFS PRO_ELEM_TYPE_MULTI
_VALUE

Mandatory element. Specifies two
references for the given
dimension. Out of the two selected
references one must belong to the
moved geometry and the other
must belong to the geometry that
is not affected by the move
operation.

The valid values for reference
selections are as follows:
• Surface—SEL_3D_SRF

• Line—SEL_3D_EDG, SEL_
3D_CURVE, SEL_3D_AXIS

• Points—SEL_3D_VERT,
SEL_3D_PNT, SEL_CURVE_
END

The valid combinations for
reference selections are as follows:
• Surface-Surface

• Surface-Line

• Surface-Point

• Line-Line

• Line-Point
PRO_E_FLEXMOVE_DIM_
VALUE

PRO_VALUE_TYPE_DOUBLE Mandatory element. Specifies the
value of the linear or angular
dimension.

The valid values are as follows:
• Linear Dimensions—[-1e6,

1e6]

• Angular Dimensions—[0, 360]

3D Transformation Set Feature
This section describes how to construct and access the element tree for 3D
Transformation Set features. It also shows how to create, redefine, and access the
properties of these features.

1074 Creo® Parametric TOOLKITUser’s Guide

Introduction
The D3 element tree branch is used by features that use the 3D transformation
steps, for example in the PRO_FEAT_FLEXMOVE feature type. See
ProFlexMove.h. The 3D transformation steps are usually defined using the 3D
Dragger in the Creo Parametric user interface.
Refer to the Creo Parametric Part Modeling Help for more information on
placement and orientation references, and Degrees of Freedom.

The Element Tree for 3D Transformation Sets
The element tree for the 3D Transformation Set feature is documented in the
header file ProD3Elem.h, and is shown in the following figure:

Element Tree for 3D Transformation Sets

The following table describes the elements in the element tree for the 3D
Transformation Set feature:
Element ID Data Type Description
PRO_E_D3ELEM_SETS Array holder An array holder of PRO_E_

D3ELEM_SET elements.
PRO_E_D3ELEM_SET Compound A compound element representing

a single transformations set.
PRO_E_D3ELEM_PLACEMENT_
REFERENCE

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
placement reference for the 3D
transformation sets.

The valid values for placement
reference selection are as follows:

Element Trees: Creo Flexible Modeling Features 1075

Element ID Data Type Description
• Surface—SEL_3D_SRF

• Line—SEL_3D_EDG, SEL_
3D_CURVE, SEL_3D_AXIS

• Points—SEL_3D_VERT,
SEL_3D_PNT, SEL_CURVE_
END

• Coordinate System—SEL_

3D_CSYS

Note

In case of an empty value for
the placement reference, the
default placement reference
will be used.

PRO_E_D3ELEM_
ORIENTATION_REFERENCE

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies up to
two references to define the
orientation for the 3D
transformation sets.

The valid values for orientation
reference selection are as follows:
• Surface—SEL_3D_SRF

• Line—SEL_3D_EDG, SEL_
3D_CURVE, SEL_3D_AXIS

• Coordinate System—SEL_

3D_CSYS

Note

In case of an empty value for
the placement reference, the
default placement reference
will be used.

PRO_E_D3ELEM_LOCATION PRO_VALUE_TYPE_INT Optional element. Specifies
whether the transformation set
moves with the geometry for every
move. It takes the following
values:
• PRO_D3_LOCATION_

MOVING—This is the default
value. The coordinate system
of the transformation set
moves with each move made
in the set.

• PRO_D3_LOCATION_
FIXED—This value can be set
only if the placement reference
and the orientation reference

1076 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
are both selected to be the
same coordinate system (SEL_
3D_CSYS).

When this value is set, the
transformation set's coordinate
system retains its position and
orientation during the move,
only the selected geometry
moves. The move step is
defined in reference to this
fixed coordinate system.

PRO_E_D3ELEM_MOVES Array holder An array holder of PRO_E_
D3ELEM_MOVE element.

PRO_E_D3ELEM_MOVE Compound A compound element which
represents a single move in the
given set

Element Trees: Creo Flexible Modeling Features 1077

Element ID Data Type Description
PRO_E_D3ELEM_MOVE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

move type to be used to move the
geometry

This element takes the following
values:
• PRO_D3_MOVE_TYPE_

SURF

—Specifies that the move is
made to a UV coordinate on a
surface, from its initial UV
placement point on that
surface.

Note

This move type is
relevant only if the move
set is placed on a surface.

To set and get the UV
parameters use the functions:

○ ProFeatureD3ele-

mUvGet()

○ ProFeatureD3ele-

mUvSet()

• PRO_D3_MOVE_TYPE_

EDGE

—Specifies that the move is
made to coordinate (ratio
parameter) on an edge, from its
initial placement on that edge.
The position is recorded as a
length ratio on the edge.

Note

This move type is
relevant only if the move
set is placed on an edge.

To set and get the position
ratio use the functions:

1078 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
○ ProFeatureD3elem-

RatioGet()

○ ProFeatureD3elem-

RatioSet()

• PRO_D3_MOVE_TYPE_

FREE

—Specifies the move using a
transformation matrix. It stores
the final 3D location of the
moved geometry. To compute
the final position of the moved
geometry, the saved 3D
location is used.

Note

This move type is
relevant only if the
placement reference and
the orientation reference
elements have default
(empty) values.

To set and get the position
delta matrix use the functions:

○ ProFeatureD3elem-

MatrixGet()

○ ProFeatureD3elem-

MatrixSet()

• PRO_D3_MOVE_TYPE_

FREETRF

—Specifies the move using a
transformation matrix, similar
to PRO_D3_MOVE_TYPE_
FREE. It stores the

Element Trees: Creo Flexible Modeling Features 1079

Element ID Data Type Description
transformation matrix. To
compute the final position of
the moved geometry, the saved
transformation matrix is used.

Note

This move type is
relevant only if the
placement reference and
the orientation reference
elements have default
(empty) values.

• PRO_D3_MOVE_TYPE_

XMOVE—Specifies the linear
translation along the current
coordinate system's X-vector.

• PRO_D3_MOVE_TYPE_

YMOVE—Specifies the linear
translation along the current
coordinate system's Y-vector.

• PRO_D3_MOVE_TYPE_

ZMOVE—Specifies the linear
translation along the current
coordinate system's Z-vector.

• PRO_D3_MOVE_TYPE_

XROTATE—Specifies the
rotational angle along the
current coordinate system's X-
vector.

• PRO_D3_MOVE_TYPE_

YROTATE—Specifies the
rotational angle along the
current coordinate system's Y-
vector.

• PRO_D3_MOVE_TYPE_

ZROTATE—Specifies the
rotational angle along the
current coordinate system's Z-
vector.

PRO_E_D3ELEM_MOVE_VALUE PRO_VALUE_TYPE_DOUBLE Mandatory element. Specifies the
translation distance or the
rotational angle for the move
command.

1080 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

The valid values are as follows:
• Linear Move types—[-1e6,

1e6]

• Angular Move types—[0, 360]

Functions for the PRO_E_D3ELEM_MOVE_VALUE
element
This section describes the functions to be used to set the move type for the
element PRO_E_D3ELEM_MOVE_VALUE.
Functions Introduced:

• ProFeatureD3elemUvGet()
• ProFeatureD3elemUvSet()
• ProFeatureD3elemRatioGet()
• ProFeatureD3elemRatioSet()
• ProFeatureD3elemMatrixGet()
• ProFeatureD3elemMatrixSet()
The functions ProFeatureD3elemUvGet() and
ProFeatureD3elemUvSet() get and set the position UV parameter for the
PRO_E_D3ELEM_MOVE_VALUE element on a surface or plane.

Note
The functions ProFeatureD3elemUvGet() and
ProFeatureD3elemUvSet() are relevant only when the element PRO_
E_D3ELEM_MOVE_TYPE has its move value as PRO_D3_MOVE_TYPE_
SRF.

Element Trees: Creo Flexible Modeling Features 1081

The functions ProFeatureD3elemRatioGet() and
ProFeatureD3elemRatioSet() get and set the position ratio for the PRO_
E_D3ELEM_MOVE_VALUE element on an edge or entity.

Note
The functions ProFeatureD3elemRatioGet() and
ProFeatureD3elemRatioSet() are relevant only when the element
PRO_E_D3ELEM_MOVE_TYPE has its move value as PRO_D3_MOVE_
TYPE_EDGE.

The functions ProFeatureD3elemMatrixGet() and
ProFeatureD3elemMatrixSet() get and set the position delta matrix for
the PRO_E_D3ELEM_MOVE_VALUE element.

Note
The functions ProFeatureD3elemMatrixGet() and
ProFeatureD3elemMatrixSet() are relevant only when the element
PRO_E_D3ELEM_MOVE_TYPE has its move value as PRO_D3_MOVE_
TYPE_FREE.

Attachment Geometry Feature
This section describes how to construct and access the element tree for reattaching
geometry when a flexible modeling feature modifies or transforms a geometry
selection. It also shows how to create, redefine, and access the properties of the
attachment features.

1082 Creo® Parametric TOOLKITUser’s Guide

Introduction
When a geometry selection is transformed by a flexible modeling feature, you can
reattach the geometry to the model in one of the following ways:
• Extend the surfaces of the geometry selection and the neighboring geometry

until they intersect each other, or until the hole where the geometry selection
was originally located is closed and the transformed or modified geometry is
reattached.

• Create the side surfaces to close the gap between the moved geometry and the
hole left in the model.

• Recreate immediate neighboring surfaces maintaining tangency conditions, if
the moved geometry and the immediate neighboring surfaces are tangent
planes and circles.

The attachment element PRO_E_FLEX_OPTS_CMPND is seen in the following
feature types:
• PRO_FEAT_FLEXMOVE (See ProFlexMove.h)
• PRO_FEAT_FLX_OGF (See ProFlexOffset.h)
• PRO_FEAT_ANALYT_GEOM (See ProFlexMag.h)
• PRO_FEAT_FLXATTACH (See ProFlexAttach.h)
• PRO_FEAT_FLEXSUBST (See ProFlexSubstitute.h)

The Element Tree for Attachment Geometry Options
The element tree for the Attachment Geometry feature is documented in the
header file ProFlxmdlOpts.h, and is shown in the following figure.

Element Trees: Creo Flexible Modeling Features 1083

Element Tree for Attachment Geometry Options

The following table describes the elements in the element tree for the Geometry
Attachment feature:
Element ID Data Type Description
PRO_E_FLEX_OPTS_CMPND Compound Specifies the flexible modeling

geometry reattachment options.
PRO_E_FLEX_TRF_SEL_ATT_
GEOM

PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies
whether the chamfers and rounds
that attach the moved geometry to
the model must also be
transformed.

1084 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF, PRO_FEAT_
FLEXSUBST, mirror feature and
in patterning.

This element takes the following
values:
• PRO_FLXMDL_OPT_YES

• PRO_FLXMDL_OPT_NO

When the value PRO_FLXMDL_
OPT_NO is specified, the chamfers
and rounds are removed and
optionally recreated.

PRO_E_FLEX_ATTACH_GEOM PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies
whether to attach the moved
geometry to the same quilt or solid
it was detached from.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF and PRO_FEAT_
ANALYT_GEOM.

This element takes the following
values:
• PRO_FLEXMODEL_OPT_

YES—Attaches the moved
geometry to same quilt or
solid.

• PRO_FLEXMODEL_OPT_

NO—Creates a new separate
quilt.

PRO_E_FLEX_CR_RND_GEOM PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies
whether to create a round
geometry after the geometry
selection is moved and reattached.
This applicable for geometry
selection that was originally
attached by round geometry.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF, PRO_FEAT_
ANALYT_GEOM and PRO_FEAT_
FLEXSUBST.

Element Trees: Creo Flexible Modeling Features 1085

Element ID Data Type Description

This element takes the following
values:
• PRO_FLEXMODEL_OPT_

YES

• PRO_FLEXMODEL_OPT_NO

There are two cases here:
• When PRO_E_FLEX_

ATTACH_GEOM is set to
PRO_FLEXMODEL_OPT_

YES and PRO_E_FLEX_CR_
RND_GEOM is set to following
values:

○ PRO_FLEXMODEL_OPT_

YES—The rounds are
recreated.

○ PRO_FLEXMODEL_OPT_

NO—The rounds are not
recreated.

• When PRO_E_FLEX_
ATTACH_GEOM is set to
PRO_FLEXMODEL_OPT_No

the rounds are not reattached.
However, in this case you can
save the information about the
attachment properties for the
rounds. PRO_E_FLEX_CR_
RND_GEOM is set to following
values:

○ PRO_FLEXMODEL_OPT_

YES—The attachment
information of the rounds
is stored in intent objects.
This information can be
used by some other
features.

○ PRO_FLEXMODEL_OPT_

NO—The attachment
information of the rounds
is not stored.

PRO_E_FLEX_KEEP_ORIG_
GEOM

PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies if
the original geometry must be
moved or a copy of the geometry
should be moved.

1086 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

This element is relevant in PRO_
FEAT_FLEXMOVE and PRO_
FEAT_FLEXSUBST.

This element takes the following
values:
• PRO_FLEXMODEL_OPT_

YES

• PRO_FLEXMODEL_OPT_NO

PRO_E_FLEX_PROPAGATE_
TANGENCY

PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies if
tangency must be maintained
between the modified geometry
and the neighboring geometry.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF and PRO_FEAT_
ANALYT_GEOM.

This element takes the following
values:
• PRO_FLEXMODEL_OPT_

YES

• PRO_FLEXMODEL_OPT_NO

PRO_E_FLEX_DFLT_
CONDITIONS

PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies if
the default condition must be
applied to the vertices of the
dragged geometry. The vertices
are selected by the system. The
default condition is to fix the
selected vertices. These vertices
do not transform along with the
dragged geometry.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF and PRO_FEAT_
ANALYT_GEOM.

This element takes the following
values:
• PRO_FLEXMODEL_OPT_

YES

• PRO_FLEXMODEL_OPT_NO

PRO_E_FLEX_BOUND_EDGES_
CMP

Compound This compound element collects
the bounding edges.

PRO_E_FLEX_MAINTAIN_
TOPO

PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies the
option to maintain solution
topology for generic flexible

Element Trees: Creo Flexible Modeling Features 1087

Element ID Data Type Description
modeling features:
• PRO_FEAT_FLEXMOVE

• PRO_FEAT_FLX_OGF

• PRO_FEAT_ANALYT_GEOM

• PRO_FEAT_FLEXSUBST

• PRO_FEAT_FLEXATTACH

This element has the following
valid values:
• PRO_FLXMDL_OPT_YES—

The application generates
feature geometry that is
topologically similar to the
solution stored in the element
PRO_E_FLEX_SOL_INDEX.
If such a solution cannot be
created, the feature will fail.

• PRO_FLXMDL_OPT_NO—
The application generates
geometry that is topologically
similar to the solution stored in
the element PRO_E_FLEX_
SOL_INDEX. If such a
solution cannot be created, the
application tries to create other
successful solution. If the
application cannot create any
other solution for the changed
model, the feature fails.

Note

You cannot select the
solution interactively
using Creo Parametric
TOOLKIT applications.

PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Optional element. Collects the
bounding edges from the geometry
list to which the primary feature
geometry will be reattached. The
bounding edges are used as the
limiting edges for the feature
reattachment solutions. The edges
that belong to the primary feature
references cannot be used as
bounding edges.

1088 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

The information on the
chosen solution is stored in
the element PRO_E_FLEX_
SOL_INDEX. This element is
not accessible by Creo
Parametric TOOLKIT, under
which a default solution will
be always used.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF, PRO_FEAT_
ANALYT_GEOM, PRO_FEAT_
FLEXSUBST and PRO_FEAT_
FLEXATTACH.

PRO_E_FLEX_PULL_OPTION PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies the
attachment option by which the
moved geometry will be attached
to the model. The bounding chain
edges selected in the element
PRO_E_FLEX_BOUND
_EDGES_CMP are used for the
reattachment of moved geometry.

This element takes the following
values:
• PRO_FLEXMODEL_PULL_

NONE—The moved geometry
is attached using the default
method or according to the
contents of the Create side
surfaces and Extend
side surfaces chain
collectors which decide the
attachment method.

Refer to the section Default
Method for the Pull Option on
page 1092 for more
information on the default
method.

• PRO_FLEXMODEL_PULL_

CREATE_SURFS—The
moved geometry is reattached
to the same quilt or solid it was

Element Trees: Creo Flexible Modeling Features 1089

Element ID Data Type Description
detached from using the
Create side surfaces
option. The moved surfaces
are attached to the model by
creating surfaces that connect
the original contour to the final
contour of the moved surface.

• PRO_FLEXMODEL_PULL_

EXTEND_SURFS—The
moved geometry is reattached
to the same quilt or solid it was
detached from using the
Extend side surfaces
option. The moved surfaces
are attached to the model by
extending and intersecting the
moved surfaces and their
neighboring surfaces.

This element is relevant in PRO_
FEAT_FLEXMOVE.

PRO_E_FLEX_ATT_CHNS_CMP Compound Non-default edge chain collector.
PRO_E_FLEX_SIDE_SRFS_
CMP

Compound Edge chain collector for Create
side surfaces.

PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Optional element. Collects the
edge chains for which the
attachment option will be changed
from default to Create side
surfaces. Here side surfaces
will be created to close the gap
between the moved geometry and
the hole left in the model.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF and PRO_FEAT_
ANALYT_GEOM.

You can select the edges and intent
edges that belong to the
intersection between the geometry
selection and the neighboring
geometry.

PRO_E_FLEX_EXT_INT_CMP Compound Edge chain collector for Extend
and intersect.

PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Optional element. Collects the
edge chains for which the
attachment option will be changed

1090 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
from default to Extend and
intersect. Here the surfaces of
the geometry selection and the
neighboring geometry are
extended until they intersect each
other.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF and PRO_FEAT_
ANALYT_GEOM.

You can select the edges and intent
edge that belong to the intersection
between the geometry selection
and the neighboring geometry, and
do not belong to the side surface
set.

PRO_E_FLEX_SPLIT_EXT_
SURFS_CMP

Compound Collector to split the extending
surface area.

This element is relevant in PRO_
FEAT_FLEXMOVE and PRO_
FEAT_FLX_OGF.

PRO_E_FLEX_EXT_SRFS_CMP Compound Compound collector for extending
surfaces set to be split.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Optional element. This element is
used with the splitting surfaces set
and the flip options. Collects the
extending surfaces that will be
split by the splitting surfaces. You
can select the surfaces that belong
to the flexible modeling feature's
references surface set.

This element is relevant in PRO_
FEAT_FLEXMOVE and PRO_
FEAT_FLX_OGF.

This element is irrelevant in PRO_
FEAT_ANALYT_GEOM as the
reference surface is the only
possible extending surface.

PRO_E_FLEX_SPT_SRFS_CMP Compound Compound collector for splitting
surfaces set.

Element Trees: Creo Flexible Modeling Features 1091

Element ID Data Type Description
PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Optional element. This element is
used with the extending surfaces
set. Collects surfaces that will be
extended and used to split the
extending surfaces. You can select
the surfaces which belong to the
same solid or quilt that contains
the surfaces being modified.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF and PRO_FEAT_
ANALYT_GEOM.

PRO_E_FLEX_FLIP_SPLIT
_DIR

PRO_VALUE_TYPE_INT Optional element. This element is
used with the extending and
splitting surfaces sets. Flips the
side of the extending surfaces.

This element is relevant in PRO_
FEAT_FLEXMOVE, PRO_FEAT_
FLX_OGF and PRO_FEAT_
ANALYT_GEOM.

This element takes the following
values:
• PRO_FLEXMODEL_OPT_

YES

• PRO_FLEXMODEL_OPT_NO

Default Method for the Pull Option
When the value of the element PRO_E_FLEX_PULL_OPTION is set to PRO_
FLEXMODEL_PULL_NONE the moved geometry is attached using either of the
following options:
• Default method
• According to the contents of the Create side surfaces and Extend side surfaces

chain collectors
This section describes the default method for the Pull option in detail.

1092 Creo® Parametric TOOLKITUser’s Guide

The geometry of the modified surface and the neighboring surface decides the
default method by which the surfaces will be attached:
• If the modified surface and the neighboring surface are not tangential to each

other, the surfaces are extended until they intersect, that is, they are attached
using the Extend and intersect option.

• If the modified surface and the neighboring surface are tangential to each
other, the moved geometry is attached in one of the following ways:
○ If the modified surface is of any type and the neighboring surface is a

round surface, the surfaces are attached in the following way:
◆ The round is removed.
◆ The surfaces are attached using the Extend and intersect option.
◆ The round is recreated.

○ If the modified surface is of any type and the neighboring surface is not a
round surface, the surfaces are attached in either of the following ways:
◆ The surfaces are attached by creating side surfaces, that is, by using the

Create side surfaces option.
◆ If the side wall construction fails due to some geometrical reason, for

example, self-intersection, then the default option is reset to Extend
and intersect.

○ If modified surface and the neighboring surface are analytic, that is,
cylindrical, planar, conical, toroidal, or tabulated cylinder and the tangency
propagation is set to No, the surfaces are attached in either of the following
ways:
◆ If the neighboring surface is identified as a round, then the attachment

is similar to the above mentioned round surface.
◆ If the neighboring surface is not a round surface, then the surfaces are

attached using the Create side surfaces option.
○ If modified surface and the neighboring surface are analytic, that is,

cylindrical, planar, conical, toroidal, or tabulated cylinder, the tangency is
along an isoline and the tangency propagation is set to Yes, the surfaces are
attached in either of the following ways:
◆ If the neighboring surface is identified as a round, then the attachment

is similar to the above mentioned round surface.
◆ If the neighboring surface is not a round surface, the neighboring

surface is dragged to maintain the tangency between the surfaces.

Refer to the section Tangency Propagation on page 1099 for more
information on tangency propagation and dragged geometry.

Element Trees: Creo Flexible Modeling Features 1093

Offset Geometry Feature
This section describes how to construct and access the element tree for Offset
Geometry feature. It also shows how to create, redefine, and access the properties
of this feature.

Introduction
The Offset Geometry feature allow you to offset a geometry selection that belongs
to a solid geometry or to a quilt, and reattach it back to the solid or quilt. You can
offset the following geometry selection:
• Any surface collection.
• An intent surface.
• Any combination of the above geometries.
A offset feature will act on a single geometry selection. To offset a different
geometry selection, a new Offset Geometry feature must be created.

The Element Tree for Offset Geometry
The element tree for the Offset Geometry feature is documented in the header file
ProFlexOffset.h, and is shown in the following figure.

Element Tree for Offset Geometry

The following table describes the elements in the element tree for the Offset
Geometry feature:

1094 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature.
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.

The default value is Offset_
Geom.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
collection of surfaces to offset.

PRO_E_OGF_OFFSET_VAL PRO_VALUE_TYPE_DOUBLE Mandatory element. Specifies the
offset value. It takes value
between [-1.00e+06, 1.00e+06].

PRO_E_OGF_DIR_OPT PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction of offset. It takes the
following values:
• PRO_FLXOGF_DIR_

NORMAL—Offsets the
geometry normal to the
selected surface.

• PRO_FLXOGF_DIR_FLIP—
Flips the direction of offset.

PRO_E_FLEX_OPTS_CMPND Compound Mandatory element that contains
the flexible modeling geometry
attachment options to attach the
surfaces offset. Specifies the
integer and chain collection type
elements. The elements related to
reattachment of geometry in
flexible modeling are defined in
ProFlxmdlOpts.h.

For more information, see the
section Attachment Geometry
Feature on page 1082.

Element Trees: Creo Flexible Modeling Features 1095

Element ID Data Type Description
PRO_E_FLXSLV_PROP_
CONSTRS

Array Optional element. Specifies an
array that contains the tangency
conditions and the reference
geometry elements for tangency
propagation. This element must be
specified when the element PRO_
E_FLEX_PROPAGATE_
TANGENCY is set to PRO_
FLEXMODEL_OPT_YES in the
header file ProFlxmdlOpts.h.

The elements related to
propagation of tangency in flexible
modeling are defined in
ProFlexTanPropOpts.h. For
more information, see the section
Tangency Propagation on page
1099.

PRO_E_STD_FLEX_
PROPAGATION

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies a
pattern or mirror recognition
feature to propagate the offset
geometry feature changes.

Modify Analytic Surface Feature
This section describes how to construct and access the element tree for Modify
Analytic Surface feature for flexible modeling. It also shows how to create,
redefine, and access the properties of this feature.

Introduction
The Modify Analytic Surface feature allows you to modify the analytic surfaces.
The modification is done by creating and modifying basic dimensions that define
each surface type.
The following analytic surfaces can be modified:
• Cylinder—The axis remains fixed and the radius can be modified.
• Torus—The axis of revolution of the circle remains fixed. The radius of the

circle and the distance (radius) from the center of the circle to the axis of
revolution can be modified.

• Cone—The axis and vertex of the cone remain fixed, and the angle can be
modified.

1096 Creo® Parametric TOOLKITUser’s Guide

The Element Tree for Modify Analytic Surface
The element tree for the Modify Analytic Surface feature is documented in the
header file ProFlexMag.h, and is shown in the following figure.

Element Tree for Modify Analytic Surface

The following table describes the elements in the element tree for the Modify
Analytic Surface feature:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature.
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.

The default value is MODIFY_
ANALYTIC_SURFACE.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
collection of analytical surface sets
to be modified. The valid surface
selections are: cylindrical, conical
or toroidal surfaces.

Note

You can specify only one
reference surface or surface
region at a time in this
element.

PRO_E_STD_FLEX_
PROPAGATION

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies a
pattern or mirror recognition
feature to propagate the modified
analytic surface feature changes.

PRO_E_FLEX_OPTS_CMPND Compound Mandatory element that contains
the flexible modeling geometry

Element Trees: Creo Flexible Modeling Features 1097

Element ID Data Type Description
attachment options to attach the
modified surfaces. Specifies the
integer and chain collection type
elements. The elements related to
reattac of geometry in flexible
modeling are defined in
ProFlxmdlOpts.h.

For more information, see the
section Attachment Geometry
Feature on page 1082.

PRO_E_FLXSLV_PROP_
CONSTRS

Array Optional element. Specifies an
array that contains the tangency
conditions and the reference
geometry elements for tangency
propagation. This element must be
specified when the element PRO_
E_FLEX_PROPAGATE_
TANGENCY is set to PRO_
FLEXMODEL_OPT_YES in the
header file ProFlxmdlOpts.h.

The elements related to
propagation of tangency in flexible
modeling are defined in
ProFlexTanPropOpts.h. For
more information, see the section
Tangency Propagation on page
1099.

PRO_E_MAG_ANGLE_VAL PRO_VALUE_TYPE_DOUBLE Mandatory element for conic
surface. Specifies the angle of the
conic surface.

The element takes angular value
between [0.5, 89] degrees.

1098 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MAG_RADII_VAL PRO_VALUE_TYPE_DOUBLE Mandatory element for cylindrical

and a toroidal surface.

For cylindrical surface, the
element specifies the radius of the
cylindrical surface.

For torodial surface, the element
specifies the radius of revolution
of the toroidal surface.

The element takes value between
[0, 1.00e+06].

PRO_E_MAG_RADII2_VAL PRO_VALUE_TYPE_DOUBLE Mandatory element for conic
surface. Specifies the circle radius
of the toroidal surface.

The element takes value between
[0, 1.00e+06].

Tangency Propagation
This section describes how to construct and access the elements for propagating
tangency in a flexible modeling feature.

Introduction
When geometry is modified with Move, Offset, or Modify Analytic command, you
can maintain the tangency between the modified geometry and the neighboring
geometry. To maintain the tangency, the neighboring geometry may be modified,
though it was not selected for modification. The geometry that is included during
tangency propagation is defined as dragged geometry. The dragged geometry is
modified in such a way that it always remains tangential to the directly modified
geometry. The tangency propagation stops when the application recognizes a
surface that is round or chamfer. The chamfer or round surface, except variable
rounds, is recreated after the geometry is modified. The round and chamfer
geometry are called connecting geometry.
Depending on the type of round surface, the tangency may or may not be
propagated. The rounds are of the following types:
• Rounds that can be propagated. Tangency propagation can be forced to be

carried through and continue onto adjacent tangent geometry.
• Rounds that cannot be propagated. The tangency stops and cannot be forced to

go further.

Element Trees: Creo Flexible Modeling Features 1099

• Rounds that cannot be recreated. These are mainly the variable rounds.
Variable rounds can be removed but cannot be recreated.

• Interfering rounds. These are rounds that do not connect transformed or
dragged geometry to the rest of the model but have to be removed and
recreated to accommodate the changes in the transformed geometry, dragged
geometry, and other rounds.

The round or chamfer surfaces connect the directly modified geometry and the
dragged surfaces to the background geometry. The background geometry is the
base geometry that is not modified.
The modified, dragged, connecting, fixed, and background geometry are displayed
in different colors during modification in the Creo Parametric user interface as
shown in the figure below:

1—Default vertices are automatically created when you propagate tangency
2—Directly modified geometry
3—Dragged geometry
4—Rounds that cannot propagated
5—Rounds that can be propagated
6—Rounds that cannot be recreated
7—Interfering rounds
8—Background geometry

1100 Creo® Parametric TOOLKITUser’s Guide

You can control the changes in geometry during tangency propagation by
specifying the tangency constraints. During tangency propagation the fixed vertex
constraints are also considered. The tangency constraint is applied on a reference
geometry that can either be the dragged geometry or the connecting geometry, or
both. Refer to Creo Flexible Modeling Help for more information.
To work with tangency propagation, you must set the value of the element PRO_
E_FLEX_PROPAGATE_TANGENCY to PRO_FLEXMODEL_OPT_YES. The
element is defined in the header file ProFlxmdlOpts.h.
The element PRO_E_FLXSLV_PROP_CONSTRS is used to set the conditions
that controls the changes in geometry during tangency propagation. It is seen in
the following feature types:
• PRO_FEAT_FLEXMOVE (See ProFlexMove.h)
• PRO_FEAT_FLX_OGF (See ProFlexOffset.h)
• PRO_FEAT_ANALYT_GEOM (See ProFlexMag.h)

The Element Tree for Tangency Propagation
The element tree for the Tangency Propagation is documented in the header file
ProFlexTanPropOpts.h, and is shown in the following figure.

Element Tree for Tangency Propagation

The following table describes the elements in the element tree for the Tangency
Propagation:
Element ID Data Type Description
PRO_E_FLXSLV_PROP_
CONSTRS

Array Specifies an array of conditions
that control the tangency
propagation.

PRO_E_FLXSLV_CONSTR Compound Mandatory element. Specifies a
single condition for tangency
along with the reference geometry.

Element Trees: Creo Flexible Modeling Features 1101

Element ID Data Type Description
PRO_E_FLXSLV_CONSTR_
REFS

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
selection of reference geometry.

PRO_E_FLXSLV_CONSTR_
TYPE

PRO_VALUE_TYPE_INTEGER Mandatory element. Specifies a
condition that sets constraint on
the neighboring surfaces during
the propagation of tangency. The
valid values are defined in the
enumerated data type
ProFlxmdlPropOptFlag.
Refer to section Setting Conditions
for Tangency Propagation on page
1102 for more information on
tangency conditions.

Setting Conditions for Tangency Propagation
You can set the conditions depending on geometry type that must be considered
during tangency propagation. The conditions are specified using the enumerated
data type ProFlxmdlPropOptFlag. The valid values are:
• PRO_FLXSLV_CONSTR_TYPE_FIXED—Specifies that the reference

geometry must be fixed. Tangency is not maintained between the modified
geometry and the neighboring geometry. You can set the value for following
types of geometry:
○ Planar surface
○ Cylindrical surface
○ Conical surface
○ Toroidal surface
○ Spherical surface
○ Tabulated cylinder
○ Surface of revolution
○ Round surface
○ Edge (surface isoline) on the surface
○ Vertex on the surface

1102 Creo® Parametric TOOLKITUser’s Guide

Note
You can specify the condition PRO_FLXSLV_CONSTR_TYPE_FIXED
while manipulating the geometry of parts, using the Creo Flexible
Modeling commands, even if the value of PRO_E_FLEX_PROPAGATE_
TANGENCY is set to PRO_FLEXMODEL_OPT_NO. Here the reference
round and chamfer geometry are not considered as rounds and chamfers.

• PRO_FLXSLV_CONSTR_TYPE_FIX_AXIS—Specifies that the axis of the
reference geometry must be fixed. You can set the value for following types of
geometry:
○ Cylindrical surface
○ Conical surface
○ Toroidal surface
○ Spherical surface
○ Surface of revolution

• PRO_FLXSLV_CONSTR_TYPE_FIX_CNTR—Specifies that the center of
the reference geometry must be fixed. You can set the value for following
types of geometry:
○ Toroidal surface
○ Spherical surface

• PRO_FLXSLV_CONSTR_TYPE_FIX_NORM—Specifies that the reference
geometry must be normal to the directly modified geometry. You can set the
value for following type of geometry:
○ Planar surface

• PRO_FLXSLV_CONSTR_TYPE_CONST_R1—Specifies that the minor
radius of reference geometry must be constant. You can set the value for
following types of geometry:
○ Cylindrical surface
○ Toroidal surface—The minor diameter is kept constant.
○ Spherical surface

• PRO_FLXSLV_CONSTR_TYPE_CONST_R2—Specifies that the major
radius of reference geometry must be constant. You can set the value for
following type of geometry:
○ Toroidal surface

Element Trees: Creo Flexible Modeling Features 1103

• PRO_FLXSLV_CONSTR_TYPE_CONST_ANG—Specifies that the angle
between the reference geometry and directly modified geometry must be
constant. You can set the value for following type of geometry:
○ Conical surface

• PRO_FLXSLV_CONSTR_TYPE_FIX_POLE—Specifies that the position of
the pole in the reference geometry must be fixed. You can set the value for
following type of geometry:
○ Conical surface

• PRO_FLXSLV_CONSTR_TYPE_PRPG_THRU—Specifies that the tangency
must be propagated till the last available round surface or till the surface after
which the tangency will break.
○ Round surface
○ Cylindrical surface

• PRO_FLXSLV_CONSTR_TYPE_FIX_RNDEDG_PNT—Specifies that the
endpoint (vertex) on the edge of the reference geometry must be fixed. You
can set the value for following type of geometry:
○ Round surface

• PRO_FLXSLV_CONSTR_FIX_WITH_TNGCY—Specifies that the tangency
must be maintained between the modified geometry and the neighboring
dragged geometry, and further between the neighboring dragged geometry and
connecting geometry. You can set the value for following types of geometry:
○ Planar surface
○ Cylindrical surface
○ Conical surface
○ Toroidal surface
○ Spherical surface
○ Tabulated cylinder
○ Surface of revolution
○ Round surface
○ Edge (surface isoline) on the surface
○ Vertex on the surface

• PRO_FLXSLV_CONSTR_TYPE_CONST_R—Specifies that the radius of
reference geometry must be constant. You can set the value for following
types of geometry:
○ Cylindrical surface

1104 Creo® Parametric TOOLKITUser’s Guide

○ Spherical surface
• PRO_FLXSLV_CONSTR_TYPE_KEEP_SPHERICAL—Specifies that the

shape of the sphere does not change, though the radius can change. You can
set the value for following types of geometry:
○ Spherical surface

Mirror Feature
This section describes how to construct and access the element tree for Mirror
feature for flexible modeling. It also shows how to create, redefine, and access the
properties of this feature.

Introduction
The Mirror feature allows you to mirror a selected set of geometry about a plane.
You can either attach the mirrored geometry to the solid or quilt from which it was
created or keep it detached.
If the geometry selection for the mirror feature includes or is attached by round
geometry, then the round geometry can be recreated in the new mirrored location.

Note
The group header of the Mirror feature behaves as a standard feature. You can
extract the header element tree in Creo Parametric TOOLKIT.

The Element Tree for Mirror
The element tree for the Mirror feature is documented in the header file
ProFlexMirror.h, and is as shown in the following figure:

Element Trees: Creo Flexible Modeling Features 1105

Element Tree for Mirror

The following table describes the elements in the element tree for the Mirror
feature:
Element ID Data Type Description
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.

The default value is Mirror_
Geometry.

PRO_E_MGF_REFS Compound Compound element that specifics
the geometry, curves, and datums
to be mirrored.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
collection of surface sets of the
geometry to be mirrored.

PRO_E_MGF_MIRROR_PLANE PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum plane or intent datum plane
about which the geometry will be
mirrored.

1106 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MGF_DATUMS PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
collection of curves and datum
entities to be mirrored.

PRO_E_FLEX_OPTS_CMPND Compound Mandatory element that contains
the Creo Flexible Modeling
geometry attachment options to
attach the mirrored surfaces.
Specifies the integer and chain
collection type elements. The
elements related to reattachment of
geometry in flexible modeling are
defined in ProFlxmdlOpts.h.

For more information, see the
section Attachment Geometry
Feature on page 1082.

Substitute Feature
This section describes how to construct and access the element tree for Substitute
feature. It also shows how to create, redefine, and access the properties of this
feature.

Introduction
The Substitute feature allows you to replace a geometry selection that belongs to a
solid geometry or a quilt with replacing surfaces. The replacing surfaces are
attached to the solid or quilt, and any round geometry between the geometry
selection. The model is recreated after the replacing geometry is attached.
You can substitute the following geometry selection:
• Any surface collection.
• An intent surface.
• Any combination of the above geometries.
• Any one-sided edges on surfaces or quilts.
All the surfaces and one-sided edges in the geometry selection must belong to the
same solid geometry or to the same quilt. The geometry selection must not be
tangential to the neighboring geometry, or should be attached to the neighboring
geometry with round geometry.
The replacing surfaces must be large enough to attach to the extension of the
neighboring geometry, without the need to extend the replacing surfaces.
After substitution, the replacing surfaces that define the one-sided edge loops are
extended and trimmed so that the resulting edges lie on the substituting geometry.
Refer to the Creo Flexible Modeling Help for more information.

Element Trees: Creo Flexible Modeling Features 1107

The Element Tree for Substitute
The element tree for the Substitute feature is documented in the header file
ProFlexSubstitute.h, and is shown in the following figure.

Element Tree for Substitute

The following table describes the elements in the element tree for the Substitute
feature:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of feature. The value of this
feature must be PRO_FEAT_
FLEXSUBST.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is
Substitute.

PRO_E_CMP_SUBSTITUTED Compound Compound element for surfaces to
be substituted.

PRO_E_FLXSUBST_METHOD PRO_VALUE_TYPE_INT Specifies which kind of geometry
must be substituted. The valid
geometry types are:

1108 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_FLEXSUBST_

SURFACES—Specifies that
surfaces must be substituted.

• PRO_FLEXSUBST_LOOPS—
Specifies that one-sided edges
must be substituted.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Mandatory element for PRO_
FLEXSUBST_SURFACES.
Specifies the collection of surfaces
that will be replaced by the
substituting surfaces.

PRO_E_FLXSUBST_
EDGELOOPS

PRO_VALUE_TYPE_
SELECTION

Mandatory element for PRO_
FLEXSUBST_LOOPS. Specifies
the collection of one-sided edges
that will be replaced by the
substituting surfaces.

PRO_E_CMP_SUBTITUTING Compound Compound element for
substituting surfaces.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
collection of substituting surfaces.

PRO_E_OPT_SUBST_SRF
_NORM_SIDE

PRO_VALUE_TYPE_BOOLEAN Mandatory element. Specifies the
direction of the normal vectors of
the substituting surfaces.

This element takes the following
values:
• PRO_B_TRUE—Specifies that

the side 1 is direction of
normal vector.

• PRO_B_FALSE—Specifies
that the side 2 is direction of
normal vector.

PRO_E_FLEX_OPTS_CMPND Compound Mandatory element that contains
the flexible modeling geometry
attachment options to attach the
substituting surfaces. Specifies the
integer and chain collection type
elements. The elements related to
reattachment of geometry in
flexible modeling are defined in
ProFlxmdlOpts.h.

For more information, see the
section Attachment Geometry
Feature on page 1082.

Element Trees: Creo Flexible Modeling Features 1109

Planar Symmetry Recognition Feature
This section describes how to construct and access the element tree for Planar
Symmetry Recognition feature. It also shows how to create, redefine, and access
the properties of this feature.

Introduction
The Planar Symmetry Recognition feature allows you to identify and modify
geometry that is symmetric with respect to a plane. The modifications made to the
geometry on one side are automatically propagated to the other side and the
symmetry is kept.
The Planar Symmetry Recognition feature identifies symmetrical geometry in the
following ways:
• You can collect two seed surfaces or surface regions that are symmetric. The

feature computes the plane of symmetry, and finds all pairs of neighboring
surfaces and surface regions which are symmetric with respect to the
symmetry plane. The propagation ends when non-symmetric neighboring
surfaces are found.

The two seed surfaces or regions must belong to:

○ The solid geometry.
○ A single quilt.
○ Two quilts.

• You can collect a seed surface or surface region and a plane of symmetry. The
feature finds the mirror image of the seed surface or surface region and, finds
all the pairs of neighboring surfaces and surface regions which are symmetric
with respect to the symmetry plane.

According to the correspondence between the geometry of the symmetrical
members, the following variation of planar symmetry recognition are possible:
• Identical—There is exact correspondence between the surfaces of the

symmetrical members as well as between the intersection edges defined by
these members and the surrounding geometry.

• Similar—There is exact correspondence between the surfaces of the
symmetrical members, but there is no exact correspondence between the
intersection edges defined by these members and the surrounding geometry.
The number of intersection loops must be the same, but the type of edges,
number of edges in each intersection loop and the intersected model surfaces
do not have to be the same.

1110 Creo® Parametric TOOLKITUser’s Guide

Note
The group header of the Planar Symmetry Recognition feature behaves as a
standard feature. You can extract the header element tree in Creo Parametric
TOOLKIT.

The Element Tree for Planar Symmetry Recognition
Feature
The element tree for the Planar Symmetry Recognition feature is documented in
the header file ProSymmetryRecognition.h, and is shown in the following
figure:

Element Tree for Planar Symmetry Recognition Feature

The following table describes the elements in the element tree for the Planar
Symmetry Recognition feature:
Element ID Data Type Description
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.

The default value is Mirror_
Recognition.

PRO_E_PSR_PLN_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
collection of two seed surfaces or
one seed surface and the symmetry
mirror plane.

Element Trees: Creo Flexible Modeling Features 1111

Element ID Data Type Description
PRO_E_PSR_DTM_REF PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
collection of datums and curve
chains that will be included in the
symmetry recognition.

PRO_E_PSR_RCG_OPT PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of symmetrical geometry to
be recognized: Identical or
Similar.

This element takes the following
values:
• PRO_PSR_IDENTICAL

• PRO_PSR_SIMILAR

Attach Feature
This section describes how to construct and access the element tree for Attach
feature. It also shows how to create, redefine, and access the properties of this
feature.

Introduction
The Attach feature allows you to attach open quilts to solid or quilt geometry, if
the open quilt does not intersect the solid or quilt geometry. You can select an
open quilt and attach it to another quilt or solid geometry within the same model.
You can also select two open quilts within the same model which do not intersect
and attach them.
This feature is useful in case of UDF placement when the geometry of the UDF
does not intersect the part.

The Element Tree for Attach Feature
The element tree for the Attach feature is documented in the header file
ProFlexAttach.h, and is shown in the following figure:

1112 Creo® Parametric TOOLKITUser’s Guide

Attach Feature Element Tree

The following table describes the elements in the element tree for the Attach
feature:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of feature. The value of this
feature must be PRO_FEAT_
ATTACH.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is Attach_1.

PRO_E_REF_ATTACH_PRIM_
QLT

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
primary open quilt to be attached
to another quilt. The primary quit
will be extended or trimmed
during the attachment.

PRO_E_REF_ATTACH_MERG_
QLT

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
merge quilt or solid geometry upto
which the primary quilt can be
extended or trimmed.

PRO_E_OPT_ATTACH_OPER PRO_VALUE_TYPE_BOOLEAN Mandatory element. Specifies
whether to attach the primary quilt
to the merge quilt or solid
geometry.

Element Trees: Creo Flexible Modeling Features 1113

Element ID Data Type Description

This element takes the following
values:
• PRO_B_TRUE—Specifies that

the primary quilt must not be
attached.

• PRO_B_FALSE—Specifies
that the primary quilt must be
attached.

PRO_E_OPT_ATTACH_RMV_
MAT

PRO_VALUE_TYPE_BOOLEAN This element is available when the
element PRO_E_REF_ATTACH_
MERG_QLT has no reference
geometry specified. Specifies if
material must be added or
removed.

This element takes the following
values:
• PRO_B_TRUE—Specifies that

the material must be removed.

• PRO_B_FALSE—Specifies
that the material must be
added.

PRO_E_OPT_ATTACH_PQ_DIR PRO_VALUE_TYPE_BOOLEAN This element is available when the
element PRO_E_OPT_ATTACH_
OPER has its value as PRO_B_
FALSE. Specifies the side of the
quilt that must be included in the
merged quilt

This element takes the following
values:
• PRO_B_TRUE—Specifies that

the second side of the quilt
must be merged.

• PRO_B_FALSE—Specifies
that the first side of the quilt
must be merged.

PRO_E_OPT_ATTACH_MGQ_
DIR

PRO_VALUE_TYPE_BOOLEAN This element is available when the
element PRO_E_OPT_ATTACH_
OPER has its value as PRO_B_
TRUE and the element PRO_E_
REF_ATTACH_MERG_QLT has
reference geometry specified.
Specifies the direction in which
the material should be added or
removed in the primary quilt.

This element takes the following
values:

1114 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_B_TRUE—Specifies that

the material must be added or
removed from the second side.

• PRO_B_FALSE—Specifies
that the material must be added
or removed from the first side.

PRO_E_OPT_ATTACH_PIO PRO_VALUE_TYPE_BOOLEAN Specifies if the quilt should be
attached to the model geometry in
the same way as it was attached
previously by using the attachment
information stored in the intent
objects.

PRO_E_OPT_ATTACH_RNDCH PRO_VALUE_TYPE_BOOLEAN Specifies if the round or chamfer
geometry of the quilt should be
attached using the attachment
information stored in the intent
objects.

PRO_E_FLEX_OPTS_CMPND Compound Mandatory element that contains
the flexible modeling geometry
attachment options to attach the
substituting surfaces. Specifies the
integer and chain collection type
elements. The elements related to
reattachment of geometry in
flexible modeling are defined in
ProFlxmdlOpts.h.

For more information, see the
section Attachment Geometry
Feature on page 1082.

Example 1: Creating a Flexible Model
Feature
The sample code in UgFlexModelCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat shows
how to create a Creo Flexible Modeling feature.

Element Trees: Creo Flexible Modeling Features 1115

50
Element Trees: Bushing Load

Introduction..1117
The Feature Element Tree for Bushing Loads...1117

This chapter describes how to construct and access the element tree for Bushing
Load features in Creo Parametric TOOLKIT. It also shows how to redefine, create
and access the properties of these features.

1116 Creo® Parametric TOOLKITUser’s Guide

Introduction
The bushing loads in the model are represented under the Bushing Load node in
the product mechanism tree. As the bushing load is a regular Creo Parametric
feature, it also has an appropriate node in the main model tree. You can create,
edit, and redefine the bushing loads. To create new bushing loads select a weld
connection or a 6DOF connection. You must specify six stiffnesses and six
damping coefficients for all the degrees of freedom of the reference connection.
Each coefficient is associated with one feature parameter.

Note
• The default units of the spring stiffnesses and the damping coefficients on

the three rotational axes are degree-based.
• If bushing load reference is a weld connection, any axis can be locked. In

this case the spring stiffness on the locked axis should have a value of -1.0,
regardless of the current units.

The Feature Element Tree for Bushing
Loads
The element tree for the bushing load feature is documented in the header file
ProBushingLoadFeat.h, and is shown in the following figure.

Element Trees: Bushing Load 1117

Element Tree for Bushing Loads

The following table describes the elements in the element tree for the bushing load
feature:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature
PRO_E_BUSHLD_REF PRO_VALUE_TYPE_

SELECTION
Specifies the weld or 6DOF
reference connection

PRO_E_BUSHLD_T1_STF_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the spring stiffness on
the 1st translation axis

PRO_E_BUSHLD_T1_DMP_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the damping coefficient
on the 1st translation axis

PRO_E_BUSHLD_T2_STF_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the spring stiffness on
the 2nd translation axis

PRO_E_BUSHLD_T2_DMP_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the damping coefficient
on the 2nd translation axis

PRO_E_BUSHLD_T3_STF_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the spring stiffness on
the 3rd translation axis

PRO_E_BUSHLD_T3_DMP_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the damping coefficient
on the 3rd translation axis

PRO_E_BUSHLD_R1_STF_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the spring stiffness on
the 1st rotational axis

PRO_E_BUSHLD_R1_DMP_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the damping coefficient
on the 1st rotational axis

1118 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_BUSHLD_R2_STF_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the spring stiffness on
the 2nd rotational axis

PRO_E_BUSHLD_R2_DMP_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the damping coefficient
on the 2nd rotational axis

PRO_E_BUSHLD_R3_STF_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the spring stiffness on
the 3rd rotational axis

PRO_E_BUSHLD_R3_DMP_
COEFF

PRO_VALUE_TYPE_DOUBLE Specifies the damping coefficient
on the 3rd rotational axis

Element Trees: Bushing Load 1119

51
Element Trees: Cosmetic Thread

Introduction... 1121
The Element Tree for Cosmetic Thread... 1121

This chapter describes how to construct and access the element tree for Cosmetic
Thread features. It also shows how to create, redefine, and access the properties of
these features.

1120 Creo® Parametric TOOLKITUser’s Guide

Introduction
A cosmetic thread is a cosmetic feature that represents the diameter of a thread. It
is displayed in purple. Unlike other cosmetic features, you cannot modify the line
style of a cosmetic thread.
You can create cosmetic threads using cylinders, cones, splines, and non-normal
planes as the references. The surface that you select determines whether a
cosmetic thread is external or internal. If the surface is a shaft, the thread is
external. If the surface is a hole, the thread is internal.
You can create a standard thread or a nonstandard thread. When you choose to
create a standard thread, the standard thread series and diameter is used. You can
create, edit, and redefine the cosmetic thread features.

The Element Tree for Cosmetic Thread
The element tree for the cosmetic thread feature is documented in the header file
ProThread.h, and is shown in the following figure.

Element Trees: Cosmetic Thread 1121

Element Tree for Cosmetic Thread

The following table describes the elements in the element tree for the cosmetic
thread feature:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature
PRO_E_FEATURE_FORM PRO_VALUE_TYPE_INT Optional element. Specifies the

type of the feature form. Use the
value PRO_EXTRUDE or PRO_
REVOLVE from the enumerated
type ProFeatFormType
depending on the threaded surface.
• Use PRO_EXTRUDE when the

referenced threaded surface is
cylindrical.

• Use PRO_REVOLVE when the
referenced threaded surface is
conical.

1122 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

If the enumerated value and
referenced threaded surface
are incorrectly selected, the
feature creation or
redefinition will fail.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifics the
cosmetic thread feature name. The
default value is COSMETIC_
THREAD.

PRO_E_THRD_TYPE_OPT_NEW PRO_VALUE_TYPE_BOOLEAN Optional element. Specifies if a
simple or a standard thread should
be created. It has two values:
FALSE for simple thread and
TRUE for standard thread.

PRO_E_THRD_SERIES_NEW PRO_VALUE_TYPE_INT Specific the thread series for the
standard threads. From the *.hol
files information about different
THREAD_SERIES is gathered
and a list is generated. You can
specify UNC, UNF, and ISO as the
standard thread series. The current
index to the list is stored in this
element.

PRO_E_THRD_SCREWSIZE_
NEW

PRO_VALUE_TYPE_INT Optional element. Specifies the
screw size for the standard thread.
The screw_size list is
extracted from the *.hol files
corresponding to the thread series.
The index to the screw_size
list is stored in this element.

PRO_E_THRD_SURF_NEW PRO_VALUE_TYPE_
SELECTION

Specifies the surface to thread.

PRO_E_THRD_DIAM_NEW PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
diameter for a simple thread. If the
reference threaded surface is
conical, the thread diameter value
can be between 0.0 and diam/4,
where diam is the largest
estimated diameter of the cone.
For all other reference surfaces,
the diameter can have values
between 0.1 and MAX_DIM_
VALUE, that is the maximum
allowed diameter value.

PRO_E_THRD_START_REF_
NEW

PRO_VALUE_TYPE_
SELECTION

Specifies the starting location of
the cosmetic thread.

PRO_E_THRD_DEP_COMP_NEW Compound Specifies the depth and flip
elements. It contains the following
elements:

Element Trees: Cosmetic Thread 1123

Element ID Data Type Description
• PRO_E_THRD_DEP_OPT

_NEW

• PRO_E_THRD_FLIP_OPT
_NEW

• PRO_E_THRD_DEP_VAL
_NEW

• PRO_E_THRD_END_REF

PRO_E_THRD_DEP_OPT_NEW PRO_VALUE_TYPE_BOOLEAN Optional element. Specifies the
depth option: FALSE for blind
depth option and TRUE for the
depth up to the selected entity.

PRO_E_THRD_FLIP_OPT_NEW PRO_VALUE_TYPE_INT Optional element. Specifies the
flip direction of the thread with
respect to the reference surface.
The flip direction is specified by
the enumerated type
ProThreadFlip that takes the
following values:
• PRO_COSTHREAD_THD

_FLIP_OPT_FLIP

• • PRO_COSTHREAD_THD
_FLIP_OPT_NORM

PRO_E_THRD_DEP_VAL_NEW PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
depth value when the element
PRO_E_THRD_DEP_OPT_NEW
is FALSE (Blind option). You can
specify a minimum depth of 0.1.
When the element PRO_E_
THRD_DEP_OPT_NEW is TRUE,
the node is invisible.

PRO_E_THRD_END_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element when PRO_
E_THRD_DEP_OPT_NEW is
TRUE. Specifies the reference
surface up to which the thread
depth should be created. This node
is available only when the element
PRO_E_THRD_DEP_OPT_NEW
is TRUE. When the element PRO_
E_THRD_DEP_OPT_NEW is
FALSE, the node is invisible.

PRO_E_THRD_NOTE_
PARAMS_NEW

PRO_VALUE_TYPE_POINTER Reserved for future use. Optional
element. Displays the thread
parameters in a data structure.

1124 Creo® Parametric TOOLKITUser’s Guide

52
Element Trees: ECAD Area Feature
Introduction to ECAD Area Feature... 1126

This chapter describes how to access ECAD Area feature through Creo Parametric
TOOLKIT.

1125

Introduction to ECAD Area Feature
An ECAD Area specifies where you can place electrical components or cannot
place them to avoid interference with other electric components or electrical
routing. You can create an ECAD area as a sketched cosmetic feature of an
electrical board part. However, since this area is sketched, you cannot dimension
or regenerate it.
The ECAD area can have a closed 3D volume represented by a quilt. Use these
quilts to perform a clearance and interference check on the neighboring electric
components. You can access the geometry of the ECAD area feature by using
standard Creo Parametric TOOLKIT functions such as
ProFeatureGeomitemVisit() and ProSolidQuiltVisit().

Feature Element Tree for the ECAD Area
The element tree for the ECAD Area feature is documented in the header file
ProEcadArea.h. The following figure demonstrates the element tree structure:

1126 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for an ECAD Area

The information about the elements in this tree is as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type; should always have
the value PRO_FEAT_COSMETIC.

• PRO_E_IS_ECAD_AREA—Specifies whether the created cosmetic feature is
an ECAD area. This element must have the value PRO_B_TRUE to
distinguish this feature from other cosmetic features.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the ECAD area
feature.

Element Trees: ECAD Area Feature 1127

• PRO_E_ECAD_AREA_TYPE—Specifies the type of ECAD area in the form
of the enumerated type ProEcadAreaType. Specify the value of this
element as one of the following:

○ PRO_ECAD_AREA_TYPE_PLACE_KEEPIN—Specifies a keepin region.
You can specify the depth of the area above and below the electric board
while creating this region. The default depth value is zero.

○ PRO_ECAD_AREA_TYPE_PLACE_KEEPOUT—Specifies a keepout
region. You can specify the depth of the area above and below the electric
board while creating this region. The default depth value is zero.

○ PRO_ECAD_AREA_TYPE_PLACE_REGION—Specifies a group area
section.

○ PRO_ECAD_AREA_TYPE_ROUTE_KEEPIN—Specifies a routing keepin
region where routing actions are permitted.

○ PRO_ECAD_AREA_TYPE_ROUTE_KEEPOUT—Specifies a routing
keepout region where routing actions are not permitted.

○ PRO_ECAD_AREA_TYPE_VIA_KEEPOUT—Specifies an area where
you cannot create vias.

○ PRO_ECAD_AREA_TYPE_FLEX_REGION—Specifies a region created
using flexible modeling features.

○ PRO_ECAD_AREA_TYPE_USER_DEFINED—Specifies an user-defined
area.

• PRO_E_STD_SECTION—Specifies the sketched region for the ECAD area.
For more information on how to populate the section elements of the sketched
region, refer to the Element Trees: Sketched Features on page 1004 chapter.

• PRO_E_ECAD_AREA_3D_VOLUME—A ProBoolean element that
specifies whether the ECAD area appears with a 3D quilt. Only PRO_ECAD_
AREA_TYPE_PLACE_KEEPIN and PRO_ECAD_AREA_TYPE_PLACE_
KEEPOUT types of ECAD areas accept a 3D volume on one or two sides.

• PRO_E_ECAD_AREA_DEPTH_TYPE—Specifies the depth type in the form
the enumerated type ProEcadAreaDepthType. The depth options are
applicable only if the element PRO_E_ECAD_AREA_3D_VOLUME is set to
PRO_B_TRUE. These options are as follows:

○ PRO_ECAD_AREA_DEPTH_ONE_SIDE—Creates the ECAD area with a
3D volume on one side of the electrical board.

○ PRO_ECAD_AREA_DEPTH_TWO_SIDES_SYM—Places the created
ECAD area with a 3D volume at the top and bottom of the electrical board
symmetrically.

1128 Creo® Parametric TOOLKITUser’s Guide

○ PRO_ECAD_AREA_DEPTH_TWO_SIDES_NOT_SYM—Places the
created ECAD area with a 3D volume at the top and bottom of the
electrical board asymmetrically.

• PRO_E_ECAD_AREA_DEPTH—Specifies the depth for the ECAD area.
• PRO_E_ECAD_AREA_DEPTH2—Specifies the other depth value, which is

applicable only if the element PRO_E_ECAD_AREA_DEPTH_TYPE is set to
PRO_ECAD_AREA_DEPTH_TWO_SIDES_NOT_SYM.

• PRO_E_ECAD_AREA_XHATCH—Specifies whether the ECAD area is
created as a meshed region.

• PRO_E_ECAD_AREA_TRIM_BNDRS—Specifies whether to trim the
boundary of an ECAD area, where the ECAD area exceeds the boundary of
the electric board.

• PRO_E_ECAD_AREA_COLOR—Specifies the color of the ECAD area. The
default color of the ECAD area is set in the Creo Parametric Options dialog
box.

Use the function ProElementEcadAreaProColorSet() to set the
color of the ECAD area. Specify a defined ProColor structure as input
argument. The data from ProColor structure is copied to the element PRO_
E_ECAD_AREA_COLOR. When you redefine the element tree, the data copied
from ProColor structure is used to set the color of the ECAD area.

The function ProElementEcadAreaProColorGet() returns the color
of the specified ECAD area.

• PRO_E_ECAD_AREA_USER_DEF_TYPE—Specifies the name of the user-
defined area. Similar to the other types of ECAD areas, the color of the user-
defined ECAD area is also set using the element PRO_E_ECAD_AREA_
COLOR.

You can also set the name and color of user-defined area in a comma separated
value (.csv) file. The .csv file contains 2 columns, the names of user-
defined areas and the names of the colors associated with each area. The
names of the colors set in the .csv file must be defined in the *.dmt file.

Set the path to the .csv file using the configuration option ecad_usrdef_
area_type_file_path.

If you specify the name of a user-defined area from the .csv file, then the
ECAD area is created with the color specified for that area in the .csv file.
For an user-defined area that was created from the .csv file, if you use the
element PRO_E_ECAD_AREA_COLOR to set the area color, then the color set
by the element overrides the color set by the *.csv file.

Refer to the Creo Parametric ECAD Help for more information on how to
create the .csv file and set colors in *.dmt files.

Element Trees: ECAD Area Feature 1129

53
Assembly: Basic Assembly

Access
Structure of Assemblies and Assembly Objects ... 1131
Visiting Assembly Components .. 1133
Locations of Assembly Components ... 1137
Assembling Components ... 1138
Redefining and Rerouting Components... 1138
Deleting Components .. 1138
Flexible Components... 1138
Exploded Assemblies .. 1141
Merge and Cutout.. 1145
Automatic Interchange... 1145

This chapter describes the Creo Parametric TOOLKIT functions that access the
contents of a Creo Parametric assembly. Before you read this chapter, you should
be familiar with the following documentation:

• User Interface: Selection on page 503
• Core: Coordinate Systems and Transformations on page 222
• Core: 3D Geometry on page 170

1130 Creo® Parametric TOOLKITUser’s Guide

Structure of Assemblies and Assembly
Objects
The object ProAssembly is an instance of ProSolid and shares the same
declaration. The ProAssembly object can therefore be used as input to any of
the ProSolid and ProMdl functions applicable to assemblies. In particular,
because you can use the function ProSolidFeatVisit() to traverse features,
you can extract the assembly datum features and their geometry in the same way
as for parts (described in detail in the chapter on Core: 3D Geometry on page
170).
However, assemblies do not contain active geometry items other than those in
datums—that is, no “solid” geometry as described in the Core: 3D Geometry on
page 170 and Element Trees: Principles of Feature Creation on page 764 chapters.
Therefore, the function ProSolidBodySurfaceVisit() will not find any
surfaces, and solid assembly features such as holes and slots will not contain
active surfaces or edges.
The solid geometry of an assembly is contained entirely in its components. Each
component is a feature of type PRO_FEAT_COMPONENT, which is a reference to
a part or another assembly, plus a set of parametric constraints for determining its
geometric location within the parent assembly.
Assembly features that are solid, such as holes and slots, and therefore affect the
solid geometry of parts in the assembly hierarchy, do not themselves contain the
geometry items that describe those modifications. These items are always
contained in the parts whose geometry is modified, within local features created
for that purpose of type PRO_FEAT_ASSEM_CUT.
The most important Creo Parametric TOOLKIT functions for assemblies are those
that operate on the components of an assembly. The object ProAsmcomp, which
is an instance of ProFeature and shares its DHandle declaration, is defined for
that purpose. Each assembly component is treated as a variety of feature, and the
integer identifier of the component is also the feature identifier.
An assembly component can be another assembly. In general, therefore, an
assembly can contain a hierarchy of assemblies and parts at many levels, in which
some assemblies and parts may appear more than once. To identify the role of any
database item in the context of the root assembly, it is not enough to have the
integer identifier of the item and the handle to its owning part or assembly, as
would be provided by its ProFeature or ProGeomitem description. It is also
necessary to give the full path of the assembly-component references down from
the root assembly to the part or assembly that owns the database item. The object
ProAsmcomppath, which is used as the input to Creo Parametric TOOLKIT
assembly functions, accomplishes this purpose.
The declaration of ProAsmcomppath is as follows:

typedef struct pro_comp_path
{

Assembly: Basic Assembly Access 1131

ProSolid owner;
ProIdTable comp_id_table;
int table_num;

} ProAsmcomppath;

The data structure fields are as follows:

• owner—Identifies the root assembly
• comp_id_table (the component identifier table)—An integer array that

contains the identifiers of the components that form the path from the root
assembly down to the component part or assembly being referred to

• table_num—Specifies the number of component identifiers in the comp_
id_table array

The following figure Sample Assembly Hierarchy on page 1132 shows an
assembly hierarchy with two examples of the contents of a ProAsmcomppath
object.

Sample Assembly Hierarchy

In the assembly shown in Figure 12-1, Sample Assembly Hierarchy on page 1132
subassembly C is component identifier 11 within assembly A, Part B is
component identifier 3 within assembly AB, and s on. The subassembly AB
occurs twice. To refer to the two occurrnces of part B, use the following:

1132 Creo® Parametric TOOLKITUser’s Guide

Component B’ Component B"
table_num = 5 table_num = 4
comp_id_tab[0] = 2 comp_id_tab[0] = 11
comp_id_tab[1] = 2 comp_id_tab[1] = 6
comp_id_tab[2] = 5 comp_id_tab[2] = 12
comp_id_tab[3] = 2 comp_id_tab[3] = 3
comp_id_tab[4] = 3

A ProAsmcomppath structure in which table_num is set to 1 contains the
same information as a ProAsmcomp object.
The object ProAsmcomppath is one of the main ingredients in the
ProSelection object, as described in The Selection Object on page 504.

Visiting Assembly Components
Functions Introduced:

• ProSolidFeatVisit()
• ProFeatureTypeGet()
Each component of an assembly is also a feature of that assembly. Therefore, to
visit the components, visit the features using ProSolidFeatVisit() and find
those features whose type is PRO_FEAT_COMPONENT using the function
ProFeatureTypeGet(). You can convert the ProFeature object for each
component to the ProAsmcomp object by casting.

Properties Related to Component Purpose
Functions Introduced:

• ProAsmcomppathInit()
• ProAsmcompMdlMdlnameGet()
• ProAsmcompMdlGet()
• ProAsmcomppathMdlGet()
• ProAsmcompTypeGet()
• ProAsmcompMdldataGet()
To create a ProAsmcomppath object for the component, use the function
ProAsmcomppathInit() and set the component identifier table to contain
only a single component identifier.
The function ProAsmcompMdlMdlnameGet() retrieves the model name and
type for the component. If an assembly component is missing on retrieval, the
function ProAsmcompMdlMdlnameGet() still provides information about the
component while the function ProAsmcompMdlGet() fails to retrieve a valid
model handle.

Assembly: Basic Assembly Access 1133

The function ProAsmcompMdlGet() provides the ProMdl handle to the part
or assembly being referenced by the component. To traverse the components at all
levels in the assembly hierarchy, make a recursive function to perform these steps:

1. Call ProAsmcompMdlGet() for each component of the root assembly to
find the model for the component.

2. Call ProMdlTypeGet() to find out if the model is a part or an assembly.
3. If the model is an assembly, traverse each component by calling

ProSolidFeatVisit() again.
The function ProAsmcomppathMdlGet() retrieves a model specified by
ProAsmcomppath and is useful when analyzing a ProSelection object that
refers to an assembly.
The function ProAsmcompTypeGet() yields the type of the assembly
component. Examples of the possible types are as follows:

• PRO_ASM_COMP_TYPE_WORKPIECE—Workpiece
• PRO_ASM_COMP_TYPE_REF_MODEL—Reference model
• PRO_ASM_COMP_TYPE_FIXTURE—Fixture
• PRO_ASM_COMP_TYPE_MOLD_BASE—Mold base
• PRO_ASM_COMP_TYPE_MOLD_COMP—Mold component
• PRO_ASM_COMP_TYPE_MOLD_ASSEM—Mold assembly
• PRO_ASM_COMP_TYPE_GEN_ASSEM—General assembly
• PRO_ASM_COMP_TYPE_CAST_ASSEM—Cast assembly
• PRO_ASM_COMP_TYPE_DIE_BLOCK—Die block
• PRO_ASM_COMP_TYPE_DIE_COMP—Die component
• PRO_ASM_COMP_TYPE_SAND_CORE—Sand core
• PRO_ASM_COMP_TYPE_CAST_RESULT—Cast result
• PRO_ASM_COMP_TYPE_FROM_MOTION—Component for use by Creo

Simulate.
• PRO_ASM_COMP_TYPE_NO_DEF_ASSUM—Component for which Creo

Parametric cannot apply default assumptions.

1134 Creo® Parametric TOOLKITUser’s Guide

The function ProAsmcompMdldataGet() takes the handle to the assembly
component as its input argument and retrieves the following information:
• r_mdl_type—Specifies the type of the model using the enumerated data type

ProMdlType.
• r_mdl_filetype—Specifies the file type of the component using the enumerated

data type ProMdlfileType.
• r_mdl_name—Specifies the name of the component. You must free this

argument using the function ProWstringFree().

Component Placement
• ProAsmcompIsBulkitem()
• ProAsmcompIsPackaged()
The function ProAsmcompIsBulkitem() reports whether an assembly
component is a bulk item. A bulk item is a non-geometric assembly feature that
should appear in an assembly bill of materials.
Use the function ProAsmcompIsPackaged() to determine whether the
specified component is packaged.

Simplified Representations
• ProAsmcompIsUnderconstrained()
• ProAsmcompIsFrozen()
• ProAsmcompIsUnplaced()
• ProAsmcompIsPlaced()
• ProAsmcompIsSubstitute()
• ProAsmcompVisibilityGet()
The function ProAsmcompIsUnderconstrained() determines whether the
specified component is underconstrained, that is, it has one or more constraints but
they are not sufficient to fully constraint the component location.
The function ProAsmcompIsFrozen() determines whether the specified
component is frozen. The frozen component behaves similar to the packaged
component and does not follow the constraints that you specify.
From Creo Parametric 3.0 onward, the frozen status in components is set only
during the regeneration of the model. You cannot use the freeze commands in the
Creo Parametric user interface, to set the frozen status on a component. By
default, behavior of the configuration option freeze_failed_assy_comp is
ignored. For the models created in releases prior to Creo Parametric 3.0, the
frozen status of components is retained during model retrieval.

Assembly: Basic Assembly Access 1135

The configuration option allow_freeze_failed_assy_comp allows you
to restore the behavior of the configuration option freeze_failed_assy_
comp and freeze commands in the Creo Parametric user interface. The valid
values are:
• yes—Specifies that the behavior of the configuration option freeze_

failed_assy_comp is available. The freeze commands in the Creo
Parametric user interface are also available. The valid values for the
configuration option freeze_failed_assy_comp are:
○ yes—Automatically freezes any component that fails retrieval into the

assembly at its last known location.
○ no—Requires you to perform specific actions to fix the assembly or freeze

the component that fails retrieval.
• no—This is the default value. Specifies that the behavior of the configuration

option freeze_failed_assy_comp is ignored.
The functions ProAsmcompIsUnplaced() and ProAsmcompIsPlaced()
determine whether the specified component is unplaced or placed respectively.
Unplaced components belong to an assembly without being assembled or
packaged.
The function ProAsmcompIsSubstitute() determines whether the
specified component is substituted. When you substitute a component in a
simplified representation, you temporarily exclude the substituted component and
superimpose the substituting component in its place.
The function ProAsmcompVisibilityGet() to skip components of the
master representation that are not shown in the representation when you traverse
the assembly components of a simplified representation.

Modifying Component Properties
• ProAsmcompTypeSet()
• ProAsmcompFillFromMdl()
• ProAsmcompMakeUniqueSubasm()
• ProAsmcompRmvUniqueSubasm()
• ProAsmcompSetPlaced()
The function ProAsmcompTypeSet() enables you to set the type of a
component.

1136 Creo® Parametric TOOLKITUser’s Guide

The function ProAsmcompFillFromMdl() copies the template model into
the model of the component.

Note
The function returns the error PRO_TK_UNSUPPORTED when the model to
which the template model is being copied is an unsupported model. For
example, it is an embedded model.

Use the function ProAsmcompMakeUniqueSubasm() to create a unique
instance of a sub-assembly by specifying the path of the sub-assembly. The
function ProAsmcompRmvUniqueSubasm() removes the instance of the sub-
assembly.
The function ProAsmcompSetPlaced() forces Creo Parametric to consider a
particular component to be placed or unplaced.

Example 1: Listing the Members of an Assembly
The sample code in the file UgAsmCompVisit.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_asmt,
recursively lists the components of an assembly and writes the name of the solid
for each component.

Locations of Assembly Components
Functions Introduced:

• ProAsmcomppathTrfGet()
• ProAsmcomppathTrfSet()
• ProAssemblyDynPosGet()
• ProAssemblyDynPosSet()
• ProAsmpathProarrayFree()
The function ProAsmcomppathTrfGet() provides the transformation matrix
that describes the coordinate transformation between the coordinate system of an
assembly component and that of the root assembly. As its name implies, its input
is a ProAsmcomppath object, so it can be applied to a component at any level
within an assembly hierarchy. It has an option to provide the transformation from
bottom to top, or from top to bottom. (To apply the transformation, use the
function ProPntTrfEval() or ProVectorTrfEval(), described in the
section Coordinate Systems on page 223.)
In effect, this function describes the current position and orientation of the
assembly component in the root assembly.

Assembly: Basic Assembly Access 1137

Use the function ProAsmpathProarrayFree() to free the memory allocated
to the ProArray of type ProAsmpath.

Example 2: Finding the Position of a Component
The sample code in the file UgAsmcompTransfGet.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_asm
shows a function that finds the matrix that describes the position of an assembly
component in its parent assembly.

Assembling Components
To assemble components into an assembly, use the methods of feature creation.
These methods are described in detail in the chapter Assembly: Assembling
Components on page 1159.

Redefining and Rerouting Components
The functions used to redefine and reroute components are described in the
chapter Assembly: Assembling Components on page 1159.

Deleting Components
Function Introduced:

• ProFeatureDelete()
The function ProFeatureDelete() deletes components. It has the same
options as described in the sectionchapter Core: Features on page 131.

Flexible Components
A flexible component allows variance of items such as features, dimensions,
annotations, and parameters of a model in the context of an assembly.
The object ProAsmitem describes the contents of a variant item in an assembly
component. The declaration for this object is as follows:
typedef struct pro_asm_item
{

ProModelitem item;
ProName name; /* used for PRO_PARAMETER in

this case item->type == PRO_PART or PRO_ASSEMBLY */
ProAsmcomppath path;

} ProAsmitem;

1138 Creo® Parametric TOOLKITUser’s Guide

Refer to the section Exploded State Objects on page 1142 for the declaration of
the ProModelitem object. The field name in the ProAsmitem object is used
only in case of PRO_PARAMETER; wherein the field type in the
ProModelitem object is either PRO_PART or PRO_ASSEMBLY.
In case of parameter initialization, the field name specifies the parameter name
and the fields type and id in the ProModelitem object initiate the model on
which the parameter is defined. For non-parameter items such as features,
dimensions, and annotations, the fields owner, type and id in the
ProModelitem object have the same values as the values of the input
arguments for the function ProModelitemInit().
The field path specifies the path from the top-level component model. This field
is empty if the variant items are defined on the top-level component model.
Functions Introduced:

• ProAsmcompAsmitemInit()
• ProAsmcompFlexibleSet()
• ProAsmcompFlexibleUnset()
• ProAsmcompIsFlexible()
• ProAsmcompFlexiblemodelAdd()
• ProAsmcompVarieditemsToModelAdd()
• ProAsmcompFlexibleWithPredefineditemsSet()
Use the function ProAsmcompAsmitemInit() to initialize the
ProAsmitem object that describes the contents of a variant item in an assembly
component.
The function ProAsmcompFlexibleSet() converts a specified assembly
component to a flexible component based on an array of specified variant items.
Use the function ProAsmcompFlexibleUnset() to convert a flexible
assembly component to a regular component.
Use the function ProAsmcompIsFlexible() to identify if the specified
assembly component is a flexible component. The function returns PRO_B_TRUE
if the component is a flexible component, otherwise it returns PRO_B_FALSE.
The function ProAsmcompFlexiblemodelAdd() creates a flexible model
from the specified model of the flexible component.

Assembly: Basic Assembly Access 1139

Note
The model is temporarily converted into a flexible model in order to allow you
to define variant items on it using the existing Creo Parametric TOOLKIT
functions for variant items. If no variant items are added, the temporary
flexible model becomes a regular one upon regeneration. You can convert a
model into a temporary flexible model only via Creo Parametric TOOLKIT.
For information on the functions that can be used to access and modify the
variant items in a flexible assembly component, refer to the section Inheritance
Feature and Flexible Component Variant Items on page 1215.

The function ProAsmcompVarieditemsToModelAdd() adds an array of
specified variant items to the predefined flexibility definition of the specified
component model. All varied items are replaced by the provided ones.
The function ProAsmcompFlexibleWithPredefineditemsSet()
converts a specified assembly component to a flexible component using the
predefined flexibility definition of the variant items in the component model.

Embedded Components and Inseparable
Assemblies
An embedded component is a copy of the component model that becomes a part
of its parent assembly. The parent assembly can be the top-level assembly or a
subassembly.
In an inseparable assembly some components are embedded in the assembly. It is
a single file that contains the embedded components in the assembly. The
assembly structure is visible in the Model Tree.
The inseparable assembly is created in the open session of Creo Parametric and
must be saved to be used again. When you embed a component in an assembly,
you copy the model to the assembly file. The original model is not affected and
continues to exist in your database. The new embedded copy is not dependent on
the original model. If you no longer need the original model, you can erase it from
the session and remove it from the database. When you embed a component, the
name of the embedded copy is appended to include the name of the owner
assembly.
Functions Introduced:

• ProAsmcompEmbed()
• ProAsmcompExtract()
• ProAsmcompEmbeddedOwnerMdlGet()

1140 Creo® Parametric TOOLKITUser’s Guide

Use the function ProAsmcompEmbed() to embed selected components in its
owner assembly. The input arguments follow:
• comp_sel—Selection of components specified using the array of

ProSelection object.
• embed_recursively—ProBoolean that is used only when the input argument

comp_sel is a subassembly selection.
○ If the value of embed_recursively is set to PRO_B_FALSE and comp_sel

is a subassembly selection, only the subassembly is embedded.
○ If the value of embed_recursively is set to PRO_B_TRUE and comp_sel is

a subassembly selection, the subassembly and all the possible components
are embedded.

The function ProAsmcompExtract() extracts the embedded component from
the owner assembly. The input argument follow:
• comp_sel—Selection of components specified using the array of

ProSelection object.
• newMdlName—Name of the new model.
The extracted component becomes a standalone model and replaces the embedded
component in the assembly. This name of the new model is specified using the
input argument newMdlName.
The function returns the error PRO_TK_NO_CHANGE if the selected component is
not embedded in the owner assembly.
The function ProAsmcompEmbeddedOwnerMdlGet() returns the handle of
the nonembedded owner model for the specified embedded model.
Refer to the Creo Parametric online help, for more information about Inseparable
Assemblies and Embedded Components.

Exploded Assemblies
An exploded view of an assembly shows each component of the model separated
from the other components. An exploded view affects the appearance of the
assembly only. The design intent and the true distance between the assembly
components do not change.
Functions Introduced:

• ProAssemblyExplode()
• ProAssemblyUnexplode()
• ProAssemblyIsExploded()

Assembly: Basic Assembly Access 1141

The functions ProAssemblyExplode() and ProAssemblyUnexplode()
enable you to explode and unexplode an assembly. The function
ProAssemblyIsExploded() identifies whether the specified assembly is
exploded. Use this function in the assembly mode only.
The exploded status of an assembly depends on the mode. If an assembly is
opened in the drawing mode, the state of the assembly in the drawing view is
displayed. The drawing view does not represent the actual exploded state of the
assembly. Use the function ProDrawingViewExplodedGet() to get the
exploded state of an assembly for a specified drawing view.

Note
These functions explode the assembly using the default exploded state of the
assembly. Creo Parametric defines the positions of an assembly component in
the default exploded state.

Exploded State Objects
The structure ProExpldstate describes the contents of an exploded state
object. This object uses the same declaration as the ProModelitem,
ProGeomitem, and ProFeature objects, which is as follows:
typedef struct pro_model_item
{
ProType type;
int id;
ProMdl owner;

} ProExpldstate;

Visiting Exploded States
Function Introduced:

• ProSolidExpldstateVisit()
The function ProSolidExpldstateVisit() enables you to visit all the
exploded states in the specified solid, except for the default exploded state. For a
detailed explanation of visiting functions, see the section Visit Functions on page
62 in the Fundamentals on page 22 chapter.

Accessing Exploded States
Functions Introduced:

1142 Creo® Parametric TOOLKITUser’s Guide

• ProExpldstateInit()
• ProExpldstateActivate()
• ProExpldstateSelect()
• ProExpldstateActiveGet()
• ProExpldstateNameGet()
• ProExpldstateNameSet()
• ProExpldstateExplodedcomponentsGet()
• ProExpldStateExplodeLinesGet()
• ProExpldstateMovesGet()
• ProExpldstateMovesSet()
• ProExpldAnimDataTranslatemoveInit()
• ProExpldAnimDataRotatemoveInit()
• ProExpldanimmovedataProarrayFree()
The function ProExpldstateInit() returns the handle to a specified
exploded state representation of a solid. It takes the following input arguments:

• expld_name—Specifies the name of the exploded state. If you specify this
value, then the function ignores the next argument expld_id.

• expld_id—Specifies the identifier of the exploded state. This argument is
applicable only if the argument expld_name is NULL.

• p_solid—Specifies the Creo Parametric solid that contains the exploded state.
This argument cannot be NULL.

The function ProExpldstateActivate() activates a specified exploded
state representation of a solid.
The function ProExpldstateSelect() enables you to select a specific
exploded state from the list of defined exploded states.
The function ProExpldstateActiveGet() retrieves the current active
exploded state for the specified solid.
The functions ProExpldstateNameGet() and
ProExpldstateNameSet() return and set, respectively, the name of the
exploded state.
The function ProExpldstateExplodedcomponentsGet() returns an
array of assembly component paths that are included in the exploded state.
The function ProExpldStateExplodeLinesGet() returns an array of
explode lines for the specified exploded state.

Assembly: Basic Assembly Access 1143

The functions ProExpldstateMovesGet() and
ProExpldstateMovesSet() retrieve and assign, respectively, the array of
moves of an exploded state.
In order to define an exploded position of an assembly component (or a set of
assembly components), you need to perform a sequence of moves. For example,
you can move the assembly component over the X-axis, rotate over a selected
edge, and then move over the Y-axis. In this case, the final position of the
assembly component (or a set of assembly components) is attained by three
moves.
The ProExpldAnimMoveData object describes the moves of an exploded
state. The fields in this object are as follows:

• comp_set—Specifies an array of paths of the assembly components, in the
form of the ProAsmcomppath objects.

• move—Specifies the move of the exploded state. It is given by the
ProExpldAnimMove object. This object contains the following fields:

○ move_type—Specifies the move type in terms of the enumerated type
ProExpldAnimMoveType. The move can be one of the following
types:

◆ PRO_EXPLDANIM_MOVE_TRANSLATE

◆ PRO_EXPLDANIM_MOVE_ROTATE

○ direction—Depending upon the selected move type, this field
specifies the translation direction or the rotational axis.

○ value—Depending upon the selected move type, this field specifies the
translational distance or the rotation angle.

The function ProExpldAnimDataTranslatemoveInit() creates a
translational move based on the specified direction of the translation and the
specified array of the assembly components to which this move is applied.
The function ProExpldAnimDataRotatemoveInit() creates a rotational
move based on the specified rotational axis, rotation angle, and the specified array
of the assembly components to which this move is applied.
The function ProExpldanimmovedataProarrayFree() clears the array
of assigned ProExpldAnimMoveData objects.

Manipulating Exploded States
Functions Introduced:

• ProExpldstateCreate()
• ProExpldstateDelete()

1144 Creo® Parametric TOOLKITUser’s Guide

The function ProExpldstateCreate() creates a new exploded state based
on the values of the following input arguments:

• p_solid—Specifies the assembly in which the exploded state is created. This
argument cannot be NULL.

• name—Specifies the name of the exploded state. This argument also cannot be
NULL.

• p_move_arr—Specifies an array of ProExpldAnimMoveData objects.
Use the function ProExpldstateDelete() to delete a specified exploded
state.

Merge and Cutout
The Merge and Cutout function has been deprecated. Use the Merge feature
element tree to create merge or cutout feature. See the section Merge Feature on
page 861 in Element Trees: Edit Menu Features on page 853 for more details.

Automatic Interchange
Functions Introduced:

• ProAssemblyAutointerchange()
In Creo Parametric, it is possible to interchange an assembly component with
another model that contains equivalent assembly constraints. The Creo Parametric
TOOLKIT function that performs this action is
ProAssemblyAutointerchange(). Depending on the type of component
interchange, the assembly constraints may need to be respecified for the
replacement model.
Instances in a family table share the same assembly constraints. Consequently, you
can automatically replace an assembly component with another instance in the
component's family table without respecifying any assembly constraints. Simply
retrieve the handle for the replacement instance and pass this handle to
ProAssemblyAutointerchange().
If the assembly component and replacement model are not instances in the same
family table, you can define the necessary relationships between them
interactively and save them in an Interchange Assembly. (See the Assembly
Modeling User’s Guide for details.) To perform an interchange using models in an
interchange assembly, first retrieve the interchange assembly (using the function
ProMdlnameRetrieve()), and then pass the handle of the replacement model
to function ProAssemblyAutointerchange(). Note that the interchange
assembly must be in memory before the call to
ProAssemblyAutointerchange().

Assembly: Basic Assembly Access 1145

An interchange assembly is not the same as an interchange domain. Interchange
domains (.int files) contain interchange information, but they can no longer be
created using Creo Parametric. However, it is possible to use
ProAssemblyAutointerchange() to interchange models using an existing
interchange domain.

1146 Creo® Parametric TOOLKITUser’s Guide

54
Assembly: Top-down Design

Overview .. 1148
Skeleton Model Functions .. 1150
Assembly Component Functions .. 1151
External Reference Control Functions... 1151
Feature and CopyGeom Feature Functions ... 1153
External Reference Data Gathering .. 1154

This chapter describes the Creo Parametric TOOLKIT Design Manager functions.
For more information on Design Intent, Top-Down Design, and other Design
Manager issues, refer to the Assembly portion of the Creo Parametric help data, or
the Top-Down Design Task Guide.

1147

Overview
Creo Parametric supports a design concept called Top-Down Design. Top-Down
Design is a method of designing a product by specifying top-level design criteria
and passing those criteria down from the top level of the product’s structure to all
affected subsystems. The Creo Parametric TOOLKIT Design Manager functions
support this design concept. The next sections contain a brief summary of the six
steps of Top-Down Design.

Defining Design Intent
Before building parts and assemblies, it is important that you define the intent of
your design. Doing this means defining:

• Purpose or function of the product
• Major systems and subsystems required
• Incorporation of subsystems into the overall product
• Dependence (if any) on any existing design or product
Design criteria and parameters you specify in this process can be shared globally
among all components of the assembly, and can be used to drive design parts,
assemblies, and skeleton models.

Defining Preliminary Product Structure
The preliminary product structure consists of a list of components and their
hierarchy within the assembly design. This structure allows creation of
subassemblies and parts without requiring creation of geometry and without
having to assemble parts. You can add existing subassemblies and parts to this
structure. You can also define non-geometric information for the entire design and
capture design parameters including description, part number, and part type. Creo
Parametric TOOLKIT Design Manager manages the assembly structure with
assembly component functions.

Introducing Skeleton Models
Skeleton models are a 3-dimensional layout of the assembly. These models are
holders or distributors of critical design information, and can represent space
requirements, important mounting locations, and motion.
Skeleton models can contain the master definition of the design information,
which can be propagated to specific design models. You can also use skeleton
models to communicate design information between components. Creo Parametric
TOOLKIT Design Manager uses skeleton model functions to manipulate these
models.

1148 Creo® Parametric TOOLKITUser’s Guide

Communicating Design Intent Throughout the
Assembly Structure
Designers can distribute top-level design information to dependent skeleton
models in the assembly. Design modification becomes a matter of changing
certain distributed properties. This propagation of information first occurs from
skeleton to skeleton, and then from skeleton to part until all necessary part- or
subassembly-specific references have been distributed. Designers can then work
on a small subsystem without retrieving or regenerating the entire top-level
assembly.
This distribution lets designers reference the same information instead of
recreating it for each subassembly. Creo Parametric TOOLKIT Design Manager
handles the assembly structure with functions for assembly components, features,
and copy geometry features.

Continued Population of the Assembly
Populate the assembly with detailed parts and subassemblies in one of two ways:

• Create new components in the context of the assembly
• Model components individually and then bring them into the assembly
Relate individual parts to each other with assembly relations, skeleton models,
layouts, and merge features. Creo Parametric TOOLKIT Design Manager
functions manage the assembly structure with functions for assembly components,
features, and copy geometry features.

Managing Part Interdependencies
Associativity allows you to modify design intent to cause automatic updating of
the appropriate objects in your assembly. Associativity is accomplished through
external relationships, also known as dependencies or references.
Part interdependencies allow for communication of design criteria from
components on one level of the design to components on lower levels.
Associativity and part dependencies provide a means for controlled changing or
updating of an entire assembly design. Reference control manages part
interdependencies by limiting undesirable ones or allowing desirable ones.
External references are dependencies between a Creo Parametric object (part or
subassembly) and information from another object not owned by either the
referencing object or its submodels. References to “out-of-model” information are
external references. Design Manager handles these references with external
reference control functions.

Assembly: Top-down Design 1149

Scope is the range of objects to which a specified object can refer. Scope control
functions allow you to define objects to which other objects under development
can refer. You can establish global scope settings for all objects or specific settings
for individual objects.
Design Manager handles scope issues with external reference control functions.
The enumerated type ProExtRefScope defines possible scope settings as:

• None—Allows no external references.
• Subassembly—Allows external references only to components of the same

subassembly
• Skeleton Model—Allows external references to higher-level skeleton models

only
• All—Allows external references to any other object anywhere in the assembly
The enumerated type ProInvalidRefBehavior defines two methods of
handling out-of-scope references. They are as follows:

• Prohibit Out-of-Scope references—Creo Parametric TOOLKIT reports the
external reference as out of scope. You must select another reference.

• Copy Out-of-Scope Reference—Creo Parametric TOOLKIT warns that the
reference is out of scope. You must do one of the following:

○ Cancel the selection and choose a different reference
○ Confirm that you do want to use the selected reference. Creo Parametric

TOOLKIT then creates a “local backup” of the reference. The local
backup reference automatically updates (only while the parent is in the
current session).

Skeleton Model Functions
Functions Introduced:

• ProAsmSkeletonMdlnameCreate()
• ProAsmSkeletonAdd()
• ProAsmSkeletonGet()
• ProAsmSkeletonDelete()
• ProMdlIsSkeleton()
Create skeleton models using function
ProAsmSkeletonMdlnameCreate(). This function creates a new skeleton
model with the specified name, adds it to the specified assembly, and initializes
the model handle. The input arguments are assembly handle, the skeleton model
name, and the handle to the part or skeleton used as a template. If the template
handle is NULL, an empty skeleton model is created.

1150 Creo® Parametric TOOLKITUser’s Guide

By default, the absolute accuracy template is used to create a new model. After
you create a new model using the initial value of absolute accuracy, the baseline of
the outline is used to determine whether the absolute accuracy is still valid. The
outline of the model is calculated after the creation of the first feature of the model
or placing the first component in an assembly model. Refer to the Creo Parametric
help for more information on Model Accuracy.
ProAsmSkeletonAdd() adds an existing skeleton model to the specified
assembly. The input arguments are a handle for the assembly to which the
skeleton model will be added, and a handle to the skeleton model.
ProAsmSkeletonGet() returns a skeleton model of the specified assembly
that is currently in memory, then initializes the model handle. The input argument
is a handle to the specified assembly.
ProAsmSkeletonDelete() deletes a skeleton model component from the
specified assembly. The input argument is a handle to the specified assembly.
ProMdlIsSkeleton() determines if the specified model is a skeleton model.
The input argument is a handle to the model to be checked.

Assembly Component Functions
Functions Introduced:

• ProAsmcompMdlnameCreateCopy()
• ProAsmcompIsUnplaced()
• ProAsmcompFillFromMdl()
Create new components in the specified assembly by copying them from a
specified model using ProAsmcompMdlnameCreateCopy(). This function
creates a new component with the specified name, places it at a default location in
the assembly, or leaves it unplaced. The input arguments are the assembly to copy
from, the new component name, the new component type (either PRO_MDL_
ASSEMBLY or PRO_MODEL_PART), the handle to the model used as a template,
and specification of default or “unplaced” component placement. If the template
handle is NULL, the component is created empty.
ProAsmCompIsUnplaced() determines whether the specified component is
unplaced. The input argument is a handle to the component to be checked.
ProAsmCompFillFromMdl() copies the specified template model into a
model of the specified component. The input arguments are the handle to the
component, and the handle to the model used as a template for the copy.

External Reference Control Functions
Functions Introduced:

Assembly: Top-down Design 1151

• ProRefCtrlSolidSet()
• ProRefCtrlSolidGet()
• ProRefCtrlEnvirSet()
• ProRefCtrlEnvirGet()
• ProRefCtrlCheckScope()
Function ProRefCtrlSolidSet() sets a specified external reference control
setting on a solid, that is, on a part or assembly. Use ProRefCtrlSolidGet()
to retrieve the external reference control setting for a specified solid.
ProRefCtrlEnvirSet() establishes the run-time environment setting for
external reference control. Function ProRefCtrlEnvirGet() retrieves this
data.
Function ProRefCtrlCheckScope() checks whether object-specific
reference control settings for a specified model (either an independent object or an
assembly component) allow that model to reference information belonging to a
different model. The top-level assembly for the component being modified and for
the component being referenced must be the same.
If ProRefCtrlCheckScope() finds that the owner of the component being
modified is NULL and the solid (part or assembly) being referenced is not a sub-
model of the solid being modified, it reports the reference as out of assembly
context. If the ProMdl returned is NULL but there is a scope violation, the
environment scope has been violated.
The enumerated type ProExtRefScope defines allowed scope settings for
external references as follows:
typedef enum{
PRO_REFCTRL_ALLOW_ALL = 0, /* all external references allowed*/
PRO_REFCTRL_ALLOW_SUBASSEMBLY = 1, /* allow only external references

inside the same higher level
subassembly as that
of the modified object */

PRO_REFCTRL_ALLOW_SKELETON = 2, /* only external references to
skeleton models allowed */

PRO_REFCTRL_ALLOW_NONE = 3 /* no external references allowed */
} ProExtRefScope;

Enumerated type ProInvalidRefBehavior defines the supported methods
for handling Out-of-Scope external references as follows:
typedef enum
{ PRO_REFCTRL_BACKUP_REF = 0, /* create a local backup for

out-of-scope references */
PRO_REFCTRL_PROHIBIT_REF = 1 /* prohibit out-of-scope external

references */
} ProInvalidRefBehavior;

1152 Creo® Parametric TOOLKITUser’s Guide

Feature and CopyGeom Feature
Functions
Functions Introduced:

• ProFeatureCopiedRefStateDetailsGet()
• ProFeatureHasBackup()
• ProFeatureDSFDependencystateSet()
• ProFeatureDSFDependencystateGet()
• ProFeatureDSFDependencyNotifySet()
• ProFeatureDSFDependencyNotifyGet()
The function ProFeatureCopiedRefStateDetailsGet() retrieves the
status of copied references for a specified feature. This function supports both
CopyGeom features and features with local backup of references.

Note
CopyGeom features have no local backup of reference data.

The enumerated type ProCopiedRefStateDetails defines possible states
of local copies of external references in a CopyGeom feature or in a feature with a
local backup.
ProFeatureHasBackup() determines if the specified feature has local
backup of external references.
ProFeatureCopyGeomDependSet() sets copied references of the specified
CopyGeom feature to be dependent on the referenced or master model. This
means the specified CopyGeom feature references will update as the referenced or
master model changes. The function ProFeatureCopyGeomDependSet()
has been deprecated .Use the function
ProFeatureDSFDependencystateSet() with dependency status PRO_
DSF_UPDATE_AUTOMATICALLY instead . The function
ProFeatureCopyGeomInDependSet() sets copied references to be
independent of the referenced or master model, that is, they do not update as this
top-level model changes. The function
ProFeatureCopyGeomInDependSet() has been deprecated .Use the
function ProFeatureDSFDependencystateSet() with dependency status
PRO_DSF_UPDATE_MANUALLY instead.

Assembly: Top-down Design 1153

The function ProFeatureDSFDependencystateSet() sets the
dependency status of data sharing feature(DSF). The dependency status governs
the behavior of the data sharing feature if the items referenced by the feature have
changed. The valid values for the dependency status are:
• PRO_DSF_UPDATE_AUTOMATICALLY—Specifies that all the changes

made to the parent model are automatically reflected in the DSF feature.
• PRO_DSF_UPDATE_MANUALLY—Specifies that the feature must be updated

manually to keep it up-to-date with the referenced model.
• PRO_DSF_NO_DEPENDENCY—Specifies that there will be no dependency

between the DSF feature and referenced model. This includes updating the
geometry of the DSF, automatic retrieval of the referenced model and
checking in the model to Windchill.

For more information on the dependency statuses, refer to the section Feature
Element Tree on page 1211 in Assembly: Data Sharing Features.
The function ProFeatureDSFDependencystateGet() gets the current
dependency status for the DSF feature.
Use the function ProFeatureDSFDependencyNotifySet() to set the
notification status, to visually indicate the changes applied to the source geometry
of the data sharing feature.
Use the function ProFeatureDSFDependencyNotifyGet() to get a visual
indication of the current notification status of the DSF feature. If the notification
status is set to on, then any change made in the source geometry is indicated in the
form of a yellow triangle in the model tree of the DSF feature in the Creo
Parametric user interface. Also, a general notification icon appears, adjacent to the
regeneration icon on the status bar in the Creo Parametric user interface. This icon
indicates the change in the source geometry of the DSF feature.

Note
Use the functions ProFeatureDSFDependencyNotifySet() and
ProFeatureDSFDependencyNotifyGet() only if the dependency
status of the DSF feature is set to PRO_DSF_UPDATE_MANUALLY.

External Reference Data Gathering
An external reference or an external dependency is a relationship between an
object, such as, a part or subassembly and some information from another object
that is not inherently available to the referencing object all the time. While
investigating object dependencies in an assembly, some features may exist that

1154 Creo® Parametric TOOLKITUser’s Guide

were created in the context of another assembly. All such dependencies are called
external dependencies and they point to a component in another assembly. See the
Creo Parametric help for more information on external references.
Functions Introduced:

• ProFeatureExternChildrenGet()
• ProFeatureExternParentsGet()
• ProSolidExternChildrenGet()
• ProSolidExternParentsGet()
• ProExtRefInfoFree()
• ProExtRefStateGet()
• ProExtRefTypeGet()
• ProExtRefAsmcompsGet()
• ProExtRefOwnMdlGet()
• ProExtRefMdlGet()
• ProExtRefOwnFeatGet()
• ProExtRefFeatGet()
• ProExtRefModelitemGet()
• ProExtRefInfoExport()
• ProExtRefIsDependency()
• ProExtRefDependencyIsBreakable()
• ProExtRefBreakDependency()
The function ProFeatureExternChildrenGet() retrieves information
about external and local children of the specified feature according to the specified
reference type. The function ProFeatureExternParentsGet() does the
same for parents of the feature.
The function ProSolidExternChildrenGet() retrieves external and local
children of the specified solid according to the specified reference type. The
function ProSolidExternParentsGet() does the same for parents of the
solid.
The function ProExtRefInfoFree() releases memory allocated to the
external reference data for a feature or solid.
The function ProExtRefStateGet() returns the external reference status of
the referenced item of the specified reference.
The enumerated type ProRefState defines the possible states of top-level
solids, such as, part, assembly or component, to which a lower-level solid refers.
The function ProExtRefTypeGet() returns the type of the external reference.

Assembly: Top-down Design 1155

The enumerated type ProExtRefType defines the supported external reference
types as follows:
typedef enum
{
PRO_EXT_GEOM_REF = 1, /* all out of solid references,

created in assembly context, kept in
plins, sections, draft sections */

PRO_LOC_GEOM_REF = 2, /* local for solid references, kept in
plins, sections, draft sections */

PRO_MERGE_REF = 3, /* reference models of merge by ref feats */
PRO_EXT_REL_REF = 4, /* out of solid references, , kept in

symbols used for relations.
Can be "to solid" or feature,
geometry references. */

PRO_LOC_REL_REF = 5, /* local for solid references, kept in
symbols used for relations.
Can be "to solid" or feature,
geometry references. */

PRO_PRGM_REF = 6, /* out of solid references, , kept in
symbols used in Pro/Program.
Always solid references */

PRO_MOVE_COMP_REF = 7, /* Move Components external references.
Kept in components and always "to solid".

This reference is not present in models
created after Creo Elements/Pro 5.0 */
PRO_SUBS_REF = 8, /* Substitute Component references.

Kept in components and always "to solid"*/
PRO_MFG_INFO_REF = 9, /* Mfg Info references. Kept in

mfg feat, always "to solid" */
PRO_INTRCH_REF = 10, /* Interchange Assembly references.

Kept in the solid itself.
Always "to solid" */

PRO_HARN_REF = 11, /* Harness references.
Kept in the solid itself.

Always "to solid" */
PRO_FEAT_PAT_REF = 12, /* Feature pattern references.

Does not include pattern relation
references. Always "to solid" */

PRO_NON_ASSY_GEOM_REF = 13, /* Out of solid external geometry refs,
created not in assembly context,

kept in plins. (used in external geom
copy feature). */

PRO_DIM_BOUND_REF = 14, /* Dim. bound references.
Kept in the solid itself.

Always "to solid" */
PRO_HIDDEN_FEM_REFS = 15, /* Hidden Simulate features references.

Kept in the solid itself.
Always "to solid" */

PRO_ANALYSIS_REF = 16, /* Hidden analysis features references.
Kept in the solid itself.
Always "to solid" */

1156 Creo® Parametric TOOLKITUser’s Guide

PRO_FEAT_PAT_LOC_REF = 17, /* References between pat. leader and member
or between pat. group headers */

PRO_DEPENDENCY_REFS = 18, /* All types of references collected via
collect dependencies mechanism. This type

is not included in COLL_ALL_REFS_TYPE, it
should be invoked separately. */
PRO_IN_CIRCLE_REFS = 19, /* References encountered in assembly loops.

This is reserved for future use */
PRO_MEMBER_REFS = 20, /* Component models of assembly members.

This type is not included in
COLL_ALL_REFS_TYPE, it should be invoked
separately. */
PRO_LOC_MERGE_REF = 21, /* Merge reference of mirror geom.

Always "to solid" */
PRO_ALL_EXT_REF_TYPES = 100, /* Same as PRO_ALL_REF_TYPES except for

PRO_LOC_GEOM_REF, PRO_LOC_REL_REF,
PRO_LOC_MERGE_REF, PRO_FEAT_PAT_LOC_REF */
PRO_ALL_REF_TYPES = 101 /* All known types of references, except for

PRO_DEPENDENCY_REFS,PRO_IN_CIRCLE_REFS and
PRO_MEMBER_REFS. */
} ProExtRefType; /* types of references */

The structures ProExtFeatRef and ProExtRefInfo provide pointers to a
structure containing external references for a specified feature:
typedef struct ext_feat_ref *ProExtFeatRef;
typedef struct
{

ProExtRefType type; ProExtFeatRef *ext_refs;
int n_refs;

} ProExtRefInfo;

The function ProExtRefAsmcompsGet() retrieves from the specified
external reference a path to the component from which the reference was created.
It also returns a path to the component that owns the specified external reference.
The function ProExtRefOwnMdlGet() retrieves a solid that is active in the
session and uses the provided reference . The function ProExtRefMdlGet()
retrieves a solid, in a model that is active in the session. This returned solid is
referred to by the specified external reference.
The function ProExtRefOwnFeatGet() retrieves from the specified external
reference a feature that uses the reference. The function
ProExtRefFeatGet() retrieves from the specified external reference a
feature referred to by the external reference.
The function ProExtRefModelitemGet() retrieves from the specified
external reference a model item that uses that reference.

Assembly: Top-down Design 1157

The function ProExtRefInfoExport() prints out a dependency report for all
references of type PRO_DEPENDENCY_REFS in the specified format. The input
arguments of this function are:
• info_arr—Specify all the references of the type PRO_DEPENDENCY_

REFS collected using the functions ProSolidExternParentsGet()
and ProFeatureExternParentsGet(). All the references that are not
dependencies will be ignored.

• w_fname—Specify the name of the file to which the report is to be printed.
• n_rep_type—Specify the type of report format. The valid values for this

input argument are:
○ PRO_REPORT_TYPE_CSV—Specifies a comma separated value file.
○ PRO_REPORT_TYPE_XML—Specifies a XML file.

The function ProExtRefIsDependency() indicates if the specified
reference is an external dependency.
The function ProExtRefDependencyIsBreakable() indicates if some of
the specified dependencies can be broken or not, in case the corresponding
external references are not required.
The function ProExtRefBreakDependency() breaks the external
references from the specified array of references. Among all references in the
specified array, this acts only on those external references that are breakable. As a
result of break operation, the dependency associated with the external reference is
broken, which prevents the formation of ghost objects in Product Development
Management System. Refer the Creo Parametric Help for more information on
breaking dependencies.

1158 Creo® Parametric TOOLKITUser’s Guide

55
Assembly: Assembling

Components
Assembling Components by Functions ... 1160
Assembling a Component Parametrically .. 1161
Redefining Components Interactively.. 1166
Assembling Components by Element Tree .. 1166
The Element Tree for an Assembly Component ... 1166
Assembling Components Using Intent Datums .. 1175

This chapter describes how to use the concepts of feature creation to assemble
components into an assembly. Read the chapter Element Trees: Principles of
Feature Creation on page 764 before this chapter.

1159

Assembling Components by Functions
Functions Introduced:

• ProAsmcompMdlnameCreateCopy()
• ProAsmcompAssemble()
• ProAsmcompPositionGet()
• ProAsmcompPositionSet()
• ProAsmcompConstraintsWithComppathGet()
• ProAsmcompConstraintsSet()
• ProAsmcompAllConstrRemove()
• ProAsmcompConstrRemove()
• ProAsmcompRegenerate()
Superseded Function:

• ProAsmcompConstraintsWithDtmOrientGet()
Use the function ProAsmcompMdlnameCreateCopy() to create a new
component in the assembly by copying from an existing model. Specify the
handle to the model to be used as a template for the copy. If a model is not
specified, a component that does not have initial geometry is created. The function
provides the ProAsmcomp handle to the new component.
The function ProAsmcompAssemble() assembles a component to the
assembly or sub-assembly using the parametric constraints available when
assembling a component in Creo Parametric. The initial position of the component
is a ProMatrix object. Specify the orientation of the three axes and the position
of the origin of the component coordinate system, with respect to the target
assembly coordinate system. The function provides the ProAsmcomp feature
handle to the newly created assembly.

Note
If the transform matrix passed as the initial position of the component is
incorrect and non-orthonormal, the function ProAsmcompAssemble()
returns the error PRO_TK_BAD_INPUTS. In such scenario, you can use the
function ProMatrixMakeOrthonormal() to convert this non-
orthonormal matrix to an orthonormal matrix.

The function ProAsmcompPositionGet() retrieves the component's initial
position before constraint are applied.

1160 Creo® Parametric TOOLKITUser’s Guide

The function ProAsmcompPositionSet() specifies the initial position of the
component before constraints are applied. This affects the position of the
component only if the component is packaged or underconstrained.
The function ProAsmcompConstraintsWithDtmOrientGet() is
deprecated in Creo Parametric 7.0.0.0. Use the function
ProAsmcompConstraintsWithComppathGet() instead. The function
retrieves the specified constraints for the given assembly component and
component path. The orientation of the constraints is returned as a value of
enumerated data type ProDatumside. The input argument component_path is
the path to the owner assembly only if the constraints have references to the other
members of the top-level assembly. If the constraints have references only to the
owner assembly, then you need to pass this as Null.
The function ProAsmcompConstraintsSet() sets an array of constraints
for a given assembly component. This function modifies the component feature
data and regenerates the assembly component.
The function ProAsmcompAllConstrRemove() removes all types of
constraints including interface constraints for the specified assembly component.
Specify a a ProAsmcomp handle to the assembly component in the input
argument p_feat_handle.
The function ProAsmcompConstrRemove() removes one or all constraints
for the specified assembly component. However, the function does not remove the
interface constraint. The input arguments are as follows:
• p_feat_handle—Specifies a ProAsmcomp handle to the assembly

component.
• index—Specifies the constraint index. Pass the value as –1 to remove all the

constraints. Use the function ProAsmcompConstraintGet() to
determine the index of a particular constraint.

The function ProAsmcompRegenerate() regenerates the placement
instructions for an assembly component, given the component handle. The
function regenerates the placement instructions just as in an interactive Creo
Parametric session. Alternatively, you can use the visit functionality to regenerate
recursively some or all of the components in the assembly.

Assembling a Component Parametrically
Functions Introduced:

• ProAsmcompconstraintAlloc()
• ProAsmcompconstraintTypeGet()
• ProAsmcompconstraintTypeSet()
• ProAsmcompconstraintAsmreferenceGet()

Assembly: Assembling Components 1161

• ProAsmcompconstraintAsmreferenceSet()
• ProAsmcompconstraintCompreferenceGet()
• ProAsmcompconstraintCompreferenceSet()
• ProAsmcompconstraintOffsetGet()
• ProAsmcompconstraintOffsetSet()
• ProAsmcompconstraintAttributesGet()
• ProAsmcompconstraintAttributesSet()
• ProAsmcompconstraintUserdataGet()
• ProAsmcompconstraintUserdataSet()
• ProAsmcompconstraintFree()
• ProAsmcompconstraintArrayFree()
The function ProAsmcompconstraintAlloc() allocates memory for the
constraint data structure. This data structure describes the types of constraints that
can be applied to the assembly component.
The function ProAsmcompconstraintTypeGet() retrieves the constraint
type of the specified constraint. The types of constraints are:

• PRO_ASM_UNDEF—Use this option to initialize a variable. This option is
never returned by the function ProAsmcompconstraintTypeGet() and
can be ignored.

• PRO_ASM_MATE—Use this option to make two surfaces coincident with one
another and facing each other.

• PRO_ASM_MATE_OFF—Use this option to make two planar surfaces parallel
and facing each other.

• PRO_ASM_ALIGN—Use this option to make two planes coplanar, two axes
coaxial or two points coincident. You can also align revolved surfaces or
edges.

• PRO_ASM_ALIGN_OFF—Use this option to align two planar surfaces at an
offset.

• PRO_ASM_INSERT—Use this option to insert a "male" revolved surface into
a "female" revolved surface, making their respective axes coaxial.

• PRO_ASM_ORIENT—Use this option to make two planar surfaces to be
parallel in the same direction.

• PRO_ASM_CSYS—Use this option to place a component in an assembly by
aligning the coordinate system of the component with the coordinate system of
the assembly.

• PRO_ASM_TANGENT—Use this option to force two surfaces to be tangent.

1162 Creo® Parametric TOOLKITUser’s Guide

• PRO_ASM_PNT_ON_SRF—Use this option to align a point with a of a
surface.

• PROS_ASM_EDGE_ON_SRF—Use this option to align a straight edge with a
surface.

• PRO_ASM_DEF_PLACEMENT—Use this option to align the default
coordinate system of the component to the default coordinate system of the
assembly.

• PRO_ASM_SUBSTITUTE—This constraint type is used in simplified
representations only when the component is replaced by a substitute
component.

• PRO_ASM_PNT_ON_LINE—Use this option to force the intersection of a
line with a point.

• PRO_ASM_FIX—Use this option to fix the current location of the component
as a constraint.

• PRO_ASM_AUTO—Not for use by Creo Parametric TOOLKIT.
• PRO_ASM_ALIGN_ANG_OFF—This option can only be used in conjunction

with another constraint. If you have two flat surfaces and create an align edge
or axis constraint where the edge or axis lies on the surface, then you can
specify an angle offset constraint between the two surfaces.

• PRO_ASM_MATE_ANG_OFF—This option can only be used in conjunction
with another constraint. If you have two flat surfaces and create a mate edge or
axis constraint where the edge or axis lies on the surface, then you can specify
an angle offset constraint between the two surfaces.

• PRO_ASM_CSYS_PNT—This option can be used in User Defined, General,
and Gimbal connections. Use this option to place a component in an assembly
by aligning the origins of the coordinate systems. Here the axes are not
aligned, and thus, the component can be freely rotated along the three rotation
axes. In User Defined and Rigid connections you can switch from Coord Sys
Point to Coord Sys constraint and vice-versa.

Use the function ProAsmcompconstraintTypeSet() to set the constraints
for the assembly component constraint.
The function ProAsmcompconstraintAsmreferenceGet() retrieves the
ProSelection handle to a reference on the assembly and the orientation of the
assembly for the specified assembly component constraint. The assembly
orientation can have the following values:

Assembly: Assembling Components 1163

• PRO_DATUM_SIDE_YELLOW—The primary side of the datum plane which
is the default direction of the arrow.

• PRO_DATUM_SIDE_RED—The secondary side of the datum plane which is
the direction opposite to that of the arrow.

• PRO_DATUM_SIDE_NONE—No orientation is specified.
The assembly orientation is applicable for legacy models prior to M260.
The function ProAsmcompconstraintAsmreferenceSet() selects a
reference on the assembly and sets the orientation of the assembly for a specified
assembly component constraint.

Note
The assembly reference selection must be assigned an assembly component
path, even if the reference geometry is in the top-level assembly. In that
situation the table_num value of the ProAsmcomppath structure would
be 0.

The function ProAsmcompconstraintCompreferenceGet() retrieves
the ProSelection handle to a reference on the placed component and the
orientation of the component for the specified assembly component constraint.
The component orientation can have the following values:

• PRO_DATUM_SIDE_YELLOW—The primary side of the datum plane which
is the default direction of the arrow.

• PRO_DATUM_SIDE_RED—The secondary side of the datum plane which is
the direction opposite to that of the arrow.

• PRO_DATUM_SIDE_NONE—No orientation is specified.
The component orientation is applicable for legacy models prior to M260.
The function ProAsmcompconstraintCompreferenceSet() selects a
reference on the placed component and sets the orientation of the component for a
specified assembly component constraint.
ProAsmcompconstraintOffsetGet() retrieves the offset value from the
reference for the Mate or Align constraint type and the function
ProAsmcompconstraintOffsetSet() defines the offset value.
The function ProAsmcompconstraintAttributesGet() retrieves the
constraint attributes for the specified assembly component constraint. The
function ProAsmcompconstraintAttributesSet() sets the constraint
attributes. The types of constraint attributes are:

1164 Creo® Parametric TOOLKITUser’s Guide

• PRO_ASM_CONSTR_ATTR_FORCE—Force the constraint, causing strict
alignment for axes, lines, and points. You can force a constraint only if the
constraint type is Align.

• PRO_ASM_CONSTR_ATTR_IGNORE—Not for use by Creo Parametric
TOOLKIT.

• PRO_ASM_CONSTR_ATTR_NONE—No constraint attributes are specified.
This is the default value.

• PRO_ASM_CONSTR_ATTR_INTFC_DEPENDENT—When set in a
component interface, the constraint cannot be changed by application of
settings making it coincident, offset, or reoriented.

• PRO_ASM_CONSTR_ATTR_INACTIVE—The constraint should not be
applied to the feature. This corresponds to the Constraint Enabled check box in
the component feature user interface.

The function ProAsmcompconstraintUserdataGet() retrieves the user
data for the given constraint while the function
ProAsmcompconstraintUserdataSet() specifies the user data for the
given constraint.
Use the function ProAsmcompconstraintFree() to free the constraint data
structure from the memory.
The function ProAsmcompconstraintArrayFree() provides a single
function to use to free an entire ProArray of ProAsmcompconstraint
structures.

Example 1: Component Constraints
The sample code in the file UgAsmcompConstraint.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_asm
displays each constraint of the component visually on the screen, and includes a
text explanation for each constraint.

Example 2: Assembling Components
The sample code in the file UgAsmcompConstraint.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_asm
demonstrates how to assemble a component into an assembly, and how to
constrain the component by aligning datum planes. If the complete set of datum
planes is not found, the function will show the component constraint dialog to the
user to allow them to adjust the placement as they wish.

Assembly: Assembling Components 1165

Redefining Components Interactively
The functions described in this section enable you to reroute previously assembled
components, as in an interactive session of Creo Parametric.
Functions Introduced:

• ProAsmcompConstrRedefUI()
• ProAsmcompPackageMove()
The function ProAsmcompConstrRedefUI() is intended for use in
interactive Creo Parametric TOOLKIT applications. This function displays the
Creo Parametric Component Placement dialog box, enabling you to redefine the
constraints interactively. Control is given back to the Creo Parametric TOOLKIT
application when you select OK or Cancel the dialog box is closed.
The function ProAsmcompPackageMove() supports interactive and
programmatic packaging of components. The arguments to this function allow the
user or the program to repackage an existing component. If the component is used
for interactive purposes, the control is given back to the Creo Parametric
TOOLKIT application when you select OK or Cancel the dialog box is closed.

Assembling Components by Element
Tree
Assembly components are treated as features in Creo Parametric, so it is logical to
replace those dedicated functions by a feature element tree that provides the same
functionality, but uses the existing Creo Parametric TOOLKIT functions
ProFeatureCreate(), ProFeatureRedefine() and
ProFeatureElemtreeExtract().

The Element Tree for an Assembly
Component
The element tree for a component assembly is documented in the header file
ProAsmcomp.h and is shown in the following figure.

1166 Creo® Parametric TOOLKITUser’s Guide

Top-level Feature Element tree for Component Assembly

Model
The element PRO_E_COMPONENT_MODEL defines the model to be assembled
into the assembly.

Attributes
The element PRO_E_MISC_ATTR defines the type of component being
assembled. You can also access this property through ProAsmcompTypeGet()
and ProAsmcompTypeSet().

Initial Position
The element PRO_E_COMPONENT_INIT_POS defines the absolute position of
the component in the absence of any parametric constraints. Its value is a
ProMatrix object describing the component position. If you supply this element
but no PRO_E_COMPONENT_CONSTRAINT elements, the component is
assembled as packaged at this location.
If you under constrain the component, the value of this element is used in
conjunction with the constraints to set the packaged position for the component.

Constraint Sets and Mechanism Connections
The element PRO_E_COMPONENT_SETS is an array of elements of type PRO_
E_COMPONENT_SET. Each of these elements is a predefined set of constraints.

Assembly: Assembling Components 1167

Although you can define a user-defined type of constraint set containing any type
and combination of constraints, the set element is also important when used to
create predefined types of sets in Creo Parametric.
Mechanism uses predefined set types to represent connections. The connection
can also contain elements describing mechanism motion axes stored for the
connection.

PRO_E_COMPONENT_SET

Each component set contains the following elements:

1168 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_COMPONENT_SET_ID—Specifies the component set id. This value
is generated automatically by Creo Parametric upon creation of the set. The set
ids should remain the same when redefining the component.

• PRO_E_COMPONENT_SET_TYPE—Specifies the component set type. The
following table describes the valid values in details.

Component Set Type Description
PRO_ASM_SET_TYPE_FIXED A "Rigid" Mechanism connection: Connects two

components so that they do not move relatively to
each other.

PRO_ASM_SET_TYPE_PIN A "Pin" Mechanism connection: Connects a
component to a referenced axis so that the
component rotates or moves along this axis with one
degree of freedom.

PRO_ASM_SET_TYPE_SLIDER A "Slider" Mechanism connection: Connects a
component to a referenced axis so that the
component moves along the axis with one degree of
freedom.

PRO_ASM_SET_TYPE_CYLINDRICAL A "Slider" Mechanism connection: Connects a
component so that it moves along and rotates about a
specific axis with two degrees of freedom.

PRO_ASM_SET_TYPE_PLANAR A "Planar" Mechanism connection: Connects
components so that they move in a plane relatively to
each other with two degrees of freedom in the plane
and one degree of freedom around an axis
perpendicular to it.

PRO_ASM_SET_TYPE_BALL A "Ball" Mechanism connection: Connects a
component so that it can rotate in any direction with
three degrees of freedom (360° rotation).

PRO_ASM_SET_TYPE_WELD A "Weld" Mechanism connection: Connects a
component to another so that they do not move
relatively to each other.

PRO_ASM_SET_TYPE_BEARING A "Bearing" Mechanism connection: A combination
of Ball and Slider connections with four degrees of
freedom.

PRO_ASM_SET_TYPE_GENERAL A "General" Mechanism connection: Has one or two
configurable constraints that are identical to those in
a user-defined set.

PRO_ASM_SET_TYPE_6DOF A "Six Degrees of Freedom" Mechanism connection:
Does not affect the motion of the component in
relation to the assembly because no constraints are
applied.

PRO_ASM_SET_TYPE_GIMBAL A “Gimbal” Mechanism connection: This connection
behaves similar to the "Six Degrees of Freedom"
connection except that in Gimbal connection the
translational degrees of freedom are locked.

Assembly: Assembling Components 1169

Component Set Type Description
PRO_ASM_SET_TYPE_SLOT A "Slot" Mechanism connection: A point on a non

straight trajectory. This connection has four degrees
of freedom, where the point follows the trajectory in
three directions.

PRO_ASM_SET_USER_DEFINED_TYPE A user defined constraint set. Legacy components
which do not have defined Mechanism connections
will always use this type.

• PRO_E_COMPONENT_SET_NAME—Specifies the name of the component
set.

• PRO_E_COMPONENT_SET_MISC_ATTR—Specifies the component set
attributes. Currently, these attributes are limited to flags which enable or
disable the set.

• PRO_E_COMPONENT_JAS_SETS is an array of compound elements of type
PRO_E_COMPONENT_JAS_SET which indicate Joint Axis Set (JAS). It
represents the motion axis settings for the Mechanism connection. It consists
of the following elements—

○ PRO_E_COMPONENT_JAS_ZERO_TYPE—Specifies the type of motion
represented by this motion axis element and the value is drawn from the
following types:

◆ PRO_AXIS_ZERO_TRANSLATE1

◆ PRO_AXIS_ZERO_TRANSLATE2

◆ PRO_AXIS_ZERO_TRANSLATE3

◆ PRO_AXIS_ZERO_ROTATION1

◆ PRO_AXIS_ZERO_ROTATION2

◆ PRO_AXIS_ZERO_ROTATION3

◆ PRO_AXIS_ZERO_SLOT

○ PRO_E_COMPONENT_JAS_REFS—Specifies initial position references
for the motion axis.

◆ PRO_E_COMPONENT_JAS_ORANGE_REF—Specifies the
component reference of the motion axis.

◆ PRO_E_COMPONENT_JAS_GREEN_REF—Specifies the assembly
reference of the motion axis.

◆ PRO_E_COMPONENT_JAS_0_OFFSET_VAL—Specifies the zero
offset value for the motion axis.

○ PRO_E_COMPONENT_JAS_REGEN_VALUE_GROUP is a compound
element specifying the motion axis regeneration options. The motion axis
regeneration value is an offset value used when regenerating the model.

1170 Creo® Parametric TOOLKITUser’s Guide

This value determines the offset of the component being placed in the
assembly from the zero reference during regeneration.

◆ PRO_E_COMPONENT_JAS_REGEN_VALUE_FLAG—Specifies
enabling or disabling the regeneration value. When you disable it, the
motion axis becomes free of constraint.

◆ PRO_E_COMPONENT_JAS_REGEN_VALUE— Specifies the value
along this motion axis that will be used for regeneration of the position
and orientation of the component.

○ PRO_E_COMPONENT_JAS_MIN_LIMIT specifies the minimum limit
for regeneration value. It consists of the following elements:

◆ PRO_E_COMPONENT_JAS_MIN_LIMIT_FLAG—A boolean
element indicating whether the minimum limit is applied to the
component.

◆ PRO_E_COMPONENT_JAS_MIN_LIMIT_VAL—The value for the
minimum limit.

◆ PRO_E_COMPONENT_JAS_MIN_LIMIT_REF—A selected item
which serves as the minimum limit instead of using an assigned value.

○ PRO_E_COMPONENT_JAS_MAX_LIMIT—Specifies the maximum limit
for regeneration value. It consists of the following elements:

◆ PRO_E_COMPONENT_JAS_MAX_LIMIT_FLAG—A boolean
element indicating if the maximum limit is applied to the component.

◆ PRO_E_COMPONENT_JAS_MAX_LIMIT_VAL—The value for the
maximum limit.

◆ PRO_E_COMPONENT_JAS_MAX_LIMIT_REF—A selected item,
which serves as the maximum limit instead of using an assigned value.

○ PRO_E_COMPONENT_JAS_RESTITUTION—Specifies coefficient of
restitution for the motion axis. It is a compound element and consists of
the following elements:

◆ PRO_E_COMPONENT_JAS_RESTITUTION_FLAG—A boolean
element indicating if a coefficient of restitution is applied.

◆ PRO_E_COMPONENT_JAS_RESTITUTION_COEF— Specifies the
coefficient of restitution value.

○ PRO_E_COMPONENT_JAS_FRICTION—Specifies coefficient of
friction for the motion axis. It is a compound element and consists of the
following elements:

◆ PRO_E_COMPONENT_JAS_FRICTION_FLAG—A boolean element
indicating if the coefficients of friction are applied.

Assembly: Assembling Components 1171

◆ PRO_E_COMPONENT_JAS_STATIC_FRIC_COEF— Specifies the
coefficient of static friction value.

◆ PRO_E_COMPONENT_JAS_KINEM_FRIC_COEF— Specifies the
coefficient of kinetic friction value.

◆ PRO_E_COMPONENT_JAS_RADIUS_VALUE— Specifies the
contact radius value.

Placement Constraints
The element PRO_E_COMPONENT_CONSTRAINTS is an array of elements of
type PRO_E_COMPONENT_CONSTRAINT, each representing a single
component placement constraint.

PRO_E_COMPONENT_CONSTRAINT

Each constraint element contains the following elements:

• PRO_E_COMPONENT_CONSTR_TYPE—See discussion regarding
Assembling a Component Parametrically on page 1161.

• PRO_E_COMPONENT_COMP_CONSTR_REF—Identifies the geometry item
in the component referenced by the constraint. This element is of type
Selection.

• PRO_E_COMPONENT_ASSEM_CONSTR_REF—Identifies the constraint
reference in the assembly.

Note
this reference must include a component path referencing the top level
assembly, even if the reference belongs directly to the top level assembly.

• PRO_E_COMPONENT_CONSTR_REF_OFFSET—Gives the offset value, if
the constraint type is an offset.

1172 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_COMPONENT_USER_DATA—Specifies user data.
• PRO_E_COMPONENT_CONSTR_ATTR—See discussion under Assembling a

Component Parametrically on page 1161.
• The elements PRO_E_COMPONENT_COMP_ORIENT and PRO_E_

COMPONENT_ASSM_ORIENT indicate which side of a referenced surface to
be used. These values have different meanings for user-defined constraint sets
and mechanism connections. See discussion under
ProAsmcompconstraintAsmreferenceGet() and
ProAsmcompconstraintCompreferenceGet().

• PRO_E_COMPONENT_CONSTR_SET_ID—Specifies the index of the
member of the array of PRO_E_COMPONENT_SET elements that owns the
constraint.

• PRO_E_COMPONENT_SLOT_EXTRA_CRV_REF—Specifies the extra curve
references used by a Slot connection only. This is a multivalued element.

Component Movement in Assembly
The element PRO_E_COMPONENT_MOVEMENTS is an array of elements of type
PRO_E_COMPONENT_MOVEMENT which represent movements applied to the
component being assembled.

PRO_E_COMPONENT_MOVEMENT

Each movement element contains the following elements:

• PRO_E_COMPONENT_MOVEMENT_TYPE specifies allowed movement types
Use the following options to move the component parallel to the reference
selected and are of the following values:

• PRO_ASM_TRANSLATE_X

• PRO_ASM_TRANSLATE_Y

• PRO_ASM_TRANSLATE_Z

Use the following options to rotate the component about the selected references.

• PRO_ASM_ROTATE_X

• PRO_ASM_ROTATE_Y

• PRO_ASM_ROTATE_Z

• PRO_ASM_TWIST_FIT

Assembly: Assembling Components 1173

• PRO_E_COMPONENT_MOVEMENT_REF specifies the translational and
rotational motion references.

• PRO_E_COMPONENT_MOVEMENT_VALUE

Placement via Interface
The element PRO_E_COMP_PLACE_INTERFACE is a compound element that
defines an alternative assembly technique: using component interfaces to define
the placement instead of traditional constraints.

PRO_E_COMP_PLACE_INTERFACE

The element contains the following elements:

• PRO_E_COMP_PLACE_INTERFACE_TYPE—Specifies the interface types
as follows:

○ PRO_ASM_INTFC_TO_GEOM—Assembly of the component by matching
an interface on the component to referenced geometry in the assembly.

○ PRO_ASM_INTFC_TO_INTFC—Assembly of the component by
matching an interface on the component to an interface defined in the
assembly.

Note
If this value is not set (set to 0) then component interfaces are not used to
define this component.

• PRO_E_COMP_PLACE_INTERFACE_COMP—Specifies the component
model interface. This should contain the component interface feature.

• PRO_E_COMP_PLACE_INTERFACE_ASSEMS—Specifies an array of
assembly references. If the placement type is PRO_ASM_INTFC_TO_GEOM
this contains 1 or more geometric references from the assembly. If the
placement type is PRO_ASM_INTFC_TO_INTFC this contains a single
reference element containing the component interface feature.

1174 Creo® Parametric TOOLKITUser’s Guide

Assembling Components Using Intent
Datums
You can use Intent Datums such as Intent Axis, Intent Point, Intent Plane, and
Intent Coordinate System in assembly component placement and constraints.

Example 3: Assembling Components Using Intent
Datums
The sample code in the file UgAsmcompConstraint.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_asm
demonstrates how to assemble a component into an assembly using intent point
and intent plane, and how to set constraints after assembling a component using
intents.

Assembly: Assembling Components 1175

56
Assembly: Kinematic Dragging

and Creating Snapshots
Connecting to a Kinematic Drag Session... 1177
Performing Kinematic Drag .. 1179
Creating and Modifying Snapshots ... 1179
Snapshot Constraints .. 1180
Snapshot Transforms .. 1182
Snapshots in Drawing Views .. 1183

This chapter describes the Creo Parametric TOOLKIT functions for dragging
assembly entities through an allowable range to see how your assembly works in a
specific configuration. These functions provide the same result as obtained by
using the Drag dialog box in the Creo Parametric user interface.
This chapter also describes the functions to create snapshots of the assembly in
different positions and orientations.

1176 Creo® Parametric TOOLKITUser’s Guide

Connecting to a Kinematic Drag Session
Functions Introduced:

• ProKinDragStart()
• ProKinDragStop()
• ProKinDragSessionInquire()
• ProKinDragEnvironmentSet()
• ProKinDragReconnect()
The function ProKinDragStart() starts a drag session. This function should
be called before any other function for Kinematic drag or snapshots. All
subsequent functions work with the snapshots of the top-level assembly. This
function can be called for design assemblies in the Standard Assembly and
Mechanism modes only. It cannot be used in the following cases:

• If the assembly is in the exploded state
• If the Sketcher mode is active
• When component placement is active
• When the Drag dialog box is active
The function ProKinDragStop() stops the drag session. Use
ProWindowRefresh() to view the change in the graphic window scale
according to the updated outline.
The function ProKinDragSessionInquire() determines if the drag
session is active. The drag session may exist automatically in some cases, such as
redefine, regeneration, window switch, representation mode change.
The function ProKinDragEnvironmentSet() sets the environment for
dragging and reconnect operations. It requires the following input arguments:

• snap_name—Specifies the name of the active snapshot whose constraints are
used for the drag operation. The snapshot is checked for statuses such as
good, outdated, or incomplete. Pass NULL if not required.

The outdated status means some parts from the body have a relative
transformation that is different from the current transformation. The
incomplete status means that some parts from the body are missing in the
active snapshot.

• path—Specifies the path in terms of the ProAsmcomppath object to the
active snapshot of a subassembly contained within the top-level assembly.
Pass NULL for a top-level assembly snapshot.

• type—Specifies the type of drag to be performed. It is given by the
enumerated type ProKinDragType that takes the following values:

Assembly: Kinematic Dragging and Creating Snapshots 1177

○ PRO_KIN_POINT_DRAG— Select a point to drag in a part within the
top-level assembly. During the dragging operation, the point you selected
follows the pointer’s movement while maintaining connections.

○ PRO_KIN_BODY_DRAG—Select a part from the top-level assembly to
drag. When you drag a part, its position in the graphics window changes,
but its orientation remains fixed.If the assembly requires a part to be
reoriented in conjunction with a change in position, the part does not move
at all, as the assembly cannot reassemble in the new position.

○ PRO_KIN_ADVANCED_TRANS_X—Specifies the translation in the X
direction of the selected coordinate system. This type is applicable only in
case of an advanced drag operation. You can select a coordinate system by
selecting the part to be dragged.

○ PRO_KIN_ADVANCED_TRANS_Y—Specifies the translation in the Y
direction of the selected coordinate system. This type is applicable only in
case of an advanced drag operation.

○ PRO_KIN_ADVANCED_TRANS_Z—Specifies the translation in the Z
direction of the selected coordinate system. This type is applicable only in
case of an advanced drag operation.

○ PRO_KIN_ADVANCED_ROT_X—Specifies the rotation around the X axis
of the selected coordinate system. This type is applicable only in case of an
advanced drag operation. You can select a coordinate system by selecting
the part to be dragged.

○ PRO_KIN_ADVANCED_ROT_Y—Specifies the rotation around the Y axis
of the selected coordinate system. This type is applicable only in case of an
advanced drag operation.

○ PRO_KIN_ADVANCED_ROT_Z—Specifies the rotation around the Z axis
of the selected coordinate system. This type is applicable only in case of an
advanced drag operation.

• refobject—Specifies the selection reference in the form a coordinate system
(PRO_CSYS), part (PRO_PART), or mechanism body (PRO_MDO_BODY) for
an advanced drag operation. This argument is relevant only for advanced drag
types. For all other drag types, it is ignored and NULL should be passed.

The function ProKinDragReconnect() reconnects to a drag session taking
into account constraints but not transforms from the active snapshot specified in
ProKinDragEnvironmentSet(). Use ProWindowRefresh() to view
the changes in the positions of the assembly components. Refer to the sections
Snapshot Constraints on page 1180 and Snapshot Transforms on page 1182 for
more information.

1178 Creo® Parametric TOOLKITUser’s Guide

Performing Kinematic Drag
Function Introduced:

• ProKinDragPerformMove()
The function ProKinDragPerformMove() drags the selected geometric
object to the specified X and Y screen coordinates given by ProArray of
Pro2dPnt object. The geometric object can be PRO_POINT, PRO_SURFACE_
PNT, PRO_AXIS, PRO_EDGE, PRO_CURVE, PRO_DATUM_PLANE, PRO_SRF_
PLANE_PNT, or PRO_SURFACE in case of a point drag, and PRO_PART or
PRO_MDO_BODY for all other drag types. A hook point is displayed on the object
selected for drag, which is removed at the end of the drag operation. The dragging
is performed according to the environment set by the function
ProKinDragEnvironmentSet(). Use the constraints set for the active
snapshot while dragging.

Creating and Modifying Snapshots
Functions Introduced:

• ProKinDragSnapshotsNamesGet()
• ProSnapshotCreate()
• ProSnapshotUpdate()
• ProSnapshotRename()
• ProSnapshotDelete()
• ProSnapshotApply()
The function ProKinDragSnapshotsNamesGet() retrieves an array of
names of the snapshots belonging to the top-level assembly and all its
subassemblies.
The function ProSnapshotCreate() creates a new snapshot for the top-level
assembly as per its current position in the Creo Parametric window. Constraints
are copied from the active snapshot. The newly created snapshot becomes active.
The function ProSnapshotUpdate() updates the snapshot for the top-level
assembly as per its current position in the Creo Parametric window. Constraints
are copied from the active snapshot. The newly updated snapshot becomes active.
The function ProSnapshotRename() renames the active snapshot of the top-
level assembly.
The function ProSnapshotDelete() deletes a specified snapshot. The
snapshot can be of the top-level assembly or any of its subassemblies. Pass NULL
for the argument path to specify the top-level assembly.

Assembly: Kinematic Dragging and Creating Snapshots 1179

The function ProSnapshotApply() applies the transforms of the active
snapshot. Unlike in the user interface, no attempt to reconnect is made. Call
ProKinDragReconnect() if reconnect is necessary. Use
ProWindowRefresh() to view the changes in the positions of the assembly
components.

Snapshot Constraints
The constraints that can be applied to a snapshot are contained by the structure
ProSnapshotConstraint. The declaration for
ProSnapshotConstraint is as follows:
typedef struct proSnapshotConstraint
{
ProSnapshotConstraintType type;
ProSelection *sel_array;
double value;
ProBool user_active;
ProBool valid
} ProSnapshotConstraint;

The fields in the above structure are described as follows:

• type—Specifies the type of snapshot constraint. The type is represented by
the enumerated type ProSnapshotConstraintType and can take one of
the following values:

○ PRO_SNAP_ALIGN—Select two points, two lines, or two planes from the
top-level assembly. The two entities remain aligned during the drag
operation.

○ PRO_SNAP_MATE—Select two planes from the top-level assembly. The
planes remain mated during the drag operation.

○ PRO_SNAP_ORIENT—Select two planes that orient at an angle with each
other.

○ PRO_SNAP_MOTION_AXIS_POS—Select a motion axis to specify the
motion axis position.

○ PRO_SNAP_BODY_LOCK—Select the bodies to be locked together while
dragging.

○ PRO_SNAP_CONNECTION_DISABLE—Select a connection that will be
disabled while dragging.

○ PRO_SNAP_PARALLEL_VIEW_PLANE—Select a body that will move
parallel only to the view plane. This constraint type is the same as the
PRO_SNAP_ALIGN or PRO_SNAP_MATE types, but the second
reference in this case is the view plane. This constraint type is available
only via Creo Parametric TOOLKIT. If set by the Creo Parametric

1180 Creo® Parametric TOOLKITUser’s Guide

TOOLKIT application, this constraint type becomes visible in the Drag
dialog box in the Creo Parametric user interface, but it cannot be stored.

○ PRO_SNAP_CAM_LIFTOFF_ENABLE—Allows two cams with a cam-
follower connection to separate and collide during a dragging operation.

○ PRO_SNAP_CAM_LIFTOFF_DISABLE—Requires two cams with a
cam-follower connection to be in contact with each other during the
dragging operation.

Note
The constraint types PRO_SNAP_CAM_LIFTOFF_ENABLE and PRO_
SNAP_CAM_LIFTOFF_DISABLE override the Enable Liftoff
property that you set from the Cam-Follower Connection Definition dialog
box in the Creo Parametric user interface.

• *sel_array—Specifies the ProArray of selections. The number of
selections needed and the permitted selection types for each constraint type are
specified in the following table:

Constraint Type Number of
Selections needed

Permitted Selection Types

PRO_SNAP_ALIGN 2 PRO_POINT, PRO_SURFACE_PNT, PRO_
AXIS, PRO_EDGE, PRO_CURVE, PRO_
DATUM_PLANE, PRO_SRF_PLANE_PNT,
PRO_SURFACE

PRO_SNAP_MATE, PRO_SNAP_
ORIENT

PRO_DATUM_PLANE, PRO_SRF_PLANE_
PNT, PRO_SURFACE

PRO_SNAP_MOTION_AXIS_
POS

1 PRO_MDO_CONN_AXIS_ROT_1/2/3,
PRO_MDO_CONN_AXIS_TR_1/2/3,
PRO_MDO_SLOT_AXIS

PRO_SNAP_CONNECTION_
DISABLE

PRO_MDO_CONN, PRO_MDO_CAM_CONN,
PRO_MDO_SLOT_CONN, PRO_MDO_
GEAR_CONN

PRO_SNAP_PARALLEL_VIEW_
PLANE

PRO_POINT, PRO_SURFACE_PNT, PRO_
EDGE_START, PRO_EDGE_END, PRO_
CRV_START, PRO_CRV_END, PRO_AXIS,
PRO_EDGE, PRO_CURVE, PRO_SRF_
PLANE_PNT, PRO_SURFACE, PRO_
DATUM_PLANE

PRO_SNAP_CAM_LIFTOFF
_ENABLE

PRO_MDO_CAM_CONN

PRO_SNAP_CAM_LIFTOFF
_DISABLE

PRO_SNAP_BODY_LOCK 2 or more PRO_PART, PRO_MDO_BODY

• value—Depending upon the constraint type, this field takes the following
values:

Assembly: Kinematic Dragging and Creating Snapshots 1181

○ For the PRO_SNAP_ALIGN and PRO_SNAP_MATE constraint types,
value specifies the linear distance between the references.

○ For the PRO_SNAP_ORIENT type, value specifies the angle between
the references.

○ For the PRO_SNAP_MOTION_AXIS_POS type, value specifies the
offset of the joint axis zero position. This value is angular for the rotation
axis and linear for the translational axis. The references for the joint axis
zero position may be default or as specified by the user.

• active—Specifies the ProBoolean option to enable or disable a
constraint.

• valid—Specifies if the constraint is valid or invalid in the current model
context. If this ProBoolean option is PRO_B_TRUE, the constraint is valid
(active), and if it is PRO_B_FALSE, the constraint is invalid (suppressed).

Functions Introduced:

• ProSnapshotConstraintsGet()
• ProSnapshotConstraintAdd()
• ProSnapshotConstraintDelete()
• ProSnapshotConstraintUpdate()
• ProSnapshotConstraintEvaluate()
The function ProSnapshotConstraintsGet() retrieves all the constraints
of a specified snapshot. The snapshot can be of the top-level assembly or any of
its subassemblies. Pass NULL for the argument path to specify the top-level
assembly.
The function ProSnapshotConstraintAdd() adds a constraint to the
snapshot of the top-level assembly.
The function ProSnapshotConstraintDelete() deletes a constraint from
the snapshot of the top-level assembly.
The function ProSnapshotConstraintUpdate() updates a constraint for
the snapshot of the top-level assembly.
The function ProSnapshotConstraintEvaluate() calculates the
position of the motion axis for the constraint type PRO_SNAP_MOTION_AXIS_
POS for the active model in the Creo Parametric window. This value does not
depend on the current snapshot and it is not necessary for the snapshot to contain
the constraint.

Snapshot Transforms
Functions Introduced:

1182 Creo® Parametric TOOLKITUser’s Guide

• ProSnapshotTrfsGet()
• ProSnapshotTrfsUpdate()
The function ProSnapshotTrfsGet() retrieves the transformation paths and
transformation matrices saved in the snapshots for the subassemblies and their
components with respect to the top-level assembly snapshot.
The function ProSnapshotTrfsUpdate() updates the transformation
matrices saved in the snapshots for the subassemblies and their components with
respect to the top-level assembly snapshot.

Snapshots in Drawing Views
Functions Introduced:

• ProSnapshotAllowedInDrawingSet()
• ProSnapshotAllowedInDrawingGet()
The function ProSnapshotAllowedInDrawingSet() assigns the active
snapshot of the top-level assembly to be available or unavailable in drawings. Set
the argument allow to PRO_B_TRUE to make the snapshot available in drawings.
The function ProSnapshotAllowedInDrawingGet() determines if the
active snapshot is allowed in drawings. The argument p_is_allowed is PRO_B_
TRUE if the snapshot is allowed in drawings.

Assembly: Kinematic Dragging and Creating Snapshots 1183

57
Assembly: Simplified

Representations
Overview .. 1185
Simplified Representations in Session .. 1186
Retrieving Simplified Representations... 1189
Retrieving and Expanding LightWeight Graphics Simplified Representations 1190
Retrieving User-Defined Simplified Representations .. 1190
Creating and Deleting Simplified Representations.. 1192
Extracting Information About Simplified Representations.. 1192
Modifying Simplified Representations ... 1194
Gathering Components by Rule.. 1196

Creo Parametric TOOLKIT gives programmatic access to all the simplified
representation functionality of Creo Parametric. You can create simplified
representations either permanently or at runtime, and you can save, retrieve, or
modify them by adding or deleting items.

1184 Creo® Parametric TOOLKITUser’s Guide

Overview
Using Creo Parametric TOOLKIT, you can create and manipulate assembly
simplified representations just as you can using Creo Parametric interactively.

Note
Creo Parametric TOOLKIT supports retrieval and activation of both part and
assembly simplified representations. In addition, Creo Parametric TOOLKIT
supports creation and modification of assembly simplified representations.
Functions not appropriate for part mode are identified in the description.

Simplified representations are identified by the DHandle ProSimprep. As with
other DHandles such as ProFeature and ProGeomitem, the ProSimprep
handle contains just enough information to uniquely identify the object in the
database—the model owner, type, and identifier.
The information required to create and modify a simplified representation is
stored in a series of ProSimprepdata structures, which are visible data
structures. The data structure contains the following fields:

• ProName name—The name of the simplified representation
• ProBoolean temp—Specifies whether it is a temporary, simplified

representation
• ProSimprepActionType action_type—The rule that controls the

default treatment of items in the simplified representation
• ProSimprepitem *items—An array of assembly components and

features and the actions applied to them in the simplified representation
A ProSimprepitem is identified by the ProIdTable that defines the
assembly component path to that item. (Even if the ID table path is only one level,
use the ProIdTable and not the feature id for assemblies). Each
ProSimprepitem has its own ProSimprepAction assigned to it.
ProSimprepAction is a visible data structure that includes a variable of type
ProSimprepActionType.
ProSimprepActionType is an enumerated type that specifies the possible
treatment of items in a simplified representation. You can specify the following
types of actions on the component:
• PRO_SIMPREP_NONE—Specifies that no action is specified.
• PRO_SIMPREP_REVERSE—Specifies that the reverse of the default rule

must be applied to the component. For example consider that the default rule
is to exclude a component. When you set the value PRO_SIMPREP_
REVERSE, the component is included in the simplified representation.

Assembly: Simplified Representations 1185

• PRO_SIMPREP_INCLUDE—Specifies to include the component in the
simplified representation.

• PRO_SIMPREP_EXCLUDE—Specifies to exclude the component in the
simplified representation.

• PRO_SIMPREP_SUBSTITUTE—Specifies to substitute the component in
the simplified representation.

• PRO_SIMPREP_GEOM—Specifies to use geometric representation.
• PRO_SIMPREP_GRAPHICS—Specifies to use graphical representation.
• PRO_SIMPREP_SYMB—Specifies to use symbolic representation.
• PRO_SIMPREP_BOUNDBOX—Specifies to use boundary box representation.
• PRO_SIMPREP_DEFENV—Specifies to use the default envelope

representation.
• PRO_SIMPREP_LIGHT_GRAPH—Specifies to use light weight graphics

representation.
• PRO_SIMPREP_AUTO—Specifies to use automatic representation.

Simplified Representations in Session
Functions Introduced:

• ProSolidSimprepVisit()
• ProSimprepInit()
• ProSimprepSelect()
• ProSimprepActivate()
• ProSimprepActiveGet()
• ProSimprepTypeGet()
• ProSimprepIsDefault()
This section describes the utility functions that relate to simplified representations.
ProSolidSimprepVisit() is like the other visit functions, and visits all the
simplified representations of a parent ProSolid. The function visits only user-
defined representation.
As all other visit functions, it takes four arguments—a pointer to the parent
ProSolid, a filter function, the visit function itself, and a ProAppData field.
The function ProSimprepInit() initializes a ProSimprep structure. The
function takes the following arguments:

1186 Creo® Parametric TOOLKITUser’s Guide

• ProNamerep_name— The name of the simplified representation in the solid.
If you specify this argument, the function ignores the rep_id.

• intrep_id—The identifier of the simplified representation, if you did not
specify rep_name (you specified NULL).

• ProSolidp_solid—The parent solid that contains the simplified
representation.

• ProSimprepp_simp_rep—The handle to the newly initialized simplified
representation.

The function ProSimprepSelect() creates a Creo Parametric menu to enable
interactive selection. The function takes the parent solid as input, and outputs the
handle to the selected simplified representation. If you choose the Quit menu
button, the function returns the value PRO_TK_USER_ABORT. If the user selects
the master representation, the returned simplified representation structure has an
identifier of –1.
ProSimprepActivate() enables you to set the currently active simplified
representation. To set a simplified representation to be the currently displayed
model, you must also call ProSolidDisplay(). This function enables you to
bring inactive submodels into memory, and use their handles without displaying
them.
ProSimprepActivate() does not support activation of part simplified
representations, because part simplified representation handles cannot be passed to
this function. To obtain a handle to a part simplified representation use
ProPartSimprepRetrieve(). You can display the simplified representation
in a window using ProSolidDisplay().
ProSimprepActiveGet() enables you to find the currently active simplified
representation. Given a model handle, ProSimprepActiveGet() returns the
handle to the currently active simplified representation. If the current
representation is the master representation, the identifier of the handle is set to –1.
The function ProSimprepTypeGet() returns the type of a specified
simplified representation using the enumerated data type ProSimprepType:
• PRO_SIMPREP_MASTER_REP—Specifies a fully detailed assembly. The

model tree lists all its components and identifies them as included, excluded,
or substituted.

• PRO_SIMPREP_USER_DEFINED—Specifies a representation from the
selected component.

• PRO_SIMPREP_GRAPH_REP—Specifies a representation that contains only
information for display. You can quickly browse through a large assembly.
Graphics representations cannot be modified or referenced.

Assembly: Simplified Representations 1187

• PRO_SIMPREP_GEOM_REP—Specifies a representations that contains
complete component geometry information. As compared to graphics
representations, geometry representations take longer to retrieve and require
more memory.

• PRO_SIMPREP_SYMB_REP—Specifies a representation that allows you to
represent components with a symbol.

• PRO_SIMPREP_DEFENV_REP—Specifies a representation that allows you
to represent assembly components with an default envelope.

• PRO_SIMPREP_LIGHT_GRAPH_REP—Specifies a lightweight graphics
representations of assemblies that contains assembly information and 3D
thumbnail graphics representations of assembly components.

• PRO_SIMPREP_AUTO_REP—Specifies a representation for retrieving the
minimum data that is required for presenting the assembly in the most accurate
way. You can perform actions such as measuring distances between points on
a light surface without retrieving the part geometry.

Note
When two standard representations of the same model are retrieved, for better
memory usage, only one representation is used in the memory. The lower
detailed representation is integrated into higher detailed representation. This
higher detailed representation is used to retrieve both the representations.

If you retrieve a lower detailed representation when a higher detailed
representation is already in the memory, this higher detailed representation is
used and actually no retrieval is done.

The hierarchy for the representations is as follows with Master Simplified
Representation being the highest representation level:

• Boundary Box Simplified Representation
• Symbolic Simplified Representation
• Graphic Simplified Representation
• Geometry Simplified Representation
• Master Simplified Representation
Refer to the Creo Parametric help for more information on Assembly Design.

The function ProSimprepIsDefault() determines if the specified simplified
representation is the default representation for the owner model.

1188 Creo® Parametric TOOLKITUser’s Guide

Retrieving Simplified Representations
Function Introduced:

• ProAssemblySimprepMdlnameRetrieve()
• ProSimprepMdlnameRetrieve()
• ProMdlRepresentationFiletypeLoad()
You can retrieve a named simplified representation from an assembly using the
function ProAssemblySimprepMdlnameRetrieve(). This function
retrieves the handle of an existing simplified representation from an assembly
without getting the generic representation into memory.
The function takes as arguments—the names of the assembly and simplified
representation, the representation data, the type of model to retrieve, and the
handle to the assembly. Note that you must provide the name of the assembly. To
retrieve an existing simplified representation, specify its name as one of the inputs
to the argument of this function. The name of the simplified representation can be
NULL if the representation data is provided. In this case, the instructions in the
data are used to dynamically create a new simplified representation . The
representation data can also be NULL if the name of the simplified representation
is provided. Creo Parametric retrieves the simplified representation and any active
submodels, and returns the ProAssembly handle.
You can retrieve geometry, graphics, symbolic simplified, boundary box, and
default envelope representations into session using the function
ProSimprepMdlnameRetrieve(). The input arguments to the function are:
• model_name—Specifies the name of the model whose simplified

representation is to be retrieved.
• file_type—Specifies the type of model using the enumerated data type

ProMdlfileType.
• rep_type—Specifies the type of simplified representation using the

enumerated data type ProSimprepType.
• rep_name—Specifies the name of the simplified representation that must be

retrieved.
.
Similar to ProAssemblySimprepMdlnameRetrieve(), the function
ProSimprepMdlnameRetrieve() retrieves the simplified representation
without bringing the master representation into memory. The function outputs the
handle to the model. It does not display the simplified representation.
You can retrieve the simplified representation of a model into memory using the
function ProMdlRepresentationFiletypeLoad().

Assembly: Simplified Representations 1189

Retrieving and Expanding LightWeight
Graphics Simplified Representations
Functions Introduced:

• ProSimprepMdlnameRetrieve()
• ProLightweightGraphicsSimprepExpand()
The function ProSimprepMdlnameRetrieve() retrieves the light graphics
simplified representation of an assembly. Light graphics representations of
assemblies contain assembly information and 3D thumbnail graphics
representations of assembly components. In the light graphics simplified
representation mode, the graphics of a model is represented using the Creo View
viewable. The Creo View files must be in the same directory as the model. If the
Creo View files are not available in the model directory, then the model is
represented with bounding boxes in the light graphics simplified representation
mode. Using this function you can initially retrieve and display graphic objects of
higher levels of the assembly and then retrieve more detailed information of the
sub-assemblies as required. This function is similar to
ProAssemblySimprepMdlnameRetrieve(), and retrieves the light
graphics assembly in the same way as described in the section Retrieving
Simplified Representations on page 1189.
Use the function ProLightweightGraphicsSimprepExpand() to
expand the light graphics representation of an assembly in the Creo Parametric
active window to the specified level using the enumerated type
ProLightweightGraphicsSimprepLevel.
You can expand the representation to the following levels:
• PRO_LWG_SIMPREP_LEVEL_NEXT—Expands thumbnails to the next

level.
• PRO_LWG_SIMPREP_LEVEL_ALL—Expands thumbnails to all levels.
To expand the sub-assembly level, use the functions ProModelitemInit()
and ProSelectionAlloc() to first initialize the ProSelection handle for
the component part or sub-assembly. You can pass the ProSelection handle to
the function ProLightweightGraphicsSimprepExpand() and expand
the component part or sub-assembly node to the required level.

Retrieving User-Defined Simplified
Representations
Functions Introduced:

1190 Creo® Parametric TOOLKITUser’s Guide

• ProAutomaticSimprepRetrieve()
• ProAutomaticSimprepConvert()
• ProAutomaticSimprepActivate()
The function ProAutomaticSimprepRetrieve() retrieves a user-defined
simplified representation as an automatic representation. If error occurs during
regeneration, the assembly includes suppressed features. Use the function
ProSolidRetrievalErrorsGet() to identify if any errors have occurred
during retrieval of the simplified representation. The input arguments follow:
• assem_name—Name of the assembly specified using the structure

ProFamilyMdlName.
• file_type—File type of the assembly specified using the enumerated data type

ProMdlfileType.
• simp_rep_name—Name of the simplified representation.
The output argument p_assem is the handle to the assembly specified using the
structure ProAssembly.
The function returns the error PRO_TK_NO_PERMISSION if the function does
not have permission to operate on the specified assembly. The function returns the
error PRO_TK_E_NOT_FOUND if the function did not find the specified
simplified representation in the solid.
The function ProAutomaticSimprepConvert() converts a user-defined
representation to automatic simplified representation while maintaining the
excluded or substituted components in the representation.
The function ProAutomaticSimprepActivate() activates a user-defined
representation as an automatic simplified representation. To display the correct
simplified representation, you must also call the function
ProSolidDisplay().

Note
The functions ProAutomaticSimprepRetrieve(),
ProAutomaticSimprepConvert() and
ProAutomaticSimprepActivate() support only assemblies.

The function ProAutomaticSimprepActivate() returns the error PRO_
TK_E_NOT_FOUND if the function did not find the specified simplified
representation in the model.

Assembly: Simplified Representations 1191

Creating and Deleting Simplified
Representations
Functions Introduced:

• ProSimprepdataAlloc()
• ProSimprepCreate()
• ProSimprepDelete()

Note
Creo Parametric TOOLKIT does not support creation of part simplified
representations.

To create a simplified representation, you must allocate and fill a
ProSimprepdata structure by calling the function
ProSimprepdataAlloc(). As input, the function requires the name of the
new simplified representation, the temp value, and the default rule. The specific
structure is initialized by the function in the Creo Parametric database.
To generate the new simplified representation, call ProSimprepCreate().
This function returns the ProSimprep handle for the new representation.
The function ProSimprepDelete() deletes a simplified representation from
its model owner. The function requires only the ProSimprep handle as input.

Example 1: Creating a Simplified Representation
The example in the file UgSimprepCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_simprep, shows
how to create a simplified representation.

Extracting Information About Simplified
Representations
Functions Introduced:

• ProSimprepdataGet()
• ProSimprepdataFree()
• ProSimprepdataDefltGet()
• ProSimprepdataNameGet()
• ProSimprepdataTmpvalGet()

1192 Creo® Parametric TOOLKITUser’s Guide

• ProSimprepdataitemsVisit()
• ProSimprepSubstitutionNameGet()
• ProAsmcompSubstitutionTypeGet()
• ProAsmcompSubstituteGet()

Note
Creo Parametric TOOLKIT supports simplified representation of
Assemblies only, not Parts.

Given the handle to a simplified representation and the address of a pointer to a
ProSimprepdata structure, ProSimprepdataGet() fills out the
ProSimprepdata structure. This function dynamically allocates storage for the
data structure. When the memory is no longer needed, free it using the function
ProSimprepdataFree().
The ProSimprepdataDefltGet(), ProSimprepdataNameGet(), and
ProSimprepdataTmpvalGet() functions return the associated values
contained in the ProSimprepdata structure. They all take two arguments—the
data structure to be queried, and the appropriate data structure for the type to be
retrieved. ProSimprepdataTmpvalGet() retrieves the value of the temp
field from the specified ProSimprepdata
The function ProSimprepdataitemsVisit() visits all the items that make
up the simplified representation. The action and filter functions both have
ProSimprepitem* as their first argument.
The function ProSimprepSubstitutionNameGet() returns the name of
the substituted representation at the given assembly path even when the
substituted representation is deleted from the model at the given path.
The function ProAsmcompSubstitutionTypeGet() returns the
substitution type performed on the simplified representation of an assembly
component. It takes the path to the component reprsentation that is being
substituted, including the component ID, as one of its input arguments.
The function ProAsmcompSubstituteGet() returns the path to the
substituted component representation in the form of and the handle to the
substituted component representation in the form of ProAsmcomp. It takes the
path to the component reprsentation that is being substituted, including the
component ID, as one of its input arguments.

Assembly: Simplified Representations 1193

Example 2: Visiting the Items in a Simplified
Representation
The sample code in UgSimprepInfo.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_simprep shows how
to use the Creo Parametric TOOLKIT functions to visit the items in the specified
simplified representation.

Modifying Simplified Representations
Functions Introduced:

• ProSimprepActionInit()
• ProSimprepdataSet()
• ProSimprepdataDefltSet()
• ProSimprepdataNameSet()
• ProSimprepdataTmpvalSet()

Note
Creo Parametric TOOLKIT supports simplified representation of
Assemblies only, not Parts.

Using Creo Parametric TOOLKIT, you can modify the attributes of existing
simplified representations. After you create or retrieve a simplified representation,
you can make calls to the ProSimprepdata*Set() functions listed in this
section to designate new values for the fields in the ProSimprepdata structure.
To modify an existing simplified representation, retrieve it, then get the handle to
its ProSimprepdata structure by calling the function
ProSimprepdataGet(). (If you created the representation programmatically
within the same application, the ProSimprepdata handle is already available.)
After modifying the data structure, reassign it to the corresponding simplified
representation by calling the function ProSimprepdataSet(). Use the

1194 Creo® Parametric TOOLKITUser’s Guide

function ProSimprepdataTmpvalSet to specify whether the newly created
representation is temporary. Pass the value PRO_B_TRUE to the input argument
temp to make the newly created representation a temporary representation.

Note
Use the function ProSimprepdataTmpvalSet() to set the value of the
temp input argument in the specified ProSimprepdata structure while
creating new simplified representations only. Once the simplified
representation is created, this attribute is controlled by Creo Parametric. For
all the existing representations, Creo Parametric controls the temp input
argument and sets its value automatically

Adding Items to and Deleting Items from a
Simplified Representation
Functions Introduced:

• ProSimprepdataitemAdd()
• ProSimprepdataitemDelete()
• ProSimprepdataitemInit()

Note
Creo Parametric TOOLKIT supports simplified representation of
Assemblies only, not Parts.

You can add and delete items from the list of components in a simplified
representation using Creo Parametric TOOLKIT. If you created a simplified
representation using the option PRO_SIMPREP_EXCLUDE as the default rule,
you would generate a list containing the items you want to include. Similarly, if
the default rule for a simplified representation is PRO_SIMPREP_INCLUDE, you
can add the items that you want to be excluded from the simplified representation
to the list, setting the value of the ProSimprepActionType to PRO_
SIMPREP_EXCLUDE.

To Add Items
1. Get the ProSimprepdata structure, as described in the previous section.
2. Specify the action to be applied to the item with a call to the function

ProSimprepActionInit().

Assembly: Simplified Representations 1195

3. Initialize a ProSimprepitem structure for the item by calling the function
ProSimprepdataitemInit().

4. Add the item to the ProSimprepdata structure using the function
ProSimprepdataitemAdd().

5. Reassign the ProSimprepdata structure to the corresponding
ProSimprep object by calling ProSimprepdataSet().

To Remove Items
1. Get the ProSimprepdata structure handle.
2. Pass the ProSimprepdata handle and the ProSimprepitem handle for

the item to be deleted to the function ProSimprepdataitemDelete().
3. Reassign the ProSimprepdata structure to the corresponding

ProSimprep object by calling the function ProSimprepdataSet().

Gathering Components by Rule
Function Introduced:

• ProRuleEval()
Creo Parametric provides large assembly management tools. This section
describes the access to some of this functionality through Creo Parametric
TOOLKIT.
You can specify different types of rules and use them to generate a list of
components for which the rule applies. After initializing the rule, call the function
ProRuleEval() to generate the list of components that follow this rule.
Note that the returned list of components is in the form of an expandable array
(ProArray), which is allocated by this function. To release the allocated
memory, call the function ProArrayFree().
The components can be gathered using the following rules:

• By model name
• By parameters, using an expression
• By location with a zone
• By distance from a point
• By size
• By an existing simplified representation
See the Assembly Modeling User’s Guide for more details on this functionality.

1196 Creo® Parametric TOOLKITUser’s Guide

Gathering by Model Name
Function Introduced:

• ProRuleInitName()
The function ProRuleInitName() initializes the rule for gathering by model
name. The name_mask variable can be a wildcard. For more information, see the
Creo Parametric help.

Gathering by Parameters
Function Introduced:

• ProRuleInitExpr()
You can specify a expression in the relations format to search for components of a
particular parameter value. For example, consider the following expression:

type == "electrical" | cost <= 10

When you supply this expression to the rule, it gathers the components that have a
“cost” parameter of less than or equal to 10, or whose type parameter is set to
“electrical.”
Theexpr variable is an array of ProLine structures. You allocate this array using
the function ProArrayAlloc(). The ProArray* functions are used for all
array manipulations.

Gathering by Zone
Function Introduced:

• ProRuleInitZone()
When you specify this rule, all the components that belong to the supplied zone
feature are gathered.
See the Assembly Modeling User’s Guide for detailed information about setting up
and working with zones.
When you create a zone, the function creates a feature of type PRO_FEAT_ZONE
in the top-level assembly.

Gathering by Distance from a Point
Function Introduced:

• ProRuleInitDist()
Using ProRuleInitDist() to set up a rule that specifies distance from a
point, Creo Parametric TOOLKIT gathers all the components within the specified
spherical region.

Assembly: Simplified Representations 1197

By filling the ProRuleDist data structure, you can specify the center and the
distance from the center. This information is in the coordinates of the top-level
assembly.

Gathering by Size
Function Introduced:

• ProRuleInitSize()
By filling the ProRuleSize data structure, you can specify the size of
components to be gathered.
If you want to gather the components greater than the specified size, set the field
greater to PRO_B_TRUE. If you set the field to PRO_B_FALSE, the function
gathers the components that are less than the specified size.
If you want the specified size to be in absolute terms, set the field absolute to
PRO_B_TRUE. Note that in this case, the function uses the units of the top-level
assembly.
If the information is relative, set the field absolute to PRO_B_FALSE. In this
case, the only valid values that can be specified are in the range (0.0, 1.0). The
function compares the component size to that of the top-level assembly, and uses
this ratio to determine whether the component should be gathered.

Gathering by Simplified Representation
Function Introduced:

• ProRuleInitRep()
You can gather components that belong to an existing simplified representation by
calling the function ProRuleInitRep(), which initializes the rule.

1198 Creo® Parametric TOOLKITUser’s Guide

58
Assembly: Data Sharing Features

Copy Geometry, Publish Geometry, and Shrinkwrap Features 1200
General Merge (Merge, Cutout and Inheritance Feature).. 1211
Inheritance Feature and Flexible Component Variant Items 1215

This chapter describes the Creo Parametric TOOLKIT functions access for Data
Sharing Features (DSF). These types of features are used to transfer information
(geometry, annotations, and other details) from one model to another. Data
Sharing Features also help you to consolidate your design information in a central
location, control change propagation which aid towards accomplishing top down
design objectives. Data Sharing Features are of the following types:

• Copy Geometry / Publish Geometry
• Shrinkwrap
• Merge / Cutout
• Inheritance
It also explains how to access the properties of variant features and lists read and
write functions supporting the Inheritance Features.

1199

Copy Geometry, Publish Geometry, and
Shrinkwrap Features
Copy Geometry Features are used to pass any type of geometric reference
information, user-defined parameters to and from parts, skeleton models, and
assemblies. Copy Geometry features can only copy reference geometry such as
surface, datum features and not solid geometry. They are used in a top-down
design to reduce the amount of data in session, thus avoiding the retrieval of entire
reference source models.
A Publish Geometry feature contains independent, local geometry references.
Only local geometry can be referenced in a Publish Geometry feature and external
references are not allowed. A Publish Geometry feature has no geometry and does
not create local copies of the references selected for its definition. It simply
consolidates multiple local references in a model so that they can be copied to
other models.
A Shrinkwrap feature is a collection of surfaces and datum features of a model
that represents the exterior of the model. You can use a part, skeleton, or top-level
assembly as the source model for a Shrinkwrap feature. A Shrinkwrap feature is
associative and automatically updates to reflect changes in the parent copied
surfaces.

Feature Element Tree for the Copy Geometry,
Publish Geometry, and Shrinkwrap Features
The element tree for Copy Geometry, Publish Geometry, and Shrinkwrap features
is documented in the header file ProDataShareFeat.h.
The following figure demonstrates the feature element tree structure:

1200 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Copy Geometry, Publish Geometry, and
Shrinkwrap Features

Assembly: Data Sharing Features 1201

PRO_E_CG_LOCATION

PRO_E_DSF_PROPAGATE_ANNOTS

PRO_E_DSF_DTM_FIT

The following list details special information about some of the elements in this
tree:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_GEOM_COPY, for Copy Geometry, Publish Geometry, and Shrinkwrap
features.

• PRO_E_CG_FEAT_SUB_TYPE—Specifies the sub feature type and is a
mandatory element. It is visible for all copy geometry features. The valid sub
types are as follows:

1202 Creo® Parametric TOOLKITUser’s Guide

○ PRO_CG_COPY_GEOM—Copy Geometry feature
○ PRO_CG_SHRINKWRAP—Shrinkwrap feature
○ PRO_CG_PUB_GEOM—Publish Geometry feature

• PRO_E_CG_REFS_TYPE—Specifies the type of references used in a copy
geometry feature (a published geometry feature, or an selected array of
surfaces, edges, curves and datums). It is visible for Copy Geometry features.

• PRO_E_CG_LOCATION—Specifies a compound element that indicates the
method used for placement of the feature within the parent model. This is
valid for Copy Geometry and Shrinkwrap features. See the section describing
Element Details of the Subtree PRO_E_CG_LOCATION on page 1207 for
more information.

• PRO_E_CG_PG_OR_REFS—Specifies either a published geometry feature to
copy or a collection of local geometry references to copy. It is visible for Copy
Geometry features and has the following elements:

○ PRO_E_CG_PUBD_GEOM—Specifies the selected publish geometry
feature to be copied.

○ PRO_E_CG_REFS_COLL—Specifies the collection of references. It is
used for Copy Geometry and Publish Geometry features and has the
following elements:

◆ PRO_E_STD_SURF_COLLECTION_APPL—Specifies a collection
of selected surfaces to copy.

◆ PRO_E_STD_CURVE_COLLECTION_APPL—Specifies a collection
of selected curves and / or edges to copy.

○ PRO_E_CG_OBJS_COLL—Specifies a multivalued element containing
miscellaneous references such as datums, quilts, points etc.

○ PRO_E_CG_BODY_COLL—Specifies a multivalued element that contains
body selections to copy.

Note
The reference collection elements PRO_E_STD_SURF_COLLECTION_
APPL, PRO_E_STD_CURVE_COLLECTION_APPL, PRO_E_CG_
OBJS_COLL may return the item of type PRO_QUERY. If PRO_QUERY is
encountered, the Creo Parametric TOOLKIT application cannot access or
modify the rules of the query. However, the application can redefine the
other properties of the DSF without affecting or removing the query. For
more information refer to the section Saved Queries for Copy Geometry
and Publish Geometry Features on page 1210.

Assembly: Data Sharing Features 1203

• PRO_E_SW_COLLECTION_TYPE—Specifies the collection mode used
while creating a Shrinkwrap feature. The values for this element, specified by
the enumerated type ProShrinkwrapCollectionType, are as follows:

○ PRO_SW_OUTER_SHELL—Surfaces and datums that represent the
exterior of the model are used. This is the default.

○ PRO_SW_ALL_SOLID_SURFS—All solid surfaces in the model are
automatically collected.

○ PRO_SW_MANUAL—Surfaces, edges, curves, and datums that you select
are used. You can copy geometry from more than one reference model.

• PRO_E_SW_OPTIONS—Specifies Shrinkwrap feature options. This element
is visible for Shrinkwrap features and has the following elements:

○ PRO_E_SW_QUALITY—Specifies the shrinkwrap quality level used
when identifying the contributing geometry to the Shrinkwrap feature. It
can have valid values in the range of 1 to PRO_MAX_SHRINKWRAP_
QUALITY_LVL.

○ PRO_E_SW_FILL_HOLES—Specifies whether or not to use the option to
auto fill holes.

○ PRO_E_SW_COLLECT_QUILTS—Specifies whether or not to include
external quilts in the Shrinkwrap feature.

○ PRO_E_SW_SKIP_SURF_SIZE—Specifies the shrinkwrap skip
surfaces size. Creo Parametric will not include surfaces smaller than the
specified percentage of the model's size in the Shrinkwrap model. It can
have a value ranging from 0(default) to 100%, to specify the relative size
of the surface to ignore.

○ PRO_E_SW_COLLECT_ORDER—Specifies how the system will handle
the subcomponents in creating the feature. This value can be of the
following types:

◆ PRO_SW_SHRINKWRAP_AND_SELECT—Specifies to first
shrinkwrap and then select (selected by default). The system analyzes
the entire assembly to identify the external surfaces to be included and
only the appropriate surfaces that belong to the selected components
are included in the resulting shrinkwrap feature.

◆ PRO_SW_SELECT_AND_SHRINKWRAP—Specifies select and
shrinkwrap. The system builds a shrinkwrap based on selected
components.

○ PRO_E_SW_RES_GEOM_OPT—Specifies the options for the resultant
Shrinkwrap geometry. This element is available only if the element PRO_
E_SW_COLLECTION_TYPE is set to the value PRO_SW_ALL_SOLID_

1204 Creo® Parametric TOOLKITUser’s Guide

SURFS. The values for this element, specified by the enumerated type
ProShrinkwrapResGeomOpt, are as follows:

◆ PRO_SW_RES_GEOM_QUILT—The resulting Shrinkwrap feature is a
quilt.

◆ PRO_SW_RES_GEOM_SOLID—The resulting Shrinkwrap feature is a
solid.

◆ PRO_SW_RES_GEOM_ASM_QUILT—The resulting Shrinkwrap
feature is a quilt that contains a merged geometry of a referenced
assembly.

○ PRO_E_SW__FAILED_SLD_OPT—Specifies the options to address the
failed solidification subfeatures (external reference copy geometry
features) of a Shrinkwrap feature. This element is available only if the
element PRO_E_SW_RES_GEOM_OPT is set to the value PRO_SW_RES_
GEOM_SOLID. The values for this element, specified by the enumerated
type ProShrinkwrapFailedSldOpt, are as follows:

◆ PRO_SW_FAILED_SLD_FAIL—Failed solidification subfeatures of
the Shrinkwrap feature are not resolved. As a result, the Shrinkwrap
feature also fails.

◆ PRO_SW_FAILED_SLD_TO_QUILT—Failed solidification
subfeatures of the Shrinkwrap feature are restored as quilts. As a result,
the Shrinkwrap feature does not fail.

○ PRO_E_SW_FILL_CNTRS_ARR—Specifies the contours of open spaces
that need to be filled. This element consists of an array of compound
elements of the type PRO_E_SW_FILL_CNTRS which consists of the
following elements:

◆ PRO_E_SW_FILL_CNTRS_SRF_SEL—Select the surface that
defines the contour to be filled.

◆ PRO_E_SW_FILL_CNTRS_DISP_CRV—Displays a yellow curve
instead of a filled contour.

• PRO_E_SW_COMP_SUBSET—Specifies components of the assembly to be
considered when creating the Shrinkwrap. This array element consists of an
array of Shrinkwrap component subset elements (PRO_E_SW_COMPONENT).
That element includes the following elements:

○ PRO_E_SW_INCLUDE_COMP specifies whether or not to include the
component in the shrinkwrap

○ PRO_E_SW_SEL_COMPONENT specifies the selected component.

Assembly: Data Sharing Features 1205

• PRO_E_SW_REFS_COLL—Specifies the collection of surfaces and other
references to be included or excluded from the Shrinkwrap feature. It has the
following elements:

○ PRO_E_STD_SURF_COLLECTION_APPL—Specifies the collection of
individual surfaces that must always be included in the Shrinkwrap
feature.

○ PRO_E_SW_EXCLUDE_SURF_COLL_APPL—Specifies the collection of
individual surfaces that must always be excluded from the Shrinkwrap
feature.

○ PRO_E_STD_CURVE_COLLECTION_APPL—Specifies a collection of
chains constructed by selection of edges or curves.

○ PRO_E_CG_OBJS_COLL—Specifies a multivalued element containing
miscellaneous references such as datums, quilts, points etc.

• PRO_E_DSF_PROPAGATE_ANNOTS—Specifies rules about how to
propagate annotations. See the section Element Details of PRO_E_DSF_
PROPAGATE_ANNOTS on page 1208 below for the structure and contents of
this element.

• PRO_E_CG_SRFS_COPY—Specifies a compound element that specifies
copied surfaces. It is visible for Copy Geometry features and has the following
elements:

○ PRO_E_SRF_COPY_TYPE—Specifies the type of copied surface. It can
have one of the following values:

◆ PRO_SRFCOPY_AS_IS

◆ PRO_SRFCOPY_EXCLD_FILL

◆ PRO_SRFCOPY_INSIDE_BNDRY

◆ PRO_SRFCOPY_UNTRIM_TO_ENVLP

◆ PRO_SRFCOPY_UNTRIM_TO_DOMAIN

○ PRO_E_SRF_COPY_EXCL—Specifies excluded surfaces.
○ PRO_E_SRF_COPY_FILL—Specifies loops to fill.
○ PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the boundary

for the copied surfaces.
• PRO_E_DSF_DTMS_FITS—Specifies a compound element that indicates

the rules for fitting datums in the DSF feature. It is visible for all internal Copy
Geometry features) and Shrinkwrap features. This compound element includes
PRO_E_DTMPLN_FIT and PRO_E_DTMAXIS_FIT subtrees for any or all
of the copied datums. Refer to the chapter Element Trees: Datum Features on
page 804 for details on the datum fit subtrees.

1206 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_DSF_DEPENDENCY—Specifies the dependency type of the Copy
Geometry Feature. The values for this element are specified by the enumerated
type ProDSFDependency defined in the header file
ProDataShareFeat.h. For more information on the values, refer to the
section Feature Element Tree on page 1211.

The valid values for the dependency status are as follows:

○ PRO_DSF_UPDATE_AUTOMATICALLY—Specifies that the geometry
can be updated when its parent changes.

○ PRO_DSF_UPDATE_MANUALLY—Suspends the relationship between the
current feature and the original geometry. If you change the original part,
the current feature does not update automatically. It has to be updated
manually.

○ PRO_DSF_NO_DEPENDENCY—There is no dependency between DSF
feature and referenced model.

Note
From Creo Parametric 3.0 onward, the enumerated type
ProDsfDependency has been deprecated. Use the enumerated type
ProDSFDependency instead.

• PRO_E_DSF_NOTIFY_UPDATE—Specify the notification status for the
specified feature using the enumerated value ProDsfNotifyUpdate. Use
this element only if the element PRO_E_DSF_DEPENDENCY is set to the
value PRO_DSF_UPDATE_MANUALLY. The valid values for this element are:

○ PRO_DSF_NOTIFY_UPDATE_OFF—Switches off the notification
update. This is the default value

○ PRO_DSF_NOTIFY_UPDATE_ON—Switches on the notification update.
Use the functions ProFeatureDSFDependencyNotifySet() and
ProFeatureDSFDependencyNotifyGet() to set and get the
notification status of a DSF feature. For more information on these functions,
refer to the section Feature and CopyGeom Feature Functions on page 1153 in
the chapter Assembly: Top-down Design.

Element Details of the Subtree PRO_E_CG_
LOCATION
The compound element PRO_E_CG_LOCATION has the following elements:

• PRO_E_DSF_EXT_LOCAL_TYPE—Specifies the DSF location type:

Assembly: Data Sharing Features 1207

○ PRO_DSF_PLACE_LOCAL type is a local feature within the assembly.
Therefore the references will be dependent upon the assembly structure
and the feature does not need placement information.

○ PRO_DSF_PLACE_EXTERNAL type is set to externalize a Data Sharing
Feature. An external data-sharing feature must be placed in its target
model explicitly.

Note
The purpose of External DSF's is to copy geometry from one model to
another model without the need to copy the geometry in the context of the
assembly. External DSF's reduce the dependency on the assembly and all
models along the path between the two components. Once a feature has
been made "External", it cannot be converted to become internal.

• PRO_E_DSF_SEL_REF_MDL—Specifies the model to use for the external
DSF.

• PRO_E_CG_PLACEMENT—Specifies the placement of the external reference
model in the target model. It has the following elements:

○ PRO_E_CG_PLACE_TYPE—The external placement reference for the
copied geometry can be of the following types:

◆ PRO_CG_PLC_DEFAULT—Locates the copied geometry in the
current model using the default location.

◆ PRO_CG_PLC_CSYS_CSYS—Locates the copied geometry in the
current model by aligning coordinate systems.

◆ PRO_CG_PLC_CURRENT—Locates the copied geometry in the
current using the current placement (applicable only during a
conversion of a local DSF to an external DSF).

◆ PRO_E_CG_CSYS_PLACE—The two reference elements below this
element specifies Csys-Csys alignment.

• PRO_E_CG_FOLLOW_SRF_OPT—Specifies the options for surface to be
followed.

Element Details of PRO_E_DSF_PROPAGATE_
ANNOTS
The compound element describes the options available to propagate annotations in
DSF's. It has the following subelements:

1208 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_DSF_ANNOT_CPY_ALL—Specifies a flag whether to copy all
annotation elements.

• PRO_E_DSF_ANNOT_DEPEND_ALL—Specifies a flag whether to make the
copied annotation elements as dependent on their originals.

• PRO_E_DSF_ANNOT_AUTO_CPY_DTM—Specifies a flag to propagate
annotation planes and other datums referenced by annotation elements
automatically. Annotation planes are propagated if the annotation reference
comprising of the solid or surface geometry is copied.

• PRO_E_DSF_ANNOT_SELECTIONS—Instead of using the automatic flags
for propagation, the DSF feature can specify a list of annotations to propagate.
Each subelement representing an annotation has the following sub-elements:

○ PRO_E_DSF_ANNOT_SEL_ANNOTS specifies the manually selected
annotation element

○ PRO_E_DSF_ANNOT_CPY_STATUS specifies the copy status for this
selected element.

○ PRO_E_DSF_ANNOT_DEPENDENCY specifies whether to make the
annotation dependant in the DSF. It can have one of the following values:

◆ PRO_DSF_DEPENDENT is set by default.
◆ PRO_DSF_INDEPENDENT makes the annotations independent of

changes made to the parent annotation.

Shrinkwrap Features Created from Copy Geometry
References
Functions Introduced:

• ProFeatureIsShrinkwrapRefCopyGeom()
• ProFeatureShrinkwrapGetRefCopyGeoms()
• ProFeatureIsShrinkwrap()
• ProFeatureRefCopyGeomShrinkwrapGet()
The function ProFeatureIsShrinkwrapRefCopyGeom() checks whether
the specified feature is a reference copy geometry feature, which is created by the
shrinkwrap feature. The shrinkwrap reference copy geometry features reference
models, which are collected by shrinkwrap according to the type of shrinkwrap,
user-defined options, and user selections.
Use the function ProFeatureShrinkwrapGetRefCopyGeoms() to get an
array of reference copy geometry features, which are created by the shrinkwrap
feature.

Assembly: Data Sharing Features 1209

The function ProFeatureIsShrinkwrap() checks whether the specified
feature is a shrinkwrap feature.
Use the function ProFeatureRefCopyGeomShrinkwrapGet() to get the
shrinkwrap feature for the specified reference copy geometry feature.

Saved Queries for Copy Geometry and Publish
Geometry Features
Copy Geometry and Publish Geometry features have the ability to retain and reuse
search tool queries defined from its collectors. The functions described in this
section provide the ability to update these query-driven data sharing features using
Creo Parametric TOOLKIT.
Functions Introduced:

• ProDatasharingfeatureIsQuerydriven()
• ProDatasharingfeatureQueryUpdate()
The function ProDatasharingfeatureIsQuerydriven() returns true if
the specified data sharing feature is query driven.
The function ProDatasharingfeatureQueryUpdate() updates the items
collected by the query within the Copy Geometry or Publish Geometry feature.
This will regenerate the feature and may cause geometry to be added or removed.

Retrieving a copy of the annotation item
Functions Introduced:

• ProDatasharingfeatCopiedAnnotFind()
The function ProDatasharingfeatCopiedAnnotFind() retrieves the
annotation item owned by the data sharing feature, which is a copy of specified
annotation item. The function supports Inheritance, Merge, CopyGeom,
ShrinkWrap, and Cutout features only. The input arguments are:
• p_datasharing_feature—Specifies the data sharing feature.
• p_orig_path—Specifies the component path from the top level assembly to the

subcomponent that owns the annotation. Pass NULL if the annotation is owned
by the top level model in the data sharing feature.

• p_orig_item—Specifies the annotation item in the original model.

1210 Creo® Parametric TOOLKITUser’s Guide

General Merge (Merge, Cutout and
Inheritance Feature)

Feature Element Tree
The element tree for the general merge feature is documented in the header file
ProDataShareFeat.h. The following figure demonstrates the feature element
tree structure:

Feature Element tree for General Merge Feature

Assembly: Data Sharing Features 1211

PRO_E_DSF_PLACEMENT

The following list details special information about some of the elements in this
tree:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_GEN_MERGE.

• PRO_E_GMRG_FEAT_TYPE—Specifies the type of General Merge Feature:

○ PRO_GEN_MERGE_TYPE_MERGE (Merge or cutout feature)
○ PRO_GEN_MERGE_TYPE_INHERITANCE (Inheritance feature)

• PRO_E_DSF_REF_MDL—Specifies the reference model. It has the following
elements:

○ PRO_E_DSF_EXT_LOCAL_TYPE—Specifies the DSF location type and
is of the following type:

◆ PRO_DSF_PLACE_LOCAL type is a local reference to the reference
model

◆ PRO_DSF_PLACE_EXTERNAL indicates an external merge, cutout,
or inheritance feature.

◆ PRO_E_DSF_SEL_REF_MDL—Specifies a selected reference model.
◆ PRO_E_DSF_PLACEMENT—Specifies the placement of the Data

Sharing feature. It contains the following elements:

? PRO_E_COMPONENT_CONSTRAINTS

For more information on component constraint elements, refer to chapter
Assembly: Assembling Components on page 1159.

1212 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_GMRG_MATERIAL_OPT—Specifies the general material options.
These are listed as follows:

○ PRO_GEN_MERGE_RMV_MATERIAL—It removes material from the
modified (target) model . The material removed is equal to the modifying
(source) model.

○ PRO_GEN_MERGE_ADD_MATERIAL—It adds material to the modified
model from the modifying model. The material added is equal to the
modifying model.

○ PRO_GEN_MERGE_INT_MATERIAL—It retains the intersecting material
between the modified and modifying models.

Refer to Creo Parametric Assembly Help for more information.
• PRO_E_GMRG_VARIED_ITEMS—Specifies a pointer element that defines

the inheritance feature varied items and their values. This handle cannot be
directly read or modified by Creo Parametric TOOLKIT. Instead, use the Visit
functions available in ProVariantFeat.h to read varied items. To set
varied items (after the feature has been created), use the appropriate
modification function on an item whose owner is the variant feature model
handle (ProVariantfeatMdlGet()). For more information, refer to the
section Inheritance Feature and Flexible Component Variant Items on page
1215.

• PRO_E_GMRG_COPY_DATUMS—True to copy datums with this merge or
inheritance feature, false to leave them uncopied.

• PRO_E_DSF_PROPAGATE_ANNOTS—Specifies rules about how to
propagate annotations. Refer to the section Feature Element Tree for the Copy
Geometry, Publish Geometry, and Shrinkwrap Features on page 1200 for the
details. A Shrinkwrap feature is a collection of surfaces and datum features of
a model that represents the exterior of the model. You can use a part, skeleton,
or top-level assembly as the source model for a Shrinkwrap feature. A
Shrinkwrap feature is associative and automatically updates to reflect changes
in the parent copied surfaces.

• PRO_E_DSF_DTMS_FIT—Specifies a compound element that indicates the
rules for fitting datums in the DSF feature. It is visible for all internal Copy
Geometry features) and Shrinkwrap features. This compound element includes
PRO_E_DTMPLN_FIT and PRO_E_DTMAXIS_FIT subtrees for any or all

Assembly: Data Sharing Features 1213

of the copied datums. Refer to the chapter Element Trees: Datum Features on
page 804 for details on the datum fit subtrees.

• PRO_E_DSF_DEPENDENCY—Specifies the dependency type. The values for
this element are specified by the enumerated type ProDsfDependency.

Note
From Creo Parametric 3.0 onward, the enumerated type
ProDsfDependency has been deprecated. Use the enumerated type
ProDSFDependency instead.

The types of dependencies are:

○ PRO_DSF_UPDATE_AUTOMATICALLY—Specifies that the geometry of
the DSF feature depends upon the geometry of the parent model used
during feature creation. The DSF feature reflects all the changes made in
the parent model.

Note
From Creo Parametric 3.0 onward, the value PRO_DSF_DEPENDENT
has been deprecated. Use the enumerated value PRO_DSF_UPDATE_
AUTOMATICALLY instead.

○ PRO_DSF_UPDATE_MANUALLY—Specifies that the geometry of the
DSF feature is independent of the geometry of the parent model used
during feature creation. If you update the parent model, the DSF feature
does not change.

Note
From Creo Parametric 3.0 onward, the value PRO_DSF_
INDEPENDENT has been deprecated. Use the enumerated value PRO_
DSF_UPDATE_MANUALLY instead.

○ PRO_DSF_NO_DEPENDENCY—Specifies that there is no dependency
between the geometry of the DSF feature and the geometry of the parent
model used during feature creation.

1214 Creo® Parametric TOOLKITUser’s Guide

PRO_E_DSF_NOTIFY_UPDATE—Specifies the notify status in the specified
feature using the enumerated value ProDsfNotifyUpdate. For more
information on this element, refer to the section Feature Element Tree for the
Copy Geometry, Publish Geometry, and Shrinkwrap Features on page .
PRO_E_IS_SMT_CUT—Specifies whether the specified feature is a sheetmetal
cut or a solid cut. If true this feature is a sheetmetal cut.
PRO_E_SMT_CUT_NORMAL_DIR—Specifies the surface to which the section
projection will be normal.

Note
For more information,, refer to the section Sheetmetal Cut Features on page
1345 in the chapter Production Applications: Sheetmetal.

Inheritance Feature and Flexible
Component Variant Items
An Inheritance feature allows one-way associative propagation of geometry and
feature data from a reference part to target part within an assembly. The reference
part is the original part and the target part contains the inheritance features.
Inheritance features are always created by referencing existing parts. An
inheritance feature begins with all of its geometry and data identical to the
reference part from which it is derived.
Users can vary the visibility and values of items in inheritance features. Creo
Parametric TOOLKIT offers the ability to access these varied items and their
properties using the regular Creo Parametric TOOLKIT function appropriate for
the property. Creo Parametric TOOLKIT also provides the ability to locate and
separate the varied properties from the non-varied ones.
A flexible component has similar capabilities for variance of dimensions and
parameters of a model in the context of an assembly. Creo Parametric TOOLKIT
supports access to the variant properties of flexible components through the
regular Creo Parametric TOOLKIT functions as well.
This section refers collectively to inheritance features and flexible components as
"variant features".

Variant Feature Model
Functions Introduced:

Assembly: Data Sharing Features 1215

• ProVariantfeatMdlGet()
• ProMdlIsVariantfeatMdl()
• ProMdlVariantfeatAsmcomppathGet()
Use the function ProVariantfeatMdlGet() to obtain the special model
pointer from a variant feature. A special ProMdl handle represents the
"inherited" or "flexible" model handle in functions which access variant features.
This handle is called the "Variant Feature Model". Only certain functions will
support inputs including the Variant Feature Model handle.
The function ProMdlVariantfeatAsmcomppathGet() returns a special
pointer ProAsmcomppath from a variant feature. ProAsmcomppath is the
pointer to the component path from the model owner of the top level inheritance
feature or the top flexible component to the specified variant feature model.
Both these pointers can be used for accessing properties that can be modified by
the presence of an inheritance feature or flexible component. Other functions will
return an error PRO_TK_INVALID_PTR if provided with this pointer.

Note
If you are using the variant feature model handle and you need to use an
unsupported function on it, you can attempt to retrieve the actual model by
extracting the model name and type from the model and using
ProMdlnameRetrieve() to get the original model. This requires that the
parent model be accessible in session. Remember that the parent model will
not reflect variations applied by the variant feature.

Use the function ProMdlIsVariantfeatMdl() to identify if a model pointer
is a variant feature model handle.

Accessing Properties of Variant Features
The following items are supported by functions that accept the variant feature
model handle. Except where noted, both read and write access is supported

• Dimensions

○ Variant dimensions of the inheritance feature:

◆ Value
◆ Tolerance
◆ Dimension bound

1216 Creo® Parametric TOOLKITUser’s Guide

◆ Nonvariant dimensions of the inheritance feature (Properties are read
only)

• Parameters

○ Variant parameters of the inheritance feature:

◆ Value
◆ Nonvariant parameters of the inheritance feature (Properties are read

only)
• Feature (Inheritance feature only)

○ Variant member features:

◆ Suppressed or resumed or erased status
◆ Nonvariant member features (Properties are read only)
◆ Replaced or alternate feature references

• Annotation (Inheritance feature only)

○ Variant geometric tolerances:

◆ Copy status
◆ Value
◆ Nonvariant geometric tolerances (Properties are read only)
◆ Variant notes
◆ Copy status
◆ Shown or hidden property
◆ Nonvariant notes (Properties are read only)
◆ Variant symbols
◆ Copy status
◆ Nonvariant symbols (Properties are read only)
◆ Variant surface finishes
◆ Copy status
◆ Value
◆ Nonvariant surface finishes (Properties are read only)

Assembly: Data Sharing Features 1217

Read Functions Supporting Inheritance Features
Basic Model Properties ProMdlMdlnameGet()

ProMdlTypeGet()

ProMdlSubtypeGet()

ProMdlPrincipalunitsystemGet()

ProUnitsystemUnitGet()

ProUnitsystemTypeGet()

ProUnitsystemIsStandard()

ProUnitIsStandard()

ProUnitTypeGet()

ProUnitConversionGet()

ProSolidAccuracyGet()

ProSolidOutlineGet()

ProSolidOutlineCompute()

Basic Model Items ProModelitemNameGet()

ProModelitemDefaultnameGet()

ProSelectionModelitemGet()

Dimensions ProSolidDimensionVisit()

ProFeatureDimensionVisit()

ProDimensionNomvalueGet()

ProDimensionBoundGet()

ProDimensionSymtextGet()

ProDimensionTollabelGet()

ProDimensionSymbolGet()

ProDimensionValueGet()

ProDimensionToltypeGet()

ProDimensionToleranceGet()

ProDimensionTolerancedecimalsGet()

ProDimensionTolerancedenominatorGet()

ProDimensionTypeGet()

ProDimensionIsFractional()

ProDimensionDecimalsGet()

ProDimensionDenominatorGet()

1218 Creo® Parametric TOOLKITUser’s Guide

ProDimensionIsReldriven()

ProDimensionIsRegenednegative()

ProDimensionTextGet()

ProDimensionTextstyleGet()

ProDimensionIsToleranceDisplayed()

ProDimensionIsBasic()

ProDimensionIsInspection()

ProDimensionIsBaseline()

ProDimensionIsOrdinate()

ProDimensionOrdinatestandardGet()

ProDimensionLocationGet()

ProDimensionPlaneGet()

ProDimensionAttachmentsGet()

ProDimensionOverridevalueGet()

ProDimensionValuedisplayGet()

Parameters ProParameterVisit()

ProParameterValueWithUnitsGet()

ProParameterUnitsGet()

ProParameterIsEnumerated()

ProParameterRangeGet()

ProParameterScaledvalueGet()

Features ProSolidFeatVisit()

ProFeatureTypeGet()

ProFeatureTypenameGet()

ProFeatureSubtypeGet()

ProFeatureStatusGet()

ProSolidFeatstatusGet()

ProFeatureChildrenGet()

ProFeatureParentsGet()

ProFeatureCopyinfoGet()

ProFeatureGroupGet()

ProFeatureGroupStatusGet()

Assembly: Data Sharing Features 1219

ProFeatureGrppatternStatusGet()

ProFeatureHasGeomchks()

ProFeatureIsIncomplete()

ProFeatureIsNcseq()

ProFeatureIsReadonly()

ProFeatureNumSectionsGet()

ProFeatureNumberGet()

ProFeaturePatternGet()

ProFeaturePatternStatusGet()

ProFeatureSectionCopy()

ProFeatureSolidGet()

ProFeatureVerstampGet()

ProFeatureVisibilityGet()

Annotations ProMdlNoteVisit()

ProSolidDispoutlineGet()

ProNoteTextGet()

ProNotePlacementGet()

ProNoteURLGet()

ProNoteOwnerGet()

ProNoteTextstyleGet()

ProTextStyle*Get()

ProNoteDtlnoteGet()

1220 Creo® Parametric TOOLKITUser’s Guide

Annotations ProNoteLeaderstyleGet()

ProNoteElbowlengthGet()

ProMdlGtolVisit()

ProGtolTopModelGet()

ProGtolTypeGet()

ProGtol*Get()

ProGtolRightTextGet()

ProGtolTopTextGet()

ProGtolPrefixGet()

ProGtolSuffixGet()

ProAnnotationTextstyleGet()

ProGtoltextTextstyleGet()

ProSolidDtlsyminstVisit()

ProDtlsyminstDataGet()

ProSolidSurffinishVisit()

ProSurffinishValueGet()

ProSurffinishReferencesGet()

ProSurffinishDataGet()

ProAnnotationIsShown()

ProAnnotationIsInactive()

ProAnnotationElementGet()

ProAnnotationelemFeatureGet()

ProAnnotationplaneAngleGet()

ProAnnotationplaneFrozenGet()

ProAnnotationplanePlaneGet()

ProAnnotationplaneReferenceGet()

ProAnnotationplaneTypeGet()

ProAnnotationplaneVectorGet()

ProAnnotationplaneViewnameGet()

ProGtolDatumReferencesGet()

Assembly: Data Sharing Features 1221

Write and Modification Functions Supporting Inheritance
Features
Dimensions ProDimensionValueSet()

ProDimensionToleranceSet()

ProDimensionBoundSet()

Parameters ProParameterValueWithUnitsSet()

Features ProFeatureSuppress()

ProFeatureResume()

ProFeatureDelete()

Annotations ProNoteTextSet()

ProNoteURLSet()

ProNoteElbowlengthSet()

ProNoteTextstyleSet()

ProTextStyle*Set()

ProGtolValueStringSet()

ProGtolPrefixSet()

ProGtolSuffixSet()

ProGtolTopTextSet()

ProGtolRightTextSet()

ProAnnotationTextstyleSet()

ProGtoltextTextstyleSet()

ProAnnotationShow()

ProCombstateAnnotationErase()

ProSurffinishValueSet()

ProGtolDatumReferencesSet()

ProGtolDatumReferencesSet()

Variant Model Items
Function Introduced:

• ProVariantfeatItemsVisit()
• ProVariantfeatItemStandardize()
• ProVariantfeatItemCopyGet()

1222 Creo® Parametric TOOLKITUser’s Guide

• ProVariantfeatItemCopySet()
• ProVariantfeatItemCopyUnset()
Use the function ProVariantfeatItemsVisit() to visit the variant items
(dimensions, features, and annotations) owned by an inheritance feature or
flexible component. The item handles will contain the variant feature model
pointer.
Use the function ProVariantfeatItemStandardize() to remove a
varied item from the inheritance feature or flexible component.
Use the function ProVariantfeatItemCopyGet() to obtain the copy flag
for a given item in the inheritance feature or flexible component. The input
arguments of this function are:

• feature—Specifies the variant feature
• item—Specifies the item.
The output arguments of this function are:

• copy—Specifies whether or not to copy the item into the variant feature. If this
argument returns true, the item is copied into the feature. If it is false, the item
is not copied. This value overrides the value of the features copy all flag.

Use the function ProVariantfeatItemCopySet() to assign the copy flag
for a given item in the inheritance feature or flexible component.
Use the function ProVariantfeatItemCopyUnset() to remove the copy
flag for a given item in the inheritance feature or flexible component.

Variant Parameters
Function Introduced:

• ProVariantfeatParamsVisit()
• ProVariantfeatParamStandardize()
Use the function ProVariantfeatParamsVisit()to visit only the variant
parameters owned by an inheritance feature or flexible component. The parameter
handles contain the variant feature model pointer.
Use the function ProVariantfeatParamStandardize() to remove a
varied parameter from the inheritance feature or flexible component.

Variant References
By using variant references, you can reroute or replace the references for features
in the inheritance feature with new references located inside or outside the
inheritance feature. In assemblies, references can be to models other than the
target model, as long as the model is within the assembly.

Assembly: Data Sharing Features 1223

In Creo Parametric TOOLKIT, a variant reference is represented by a
ProVariantRef handle.
Function Introduced:

• ProVariantrefAlloc()
• ProVariantrefOriginalrefGet()
• ProVariantrefOriginalrefSet()
• ProVariantrefReplacementrefGet()
• ProVariantrefReplacementrefSet()
• ProVariantrefFeatidsGet()
• ProVariantrefFeatidsSet()
• ProVariantfeatVariantrefsGet()
• ProVariantfeatVariantrefsSet()
• ProVariantrefFree()
• ProVariantrefProarrayFree()
Use the function ProVariantrefAlloc() to allocate a handle used to
describe a variant reference assigned to a variant feature (like inheritance
features). The input arguments of this function are:

• original_ref—Specifies the initial reference handle.
• replacement_ref—Specifies the replacement reference handle.
• feat_ids—Specifies a ProArray of feature ids (from the base model) which

will be assigned to the reference replacement action.
Use the function ProVariantrefOriginalrefGet() to obtain the original
reference that is replaced.
Use the function ProVariantrefOriginalrefSet() to assign the original
reference that is to be replaced.
Use the function ProVariantrefReplacementrefGet() to obtain the
replacement reference for replacing the original reference in this variant feature.
Use the function ProVariantrefReplacementrefSet() to assign the
replacement reference for replacing the original reference in this variant feature.
Use the function ProVariantrefFeatidsGet() to obtain an array of the
feature ids taken from the base model which are assigned the replacement
reference.
Use the function ProVariantrefFeatidsSet() to assign an array of the
feature ids taken from the base model which are assigned the reference
replacement.

1224 Creo® Parametric TOOLKITUser’s Guide

Note
An assignment of a replacement reference to a feature applies only if the
features actually use the replacement reference.

Use the function ProVariantfeatVariantrefsGet() to obtain the
variant reference assignments (a ProArray of the variant reference) stored by
this variant feature.
Use the function ProVariantfeatVariantrefsSet() to assign the
variant reference assignments stored by this variant feature.
Use the function ProVariantrefFree() to free a handle used to describe a
variant reference assigned to a variant feature and the function
ProVariantrefProarrayFree() to free an array of handles used to
describe a variant reference assigned to a variant feature.

Assembly: Data Sharing Features 1225

59
Drawings

Creating Drawings from Templates ... 1227
Diagnosing Drawing Creation Errors ... 1228
Drawing Setup .. 1229
Context in Drawing Mode ... 1230
Access Drawing Location in Grid .. 1231
Drawing Tree .. 1231
Merge Drawings.. 1232
Drawing Sheets... 1232
Drawing Format Files... 1235
Drawing Views and Models .. 1236
Detail Items... 1255
Drawing Symbol Groups .. 1286
Drawing Edges.. 1289
Drawing Tables ... 1290
Creating BOM Balloons ... 1299
Drawing Dimensions.. 1301

This chapter describes the Creo Parametric TOOLKIT functions that deal with
drawings. Unless otherwise specified, functions that operate on drawings use
screen coordinates. See the Core: 3D Geometry on page 170 chapter to find out
more about screen coordinates and how to convert to drawing coordinates (or
paper coordinates).

1226 Creo® Parametric TOOLKITUser’s Guide

Creating Drawings from Templates
Function Introduced:

• ProDrawingFromTmpltCreate()
• ProDrawingFromTemplateCreate()

Note
The function ProDrawingFromTmpltCreate() will be deprecated in a
future release. Use the function ProDrawingFromTemplateCreate()
instead.

Use of drawing templates simplifies drawing creation. Such templates contain
drawing views with various properties such as:

• Cross section view
• Simplified representation
• Dimensions On or Off
• Repeat regions (tables based on BOM balloons)
Use the function ProDrawingFromTemplateCreate() to create a drawing
from a template and to return a structure containing any errors encountered during
drawing creation. This input arguments are:

• New drawing name
• Name of existing template to use
• Solid model to use when creating drawing

Note
In the function ProDrawingFromTemplateCreate(), the object
ProMdlnameShortdata supports a file name of 31 characters or less
for a model.

• Drawing output options that specify how you want to view drawings output.
Chose any or all from the following list:

○ PRODWGCREATE_DISPLAY_DRAWING—display new drawing in a
window

○ PRODWGCREATE_SHOW_ERROR_DIALOG—display the template error
dialog to the user

Drawings 1227

○ PRODWGCREATE_WRITE_ERRORS_TO_FILE—write the errors to a
disk file

The function returns an error structure if any errors occur. The error structure
contains an array of errors. Each error message may have:

• Error type
• Name of view where error occurred
• Name of drawing sheet where error occurred
• Name of the invalid or missing object
If the template and/ or the model name of the drawing is an embedded model
name, the function ProDrawingFromTemplateCreate() returns the error
PRO_TK_INVALID_NAME.
If there are one or more errors while creating the drawing, the function returns the
error PRO_TK_DWGCREATE_ERRORS.

Example 1: Drawing Creation from a Template
The sample code in the file UgDrawingFromTmpltCreate.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
drawing shows how to create a drawing from a template.

Diagnosing Drawing Creation Errors
Functions Introduced:

• ProDwgcreateErrsFree()
• ProDwgcreateErrsCountGet()
• ProDwgcreateErrTypeGet()
• ProDwgcreateErrViewNameGet()
• ProDwgcreateErrSheetGet()
• ProDwgcreateErrViewGet()
• ProDwgcreateErrObjNameGet()
The function ProDwgcreateErrsFree() frees an existing errors table.
Use the function ProDwgcreateErrsCountGet() to return the number of
drawing creation errors in the table.
The function ProDwgcreateErrTypeGet() returns the type of a drawing
creation error.
Use the function ProDwgcreateErrViewNameGet() returns the name of
the template view where the error occurred.

1228 Creo® Parametric TOOLKITUser’s Guide

The function ProDwgcreateErrSheetGet() returns the drawing sheet
number where the error occurred.
Use the function ProDwgcreateErrViewGet() returns the drawing view
where the error occurred. This function is valid for the following error types:

• PRODWGCRTERR_EXPLODE_DOESNT_EXIST

• PRODWGCRTERR_MODEL_NOT_EXPLODABLE

• PRODWGCRTERR_SEC_NOT_PERP

• PRODWGCRTERR_NO_RPT_REGIONS

• PRODWGCRTERR_FIRST_REGION_USED

• PRODWGCRTERR_NOT_PROCESS_ASSEM

• PRODWGCRTERR_TEMPLATE_USED

• PRODWGCRTERR_SEC_NOT_PARALLEL

• PRODWGCRTERR_SIMP_REP_DOESNT_EXIST

ProDwgcreateErrObjNameGet() returns the name of the model invalid.
This function is valid for the following error types:

• PRODWGCRTERR_SAVED_VIEW_DOESNT_EXIST

• PRODWGCRTERR_X_SEC_DOESNT_EXIST

• PRODWGCRTERR_EXPLODE_DOESNT_EXIST

• PRODWGCRTERR_SEC_NOT_PERP

• PRODWGCRTERR_SEC_NOT_PARALLEL

• PRODWGCRTERR_SIMP_REP_DOESNT_EXIST

Drawing Setup
Functions Introduced:

• ProInputFileRead()
• ProOutputFileMdlnameWrite()
• ProDrawingSetupOptionGet()
• ProDrawingSetupOptionSet()
• ProMdlDetailOptionGet()
• ProMdlDetailOptionSet()
You can set all drawing setup file options from a Creo Parametric TOOLKIT
application. To do this, import a text file in the format of the drawing setup file
using the function ProInputFileRead(), with the file type set to PRO_DWG_

Drawings 1229

SETUP_FILE. You can create such a file from Creo Parametric TOOLKIT with
function ProOutputFileMdlnameWrite(). See the Interface: Data
Exchange on page 664 chapter for information on these functions.
Use the functions ProDrawingSetupOptionGet() and
ProDrawingSetupOptionSet() to return and assign a specific drawing
setup file option.
Some of the 2D detail options of the drawings are also applicable to 3D models.
The detail options are applied to the model in the same way as to the drawings.
Further, the detail options for the model and their values are also stored in the
model in the same way as in the drawings.
Use the function ProMdlDetailOptionGet() to get the value of the
specified detail option for the model. The function
ProMdlDetailOptionSet() sets the value for the specified detail option of
the model.

Context in Drawing Mode
Functions Introduced:

• ProRibbonContextGet()
• ProRibbonContextSet()
The functions ProRibbonContextGet() and ProRibbonContextSet()
retrieve and set the context for the specified drawing window, respectively.
From Pro/ENGINEERWildfire 5.0 onwards, you can specify a context for a
drawing. A context presents a set of commands relevant to the type of task that
you are currently performing on a drawing. The contexts in the Drawing mode are
Layout, Table, Annotate, Sketch, AutobuildZ, Legacy Migration, Analysis, and
Review.

Note
To set the context to AutobuildZ, you must first set the configuration option
autobuildz_enabled to yes.

One of the arguments to the ProRibbonContextGet() and
ProRibbonContextSet() functions is context, which is of the type
ProRibbonContext. ProRibbonContext is an enumerated type, which
takes the following values:

• PRO_RBNCONTEXT_DWG_NONE

• PRO_RBNCONTEXT_DWG_LAYOUT

1230 Creo® Parametric TOOLKITUser’s Guide

• PRO_RBNCONTEXT_DWG_TABLE

• PRO_RBNCONTEXT_DWG_ANNOTATE

• PRO_RBNCONTEXT_DWG_SKETCH

• PRO_RBNCONTEXT_DWG_AUTOBUILDZ

• PRO_RBNCONTEXT_DWG_REVIEW

• PRO_RBNCONTEXT_DWG_PUBLISH

Note
If you set context to PRO_RBNCONTEXT_DWG_NONE, all actions for the
selected object are available in all contexts, except the contexts in which
selection is not allowed. For example, the publish context.

Access Drawing Location in Grid
Function Introduced:

• ProDrawingPosToLocgrid()
Use the function ProDrawingPosToLocgrid() to find the grid coordinates
of a location in the specified drawing. The function specifies the position of a
point, expressed in screen coordinates. ProDrawingPosToLocgrid() returns
strings representing the row and column containing the point.

Drawing Tree
Pro/ENGINEERWildfire 5.0 onward, you can view a hierarchical representation
of drawing items in an active drawing sheet. This representation is called a
Drawing Tree. A drawing tree facilitates selection and availability of drawing
operations for the represented drawing items. For more information, see the Creo
Parametric Help. Use the following functions to refresh, expand, and collapse the
drawing tree:
Functions Introduced:

• ProDrawingtreeRefresh()
• ProDrawingtreeExpand()
• ProDrawingtreeCollapse()
Use the function ProDrawingtreeRefresh() to rebuild the drawing tree in
the Creo Parametric window that contains the drawing. You can use this function
after adding a single drawing item or multiple drawing items to a drawing.

Drawings 1231

Use the function ProDrawingtreeExpand() to expand the drawing tree in
the Creo Parametric window and make all drawing sheets and drawing items in
the active drawing sheet visible.
Use the function ProDrawingtreeCollapse() to collapse all nodes of the
drawing tree in the Creo Parametric window and make its child nodes invisible.
The input arguments to these functions are:

• drawing—Handle to the drawing that contains the drawing tree.
• window_id —ID of the Creo Parametric window in which you want to refresh,

expand, or collapse the drawing tree.

Note
Use PRO_VALUE_UNUSED to refresh, expand, or collapse the drawing
tree in the active window.

Example 2: Performing Operations on a Drawing
Tree
The sample code in the file UgDrwTree.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_dwg shows how to
expand, collapse, and refresh the drawing tree in the selected drawing.

Merge Drawings
Function Introduced:

• ProDrawingMerge()
Use the function ProDrawingMerge() to merge two drawings.

Drawing Sheets
Functions Introduced:

• ProDrawingSheetNameGet()
• ProDrawingSheetsCount()
• ProDrawingSheetTrfGet()
• ProDrawingSheetSizeGet()
• ProDrawingSheetOrientationGet()
• ProDrawingSheetUnitsGet()

1232 Creo® Parametric TOOLKITUser’s Guide

• ProDrawingCurrentSheetGet()
• ProDrawingCurrentSheetSet()
• ProDrawingSheetCreate()
• ProDrawingSheetDelete()
• ProDrawingSheetCopy()
• ProDrawingSheetsReorder()
• ProDrawingSheetFormatIsBlanked()
• ProDrawingFormatGet()
• ProDrawingFormatAdd()
• ProDrawingSheetFormatShow()
• ProDrawingSheetFormatHide()
• ProDrawingSheetFormatIsShown()
• ProDrawingSheetFromFormatGet()
• ProDrawingToleranceStandardGet()
• ProDrawingToleranceStandardSet()
• ProDwgSheetRegenerate()
Drawing sheets are identified in Creo Parametric TOOLKIT by the same sheet
numbers the Creo Parametric user sees.
The function ProDrawingSheetNameGet() retrieves the name of the
specified drawing sheet.
The function ProDrawingSheetsCount() outputs the current number of
sheets in the specified drawing.
The function ProDrawingSheetTrfGet() provides the matrix that
transforms from screen to drawing units or vice versa. (See the Core: Coordinate
Systems and Transformations on page 222 chapter for more details on
transformations.)
The function ProDrawingSheetSizeGet() returns the size of the sheet used
for the drawing. If the sheet is a standard paper size, this will be returned, along
with the width and height of the sheet measured in the sheet units.
The function ProDrawingSheetOrientationGet() returns the orientation
of the drawing sheet. The orientation can be either portrait or landscape.
The function ProDrawingSheetUnitsGet() retrieves the name of the
length units used for measuring the drawing sheet.
The function ProDrawingCurrentSheetGet() returns the sheet number of
the currently selected sheet in the specified drawing. It returns a positive integer
for the retrieved sheet number and a zero for an invalid input argument.

Drawings 1233

The function ProDrawingCurrentSheetSet() sets the sheet number for
the currently selected sheet in the specified drawing. One of the input arguments
to this function is an integer, current_sheet.
The function ProDrawingSheetCreate() adds a sheet to a drawing model
of type Notebook, Format, Drawing, Diagram, or Report. The output argument to
this function is an integer, new_sheet. If the drawing sheet is successfully created,
new_sheet takes the value of the sheet number for the newly created drawing
sheet. Otherwise it takes the value, -1.
The function ProDrawingSheetDelete() deletes a sheet from a drawing
model of type Notebook, Format, Drawing, Diagram, or Report. You need to enter
the type of the drawing model and the sheet number of the sheet to be deleted as
input arguments.
The function ProDrawingSheetCopy() creates a copy of a specified drawing
sheet. The input arguments to this function are:

• drawing—The drawing model handle. Set it to NULL to copy a sheet from the
current drawing.

• sheet_to_copy—The sheet number of the sheet to be copied. Set it to a value
less than 1 to create a copy of the currently selected sheet.

The output argument to this function is:

• sheet_copy (optional)—The sheet number of the newly created sheet. Set it to
NULL, if you do not want the new sheet number.

The function ProDrawingSheetsReorder() assigns a new sheet number to
a specified sheet, and renumbers the remaining sheets accordingly.
The function ProDrawingSheetFormatIsBlanked() identifies whether
the format of a specified drawing sheet is blank. In case of the current sheet, set
the input arguments drawing and sheet to NULL and to a value less than 1,
respectively.
The function ProDrawingFormatGet() returns the name of the drawing
format that was used for the specified sheet. ProDrawingFormatAdd() adds
or replaces a specified format into a specified drawing sheet.
The function ProDrawingSheetFormatShow() displays the drawing format
for a specified drawing sheet. To display the drawing format of the current sheet,
set the input arguments drawing and sheet to NULL and to a value less than 1,
respectively.
Use the function ProDrawingSheetFormatHide() to hide the drawing
format for a specified drawing sheet.
The function ProDrawingSheetFormatIsShown() identifies if the
drawing format for a specified drawing sheet is shown. It returns PRO_B_TRUE if
the drawing format is shown and returns PRO_B_FALSE if the drawing format is
not shown.

1234 Creo® Parametric TOOLKITUser’s Guide

The function ProDrawingSheetFromFormatGet() retrieves the sheet
number of the drawing format for a specified drawing and sheet number within
the drawing.
The function ProDrawingToleranceStandardGet() returns the tolerance
standard that is assigned to the specified drawing. Use the function
ProDrawingToleranceStandardSet() to set the tolerance standard for a
drawing.
The function ProDwgSheetRegenerate() regenerates a specified drawing
sheet.

Example 3: Listing Drawing Sheets
The sample code in the file UgDrawingFromTmpltCreate.c located at
<creo_toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
drawing shows how to list the sheets in the current drawing.

Example 4: Creating a Copy of the Current Drawing
Sheet
The sample code in the file UgSheetCopy.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_dwg shows how to
Add a drawing sheet to the current drawing-type object.

Drawing Format Files
The format of a drawing refers to the boundary lines, referencing marks and
graphic elements that appear on every sheet before any drawing elements are
shown or added. These usually include items such as tables for the company
name, detailers name, revision number and date. In a Creo Parametric drawing,
you can associate a format file (.frm) with the drawing. This file carries all the
format graphical information, and it can also carry some optional default attributes
like text size and draft scale. The functions described in this section allow you to
get and set the size of the drawing format.
Functions Introduced:

• ProDrawingFormatSizeSet()
• ProDrawingFormatSizeGet()

Drawings 1235

The function ProDrawingFormatSizeSet() sets the size of the drawing
format in the specified drawing. You can add a standard or customize size format
in the drawing. The input arguments are:
• drawing—Specifies the name of the drawing.
• drawing_sheet—Specifies the number of the drawing sheet where the drawing

format must be set.
• size—Specifies the size of the drawing using the enumerated data type

ProPlotPaperSize.
• width—Specifies the width of the drawing in inches, when size is set to

VARIABLE_SIZE_PLOT.

It specifies the width of the drawing in millimeters, when size is set to
VARIABLE_SIZE_IN_MM_PLOT.

Note
This argument is ignored for all the other sizes of the drawing except
VARIABLE_SIZE_PLOT and VARIABLE_SIZE_IN_MM_PLOT. In
such cases specify the argument as PRO_VALUE_UNUSED.

• height—Specifies the height of the drawing in inches, when the size is set to
VARIABLE_SIZE_PLOT.

It specifies the width of the drawing in millimeters, when the size is set to
VARIABLE_SIZE_IN_MM_PLOT.

Note
This argument is ignored for all the other sizes of the drawing except
VARIABLE_SIZE_PLOT and VARIABLE_SIZE_IN_MM_PLOT. In
such cases specify the argument as PRO_VALUE_UNUSED.

Use the function ProDrawingFormatSizeGet() to get the size of the
drawing format in the specified drawing. The function returns the size of the
drawing, and the width and height of the drawing in inches.

Drawing Views and Models
Drawing views are identified by the OHandle ProView. This is the same object
handle used to reference 3D model views, accessed by the functions in
ProView.h, but there are no cases where the same object can be accessed by

1236 Creo® Parametric TOOLKITUser’s Guide

both types of function. The general rule is that functions for 3D views are in
ProView.h, and start with ProView; functions to manipulate drawing views
are in ProDrawing.h and therefore always start with ProDrawing.
Each drawing view has a solid attached to it. The same solid can appear in more
than one view. Some solids may be attached to the drawing, but not appear in any
view, if the Creo Parametric user has deleted all views of it without also removing
the solid itself from the drawing.

Listing Drawing Views
Functions Introduced:

• ProDrawingViewsCollect()
• ProDrawingViewVisit()
• ProDrawingViewSheetGet()
• ProDrawingErasedviewSheetGet()
• ProDrawingViewOutlineGet()
• ProDrawingViewTypeGet()
• ProDrawingViewIdGet()
• ProDrawingViewInit()
• ProDrawingViewonlyOpen()
• ProDrawingViewParentGet()
• ProDrawingViewChildrenGet()
• ProDrawingViewOriginGet()
• ProDrawingViewAlignmentGet()
• ProDrawingViewScaleIsUserdefined()
• ProDrawingViewScaleGet()
• ProDrawingScaleGet()
• ProDrawingViewPerspectiveScaleGet()
• ProDrawingViewFlagGet()
• ProDrawingViewDisplayGet()
• ProDrawingViewColorSourceGet()
• ProDrawingViewSolidGet()
• ProDrawingViewTransformGet()
• ProDrawingViewNameGet()
• ProDrawingViewZclippingGet()

Drawings 1237

• ProDrawingViewDatumdisplayGet()
• ProDrawingViewPipingdisplayGet()
• ProDrawingViewIsErased()
• ProDrawingViewNeedsRegen()
ProDrawingViewsCollect() outputs an array of ProView handles to all
the views in a drawing. ProDrawingViewVisit() is an alternative way to
find the views, and conforms to the usual form of visit functions.
ProDrawingViewSheetGet() outputs the number of the sheet in which a
specified view appears.
The function ProDrawingErasedviewSheetGet() outputs the number of
the sheet, which contained the view that was erased. If the sheet that contained the
erased view is deleted, the sheet ID is returned as PRO_VALUE_UNUSED.
The function ProDrawingViewOutlineGet() outputs the position of the
view in the sheet.
The function ProDrawingViewTypeGet() returns the type of a specified
drawing view. A drawing view can be of the following types:

• PRO_VIEW_GENERAL—Specifies a general drawing view.
• PRO_VIEW_PROJECTION—Specifies a projected drawing view.
• PRO_VIEW_AUXILIARY—Specifies an auxiliary drawing view.
• PRO_VIEW_DETAIL—Specifies a detailed drawing view.
• PRO_VIEW_REVOLVE—Specifies a revolved drawing view.
• PRO_VIEW_COPY_AND_ALIGN—Specifies a copy and align drawing view.
• PRO_VIEW_OF_FLAT_TYPE—Specifies a flat type drawing view.
The function ProDrawingViewIdGet() retrieves the ID of the drawing view
specified by the drawing and the drawing view handles.
The function ProDrawingViewInit() retrieves the drawing view handle
based on the specified drawing handle and the view ID.
The function ProDrawingViewonlyOpen() opens a drawing in the view
only mode.
The function ProDrawingViewParentGet() returns the parent view of a
specified drawing view. The function ProDrawingViewChildrenGet()
returns the child views of a drawing view and the total number of children.
ProDrawingViewOriginGet() returns the location of the origin in terms of
the ProPoint3d object and the selection reference in terms of the
ProSelection object for a specified drawing view.

1238 Creo® Parametric TOOLKITUser’s Guide

ProDrawingViewAlignmentGet() returns the alignment of a drawing view
with respect to another view. It returns the alignment style of the drawing view
that can be either horizontal or vertical, the reference view to which the view is
aligned, and the alignment references of both the aligned and reference views.
ProDrawingViewScaleIsUserdefined() returns a boolean value
depending on whether the drawing has a user-assigned scale or not.
ProDrawingViewScaleGet() returns the scale factor applied, even if the
view is not a scaled view. ProDrawingScaleGet() returns the overall
drawing scale that is applied to all unscaled views.
The function ProDrawingViewPerspectiveScaleGet() returns the
perspective scale applied to a drawing view. This scale option is available only for
general views. The function returns the following output arguments:

• eye_dist—Specifies the eye-point distance from model space.
• view_dia—Specifies the view diameter in paper units such as mm.
The function ProDrawingViewFlagGet() identifies if the projection arrow
flag has been set for a projected or detailed drawing view.
ProDrawingViewDisplayGet() outputs the ProDrawingViewDisplay
structure that describes the display status of the drawing view. The fields in the
structure, all either enums or booleans, are listed below:

• style—Whether wireframe, hidden line, or shaded.
• quilt_hlr—Whether hidden-line-removal is applied to quilts.
• tangent_edge_display—Style of line used for tangent edges.
• cable_display—Whether cables are shown by centerline, as thick, or

using the current default.
• concept_model—Whether the skeleton is displayed.
• weld_xsec—Whether welds are included in the cross-section.
ProDrawingViewColorSourceGet() returns the color source of the
drawing view representation. The color source can be of the following types:

• PRO_VIEW_MODEL_COLOR—Specifies that the drawing colors are
determined by the model settings.

• PRO_VIEW_DRAWING_COLOR—Specifies that the drawing colors are
determined by the drawings settings.

ProDrawingViewSolidGet() provides the handle to the solid that is being
displayed in the drawing view. ProDrawingViewTransformGet() returns
the matrix that describes the transform between 3D solid coordinates and 2D
screen coordinates for a specified view.
ProDrawingViewNameGet() returns the name of a specified view in the
drawing.

Drawings 1239

ProDrawingViewZclippingGet() returns the reference of the Z-clipping
on the drawing view. The reference can be an edge, datum, or point on the surface
that is parallel to the view. Geometry contained in the Z-clipping plane and in
front of the plane appears, but geometry behind the plane does not appear. The
system clips geometry that intersects the plane.
The function ProDrawingViewDatumdisplayGet() determines if a solid
model datum has been explicitly shown in a particular drawing view.
The function ProDrawingViewPipingdisplayGet() returns the piping
display option for a drawing view.
The function ProDrawingViewIsErased() identifies if the drawing view is
erased or not.
The function ProDrawingViewNeedsRegen() identifies whether the
drawing or the specified drawing view needs to be regenerated.

Example 5: Listing the Views in a Drawing
The sample code in the file UgDrawingViews.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_drawing
shows a command that creates an information window reporting information
about all the views in a drawing.

Modifying Views
Functions Introduced:

• ProDrawingViewMove()
• ProDrawingViewDelete()
• ProDrawingViewErase()
• ProDrawingViewResume()
• ProDrawingViewOriginSet()
• ProDrawingViewAlignmentSet()
• ProDrawingViewScaleSet()
• ProDrawingScaleSet()
• ProDrawingViewProjectionSet()
• ProDrawingViewFlagSet()
• ProDrawingViewDisplaySet()
• ProDrawingViewNameSet()
• ProDrawingViewZclippingSet()
• ProDrawingViewPipingdisplaySet()

1240 Creo® Parametric TOOLKITUser’s Guide

• ProDrawingViewRegenerate()
• ProDwgViewRegenerate()
The function ProDrawingViewMove() moves the specified drawing view and
its child views by a vector to a new position in screen coordinates. This function
performs the same operation as the Creo Parametric command Sketch ▶ Edit ▶
Move Special.
The function ProDrawingViewDelete() deletes the drawing view and any
of its child views, or fails if the view has any children.
The function ProDrawingViewErase() erases a specified drawing view.
The function ProDrawingViewResume() resumes the specified drawing
view.
ProDrawingViewOriginSet() assigns the location of the origin in terms of
the ProPoint3d object and the selection reference in terms of the
ProSelection object for a specified drawing view.
The function ProDrawingViewAlignmentSet() assigns the alignment of a
drawing view with respect to another view. This function assigns the following
input arguments related to alignment:

• view_reference—Specifies the reference view to which the drawing view is
aligned.

• align_style—Specifies the alignment style in terms of the enumerated type
ProDrawingViewAlignStyle. The alignment style can be either
horizontal or vertical. In case of horizontal alignment, the drawing view and
the view it is aligned to lie on the same horizontal line. In case of vertical
alignment, the drawing view and the view it is aligned to lie on the same
vertical line.

• align_ref_1—Specifies the alignment reference of the referenced view. If this
is set to NULL, the reference view is aligned according to its view origin.

• align_ref_2—Specifies the alignment reference of the aligned view. If this is
set to NULL, the aligned view is aligned according to its view origin.

The function ProDrawingViewScaleSet() modifies the scale of a scaled
view; ProDrawingScaleSet() modifies the overall drawing scale that is
applied to all unscaled views.
The function ProDrawingViewProjectionSet() assigns the specified
drawing view as a projection.
The function ProDrawingViewFlagSet() sets the projection arrow flag to
TRUE for a projected or detailed drawing view.

Drawings 1241

The function ProDrawingViewDisplaySet() assigns the fields in the
ProDrawingViewDisplay structure that describe the display status of the
drawing view. This function does not repaint the drawing view, use the function
ProWindowRepaint() to repaint the view.

Note
In order to modify the concept_model field in the
ProDrawingViewDisplay structure, you require an Assembly license.

The function ProDrawingViewNameSet() assigns a name to a specified
drawing view.

Note
The configuration option allow_duplicate_view_names enables you
to set duplicate names for drawing views. When the configuration option is set
to no, the function returns an error if another drawing view in the specified
drawing exists with the same name.

The function ProDrawingViewZclippingSet() sets the Z-clipping on the
drawing view to reference a given edge, datum, or point on the surface that is
parallel to the view. Geometry contained in the Z-clipping plane and in front of the
plane appears, but geometry behind the plane does not appear. The system clips
geometry that intersects the plane.
The function ProDrawingViewPipingdisplaySet() assigns the piping
display option for a drawing view. The piping display options are as follows:

• PRO_PIPINGDISP_DEFAULT—Displays the default appearance of pipes
for the piping assembly.

• PRO_PIPINGDISP_CENTERLINE—Displays pipes as centerlines without
insulation.

• PRO_PIPINGDISP_THICK_PIPES—Displays thick pipes without
insulation.

• PRO_PIPINGDISP_THICK_PIPES_AND_INSULATION—Displays thick
pipes and insulation.

The function ProDrawingViewRegenerate() regenerates the drawing view
specified by the ProView view handle.
The function ProDwgViewRegenerate() erases the displayed view of the
current object, regenerates the view from the current drawing, then redisplays the
view.

1242 Creo® Parametric TOOLKITUser’s Guide

Creating Views
Function Introduced:

• ProDrawingGeneralviewCreate()
• ProDrawingProjectedviewCreate()
A general view is usually the first view placed on a drawing sheet. It is the most
versatile view, that is, it can be scaled or rotated to any setting.
A projected view is an orthographic projection of another view’s geometry along a
horizontal or vertical direction.
The above functions create general and projected drawing views.

Example 6: Creating General and Projected Drawing Views
The sample code in the file UgDrawingViews.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_drawing
adds a new sheet to a drawing, and creates one general and two projected views of
a selected model.

Background Views
Functions Introduced:

• ProDrawingViewIsBackground()
• ProDrawingBackgroundViewGet()
Views can be assigned not only to the solid views that the user creates, but also to
each sheet. The view assigned to a drawing sheet is called a background view.
Function ProDrawingViewIsBackground() determines whether the
specified view is a background view.
If you use ProSelect() for an item in a drawing that is not inside a solid view,
such as a detail item, the ProView view handle output by
ProSelectionViewGet() is the background view.

Note
These functions supersede the functions ProDrawingViewIsOverlay()
and ProDrawingOverlayviewGet(), which previously served the same
purpose.

Detailed Views
Functions Introduced:

Drawings 1243

• ProDrawingViewDetailCreate()
• ProDrawingViewDetailReferenceGet()
• ProDrawingViewDetailReferenceSet()
• ProDrawingViewDetailCurvedataGet()
• ProDrawingViewDetailCurvedataSet()
• ProDrawingViewDetailBoundaryGet()
• ProDrawingViewDetailBoundarySet()
A detailed view is a small portion of a model shown enlarged in another view.
The function ProDrawingViewDetailCreate() creates a detailed view
given the reference point on the parent view, the spline curve data, and location of
the new view. A note with the detailed view name and the spline curve border are
included in the parent view for the created detailed view.
The functions ProDrawingViewDetailReferenceGet() and
ProDrawingViewDetailReferenceSet() return and assign, respectively,
the reference point on the parent view for a specified detailed view.
The functions ProDrawingViewDetailCurvedataGet()and
ProDrawingViewDetailCurvedataSet() retrieve and assign,
respectively, the spline curve data in terms of the ProCurvedata handle for a
specified detailed view. The output argument, curve_data specifies the
following:
• The X and Y coordinate directions match the screen space.
• The coordinate point (0,0) maps to the reference point.
• The scaling unit is of one inch relative to the top model of the view. If two

points in the spline are at a distance of '1' from each other, then in the actual
view, the points will be one inch distant from each other, if measured in the
scale of the top model. For example, if one of the points in the spline
definition has coordinates (0.5, 0.0, 0.0), then the position of that point is not
half an inch to the right of the reference point on the paper. Instead, when
projected as a point in the space of the top model of the view, it is half an inch
to the right of the reference point when measured in the space of that model.

Use the function ProCurvedataAlloc()to allocate memory for the curve
data structure.
The function ProDrawingViewDetailBoundaryGet() retrieves the type
of spline curve used to define the boundary of the detailed view and also identifies
whether the boundary is displayed on the parent view.
The function ProDrawingViewDetailBoundarySet() assigns the
boundary type for a detailed view in terms of the enumerated type
ProViewDetailBoundaryType. The types of boundaries are:

1244 Creo® Parametric TOOLKITUser’s Guide

• PRO_DETAIL_BOUNDARY_CIRCLE—Draws a circle in the parent view.
• PRO_DETAIL_BOUNDARY_ELLIPSE—Draws an ellipse in the parent view.
• PRO_DETAIL_BOUNDARY_HORZ_VER_ELLIPSE—Draws an ellipse with

a horizontal or vertical major axis.
• PRO_DETAIL_BOUNDARY_SPLINE—Displays the spline boundary drawn

by the user in the parent view.
• PRO_DETAIL_BOUNDARY_ASME_CIRCLE—Displays an ASME standard-

compliant circle as an arc with arrows and the detailed view name.
This function also sets the ProBoolean argument show to display the boundary
of the detailed view in the parent view.

Auxiliary Views
Functions Introduced:

• ProDrawingViewAuxiliaryCreate()
• ProDrawingViewAuxiliarySet()
• ProDrawingViewAuxiliaryInfoGet()
An auxiliary view is a type of projected view that projects at right angles to a
selected surface or axis. The selected surface or axis in the parent view must be
perpendicular to the plane of the screen.
The function ProDrawingViewAuxiliaryCreate() creates an auxiliary
view given the selection reference and the point location.
The function ProDrawingViewAuxiliarySet() sets a specified drawing
view as the auxiliary view.
The function ProDrawingViewAuxiliaryInfoGet() retrieves
information such as the selection reference in terms of the ProSelection
object and the point location in terms of the ProPoint3d object for a specified
auxiliary view.

Revolved Views
Functions Introduced:

• ProDrawingViewRevolveCreate()
• ProDrawingViewRevolveInfoGet()
A revolved view is a cross section of a drawing view revolved 90 degrees around
a cutting plane projection.
The function ProDrawingViewRevolveCreate() creates a revolved view
given a cross section, the selection reference, and the point location.

Drawings 1245

The function ProDrawingViewRevolveInfoGet() retrieves information
such as the cross section in terms of the ProXsec object, the selection reference
in terms of the ProSelection object, and the point location in terms of the
ProPoint3d object for a specified revolved view.

Draft Views
Functions Introduced:

• ProDrawingDraftViewsCollect()
• ProDrawingViewIsDraft()
• ProDrawingDraftViewCreate ()
Draft views are created from the Sketch tab in a drawing using the selected draft
entities. The draft entities added to the view are automatically related to the view.
Any pre-existing relationship will be removed, and the entity will be related to the
draft view.
The function ProDrawingDraftViewsCollect() collects all draft views in
the specified drawing. The output argument views is the list of draft views. The
function ProDrawingDraftViewsCollect() allocates memory to the
ProView handle. To free the memory call the function ProArrayFree().
The function ProDrawingViewIsDraft() determines whether the specified
view is a draft view. The input arguments follow:
• drawing—Specify the drawing in which the draft view exists.
• view —Specify the view using the ProView handle.
If the specified view is a draft view, the function returns a ProBoolean output
argument with the value PRO_B_TRUE. Otherwise, the function returns PRO_B_
FALSE.
The function ProDrawingDraftViewCreate() creates a draft view in the
specified drawing sheet. The input arguments follow:
• drawing—Specify the drawing in which draft view is to be created.
• entities—Specify at least one daft entity using the ProDtlentity object.

Entities might or might not be related to any view.
The function outputs a pointer to the ProView handle.

View Orientation
Functions Introduced:

• ProDrawingViewOrientationFromNameSet()
• ProDrawingViewOrientationFromReferenceSet()
• ProDrawingViewOrientationFromAngleSet()

1246 Creo® Parametric TOOLKITUser’s Guide

The orientation type for a drawing view is given by the enumerated type
ProDrawingViewOrientationType. The view orientation can be of the
following types:

• PRO_VIEW_ORIENT_NAME—The drawing view is oriented using saved
views from the model.

• PRO_VIEW_ORIENT_GEOM_REF—The drawing view is oriented using
geometric references from the model.

• PRO_VIEW_ORIENT_ANGLE—The drawing view is oriented using angles
of selected references or custom angles.

Note
The drawing view must be displayed before applying any orientation to it.

The function ProDrawingViewOrientationFromNameSet() assigns the
orientation of a specified drawing view according to the following input
arguments:

• mdl_view_name—Specifies the name of the saved view in the model.
• orientation_name—Specifies the name of the user-defined orientation for the

saved view.
• x_angle—Specifies the X angle in degrees for the user-defined orientation.
• y_angle—Specifies the Y angle in degrees for the user-defined orientation.
The function ProDrawingViewOrientationFromReferenceSet()
assigns the orientation of a specified drawing view according to the following
input arguments:

• ref_name_1—Specifies the name of the first geometric reference.
• ref_sel_1—Specifies the first reference selection on the model in terms of the

ProSelection object.
• ref_name_2—Specifies the name of the second geometric reference.
• ref_sel_2—Specifies the second reference selection on the model in terms of

the ProSelection object.
The function ProDrawingViewOrientationFromAngleSet() assigns
the orientation of a specified drawing view according to the following input
arguments:

• sel—Specifies the reference selection in terms of the ProSelection object.
It can be an axis or NULL for other type.

• angle—Specifies the angle in degrees with the selected reference.

Drawings 1247

• rot_ref_name—Specifies the name of the rotational angle.
• index—Specifies the index of the angle setting.

Visible Areas of Views
Functions Introduced:

• ProDrawingViewVisibleareaTypeGet()
• ProDrawingViewFullVisibleAreaSet()
• ProDrawingViewHalfVisibleAreaGet()
• ProDrawingViewHalfVisibleAreaSet()
• ProDrawingViewPartialVisibleAreaSet()
• ProDrawingViewPartialVisibleAreaGet()
• ProDrawingViewBrokenVisibleAreaGet()
• ProDrawingViewBrokenVisibleAreaSet()
• ProDrawingViewBrokenNumberGet()
As you detail your model, certain portions of the model may be more relevant
than others or may be clearer if displayed from a different view point.
The function ProDrawingViewVisibleareaTypeGet() retrieves the type
of visible area for a specified drawing view in terms of the enumerated type
ProDrawingViewVisibleareaType. The visible area can be of the
following types:

• PRO_VIEW_FULL_AREA—The complete drawing view is retained as the
visible area.

• PRO_VIEW_HALF_AREA—A portion of the model from the view on one
side of a cutting plane is removed.

• PRO_VIEW_PARTIAL_AREA—A portion of the model in a view within a
closed boundary is displayed.

• PRO_VIEW_BROKEN_AREA—A portion of the model view from between
two or more selected points is removed, and the gap between the remaining
two portions is closed within a specified distance.

The function ProDrawingViewFullVisibleAreaSet() retains the
specified drawing view as the full visible area.
The function ProDrawingViewHalfVisibleAreaGet()
The function ProDrawingViewHalfVisibleAreaSet()

1248 Creo® Parametric TOOLKITUser’s Guide

• plane_ref—Specifies the selection reference in terms of the ProSelection
object that divides the drawing view. The cutting plane can be a planar surface
or a datum, but it must be perpendicular to the screen in the new view.

• keep_side—Specifies the half side of the model that is to be retained.
• line_standardProDrawingLineStandardType

○ PRO_HVL_NONE—Specifies no line
○ PRO_HVL_SOLID—Specifies a solid line.
○ PRO_HVL_SYMMETRY—Specifies a symmetry line.
○ PRO_HVL_SYMMETRY_ISO—Specifies an ISO-standard symmetry line.
○ PRO_HVL_SYMMETRY_ASME—Specifies an ASME-standard symmetry

line
The function ProDrawingViewPartialVisibleAreaGet()
The function ProDrawingViewPartialVisibleAreaSet() assigns the
following arguments to define the partial visible area for a specified drawing
view:

• ref_point—ProSelection

• curve_data—ProCurvedata

• show_boundaryProBooleanPRO_B_TRUE
The function ProDrawingViewBrokenVisibleAreaGet() retrieves the
broken visible area for a specified drawing view.
The function ProDrawingViewBrokenVisibleAreaSet() assigns the
following arguments to define the broken visible area for a specified drawing
view:

• dir—Specifies the direction of the broken lines that define the broken area to
be removed. The direction is given by the enumerated type
ProViewBrokenDir and takes the following values:

○ PRO_VIEW_BROKEN_DIR_HORIZONTAL—Specifies the horizontal
direction.

○ PRO_VIEW_BROKEN_DIR_VERTICAL—Specifies the vertical
direction.

• first_sel—Specifies the selection point in terms of the ProSelection
object for the first break line.

• second_sel—Specifies the selection point in terms of the ProSelection
object for the second break line.

Drawings 1249

• line_style—Specifies the line style for the broken lines in terms of the
enumerated type ProViewBrokenLineStyle. It can be one of the
following types:

○ PRO_VIEW_BROKEN_LINE_STRAIGHT—Specifies a straight broken
line.

○ PRO_VIEW_BROKEN_LINE_SKETCH—Specifies a random sketch
drawn by the user that defines the broken line.

○ PRO_VIEW_BROKEN_LINE_S_CURVE_OUTLINE—Specifies a S-
curve on the view outline.

○ PRO_VIEW_BROKEN_LINE_S_CURVE_GEOMETRY—Specifies a S-
curve on geometry.

○ PRO_VIEW_BROKEN_LINE_HEART_BEAT_OUTLINE—Specifies a
heartbeat type of curve on the view outline.

○ PRO_VIEW_BROKEN_LINE_HEART_BEAT_GEOMETRY—Specifies a
heartbeat type of curve on the geometry.

• curve_data—Specifies the spline curve data in terms of the ProCurvedata
object when the line_style is of the type PRO_VIEW_BROKEN_LINE_
SKETCH.

The function ProDrawingViewBrokenNumberGet() returns the number of
breaks defined for the broken visible area. Two broken lines define one break.

Note
A broken visible area can be created only for general and projected view
types.

Sections of a View
Functions Introduced:

• ProDrawingViewSectionTypeGet()
• ProDrawingView2DSectionGet()
• ProDrawingView2DSectionSet()
• ProDrawingView2DSectionNumberGet()
• ProDrawingView2DSectionFlip()
• ProDrawingView2DSectionFlipGet()
• ProDrawingView3DSectionGet()

1250 Creo® Parametric TOOLKITUser’s Guide

• ProDrawingView3DSectionSet()
• ProDrawingViewSinglepartSectionGet()
• ProDrawingViewSinglepartSectionSet()
• ProDrawingView2DSectionTotalSet()
• ProDrawingView2DSectionAreaSet()
The function ProDrawingViewSectionTypeGet() retrieves the section
type for a specified drawing view in terms of the enumerated type
ProDrawingViewSectionType. A section can be of the following types:

• PRO_VIEW_NO_SECTION—Specifies no section.
• PRO_VIEW_TOTAL_SECTION—Specifies the complete drawing view.
• PRO_VIEW_AREA_SECTION—Specifies a 2D cross section.
• PRO_VIEW_3D_SECTION—Specifies a 3D cross section.
• PRO_VIEW_PART_SURF_SECTION—Specifies a section created out of a

solid surface or a datum quilt in the model.
A drawing can have many 2D cross sections defined in it. These cross sections are
indexed. The first cross section has its index number set to 0. Depending on which
2D cross section you want to work with, specify the index number.
The function ProDrawingView2DSectionGet() retrieves the 2D cross
section for a specified drawing view.
The function ProDrawingView2DSectionSet() assigns the following
arguments to define the 2D cross section for a drawing view:

• sec_name—Specifies the name of the 2D cross section.
• sec_area_type—Specifies the type of section area. The section area is given by

the enumerated type ProDrawingViewSectionAreaType and can be of
the following types:

○ PRO_VIEW_SECTION_AREA_FULL—Sectioning is applied to full
drawing view.

○ PRO_VIEW_SECTION_AREA_HALF—Sectioning is applied to half
drawing view depending upon the inputs for half side.

○ PRO_VIEW_SECTION_AREA_LOCAL—Specifies local sectioning.
○ PRO_VIEW_SECTION_AREA_UNFOLD—Unfold the drawing view and

section it.
○ PRO_VIEW_SECTION_AREA_ALIGNED—Sectioning is as per the

aligned views.
• ref_sel—Specifies the selection reference in terms of the ProSelection

object.

Drawings 1251

• curve_data—Specifies the spline curve data in terms of the ProCurvedata
handle.

• arrow_display_view—Specifies the drawing view, that is, either the parent or
child view, where the section arrow is to be displayed.

Note
For a section area of type PRO_VIEW_SECTION_AREA_FULL in the
above function, you can pass the input arguments ref_sel, curve_data, and
arrow_display_view as NULL.

The function ProDrawingView2DSectionNumberGet() retrieves the
number of 2D cross sections defined for a drawing view.
The function ProDrawingView2DSectionFlip() flips the direction of 2D
cross section in a drawing view. Specify the index of the 2D cross section that you
want to flip.
Use the function ProDrawingView2DSectionFlipGet() returns a
boolean value that indicates the direction in which the 2D cross section has been
clipped. Depending on the type of cross section, the boolean value indicates
different direction of clipping as below:
• Planar cross section—The boolean value:

○ PRO_B_FALSE indicates that the cross section has been clipped in the
direction of the positive normal to the cross section plane.

○ PRO_B_TRUE indicates that the cross section has been clipped in the
opposite direction of the positive normal.

• Offset cross section—The integer value:
○ PRO_B_FALSE indicates that material has been removed from the left of

the cross section entities if the viewing direction is from the positive side
of the entity plane.

○ PRO_B_TRUE indicates that the material has been retained from the left of
the cross section entities and rest of the material has been removed.

The function ProDrawingView3DSectionGet() retrieves the 3D cross
section for a specified drawing view.
The function ProDrawingView3DSectionSet() assigns the following
arguments to define a 3D cross section for a view:

• sec_name —Specifies the name of the 3D cross section.
• show_x_hatch—Specifies a ProBoolean value that determines whether X-

hatching is displayed in the 3D cross-sectional view. Set this argument to
PRO_B_TRUE to display X-hatching.

1252 Creo® Parametric TOOLKITUser’s Guide

The function ProDrawingViewSinglepartSectionGet() retrieves the
section created out of a solid surface or a datum quilt in the model for a specified
drawing view.
The function ProDrawingViewSinglepartSectionSet() assigns the
reference selection in terms of the ProSelection object for the solid surface or
datum quilt that is used to create the section in the view.
The functions ProDrawingView2DSectionTotalSet() and
ProDrawingView2DSectionAreaSet() enable you to set the visibility of
model edges in a 2D cross section view of a drawing.
The function ProDrawingView2DSectionTotalSet() sets the visibility
of model edges to Total. A total cross section shows not only the cross-sectioned
area, but also the edges of the model that become visible when a cross section is
made. Here model edges behind the section planes as well as section edges are
displayed.
The function ProDrawingView2DSectionAreaSet() sets the visibility of
model edges to Area. An area cross section displays only the cross section without
the geometry, that is, only section edges are displayed.

View States
Functions Introduced:

• ProDrawingViewSimplifiedGet()
• ProDrawingViewSimplifiedSet()
• ProDrawingViewExplodedGet()
• ProDrawingViewExplodedSet()
The functions ProDrawingViewSimplifiedGet() and
ProDrawingViewSimplifiedSet() retrieve and set the simplified
representation for a specified drawing view.
The functions ProDrawingViewExplodedGet() and
ProDrawingViewExplodedSet() retrieve and set the exploded state for a
specified drawing view.

Example 7: Creating Drawing Views and Accessing
their Properties
The sample code in the file UgNotesColor.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_dwg creates both
general and projection types of drawing views and accesses the view scale,
orientation, exploded state, and visible areas of the created drawing views.

Drawings 1253

Drawing Models
Functions Introduced:

• ProDrawingSolidsCollect()
• ProDrawingSolidsVisit()
• ProDrawingSolidAdd()
• ProDrawingSolidDelete()
• ProDrawingSimprepsCollect()
• ProDrawingAsmsimprepAdd()
• ProDrawingAsmsimprepDelete()
• ProDrawingSolidReplace()
• ProDrawingCurrentsolidGet()
• ProDrawingCurrentsolidSet()
The function ProDrawingSolidsCollect() outputs an array of the solids
attached to the drawing, including those not currently displayed in a view.
Function ProDrawingSolidsVisit() is a visit function of the usual form
which visits the same solids.
The function ProDrawingSolidAdd() adds a new solid to a drawing, but
does not display it. (To create a drawing view, refer to the Creating Views on page
1243 section.)
ProDrawingSolidDelete() deletes a solid from a drawing, provided that
solid is not currently displayed in a view.
Functions
ProDrawingSimprepsCollect(),ProDrawingAsmsimprepAdd(),
and ProDrawingAsmsimprepDelete() are the equivalents to the above
functions but take a handle to a simplified rep.
The function ProDrawingSolidReplace() replaces a drawing model solid
with another solid. The old and new solids must be members of the same family
table. The following example code describes this function.
The functions ProDrawingCurrentsolidGet() and
ProDrawingCurrentsolidSet() provide access to the current solid model
for a given drawing.

Example 8: Replace Drawing Model Solid with a Solid
The sample code in the file UgDrawingSolidReplace.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_drawing
shows how to replace a drawing model solid with a solid.

1254 Creo® Parametric TOOLKITUser’s Guide

Detail Items
The functions described in this section operate on detail items. Detail items are
those drawing items that you create in Creo Parametric in the drawings.
In Creo Parametric TOOLKIT, you have the ability to create, delete, and modify
detail items, control their display, and examine what detail items are present in the
drawing.
There types of detail items available in Creo Parametric TOOLKIT are:

• Draft entities—Contain the graphical items created in Creo Parametric using
the options under the Sketch tab, in the Sketching group. Some of the items
are as follows:

○ Arc
○ Ellipse
○ Line
○ Point
○ Polygon
○ Spline

• Notes—Textual annotations created in Creo Parametric using the command
Annotate ▶ Note. They can also contain special symbols.

• Symbol definitions—Named groups of other detail items that the Creo
Parametric user can save to disk. You create them in Creo Parametric using the
options in the Annotate ▶ Symbol command.

• Symbol instances—Instances of a symbol.
• Draft groups—Groups of detail items such as draft entities, notes, symbol

instances, and drawing dimensions. You create them in Creo Parametric using
the command Sketch ▶ Draft Group.

• OLE objects—Object Linking and Embedding (OLE) objects embedded in the
Creo Parametric drawing file from the Insert Object dialog box that opens
when you click Layout ▶ Object.

All detail items are identified by DHandles which are equivalent to
ProModelitem, and inherit from ProModelitem. This implies that functions
such as ProSelectionModelitemGet(), ProSelectionAlloc(), and
ProModelitemInit(), can be used for detail items. The values of the type
field for the types of detail item are:

• PRO_DRAFT_ENTITY—This type is used for draft entities and OLE objects.
Special functions exist to distinguish OLE objects from other detail entities.

• PRO_NOTE

• PRO_SYMBOL_DEFINITION

Drawings 1255

• PRO_SYMBOL_INSTANCE

• PRO_DRAFT_GROUP

There is generic detail object called ProDtlitem, whose type field can take any
of these values, and is used for arguments to functions that can represent any
detail item. The following object handles are used in the more specific cases:

• ProDtlentity

• ProDtlnote

• ProDtlsymdef

• ProDtlsyminst

• ProDtlgroup

Listing Detail Items
Functions Introduced:

• ProDrawingDtlentitiesCollect()
• ProDrawingDtlentityVisit()
• ProDrawingDtlnotesCollect()
• ProDrawingDtlnoteVisit()
• ProDrawingDtlsymdefsCollect()
• ProDrawingDtlsymdefVisit()
• ProDrawingDtlsyminstsCollect()
• ProDrawingDtlsyminstVisit()
• ProDrawingDtlgroupsCollect()
• ProDrawingDtlgroupVisit()
• ProDrawingOLEobjectsVisit()
The function ProDrawingDtlentitiesCollect() collects all the detail
entities in the specified drawing and sheet. Set the input argument symbol to NULL
if you are collecting a detail item in the drawing. If you are collecting a draft
entity in a symbol definition, set symbol to specify the owning symbol definition.

Note
The function ProDrawingDtlentitiesCollect() will not collect
entities with special symbol definition, such as, datum targets or parametric
connector symbols.

1256 Creo® Parametric TOOLKITUser’s Guide

The function ProDrawingDtlentityVisit() visits all the draft entities
stored in the specified drawing and sheet.

Note
The function ProDrawingDtlentityVisit() will not visit entities with
special symbol definition, such as, datum targets or parametric connector
symbols.

The function ProDrawingDtlnotesCollect() collects all the notes in the
specified drawing. Set the input argument symbol to NULL if you are collecting a
note from the drawing. If you are collecting a note from a symbol definition, set
symbol to specify the owning symbol definition.
The function ProDrawingDtlnoteVisit() visits the notes in the specified
drawing.
The function ProDrawingDtlsymdefsCollect() collects the symbol
definitions in the specified drawing.
The function ProDrawingDtlsymdefVisit() visits the symbol definitions
in the drawing.
The function ProDrawingDtlsyminstsCollect() collects symbol
instances in the specified drawing.
The function ProDrawingDtlsyminstVisit() visits symbol instances in
the specified drawing.
The function ProDrawingDtlgroupsCollect() collects groups in the
specified drawing.
The function ProDrawingDtlgroupVisit() visits groups in the specified
drawing.
The function ProDrawingOLEobjectsVisit() visits the OLE objects
embedded in the model. Specify the visit action and visit filter functions.

Displaying Detail Items
Functions Introduced:

• ProDtlentityDraw()
• ProDtlentityErase()
• ProDtlnoteDraw()
• ProDtlnoteErase()
• ProDtlnoteShow()

Drawings 1257

• ProDtlnoteRemove()
• ProDtlsyminstDraw()
• ProDtlsyminstErase()
• ProDtlsyminstShow()
• ProDtlsyminstRemove()
• ProDtlgroupDraw()
• ProDtlgroupErase()
Each of the displayable item types has four display functions.
The Show function displays the detail item, such that it is repainted on the next
draft regeneration.
The Remove function undraws the detail item permanently, so that it is not
redrawn on the next draft regeneration.
The Draw function draws the detail item temporarily, so that it is removed on the
next draft regeneration.
The Erase function undraws the detail item temporarily, so that it is redrawn on
the next draft regeneration, if it was previously “shown”.
Use the Show function after creating an item, and the Remove function before
deleting it. Use the Erase function before modifying an item, and the Draw
function afterwards.

Note
These functions require that the drawing must be the currently displayed
model. To create or modify detail items in a model that is not currently
displayed, use the attributes in the data structures related to Display. For
example use ProDtlnotedataDisplayedSet() to set the item to be
saved with the displayed status turned on, so that the next retrieval of the
model will display the item.

Creating, Modifying and Reading Detail Items
Functions Introduced:

• ProDtlentityCreate()
• ProDtlentityDataGet()
• ProDtlentityDelete()
• ProDtlentityModify()

1258 Creo® Parametric TOOLKITUser’s Guide

• ProDtlentityErase()
• ProDtlentityIsOLEObject()
• ProDtlnoteCreate()
• ProDtlnoteDataGet()
• ProDtlnoteDelete()
• ProDtlnoteLineEnvelopeGet()
• ProDtlnoteModify()
• ProDtlsymdefCreate()
• ProDtlsymdefDataGet()
• ProDtlsymdefDelete()
• ProDtlsymdefModify()
• ProDtlsymdefToModelCopy()
• ProDtlsyminstCreate()
• ProDtlsyminstDataGet()
• ProDtlsyminstDelete()
• ProDtlsyminstModify()
• ProDtlgroupCreate()
• ProDtlgroupDataGet()
• ProDtlgroupDelete()
• ProDtlgroupModify()
For each of the five detail item types there is an opaque data structure which
describes the contents of the detail item. You build the appropriate data structure
first, using functions provided for that purpose, and then pass it as input to the
appropriate Create() function. The *DataGet() functions output a filled
structure describing an existing detail item. The data structures are built and
unpacked by their own functions for that purpose described in the following
sections.

Drawings 1259

The function ProDtlentityDataGet() returns a structure that contains
information about the specified detail item, in a drawing or in a symbol definition.

Note
The functions ProDtlentityDataGet(), ProDtlentityCreate(),
ProDtlentityDelete(), and ProDtlentityModify cannot access
symbol definitions for special symbols, such as, datum targets or parametric
connector symbols. For such symbols, the functions return the error PRO_TK_
GENERAL_ERROR.

The functions ProDtlnoteDataGet() and ProDtlsyminstDataGet()
have an argument for the display mode. Both notes and symbols may contain
parameterized text, and the display mode specifies whether the data structure
output by the *DataGet() function must contain the text before substitution of
the parameters (SYMBOLIC mode), or after the displayed text (NUMERIC mode).
If using ProDtlnoteDataGet() as a first step in note modification, always
set mode to SYMBOLIC or the modification removes the parameterization. Refer
to section Detail Note Line Data on page 1267 for more information.
Some data structures contain arrays of, or pointers to, deeper structures which
have their own manipulation functions, also described in later sections. Lower
level data structures should be built before the upper level ones when creating
detail items. The data structures and their member structures are listed below.

• ProDtlentitydata—A draft entity
• ProCurvedata—The 2D geometry of the entity (described in the Core: 3D

Geometry on page 170 chapter)
• ProDtlnotedata—A detail note
• ProDtlnoteline—A line of text in a note
• ProDtlnotetext—A segment of text in a line that may have it's own

cosmetic properties, such as font, height, and so on
• ProDtlattach—One structure for the attachment of the note itself, and one

per leader on the note
• ProDtlsymdefdata—A symbol definition
• ProDtlsymdefattach—The types of attachment support for an instance

of this symbol
• ProDtlsyminstdata—A symbol instance
• ProDtlvartext—Avariable text substitution
The sequence of calls to create a draft entity containing, for example, a line would
be:

1260 Creo® Parametric TOOLKITUser’s Guide

1. ProDtlentitydataAlloc()—Allocate the entity data (see the section
on Draft Entity Data on page 1262).

2. ProCurvedataAlloc()—Allocate memory for a curve structure
3. ProLinedataInit()—Set the curve structure to describe the required line

by initializing a line data structure.
4. ProDtlentitydataCurveSet()—Add the curve data to the entity data

(see the section on Draft Entity Data on page 1262).
5. ProDtlentityCreate()—Create the entity (see the section on Creating,

Modifying and Reading Detail Items on page 1258).

Note
You must set the drawing view before attempting to create a detail entity,
unless you are creating entities in a symbol definition. The view can be a
traditional drawing view obtained through
ProDrawingViewsCollect(), or the drawing sheet background
view obtained from ProDrawingBackgroundViewGet().

The other detail items follow the same principles, although for symbol definitions
there are added complexities; these are explained in section Creating a Symbol
Definition on page 1278.
The function ProDtlentityIsOLEObject() identifies if the specified detail
entity is actually an OLE object. For more information on OLE objects refer to
Accessing OLE Objects on page 1264.
Each entity item has its own Delete() function which removes it permanently
from the Creo Parametric drawing.
Each entity item also has its own Modify() function which passes a new Data
structure.
Use the function ProDtlnoteErase() to temporarily undraw the note (see the
section on Displaying Detail Items on page 1257).
The function ProDtlnoteDataGet() returns the data for the note.
The function ProDtlnotedataColorSet() modifies the color in the data
(see the section on Detail Note Data on page 1271).
The function ProDtlnoteModify() uses the modified data to modify the note
itself.
The function ProDtlnoteDraw() redraws the note (see the section on
Displaying Detail Items on page 1257).

Drawings 1261

The function ProDtlnoteLineEnvelopeGet() determines the screen
coordinates of the envelope around a detail note. This envelope is defined by four
points. See figure Detail Note Envelope Point Order for how point order is
determined.

Detail Note Envelope Point Order

The function ProDtlsymdefToModelCopy() copies a specified symbol
definition from one model to another.
The function ProDtlsymdefDelete() deletes a symbol definition. This
function returns the error PRO_TK_GENERAL_ERROR when the deletion of a
symbol definition from a part fails.
The function ProDtlsymdefModify() modifies a symbol definition. The
input arguments are listed below:
• symdef—Specifies the symbol definition.
• data—Specifies the symbol definition data.

Draft Entity Data
Functions Introduced:

• ProDtlentitydataAlloc()
• ProDtlentitydataFree()
• ProDtlentitydataIdGet()
• ProDtlentitydataCurveGet()
• ProDtlentitydataCurveSet()
• ProDtlentitydataColorGet()
• ProDtlentitydataColorSet()
• ProDtlentitydataFontGet()
• ProDtlentitydataFontSet()
• ProDtlentitydataWidthGet()
• ProDtlentitydataWidthSet()

1262 Creo® Parametric TOOLKITUser’s Guide

• ProDtlentitydataViewGet()
• ProDtlentitydataViewSet()
• ProDtlentitydataIsConstruction()
• ProDtlentitydataConstructionSet()
• ProDtlentitydataIsPeriodic()
• ProDtlentitydataPeriodicSet()
• ProDrawingDraftToDraftent()
The opaque data structure which describes the contents of a draft entity is called
ProDtlentitydata.
The only lower-level opaque data structure contained by ProEntitydata is
ProCurvedata which is also used for other 2D and 3D geometry, especially
Import Features, and is described elsewhere.
The functions ProDtlentitydataAlloc() and
ProDtlentitydataFree() allocate and free an opaque entity data structure.
Functions ProDtlentitydataCurveGet() and
ProDtlentitydataCurveSet() get and set the geometry of the entity in
the form of a ProCurvdata object.
ProDtlentitydataColorGet() and
ProDtlentitydataColorSet() get and set the color of the draft entity. The
visible data structure ProColor, declared in ProDtlitem.h, can specify the
color in three ways:

• By color index, that is, by choosing one of colors predefined in Creo
Parametric, represented by the values of ProColortype in
ProToolkit.h

• By choosing the default color for this type of detail item. (For entities, the
default is PRO_COLOR_DRAWING and for notes the default is PRO_COLOR_
LETTER.)

• By specifying the three RGB color values.
If do you do not call ProDtlentitydataColorSet() when creating a new
entity, the color will be set to be the default color for draft entities.
ProDtlentitydataFontGet() and ProDtlentitydataFontSet()
get and set the line style font which determines the line style used to display the
entity. The values are those which appear in the Line Font selector in the Modify
Line Style dialog in Creo Parametric. If you do not call
ProDtlentitydataFontSet() when creating an entity, the font will be
SOLIDFONT.

Drawings 1263

ProDtlentitydataWidthGet() and
ProDtlentitydataWidthSet() get and set the line width of the draft
entity. The value -1.0 indicates that the entity should have the default width for
entities currently set for the drawing. If you do not call
ProDtlentitydataWidthSet() when creating a new entity, the width is
-1.0.
ProDtlentitydataViewGet() and ProDtlentitydataViewSet()
get and set the drawing view to which the entity will be attached. If an entity is
attached to a view, it moves whenever the Creo Parametric user moves that view.
Entities not attached to a model view must be assigned to the drawing sheet
background view instead.
ProDtlentitydataIsConstruction() and
ProDtlentitydataConstructionSet() get and set the flag that controls
whether the entity is created normal or as a construction entity.
The function ProDtlentitydataIsPeriodic() checks if the draft identity
is marked as periodic. The output argument is_periodic is a Boolean. The
value PRO_B_TRUE indicates that the draft entity is periodic.
The function ProDtlentitydataPeriodicSet() marks the draft entity to
be periodic. The input arguments are as follows:
• data—The draft entity data.
• periodic—Specify the value PRO_B_TRUE if the draft entity is to be periodic.
Use the function ProDrawingDraftToDraftent() to convert a selection of
type draft to draft entity in the specified drawing. The input arguments follow:
• p_draw—Specifies the drawing that owns the draft entity.
• p_sel_draft—A ProSelection object that represents the selection of type

as draft.
The output argument r_p_sel_draft_ent returns the handle to the converted
selection using the ProSelection object. The converted selection is managed
by the function that calls the function ProDrawingDraftToDraftent().

Example 9: Create a Draft Line with Predefined Color
The sample code in the file UgDtlentityExamples.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_drawing
shows a utility that creates a draft line in one of the colors predefined in Creo
Parametric.

Accessing OLE Objects
An object linking and embedding (OLE) object is an external file, such as a
document, graphics file, or video file that is created using an external application
and which can be inserted into another application, such as Creo Parametric. You

1264 Creo® Parametric TOOLKITUser’s Guide

can create and insert supported OLE objects into a two-dimensional Creo
Parametric file, such as a drawing, report, format file, Notebook, or diagram. The
functions described in this section enable you to identify and access OLE objects
embedded in drawings.
Function Description

• ProDrawingOLEobjectSheetGet()
• ProDrawingOLEobjectOutlineGet()
• ProDrawingOLEobjectApplicationtypeGet()
• ProDrawingOLEobjectPathGet()
The function ProDrawingOLEobjectSheetGet() returns the sheet number
for the OLE object.
The function ProDrawingOLEobjectOutlineGet() returns the extent of
the OLE object embedded in the drawing.
The function ProDrawingOLEobjectApplicationtypeGet() returns
the type of the OLE object as a string, for example, “Microsoft Word
Document”.
The function ProDrawingOLEobjectPathGet() returns the path to the
external file for each OLE object, if it is linked to an external file.

Detail Note Text Data
Functions Introduced:

• ProDtlnotetextAlloc()
• ProDtlnotetextFree()
• ProTextStyleHeightGet()
• ProTextStyleHeightSet()
• ProTextStyleWidthGet()
• ProTextStyleWidthSet()
• ProTextStyleSlantAngleGet()
• ProTextStyleSlantAngleSet()
• ProTextStyleThicknessGet()
• ProTextStyleThicknessSet()
• ProTextStyleFontGet()
• ProTextStyleFontSet()
• ProDtlnotetextUlineGet()
• ProDtlnotetextUlineSet()

Drawings 1265

• ProDtlnotetextStringGet()
• ProDtlnotetextStringSet()
• ProDtlnotetextStyleGet()
• ProDtlnotetextStyleSet()
• ProDtlnoteWrapTextGet()
• ProDtlnoteWrapTextSet
Each line of a drawing note may contain text in several different fonts, heights,
and so on. So each line is described in terms of an array of text items, whose
contents are described by the data structure ProDtlnotetext.
ProDtlnotetextAlloc() and ProDtlnotetextFree() allocate and
free a ProDtlnotetext data structure.
ProTextStyleHeightGet() and ProTextStyleHeightSet() get and
set the height of the text. The value -1.0 means that the text has the default height
for text currently specified for the drawing.
ProTextStyleWidthGet() and ProTextStyleWidthSet() get and set
the width factor of the text. The width factor is the ratio of the width of each
character to the height. The value -1.0 means that the width factor has the default
value for text currently specified for the drawing.
ProTextStyleSlantAngleGet() and
ProTextStyleSlantAngleSet() get and set the slant angle of the text.
ProTextStyleThicknessGet() and
ProTextStyleThicknessSet() get and set the line thickness of the text.
The value -1.0 means that the text has the default thickness for text currently
specified for the drawing.
ProTextStyleFontGet() and ProTextStyleFontSet() get and set
the font used to display the text.
ProDtlnotetextUlineGet() and ProDtlnotetextUlineSet() get
and set whether the text item is underlined. The default is no underline.
ProDtlnotetextStringGet() and ProDtlnotetextStringSet()
get and set the string of characters contained in the text item.
The functions ProDtlnotetextStyleGet() and
ProDtlnotetextStyleSet() retrieve and set the text style for the specified
text as a ProTextStyle structure. It takes as input the ProDtlnotetext
object.
ProDtlnoteWrapTextGet() and ProDtlnoteWrapTextSet() get and
set the wrap status of the text for a specified note in a drawing.

1266 Creo® Parametric TOOLKITUser’s Guide

The function ProDtlnoteWrapTextSet() sets the text wrapping status to
ON or OFF. The input arguments are listed below:
• note—Specifies the note for which the wrap status is to be set.
• wrap—Specifies if the text is wrapped. To wrap the text, specify the value as

Pro_B_True.
• wrapwidth—Specifies the width of the wrapped text line, if the input argument

wrap is set to Pro_B_True.

Detail Note Line Data
Functions Introduced:

• ProDtlnotelineAlloc()
• ProDtlnotelineFree()
• ProDtlnotelineTextAdd()
• ProDtlnotelineTextsSet()
• ProDtlnotelineTextsCollect()
The ProDtlnoteline data structure describes the contents of a single line of
text in a detail note.
ProDtlnotelineAlloc() and ProDtlnotelineFree() allocate and
free a ProDtlnoteline structure.
ProDtlnotelineTextAdd() adds a text item, described by a
ProDtlnotetext data structure, to a note line. If the line already contained
text items, the new one is added at the end of the array.
ProDtlnotelineTextsSet() sets the contents of a whole text line, by
providing a new array of ProDtlnotetext items. If the note line already
contained text items, they are replace by the new ones.
ProDtlnotelineTextsCollect() outputs an array of the text items
contained in a specified text line.
Points to note about Text Lines and parameterization:

• If the string in a Text Line you put in a note contains one or more parameters,
Creo Parametric will divide the Text Line into several Text Items to ensure
that each parameter has its own Text Item.

• When you look at the text in an existing note by using the function
ProDtlnoteDataGet() with the mode option set to SYMBOLIC (that is,
to see the text before substitution of the parameters), you will see the text
bracketing and text item identifiers that you also see when you edit a text line
in Creo Parametric.

For example, if you make a text line containing a single text item with the text

Drawings 1267

"model = &model_name"

Creo Parametric will put the &model_name into a separate text item when the
note is created. If you then use ProDtlnoteDataGet() on the created
note with the mode option set to SYMBOLIC, you will see the following two
text items in the relevant text line

"model = " "&model_name"

If you set mode to NUMERIC, you see these text items:
"model = " "MODEL"

where MODEL is the name of the model.

Note
Creo Parametric does not resolve and replace symbolic callouts for notes
which are not displayed. Therefore, if the note is not displayed or is hidden
in a layer, the text retrieved may contain symbolic callouts, even when the
mode is set to NUMERIC.

Note that ProDtlnotetextStringGet() does not return the
brackets and numbers for each individual text entity. In addition, the
function does not return the special escape characters (such as \}) to
represent characters previously provided.

Refer to the section Creating a Symbol Definition on page 1278 for a
description of how to find which Creo Parametric model owns the
parameter referred to by parameterized text.

Detail Attachments and Leaders
Functions Introduced:

• ProDtlattachAlloc()
• ProDtlattachGet()
• ProDtlattachSet()
• ProDtlattachFree()
• ProDtlattachArrowtypeGet()
• ProDtlattachArrowtypeSet()
The opaque data structure ProDtlattach is used for two tasks:

• The way in which a drawing note or a symbol instance is attached to the
drawing.

• The way in which a leader on a drawing note or symbol instance is attached.

1268 Creo® Parametric TOOLKITUser’s Guide

Each note and symbol instance must contain one ProDtlattach to describe its
attachment in the drawing, and may contain any number of ProDtlattach
objects describing the leaders.
ProDtlattachAlloc() allocates and initializes the memory for a detail
attachment. The inputs are:

• type—The type of attachment to the drawing view. The detail attachment types
are as follows:

○ FREE—The attachment is to a 2D location in the drawing view.
○ PARAMETRIC—The attachment is to a point on a surface or an edge of a

solid.
○ OFFSET—The attachment is offset to another drawing view, to a model

item, or to a 3D model annotation.

Note
You cannot attach a symbol to 3D model annotation using the OFFSET
attachment type.

• view—The drawing view. If the type is FREE, the attachment is relative to the
drawing view, that is the attachment moves when the drawing view is moved.
This is NULL, if the detail attachment is not related to the drawing view, but is
placed at a specified location in the drawing sheet, or if the attachment is
offset to a model item or to a 3D model annotation.

• location—If the type is FREE or OFFSET, this argument provides the location
of the attachment. This location is in screen coordinates for drawing items,
symbol instances and surface finishes on flat-to-screen annotation planes, and
in model coordinates for symbols and surface finishes on 3D model annotation
planes. The distance from this location to the location of the item to which the
detail item is attached (given by the argument attach_point) is saved as the
offset distance for an OFFSET attachment.

• attach_point—If the type is PARAMETRIC or OFFSET, this
ProSelection structure provides the location of the item to which the
detail item is attached. This includes the drawing view in which the
attachment is made. If you are building this structure using
ProSelectionAlloc(), set the location using
ProSelectionUvParamSet(), and the drawing view using
ProSelectionViewSet().

Use the function ProDtlattachSet() to set the above ProDtlattach
information for an existing attachment.

Drawings 1269

The function ProDtlattachGet() unpacks the above information for an
existing attachment. The output arguments are:

• type—The type of attachment to the drawing view. The detail attachment types
are as follows:

○ FREE—The attachment is to a 2D location in the drawing view.
○ PARAMETRIC—The attachment is to a point on a surface or an edge of a

solid in a drawing view.
○ OFFSET—The attachment is offset to another drawing view, to a model

item, or to a 3D model annotation.
○ UNIMPLEMENTED—The attachment is to an item that is not currently

supported in Creo Parametric TOOLKIT. However, you can still retrieve
the location and the view to which the attachment is connected.

○ SUPPRESSED—The attachment is to an item, which is missing from the
drawing or part.

• view—If the type is FREE or UNIMPLEMENTED, this argument specifies the
drawing view. This is NULL, if the detail attachment is not related to the
drawing view, but is placed at a specified location in the drawing sheet, or if
the attachment is offset to a model item or to a 3D model annotation.

• location—If the type is FREE, OFFSET, or UNIMPLEMENTED, this argument
specifies the location of the attachment. This location is in screen coordinates
for drawing items, symbol instances and surface finishes on flat-to-screen
annotation planes, and in model coordinates for symbols and surface finishes
on 3D model annotation planes. The distance from this location to the location
of the item to which the detail item is attached (given by the argument attach_
point) is saved as the offset distance for an OFFSET attachment.

• attach_point —If the type is PARAMETRIC or OFFSET, this argument
provides the location of the item to which the detail item is attached. This
includes the drawing view in which the attachment is made.

ProDtlattachFree() frees an attachment that was allocated with
ProDtlattachAlloc().
The function ProDtlattachArrowtypeGet() returns the type of arrowhead
used for the leaders attached to a drawing note or symbol instance. Use the
function ProDtlattachArrowtypeSet() to assign the type of arrowhead.

1270 Creo® Parametric TOOLKITUser’s Guide

Note
The functions ProDtlattachArrowtypeGet() and
ProDtlattachArrowtypeSet() are applicable only for
ProDtlattach leader attachment objects obtained using the functions
ProDtlsyminstdataLeadersCollect() and
ProDtlnotedataLeadersCollect().

Detail Note Data
Functions Introduced:

• ProDtlnotedataAlloc()
• ProDtlnotedataFree()
• ProDtlnotedataIdGet()
• ProDtlnotedataLineAdd()
• ProDtlnoteldataLinesSet()
• ProDtlnotedataLinesCollect()
• ProTextStyleMirrorGet()
• ProTextStyleMirrorSet()
• ProTextStyleColorGetWithDef()
• ProTextStyleColorSetWithDef()
• ProDtlnotedataAttachmentGet()
• ProDtlnotedataAttachmentSet()
• ProDtlnotedataLeadersCollect()
• ProDtlnotedataLeadersSet()
• ProDtlnotedataLeaderAdd()
• ProDtlnotedataElbowlengthGet()
• ProDtlnotedataElbowlengthSet()
• ProTextStyleAngleGet()
• ProTextStyleAngleSet()
• ProTextStyleJustificationGet()
• ProTextStyleJustificationSet()
• ProTextStyleVertJustificationGet()
• ProTextStyleVertJustificationSet()

Drawings 1271

• ProDtlnotedataIsDisplayed()
• ProDtlnotedataDisplayedSet()
• ProDtlnoteDtlsyminstsCollect()
• ProDtlnotedataTextStyleGet()
• ProDtlnotedataTextStyleSet()
• ProDtlnoteTableCellGet()
The object ProDtlnotedata is an opaque pointer to a data structure that
describes the contents of a drawing note.
ProDtlnotedataAlloc() and ProDtlnotedataFree() allocate and
free memory for the data.
ProDtlnotedataIdGet() gives you the integer id of the note in Creo
Parametric that the data describes. This will be set if the ProDtlnotedata has
been acquired using ProDtlnoteDataGet(). It is not necessary to set this
when creating a note; the function ProDtlnoteCreate() will assign an id to
the new note.
ProDtlnotedataLineAdd() adds a ProDtlnoteline object to a
ProDtlnotedata description. If the note already contains lines of text, the new
line will be added at the end.
ProDtlnoteldataLinesSet() sets an array of ProDtlnoteline objects
as the lines in a ProDtlnotedata description. If the note already contains text
lines, they will be replaced by the new lines.
ProDtlnotedataLinesCollect() outputs an array of
ProDtlnoteline objects describing the lines in a given ProDtlnotedata
description.
ProTextStyleMirrorSet() specifies the option to mirror the note. Specify
the input argument mirror to true to mirror the note.
ProTextStyleMirrorGet() returns the mirroring option specified for the
note.
ProTextStyleColorGetWithDef() and
ProTextStyleColorSetWithDef() get and set the color for the note. If
you do not call ProTextStyleColorSetWithDef() when creating a note,
the note will have the default color defined by PRO_COLOR_METHOD_
DEFAULT. Refer to the Draft Entity Data on page 1262 section for a fuller
description of the ProColor object.
ProDtlnotedataAttachmentGet() and
ProDtlnotedataAttachmentSet() get and set the ProDtlattach
object which describes the attachment of the note, that is, where and how it is
positioned on the drawing.

1272 Creo® Parametric TOOLKITUser’s Guide

ProDtlnotedataLeadersCollect() outputs an array of
ProDtlattach objects which described the attachment points of the leaders on
the note. ProDtlnotedataLeadersSet() adds and array of leaders to a
note, replacing existing leaders. ProDtlnotedataLeaderAdd() adds a new
leader to the end of the array of current leaders on a note.
ProDtlnotedataElbowlengthGet() and
ProDtlnotedataElbowlengthSet() get and set the length of the elbow
that connects each leader to the note. If you do not call
ProDtlnotedataElbowlengthSet() when creating a note, there will be
no elbow.
The functions ProTextStyleAngleGet() and
PProTextStyleAngleSet() get and set the angle of rotation of the note. If
you do not call ProTextStyleAngleSet() when creating the note, the
rotation defaults to 0.0.
The functions ProTextStyleJustificationGet() and
ProTextStyleJustificationSet() return and set the horizontal
justification for the text style object. The functions
ProTextStyleVertJustificationGet() and
ProTextStyleVertJustificationSet() return and set the vertical
justification for the text style object. Vertical justification applies only to notes in
drawing tables and OnItem notes.
ProDtlnotedataIsDisplayed() and
ProDtlnotedataDisplayedSet() retrieve and set the flag that controls
whether the note is visible or not. If the note is created with this flag set to true,
regenerate the drawing using ProDwgDraftRegenerate() to see the
displayed note.
ProDtlnoteDtlsyminstsCollect() returns a list of all the symbol
instances that are declared in a detail note via the “sym()” callout format. The
symbol instances are returned in the order they are encountered in the note text.
The functions ProDtlnotedataTextStyleGet() and
ProDtlnotedataTextStyleSet() retrieve and set the text style for the
specified note as a ProTextStyle structure. It takes as input the
ProDtlnotedata object.
If the note has texts with different styles, the style returned by the function
ProDtlnotedataTextStyleGet() will have mixed state for attributes. The
attributes are not the same for all texts. In such a case of mixed attribute, if
function such as ProTextStyleFontGet() is called, the error PRO_TK_
GENERAL_ERROR is returned.

Drawings 1273

The function ProDtlnoteTableCellGet() returns the information on the
rows and columns within a table for the specified table note. The information is
given by the following output arguments:
• table—Specifies the table.
• p_row—Specifies the indexed row that starts at 0.
• p_col—Specifies the indexed column that starts at 0.

Example 10: Create Drawing Note at Specified Location with
Leader to Surface and Surface Name
The sample code in the file UgDtlnoteExamples.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
drawing, shows a function which creates a drawing note at a specified location,
with a leader attached to a solid surface, and which shows the name of the surface.

Read-Only Notes
Functions Introduced:

• ProDtlnotedataReadonlySet()
• ProDtlnotedataReadonlyGet()
• ProDrawingReadonlyselectionAllow()
You can make an existing drawing note unselectable by Creo Parametric users if
you wish to protect it from modification. The functions
ProDtlnotedataReadonlySet() and
ProDtlnotedataReadonlyGet() set and get this property on
ProDtlnotedata objects. Use function
ProDtlnotedataReadonlySet() in conjunction with
ProDtlnoteDataGet() and ProDtlnoteModify() to change the setting.
The function ProDrawingReadonlyselectionAllow() will temporarily
allow the selection of read-only notes.

Parameterized Note Text
Function introduced:

• ProDtlnoteModelrefGet()
A note in a drawing, or in a symbol definition, can be parameterized. This means
that it contains the name of a parameter from a Creo Parametric model, preceded
by a '&'. The '&' and the parameter name are replaced by the value of the
parameter when the note is displayed, or when the symbol is instantiated.

1274 Creo® Parametric TOOLKITUser’s Guide

The parameterizations in different notes and symbols in a single drawing may
refer to parameters on different Creo Parametric models, depending upon the
history of the drawing. The function ProDtlnoteModelrefGet() allows
you to find out which model is referred to by a specific parameter.

Cross-referencing Gtols and Drawing Annotations
The functions described in this section provide the drawing object that represents
a shown gtol (if the gtol is shown in the drawing), or vice-versa.
Functions Introduced:

• ProGtolDtlnoteGet()
• ProDtlnoteGtolGet()
The function ProGtolDtlnoteGet() returns the detail note that represents a
shown geometric tolerance.

Note
This function returns the first detail note that calls out the geometric tolerance.
Creo Parametric does not restrict users to showing only a single version of a
geometric tolerance callout.

The function ProDtlnoteGtolGet() returns the geometric tolerance shown
in a detail note, if applicable.

Cross-referencing 3D Notes and Drawing
Annotations
The functions described in this section provide access to the drawing object that
represents a shown 3D note, (if the 3D note is shown in the drawing), or vice-
versa.
Functions Introduced:

• ProNoteDtlnoteGet()
• ProDtlnoteNoteGet()
The function ProNoteDtlnoteGet() returns a detail note that represents a
shown model tree.

Drawings 1275

Note
This function returns the first detail note that calls out the solid model note.
Creo Parametric does not restrict users to showing only a single version of a
solid model note callout.

The function ProDtlnoteNoteGet() returns the solid model note that is
displayed as a detail note, if applicable.

Symbol Definition Attachments
Functions Introduced:

• ProDtlsymdefattachAlloc()
• ProDtlsymdefattachGet()
• ProDtlsymdefattachFree()
• ProDtlsymdefdataAttachAdd()
• ProDtlsymdefdataAttachSet()
• ProDtlsymdefdataAttachGet()
A symbol definition has several different ways in which instances of that symbol
can be attached to the drawing. In Creo Parametric users set these attachments
from the General tab on the Symbol Definition Attributes dialog. Each attachment
type is described in Creo Parametric TOOLKIT by an opaque data structure called
ProDtlsymdefattach. This is allocated and filled by the function
ProDtlsymdefattachAlloc(). The types of attachment are:

• FREE—The symbol will have no leaders, and will be attached by a specified
location.

• ON_ITEM—The symbol will be attached to an entity in the drawing.
• NORM_ITEM—The symbol will be attached to an entity, and be rotated to be

normal to that entity.
• LEFT_LEADER—The attachment is by a leader to a point on an entity at the

left of the symbol.
• RIGHT_LEADER—T he attachment is by a leader to a point on an entity at

the right of the symbol.
• RADIAL_LEADER—The attachment is by a leader attached to a circular

entity in the symbol.
The input arguments to the function are these

1276 Creo® Parametric TOOLKITUser’s Guide

• type—The type of attachment
• entity_id—The id of the entity in the symbol definition which has the

attachment point, if the attachment type is *_LEADER.entity_parameter The
“t” value of the location on the entity which forms the attachment point, if the
attachment type is *_LEADER.

• position—The location in the symbol coordinate system which forms the
attachment point, if the attachment type is FREE, ON_ITEM, or NORM_ITEM.

Symbol Definition Data
Functions Introduced:

• ProDtlsymdefdataAlloc()
• ProDtlsymdefdataFree()
• ProDtlsymdefdataIdGet()
• ProDtlsymdefdataHeighttypeGet()
• ProDtlsymdefdataHeighttypeSet()
• ProDtlsymdefdataTextrefSet()
• ProDtlsymdefdataTextrefGet()
• ProDtlsymdefdataElbowGet()
• ProDtlsymdefdataElbowSet()
• ProDtlsymdefdataTextangfixedGet()
• ProDtlsymdefdataTextangfixedSet()
• ProDtlsymdefdataScaledheightGet()
• ProDtlsymdefdataPathSet()
• ProDtlsymdefdataPathGet()
• ProDtlsymdefdataNameGet()
The opaque object ProDtlsymdefdata describes the contents of a symbol
definition. The functions ProDtlsymdefdataAlloc() and
ProDtlsymdefdataFree() allocate and free this data.
ProDtlsymdefdataIdGet() gives you the integer id of the symbol
definition in Creo Parametric that the data describes. This will be set if the
ProDtlsymdefdata has been acquired using ProDtlsymdefDataGet().
It is not necessary to set this when creating a symbol definition; the function
ProDtlsymdefCreate() will assign an id to the new note.
ProDtlsymdefdataHeighttypeGet() and
ProDtlsymdefdataHeighttypeSet() get and set the way in which the
size of an instance of this symbol definition is set. The three types are:

Drawings 1277

• FIXED—The symbol instance height is fixed.
• VARIABLE—The symbol instance height may be modified by the Creo

Parametric user.
• TEXTRELATED—The symbol instance height is related to the height of a text

item in the definition.
If the height type is TEXTRELATED the functions
ProDtlsymdefdataTextrefSet() and
ProDtlsymdefdataTextrefGet() set and get the text item in the symbol
definition which determines the symbol instance height. The reference is by note
id, line index, and text item index.
ProDtlsymdefdataElbowGet() and
ProDtlsymdefdataElbowSet() get and set the bit flag representing the
elbow of the symbol definition.
ProDtlsymdefdataTextangfixedGet() and
ProDtlsymdefdataTextangfixedSet() get and set whether the angle of
text in the symbol is fixed.
ProDtlsymdefdataScaledheightGet() returns the height of the symbol
definition in inches.
ProDtlsymdefdataPathSet() and ProDtlsymdefdataPathGet()
set and get the path and file name of the file in which the symbol definition may
be saved. This is used to give the symbol its name.
ProDtlsymdefdataNameGet() gets the name of the symbol definition.

Creating a Symbol Definition
The notes and draft entities that are contained by a symbol definition are created
using ProDtlentityCreate() and ProDtlnoteCreate(), using the
ProDtlsymdef handle as the symbol argument. So you need to create the empty
symbol definition first, and then add the notes and entities.
If you want to add parametric leader attachments, using
ProDtlsymdefdataAttachAdd() and so on, these identify the entities to
which the leaders should attach using the object handles output by the calls to
ProDtlnoteCreate() and ProDtlentityCreate() that created them.
So these attachment types should also be added after the symbol is created.
So the steps in creating a symbol definition are:

• Allocate a description — ProDtlsymdefdataAlloc()

• Add a FREE attachment — ProDtlsymdefattachAlloc(),
ProDtlsymdefdataAttachAdd()

• Create the symbol—ProDtlsymdefCreate()

1278 Creo® Parametric TOOLKITUser’s Guide

• Add the notes and entities (as for creating notes and entities in the drawing)
• Add any leader attachments—ProDtlsymdefattachAlloc(),

ProDtlsymdefdataAttachAdd()

Example 11: Create Symbol Definition
The sample code in the file UgDtlsymdefExamples.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
drawing, shows a function which creates a symbol definition which contains
four line entities forming a box, a note at the middle of the box, and a free
attachment.

Retrieving a Symbol Definition from Disk
Function introduced:

• ProDrawingDtlsymdefRetrieve()
• ProDrawingSystemDtlsymdefRetrieve()
Creo Parametric symbols exist in two different areas: the user-defined area and the
system symbols area.
The function ProDrawingDtlsymdefRetrieve() enables you to retrieve a
symbol definition from the user-defined location designated by the configuration
option pro_symbol_dir. The symbol definition should have been previously
saved to a file using Creo Parametric.
The function ProDrawingSystemDtlsymdefRetrieve() retrieves a
symbol definition from the system directory. The system area contains symbols
provided by Creo Parametric with the Detail module (such as the Welding
Symbols Library).

Symbol Instance Variable Text
Functions Introduced:

• ProDtlvartextAlloc()
• ProDtlvartextFree()
• ProDtlvartextDataGet()
A symbol instance may replace any text inside a note in the symbol definition that
is enclose in back slash characters. The opaque data structure ProDtlvartext
describes such a substitution. It describes the “prompt” string, that is, the string in
the symbol definition which it is replacing, and the “value”, that is, the new text
string.

Drawings 1279

The function ProDtlvartextAlloc() allocates and initializes a
ProDtlvartext object. ProDtlvartextFree() frees the memory, and
ProDtlvartextDataGet() unpacks the information in a
ProDtlvartext.

Symbol Instance Data
Functions Introduced:

• ProDtlsyminstdataAlloc()
• ProDtlsyminstdataFree()
• ProDtlsyminstdataColorSet()
• ProDtlsyminstdataColorGet()
• ProDtlsyminstdataDefSet()
• ProDtlsyminstdataDefGet()
• ProDtlsyminstdataAttachtypeSet()
• ProDtlsyminstdataAttachtypeGet()
• ProDtlsyminstdataDefattachSet()
• ProDtlsyminstdataDefattachGet()
• ProDtlsyminstdataAttachmentGet()
• ProDtlsyminstdataAttachmentSet()
• ProDtlsyminstDimattachGet()
• ProDtlsyminstdataLeadersCollect()
• ProDtlsyminstdataLeadersSet()
• ProDtlsyminstdataLeaderAdd()
• ProDtlsyminstdataElbowlengthGet()
• ProDtlsyminstdataElbowlengthSet()
• ProDtlsyminstdataAngleSet()
• ProDtlsyminstdataAngleGet()
• ProDtlsyminstdataScaledheightSet()
• ProDtlsyminstdataScaledheightGet()
• ProDtlsymInstnoteDataGet()
• ProDtlsymInstentityDataGet()
• ProDtlsyminstdataDisplayedSet()
• ProDtlsyminstdataIsDisplayed()
• ProDtlsyminstdataIsInvisible()

1280 Creo® Parametric TOOLKITUser’s Guide

• ProDtlsyminstdataVartextAdd()
• ProDtlsyminstdataVartextsSet()
• ProDtlsyminstdataVartextsCollect()
• ProDtlsyminstdataTransformGet()
• ProDtlsyminstdataGroupoptionsSet()
• ProDtlsyminstEntitiesVisibleGet()
• ProDtlsyminstIsDatumTarget()
• ProDtlsyminstEnvelopeGet()
• ProDtlsyminstReferencesAdd()
• ProDtlsyminstReferencesGet()
• ProDtlsyminstReferenceDelete()
ProDtlsyminstdataAlloc() and ProDtlsyminstdataFree()
allocate and free a ProDtlsyminstdata description.
ProDtlsyminstdataDefSet() and ProDtlsyminstdataDefGet()
set and get the reference to the symbol definition that this instance instantiates.
ProDtlsyminstdataAttachtypeSet() and
ProDtlsyminstdataAttachtypeGet() set and get the type of attachment
being chosen for the symbol instance. The corresponding attachment types much
exist in the symbol definition.
If you want to make an attachment to a symbol instance of a type that was not
specified in the symbol definition, you can add you own symbol definition
attachment to the symbol instances. ProDtlsyminstdataDefattachSet()
and ProDtlsyminstdataDefattachGet() set and get a
ProDtlsymdefattach object on a symbol instance with this purpose.
ProDtlsyminstdataAttachmentGet() and
ProDtlsyminstdataAttachmentSet() get and set the actual attachment
for the symbol instance, that is, where it is positioned on the drawing, in the form
of a ProDtlattach object. Refer to the section on Detail Attachments and
Leaders on page 1268 for more information about this object.

Note
You cannot attach a symbol to 3D model annotation using the OFFSET
attachment type. While attaching a symbol to 3D model annotation, if you set
the attachment type as OFFSET, the function
ProDtlsyminstdataAttachmentSet() returns the error PRO_TK_
INVALID_TYPE.

Drawings 1281

The function ProDtlsyminstDimattachGet() returns the dimension to
which the specified symbol instance is attached. The function returns the error of
type PRO_TK_BAD_CONTEXT when the dimension to which the specified
symbol instance is attached is not available. In this case, the model containing the
dimension was either deleted or suppressed in the assembly.
ProDtlsyminstdataLeaderAdd() adds a leader to a symbol instance
description.
ProDtlsyminstdataLeadersSet() sets an array of leaders in a symbol
instance, replacing any existing leaders.

Note
To remove all the leaders from the symbol instance data, pass NULL as the
value for the input argument leaders and set the attachment type to
PROSYMDEFATTACHTYPE_FREE.

ProDtlsyminstdataLeadersCollect() outputs an array of the leaders
on a ProDtlsyminstdata description.
ProDtlsyminstdataElbowlengthGet() and
ProDtlsyminstdataElbowlengthSet() get and set the length of the
elbow that connects each leader to the symbol instance. If you do not call
ProDtlnotedataElbowlengthSet() when creating a symbol instance,
there will be no elbow.
ProDtlsyminstdataAngleSet() and
ProDtlsyminstdataAngleGet() get and set the rotation angle of the
symbol, if the symbol definition allows rotation. (See also the function
ProDtlsymdefdataTextangfixedSet() in the section on Symbol
Definition Data on page 1277.)
ProDtlsyminstdataScaledheightSet() and
ProDtlsyminstdataScaledheightGet() assign and return the height of
a symbol instance in the units of the owner drawing or model, respectively. This
value is consistent with the height value shown for a symbol instance in the
Properties dialog box in the Creo Parametric user interface.

Note
The scaled height obtained using the above functions is partially based on the
properties of the symbol definition assigned using the function
ProDtlsyminstdataDefSet(). Changing the symbol definition may
change the calculated value for the scaled height.

1282 Creo® Parametric TOOLKITUser’s Guide

ProDtlsymInstnoteDataGet() and
ProDtlsymInstentityDataGet() retrieve the data of a note and an entity,
respectively, in the symbol instance.
The function ProDtlsyminstdataIsDisplayed() checks if the specified
instance is not marked as erased. The function
ProDtlsyminstdataDisplayedSet() sets the flag which controls
whether or not the instance is marked as displayed.
The function ProDtlsyminstdataIsInvisible() checks if the specified
instance is invisible. An invisible symbol instance will not appear in the drawing
even if it marked as displayed. For example:
• if the symbol is in a draft group, which is marked as suppressed
• if the symbol is a BOM balloon, and the repeat region cannot find an

appropriate model
• if the symbol is a weld symbol, and its feature is suppressed
• if the symbol is a datum target symbol, and its feature is suppressed
ProDtlsyminstdataVartextAdd(),
ProDtlsyminstdataVartextsSet(),
ProDtlsyminstdataVartextsCollect() manipulate
ProDtllvartext objects in the symbol instance, which provide for
substitution of text in the symbol definition. See section Symbol Instance Variable
Text on page 1279 for more information about the ProDtlvartext object.
The function ProDtlsyminstdataTransformGet() provides a matrix that
describes the transformation between symbol definition coordinates and screen
coordinates for this instances, that is, it describes the location and orientation of
the symbol. The symbol coordinates are specified in inches.
The function ProDtlsyminstdataGroupoptionsSet() sets the option
for displaying groups in the symbol instance. The possible options are:

• Interactive—prompt the user to select the groups to activate
• All—activate all groups
• None—do not activate any group
• Custom—activate only those groups included in the array of

ProDtlsymgroup handles passed to this function.
See the section Drawing Symbol Groups on page 1286 to learn more about
accessing groups during symbol placement.
The function ProDtlsyminstEntitiesVisibleGet() returns the visible
entities in the symbol instance data. The input argument sym_inst is the symbol
instance that displays the symbol added to the drawing.

Drawings 1283

The function ProDtlsyminstIsDatumTarget() checks if the specified
symbol instance is a datum target. This function returns PRO_B_TRUE if the
specified symbol instance is a datum target and returns PRO_B_FALSE if it is
not.
The function ProDtlsyminstEnvelopeGet() returns the envelope of the
symbol. While retrieving coordinates of the symbol in a specified solid, if the
symbol is displayed in the solid as well as in the drawing, the drawing must not be
active. The input arguments follow:
• syminst—Symbol.
• drawing—Drawing. The value for this input argument must be passed only if

the solid symbol is shown in the drawing. Else, pass it as NULL.
• path—If the value of the input argument drawing is not NULL, then the path

points to a part in an assembly whose drawing is passed here. This part is the
owner of the symbol instance.

The output argument envelope is the envelope surrounding the symbol in the
model coordinate system. For drawing, the envelope surrounding the symbol is in
the screen coordinates.
The function ProDtlsyminstReferencesAdd() adds semantic references
to a specified symbol. The input arguments follow:
• syminst—Specifies the symbol to which the semantic references are to be

added.
• refs—Specifies the array of semantic references using the enumerated data

type ProAnnotationReference.

Note
When a reference includes more than one collection, the function
ProDtlsyminstReferencesAdd() returns the error PRO_TK_
MAX_LIMIT_REACHED and no reference is added.

The function ProDtlsyminstReferencesGet() returns a ProArray of
additional semantic references for a symbol.
Use the function ProAnnotationreferencearrayFree() to free the
ProArray.

1284 Creo® Parametric TOOLKITUser’s Guide

The function ProDtlsyminstReferenceDelete() deletes the additional
semantic references. The input arguments are as follows:
• syminst—Symbol from which the additional semantic references are to be

deleted.
• index_ref—Specifies the index of the references that need to be deleted.

Indices start from 0. Get the existing references from
ProDtlsyminstReferencesGet().

Cross-referencing Weld Symbols and Drawing
Annotations
The functions described in this section provide a drawing object that represents a
shown weld symbol (if the weld symbol is shown in the drawing), or the weld
feature that owns a shown weld symbol.
Functions Introduced:

• ProFeatureDtlsyminstGet()
• ProDtlsyminstFeatureGet()
The function ProFeatureDtlsyminstGet() returns the detail symbol
instance that represents a shown model symbol.
The function ProDtlsyminstFeatureGet() returns the weld feature that
owns the shown weld symbol.

Example 12: Create Free Instance of Symbol Definition
The sample code in the file UgDtlsyminstExamples.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
drawing, shows a function which creates a free instance of a symbol definition.

Detail Group Data
Functions Introduced:

• ProDtlgroupdataAlloc()
• ProDtlgroupdataFree()
• ProDtlgroupdataIdGet()
• ProDtlgroupdataNameGet()
• ProDtlgroupdataIsDisplayed()
• ProDtlgroupdataDisplayedSet()
• ProDtlgroupdataItemAdd()

Drawings 1285

• ProDtlgroupdataItemsSet()
• ProDtlgroupdataItemsCollect()
ProDtlgroupdataAlloc() and ProDtlgroupdataFree() allocate and
free a detail group structure in the form of a ProDtlgroup object.
ProDtlgroupdataAlloc() also sets the name of the group.
ProDtlgroupdataIdGet() returns the internal ID of an existing group.
ProDtlgroupdataNameGet() gets the name of the group.
ProDtlgroupdataDisplayedSet() and
ProDtlgroupdataIsDisplayed() set and get the flag that controls
whether or not the group is visible.
ProDtlgroupdataItemAdd() adds an item to the group contents. Items
supported in the groups include entities, notes, symbol instances, and draft
drawing dimensions.
ProDtlgroupdataItemsSet() sets the array of items into a group structure,
replacing any existing items that may have been assigned.
ProDtlgroupdataItemsCollect() returns an array of the items in the
group structure.

Example 13: Create New Group of Items
The sample code in the file UgDtlgroupExamples.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
drawing, shows a command which creates a group from a set of selected detail
items.

Drawing Symbol Groups
This section describes Creo Parametric TOOLKIT functions that give access to
user-defined groups contained in drawing symbols.
User-defined groups in symbol definitions are represented by the following handle
in Creo Parametric TOOLKIT:
typedef struct pro_dtlvargroup
{
ProDtlsymdef symbol_def;
int var_group_id;
} ProDtlsymgroup;

The group handle contains the definition handle and an identifier that is unique in
the group definition.

1286 Creo® Parametric TOOLKITUser’s Guide

Creo Parametric allows a hierarchal relationship between the groups in a symbol
definition. Thus, some groups contain groups, or are parents of other groups. To
transmit the “level” in which a group resides to Creo Parametric TOOLKIT
functions, pass the ProDtlsymgroup handle of the parent group. To look at the
groups at the top level, pass a ProDtlsymgroup handle with an identifier of -1.

Identifying Symbol Groups in an Instance
Function introduced:

• ProDtlsyminstSymgroupsCollect()
The function ProDtlsyminstSymgroupsCollect() indicates which
groups are included in the symbol instance. You can collect the groups based on
their status:

• All—retrieve all groups in the definition of the symbol instance
• Active—retrieve only those groups which are actively shown in this symbol

instance
• Inactive—retrieve only those groups which are not shown in this symbol

instance

Identifying Symbol Groups in a Definition
Functions Introduced:

• ProDtlsymgroupSubgroupsCollect()
• ProDtlsymgroupDataGet()
• ProDtlsymgroupdataNameGet()
• ProDtlsymgroupdataItemsCollect()
• ProDtlsymgroupParentGet()
• ProDtlsymgroupLevelIsExclusive()
The function ProDtlsymgroupSubgroupsCollect() returns the names of
all subgroups stored in the symbol definition at the indicated level.
Use the function ProDtlsymgroupDataGet() to get the data for the group
stored in the symbol definition.
The function ProDtlsymgroupdataNameGet() returns the name of the
group using the symbol group data as input, while the function
ProDtlsymgroupdataItemsCollect() returns the names of all the group
members using symbol data as input. Note that all these group members are
entities or notes contained only within the symbol definition.
The function ProDtlsymgroupParentGet() returns the parent group to
which the current group belongs.

Drawings 1287

The function ProDltsymgroupLevelIsExclusive() indicates if the
subgroups stored in the symbol definition at the current level are exclusive or
independent. If groups are exclusive, only one of the groups at this level may be
active in the model at any time. If groups are independent, any number of groups
may be active.

Manipulating Symbol Groups
Functions Introduced:

• ProDtlsymgroupdataAlloc()
• ProDtlsymgroupdataNameSet()
• ProDtlsymgroupdataItemsSet()
• ProDtlsymgroupdataItemAdd()
• ProDtlsymgroupdataFree()
• ProDtlsymgroupSubgroupCreate()
• ProDtlsymgroupModify()
• ProDtlsymgroupDelete()
• ProDtlsymgroupLevelExclusiveSet()
The opaque handle ProDtlsymgroupdata contains the information needed to
define or redefine a group.
The function ProDtlsymgroupdataAlloc() allocates the data structure.
The function ProDtlsymgroupdataNameSet() sets the name of the symbol
group while the function ProDtlsymgroupdataItemsSet() sets the
specified items to be contained in the symbol group, provided such items belong
to the symbol definition. The items to be included can be detail entities and notes.
The function ProDtlsymgroupdataItemAdd() adds a single item to the
symbol group, provided such an item belongs to the symbol definition. The item
to be added can be a detail entity or a note.
The function ProDtlsymgroupdataFree() frees the data structure.
The function ProDtlsymgroupSubgroupCreate() creates a new group in
the symbol definition at the specified level below the parent group.
The function ProDtlsymgroupModify() modifies the symbol group
definition.
The function ProDtlsymgroupDelete() deletes a group from the symbol
definition. This function does not delete the entities contained in the group.
The function ProDtlsymgroupLevelExclusiveSet() makes the groups
at the indicated level, exclusive or independent, in the symbol definition.

1288 Creo® Parametric TOOLKITUser’s Guide

Drawing Edges
The functions described in this section provide access to the display properties
such as color, line font, and thickness of model edges in drawing views. Model
edges can be regular edges, silhouette edges, or non-analytical silhouette edges.
The opaque handle ProDrawingEdgeDisplay provides access to the display
properties of model edges.

Note
You can select model edges from detailed views for modification, but no
change will be applied. To modify the display of a model edge in a detailed
view, you must select the edge in the parent view.

Functions Introduced:

• ProDrawingEdgeDisplayGet()
• ProDrawingEdgeDisplaySet()
• ProDrawingedgedisplayFree()
• ProDrawingedgedisplayColorGet()
• ProDrawingedgedisplayColorSet()
• ProDrawingedgedisplayFontGet()
• ProDrawingedgedisplayFontSet()
• ProDrawingedgedisplayWidthGet()
• ProDrawingedgedisplayWidthSet()
• ProDrawingedgedisplayIsGlobal()
• ProDrawingedgedisplayGlobalSet()
The function ProDrawingEdgeDisplayGet() obtains the display properties
of a specified model edge in a drawing view. It allocates the
ProDrawingEdgeDisplay object for storing the display properties.
The function ProDrawingEdgeDisplaySet() assigns the display properties
of a specified model edge in a drawing view. After assigning the properties, you
must repaint the drawing view to update the display.
The function ProDrawingedgedisplayFree() frees the memory allocated
for the ProDrawingEdgeDisplay object.
The functions ProDrawingedgedisplayColorGet() and
ProDrawingedgedisplayColorSet() obtain and assign the color to be
used for the display of a specified model edge.

Drawings 1289

The functions ProDrawingedgedisplayFontGet() and
ProDrawingedgedisplayFontSet() obtain and assign the line font to be
used for the display of a specified model edge.
The functions ProDrawingedgedisplayWidthGet() and
ProDrawingedgedisplayWidthSet() obtain and assign the width to be
used for the display of a specified model edge. You must pass a value less than
zero to use the default width.

Note
The width obtained is in screen coordinates. To convert the width value into
drawing coordinates, use the sheet transformation matrix obtained using
ProDrawingSheetTrfGet().

The function ProDrawingedgedisplayIsGlobal() determines if the
model edge display properties such as color, line font, and width have been
applied globally to all the drawing views in the drawing sheet.
The function ProDrawingedgedisplayGlobalSet() sets the flag that
assigns the model edge display properties such as color, line font, and width
globally to all the drawing views in the drawing sheet.

Drawing Tables
A drawing table is identified by the DHandle ProDwgtable which is typedef to
and inherited from ProModelitem. The type field in ProDwgtable has the
value PRO_DRAW_TABLE.

Selecting Drawing Tables and Cells
Function Introduced:

• ProSelectionDwgtblcellGet()
In order to ask the user to select a table cell, use the option dwg_table as input to
ProSelect(), and then use ProSelectionModelitemGet() to acquire
the ProDwgtable handle to the table.
To select a table cell, use the option table_cell and call
ProSelectionModelitemGet() to get the table handle, and the special
function ProSelectionDwgtblcellGet() that returns the IDs of the
selected table segment, column and row. The function
ProSelectionDwgtblcellGet() returns row and column values starting
from 0. To get the actual values of the rows and the columns, add 1 to the result,
so that these can be used in other Creo Parametric TOOLKIT functions.

1290 Creo® Parametric TOOLKITUser’s Guide

Creating Drawing Tables
Functions Introduced:

• ProDwgtabledataAlloc()
• ProDwgtabledataOriginSet()
• ProDwgtabledataSizetypeSet()
• ProDwgtabledataColumnsSet()
• ProDwgtabledataRowsSet()
• ProDrawingTableCreate()
• ProDwgtableTextEnter()
• ProDwgtableDisplay()
• ProDwgtableGrowthdirectionSet()
The information required to build a table is contained in an opaque data structure,
ProDwgtabledata that has to be allocated and filled before the table can be
created. The function ProDwgtabledataAlloc() allocates the data.
ProDwgtabledataOriginSet() sets the position of the top left corner of a
table in the ProDwgtabledata description.
ProDwgtabledataSizetypeSet() specifies whether the size of the
columns and rows will be in screen coordinates, or as the number of text
characters. It is usually more convenient to specify as numbers of characters.
ProDwgtabledataColumnsSet() sets the width of the columns as well as
the default justifications of text in the columns.
ProDwgtabledataRowsSet() sets the height of the rows.
ProDwgtableTextEnter()

ProDrawingTableCreate() creates the table in the Creo Parametric
drawing and optionally displays it. If your program is about to add rows, columns,
or text to the table, it is usually better not to draw it immediately. It can be drawn
later using ProDwgtableDisplay() and this will avoid multiple redrawing.
The growth direction of a drawing table determines how a drawing table will
expand in terms of rows and columns when repeat regions are added to the table.
Use the function ProDwgtableGrowthdirectionSet() to set the growth
direction of the table. The growth direction argument,
ProDwgtableGrowthdirType takes the following values:
• PRODWGTABLEGROWTHDIR_DOWNRIGHT

• PRODWGTABLEGROWTHDIR_DOWNLEFT

• PRODWGTABLEGROWTHDIR_UPRIGHT

• PRODWGTABLEGROWTHDIR_UPLEFT

For more information on the growth direction, see the Creo Parametric Help.

Drawings 1291

Reading Drawing Tables
Functions Introduced:

• ProDrawingTableVisit()
• ProDrawingTablesCollect()
• ProDwgtableInfoGet()
• ProDwgtableColumnsCount()
• ProDwgtableRowsCount()
• ProDwgtableColumnSizeGet()
• ProDwgtableRowSizeGet()
• ProDwgtableCellNoteGet()
• ProDwgtableCelltextGet()
• ProDwgtableIsFromFormat()
• ProDwgtableRetrieve()
• ProDwgtableByOriginRetrieve()
• ProDwgtableGrowthdirectionGet()
ProDrawingTableVisit() visits all the tables in a specified drawing; it
conforms to the usual standard for visit functions.
ProDrawingTablesCollect() is an alternative, and returns an array of
ProDwgtable handles for a drawing.
A table may be divided into several segments, which are numbered sequentially
from 0. The function ProDwgtableInfoGet() takes a ProDwgtable and a
segment ID as input, and fills a data structure that describes the properties of the
table. If the segment does not exist, it returns PRO_TK_NOT_EXIST. The
properties of the table are as follows:
int rotation; The number of 90 degree turns

clockwise.
double seg_origin[3]; The screen coordinates of the

top left corner of the segment.
int nrows; The number of rows.
int ncols; The number of columns.
double outline[2][3]; The outline of the segment.
double seg_char_height; The text height used for the

segment.
double table_char_height; The text height used for the

drawing.
double char_width; The character width factor.

The functions ProDwgtableRowsCount() and
ProDwgtableColumnsCount() return the number of rows and columns in a
table respectively.

1292 Creo® Parametric TOOLKITUser’s Guide

The functions ProDwgtableColumnSizeGet() and
ProDwgtableRowSizeGet() give the column width and row height for a
specified table column and row respectively.
The text item in each cell of a drawing table is stored as a detail note. If you need
to modify the note in some way, for example the style, you can use the
ProDtlnote*() functions described in the section on Detail Items on page
1255. The function ProDwgtableCellNoteGet() returns the handle to the
detail note that represents the text in a specified table cell.
The function ProDwgtableCelltextGet() places the text of the table into a
string array.
The function ProDwgtableIsFromFormat() indicates whether a table was
added to the table as a result of importing a format.
The function ProDwgtableRetrieve() retrieves a drawing table from a
properly formatted Creo Parametric table file, and places it in the specified
drawing. It allows you to add a table to a drawing without having to specify all the
table properties. This function also supports parameter tables exported in the CSV
or TXT format from the Parameters dialog box or using
ProParameterTableExport(). Refer to the Core: Parameters on page 210
chapter for more information on parameters.
The input arguments are:
• drawing—Specifies the drawing in which the table must be retrieved.
• file_name—Specifies the name of the drawing table. You must not mention

the extension.
• file_path—Specifies the path to the drawing table file. The path must be

specified relative to the working directory.
• file_version—Species the version of the drawing table that must be

retrieved. The version 0, represents the latest version of the drawing table.
• position—Specifies the coordinates of the point on the drawing sheet,

where the table must be placed. The upper-left corner of the table is placed at
this point on the drawing sheet. You must specify the value in screen
coordinates.

• solid—Specifies the model from which data must be copied into the
drawing table. If this argument is passed as NULL, an empty table is created.

• simp_rep—Specifies a handle to the simplified representation in a solid,
from which data must be copied into the drawing table. If this argument is
passed as NULL, and the argument solid is not NULL, then data from the
solid model is copied into the drawing table.

The function ProDwgtableByOriginRetrieve() retrieves a drawing table
from a properly formatted Creo Parametric table file, and places it in the specified
drawing. The function is similar to function ProDwgtableRetrieve(),

Drawings 1293

except that it positions the origin of the table at the specified point in the drawing.
Tables can be created with different origins by specifying the option Direction, in
the Insert Table dialog box.
The function ProDwgtableGrowthdirectionGet() gets the growth
direction of the table using the enumerated type
ProDwgtableGrowthdirType. For more information on the values of
ProDwgtableGrowthdirType, see the section Creating Drawing Tables on
page 1291.

Modifying Drawing Tables
Functions Introduced:

• ProDwgtableRowAdd()
• ProDwgtableColumnAdd()
• ProDwgtableRowDelete()
• ProDwgtableColumnDelete()
• ProDwgtableColumnWidthSet()
• ProDwgtableRowHeightSet()
• ProDwgtableRowheightAutoadjustGet()
• ProDwgtableRowheightAutoadjustSet()
• ProDwgtableCellsMerge()
• ProDwgtableCellsRemesh()
• ProDwgtableCelltextWrap()
• ProDwgtableSave()
• ProDwgtableRotate()
• ProDwgtableErase()
• ProDwgtableDelete()
ProDwgtableRowAdd() and ProDwgtableColumnAdd() can add a row
or a column before or after an existing row or column. The input arguments
height_in_chars and width_in_chars specify the row height and column width in
characters, respectively. Another input argument display specifies whether the
updated table should be displayed. When making many changes to a table, it is
advisable not to display them immediately, but to use
ProDwgtableDisplay() to update the display later.
ProDwgtableRowDelete() and ProDwgtableColumnDelete() delete
any specified row or column, including removing the text from the affected cells.

1294 Creo® Parametric TOOLKITUser’s Guide

ProDwgtableColumnWidthSet() and
ProDwgtableRowHeightSet() assign the width of a specified column and
the height of a specified row, respectively, depending upon the size of the drawing
table. The drawing table size given by the enumerated data type
ProDwgtableSizetype can be of the following types:

• PRODWGTABLESIZE_CHARACTERS—Specifies the size in characters. If the
specified value for width of a column or height of a row is a fraction,
PRODWGTABLESIZE_CHARACTERS rounds down the fractional value to the
nearest whole number.

• PRODWGTABLESIZE_SCREEN—Specifies the size in screen coordinates.
• PRODWGTABLESIZE_CHARS_TRUE—Specifies the size in characters. It

enables you to specify a fractional value for the width of a column and height
of a row.

To accommodate a wrapped text in a table row, you can use the Creo Parametric
TOOLKIT functions to automatically adjust the height of the row to accommodate
the entire text content. The functions
ProDwgtableRowheightAutoadjustGet() and
ProDwgtableRowheightAutoadjustSet() get and set the automatic row
height adjustment property for a row of a drawing table. These functions use the
enumerated type ProDwgtableRowheightAutoadjusttype, which has
the following values:
• PRODWGTBLROWHEIGHT_AUTOADJUST_FALSE—Specifies that the

automatic row height adjustment property is not set.
• PRODWGTBLROWHEIGHT_AUTOADJUST_TRUE—Specifies that the

automatic row height adjustment property is set.
• PRODWGTBLROWHEIGHT_AUTOADJUST_TRUE_LEGACY—Specifies a

pre-Creo Parametric 1.0 release behavior. In this behavior, sometimes the row
height may be automatically adjusting and sometimes may not be
automatically adjusting. To set an explicit row adjustment status use the
function ProDwgtableRowheightAutoadjustSet().

Note
○ The value PRODWGTBLROWHEIGHT_AUTOADJUST_TRUE_LEGACY is

not applicable to the function
ProDwgtableRowheightAutoadjustSet().

○ When using the function
ProDwgtableRowheightAutoadjustSet() any changes in the
height of a row will be seen only after the next regeneration, or a call to
the function ProDrawingTablesUpdate().

Drawings 1295

ProDwgtableCellsMerge() allows the merging of cells within a specified
range of rows and columns, to form a single cell. The new cell can be addressed
(for example, when using ProDwgtableTextEnter(), or other calls to
ProDwgtableCellsMerge()) by the row and column number of the original
top left cell. Rows below, and columns to the right, retain their original numbers.
The function ProDwgtableCellsRemesh() unmerges all the merged cells in
a specified range of rows and columns.
ProDwgtableCelltextWrap() wraps the text in a cell.
ProDwgtableSave() saves a drawing table in one of the formats listed below.
The formats given by the enumerated type ProDwgtableFormattype can be
of the following types:

• PRODWGTABLEFORMAT_TBL—Specifies the tabular format.
• PRODWGTABLEFORMAT_TXT—Specifies the text format.
• PRODWGTABLEFORMAT_CSV—Specifies the CSV format.
ProDwgtableRotate() rotates a table 90 degrees clockwise.
ProDwgtableErase() erases a drawing table.
ProDwgtableDelete() deletes a drawing table.

Notification Functions
Creo Parametric TOOLKIT notifications are available when a drawing table or a
row from a drawing table is deleted. The notification functions are established in a
session using the function ProNotificationSet().

• ProDwgtableDeletePreAction()
• ProDwgtableDeletePostAction()
• ProDwgtableRowDeletePreAction()
• ProDwgtableRowDeletePostAction()
The notification function ProDwgtableDeletePreAction() is called
before deletion of a drawing table. This function is available by calling
ProNotificationSet() with the value of the notify type as PRO_
DWGTABLE_DELETE_PRE.
The notification function ProDwgtableDeletePostAction() is called
after deletion of a drawing table. This function is available by calling
ProNotificationSet() with the value of the notify type as PRO_
DWGTABLE_DELETE_POST.
The notification function ProDwgtableRowDeletePreAction() is called
before the deletion of a row from the selected drawing table. The input arguments
for this function are as follows:

1296 Creo® Parametric TOOLKITUser’s Guide

• table—The table containing the row to be deleted.
• i_row—The index of the row to be deleted.

Note
The index of the first row is 1.

This function is available by calling ProNotificationSet() with the value
of the notify type as PRO_DWGTABLE_ROW_DELETE_PRE. The specified row is
not deleted if the application returns an error from this callback. If the user cancels
the deletion, an appropriate message should be displayed, if required.
The notification function ProDwgtableRowDeletePostAction() is called
after the deletion of a row from the selected drawing table. This function is
available by calling ProNotificationSet() with the value of the notify
type as PRO_DWGTABLE_ROW_DELETE_POST.

Example 14: Creation of Table Listing Datum Points
The sample code in the file UgDwgtableExamples.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
drawing, shows a command that creates a drawing table listing the datum points
in a model shown in a drawing view.

Drawing Table Segments
Functions Introduced:

• ProDwgtableSegMove()
• ProDwgtableSegCount()
• ProDwgtableSegSheetGet()
• ProDwgtableSegmentOriginSet()
Drawing tables can be constructed with one or more segments. Each segment can
be independently placed.

Note
For these functions, pass -1 to refer to the only segment of a one-segment
table.

Drawings 1297

Move a drawing table segment to new screen coordinates with the function
ProDwgtableSegMove(). Pass the coordinates of the target position in format
x, y, z=0 to this the function. It moves the table segment to the target position.
Determine the number of segments in a table with the function
ProDwgtableSegCount(). Pass the name of the table to the function and it
returns the number of table segments.
Use the function ProDwgtableSegSheetGet() to determine which sheet
contains a specified drawing table segment.
Use the function ProDwgtableSegmentOriginSet() to assign the origin
for a specified drawing table segment.

Repeat Regions
Functions Introduced:

• ProDwgtableCellIsComment()
• ProDwgtableCellComponentGet()
• ProDwgtableCellRefmodelGet()
• ProDrawingTablesUpdate()
The functions ProDwgtableCellIsComment(),
ProDwgtableCellComponentGet(),
ProDwgtableCellRefmodelGet(), and
ProDrawingTablesUpdate() apply to repeat regions in drawing tables.
ProDwgtableCellIsComment() indicates whether a cell in a repeat region
contains a comment.
ProDwgtableCellComponentGet() returns the full path to the component
referenced in a cell in a repeat region of a drawing table. However, this function
does not return a valid path if the cell has the attribute NO DUPLICATE or NO
DUPLICATE/LEVEL since there is no unique path available. In this case, use
ProDwgtableCellRefmodelGet() to return the reference assembly and
component referred to by the cell in a repeat region. This function differs
fromProDwgtableCellComponentGet() such that it returns reference
objects, even if the cell attribute is set to NO DUPLICATE or NO DUPLICATE/
LEVEL.

1298 Creo® Parametric TOOLKITUser’s Guide

The function ProDrawingTablesUpdate() updates repeat regions in all
tables to account for changes to the model or models. It is equivalent to the Creo
Parametric command Table,Repeat Region, or Update. The drawing must
be displayed in the current window.

Note
You must call the function ProMdlDisplay() to display the drawing
before using the function ProDrawingTablesUpdate().

Creating BOM Balloons
BOM balloons are circular callouts created in an assembly drawing. They shows
the Bill of Materials information for each component. You can add the BOM
balloons in the drawing using the functions described in this section.
Before you can add BOM balloons, you must create a table, add the repeat region,
enter the desired report symbols, and designate the BOM balloon region. After
this you can show BOM balloons on a selected assembly view.
Functions Introduced:

• ProDwgtableCellRegionGet()
• ProBomballoonCreate()
• ProBomballoonAllCreate()
• ProBomballoonByComponentCreate()
• ProBomballoonByRecordCreate()
• ProBomballoonClean()
The function ProDwgtableCellRegionGet() returns the ID of the repeat
region. You must specify the name of the table, the column and row ID as input
parameters.
The function ProBomballoonCreate() creates the BOM balloons at the
specified view. The input arguments are:
• pro_drawing—Specifies the name of the drawing.
• pro_table—Specifies the name of the table that contains the repeat region and

the bill of material.
• region_id—Specifies the ID of the repeat region that contains the bill of

material. If the ID of the repeat region in the table is -1, use the repeat region
with ID as 0 in the table.

• pro_view—Specifies the view where the balloons must be added.

Drawings 1299

The function ProBomballoonAllCreate() creates the BOM balloons to the
first view of the drawing.
The function ProBomballoonByComponentCreate() creates the balloons
at the specified view and on the specified component. If the view is specified as
NULL, the balloons are added to the first view of the drawing. Specify the path to
the component as component_memb_id_tab.
The function ProBomballoonByRecordCreate() creates the balloons for
the specified record in the BOM table. The input arguments are:
• pro_drawing—Specifies the name of the drawing.
• pro_table—Specifies the name of the table that contains the repeat region and

the bill of material.
• region_id—Specifies the ID of the repeat region that contains the bill of

material.If the ID of the repeat region in the table is -1, use the repeat region
with ID as 0 in the table.

• pro_view—Specifies the view where the balloons must be added. Specify this
argument to create the balloons without a leader.

• table_record_index—Specifies the record in the BOM table. The balloons are
created at the first component that matches the specified record.

• reference_memb_id_tab—Specifies the path to the component. This path is
used as reference for the leader of the balloon.

• reference_id—Specifies the ID of the component. When the ID is set to K_
NOT_USED, the balloons are attached without leaders.

• reference_type—Specifies the type of component using the enumerated data
type ProType.

• attach_note_location—Specifies a ProArray of the attachment point for the
balloons on the component.

The function ProBomballoonClean() cleans up the location and display of
BOM balloons in the specified view. The input arguments are:
• pro_drawing—Specifies the name of the drawing.
• pro_view—Specifies the view where BOM balloons have been added.
• clean_pos—Specifies a boolean value to indicate if the balloon must be

cleaned.
• existing_snap_lines—Specifies a boolean value to indicate if the existing snap

lines must be used for the clean up.
• offset_from_view_outline—Specifies the offset distance for the balloon

placement from the view outline.
• stagger—Specifies a boolean value to indicate if the balloons must be

staggered at different offset distance from the view outline.
• create_stagger_snap_lines—Specifies the incremental value for the stagger

distance between the snap lines.

1300 Creo® Parametric TOOLKITUser’s Guide

• interballoons_distance—Specifies the distance between the BOM balloons.
• attach_to_surface—Specifies if the leaders of the balloon must point to edges

or surfaces. To attach the leader to a surface specify the value as PRO_B_
TRUE.

Drawing Dimensions
This section describes Creo Parametric TOOLKIT functions that give access to
the types of dimension that can be created in drawing mode. They do not apply to
dimensions which are created in solid mode, either those created automatically as
a result of feature creation, or reference dimensions created in a solid.
The ProDimension object is introduced in the section on Dimensions on page
566; read the explanation of ProDimension at the start of that section before
reading further.
Dimensions created in drawing mode are stored either in the solid or in the
drawing, depending upon the setting of the config.pro option CREATE_
DRAWING_DIMS_ONLY. The default is NO, meaning that the dimensions will be
stored in the solid. Refer to the Creo Parametric Detailed Drawings Help for more
information on the various types of created dimension, and their behavior.
The owner field in the ProDimension object always refers to the model in
which the dimension is stored.
The function ProDrawingDimensionVisit(), described in the section on
Dimensions on page 566, can be used to find all the dimensions stored in a
drawing.

Drawing Dimension Attachments and Dimension
Creation
Functions Introduced:

• ProDrawingDimAttachpointsGet()
• ProDrawingDimAttachpointsViewGet()
• ProDrawingDimensionCreate()
The function ProDrawingDimAttachpointsGet() retrieves the entities to
which a dimension is attached and the type of attachments. This is applicable only
for dimensions created in the drawing mode.

Drawings 1301

Note
Dimensions created in solid mode are stored in a different way from those
created in a drawing, because of their different role, and their attachments are
not accessible to this function. If the function is called for a function created in
solid mode, it will return an error.

The information about the entities to which the dimension is attached is given by
the following output arguments:

• attachments_arr—Specifies a ProArray of entities to which a dimension is
attached. Each attachment point is described by two consecutive array
elements, of which the second one may be NULL. If both elements are not
NULL, then the attachment point refers to the intersection of the elements. If
the second element is NULL, then the attachment point refers to the first one.

• dsense_arr—Specifies a ProArray of ProDimSense that gives more
information about how the dimension attaches to the entities.

ProDimSense is declared in header file ProDimension.h. This is the
declaration:
typedef struct pro_dim_sense {

ProDimSenseType type;
int sense;
ProDimAngleSense angle_sense;
ProDimOrient orient_hint;

} ProDimSense;

The type field indicates what type of information is being provided by the
sense and/or angle_sense fields. The following sections list the values of
ProDimSenseType with an explanation of the value of sense and angle_
sense needed in each case.

1302 Creo® Parametric TOOLKITUser’s Guide

Note
Some of the explanations below refer to the direction of an entity. Each entity
(which includes 3D edges and curves, and 2D draft entities) has an inherent
direction which is the direction in which its parameter “t” increases. In the
data structure description of the entity, ProCurvedata, the first end
specified is always the end at which t=0. For example, the direction of a line
entity is from field end1 to end2 in ProLinedata.

• PRO_DIM_SNS_TYP_NONE— In this case, no other information is needed
to describe the attachment points. For example, if there is a single attachment
which is a straight line, the dimension is the length of the line; if the
attachments are two parallel lines, the dimension is the distance between them.

• PRO_DIM_SNS_TYP_PNT— In this case the sense field is set to a value
of the enum ProPointType (declared in the header), which specifies the
part of the entity to which the dimension is attached. The possible values are
these:

○ PRO_POINT_TYP_END1— The first end (that is, where “t” = 0)
○ PRO_POINT_TYP_END2— The second end (that is, where “t” = 1.0)
○ PRO_POINT_TYP_CENTER— The center, if entity is an arc or a circle
○ PRO_POINT_TYP_NONE— This is equivalent to setting type to PRO_

DIM_SNS_TYP_NONE

○ PRO_POINT_TYP_MIDPT— The midpoint of the entity (where “t” =
0.5)

• PRO_DIM_SNS_TYP_SPLN_PNT— This means that the attachment is to a
point of a spline. The sense field is set to the index of the spline point.

• PRO_DIM_SNS_TYP_TGT_IDX— The dimension attaches to a tangent of
the entity, which is an arc or circle. The sense field is set to the index of the
tangent in a list of all possible tangents ordered by the “t” value at which they
touch the entity.

Drawings 1303

• PRO_DIM_SNS_TYP_LIN_AOC_TGT— The dimension is the
perpendicular distance between a line and a tangent to an arc or a circle which
is parallel to the line. The value of sense is one of the values of the enum
ProDimLinAocTgtSense. If the two possible tangents are on different
sides of the line entity (because the distance from the line to the center is less
than the radius) then the two tangents are distinguished as left or right of the
line (with respect to its natural direction). If the two tangents are on the same
side of the line (because the distance from the line to the center is more than
the radius), the two tangents are distinguished as on the same side of the arc/
circle center (0) or on the opposite side (1). There is an enum value for each of
the four possible combinations of ways to identify a tangent, though of course
only two are possible for a particular line and arc/circle pair.

The four values of ProDimLinAocTgtSense are:

• PRO_DIM_LIN_AOC_TGT_LEFT0—The tangent is to the left of the line,
and on the same side of the center of the arc/circle as the line.

• PRO_DIM_LIN_AOC_TGT_RIGHT0—The tangent is to the right of the line,
and on the same side of the center of the arc/circle as the line.

• PRO_DIM_LIN_AOC_TGT_LEFT1—The tangent is to the left of the line,
and on the opposite sid of the center of the arc/circle to the line.

• PRO_DIM_LIN_AOC_TGT_RIGHT1—The tangent is to the right of the line,
and on the opposite side of the center of the arc/circle to the line.

• PRO_DIM_SNS_TYP_ANGLE— The dimension is the angle between two
straight entities. The field angle_sense is given by the structure
ProDimAngleSense which contains three boolean fields. They have the
following meaning:

○ is_first—Is set to TRUE if the angle dimension starts from this entity
in a counterclockwise direction; FALSE if the dimension ends at this
entity. The value must be TRUE for one entity, and FALSE for the other.

○ should_flip—If should_flip is FALSE, and the entity's inherent
direction is away from the angle vertex, then the dimension attaches
directly to the entity. If the entity's direction is towards the angle vertex,
the dimension is attached to a witness line which is in line with the entity
but on the opposite side of the angle vertex—If should_flip is TRUE,
then these cases are interchanged.

○ pic_vec_dir—Reserved for future use.
• PRO_DIM_SNS_TYP_PNT_ANGLE—The dimension is the angle between a

line entity and the tangent to a curved entity at one of its ends. The curve
attachment is of this type. (The line attachment is of the type PRO_DIM_

1304 Creo® Parametric TOOLKITUser’s Guide

SNS_TYP_PNT described above.) In this case both the angle and angle_
sense fields must be set: sense shows which end of the curve the
dimension is attached to; angle_sense shows the direction in which the
dimension rotates and in which side of the tangent it attaches.

The field orient_hint describes the orientation of the dimension in cases
where this cannot be deduced from the attachments themselves. (When such a
dimension is created interactively in Creo Parametric, the user is prompted for the
extra information.) For example, if the attachments are datum points that are not
vertically or horizontally aligned, Creo Parametric needs to know whether the
dimension is to be horizontal, vertical, or slanted. The hint refers to the dimension
itself, not the attachment, although it is a field in ProDimSense. Creo
Parametric looks at the value of orient_hint in the first item in the
ProDimSense array you provide.
The values of ProDimOrient are:

• PRO_DIM_ORNT_NONE—No orientation information is needed or provided.
• PRO_DIM_ORNT_HORIZ—The dimension is horizontal
• PRO_DIM_ORNT_VERT—The dimension is vertical
• PRO_DIM_ORNT_SLANTED—The dimension is slanted
• PRO_DIM_ORNT_ELPS_RAD1—The major diameter of an ellipse
• PRO_DIM_ORNT_ELPS_RAD2—The minor diameter of an ellipse
• PRO_DIM_ORNT_ARC_ANG—The angle of an arc
• PRO_DIM_ORNT_ARC_LENGTH—The length of an arc
• PRO_DIM_ORNT_LIN_TANCRV_ANG—If the dimension is attached to a

line and an end point of a curve, the default dimension will be a linear
dimension showing the distance between the line and the curve point. If you
want the dimension to show instead the angle between the line and the tangent
at the curve point, set “orient_hint” to this value.

The function ProDrawingDimAttachpointsViewGet() retrieves the
attachments and sense of the specified drawing dimension. This is applicable only
for dimensions that are created in the drawing mode. This function fetches and
interprets the attachment in the context of the view in which the dimension is
placed. The function ProDrawingDimAttachpointsViewGet() supports
drawing dimensions that are created from intersections of geometric entities.
The information about the entities to which the dimension is attached is given by
the following output arguments:

• attachments_arr—Specifies a ProArray of entities to which a dimension is
attached. Each attachment point is described by two consecutive array
elements, out of which the second one may be a NULL. If both elements are

Drawings 1305

not NULL, the attachment point refers to the intersection of the elements. If the
second element is NULL, the attachment point refers to the first one.

• dsense_arr—Specifies a ProArray of ProDimSense that provides more
information on how the dimension attaches to the entities.

The function ProDrawingDimCreate() has been deprecated. Use the
function ProDrawingDimensionCreate() instead. The function
ProDrawingDimensionCreate() creates a dimension in a drawing. It takes
as input an array of ProSelection objects and an array of ProDimSense
structures that describe the required attachments. It will store the new dimension
in the solid or the drawing depending upon the setting of the config.pro
option CREATE_DRAWING_DIMS_ONLY. Specify the orientation of the
dimension in the input argument orient_hint. You can create dimensions that have
intersection type of reference. The intersection type of reference is a reference that
is derived from the intersection of two entities. Refer to the Creo Parametric
Detailed Drawings Help for more information on intersection type of reference.
The dimension will be added to the drawing view specified in the
ProSelection object. If you want to build the attachment ProSelection
object programmatically by calling ProSelectionAlloc(), rather than
interactively using ProSelect(), call the function
ProSelectionViewSet() to ensure that your ProSelection specifies the
drawing view.
The function outputs a ProDimension object to identify the new dimension.

Ordinate Dimensions
Functions Introduced:

• ProDrawingDimIsOrdinate()
• ProDrawingOrdbaselineCreate()
• ProDrawingDimToOrdinate()
• ProDrawingDimToLinear()
The function ProDrawingDimIsOrdinate() tells you whether a particular
dimension is an ordinate dimension. If so, it also outputs a ProDimension
object to identify the baseline dimension being referenced.
The function ProDrawingOrdbaselineCreate() converts a specified
dimension to an ordinate baseline dimension. The choice of which end of the
dimension becomes the baseline is made by an input of type ProVector which
should be close to the appropriate attachment entity, and be in 3D solid
coordinates. The function outputs a new ProDimension object which is used to
identify the baseline dimension when converting to ordinate other dimensions
which should share that baseline.

1306 Creo® Parametric TOOLKITUser’s Guide

The function ProDrawingDimToOrdinate() converts an existing linear
dimension to ordinate. It requires as one of its inputs a ProDimension object
that was output from ProDrawingOrdbaselineCreate() as input to
identify the baseline.
The function ProDrawingDimToLinear() converts an existing ordinate
dimension to linear.
The last three functions in this section all update the display of the dimension if it
is currently displayed.

Example 15: Command Creation of Datum Point Table
The sample code in the file UgDrawingDimensions.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
drawing, shows a command which creates vertical and horizontal ordinate
dimensions from each datum point in a model in a drawing view to a selected
coordinate system datum.

Other Drawing Dimension Properties
Functions Introduced:

• ProDrawingDimIsAssociative()
• ProDrawingDimensionIsDisplayed()
• ProDrawingDimensionIsToleranceDisplayed()
• ProDrawingDimensionViewGet()
• ProDrawingDimSwitchView()
• ProDrawingDimensionPosGet()
• ProDrawingDimensionTextstyleGet()
• ProDrawingDimensionMove()
• ProDrawingDualDimensionGet()
• ProDimensionDualOptionsGet()
• ProDimensionDualOptionsSet()
• ProDrawingDimensionPathGet()
If you create a dimension which attaches only to draft entities in the drawing, the
dimension may be associative or non-associative. This setting depends on the
setting of the drawing setup option associative_dimensioning. The
associative status of a dimension remains even when the setup option changes, so
a drawing may contain dimensions of both types. The function
ProDrawingDimIsAssociative() tells you whether or not a particular
dimension is associative. Refer to the Drawing User's Guide for a fuller
description of associative draft dimensions.

Drawings 1307

The function ProDrawingDimensionIsDisplayed() identifies whether a
drawing dimension is displayed in the drawing.
The function ProDrawingDimensionIsToleranceDisplayed()
identifies whether the tolerance value is displayed on the drawing dimension.
The function ProDrawingDimensionViewGet() tells you what drawing
view a dimension is being displayed in. ProDrawingDimSwitchView()
allows you to switch it's display to another view. Note that not all views will
support the display of particular dimension.
The function ProDrawingDimensionPosGet() returns the position of the
center of the text box for the specified dimension. The coordinates returned by this
function cannot be used in the function ProDrawingDimensionMove(). Use
the function ProDimlocationTextGet() instead of the function
ProDrawingDimensionPosGet().
The function ProDrawingDimensionTextstyleGet() retrieves the text
style assigned to the specified dimension or reference dimension. From Creo
Parametric 2.0 M190 onward, the function
ProDrawingDimensionTextstyleGet() has been superseded by the
function ProAnnotationTextstyleGet().
The function ProDrawingDimensionMove() allows you to move the
dimension text to a new position on the drawing. Use the function
ProDimlocationTextGet() to get the position before and after the move.
The function ProDrawingDualDimensionGet() identifies whether a
drawing is using dual dimensioning, and also specifies the properties of the dual
dimensioning.
The function ProDimensionDualOptionsGet() gets information about the
display options for the specified dual dimension. In the input argument drawing,
specify the drawing in which the dimension is displayed. To specify a dimension
in owner model, specify the argument value as NULL. The output arguments are:
• type—From Creo Parametric 5.0.0.0 onward, this argument is no longer

supported. Specifies the type of display for primary and secondary dimension
using the enumerated data type ProDualDimensionDisplayType. The
valid values are:
○ PRO_SECONDARY_DIM_DISPLAY_OFF—Specifies that secondary

dimension is not displayed in a dual dimension.
○ PRO_SECONDARY_DIM_DISPLAY_BOTTOM—Specifies that the

secondary dimension must be placed below the primary dimension.
○ PRO_SECONDARY_DIM_DISPLAY_RIGHT—Specifies that the

secondary dimension on the same line as the primary dimension, on the
right side.

• secondary_unit—From Creo Parametric 5.0.0.0 onward, this argument is no
longer supported. Specifies the name of the unit for secondary dimension.

1308 Creo® Parametric TOOLKITUser’s Guide

• dim_decimals—Specifies the number of decimal places for the secondary
dimension.

• tol_decimals—Specifies the number of decimal places for tolerance in the
secondary dimension.

Use the function ProDimensionDualOptionsSet() to set the display
options for dual dimensions. From Creo Parametric 5.0.0.0 onward, the arguments
type and secondary_unit are no longer supported for the function
ProDimensionDualOptionsSet().
The function ProDrawingDimensionPathGet() extracts the component
path for a dimension displayed in a drawing.

Drawings 1309

60
Production Applications:

Sheetmetal
Geometry Analysis .. 1312
Bend Tables and Dimensions ... 1315
Bend Allowance Parameters .. 1316
Unattached Planar Wall Feature ... 1317
Flange Wall Feature .. 1329
Extend Wall Feature .. 1346
Split Area Feature ... 1350
Punch and Die Form Features.. 1352
Quilt Form Feature .. 1359
Flatten Form Feature ... 1362
Convert Features .. 1364
Rip Features ... 1368
Corner Relief Feature .. 1377
Editing Corner Relief Feature ... 1383
Editing Corner Seams.. 1385
Bend Feature .. 1390
Editing Bend Reliefs .. 1403
Edge Bend Feature ... 1407
Unbend Feature .. 1410
Flat Pattern Feature... 1414
Bend Back Feature.. 1415
Sketch Form Feature ... 1417
Join Feature.. 1423
Twist Wall Feature ... 1426
Merge Wall Feature ... 1430
Recognizing Sheet Metal Design Objects .. 1432

1310 Creo® Parametric TOOLKITUser’s Guide

This chapter describes the sheet metal geometry analysis and bend table functions.
It also introduces and describes the feature element trees for the sheet metal
features.

Production Applications: Sheetmetal 1311

Geometry Analysis
Creo Parametric TOOLKIT geometry analysis functions provide for analysis of
sheet metal part geometry and ensure effective customization of sheet metal parts.
These analyses include extracting part thickness data and obtaining edge and
surface data for sheet metal components.
In addition, sheet metal bend edge and bend surface functions support analyses
that:

• Extract bend information associated with bend lines (K-factor, Y-factor, bend
deduction, bend allowance).

• Find bend lines when a part is in a flat state.
• Map flat state IDs to bent state IDs.
Functions Introduced:

• ProSmtPartThicknessGet()
• ProSmtSurfaceTypeGet()
• ProSmtedgeContourGet()
• ProSmtOppsurfGet()
• ProSmtOppedgeGet()
• ProSmtBendsrfParentGet()
• ProSmtBendsrfChildGet()
• ProSmtBendedgeChildGet()
• ProSmtBendedgeParentGet()
• ProSmtMdlIsFlatStateInstance()
• ProFaminstanceIsFlatState()
• ProSmtBendsrfInfoGet()
The function ProSmtPartThicknessGet() returns the dimension that
defines the thickness of the specified sheet metal component. If the model
contains the thickness parameter, then this dimension cannot be modified directly.
Use the function ProParameterValueWithUnitsSet() to assign the
value of the thickness parameter. If you specify a non sheet metal part,
ProSmtPartThicknessGet() returns PRO_TK_BAD_CONTEXT.
The function ProSmtSurfaceTypeGet() returns the type of the specified
solid surface. This enables you to determine whether a surface is created by a
sheet metal feature, and to distinguish among the different types of sheet metal
surfaces, such as side, white, and green.
The possible values are as follows:

1312 Creo® Parametric TOOLKITUser’s Guide

• PRO_SMT_SURF_NON_SMT—The surface was created by a solid feature.
• PRO_SMT_SURF_SIDE—The surface is a side surface created by a sheet

metal feature.
• PRO_SMT_SURF_FACE—The surface is the face (green) surface created by a

sheet metal feature.
• PRO_SMT_SURF_OFFSET—The surface is the offset (white) surface created

by a sheet metal feature.
The function ProSmtedgeContourGet() returns a complete contour that
contains the specified edge. This function returns PRO_TK_BAD_CONTEXT if the
edge is not on the green or white side of the specified part.
The function ProSmtOppsurfGet() returns a surface that is opposite (offset
to) the specified surface.
The function ProSmtOppedgeGet() returns the edge that is opposite (offset
to) the specified edge. Edge data for function ProSmtOppedgeGet() uses the
following definitions:

• An edge is lying on a green surface if one of its surfaces has SHEETMETAL
TYPE = FACE.

• An edge is lying on a white surface if one of its surfaces has SHEETMETAL
TYPE = OFFSET.

• The opposite edge to an edge must be on the surface opposite the original
edge's surface and must be a geometrical offset of the original edge.

• An edge is in a peripheral contour if, and only if the following are true:

○ It is in the part geometry.
○ Exactly one of its surfaces is either FACE or OFFSET.

The function ProSmtBendsrfParentGet() returns the parent of the
specified surface. For example, if the specified surface is in bent position, this
function returns the surface that is the most recent, unbent equivalent of the
specified surface. See notes below.
The function ProSmtBendsrfChildGet() returns the active (visible) child
surface of the specified, inactive (invisible) surface. A surface is active (visible) if
it is in the part geometry list. See notes below.
The function ProSmtBendedgeParentGet() returns the parent of the
specified edge. For example, if the specified edge is in bent position, this function
returns the edge that is the most recent, unbent equivalent of the specified edge.
See notes below.
The function ProSmtBendedgeChildGet() returns the active (visible) child
edge of the specified, inactive (invisible) edge. An edge is active (visible) if both
its surfaces are active and the edge is contained in the contours of both surfaces.
See notes below.

Production Applications: Sheetmetal 1313

• Edges and surfaces in quilt geometry are also visible, but they are invalid as
input to sheetmetal functions.

• Surface and edge parent and child functions use the following definitions:

○ An edge or surface has a parent if the edge or surface is a result of bending
or unbending another edge or surface.

○ If an edge or surface is active and is a result of bending or unbending, any
parent of this edge or surface that is in the chain of bends or unbends has
this edge or surface as the active child.

The function ProSmtMdlIsFlatStateInstance() checks if the model is a
flat state instance model.
The function ProFaminstanceIsFlatState() checks if the family
instance of the model is a sheet metal flat instance or not.
The function ProSmtBendsrfInfoGet() gets all the information about the
specified bend surface in a sheet metal part. You can specify as input, the face
surface PRO_SMT_SURF_FACE or, the offset surface PRO_SMT_SURF_
OFFSET which is created by the sheet metal feature. The cylindrical and planar
surfaces, which are created by unbending the cylindrical surfaces, can be specified
as input.
The following information is collected:
• radius—Specifies the bend radius.
• is_inside_radius—Specifies PRO_B_TRUE if the bend radius is inside. It

returns PRO_B_FALSE if the bend radius is outside.
• angle—Specifies the bend angle in degrees.
• dev_length—Specifies the developed length of the surface.
• dev_len_info—Specifies a structure, that contains information about the values

of various parameters, which were used to calculate the developed length. The
structure ProSmtDvlLenCalcInfo contains the following information:
○ method—Specifies the method used to calculate the developed length. The

method is specified using the enumerated data type ProDvlLenMethod.
○ model—Specifies the model, whose bend allowance settings are used to

calculate the developed length. Usually, the model is the part that owns the
specified bend surface. A model can also be a reference part, when the
specified surface has been copied from a reference part. Here the
developed length is calculated according to the bend allowance settings of
the reference part, or the bend allowance settings of a feature in the
reference part.

1314 Creo® Parametric TOOLKITUser’s Guide

○ y_factor_value—Specifies the value of K-factor or Y-factor used to
calculate the developed length.

Note
y_factor_value is specified only if the method used to calculate
developed length is PRO_DVL_LEN_DRIVEN_BY_Y_FACTOR.

○ bend_table—Specifies the name of the bend table that controls the bend
allowance calculations for the developed length.

○ formula—Specifies the formula that was used to calculate the developed
length.

○ allowance—Specifies the value of bend allowance from the bend table.
○ dimension—Specifies the dimension ID associated with the developed

length. If the method used to calculate developed length is PRO_DVL_
LEN_DRIVEN_BY_DIMENSION, then developed length is specified
manually by the user.

○ driven_by_part_settings—Specifies if the developed length is driven by
bend allowance settings of a part or by bend allowance settings of a
feature. PRO_B_TRUE indicates that the bend allowance settings of a part
are used.

Bend Tables and Dimensions
Bend table functions support reading in or removing bent table data for a sheet
metal part or feature in the part.
Sheet metal dimension functions find or set whether or not developed length
dimensions are driven.
Functions Introduced:

• ProSmtPartBendtableApply()
• ProSmtPartBendtableRemove()
• ProSmtFeatureBendtableApply()
• ProSmtFeatureBendtableRemove()
• ProSmtFeatureDevldimsGet()
• ProSmtDevldimIsDriven()
• ProSmtDevldimDrivenSet()

Production Applications: Sheetmetal 1315

The function ProSmtPartBendtableApply() applies the specified bent
table to the sheet metal part, and then regenerates the part. The input argument
from_file specifies whether the bend table is to be applied from memory or from
the specified file.
The function ProSmtPartBendtableRemove() removes the specified bend
table from the sheet metal part, and then regenerates the part using the Y Factor.
The function ProSmtFeatureBendtableApply() applies the specified
bent table to the sheet metal part feature, and then regenerates the part. The input
argument from_file specifies whether the bend table is to be applied from memory
or from the specified file.
The function ProSmtFeatureBendtableRemove() sets a sheet metal
feature to use the part bend table instead of the feature bend table, and then
regenerates the part.
The function ProSmtFeatureDevldimsGet() returns the developed length
dimensions for the specified sheet metal bend or wall feature. It also returns the
surfaces whose developed length these dimensions define.
The function ProSmtDevldimIsDriven() specifies whether a developed
length dimension is driven or not. Use the function
ProSmtDevldimDrivenSet() to set a developed length dimension to driven.

Bend Allowance Parameters
You can set the sheet metal bend allowance properties using the bend allowance
parameters. These parameters can be defined using the ProParameter
functions. For more information on Parameters, refer to the chapter Core:
Parameters on page 210.
You cannot edit these bend allowance parameters.

Update Bend Allowance from Assigned Material
Parameter Name—SMT_UPDATE_BEND_ALLOW_INFO

The parameter allows you to set the other bend allowance parameters to be
dependent on the assigned material.
Type—Boolean
Values—Yes or No
Default Value—Yes

Bend Allowance Type
Parameter Name—SMT_PART_BEND_ALLOW_FACTOR_TYPE

1316 Creo® Parametric TOOLKITUser’s Guide

The parameter allows you to set the bend allowance type. You can set whether the
K factor or Y factor must be used.
Type—String
Values—K factor or Y factor
Default Value—Y factor

Bend Allowance Factor Value
Parameter Name—SMT_PART_BEND_ALLOWANCE_FACTOR

The parameter allows you to set the value of the bend allowance factor.
Type—Real number
Values—Numeric value
Default Value—0.5

Bend Allowance Table Name
Parameter Name—SMT_PART_BEND_TABLE_NAME

The parameter allows you to define the name of the bend allowance table.
Type—String
Values—Can be empty or list of all the names of the bend tables from the part.
Default Value—Empty

Unattached Planar Wall Feature
A planar wall is a planar section of a sheet metal part. It can either be a primary
wall (the first wall in the design), or a secondary wall (which is dependent on the
primary wall). Planar walls can take any flat shape.
Creo Parametric TOOLKIT supports planar walls that are created using the Fill
Tool or the Planar Wall tool. Planar walls created using the Fill Tool are
unattached and may be the primary wall. Wall created using the Flat Wall tool are
secondary walls that are attached to existing wall edges, and may or may not have
a bend applied.

Unattached Planar Wall based on the Fill Tool
A sheet metal planar wall created based on the fill tool shares most of the same
elements as the standard fill feature documented in the header file
ProFlatSrf.h. The element tree should include some of the following sheet
metal specific elements to generate a sheet metal feature:

Production Applications: Sheetmetal 1317

• PRO_E_IS_UNATTACHED_WALL—Has a Boolean value that specifies
whether the feature is actually a flat wall.

• PRO_E_STD_DIRECTION—Specifies the material creation direction of the
sheet metal flat wall, which allows you to control the thickness of the first
sheet metal wall.

• PRO_E_STD_SMT_THICKNESS—Has a double value that specifies the wall
thickness. If this feature is not the first wall feature in the part, the thickness
value is irrelevant and can be 0.0. The feature inherits the thickness of the first
wall feature. This element is not required and cannot be modified if the sheet
metal thickness parameter is already assigned in the model.

• PRO_E_STD_SMT_SWAP_DRV_SIDE—Specifies whether to swap the sides
of the driving and the offset surfaces (the green and white surfaces of the
wall).

For details on standard fill features, refer to the section Fill Feature on page 859.

Feature Element Tree for the Attached Flat Wall
Feature
The element tree for Flat Wall feature is documented in the header file
ProSmtFlatWall.h and has a simple structure. The following figure
demonstrates the feature element tree structure:

1318 Creo® Parametric TOOLKITUser’s Guide

Feature Element tree for Flat Wall Feature

Production Applications: Sheetmetal 1319

1320 Creo® Parametric TOOLKITUser’s Guide

PRO_E_SMT_BEND_RELIEF

The feature element tree contains no non-standard element types. The following
list details special information about some of the elements in this tree:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_WALL.

• PRO_E_SMT_WALL_TYPE—Specifies the wall type. For Flat Walls, this
should be PRO_SMT_WALL_TYPE_FLAT.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_SMT_FLAT_WALL_ATT_EDGE—Specifies the attachment edges.

Production Applications: Sheetmetal 1321

• PRO_E_SMT_FLAT_WALL_ANGLE—Specifies the bend angle and consists
of the following elements:

○ PRO_E_SMT_FLAT_WALL_ANGLE_TYPE specifies the angle type and
is of the following types:

◆ PRO_BND_ANGLE_VALUE—uses an indicated value.
◆ PRO_BND_ANGLE_BY_PARAM—uses the default value of the sheet

metal parameter SMT_DFLT_BEND_ANGLE.
◆ PRO_BND_ANGLE_FLAT—uses no angle for the wall.

○ PRO_E_SMT_FLAT_WALL_ANGLE_VAL—specifies the angle value.
○ PRO_E_SMT_FLAT_WALL_ANGLE_FLIP—indicates whether or not to

reverse the angle direction.
• PRO_E_STD_SECTION—Specifies the wall section. Wall sections can be

standard or user-defined. Standard wall sections are stored in the location
<creo_loadpoint>\<datecode>\Common Files\text\smt.
These standard sections can be retrieved; their dimensions modified, and can
be added directly into the PRO_E_STD_SECTION element tree as the PRO_
E_SKETCHER element. This does not require definition of a sketch plane or
viewing direction, and it does not require an incomplete feature to be created
as is described in the chapter Element Trees: Sketched Features on page 1004.
When standard sections are used to create the wall, the Creo Parametric user
interface will show the correct type of section in the drop down menu (for
example: Rectangle, Trapezoid, L, T).

If a user-defined section is to be used to create a flat wall, it must conform to the
following restrictions:

• It must be a 2D section
• It must not be named the same name as one of the default section types from

the Creo Parametric loadpoint.
• It must contain a horizontal centerline and 2 coordinate systems. The

centerline represents the alignment with the attachment edge, and the
coordinate systems represent the edge endpoints.

• The horizontal dimension must be specified.
When user-defined sections are used to create the wall, Creo Parametric
automatically creates necessary sketching planes for the section during creation.
Therefore the section may be assigned directly into the PRO_E_SKETCHER
element without defining the sketch plane and without creating the feature as
incomplete. After the feature has been created, the 3D section can be extracted
from the feature element tree and the section can be modified to include references
to other geometric entities in the sheet metal part.

1322 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_SMT_FILLETS—Specifies the bend properties of the sheet metal
wall:

○ PRO_E_SMT_FILLETS_USE_RAD—true, a bend is applied, if false, no
bend is used.

○ PRO_E_SMT_FILLETS_SIDE—Specifies fillet side and has the
following permitted values:

◆ PRO_BEND_RAD_OUTSIDE—apply the bend radius to the outside of
the bend.

◆ PRO_BEND_RAD_INSIDE—apply the bend radius to the inside of
the bend.

◆ PRO_BEND_RAD_PARAMETER—apply the bend radius at the
dimension location set by the SMT_DFLT_RADIUS_SIDE parameter
in Creo Parametric.

○ PRO_E_SMT_FILLETS_VALUE—Specifies bend radius.
• PRO_E_SMT_WALL_HEIGHT—Specifies the height of the attachment wall.

It has the following elements:

○ PRO_E_SMT_WALL_HEIGHT_TYPE—Specifies the manner in which
the newly created wall feature attaches to the attachment edge. This
element takes the following values:

◆ PRO_SMT_WALL_HEIGHT_AUTO—Specifies that the wall feature
attaches to the attachment edge by trimming the height of the
attachment wall automatically.

◆ PRO_SMT_WALL_HEIGHT_VALUE—Specifies that the wall feature
attaches to the attachment edge by trimming the height of the
attachment wall by a specified value.

◆ PRO_SMT_WALL_HEIGHT_APP_BEND—Specifies that the wall
feature appends to the attachment edge without trimming the height of
the attachment wall.

◆ PRO_E_SMT_WALL_HEIGHT_VALUE—specifies the value of the
height of the attachment wall.

◆ PRO_SMT_WALL_HEIGHT_OFFSET_FROM_ORIG—Specifies that
the wall feature attaches to the selected attachment edge at the
specified offset distance. The distance is measured from the position of
the wall, if it was attached straight to the original edge, without bend.

◆ PRO_SMT_WALL_HEIGHT_OFFSET_FROM_BEND—Specifies that
the wall feature appends to the selected attachment edge at the
specified offset distance. The distance is measured from the position of

Production Applications: Sheetmetal 1323

the wall, if it was attached to the original edge with an additional bend,
as with the option PRO_SMT_WALL_HEIGHT_APP_BEND.

• PRO_E_SMT_BEND_RELIEF—Specifies bend relief at the edges of the new
wall feature. The relief can be specific differently on each side of the bend:

PRO_E_SMT_BEND_RELIEF_SIDE1—Specifies the first bend relief:

• PRO_E_BEND_RELIEF_TYPE specifies relief type and has the following
values:

○ PRO_BEND_RLF_NONE—specifies attachment of the wall using no
relief.

○ PRO_BEND_RLF_RIP— specifies ripping of the material at each
attachment point.

○ PRO_BEND_RLF_STRETCH—specifies stretching of the material for
bend relief at wall attachment point.

○ PRO_BEND_RLF_RECTANGULAR—specifies adding a rectangular relief
at each attachment point

○ PRO_BEND_RLF_OBROUND—specifies adding an obround relief at each
attachment point.

• PRO_E_BEND_RELIEF_WIDTH—specifies the relief width (for rectangular
and obround relief).

• PRO_E_BEND_RELIEF_DEPTH—specifies relief depth (for rectangular and
obround relief).

• PRO_E_BEND_RELIEF_LENGTH_TYPE—specifies the relief length type
and is defined by the enumerated data type ProBendRlfLengthType. The
valid values follow:

○ PRO_BEND_RLF_LENGTH_NOT_USED

○ PRO_BEND_RLF_LENGTH_BLIND—Creates the bend reliefs with a
length of the specified value.

○ PRO_BEND_RLF_LENGTH_TO_NEXT—Creates the bend reliefs with a
length to the next surface.

○ PRO_BEND_RLF_LENGTH_THROUGH_ALL—Creates the bend reliefs
through all surfaces.

○ PRO_BEND_RLF_LENGTH_TYPE_PARAM—Uses the SMT_DFLT_
BEND_REL_LENGTH_TYPE parameter value.

• PRO_E_BEND_RELIEF_LENGTH—specifies the relief length value.
• PRO_E_BEND_RELIEF_ANGLE—specifies relief angle (for stretch relief).
PRO_E_SMT_BEND_RELIEF_SIDE2—Includes an identical subtree for the
relief applied to the second side of the wall.

1324 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_SMT_WALL_THICKNESS_FLIP—Indicates whether or not to flip
the thickness direction of the new wall.

• PRO_E_SMT_DEV_LEN_CALCULATION—Specifies the method used to
calculate the Developed Length dimensions for bends.

• PRO_E_SMT_CORNERS_ARR—Specifies the edge transition for a particular
corner intersection. See the sectionThe Element Subtree for PRO_E_SMT_
CORNERS_ARR on page 1340 for more information on corner treatment.

○ PRO_E_WALL_CORNER_TREATMENT—Specifies the corner treatment
that is applied to the wall. This element is defined by the enumerated data
type ProWallCornerTreatment and it takes the following valid
values:

◆ PRO_WALL_CORNER_SEAM—Specifies if the corner is created using
a seam.

◆ PRO_WALL_CORNER_NO_SEAM—Specifies if the corner is created
without using a seam.

◆ PRO_WALL_CORNER_IGNORE—Specifies if the corner is not
created.

The Element Subtree for PRO_E_SMT_MTR_CUTS

Miter Cuts
A miter cut removes material from a flat wall feature. It is controlled by two
dimensions—width and offset. Offset is the distance between the end of the miter
cut and the placement chain.
• PRO_E_SMT_MTR_CUTS_ADD—Specifies the miter cuts to be added.
• PRO_E_SMT_THREE_BEND_CRNR_RELIEF_TYPE—Specifies the three

bend corner relief type and is defined by the enumerated data type
ProThreeBendCornerType.

ProThreeBendCornerType—Enables you to select the type of relief for
the three bend corner type in a flat wall. The valid values are:

○ PRO_THREE_B_CNR_TYPE_TANGENT—Creates cut tangent in the
middle bend edges to create the relief.

○ PRO_THREE_B_CNR_TYPE_CLOSED—Creates a corner tangent patch
to flatten as a deformation area.

○ PRO_THREE_B_CNR_TYPE_OPEN—Creates linear cuts to the side bend
vertices to create the relief.

○ PRO_THREE_B_CNR_TYPE_RIP—Creates rips to create the relief.

Production Applications: Sheetmetal 1325

○ PRO_THREE_B_CNR_TYPE_NO

Note
○ When PRO_E_SMT_THREE_BEND_CRNR_RELIEF_TYPE is set to

PRO_THREE_B_CNR_TYPE_CLOSED, the valid options for PRO_E_
SMT_MITER_CUT_GROOVE_TYPE are:

◆ PRO_MITER_CUT_NO_GAP

◆ PRO_MITER_CUT_OBROUND

○ When PRO_E_SMT_THREE_BEND_CRNR_RELIEF_TYPE is set to
PRO_THREE_B_CNR_TYPE_TANGENT, PRO_THREE_B_CNR_TYPE_
OPEN or PRO_THREE_B_CNR_TYPE_RIP, the valid options for PRO_
E_SMT_MITER_CUT_GROOVE_TYPE are:

◆ PRO_MITER_CUT_NO_GAP

◆ PRO_MITER_CUT_THROUGH_ALL

• PRO_E_SMT_MITER_CUT_GROOVE_TYPE—Specifies the groove type to
be cut in the miter and is defined by the enumerated data type
ProMiterCutType.

ProMiterCutType—Enables you to select the miter cut type in a flat wall.
The valid values are:
○ PRO_MITER_CUT_THROUGH_ALL—Creates the miter cut groove (all

the way through) to the corner relief.

If PRO_E_SMT_MITER_CUT_GROOVE_TYPE is set to PRO_MITER_
CUT_THROUGH_ALL, only PRO_E_SMT_MTR_CUTS_WIDTH_VAL is
used.

○ PRO_MITER_CUT_OBROUND—Creates the miter cut groove as obround.

If PRO_E_SMT_MITER_CUT_GROOVE_TYPE is set to PRO_MITER_
CUT_OBROUND, both PRO_E_SMT_MTR_CUTS_WIDTH_VAL and
PRO_E_SMT_MTR_CUTS_OFFSET_VAL are used.

○ PRO_MITER_CUT_UNDEFINED

○ PRO_MITER_CUT_NO_GAP—Creates the miter cut groove with zero
width.

If PRO_E_SMT_MITER_CUT_GROOVE_TYPE is set to PRO_MITER_
CUT_NO_GAP, neither is used.

1326 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_SMT_MTR_CUTS_WIDTH_VAL—Specifies the width value of the
miter cut.

• PRO_E_SMT_MTR_CUTS_OFFSET_VAL—Specifies the offset value of the
miter cut.

The Element Subtree for Length Calculation
• PRO_E_SMT_DEV_LEN_SOURCE— Specifies the development length

source. The valid values for this element are defined in the enumerated type
ProDvlLenSrcType, and are as follows:

○ PRO_DVL_SRC_NOT_DEFINED— Specifies that source is not defined
○ PRO_DVL_SRC_PART_YF_AND_BTAB—uses part Y-factor and applied

bend table.
○ PRO_DVL_SRC_PART_YF_ONLY—uses the part Y-factor.
○ PRO_DVL_SRC_FEAT_YF_AND_BTAB—uses the feature specific Y-

factor and bend table.
○ PRO_DVL_SRC_FEAT_BTAB_ONLY—uses the feature specific bend

table.
○ PRO_DVL_SRC_FEAT_YF_ONLY—uses the feature specific y-factor.
○ PRO_DVL_SRC_USE_ORIGINAL—calculates the development length

using the same option which was used to create the original development
length when the bend was created. For example, if original development
length of the bend was calculated using a part bend table, the new
development will also be calculated using the same table.

• PRO_E_SMT_DEV_LEN_Y_FACTOR—Specifies the feature Y-factor and has
the following elements:

○ PRO_E_SMT_DEV_LEN_Y_FACTOR_TYPE—Specifies the types of Y-
factor. The valid values for this element are defined in the enumerated type
ProDvlLenFactor, and are as follows:

◆ PRO_FACTOR_NOT_DEFINED

◆ PRO_FACTOR_Y

◆ PRO_FACTOR_K

○ PRO_E_SMT_DEV_LEN_Y_FACTOR_VALUE— Specifies the value of
Y- or K- factor.

• PRO_E_SMT_DEV_LEN_BEND_TABLE— Specifies the development length
bend table using the index of the bend table as loaded and stored in this model.

Production Applications: Sheetmetal 1327

Note
• Bend allowance is a method used to calculate the developed length of flat

sheet metal required to make a bend of a specific radius and angle. The
calculation accounts for the thickness of the sheet metal, bend radii, bend
angles, and other material properties such as Y- and K-factors. Developed
length fluctuates with different material types and thickness, and the bend
table accounts for those variations.

• Y- and K-factors are part constants defined by the location of the sheet metal
material's neutral bend line. The neutral bend line position is based on a
numeric reference for the type of sheet metal material used in your design. The
numeric references range from 0 to 1, with the lower numbers representing
softer material. Both the Y- and K-factors are integral elements in calculating
the developed length (the length of flat sheet metal required to make a bend of
a specific radius and angle) in your design.

Creating a Flat Wall Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Flat Wall Feature based on
element tree input. For more information about ProFeatureCreate(), refer
to the section Overview of Feature Creation on page 765 in the Element Trees:
Principles of Feature Creation on page 764 chapter.

Redefining a Flat Wall Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Flat Wall Feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
in the Element Trees: Principles of Feature Creation on page 764 chapter.

Accessing a Flat Wall Feature
Function Introduced

1328 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Flat Wall Feature and to retrieve the
element tree description of a Flat Wall Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 in the Element Trees: Principles of Feature Creation on page 764
chapter.

Example 1: Creation of a Rectangular Flat Wall using
a preselected edge
The sample code in UgSmtFlatWallCreate.c located at creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat
demonstrates how to create a rectangular flat wall using a preselected edge.

Flange Wall Feature
Flange wall features may be either swept or extruded.
A swept flange wall follows the trajectory formed by the chain of tangent
attachment edges. You can sketch a cross section along the attachment edge and
the wall sweeps along that edge. The attachment edge need not be linear and the
adjacent surface need not have to be planar.
An extruded flange wall extends from one linear edge into space. You can sketch
the side section of the wall and project it to a certain length in both directions.

Feature Element Tree for the Flange Wall Feature
The element tree for Flange Wall feature is documented in the header file
ProSmtFlangeWall.h, and has a simple structure. The following figure
demonstrates the feature element tree structure:

Production Applications: Sheetmetal 1329

Feature Element tree for Flange Wall Feature

1330 Creo® Parametric TOOLKITUser’s Guide

PRO_E_SMT_FLANGE_DEPTH

Production Applications: Sheetmetal 1331

PRO_E_SMT_BEND_RELIEF

1332 Creo® Parametric TOOLKITUser’s Guide

PRO_E_SMT_CORNER_RELIEF

PRO_E_SMT_MTR_CUTS

Production Applications: Sheetmetal 1333

PRO_E_SMT_CORNERS_ARR

PRO_E_SMT_DEV_LEN_CALCULATION

Apart from the usual element for the tree root, a Flange Wall feature contains the
following elements:

1334 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_WALL.

• PRO_E_SMT_WALL_TYPE—Specifies the wall type and must be

○ PRO_SMT_WALL_TYPE_FLANGE

○ PRO_SMT_WALL_TYPE_MERGE

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_SMT_FLANGE_TYPE—Specifies the type of flange wall:

○ PRO_FLANGE_WALL_TYPE_2D_SWEPT—a swept flange wall in the
default orientation.

○ PRO_FLANGE_WALL_TYPE_3D_SWEPT—a swept flange wall with
non-default directions, orientations, and start points.

○ PRO_FLANGE_WALL_TYPE_EXTRUDE—a flange wall extruded from a
sketching plane.

• PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the attachment edge
chain. If the type is swept, this can reference multiple non-tangent edges
selected as one by one or using any of the other instruction types. If the flange
wall type is to be "Extruded", this must contain a One by One chain with a
linear edge.

• PRO_E_SMT_FLANGE_TRAJ_CRV_NORM—Specifies whether the flange
wall should progress along the default edge chain direction or in the opposite
direction.

• PRO_E_STD_SECTION—Specifies the wall section.
Wall sections can be standard or user-defined. Standard wall sections are stored in
the location <creo_loadpoint>\<datecode>\Common Files\text\
smt. These standard sections can be retrieved, their dimensions modified, and can
be added directly into the PRO_E_STD_SECTION element tree as the PRO_E_
SKETCHER element. This does not require definition of a sketch plane or viewing
direction, and it does not require an incomplete feature to be created as is
described in the chapter Creating Sketched Features. When standard sections are
used to create the wall, the Creo Parametric user interface will show the correct
type of section in the drop down menu (for example: I, Arc, etc.).
If a user-defined section is to be used to create a flat wall, it must conform to the
following restrictions:

• It must be a 2D section.
• It must not be named the same name as one of the default section types from

the Creo Parametric loadpoint.

Production Applications: Sheetmetal 1335

• It must contain a horizontal centerline with a coordinate system located on it.
The centerline represents the alignment with the attachment wall, and the
coordinate system represents the attachment point for the section.

• The section may optionally contain bent or straight edges. It may also contain
sheet metal section entities that assist in constructing the correct swept
geometry.

When user-defined sections are used to create the wall, Creo Parametric
automatically creates necessary sketching planes for the section during creation.
Therefore the section may be assigned directly into the PRO_E_SKETCHER
element without defining the sketch plane and without creating the feature as
incomplete. After the feature has been created, if the wall type is 3D swept or
Extruded, the 3D section can be extracted from the feature element tree and the
section can be modified to include references to other geometric entities in the
sheet metal part.

• PRO_E_SMT_WALL_SHARPS_TO_BENDS—If PRO_B_TRUE then Creo
Parametric attempts to convert sharp edges in the section to bends.

• PRO_E_SMT_FLANGE_SEC_FLIP—Specifies whether or not to flip the
direction of the section for user-defined sections.

• PRO_E_SMT_FLANGE_DEPTH—Specifies the depth of the flange, that is,
the extent of the flange cover. This element governs the results for extruded
flange walls only. For swept walls, the extents are governed by the rules in the
element PRO_E_STD_CURV_COLLECTION_APPL, which might include
trim values and boundary geometry.

• PRO_E_SMT_FILLETS—Specifies the bend properties of the sheet metal
wall.

○ PRO_E_SMT_FILLETS_USE_RAD—If true, a bend is applied, if false,
no bend is used.

○ PRO_E_SMT_FILLETS_SIDE—Specifies fillet side and has the
following permitted values:

◆ PRO_BEND_RAD_OUTSIDE—apply the bend radius to the outside of
the bend.

◆ PRO_BEND_RAD_INSIDE—apply the bend radius to the inside of
the bend.

◆ PRO_BEND_RAD_PARAMETER—apply the bend radius at the
dimension location set by the SMT_DFLT_RADIUS_SIDE parameter
in Creo Parametric.

○ PRO_E_SMT_FILLETS_VALUE—the bend radius.
• PRO_E_SMT_WALL_HEIGHT—Specifies the height of the attachment wall.

It has the following elements:

1336 Creo® Parametric TOOLKITUser’s Guide

○ PRO_E_SMT_WALL_HEIGHT_TYPE—specifies the manner in which the
newly created wall feature attaches to the attachment edge. This element is
defined by the enumerated data type ProBendPosition and takes the
following values:

◆ PRO_BEND_POSITION_CONSTRAINED—Specifies that the
attached wall geometry is kept within the boundary of the attachment
edge.

◆ PRO_BEND_POSITION_PROF_ON_EDGE—Specifies that the bend
geometry is added while keeping the wall profile on the original
attachment edge

◆ PRO_BEND_POSITION_BEND_OUTSIDE—Specifies that the bend
geometry is added with the bend line tangent to the attachment edge.

◆ PRO_BEND_POSITION_OFFSET_BEND_APEX—Specifies that the
offset is measured from the attachment edge to the Bend Apex.

◆ PRO_BEND_POSITION_OFFSET_BEND_START—Specifies that
the offset is measured from the attachment edge to the Bend Start.

○ PRO_E_SMT_WALL_HEIGHT_VALUE specifies the value of the height
of the attachment wall.

• PRO_E_SMT_BEND_RELIEF— Specifies bend relief. Refer to the section
Feature Element Tree for the Sheetmetal Flat Wall Feature on page 1318 for
more information on this element subtree.

• PRO_E_SMT_WALL_THICKNESS_FLIP— Indicates whether or not to flip
the thickness direction of the new wall.

• PRO_E_SMT_CORNER_RELIEF—Indicates a compound element
representing corner relief. Corner relief is added at each intersection of a pair
of bends.

• PRO_E_SMT_MTR_CUTS—Indicates a compound element representing miter
cuts.

• PRO_E_SMT_AUTO_EXLD_EDGE—Specifies whether to set automatic
exclusion of edges. Creo Parametric uses the following set of rules and logic
in order to execute the automatic wall segment excluding:

○ Long wall segment has lower excluding priority than short wall segment
○ Small wall segment that is neighbor to long wall has high excluding

priority than other short wall segments
○ Awall segment whose overlapping area at the intersection of bend surfaces

of neighborhood wall segments is maximum has the highest excluding
priority

Production Applications: Sheetmetal 1337

• PRO_E_SMT_CORNERS_ARR—Specifies the edge transitions.
• PRO_E_SMT_DEV_LEN_CALCULATION—Specifies the properties used to

calculate the development length. See the section The Element Subtree for
PRO_E_SMT_DEV_LEN_CALCULATION on page 1327 for more
information.

The Element Subtree for PRO_E_SMT_FLANGE_DEPTH
PRO_E_SMT_FLANGE_DEPTH has the following elements:

• PRO_E_SMT_FLANGE_SIDE_1_DEPTH—Specifies first side of the flange
extents and has the following elements:

○ PRO_WALL_LEN_TYPE_NONE—the flange does not extend in this
direction.

○ PRO_WALL_LEN_TYPE_BLIND—the flange extends a specified length
value in this direction.

○ PRO_WALL_LEN_TYPE_BLIND_SYM—the flange extends a symmetric
length value in both direction. If this is used for side 1, side 2 must use
PRO_WALL_LEN_TYPE_NONE.

○ PRO_WALL_LEN_TYPE_TO_REF—the flange extends to a selected
geometric reference.

○ PRO_WALL_LEN_TYPE_TO_END—the flange extends to the end of the
attachment reference.

○ PRO_E_SMT_FLANGE_DEPTH_OFFSET—specifies the depth offset for
blind and symmetric blind extents.

○ PRO_E_SMT_FLANGE_DEPTH_REF—specifies the depth placement
reference for "to ref" extents.

• PRO_E_SMT_FLANGE_SIDE_2_DEPTH—Specifies side2 the second side
of the flange. This subtree is identical to the first side.

The Element Subtree for PRO_E_SMT_CORNER_RELIEF
Corner relief is required when multiple non-tangent edges are used for attachment
of the flange wall. The element PRO_E_SMT_CORNER_RELIEF represents
corner relief in the feature. It has the following properties:

• PRO_E_SMT_CORNER_RELIEF_TYPE specifies the types of corner reliefs:

○ PRO_CORNER_RELIEF_NO—Creo Parametric does not add relief and
generates square corners.

○ PRO_CORNER_RELIEF_V_NOTCH—Creo Parametric adds a V notch
shape cut at the corners.

1338 Creo® Parametric TOOLKITUser’s Guide

○ PRO_CORNER_RELIEF_CIRCULAR—Creo Parametric adds a circular
shape relief at the corners with a radius dimension.

○ PRO_CORNER_RELIEF_OBROUND—Creo Parametric adds an obround
relief at the corners with a specified diameter and depth.

○ PRO_CORNER_RELIEF_RECTANGULAR—Creo Parametric adds a
rectangular relief at the corners with a specified width and depth.

• PRO_E_SMT_CORNER_RELIEF_WIDTH a compound element with the
following elements:

○ PRO_E_SMT_CORNER_RELIEF_WIDTH_TYPE—This is one of the
members of ProSmdRelType. See table Relation Value Types on page
1342 for the list of value types permitted.

○ PRO_E_SMT_CORNER_RELIEF_WIDTH_VAL— This is the value for
the dimension, if the width type is PRO_DIM_ENTER.

• PRO_E_SMT_CORNER_RELIEF_DEPTH a compound element with the
following elements:

○ PRO_E_SMT_CORNER_RELIEF_DEPTH_TYPE—This is one of the
members of ProCornerRlfDepthType. See table for the list of value
types permitted.

○ PRO_E_SMT_CORNER_RELIEF_DEPTH_VAL—This is the value for
the dimension, if the width type is PRO_DIM_ENTER.

The Element Subtree for PRO_E_SMT_MTR_CUTS
A miter cut removes material from any profile intersecting wall segments. The
miter cut is controlled by two dimensions—width and offset as shown in the
figure below. Offset is the distance between the end of the miter cut to the
placement chain. Creo Parametric uses half of the specified width value to cut the
material of each side of the centerline of the miter cut.

Miter Cut

It has the following elements:

Production Applications: Sheetmetal 1339

• PRO_E_SMT_MTR_CUTS_ADD—Specifies whether to add miter cuts.
• PRO_E_SMT_MTR_CUTS_KEEP_DEF_AREAS—Specifies the deformation

area of the miter cut. A deformation area is a section of sheet metal that helps
to accurately stretch the material when you unbend the sheet metal part.

• PRO_E_SMT_MTR_CUTS_WIDTH

○ PRO_E_SMT_MTR_CUTS_WIDTH_TYPE—This is one of the members
of ProMiterCutWidthType. The valid types are:

◆ PRO_MITER_CUT_WIDTH_TYPE_BLIND—Specifies the type
PRO_DIM_ENTER

◆ PRO_MITER_CUT_WIDTH_TYPE_GAP—Specifies the type PRO_
DIM_SMT_GAP

◆ PRO_MITER_CUT_WIDTH_TYPE_PARAM—Specifies the type
PRO_DIM_DFLT_MITER_CUT_WIDTH

See table Relation Value Types on page 1342 for the list of value types
permitted.

○ PRO_E_SMT_MTR_CUTS_WIDTH_VAL—This is the value for the
dimension, if the width type is PRO_DIM_ENTER.

• PRO_E_SMT_MTR_CUTS_OFFSET

○ PRO_E_SMT_MTR_CUTS_OFFSET_TYPE—This is one of the members
of ProMiterCutOffsetType. The valid types are:

◆ PRO_MITER_CUT_OFFSET_TYPE_BLIND—Specifies the type
PRO_DIM_ENTER

◆ PRO_MITER_CUT_OFFSET_TYPE_GAP—Specifies the type PRO_
DIM_SMT_GAP

◆ PRO_MITER_CUT_OFFSET_TYPE_PARAM—Specifies the type
PRO_DIM_DFLT_MITER_CUT_OFFSET

See table Relation Value Types on page 1342 for the list of value types
permitted.

○ PRO_E_SMT_MTR_CUTS_OFFSET_VAL—This is the value for the
dimension, if the width type is PRO_DIM_ENTER.

The Element Subtree for PRO_E_SMT_CORNERS_ARR
When the flange is attached to multiple non-tangent edges, it is possible to define
edge transitions for each such intersection. The members of the array element
PRO_E_SMT_CORNERS_ARR each define the edge transition for a particular
corner intersection. Each member has a subelement called PRO_E_SMT_EDGE_
RIP which contains the following:

1340 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_SMT_EDGE_RIP_TYPE specifies edge treatment types and can be
as follows:

○ PRO_EDGE_RIP_OPEN

○ PRO_EDGE_RIP_BLIND

○ PRO_EDGE_RIP_MITER_CUT

○ PRO_EDGE_RIP_OVERLAP

○ PRO_EDGE_RIP_CONNECT

• PRO_E_SMT_EDGE_RIP_CLOSE_CORNER specifies if the gap between the
bend surfaces of a corner relief must be closed. This element is applicable only
if the element PRO_E_SMT_EDGE_RIP_TYPE is set to PRO_EDGE_RIP_
OPEN.

• PRO_E_SMT_EDGE_RIP_ADD_GAP specifies whether to add a gap.
• PRO_E_SMT_EDGE_RIP_DIM_1 specifies the first side’s properties.

○ PRO_E_SMT_EDGE_RIP_DIM_1_TYPE— This is one of the members
of ProEdgeRipDimType. The valid types are:

◆ PRO_EDGE_RIP_DIM_TYPE_BLIND—Specifies the type PRO_
DIM_ENTER.

◆ PRO_EDGE_RIP_DIM_TYPE_GAP—Specifies the type PRO_DIM_
SMT_GAP.

◆ PRO_EDGE_RIP_DIM_TYPE_PARAM—Specifies the type PRO_
DIM_DFLT_EDGE_TREA_WIDTH.

See table Relation Value Types on page 1342 for the list of value types
permitted.

○ PRO_E_SMT_EDGE_RIP_DIM_1_VAL— This is the value for the
dimension, if the width type is PRO_DIM_ENTER.

• PRO_E_SMT_EDGE_RIP_DIM_2 specifies the second side’s properties.

○ PRO_E_SMT_EDGE_RIP_DIM_2_TYPE—This is one of the members
of ProEdgeRipDimType. See table Relation Value Types on page 1342
for the list of value types permitted.

○ PRO_E_SMT_EDGE_RIP_DIM_2_VAL—This is the value for the
dimension, if the width type is PRO_DIM_ENTER.

• PRO_E_SMT_EDGE_RIP_FLIP specifies whether to flip the overlapping
side.

Production Applications: Sheetmetal 1341

Relation Value Types
ProSmdRelType Description
PRO_DIM_THICK The part thickness. It represents the parameter SMT_

THICKNESS in a sheet metal part.
PRO_DIM_DOUBLE_THICK 2 x the part thickness. It represents the parameter

SMT_THICKNESS in a sheet metal part.
PRO_DIM_ENTER A user-defined value
PRO_DIM_DEF_CRN_REL_WIDTH The value of the sheet metal Parameter SMT_DFLT_

CRNR_REL_WIDTH, only allowed for corner relief
width.

PRO_DIM_DEF_CRN_REL_DEPTH The value of the sheet metal Parameter SMT_DFLT_
CRNR_REL_DEPTH, only allowed for corner relief
depth.

PRO_DIM_MINUS_THICK -1 x the part thickness
PRO_DIM_MINUS_DOUBLE_THICK -2 x the part thickness
PRO_DIM_DFLT_EDGE_TREA_WIDTH The value of the sheet metal Parameter SMT_DFLT_

EDGE_TREAT_WIDTH, only allowed for edge
transition width

PRO_DIM_DFLT_MITER_CUT_WIDTH The value of the sheet metal Parameter SMT_DFLT_
MITER_CUT_WIDTH, only allowed for miter cut
width

PRO_DIM_DFLT_MITER_CUT_OFFSET The value of the sheet metal Parameter SMT_DFLT_
MITER_CUT_OFFSET, only allowed for miter cut
offset

PRO_DIM_THICK_1_1 1.1 x the part thickness
PRO_DIM_THICK_05 0.5 x the part thickness
PRO_DIM_SMT_GAP The value of the sheet metal Parameter SMT_GAP
PRO_DIM_MINUS_SMT_GAP The negative (minus) value of the sheet metal

Parameter SMT_GAP
PRO_DIM_MINUS_THICK_05 -0.5 x the part thickness
PRO_DIM_DEF_BEND_RAD The value of the sheet metal Parameter SMT_DFLT_

BEND_RADIUS.
PRO_DIM_UP_TO_BEND The relief depth type. Represents Up to Bend

option for bend and corner reliefs.
PRO_DIM_TAN_TO_BEND The relief depth type. Represents Up to Bend

option for bend and corner reliefs.
PRO_DIM_DEF_BEND_ANGLE The value of the sheet metal Parameter SMT_DFLT_

BEND_ANGLE.
PRO_DIM_DEF_BEND_REL_WIDTH The bend relief width. The value of the sheet metal

Parameter SMT_DFLT_BEND_REL_WIDTH.
PRO_DIM_DEF_BEND_REL_DEPTH The bend relief depth. The value of the sheet metal

Parameter SMT_DFLT_BEND_REL_DEPTH.
PRO_DIM_DEF_BEND_REL_ANGLE The bend relief angle. The value of the sheet metal

Parameter SMT_DFLT_BEND_REL_ANGLE.
PRO_DIM_CRN_RLF_DEPTH_TYPE The corner relief depth. The value of the sheet metal

Parameter SMT_DFLT_CRNR_REL_DEPTH_TYPE.
PRO_DIM_BEND_RLF_DEPTH_TYPE The bend relief depth. The value of the sheet metal

Parameter SMT_DFLT_BEND_REL_DEPTH_TYPE.

1342 Creo® Parametric TOOLKITUser’s Guide

Creating a Flange Wall Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Flange Wall Feature based
on element tree input. For more information about ProFeatureCreate(),
refer to the section Overview of Feature Creation on page 765 in the Element
Trees: Principles of Feature Creation on page 764 chapter.

Redefining a Flange Wall Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Flange Wall Feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer to the section Feature Redefine on page 786
in the Element Trees: Principles of Feature Creation on page 764 chapter.

Accessing a Flange Wall Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to create a feature
element tree that describes the contents of a Flange Wall Feature and to retrieve
the element tree description of a Flange Wall Feature. For more information about
ProFeatureElemtreeExtract(), refer to the section Feature Inquiry on
page 785 in the Element Trees: Principles of Feature Creation on page 764
chapter.

Example 2: Creation of Flange Wall feature using
Creo Parametric TOOLKIT
The sample code in UgSmtFlgWallCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_featcreat
demonstrates how to create a flange wall feature using Creo Parametric
TOOLKIT. The feature is created using two external properties: the wall thickness
determines the bend radius, and the attachment edge(s) are obtained from the
currently selected edges in the Creo Parametric model. If a single edge is selected,
it is converted to a tangent chain before it used to create the feature. The section is
the 2D section handle for the I-wall section provided with Creo Parametric.

Production Applications: Sheetmetal 1343

Sheet metal Wall Features
In Creo Parametric TOOLKIT, you can create extruded, revolved or swept wall
features. You can specify the wall thickness, generate bends, and assign a
development length calculation to the wall.
An extruded wall is drawn as a cross-section extruded in the specified direction.
Similarly, the revolved and swept walls are drawn.
In Creo Parametric TOOLKIT, an extruded wall shares the same element tree as
the basic Extrude feature documented in the header file ProExtrude.h. The
revolved wall shares its element tree with the basic Revolve feature documented
in the header file ProRevolve.h. The swept protrusion wall shares its element
tree with the basic sweep feature documented in documented in the header file
ProSweep.h.
The element tree should include some of the following sheet metal-specific
elements to generate a sheet metal wall feature:

• PRO_E_STD_SMT_THICKNESS—Has a double value that specifies the wall
thickness. If this feature is not the first wall feature in the part, the thickness
value is irrelevant and can be 0.0. The feature inherits the thickness of the first
wall feature. This element is not required and cannot be modified if the sheet
metal thickness parameter is already assigned in the model.

• PRO_E_STD_SMT_SWAP_DRV_SIDE—Specifies sheet metal swap sides to
switch sides of driving and offset sides.

• PRO_E_SMT_WALL_SHARPS_TO_BENDS—Converts any sharp edges in
the section to appropriate bends.

• PRO_E_SMT_FILLETS—Refer to the section Feature Element Tree for the
Sheetmetal Flat Wall Feature on page 1318 for the description of the element.

• PRO_E_SMT_DEV_LEN_CALCULATION—Refer to the section Feature
Element Tree for the Sheetmetal Flat Wall Feature on page 1318 for the
description of the element.

• PRO_E_SMT_MERGE_DATA—This compound element defines the
parameters required to merge the wall geometry to an existing wall.

○ PRO_E_SMT_MERGE_AUTO— The valid values for this element are:

◆ True—Merges the wall geometry to an existing wall in the design.
◆ False—Does not merge the walls.

○ PRO_E_SMT_MERGE_KEEP_LINES—Controls the visibility of merged
edges on surface joints. The valid values for this element are:

◆ True—Merged edges are visible on surface joints.
◆ False—Merged edges are not visible on surface joints.

1344 Creo® Parametric TOOLKITUser’s Guide

For details on the basic Extrude and Revolve features, refer to the chapter Element
Trees: Extrude and Revolve on page 1013.
For details on the basic Sweep feature, refer to the chapter Element Trees: Sweep
on page 1042.

Sheet metal Cut Features
A sheet metal cut removes material from the walls it encounters.
In Creo Parametric TOOLKIT, a sheet metal cut feature shares the same element
tree as the basic extrude feature or the solidify feature or the thicken feature. The
element tree should include some of the following sheet metal cut-specific
elements to generate a sheet metal cut feature:

• PRO_E_IS_SMT_CUT—If true this feature is a sheet metal cut, otherwise it
is a solid cut. It is applicable only in sheet metal parts.

• PRO_E_SMT_CUT_NORMAL_DIR—This element defines the surface to
which the section projection will be normal. The projection normal specifies
the side of the sheemetal wall from which the sketched curve splits the wall.
The values for this element are as follows:

○ PRO_SMT_CUT_DRVSIDE_GREEN—Specifies the normal to the driven
surface. This is a direction from the green side to the white side of the
sheet metal wall. This is the default value.

○ PRO_SMT_CUT_DRVSIDE_WHITE—Specifies the normal to the offset
surface. This is a direction from the white side to the green side of the
sheet metal wall.

For details on the basic Extrude feature, see the The Element Tree for Extruded
Features on page 1014.
For details on the basic Solidify feature, see the Solidify Feature on page 873.
For details on the basic Thicken feature, see the Thicken Feature on page 870.
The extrude feature has additional optional element PRO_E_SMT_PUNCH_
TOOL_DATA. This compound element defines sheet metal cut that is used to cut
and relieve sheet metal walls. It is used in sheet metal manufacturing. It is
applicable to sheet metal cuts, made by the Punch UDF. It defines the parameters
related to the punch feature.
The compound element PRO_E_SMT_PUNCH_TOOL_DATA contains the
following elements:
• PRO_E_SMT_PUNCH_TOOL_ATTR—Specifies the symmetry flag for the

Manufacturing UDF Punch Tool. The valid values for this element are:
○ PRO_PUNCH_TOOL_ATTR_SYM_NONE—Specifies that the tool is not

symmetric about any axis.

Production Applications: Sheetmetal 1345

○ PRO_PUNCH_TOOL_ATTR_SYM_X—Specifies that the tool is
symmetrical about the X-axis of the coordinate system

○ PRO_PUNCH_TOOL_ATTR_SYM_Y—Specifies that the tool is
symmetrical about the Y-axis of the coordinate system.

○ PRO_PUNCH_TOOL_ATTR_SYM_XY—Specifies that the tool is
symmetrical about both the X and Y-axis of the coordinate system.

• PRO_E_SMT_PUNCH_TOOL_NAME—Specifies the name of the
Manufacturing UDF punch tool used.

For sheet metal cuts and punches, you can specify if the punch axis point must be
created. A punch axis point is a reference point that moves with a feature during
both, the unbend and bend back operations. In the element PRO_E_SMT_
PUNCH_AXIS_PNT, specify PRO_B_TRUE to create the punch axis point in the
sheet metal feature.

Extend Wall Feature
The Extend Wall feature allows you to extend an attachment wall with a straight
edge.

Feature Element Tree for the Extend Wall Feature
The element tree for the Extend Wall feature is documented in the header file
ProSmtExtendWall.h. The following figure shows the feature element tree
structure.

1346 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Extend Wall Feature

PRO_E_SMT_EXTEND_WALL_EXTENSIONS_CMP

The elements in this tree are described as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_WALL.

• PRO_E_SMT_WALL_TYPE—Specifies the sheet metal wall type and its value
is PRO_SMT_WALL_TYPE_EXTEND.

• PRO_E_STD_FEATURE_NAME—Specifies the feature name.

Production Applications: Sheetmetal 1347

• PRO_E_SMT_EXTEND_WALL_EDGE—Specifies the edge of the attachment
wall you select for extension.

• PRO_E_SMT_EXTEND_WALL_DIST—Specifies the distance properties for
the attachment wall to be extended. This compound element consists of the
following elements:

○ PRO_E_SMT_EXTEND_DIST_TYPE—Specifies the distance type used
for extension. It takes the following values

◆ PRO_EXTEND_DIST_BY_VALUE—Specifies that the attachment
wall is extended by a specified value and remains parallel to the
selected edge.

◆ PRO_EXTEND_DIST_TO_THROUGH_UNTIL—Specifies that the
attachment wall is extended normally to the selected edge until it
intersects the referenced plane.

◆ PRO_EXTEND_DIST_TO_SELECTED—Specifies that the
attachment wall is extended normally to the selected edge until it
intersects the referenced plane and remains parallel to the selected
edge.

○ PRO_E_SMT_EXTEND_DIST_VALUE—Specifies the distance value.
This element is applicable only if the element PRO_E_SMT_EXTEND_
DIST_TYPE has the value PRO_EXTEND_DIST_BY_VALUE.

○ PRO_E_SMT_EXTEND_DIST_REF—Specifies the plane or surface
selected as the reference. This element is applicable only if the element
PRO_E_SMT_EXTEND_DIST_TYPE has the value PRO_EXTEND_
DIST_TO_THROUGH_UNTIL or PRO_EXTEND_DIST_TO_
SELECTED.

• PRO_E_SMT_EXTEND_WALL_EXTENSIONS_CMP—Specifies the
extension properties of the two sides of the attachment wall.

The Element Subtree for PRO_E_SMT_EXTEND_WALL_
EXTENSIONS_CMP
PRO_E_SMT_EXTEND_WALL_EXTENSIONS_CMP is a compound element and
consists of the following elements:

• PRO_E_SMT_EXTEND_SIDE1_EXTENSION_CMP—Specifies the
extension properties of the side 1. This compound element consists of the
following elements:

○ PRO_E_SMT_EXTEND_EXTENSION_TYPE_OPT—Specifies the
extension type. It is given by the enumerated type
ProExtendExtensionType and takes the following values:

1348 Creo® Parametric TOOLKITUser’s Guide

◆ PRO_EXTEND_EXT_NORMAL_TO_EDGE—Specifies that the side 1
of the attachment wall is extended normal to the selected edge.

◆ PRO_EXTEND_EXT_ALONG_BOUND_EDGE—Specifies that the side
1 of the attachment wall is extended along the boundary of the selected
edge.

○ PRO_E_SMT_EXTEND_ADJUST_SRF—Specifies whether the surface
adjacent to side 1 of the extended edge is also extended. The values for
this element are specified by the enumerated type ProExtendAdjSrf
and are as follows:

◆ PRO_EXTEND_ADJ_SRF_FALSE

◆ PRO_EXTEND_ADJ_SRF_TRUE

• PRO_E_SMT_EXTEND_SIDE2_EXTENSION_CMP—Specifies the
extension properties of the side 2. This compound element consists of the
same elements as the element PRO_E_SMT_EXTEND_SIDE1_
EXTENSION_CMP.

Creating a Extend Wall Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Extend Wall feature based
on the element tree definition. For more information about
ProFeatureCreate(), refer to the Overview of Feature Creation on page 765
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Redefining a Extend Wall Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Extend Wall feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer the Feature Redefine on page 786 section in
the Element Trees: Principles of Feature Creation on page 764 chapter.

Accessing a Extend Wall Feature
Function Introduced

Production Applications: Sheetmetal 1349

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to retrieve the element
tree description of the Extend Wall feature. For more information about
ProFeatureElemtreeExtract(), refer the Feature Inquiry on page 785
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Split Area Feature
You can split a sheet metal wall using a sketched curve with the Split Area feature.
When you split a sheet metal wall, no side surfaces are created.

Feature Element Tree for the Split Area Feature
The element tree for the Split Area feature is documented in the header file
ProSmtSplitArea.h. The following figure shows the feature element tree
structure.

Feature Element Tree for Split Area Feature

The elements in this tree are as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_DEFORM_AREA.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_SMT_CUT_NORMAL_DIR—Specifies the normal of projection. The

projection normal specifies the side of the sheemetal wall from which the
sketched curve splits the wall. The values for this element are as follows:

○ PRO_SMT_CUT_DRVSIDE_GREEN—Specifies the normal to the driven
surface. This is a direction from the green side to the white side of the
sheet metal wall. This is the default value.

1350 Creo® Parametric TOOLKITUser’s Guide

○ PRO_SMT_CUT_DRVSIDE_WHITE—Specifies the normal to the offset
surface. This is a direction from the white side to the green side of the
sheet metal wall.

• PRO_E_STD_SECTION—Specifies the sketch selected for the split. You can
create a new section or select an internal sketch from the model.

• PRO_E_SMT_PROJ_DIR—Specifies the projection direction. It is specified
by the enumerated type ProSmtProjDir. The valid values are:

○ PRO_SMT_PROJ_DIR_ONE—Specifies the projection to one side. This
is the default value.

○ PRO_SMT_PROJ_DIR_TWO—Specifies the projection to the opposite
side.

○ PRO_SMT_PROJ_DIR_BOTH—Specifies the projection to both the sides.
• PRO_E_STD_MATRLSIDE—Specifies the direction in which the area of the

sheet metal wall is split. It is specified by the enumerated type
ProSplitAreaMatSide. The valid values are:

○ PRO_SPLITAREA_MATSIDE_ONE—Specifies the split in one direction.
○ PRO_SPLITAREA_MATSIDE_TWO—Specifies the split in the opposite

direction. This is the default value.

Creating a Split Area Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Split Area feature based
on the element tree definition. For more information about
ProFeatureCreate(), refer the Overview of Feature Creation on page 765
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Redefining a Split Area Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Split Area feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer the Feature Redefine on page 786 section in
the Element Trees: Principles of Feature Creation on page 764 chapter.

Production Applications: Sheetmetal 1351

Accessing a Split Area Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to retrieve the element
tree description of the Split Area feature. For more information about
ProFeatureElemtreeExtract(), refer the Feature Inquiry on page 785
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Punch and Die Form Features
A Form is a sheet metal wall molded by a template (reference part). Merging the
geometry of a reference part creates the Form feature.
Punch Form feature molds the sheet metal wall using only the reference part
geometry whereas Die Form feature molds the sheet metal using the reference part
to form the geometry (convex or concave) surrounded by a bounding plane.

Feature Element Tree for the Punch and Die Form
Features
The element tree for the Punch and Die Form features is documented in the header
file ProSmtForm.h and can be used to create both punch and die form features.
The following figure shows the feature element tree structure:

1352 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Punch Form Feature

PRO_SMT_SURF_FACE

The surface is the face (green) surface created by a sheet metal feature.

Production Applications: Sheetmetal 1353

PRO_SMT_SURF_OFFSET

The surface is the offset (white) surface created by a sheet metal feature.
The elements in this tree are as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_GEN_MERGE.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_GMRG_SMT_TYPE—Specifies the type of sheet metal feature. The

values for this element are specified by the enumerated type
ProGenMergeSmtType and the valid values are:

○ PRO_GEN_MERGE_SMT_TYPE_FORM—Specifies the Punch Form in all
the versions.

Note
Use the element PRO_GEN_MERGE_SMT_TYPE_FORM_PUNCH
instead of PRO_GEN_MERGE_SMT_TYPE_FORM from Creo
Parametric3.0 onwards.

○ PRO_GEN_MERGE_SMT_TYPE_FORM_PUNCH—Specifies the Punch
Form feature for parts created in Creo Parametric3.0 onward.

○ PRO_GEN_MERGE_SMT_TYPE_NOT_SMT—Specifies a merge,
inheritance or any other type of General Merge feature.

○ PRO_GEN_MERGE_SMT_TYPE_FORM_DIE—Specifies the Die Form
feature.

• PRO_E_GMRG_FEAT_TYPE—Specifies the type of General Merge feature.

1354 Creo® Parametric TOOLKITUser’s Guide

Note
For General Merge feature of type PRO_GEN_MERGE_TYPE_MERGE, the
element PRO_E_DSF_DEPENDENCY can be set to PRO_DSF_UPDATE_
AUTOMATICALLY only.

For more information on the types of General Merge features, refer the
General Merge (Merg on page 1211 section in the Assembly: Data Sharing
Features on page 1199 chapter.

• PRO_E_DSF_REF_MDL—Specifies the punch or die model used to create the
Punch or Die Form feature. It consists of the following element:

○ PRO_E_DSF_SEL_REF_MDL—Specifies the selected punch or die
model.

• PRO_E_COMP_PLACE_INTERFACE—Specifies the assembly component
interfaces used to define the placement of the punch or die model in the sheet
metal geometry. For more information on the elements contained by the
placement interfaces element, refer the Placement via Interface on page 1174
section in the Assembly: Assembling Components on page 1159 chapter.

• PRO_E_COMPONENT_CONSTRAINTS—Specifies the assembly component
constraints used to define the placement of the punch or die model in the sheet
metal geometry. For more information on the component constraints elements,
refer the Placement Constraints on page 1172 section in the Assembly:
Assembling Components on page 1159 chapter.

Note
The placement by coordinate system option in the Creo Parametric user
interface for the Punch or Die Form feature is not available via Creo
Parametric TOOLKIT. To place the model in the sheet metal geometry
using a coordinate system, define a coordinate system feature in the sheet
metal model and use it for placement.

• PRO_E_GMRG_VARIED_ITEMS—Specifies a pointer element that defines
the Inheritance feature varied items and their values. This element is available
only when the Punch or Die Form feature is of the type PRO_GEN_MERGE_
TYPE_INHERITANCE.For more information on this element, refer the
Inheritance Feature and Flexible Component Variant Items on page 1215
section in the Assembly: Data Sharing Features on page 1199 chapter.

Production Applications: Sheetmetal 1355

• PRO_E_DSF_DEPENDENCY—Specifies the dependency type. The values for
this element are specified by the enumerated type ProDsfDependency.

Note
From Creo Parametric 3.0 onward, the enumerated type
ProDsfDependency has been deprecated. Use the enumerated type
ProDSFDependency instead.

The valid values for the dependency status are:

○ PRO_DSF_UPDATE_AUTOMATICALLY—Specifies that the geometry of
the Punch or Die Form feature depends upon the geometry of the model
used during feature creation. The Punch or Die Form feature reflects all
the changes made in the parent model.

Note
From Creo Parametric 3.0 onward, the value PRO_DSF_DEPENDENT
has been deprecated. Use the enumerated value PRO_DSF_UPDATE_
AUTOMATICALLY instead.

○ PRO_DSF_UPDATE_MANUALLY—Specifies that the geometry of the
Punch or Die Form feature is independent of the geometry of the model
used during feature creation. If you update the model, the feature does not
change.

Note
From Creo Parametric 3.0 onward, the value PRO_DSF_
INDEPENDENT has been deprecated. Use the enumerated value PRO_
DSF_UPDATE_MANUALLY instead.

○ PRO_DSF_NO_DEPENDENCY—Specifies that there is no dependency
between the geometry of the Punch or Die Form feature and the geometry
of the Punch or Die model used during feature creation.

1356 Creo® Parametric TOOLKITUser’s Guide

Note
All the dependency statuses specified in the enumerated type
ProDsfDependency are defined in the header file
ProDataShareFeat.h. For more information on the values, refer to
the section Feature Element Tree on page 1211 in Assembly: Data Sharing
Features.

• PRO_E_FORM_PUNCH_SIDE—Specifies the Punch direction. The direction
specifies a side of a wall from which the model penetrates the sheet metal
geometry. The values for this element are specified by the enumerated type
ProSmtSurfType. The surface types are as follows:

○ PRO_SMT_SURF_FACE—The punch model moves in a direction from
the green side to the white side of the sheetemetal model. Refer to the
figure PRO_SMT_SURF_FACE on page 1353

○ PRO_SMT_SURF_OFFSET—The punch model moves in a direction from
the white side to the green side of the sheet metal model. Refer to the
figure PRO_SMT_SURF_OFFSET on page 1354.

• PRO_E_STD_SURF_COLLECTION_APPL—Specifies a collection of
surfaces to be excluded from the Punch or Die model during feature creation.

• PRO_E_FORM_DIE_POCKET_GEOM_CMP—Compound element. Specify
this element only if the enumerated type ProGenMergeSmtType is set to
PRO_GEN_MERGE_SMT_TYPE_FORM_DIE type.

Note
This element cannot be used for creating Punch Form features and is
specific to Die Form features only.

• PRO_E_STD_SURF_COLLECTION_APPL—Specifies the collection of
selected surfaces to be used for Pocket Geometry during the feature creation.

• PRO_E_FORM_TOOL_CSYS—Specifies the reference coordinate system
used during the manufacturing process. The coordinate system in the Punch
model is used by default.

• PRO_E_FORM_TOOL_NAME—Specifies the name of the manufacturing tool
used to create the Punch or Die model. The name specified by the SMT_
FORM_TOOL_NAME parameter in the model is used by default.

Production Applications: Sheetmetal 1357

• PRO_E_GMRG_FORM_AUTO_ROUNDS—Specifies the ProBoolean option
to round the non-placement sharp edges (that do not lie on the placement
surface). This optional element uses a constant outside radius of value equal to
the thickness of the original sheet metal part.

• PRO_E_SMT_FILLET_INTERSECT—Specifies the option to round the
placement sharp edges (that lie on the placement surface and intersect the
sheet metal geometry). This optional element consists of the following
elements:

○ PRO_E_SMT_FILLET_RADIUS_USEFLAG—Specifies whether a fillet
radius is used.

○ PRO_E_SMT_FILLET_RADIUS_SIDE—Specifies the radius direction,
that is, outside or inside. The values for this element, specified by the
enumerated type ProSmdRadType, are as follows:

◆ PRO_BEND_RAD_OUTSIDE—The radius is applied to the outside of
the sheet metal geometry.

◆ PRO_BEND_RAD_INSIDE—The radius is applied to the inside of the
sheet metal geometry.

○ PRO_E_SMT_FILLET_RADIUS_VALUE— Specifies the radius value.
• PRO_E_SMT_TRIM_FORM_SIDES—Trim edges of sheared form. Specifies

if Creo Parametric applies trimming of sheetmetal side surfaces during form
feature generation. The valid values for this element follow:

○ PRO_B_TRUE

○ PRO_B_FALSE

Creating a Punch or Die Form Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Punch or Die Form feature
based on the element tree definition. For more information about
ProFeatureCreate(), refer the Overview of Feature Creation on page 765
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Redefining a Punch or Die Form Feature
Function Introduced

1358 Creo® Parametric TOOLKITUser’s Guide

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Punch or Die Form
feature based on the changes made in the element tree. For more information
about ProFeatureRedefine(), refer the Feature Redefine on page 786
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Accessing a Punch or Die Form Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to retrieve the element
tree description of the Punch or Die Form feature. For more information about
ProFeatureElemtreeExtract(), refer the Feature Inquiry on page 785
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Quilt Form Feature
The Quilt Form feature molds the sheet metal wall using a referenced closed or
open datum quilt.

Feature Element Tree for the Quilt Form Feature
The element tree for the Quilt Form feature is documented in the header file
ProSmtPunchQuilt.h. The following figure shows the feature element tree
structure:

Production Applications: Sheetmetal 1359

Feature Element Tree for Quilt Form Feature

The elements in this tree are as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_PUNCH_QUILT.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_FORM_PUNCH_QUILT—Specifies the referenced datum quilt. The

geometry of the referenced quilt is merged with the sheet metal part.
• PRO_E_FORM_PUNCH_SIDE—Specifies the punch direction. The punch

direction specifies a side of a wall from which the punch model penetrates the
sheet metal geometry. The values for this element are specified by the
enumerated type ProSmtSurfType. The surface types are as follows:

1360 Creo® Parametric TOOLKITUser’s Guide

○ PRO_SMT_SURF_FACE—The punch model moves in a direction from
the green side to the white side of the sheetemetal model. Refer to the
figure PRO_SMT_SURF_FACE on page 1353.

○ PRO_SMT_SURF_OFFSET—The punch model moves in a direction from
the white side to the green side of the sheet metal model. Refer to the
figure PRO_SMT_SURF_OFFSET on page 1354.

• PRO_E_FORM_PUNCH_MATERIAL_SIDE— Specifies whether the
resultant sheet metal geometry lies inside or outside the referenced quilt after
the feature is created. The geometry is placed inside or outside the referenced
quilt using the thickness value of the original sheet metal part. The values for
this element, specified by the enumerated type ProSmdPunchMatSide,are
as follows:

○ PRO_SMT_PUNCH_MAT_INSIDE

○ PRO_SMT_PUNCH_MAT_OUTSIDE

• PRO_E_STD_SURF_COLLECTION_APPL— Specifies a collection of
surfaces to be excluded from the referenced quilt when the feature is created.

• PRO_E_SMT_FILLET_INTERSECT—Specifies the set of fillets that are
added to the contours created by the intersection of the referenced quilt with
the sheet metal part. This element consists of the following elements:

○ PRO_E_SMT_FILLET_RADIUS_USEFLAG—Specifies whether a fillet
radius is used.

○ PRO_E_SMT_FILLET_RADIUS_SIDE—Specifies the radius direction
(outside or inside). The values for this element, specified by the
enumerated type ProSmdRadType, are as follows:

◆ PRO_BEND_RAD_OUTSIDE—The radius is applied to the outside of
the sheet metal geometry.

◆ PRO_BEND_RAD_INSIDE—The radius is applied to the inside of the
sheet metal geometry.

○ PRO_E_SMT_FILLET_RADIUS_VALUE—Specifies the radius value.
• PRO_E_SMT_FILLET_QUILT—Specifies the set of fillets that are added to

sharps (edges between non-tangent goemetries) on the referenced quilt. This
element consists of the same set of elements as PRO_E_SMT_FILLET_
INTERSECT.

• PRO_E_FORM_PUNCH_HIDE_QUILT—Specifies whether the referenced
quilt will be hidden in the feature. The values for this element, specified by the
enumerated type ProSmdPunchHideQuilt, are as follows:

○ PRO_SMT_PUNCH_HIDE_ORIGINAL

Production Applications: Sheetmetal 1361

○ PRO_SMT_PUNCH_KEEP_ORIGINAL

• PRO_E_SMT_TRIM_FORM_SIDES—Trim edges of sheared form. Specifies
if Creo Parametric applies trimming of sheetmetal side surfaces during form
feature generation. The valid values for this element follow:

○ PRO_B_TRUE

○ PRO_B_FALSE

Creating a Quilt Form Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Quilt Form feature based
on the element tree definition. For more information about
ProFeatureCreate(), refer the Overview of Feature Creation on page 765
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Redefining a Quilt Form Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Quilt Form feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer the Feature Redefine on page 786 section in
the Element Trees: Principles of Feature Creation on page 764 chapter.

Accessing a Quilt Form Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to retrieve the element
tree description of the Quilt Form feature. For more information
aboutProFeatureElemtreeExtract(), refer the Feature Inquiry on page
785 section in the Element Trees: Principles of Feature Creation on page 764
chapter.

Flatten Form Feature
The Flatten Form feature allows you to flatten existing Form features in your
model.

1362 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Flatten Form Feature
The element tree for a Flatten Form feature is documented in the header file
ProSmtFlattenForm.h and has a simple structure. The following figure
demonstrates the structure of the feature element tree.

Flatten Form Element Tree

The elements in this tree are described as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_FLATTEN.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_SMT_FLATTEN_REF_TYPE—Specifies the selection type for the

Form features to be flattened. It is specified by the enumerated type
ProFlattenRefType. The valid selection types are:

○ PRO_FLATTEN_FORM_REFSEL—Specifies the type where you select an
array of Form features from the model. This is the default value.

○ PRO_FLATTEN_FORM_ALLSEL—Specifies the type where Creo
Parametric finds and selects all the Form features from the model.

• PRO_E_STEP_SEL_FORM—Specifies the array of Form features you select.
• PRO_E_SMT_FLATTEN_PROJ_CUTS—Specifies if cuts must be projected

to the flattened form.

Creating a Flatten Form Feature
Function Introduced

Production Applications: Sheetmetal 1363

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a Flatten Form feature based
on the element tree definition. For more information about
ProFeatureCreate(), refer the Overview of Feature Creation on page 765
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Redefining a Flatten Form Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Flatten Form feature
based on the changes made in the element tree. For more information about
ProFeatureRedefine(), refer the Feature Redefine on page 786 section in
the Element Trees: Principles of Feature Creation on page 764 chapter.

Accessing a Flatten Form Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to retrieve the element
tree description of the Flatten Form feature. For more information about
ProFeatureElemtreeExtract(), refer the Feature Inquiry on page 785
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Convert Features

Shell Feature
You can use the convert features to convert a solid part into a sheet metal part. For
a block-like part, use the Shell feature to remove one or more walls that hollows
the inside of the model, leaving a shell of the specified wall thickness.
The element tree for the Shell feature is documented in the header file
ProSmtShell.h, and is shown in the following figure:

1364 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Shell Feature

The elements in this tree are described as follows:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature. The

value of this feature must be PRO_
FEAT_DATUM_SURF.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is Shell_1.

PRO_E_DTM_SRF_TYPE PRO_VALUE_TYPE_INT Specifies the Datum Surface Type
using the enumerated type
ProSmtDtmSrfType. The
value of this feature must be PRO_
DTM_SRF_AS_WALL_
SHELL.

PRO_E_SMT_CONV_BODY PRO_VALUE_TYPE_
SELECTION

Specifies the body to be selected
to convert to a sheetmetal part.

PRO_E_SHELL_SRF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
collection of surfaces to be
removed to shell the solid.

PRO_E_STD_SMT_THICKNESS PRO_ELEM_TYPE_DOUBLE Specifies the thickness of the wall.
It must be positive a number.

PRO_E_STD_MATRLSIDE PRO_VALUE_TYPE_INT Specifies the direction of material
thickness.

PRO_E_STD_SMT_SWAP_DRV
_SIDE

PRO_VALUE_TYPE_INT Specifies sheet metal swap sides to
switch sides of shelled and driving
surfaces.

Production Applications: Sheetmetal 1365

Driving Surface Feature
The Driving Surface feature converts a solid geometry to sheet metal part. For thin
protrusions with constant thickness, use the Driving Surface feature to select a
surface as the driving surface and to set the wall thickness.
The element tree for the Driving Surface feature is documented in the header file
ProSmtDrvSurf.h and is shown in the following figure:

Element Tree for Driving Surface Feature

The elements in this tree are described as follows:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature. The

value of this feature must be PRO_
FEAT_DATUM_SURF.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is Driving_
Surface_1.

PRO_E_DTM_SRF_TYPE PRO_VALUE_TYPE_INT Specifies the Datum Surface Type
using the enumerated type
ProSmtDtmSrfType. The
value of this feature must be PRO_
DTM_SRF_AS_WALL. For an
empty body, the value of this

1366 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
feature must be PRO_DTM_SRF_
EMPTY_BODY_CONV.

PRO_E_SMT_CONV_BODY PRO_VALUE_TYPE_
SELECTION

Specifies the body to be selected
to be converted to a sheetmetal
part.

PRO_E_SMT_DRV_SURF PRO_VALUE_TYPE_
SELECTION

Specifies the collection of a solid
surface to be used as the driving
surface.

PRO_E_STD_SMT_THICKNESS PRO_ELEM_TYPE_DOUBLE Specifies the thickness of the wall.
PRO_E_STD_MATRLSIDE PRO_VALUE_TYPE_INT Specifies the direction of material

thickness.
PRO_E_STD_SMT_SWAP_DRV
_SIDE

PRO_VALUE_TYPE_INT Specifies sheet metal swap sides to
switch sides of driving and
selected surfaces.

PRO_E_SMT_DRV_ADD_SURF Compound Specifies the additional surface to
be used as a driving surface for the
sheetmetal body part.

PRO_E_SMT_DRV_EXCL_SURF Compound Specifies the surfaces to be
excluded so that they are not
treated as face surfaces in the sheet
metal body.

Production Applications: Sheetmetal 1367

Element ID Data Type Description
PRO_E_SMT_ADJACENT_RND_
OPTS

PRO_VALUE_TYPE_INT Specifies the adjacent round
options and is defined by the
enumerated date type
ProSmtAdjRndOpts. The valid
values follow:
• PRO_SMT_ADJ_RND_

RECREATE—Removes rounds
and chamfers and recreates
them after the part is converted
to a sheet metal part.

• PRO_SMT_ADJ_RND_
REMOVE—Removes the
rounded geometry. The
resulting geometry is similar to
the geometry before the round
operation.

• PRO_SMT_ADJ_RND_
IGNORE—Ignores the
rounded geometry. The
resulting geometry is without
the rounded geometry.

PRO_E_SMT_KEEP_NOT_
CLASS_SURFS

PRO_VALUE_TYPE_INT Specifies the keep not classified
surfaces and is defined by the
enumerated data type
ProSmtKeepNotClassSurf
sType. The valid values follow:
• PRO_SMT_IGNORE_NOT_

CLASS_SURFS—Ignores
surfaces that are not classified
as the driving surface,
additional surfaces, and
excluded surfaces as separate
quilts.

• PRO_SMT_KEEP_NOT_
CLASS_SURFS—Keeps
surfaces that are not classified
as the driving surface,
additional surfaces, and
excluded surfaces as separate
quilts.

Rip Features
Rip features allow you to tear a continuous piece of sheet metal material so that
when you unbend a design, it tears along the ripped section. There are four types
of rips available:

1368 Creo® Parametric TOOLKITUser’s Guide

• Sketched Rip—Tears the sheet metal part along a sketched path. You can
exclude surfaces to protect them from rip.

• Surface Rip—Cuts out a surface patch from the sheet metal part and in the
process removes volume from the part.

• Edge Rip—Tears the sheet metal part along an edge. You can define edge
treatment for the ripped edges.

• Rip Connect—Tears the sheet metal part between two datum points or
vertices or a combination of both.

The four rip types are specified by the enumerated type ProSmtRipType and
take the following values:

• PRO_SMT_RIP_REGULAR—Specifies a Sketched Rip.
• PRO_SMT_RIP_SURFACE—Specifies a Surface Rip.
• PRO_SMT_RIP_EDGE—Specifies an Edge Rip.
• PRO_SMT_RIP_CONNECT—Specifies a Connect Rip.

Sketched Rip Feature
The Sketched Rip feature allows you to tear the sheet metal part along a sketched
path.

Feature Element Tree for Sketched Rip Feature
The element tree for a Sketched Rip feature is documented in the header file
ProSmtRegularRip.h and has a simple structure. The following figure
demonstrates the structure of the feature element tree.

Production Applications: Sheetmetal 1369

Sketched Rip Element Tree

The elements in this tree are described as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_RIP.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_SMT_RIP_TYPE—Specifies the rip type and should have the value

PRO_SMT_RIP_REGULAR.
• PRO_E_STD_SECTION—Specifies the sketch selected for the rip. You can

create a new section or select an internal sketch from the model.
• PRO_E_SMT_CUT_NORMAL_DIR—Specifies the normal of projection. The

projection normal specifies the side of the sheemetal part from where the
sketched curve rips the part. The values for this element are as follows:

○ PRO_SMT_CUT_DRVSIDE_GREEN—Specifies the normal to the driven
surface. This is a direction from the green side to the white side of the
sheet metal part. This is the default value.

○ PRO_SMT_CUT_DRVSIDE_WHITE—Specifies the normal to the offset
surface. This is a direction from the white side to the green side of the
sheet metal part.

• PRO_E_SMT_PROJ_DIR—Specifies the projection direction. It is specified
by the enumerated type ProSmtProjDir. The valid values are:

○ PRO_SMT_PROJ_DIR_ONE—Specifies the projection to one side. This
is the default value.

1370 Creo® Parametric TOOLKITUser’s Guide

○ PRO_SMT_PROJ_DIR_TWO—Specifies the projection to the opposite
side.

○ PRO_SMT_PROJ_DIR_BOTH—Specifies the projection to both the sides.
• PRO_E_STD_MATRLSIDE—Specifies the direction in which the area of the

sheet metal part is ripped. It is specified by the enumerated type
ProSketchRipMatSide. The valid values are:

○ PRO_SKETCHRIP_MATSIDE_ONE—Specifies the rip in one direction.
○ PRO_SKETCHRIP_MATSIDE_TWO—Specifies the rip in the opposite

direction. This is the default value.
• PRO_E_STD_SURF_COLLECTION_APPL—Specifies a collection of

surfaces that are excluded from the rip operation. This element is optional.

Surface Rip Feature
The Surface Rip feature allows you to cut out a surface patch from the sheet metal
part and in the process removes volume from the part.

Feature Element Tree for Surface Rip Feature
The element tree for a Surface Rip feature is documented in the header file
ProSmtSurfaceRip.h and has a simple structure. The following figure
demonstrates the structure of the feature element tree.

Surface Rip Element Tree

The elements in this tree are described as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_RIP.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.

Production Applications: Sheetmetal 1371

• PRO_E_SMT_RIP_TYPE—Specifies the rip type and should have the value
PRO_SMT_RIP_SURFACE.

• PRO_E_STD_SURF_COLLECTION_APPL—Specifies the collection of
surfaces you select to be ripped.

Edge Rip Feature
The Edge Rip feature allows you to tear the sheet metal part along an edge.

Feature Element Tree for Edge Rip Feature
The element tree for a Edge Rip feature is documented in the header file
ProSmtEdgeRip.h and has a simple structure. The following figure
demonstrates the structure of the feature element tree.

Edge Rip Element Tree

1372 Creo® Parametric TOOLKITUser’s Guide

PRO_E_SMT_EDGE_RIP

The elements in this tree are described as follows:

• PRO_E_FEATURE_TYPE—Specifies the feature type and should be PRO_
FEAT_RIP.

• PRO_E_STD_FEATURE_NAME—Specifies the name of the feature.
• PRO_E_SMT_RIP_TYPE—Specifies the rip type and should have the value

PRO_SMT_RIP_EDGE.
• PRO_E_SMT_EDGE_RIP_ARRAY—Specifies an array of the element PRO_

E_SMT_EDGE_RIP_SET. PRO_E_SMT_EDGE_RIP_SET is a compound
element that consists of the following elements:

○ PRO_E_SMT_EDGE_RIP_REFERENCES—Specifies an array of the
element PRO_E_SMT_EDGE_REFERENCES. PRO_E_SMT_EDGE_
REFERENCES is a compound element that consists of the following
element:

◆ PRO_E_STD_CURVE_COLLECTION_APPL—Specifies the chain of
edges selected for the rip.

○ PRO_E_SMT_EDGE_RIP—Specifies the types and options for the
treatment of the ripped edges.

Production Applications: Sheetmetal 1373

The Element Subtree for PRO_E_SMT_EDGE_RIP
PRO_E_SMT_EDGE_RIP is a compound element that consists of the following
elements:

• PRO_E_SMT_EDGE_RIP_TYPE—Specifies the edge treatment types. It is
specified by the enumerated type ProEdgeRipType. The valid types are:

○ PRO_EDGE_RIP_OPEN—Rips the sheet metal walls at their point of
intersection.

○ PRO_EDGE_RIP_BLIND—Rips the sheet metal part with a gap specified
by two dimensions.

○ PRO_EDGE_RIP_MITER_CUT—Rips the sheet metal part with a gap
specified by a single dimension.

○ PRO_EDGE_RIP_OVERLAP—Rips the sheet metal part such that one
side overlaps the other.

○ PRO_EDGE_RIP_PARAM—Rips the sheet metal part by the value
specified by the defined SMT_GAP parameter.

• PRO_E_SMT_EDGE_RIP_FLIP—Specifies whether to flip the overlapping
side. This element is available only if the PRO_E_SMT_EDGE_RIP_TYPE
has the value PRO_EDGE_RIP_OVERLAP.

• PRO_E_SMT_EDGE_RIP_ADD_GAP—Specifies whether to a add a gap
clearance. This element is applicable only if the element PRO_E_SMT_
EDGE_RIP_TYPE has the value PRO_EDGE_RIP_OVERLAP or PRO_
EDGE_RIP_PARAM.

• PRO_E_SMT_EDGE_RIP_CLOSE_CORNER—Specifies if the gap between
the bend surfaces of an edge rip must be closed. This element is applicable
only if the element PRO_E_SMT_EDGE_RIP_TYPE is set to PRO_EDGE_
RIP_OPEN.

• PRO_E_SMT_EDGE_RIP_DIM_1—Specifies the properties of side 1. This
element consists of the following elements:

○ PRO_E_SMT_DIMENSION_TYPE—Specifies the dimension type. It is
specified by the enumerated type ProEdgeRipDimType. The valid
types are:

◆ PRO_EDGE_RIP_DIM_TYPE_BLIND—Specifies the type PRO_
DIM_ENTER.

◆ PRO_EDGE_RIP_DIM_TYPE_GAP—Specifies the type PRO_DIM_
SMT_GAP.

◆ PRO_EDGE_RIP_DIM_TYPE_PARAM—Specifies the type PRO_
DIM_DFLT_EDGE_TREA_WIDTH.

1374 Creo® Parametric TOOLKITUser’s Guide

See table Relation Value Types on page 1342 for the descriptions of the
above list of value types.

○ PRO_E_SMT_DIMENSION_VALUE—Specifies the dimension value for
the type selected.

• PRO_E_SMT_EDGE_RIP_DIM_2—Specifies the properties of side 2. This
compound element consists of the same elements as the element PRO_E_
SMT_EDGE_RIP_DIM_1.

Rip Connect Feature
The Rip Connect feature allows you to tear the sheet metal part between two
datum points or vertices or a combination of both. A rip connect endpoint must be
either a datum point, or a vertex and must lie at the end of an edge rip or on the
part border.
The element tree for the Rip Connect feature is documented in the header file
ProSmtConnectRip.h and is as shown in the following figure:

Element Tree for Rip Connect Feature

The elements in this tree are described as follows:

Production Applications: Sheetmetal 1375

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature. The

value of this feature must be PRO_
FEAT_RIP.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is Rip_
Connect_1.

PRO_E_SMT_RIP_TYPE PRO_VALUE_TYPE_INT Specifies the rip type. The valid
value for this element is PRO_
SMT_RIP_CONNECT.

PRO_E_SMT_RIP_CONNECT_
COMP

Compound Specifies a compound element.

PRO_E_SMT_RIP_CONNECT_
SETS

Array Specifies an array of rip connect
sets.

PRO_E_SMT_RIP_CONNECT_
SET

Compound Specifies a compound element of
reference points and gap
parameters.

PRO_E_SMT_RIP_CONN_REFS Array Specifies an array element
containing the starting and end
point of the rip connect feature.
You can specify up to two
elements in this array.

PRO_E_SMT_RIP_CONN_REF Compound Specifies a compound element of
vertex or datum points.

PRO_E_SMT_RIP_CONN_END PRO_VALUE_TYPE_
SELECTION

Specifies a vertex or datum point
to define the start or end of the rip.
This vertex or datum point must be
placed on the edge or the border of
a sheet metal part.

PRO_E_SMT_RIP_CONN_GAP
_COMP

Compound Specifies a compound element of
gap parameters.

PRO_E_SMT_RIP_CONN_ADD
_GAP

PRO_VALUE_TYPE_BOOLEAN Specifies if a gap clearance should
be added to the selected set of the
rip connect. The valid values are
TRUE or FALSE.

PRO_E_SMT_RIP_CONN_GAP
_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the gap value.

Creating a Rip Feature
Function Introduced

• ProFeatureCreate()
Use the function ProFeatureCreate() to create a specific Rip feature based
on the element tree definition. For more information about
ProFeatureCreate(), refer the Overview of Feature Creation on page 765
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

1376 Creo® Parametric TOOLKITUser’s Guide

Redefining a Rip Feature
Function Introduced

• ProFeatureRedefine()
Use the function ProFeatureRedefine() to redefine a Rip feature based on
the changes made in the element tree. For more information about
ProFeatureRedefine(), refer the Feature Redefine on page 786 section in
the Element Trees: Principles of Feature Creation on page 764 chapter.

Accessing a Rip Feature
Function Introduced

• ProFeatureElemtreeExtract()
Use the function ProFeatureElemtreeExtract() to retrieve the element
tree description of the Rip feature. For more information about
ProFeatureElemtreeExtract(), refer the Feature Inquiry on page 785
section in the Element Trees: Principles of Feature Creation on page 764 chapter.

Corner Relief Feature
Corner relief can be added at each intersection of a pair of bends. When you add
relief, sheet metal sections are removed from the model.
The element tree for the Corner Relief feature is documented in the header file
ProSmtCornerRelief.h and is shown in the following figure:

Production Applications: Sheetmetal 1377

Element Tree for Corner Relief Feature

The elements in this tree are described as follows:
Element ID Data Type Description
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.

The default value is Corner_
Relief_1.

PRO_E_CORNER_RELIEFS Compound This compound element defines
the corner relief sets.

PRO_E_CORNER_RELIEFS_
CR_STATE

PRO_VALUE_TYPE_INT Specifies the corner relief state
using the enumerated data type
ProCrnRelCrState and has
the values:
• PRO_CRN_REL_CR_IN

_FORMED—Creates corner
relief geometry only when the
corner bends are in formed
state.

• PRO_CRN_REL_CR_IN_
UNBEND_ONLY—Creates
corner relief geometry only
when the corner bends are in
unbend state.

PRO_E_CORNER_RELIEFS_
ARR

Array An array element of corner relief
sets.

1378 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_CORNER_RELIEF_
SET

Compound This compound element contains a
corner relief set.

PRO_E_CORNER_RELIEF_
REF_ARR

Array An array element that contains the
corners selected in this set.

PRO_E_CORNER_RELIEF_
REF_SET

Compound A set of elements that defines a
selected corner.

PRO_E_CORNER_RELIEF_
REF_TYPE

PRO_VALUE_TYPE_INT Specifies the type of corner relief
using the enumerated data type
ProCrnRelRefType. The valid
values for this element are:
• PRO_CRN_REL_3_

SURFACES—Corner relief
must be applied to the
specified corners in the model.

• PRO_CRN_REL_ALL—
Corner relief must be applied
to all the corners in the model.

PRO_E_CORNER_RELIEF_
REF_FLAT

PRO_VALUE_TYPE_SELECTION Specifies selection of a flat
surface that is used to locate the
corner.

PRO_E_CORNER_RELIEF_
REF_BND_1

PRO_VALUE_TYPE_SELECTION Specifies selection of a first
cylindrical surface that is used to
locate the corner.

PRO_E_CORNER_RELIEF_
REF_BND_2

PRO_VALUE_TYPE_SELECTION Specifies selection of a second
cylindrical surface that is used to
locate the corner.

PRO_E_CORNER_RELIEF_
DEFINE

Compound A corner relief compound
element.

Refer to the section Corner Relief
Options on page 1380 for more
details on this element and
subsequent child elements.

Production Applications: Sheetmetal 1379

Corner Relief Options
The compound element PRO_E_CORNER_RELIEF_ DEFINE defines the
options and values for a corner relief feature.

Element Tree for Corner Relief Feature Options

The elements of PRO_E_CORNER_RELIEF_ DEFINE are described as follows:
Element ID Data Type Description
PRO_E_CORNER_RELIEF_

DEFINE

Compound A corner relief compound
element.

PRO_E_SMT_CORNER_

RELIEF

Compound This compound element defines
the corner relief properties.

PRO_E_SMT_CORNER_

RELIEF_TYPE

PRO_VALUE_TYPE_INT Specifies the type of corner relief
using the enumerated data type
ProCornerRelType and has
the following values:

1380 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_CORNER_RELIEF_V_

NOTCH—Adds a V notch
shape cut at the corners.

• PRO_CORNER_RELIEF_

CIRCULAR—Adds a circular
shape relief at the corners with
a radius dimension.

• PRO_CORNER_RELIEF_

RECTANGULAR—Adds a
rectangular relief at the
corners with a specified width
and depth.

• PRO_CORNER_RELIEF_

OBROUND—Adds an obround
relief at the corners with a
specified diameter and depth.

• PRO_CORNER_RELIEF_

NO—Does not add relief and
generates square corners.

• PRO_CORNER_RELIEF_

PARAM—Adds the corner
relief as set by the SMT_
DFLT_CRNR_REL

_TYPE parameter in Creo
Parametric.

PRO_E_SMT_CORNER_

RELIEF_WIDTH

Compound This compound element defines
the width type and width value for
corner relief.

PRO_E_SMT_CORNER_

RELIEF_WIDTH_TYPE

PRO_VALUE_TYPE_INT Specifies the type of width for the
corner relief using the enumerated
data type ProSmdRelType and
uses one of the values listed in
Relation Value Types on page
1342

PRO_E_SMT_CORNER_

RELIEF_WIDTH_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the value of width for
the corner relief.

PRO_E_SMT_CORNER_

RELIEF_DEPTH

Compound This compound element defines
the depth type and depth value for
corner relief.

PRO_E_SMT_CORNER_

RELIEF_DEPTH_TYPE

PRO_VALUE_TYPE_INT Specifies the type of depth for the
corner relief using the enumerated
data type
ProCornerRlfDepthType

and uses one of the values listed in

Production Applications: Sheetmetal 1381

Element ID Data Type Description
Relation Value Types on page
1342

PRO_E_SMT_CORNER_

RELIEF_DEPTH_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the value of depth value
for the corner relief.

PRO_E_SMT_CORNER_

RELIEF_ROTATE

Compound This compound element defines
the rotation parameters for corner
relief and is applicable only if
PRO_E_SMT_CORNER_

RELIEF_TYPE value is PRO_
CORNER_RELIEF_OBROUND or
PRO_CORNER_RELIEF_

RECTANGULAR.
PRO_E_SMT_CORNER_

RELIEF_ROTATE_ADD

PRO_VALUE_TYPE_INT Specifies if rotation should be
added to the relief placement. The
valid values for this element are:
• PRO_B_TRUE

• PRO_B_FALSE

PRO_E_SMT_CORNER_

RELIEF_ROTATE_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the value of rotation.

PRO_E_SMT_CORNER_

RELIEF_OFFSET

Compound This compound element defines
the offset parameters for corner
relief and is applicable only if
PRO_E_SMT_CORNER_

RELIEF_TYPE value is PRO_
CORNER_RELIEF_CIRCULAR,
PRO_CORNER_RELIEF_

OBROUND or PRO_CORNER_
RELIEF_RECTANGULAR.

PRO_E_SMT_CORNER_

RELIEF_OFFSET_ADD

PRO_VALUE_TYPE_INT Specifies if offset should be added
to the relief placement. The valid
values for this element are:
• PRO_B_TRUE

• PRO_B_FALSE

1382 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_SMT_CORNER_

RELIEF_OFFSET_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the offset value.

PRO_E_CORNER_RELIEFS_

DIM_SCHEME

PRO_VALUE_TYPE_INT Specifies the dimension scheme
using the enumerated data type
ProCrnRelDimRefType and
has the values:
• PRO_CRN_REL_DIM_REF

_BEND_AXES_XSECTION

—Places the relief at the point
where the bend edges
intersect.

• PRO_CRN_REL_DIM

_REF_CORNER_VERTEX

—Places the relief at the point
where the bend lines intersect.

Editing Corner Relief Feature
The Edit Corner Relief feature removes or edits multiple corner relief design
objects in your model. When you edit corner reliefs, you can change the width and
depth of different types of reliefs and you can set bounding surfaces to remove.
You can edit corner reliefs to no relief or to any one of the types of corner reliefs.

Production Applications: Sheetmetal 1383

The element tree for the Edit Corner Relief feature is documented in the header file
ProSmtEditCornerRelief.h and is shown in the following figure:

1384 Creo® Parametric TOOLKITUser’s Guide

The elements in this tree are described as follows:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid
value for this element is PRO_
FEAT_EDIT_CORNER_

RELIEF.
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.

The default value is Edit_
Corner_Relief_1.

PRO_E_EDIT_CORNER_

RELIEF

Compound This compound element defines
the options and sets the values for
editing corner reliefs.

PRO_E_EDIT_CORNER_

RELIEF_SEL_OPT

PRO_VALUE_TYPE_INT Specifies the corner relief state
using the enumerated data type
ProCrnRelCrState. It has the
following valid values:
• PRO_CRN_REL_CR_IN_

FORMED—Creates corner
relief geometry only when the
corner bends are in formed
state.

• PRO_CRN_REL_CR_IN_

UNBEND_ONLY—Creates
corner relief geometry only
when the corner bends are in
unbend state.

PRO_E_CORNER_RELIEF_

DEFINE

Compound A corner relief compound
element.

Refer to the section Corner Relief
Options on page 1380 for more
details on this element and
subsequent child elements.

Editing Corner Seams
The Edit Corner Seam feature enables you to remove or edit multiple corner seam
design objects in your model.
The element tree for the Edit Corner Seam feature is documented in the header file
ProSmtEditCornerSeam.h and is as shown in the following figure:

Production Applications: Sheetmetal 1385

Feature Element Tree for Edit Corner Seam Feature

The elements in this tree are described as follows:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
EDIT_CORNER_SEAM.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Mandatory element. Specifies the
name of the feature. The default
value is Edit_Corner_Seam_
1.

PRO_E_EDIT_CORNER_SEAM Compound Mandatory element. This
compound element defines the
options and sets the values for
editing corner seams.

1386 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_EDIT_CORNER_SEAM_
SEL_MODE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
mode for selecting corner seams.
The valid values are:
• PRO_SMT_RECOGNITION_

MANUAL_SEL—Specifies
manual selection of corner
seams to edit.

• PRO_SMT_RECOGNITION_
AUTO_SEL—Specifies
automatic selection of corner
seams to edit.

PRO_E_EDIT_CORNER_SEAM_
GEOMS

Multi Collector This element is mandatory when
the selection mode is set to PRO_
SMT_RECOGNITION_MANUAL_
SEL.

Specifies the selection of geometry
for corner seams.

PRO_E_REMOVE_CORNER_
SEAM

PRO_VALUE_TYPE_BOOLEAN Specifies that the corner seam
must be removed.

PRO_E_EDIT_CORNER_SEAM_
SHAPE

Compound This element is mandatory when
the element PRO_E_REMOVE_
CORNER_SEAM is set to false.

This compound element defines
the options and sets the values for
corner seam edges.

PRO_E_EDIT_BEND_RCR_
CRNR

PRO_VALUE_BOOLEAN Specifies if the corner reliefs must
be automatically changed to V
notch corner type.

PRO_E_CRNR_SEAM_CR_RND_
CHMF

PRO_VALUE_TYPE_INT Mandatory element. Specifies if
the rounds and chamfers must be
recreated after the corner seams
are edited. The input to the
element are the values defined by
the enumerated data type
ProEditBendCrRndChmfOpt.
The valid values are:
• PRO_ED_CR_CRNR_SEAM_

RND_CHMF— The rounds and
chamfers are recreated.

• PRO_ED_NO_CR_CRNR_
SEAM_RND_CHMF— The
rounds and chamfers are not
recreated.

PRO_E_SMT_EDGE_RIP_TYPE PRO_VALUE_TYPE_INT Specifies the type of corner seam
using the enumerated data type
ProEdgeRipType. The valid
values are:

Production Applications: Sheetmetal 1387

Element ID Data Type Description
• PRO_EDGE_RIP_OPEN—

Edits the corner seam at the
intersection point of edges.

• PRO_EDGE_RIP_BLIND—
Edits the corner seam with a
gap specified by two
dimensions.

• PRO_EDGE_RIP_MITER_
CUT—Edits the corner seam
with a gap specified by a
single dimension.

• PRO_EDGE_RIP_
OVERLAP—Edits the corner
seam such that one edge
overlaps the other.

PRO_E_SMT_EDGE_RIP_ADD_
GAP

PRO_VALUE_TYPE_BOOLEAN Specifies whether to add a gap
clearance. This element is
applicable only if the element
PRO_E_SMT_EDGE_RIP_TYPE
is set to PRO_EDGE_RIP_
MITER_CUT or PRO_EDGE_
RIP_OVERLAP.

PRO_E_SMT_EDGE_RIP_
CLOSE_CORNER

PRO_VALUE_TYPE_BOOLEAN Specifies if the gap between the
bend surfaces of a corner relief
must be closed. This element is
applicable only if the element
PRO_E_SMT_EDGE_RIP_TYPE
is set to PRO_EDGE_RIP_OPEN.

PRO_E_SMT_EDGE_RIP_DIM_
1

Compound This element is mandatory when
the element PRO_E_SMT_EDGE_
RIP_TYPE is set to PRO_EDGE_
RIP_BLIND.

Specifies a compound element that
defines the properties of side 1.

PRO_E_SMT_DIMENSION_
TYPE

PRO_VALUE_TYPE_INT Specifies the dimension type. For
PRO_EDGE_RIP_DIM_TYPE_
BLIND dimension type, the
relation value is set to PRO_
DIM_ENTER.

PRO_E_SMT_DIMENSION_
VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the dimension value for
side 1.

PRO_E_SMT_EDGE_RIP_DIM_
2

Compound This element is mandatory when
the element PRO_E_SMT_EDGE_
RIP_TYPE is set to PRO_EDGE_
RIP_BLIND.

Specifies a compound element that
defines the properties of side 2.

PRO_E_SMT_DIMENSION_
TYPE

PRO_VALUE_TYPE_INT Specifies the dimension type. For
PRO_EDGE_RIP_DIM_TYPE_
BLIND dimension type, the

1388 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
relation value is set to PRO_
DIM_ENTER.

PRO_E_SMT_DIMENSION_
VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the dimension value for
side 2.

PRO_E_SMT_EDGE_RIP_GAP Compound This element is mandatory when
the element PRO_E_SMT_EDGE_
RIP_TYPE is set to PRO_EDGE_
RIP_MITER_CUT or PRO_E_
SMT_EDGE_RIP_ADD_GAP is
set to true.

Specifies the properties for the
gap.

PRO_E_SMT_DIMENSION_
TYPE

PRO_VALUE_TYPE_INT Specifies the gap type. For PRO_
EDGE_RIP_MITER_CUT and
PRO_EDGE_RIP_OVERLAP
dimension types the relation value
is set to PRO_ DIM_ENTER.

PRO_E_SMT_DIMENSION_
VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the value for the gap.

PRO_E_SMT_EDGE_RIP_FLIP PRO_VALUE_TYPE_BOOLEAN Specifies if the side of corner seam
that overlaps must be flipped.

PRO_E_EDIT_CORNER_SEAM_
TABLE

Array Specifies an array element that
defines the options to remove the
corner seam.

PRO_E_CORNER_SEAM_RMV_
SETTINGS

Compound Specifies a compound element that
defines the options to remove the
corner seam.

PRO_E_EDIT_CORNER_SEAM_
RMV_REFS

Compound Specifies a compound element that
defines the corner reference
geometry to which the seam is
attached. The surface should be
planar or two cylinders.

PRO_E_CORNER_SEAM_RMV_
FLAT

PRO_VALUE_TYPE_
SELECTION

Specifies a flat surface.

PRO_E_CORNER_SEAM_RMV_
BEND_1

PRO_VALUE_TYPE_
SELECTION

Specifies the first bend surface.

PRO_E_CORNER_SEAM_RMV_
BEND_2

PRO_VALUE_TYPE_
SELECTION

Specifies the second bend surface.

PRO_E_CORNER_SEAM_
BOUNDARIES

Multi Collector Specifies collection of bounding
surfaces.

PRO_E_CORNER_SEAM_RMV_
SIDE_1

Compound Specifies a compound element that
defines the properties of side 1.

PRO_E_CORNER_SEAM_RMV_
DEFAULT

PRO_VALUE_TYPE_BOOLEAN Specifies the default option to
remove the corner seam for side 1.

PRO_E_EDIT_CORNER_SEM_
RMV_METHOD

PRO_VALUE_TYPE_INT Specifies the method to remove
the corner seam for side 1. The
valid values are specified using the
enumerated data type
ProEditCornerSeamRemove
Type:

Production Applications: Sheetmetal 1389

Element ID Data Type Description
• PRO_CORNER_SEAM_

REMOVE_TANGENT—
Extends or trims the bounding
surface making it a planar
surface tangent to original
surface.

• PRO_CORNER_SEAM_
REMOVE_SAME—Extends or
trims the bounding surface by
continuing past its original
boundaries and keeping the
same type of surface.

• PRO_CORNER_SEAM_
REMOVE_PARALLEL—
Extends or trims the bounding
surface parallel to the bend
axis.

• PRO_CORNER_SEAM_
REMOVE_COMMON_
VERTEX—Extends or trims
the bounding surface normal to
the corner.

• PRO_CORNER_SEAM_
REMOVE_NORMAL—Finds the
common vertex for
intersection of both bounding
surfaces.

PRO_E_CORNER_SEAM_RMV_
SIDE_2

Compound Specifies a compound element that
defines the properties of side 2.

PRO_E_CORNER_SEAM_RMV_
DEFAULT

PRO_VALUE_TYPE_BOOLEAN Specifies the default option to
remove the corner seam for side 2.

PRO_E_EDIT_CORNER_SEM_
RMV_METHOD

PRO_VALUE_TYPE_INT Specifies the method to remove
the corner seam for side 2 using
the enumerated data type
ProEditCornerSeamRemove
Type.

Bend Feature
The Bend feature allows you to bend the sheet metal in different ways using the
bend line or an edge or a curve and by defining specific radius and angle.
The element tree for the Bend feature is documented in the header file
ProSmtBend.h and is as shown in the following figure:

1390 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Bend Feature

The elements in this tree are described as follows:

Production Applications: Sheetmetal 1391

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
BEND.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is Bend_1.

PRO_E_SMT_BEND_FORM PRO_VALUE_TYPE_INT Specifies the type of bend using
the enumerated data type
ProBendForm. The valid values
for this element are:
• PRO_SMT_BEND_FORM_

ANGLE—Specifies an angled
type of bend.

• PRO_SMT_BEND_FORM
_ROLL—Specifies a rolled
type of bend.

PRO_E_SMT_BEND_LINE Compound This compound element defines
the bend line properties. For more
information, see the section Bend
Line Elements on page 1394.

PRO_E_SMT_BEND_FIXED
_SIDE

PRO_VALUE_TYPE_INT Specifies the fixed side of the bend
using the enumerated data type
ProBendSide. The valid values
for this element are:
• PRO_SMT_BEND_SIDE

_ONE—Specifies first side as
the fixed side.

• PRO_SMT_BEND_SIDE
_TWO—Specifies the second
side as the fixed side.

PRO_E_SMT_BEND_LOCATION PRO_VALUE_TYPE_INT Specifies the location of the bend
in relation to the bend line, using
the enumerated data type
ProBendSide. The valid values
for this element are:
• PRO_SMT_BEND_SIDE

_ONE—Specifies a bend up to
the bend line.

• PRO_SMT_BEND_SIDE
_TWO—Specifies a bend up to
the other side of the bend line.

• PRO_SMT_BEND_BOTH
_SIDES—Specifies a bend
centered on both sides of the
bend line.

PRO_E_SMT_BEND_
DIRECTION

PRO_VALUE_TYPE_INT Specifies the direction of the bend
using the enumerated data type
ProBendSide. The valid values
for this element are:

1392 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_SMT_BEND_SIDE

_ONE—Specifies the bend
direction normal to the
selected surface.

• PRO_SMT_BEND_SIDE
_TWO—Flips the bend
direction.

PRO_E_SMT_BEND_ANGLE Compound This compound element and its
sub-elements are available when
the element PRO_E_SMT_BEND_
FORM has its value as PRO_SMT_
BEND_FORM_ANGLE.

The compound element defines the
bend angle.

PRO_E_SMT_BEND_ANGLE_
TYPE

PRO_VALUE_TYPE_INT Specifies the bend angle type
using the enumerated data type
ProBendAngleType. The valid
values for this element are:
• PRO_SMT_BEND_ANGLE_

INTERNAL—Specifies the
resulting internal bend angle.

• PRO_SMT_BEND_ANGLE_
EXTERNAL—Specifies the
bend angle deflection from
straight.

PRO_E_SMT_BEND_ANGLE_
VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the value of the bend
angle.

PRO_E_SMT_BEND_TRANS
_FLIP

PRO_VALUE_TYPE_INT Flips the direction where the bend
cylinder will be created along the
bend transition line using the
enumerated data type
ProBendSide. The valid values
for this element are:
• PRO_SMT_BEND_SIDE

_ONE—Creates the cylinder
along the first line of the
transition.

• PRO_SMT_BEND_SIDE
_TWO—Creates the cylinder
along the second line of the
transition.

Note

The transition flip element is
available only if there is one
transition set in the feature.

PRO_E_SMT_BEND_TRANS_
AREAS

Array An array element of bend
transition lines that defines the
bend transition area.

PRO_E_SMT_BEND_TRANS_
SET

Compound This compound element defines
the bend transition lines.

Production Applications: Sheetmetal 1393

Element ID Data Type Description
PRO_E_STD_SECTION Compound This compound element specifies

a sketched section for the bend
line. For more information on how
to create features that contain
sketched sections, refer to the
section Creating Features
Containing Sections on page 1006.

PRO_E_SMT_FILLETS Compound This compound element defines
the bend properties of the sheet
metal wall and the value of bend
radius.

PRO_E_SMT_FILLETS_SIDE PRO_VALUE_TYPE_INT Specifies the fillet side. The valid
values are:
• PRO_BEND_RAD_

OUTSIDE—Applies the bend
radius to the outer surface of
the bend.

• PRO_BEND_RAD_INSIDE—
Applies the bend radius to the
inner surface of the bend.

• PRO_BEND_RAD_
PARAMETER—Applies the
bend radius at the dimension
location set by the SMT_
DFLT_RADIUS_SIDE
parameter in Creo Parametric.

PRO_E_SMT_FILLETS_VALUE PRO_VALUE_TYPE_DOUBLE Specifies the value of the bend
radius.

PRO_E_SMT_BEND_RELIEF Compound This compound element defines
the bend relief at the edges. For
more information see the section
Bend Relief Elements on page
1398.

PRO_E_SMT_DEV_LEN_
CALCULATION

Compound This compound element defines
the method used to calculate the
Developed Length dimensions for
the bends. For more information
see the section The Element
Subtree for Length Calculation on
page 1327

Bend Line Elements
This compound element PRO_E_SMT_BEND_LINE defines the bend line, its
properties and references for sheet metal bends.

1394 Creo® Parametric TOOLKITUser’s Guide

The elements of PRO_E_SMT_BEND_LINE are described as follows:

Production Applications: Sheetmetal 1395

Element ID Data Type Description
PRO_E_SMT_BEND_LINE_
TYPE

PRO_VALUE_TYPE_INT Specifies the type of bend using
the enumerated data type
ProBendLineType. The valid
values for this element are:
• PRO_SMT_BEND_LINE

_NOT_DEFINED—Specifies
an undefined bend line.

• PRO_SMT_BEND_LINE
_SKETCH Specifies a user
defined bend line.

• PRO_SMT_BEND_LINE
_CURVE—Specifies a linear
chain to be used as the bend
line.

• PRO_SMT_BEND_LINE_
INTERNAL_LINE—Specifies
the bend line that will be
created based on the
compound element PRO_E_
SMT_BEND_LINE
_INTERNAL.

PRO_E_SMT_BEND_REF_
SURFACE

PRO_VALUE_TYPE_
SELECTION

This element is available when the
value of element PRO_E_SMT_
BEND_LINE_TYPE is PRO_
SMT_BEND_LINE_INTERNAL_
LINE or PRO_SMT_BEND_
LINE_
SKETCH.

Specifies the surface to be bent.
This is the surface on which the
bend line is set.

PRO_E_STD_SECTION Compound This compound element and its
sub-elements are available only if
the element PRO_E_SMT_BEND_
LINE_TYPE has its value as
PRO_SMT_BEND_LINE
_SKETCH.

The compound element specifies a
sketched section for the bend line.
For more information on how to
create features that contain
sketched sections, refer to the
section Creating Features
Containing Sections on page 1147.

PRO_E_SMT_BEND_CURVE Compound This element and its sub-elements
are available when the element
PRO_E_SMT_BEND_LINE_
TYPE has its value as PRO_SMT_
BEND_LINE_CURVE.

1396 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

This compound element defines
the curve references and bend
curve offset value.

PRO_E_STD_CURVE_
COLLECTION_APPL

PRO_VALUE_TYPE_POINTER Specifies a surface edge or a curve
that defines the bend line.

PRO_E_SMT_BEND_CURVE_
USE_OFFSET

PRO_VALUE_TYPE_INT Specifies whether to offset the
bend curve from the selected
reference. The valid values for this
element are:
• PRO_B_TRUE

• PRO_B_FALSE

PRO_E_SMT_BEND_CURVE
_OFFSET_VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the offset value for the
bend curve.

PRO_E_SMT_BEND_LINE_
INTERNAL

Compound This element and its sub-elements
are available when the element
PRO_E_SMT_BEND_LINE_
TYPE has its value as PRO_SMT_
BEND_LINE_INTERNAL_LINE.

The compound element defines the
bend line reference ends, offsets
and offset values.

PRO_E_SMT_BEND_LINE_REF
_END1

PRO_VALUE_TYPE_
SELECTION

Specifies a vertex or an edge as
the placement reference for the
first end of the bend line.

PRO_E_SMT_BEND_LINE_REF
_END2

PRO_VALUE_TYPE_
SELECTION

Specifies a vertex or an edge as
the placement reference for the
second end of the bend line.

PRO_E_SMT_BEND_LINE_REF
_OFFSET1

PRO_VALUE_TYPE_
SELECTION

This element is available when
you choose an edge reference in
the element PRO_E_SMT_BEND_
LINE_
REF_END1.

Specifies an edge as the offset
reference for the first end of the
bend line.

PRO_E_SMT_BEND_LINE_REF
_OFFSET2

PRO_VALUE_TYPE_
SELECTION

This element is available when
you choose an edge reference in
the element PRO_E_SMT_BEND_
LINE_
REF_END2.

Specifies an edge as the offset
reference for the second end of the
bend line.

Production Applications: Sheetmetal 1397

Element ID Data Type Description
PRO_E_SMT_BEND_LINE_REF
_OFFSET1_VALUE

PRO_VALUE_TYPE_DOUBLE This element is available when
you choose an edge reference in
the element PRO_E_SMT_BEND_
LINE
_REF_END1.

Specifies the offset value from the
first end of the bend line.

PRO_E_SMT_BEND_LINE_REF
_OFFSET2_VALUE

PRO_VALUE_TYPE_DOUBLE This element is available when
you choose an edge reference in
the element PRO_E_SMT_BEND_
LINE
_REF_END2.

Specifies the offset value from the
second end of the bend line.

Bend Relief Elements
The compound element PRO_E_SMT_BEND_RELIEF defines the bend relief
elements. The relief can be specified differently on each side of the bend.

1398 Creo® Parametric TOOLKITUser’s Guide

The two main elements of PRO_E_SMT_BEND_RELIEF are:

• PRO_E_SMT_BEND_RELIEF_SIDE1—This compound element specifies
the bend relief applied to the first side of the end of the bend.

• PRO_E_SMT_BEND_RELIEF_SIDE2—This compound element specifies
the bend relief applied to the second side of the end of the bend.

The following elements are common to the both the compound elements:

Production Applications: Sheetmetal 1399

Element ID Data Type Description
PRO_E_BEND_RELIEF_TYPE PRO_VALUE_TYPE_INT Specifies the relief type using the

enumerated data type
ProBendRlfType. The valid
values for this element are:
• PRO_BEND_RLF_NONE—

Specifies no relief.
• PRO_BEND_RLF_RIP—

Specifies ripping of the
material.

• PRO_BEND_RLF_
STRETCH— Specifies
stretching of the material for
bend relief.

• PRO_BEND_RLF_
RECTANGULAR— Specifies
adding a rectangular relief.

• PRO_BEND_RLF_
OBROUND— Specifies adding
an obround relief.

• PRO_BEND_RLF_PARAM—
Specifies relief type set by the
part parameter SMT_DFLT_
BEND_REL_TYPE.

PRO_E_BEND_RELIEF_WIDTH PRO_VALUE_TYPE_DOUBLE Specifies the relief width and is
applicable only if the value of
PRO_E_BEND_RELIEF_TYPE
is PRO_BEND_RLF_
RECTANGULAR, PRO_BEND_
RLF_STRETCH or PRO_BEND_
RLF_OBROUND.

PRO_E_BEND_RELIEF_
DEPTH_TYPE

PRO_VALUE_TYPE_INT Specifies the type of depth relief.
The valid values for this element
are defined in the enumerated type
ProBendRlfDepthType and
are as follows:
• PRO_BEND_RLF_DEPTH_

NOT_USED— Specifies that
the depth for the relief is not
used.

• PRO_BEND_RLF_DEPTH_
BLIND—Creates a relief
through the geometry as per
the specified value.

• PRO_BEND_RLF_DEPTH_
UP_TO_BEND— Creates a
relief up to the bend.

• PRO_BEND_RLF_DEPTH_
TAN_TO_BEND— Creates a
relief tangential to the bend.
PRO_BEND_RLF_DEPTH_
TAN_TO_BEND is applicable

1400 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
only when relief type is set to
PRO_BEND_RLF _OBROUND.

Production Applications: Sheetmetal 1401

Element ID Data Type Description
• PRO_BEND_RLF_DEPTH_

TYPE_PARAM— Specifies the
depth type of the relief at the
dimension location and is set
by part parameter SMT_
DFLT_BEND_REL_DEPTH_
TYPE.

This element decides the visibility
of the bend relief depth element
PRO_E_BEND_RELIEF_DEPTH.
If PRO_E_BEND_RELIEF_
DEPTH_TYPE is set to PRO_
BEND_RLF_DEPTH_BLIND or
PRO_BEND_RLF_DEPTH_

TYPE_PARAM and the part
parameter SMT_DFLT_BEND_
REL_DEPTH

_TYPE is set to Blind, then the
existing element PRO_E_BEND_
RELIEF_DEPTH is used.

PTC recommends that you define
the element PRO_E_BEND_
RELIEF_DEPTH_TYPE

explicitly for all Creo Parametric
TOOLKIT applications. If the
element PRO_E_BEND_
RELIEF_DEPTH_TYPE is not
defined, the default value is used.
The default value from Creo
Parametric 1.0 onwards, depends
on the part parameter SMT_
DFLT_BEND_REL_DEPTH

_TYPE and the configuration
option SMT_DRIVE_TOOLS_
BY_PARAMETERS.

If the value of the configuration
option SMT_DRIVE_TOOLS_
BY_PARAMETERS is set to No,
then the default value is the last
bend relief type, as selected in
Creo Parametric during the
creation of the new feature. For
the Pro/TOOLKIT applications
prior to Creo Parametric 1.0, if the
default value is not Blind, then the

1402 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
element PRO_E_BEND_
RELIEF_DEPTH_TYPE is not
used. For such cases, set the PRO_
E_BEND_RELIEF_DEPTH_

TYPE to PRO_BEND_RLF_
DEPTH_BLIND.

PRO_E_BEND_RELIEF_DEPTH PRO_VALUE_TYPE_DOUBLE Specifies the relief depth and is
applicable only if the value of
PRO_E_BEND_RELIEF_TYPE
is PRO_BEND_RLF_
RECTANGULAR or PRO_BEND_
RLF_OBROUND.

PRO_E_BEND_RELIEF_
LENGTH_TYPE

PRO_VALUE_TYPE_INT Specifies the type of the relief
length and is defined by the
enumerated data type
ProBendRlfLengthType.
The valid values follow:
• PRO_BEND_RLF_LENGTH_

NOT_USED

• PRO_BEND_RLF_LENGTH_
BLIND—Creates the bend
reliefs with a length of the
specified value.

• PRO_BEND_RLF_LENGTH_
TO_NEXT—Creates the bend
reliefs with a length to the next
surface.

• PRO_BEND_RLF_LENGTH_
THROUGH_ALL—Creates the
bend reliefs through all
surfaces.

• PRO_BEND_RLF_LENGTH_
TYPE_PARAM—Uses the
SMT_DFLT_BEND_REL_
LENGTH_TYPE parameter
value.

PRO_E_BEND_RELIEF_
LENGTH

PRO_VALUE_TYPE_DOUBLE Specifies the value of the relief
length.

PRO_E_BEND_RELIEF_ANGLE PRO_VALUE_TYPE_DOUBLE Specifies the relief angle and is
applicable only if the value of
PRO_E_BEND_RELIEF_TYPE
is PRO_BEND_RLF_STRETCH.

Editing Bend Reliefs
The Edit Bend Relief feature enables you to edit bend reliefs in existing bends.
The element tree for the Edit Bend Relief feature is documented in the header file
ProSmtEditBendRelief.h and is shown in the following figure:

Production Applications: Sheetmetal 1403

Feature Element Tree for Edit Bend Relief Feature

The elements in this tree are described as follows:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of feature. The value of this
feature must be PRO_FEAT_
EDIT_BEND_RELIEF.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Mandatory element. Specifies the
name of the feature. The default
value is EDIT_BEND_RELIEF_
1.

PPRO_E_EDIT_BEND_RELIEF Compound Mandatory element. This
compound element defines the
options and sets the values for
editing a bend relief.

PRO_E_EDIT_BEND_RELIEF_
SEL_MODE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
mode for selecting bend reliefs.
The valid values are:

1404 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_SMT_RECOGNITION_

MANUAL_SEL—Specifies
manual selection of bend
reliefs to edit.

• PRO_SMT_RECOGNITION_
AUTO_SEL—Specifies
automatic selection of bend
reliefs to edit.

PRO_E_EDIT_BEND_RELIEF_
GEOMS

Multi Collector This element is mandatory when
the selection mode is set to PRO_
SMT_RECOGNITION_MANUAL_
SEL. Specifies the selection of
geometry for bend reliefs.

You can select valid bend relief
design objects, geometry of
recognizable bend reliefs, or
surfaces of bends for which bend
reliefs can be edited. You can also
select planes with adjacent bends.
If an intent surface is selected, all
the surfaces which are not relevant
will be ignored. Thickness edges
can be selected when side surfaces
cannot be selected. Bend relief
vertices can be selected when
neither side surfaces nor thickness
edges can be selected.

PRO_E_EDIT_BEND_RELIEF_
SHAPE

Compound Mandatory element. This
compound element specifies the
options that define the shape of a
bend relief.

PRO_E_BEND_RELIEF_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of bend relief. The valid
values are:
• PRO_BEND_RLF_RIP—The

selected bend reliefs are edited
to rip reliefs with no
dimensions.

• PRO_BEND_RLF_
RECTANGULAR—The
selected bend reliefs are edited
to rectangular reliefs with
width and depth dimensions.

• PRO_BEND_RLF_
OBROUND—The bend relief is
edited to an obround relief
with width and depth
dimensions.

PRO_E_BEND_RELIEF_WIDTH PRO_VALUE_TYPE_DOUBLE This element is mandatory when
the element PRO_E_BEND_

Production Applications: Sheetmetal 1405

Element ID Data Type Description
RELIEF_TYPE is set to PRO_
BEND_RLF_RECTANGULAR or
PRO_BEND_RLF_OBROUND.

Specifies the value for width in a
bend relief.

PRO_E_BEND_RELIEF_
DEPTH_TYPE

PRO_VALUE_TYPE_INT This element is mandatory when
the element PRO_E_BEND_
RELIEF_TYPE is set to PRO_
BEND_RLF_RECTANGULAR or
PRO_BEND_RLF_OBROUND.

Specifies the type of depth for
bend relief. The valid values are:
• PRO_BEND_RLF_DEPTH_

BLIND—Creates a relief
through the geometry as per
the specified value.

• PRO_BEND_RLF_DEPTH_

UP_TO_BEND— Creates a
relief up to the bend.

• PRO_BEND_RLF_DEPTH_

TAN_TO_BEND—This depth
type is applicable only for
bend relief type PRO_BEND_
RLF_OBROUND. Creates a
relief tangential to the bend.

PRO_E_BEND_RELIEF_DEPTH PRO_VALUE_TYPE_DOUBLE This element is mandatory when
the element PRO_E_BEND_
RELIEF_DEPTH_TYPE is set to
PRO_BEND_RLF_DEPTH_
BLIND.

Specifies the value for depth in a
bend relief. The depth is measured
from the edge of the bend.

PRO_E_BEND_RELIEF_
LENGTH_TYPE

PRO_VALUE_TYPE_INT This element is mandatory and it
specifies the type of the relief
length. It is defined by the
enumerated data type
ProBendRlfLengthType and
the valid values follow:
• PRO_BEND_RLF_LENGTH_

NOT_USED

• PRO_BEND_RLF_LENGTH_
BLIND—Creates the bend
reliefs with a length of the
specified value.

• PRO_BEND_RLF_LENGTH_
TO_NEXT—Creates the bend

1406 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
reliefs with a length to the next
surface.

• PRO_BEND_RLF_LENGTH_
THROUGH_ALL—Creates the
bend reliefs through all
surfaces.

• PRO_BEND_RLF_LENGTH_
TYPE_PARAM—Uses the
SMT_DFLT_BEND_REL_
LENGTH_TYPE parameter
value.

PRO_E_BEND_RELIEF_
LENGTH

PRO_VALUE_TYPE_DOUBLE Specifies the value of the relief
length.

This element is mandatory when
the length type is PRO_BEND_
RLF_LENGTH_BLIND. Only
zero or positive values are allowed

PRO_E_EDIT_BEND_RELIEF_
TABLE

Array This element along with its child
elements is reserved for internal
use.

Edge Bend Feature
The Edge Bend feature allows you to round sharp edges of a sheet metal.
The element tree for the Edge Bend feature is documented in the header file
ProSmtEdgeBend.h and is shown in the following figure:

Production Applications: Sheetmetal 1407

Feature Element Tree for Edge Bend Feature

1408 Creo® Parametric TOOLKITUser’s Guide

The elements in this tree are described as follows:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature. The

value of this feature must be PRO_
FEAT_EDGE_BEND.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is Edge_
Bend_1.

PRO_E_SMT_EDGE_BEND_
ARRAY

Array An array element of single or
multiple Edge Bend sets.

PRO_E_SMT_EDGE_BEND_SET Compound This compound element contains a
single edge bend set.

PRO_E_SMT_EDGE_BEND_
REFERENCES

Array An array element of surface edges,
that form an edge bend set.

PRO_E_SMT_EDGE_
REFERENCES

Compound This compound element defines
the collection of surface edge or a
curve.

PRO_E_STD_CURVE_
COLLECTION_APPL

PRO_VALUE_TYPE_POINTER Specifies the sharp edges to be
rounded.

PRO_E_SMT_FILLET_SELECT Compound This compound element defines
the bend properties and the value
of the bend radius.

PRO_E_SMT_FILLET_
RADIUS_SIDE

PRO_VALUE_TYPE_INT Specifies the fillet side using the
enumerated data type
ProSmdRadType. The valid
values for this element are as
follows:
• PRO_BEND_RAD_

OUTSIDE—Applies the bend
radius to the outer surface of
the bend.

• PRO_BEND_RAD_INSIDE—
Applies the bend radius to the
inner surface of the bend.

• PRO_BEND_RAD_
PARAMETER—Applies the
bend radius at the dimension
location set by the SMT_
DFLT_RADIUS_SIDE
parameter in Creo Parametric.

PRO_E_SMT_FILLET_
RADIUS_VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the value of the bend
radius.

Production Applications: Sheetmetal 1409

Element ID Data Type Description
PRO_E_SMT_BEND_RELIEF Compound This compound element defines

the bend relief at the edges. Refer
to the section Bend Relief
Elements on page 1398 for more
information.

PRO_E_SMT_DEV_LEN_
CALCULATION

Compound This compound element defines
the method used to calculate the
Developed Length dimensions for
bends. For more information see
the section The Element Subtree
for Length Calculation on page
1327.

Unbend Feature
The unbend feature allows you to unbend one or more cylinder based curvature
surfaces such as bends or curved walls in a sheet metal part.
The element tree for the Unbend feature is documented in the header file
ProRegularUnbend.h and is shown in the following figure:

1410 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Unbend Feature

The elements in this tree are described as follows:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature. The

value of this feature must be PRO_
FEAT_UNBEND.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is Unbend_1.

PRO_E_SMT_UNBEND_TYPE PRO_VALUE_TYPE_INT Creates a regular unbend feature
using the enumerated data type
ProSmtUnbendType. This

Production Applications: Sheetmetal 1411

Element ID Data Type Description
element takes the valid value
PRO_SMT_REGULAR_UNBEND.

PRO_E_SMT_UNBEND_SUB_
TYPE

PRO_VALUE_TYPE_INT Specifies the type of unbend
execution using the enumerated
data type ProUnbendSubType
which has the following values:
• PRO_UNBEND_ALL—

Specifies that all the curved
surfaces and edges must be
automatically selected for
unbend.

• PRO_UNBEND_SELECTED—
Specifies that the curved
surfaces and edges must be
manually selected for unbend.

PRO_E_SMT_PRIMARY_
FIXED_GEOM

Compound This compound element defines a
surface or an edge that remains
fixed during the unbending.

PRO_E_SMT_FIXED_REF PRO_VALUE_TYPE_
SELECTION

Specifies a surface or edge that
remains fixed during unbending.

PRO_E_SMT_FIXED_REF
_SIDE

PRO_VALUE_TYPE_INT This element is applicable only if a
sharp edge is selected as the fixed
reference in the element PRO_E_
SMT_FIXED_REF.

Flips the edge and one of the
surfaces the edge lies in between,
to remain fixed during unbending,
using the enumerated data type
ProSmtFixedRefSide. The
valid values for this element are:
• PRO_SMT_FIXED_SIDE_

ONE—First side from the edge
will be fixed.

• PRO_SMT_FIXED_SIDE_
TWO—Second side from the
edge will be fixed.

PRO_E_SMT_UNBEND_REF_
ARR

Array An array element defining the list
of edges to unbend.

PRO_E_SMT_UNBEND_REF Compound This compound element defines
collection of geometry to be
unbent.

PRO_E_SMT_UNBEND_
SINGLE_REF

PRO_VALUE_TYPE_
SELECTION

Specifies edge or surface or intent
surface or intent chain to unbend.

PRO_E_SMT_DEFORM_
SURFACES

Compound This compound element defines
the deformation surfaces.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_POINTER Collects the surfaces to be used as
deformation areas.

PRO_E_SMT_ADD_CORNER_
RELIEFS_OPTS

Compound This compound element defines
the relief parameters.

1412 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_SMT_ADD_CORNER_
RELIEFS

PRO_VALUE_TYPE_BOOLEAN Specifies if the relief geometry
must be created. The valid values
for this element are:
• PRO_B_TRUE

• PRO_B_FALSE

PRO_E_SMT_ADD_CORNER_
RELIEFS_TYPE

PRO_VALUE_TYPE_INT Specifies the corner relief settings
using the enumerated data type
ProSmtAddCornRelType.
The valid values for this element
are:
• PRO_SMT_ADD_CORN_REL

_UNDEF—Specifies that the
corner relief parameter is
undefined.

• PRO_SMT_ADD_CORN_REL
_BY_FLAT_PAT—Creates
the corner relief geometry on
the model.

• PRO_SMT_ADD_CORN_REL
_BY_PARAMS—Does not
creates the corner relief
geometry on the model.

PRO_E_SMT_FLATTEN_FORM_
WALLS

PRO_VALUE_TYPE_BOOLEAN Specifies if the walls adjusted to
form geometry must be unbent.
When forms are also flattened,
geometry is first unbent. The valid
values are:
• PRO_B_TRUE

• PRO_B_FALSE

Note

You can specify the value for
this element only if the
enumerated data type
ProUnbendSubTypeis set
to the value PRO_UNBEND_
ALL.

PRO_E_SMT_FLATTEN_ALL_
FORMS

PRO_VALUE_TYPE_BOOLEAN Specifies if all the forms in the
model must be flattened. The valid
values are:

Production Applications: Sheetmetal 1413

Element ID Data Type Description
• PRO_B_TRUE

• PRO_B_FALSE

Note

You can specify the value for
this element only if the
enumerated data type
ProSmtUnbendTypeis set
to the value PRO_SMT_
FLAT_PATTERN.

PRO_E_SMT_FLATTEN_PROJ_
CUTS

PRO_VALUE_TYPE_BOOLEAN Specifies if cuts must be projected
to the flattened form.

PRO_E_SMT_MERGE_SAME_
SIDES

PRO_VALUE_TYPE_BOOLEAN Specifies if the side surfaces
located in the same location must
be kept. The valid values for this
element are:
• PRO_B_TRUE

• PRO_B_FALSE

Note

You can specify the value for
this element only if the
enumerated data type
ProSmtUnbendTypeis set
to the value PRO_SMT_
FLAT_PATTERN.

Flat Pattern Feature
The Flat Pattern feature creates a flattened version of a sheet metal part.
This feature uses the same element tree as the Unbend feature documented in the
header file ProRegularUnbend.h. It shares most of the elements with the
Unbend feature tree. The following elements are specific to Flat Pattern feature:
• PRO_E_FEATURE_TYPE—Specifies the type of feature. The value of this

feature must be PRO_FEAT_FLAT_PAT.
• PRO_E_SMT_UNBEND_TYPE—Creates a flattened sheet metal part using the

enumerated data type ProSmtUnbendType. This element takes the valid
value PRO_SMT_FLAT_PATTERN.

• PRO_E_SMT_FLATTEN_ALL_FORMS—Specifies if all the forms in the
model must be flattened. The valid values are:
○ PRO_B_TRUE

1414 Creo® Parametric TOOLKITUser’s Guide

○ PRO_B_FALSE

• PRO_E_SMT_MERGE_SAME_SIDES—Specifies if the side surfaces located
in the same location must be kept. The valid values for this element are:
○ PRO_B_TRUE

○ PRO_B_FALSE

Bend Back Feature
The bend back feature allows you to return the unbent walls to their formed bent
positions in a sheet metal part.
The element tree for the bend back feature is documented in the header file
ProSmtBendBack.h and is shown in the following figure:

Element Tree for Bend Back Feature

Production Applications: Sheetmetal 1415

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of feature. The

value of this feature must be PRO_
FEAT_BEND_BACK.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
The default value is Bend_
Back_1.

PRO_E_SMT_BEND_BACK_
SUB_TYPE

PRO_VALUE_TYPE_INT Specifies if all or selected
geometry must be bent. The
enumerated data type
ProBendBackSubType
contains the valid values for this
element and are as follows:
• PRO_BEND_BACK_ALL

— Specifies that all unbent
geometry must be bent back.

• PRO_BEND_BACK_
SELECTED— Specifies that
only the specified geometry
must be bent back.

PRO_E_SMT_PRIMARY_
FIXED_GEOM

Compound This compound element defines
the fixed geometry during the
bend back operation.

PRO_E_SMT_FIXED_REF PRO_VALUE_TYPE_
SELECTION

Specifies a surface or edge that
remains fixed during the bend
back operation.

PRO_E_SMT_FIXED_REF_
SIDE

PRO_VALUE_TYPE_INT Specifies the flip option for the
side of the edge that will remain
fixed during the bend back
operation. The valid values for this
element are defined in the
enumerated data type
ProSmtFixedRefSideand are
as follows:
• PRO_SMT_FIXED_SIDE

_ONE—First edge side of the
selected fixed geometry will be
fixed.

• PRO_SMT_FIXED_SIDE
_TWO—Second edge side
normal to the selected fixed
geometry will be fixed.

PRO_E_SMT_BBACK_REF_ARR Array An array element of edges or
surfaces to be bent back.

PRO_E_SMT_BBACK_REF Compound This compound element defines
collection of edges or surfaces to
be bent back.

PRO_E_SMT_BBACK_SINGLE_
REF

PRO_VALUE_TYPE_
SELECTION

Specifies collection of edges,
surfaces, intent surfaces and
chains to be bent back.

PRO_E_SMT_BBACK_FLAT_
CONTOURS_ARR

Array An array element that specifies
which contours that partially
intersect a bend line shall remain

1416 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
flat during the bend back
operation.

PRO_E_SMT_GEOM_CONTOUR Compound This compound element specifies
the collection of contour geometry
to remain flat during the bend back
operation.

PRO_E_SMT_GEOM_CONTOUR_
GEOM

PRO_VALUE_TYPE_
SELECTION

Specifies the driven or offset sheet
metal surface or surfaces from the
element PRO_E_SMT_BBACK_
SINGLE_REF that form contours.

PRO_E_SMT_GEOM_CONTOUR_
EDGE

PRO_VALUE_TYPE_
SELECTION

Specifies edges from the element
PRO_E_SMT_GEOM_CONTOUR_
GEOM that form contours.

Sketch Form Feature
The sketch form feature helps you to create a punch or a piercing using a sketch.
You can also select an existing sketch or define an internal one. This sketch based
form tool enables you to specify the punch and the piercing depth.
The element tree for the sketch form feature is documented in the header file
ProSmtSketchForm.h and is shown in the following figure:

Production Applications: Sheetmetal 1417

Element Tree for Sketch Form Feature

The following table describes the elements in the element tree for the Sketch Form
feature.

1418 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
SMT_SKETCH_FORM.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name for the sheet
metal sequence. The default value
is Sketched_Form_1.

PRO_E_STD_SECTION Compound Mandatory element.
PRO_E_SKETCH_FORM_TYPE PRO_VALUE_TYPE_INT Specifies the type of the sketched

form feature. The valid values for
this element are defined in the
enumerated type
ProSketchFormType:
• PRO_SMT_SKETCH_FORM

_TYPE_PUNCH— Specify the
value 1 if you want to select
punch as your form type.

• PRO_SMT_SKETCH_FORM
_TYPE_PIERCING—
Specify the value 2 if you
want to select piercing as your
form type.

PRO_E_SKETCH_FORM_
DEPTH_PUNCH

PRO_VALUE_TYPE_DOUBLE Defines the depth of the
penetration of the punching
operation.

Note

Specify a value for this
element only if the element
PRO_E_SKETCH_FORM_

TYPE is set to PRO_SMT_
SKETCH_FORM_

TYPE_PUNCH.
PRO_E_SKETCH_FORM_
DEPTH_PIERCING

PRO_VALUE_TYPE_DOUBLE Defines the depth of the
penetration of the piercing
operation.

Note

Specify a value for this
element only if the element
PRO_E_SKETCH_FORM_

TYPE is set to PRO_SMT_
SKETCH_FORM_

TYPE_PIERCING.
PRO_E_SKETCH_FORM_DIR PRO_VALUE_TYPE_INT This element changes the direction

of the form. The valid values for
this element are:

Production Applications: Sheetmetal 1419

Element ID Data Type Description
• PRO_B_TRUE— Specifies

that the direction of the form is
changed.

• PRO_B_FALSE— Specifies
that the direction of the form is
not changed.

PRO_E_EXT_COMP_DRFT_ANG Compound This compound element defines
the parameters for the taper angle.

Note

Use this element only if the
element PRO_E_SKETCH_
FORM_TYPE is set to PRO_
SMT_SKETCH_FORM_

TYPE_PUNCH.
PRO_E_EXT_DRFT_ANG PRO_VALUE_TYPE_INT Specifies the addition of a taper to

the sketch form feature. The valid
values for this element are defined
in the enumerated type
ProExtDrftAng and are as
follows:
• PRO_EXT_DRFT_ANG

_NO_DRAFT— Specifies that
the feature has no draft angle
or taper.

• PRO_EXT_DRFT_ANG
_DRAFT— Specifies that the
feature has a draft angle or
taper.

Note

Use this element only if the
element PRO_E_SKETCH_
FORM_TYPE is set to PRO_
SMT_SKETCH_FORM

_TYPE_PUNCH.
PRO_E_EXT_DRFT_ANG_VAL PRO_VALUE_TYPE_DOUBLE Specifies the tapering of the

geometry by the specified value.

Note

Use this element only if the
element PRO_E_SKETCH_
FORM_TYPE is set to PRO_
SMT_SKETCH_FORM_

TYPE_PUNCH.
PRO_E_SRF_END_
ATTRIBUTES

PRO_VALUE_TYPE_INT This element caps the sketch plane
and offset surface of the form

1420 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
feature. The valid values for this
element are defined in the
enumerated type
ProExtSurfEndAttr and are
as follows:
• PRO_EXT_SURF_END

_ATTR_OPEN— Specifies
that the sketch plane and the
offset surface will not be
capped.

• PRO_EXT_SURF_END
_ATTR_CAPPED— This is
the default value. Specifies
that the sketch plane and the
offset surface will be capped.

Note

Use this element only if the
element PRO_E_SKETCH_
FORM_TYPE is set to PRO_
SMT_SKETCH_FORM

_TYPE_PUNCH.
PRO_E_FORM_PUNCH_
MATERIAL_SIDE

PRO_VALUE_TYPE_INT This element flips the material
deformation direction for the
punching operation. The valid
values for this element are defined
in the enumerated type
ProSmdPunchMatSide, and
are as follows:
• PRO_SMT_PUNCH_MAT_

OUTSIDE— Specifies that the
punching operation takes place
on the outer side.

• PRO_SMT_PUNCH_MAT_
INSIDE— Specifies that the
punching operation takes place
on the inner side.

Note

Use this element only if the
element PRO_E_SKETCH_
FORM_TYPE is set to PRO_
SMT_SKETCH_FORM_

TYPE_PUNCH.
PRO_E_SMT_FILLET_
INTERSECT

Compound This compound element specifies
an option to round the placement
sharp edges that lie on the
placement references and are
created by the intersection of the

Production Applications: Sheetmetal 1421

Element ID Data Type Description
sheet metal geometry with the
quilt. For more information on the
elements related to PRO_E_SMT_
FILLET_INTERSECT, refer to
the section Sub Elements of PRO_
E_SMT_FILLET_INTERSECT
and PRO_E_SMT_FILLET_
QUILT on page 1422.

PRO_E_SMT_FILLET_QUILT PRO_VALUE_TYPE_INT This compound element specifies
the option to round the non
placement sharp edges that do not
lie on the placement references
and are created by the deformation
of the sheet metal geometry based
on the quilt. For more information
on the elements related to PRO_
E_SMT_FILLET_QUILT, refer
to the section Sub Elements of
PRO_E_SMT_FILLET_
INTERSECT and PRO_E_SMT_
FILLET_QUILT on page 1422.

PRO_E_SMT_TRIM_FORM_
SIDES

PRO_VALUE_TYPE_INT Trim edges of sheared form.
Specifies if Creo Parametric
applies trimming of sheetmetal
side surfaces during form feature
generation. The valid values for
this element follow:
• PRO_B_TRUE

• PRO_B_FALSE

Sub Elements of PRO_E_SMT_FILLET_INTERSECT
and PRO_E_SMT_FILLET_QUILT
The following table lists all the elements that are common to the compound
elements PRO_E_SMT_FILLET_INTERSECT and PRO_E_SMT_FILLET_
QUILT.

1422 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_SMT_FILLET_
RADIUS_USEFLAG

PRO_VALUE_TYPE_INT Specifies whether a fillet radius is
used. The valid values for this
element are:
• PRO_B_TRUE— Specifies

that a fillet is used.
• PRO_B_FALSE— Specifies

that the fillet is not used.
PRO_E_SMT_FILLET_
RADIUS_SIDE

PRO_VALUE_TYPE_INT Specifies the radius direction. The
values for this element are
specified in the enumerated type
ProSmdRadType, are as
follows:
• PRO_BEND_RAD

_OUTSIDE— Specifies that
the radius is applied to the
outside of the sheet metal
geometry.

• PRO_BEND_RAD
_INSIDE— Specifies that the
radius is applied to the inside
of the sheet metal geometry.

Note

Use this element only if the
element PRO_E_SKETCH_
FORM_TYPE is set to PRO_
SMT_SKETCH_FORM

_TYPE_PUNCH.
PRO_E_SMT_FILLET_
RADIUS_VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the radius value.

Join Feature
The Join feature helps you to connect two intersecting walls in a sheet metal part.
You can trim the non intersecting portions of the walls as well as add a bend and
bend relief at the intersection. You can also control the location of the intersection
in which the feature would be created.
The element tree for the Join feature is documented in the header file
ProSmtJoinWalls.h and is shown in the following figure:

Production Applications: Sheetmetal 1423

Element Tree for Join Feature

The following table describes the elements in the element tree for the Join feature.

1424 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the sheet

metal feature. The valid value for
this element is PRO_FEAT_
JOIN_WALLS.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name for the sheet
metal feature. The default value is
JOIN_1.

PRO_E_SMT_WALL_JOIN_
TRIM

PRO_VALUE_TYPE_INT Specifies an option for trimming
the non intersecting geometry. The
valid values for this element are
defined in the enumerated type
ProSmtJoinWallsTrimType
and are as follows:
• PRO_INTWLS_TRIM_

OPEN_CUTS— Specifies the
original intersecting walls
without being trimmed.

• PRO_INTWLS_TRIM_
BNDR_EXTS— Specifies that
the non intersection portions
up to the intersection between
the surfaces will be removed.

• PRO_INTWLS_TRIM_
BEND_LINE— Specifies that
the non intersecting surfaces
will be trimmed up to the
bend.

PRO_E_SMT_WALL_JOIN_
EXTEND

PRO_VALUE_TYPE_INT The valid values for this element
are defined in the enumerated type
ProSmtJoinWallsExtType
and are as follows:
• PRO_INTWLS_EXT_LINE_

TO_INT— Extends the
intersection line to the
intersection area.

• PRO_INTWLS_EXT_LINE_
TO_ALL— Extends the
intersection line to the
intersection plane.

Note

The intersecting walls must
be planar.

PRO_E_SMT_WALL_JOIN_
REFS

Array An array element of only two
surfaces, that form a join feature
set.

PRO_E_SMT_WALL_JOIN_
REFS_CMPND

Compound This compound element defines
the collection of geometry to be
joined.

PRO_E_SMT_WALL_JOIN_
REFS_SRF

PRO_ELEM_TYPE_SELECT Select the surfaces which are to be
connected by the join feature.

Production Applications: Sheetmetal 1425

Element ID Data Type Description
PRO_E_SMT_WALL_JOIN_
FLIP

PRO_VALUE_TYPE_INT This element flips the wall join
direction. The selection point of
each wall determines which side
of the walls will be kept.

PRO_E_SMT_FILLETS Compound This compound element defines
the bend types of the sheet metal
wall and the value of bend radius.

PRO_E_SMT_FILLETS_SIDE PRO_VALUE_TYPE_INT Specifies the fillet side. The valid
values for this element are defined
in the enumerated type
ProSmdRadType and are as
follows:
• PRO_BEND_RAD_

OUTSIDE—Applies the bend
radius to the outer surface of
the bend.

• PRO_BEND_RAD_INSIDE—
Applies the bend radius to the
inner surface of the bend.

• PRO_BEND_RAD_
PARAMETER—Applies the
bend radius at the dimension
location set by the SMT_
DFLT_RADIUS_SIDE
parameter in Creo Parametric.

PRO_E_SMT_FILLETS_VALUE PRO_VALUE_TYPE_DOUBLE Specifies the value of the bend
radius.

PRO_E_SMT_BEND_RELIEF Compound This compound element defines
the bend relief at the edges. For
more information see the section
Bend Relief Elements on page
1398.

PRO_E_SMT_DEV_LEN_
CALCULATION

Compound This compound element defines
the method used to calculate the
Developed Length dimensions for
bends. For more information see
the section The Element Subtree
for Length Calculation on page
1327.

Twist Wall Feature
The twist wall feature enables you to create a spiral or coil-shaped section of sheet
metal. The twist wall can be attached to a straight edge on an existing planar wall.
The twist wall typically serves as a transition between two areas of sheet metal
because it can change the plane of a sheet metal part. The twist can be rectangular
or trapezoidal.
The element tree for the twist wall feature is documented in the header file
ProSmtTwist.h and is shown in the following figure:

1426 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Twist Wall Feature

Production Applications: Sheetmetal 1427

The following table describes the elements in the element tree for the twist wall
feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the sheet

metal feature. The valid value for
this element is PRO_FEAT_
TWIST.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name for the sheet
metal feature. The default value is
Twist_1.

PRO_E_SMT_TWIST_ATT_
EDGE

PRO_VALUE_TYPE_
SELECTION

Specifies an edge to which the
twist wall will be attached.

PRO_E_SMT_TWIST_TYPE PRO_VALUE_TYPE_INT Specifies the width options for the
walls.

The valid values for this element
are defined by the enumerated data
type ProSmtTwistType and
are as follows:
• PRO_SMT_TWIST_TRIM_

EDGES—Calculates the wall
width from the ends of the
attachment edges. The walls
are offset by the specified
value from the attachment
ends.

• PRO_SMT_TWIST_TYPE_
PNT—Calculates and centers
the wall width from the twist
axis by the specified
dimension.

PRO_E_SMT_TWIST_TRIM_
EDGES

Compound Specifies a compound element
which defines options for twist
wall ends.

This element is available when the
value of the element PRO_E_
SMT_TWIST_TYPE is set to
PRO_SMT_TWIST_TRIM_

EDGES.
PRO_E_SMT_TWIST_SIDE_1_
OFFSET

PRO_E_SMT_TWIST_SIDE_2_

OFFSET

Compound Specifies the trim option and
offset value for the first and
second direction of wall ends.

The elements PRO_E_SMT_
TWIST_OFFSET_TYPE and
PRO_E_SMT_TWIST_OFFSET_

VAL are common to the compound
elements in both directions.

PRO_E_SMT_TWIST_OFFSET_
TYPE

PRO_VALUE_TYPE_INT Specifies the type of trim for the
first and second direction using the
enumerated data type

1428 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
ProSmtTwistOffsetType.
The valid values are:
• PRO_TWIST_OFFSET_

TYPE_TO_END—Specifies
that the ends of the twist wall
are set at the end edges of the
attachment points.

• PRO_TWIST_OFFSET_
TYPE_BLIND—Specifies that
the wall ends should be
trimmed or extended from the
end edges of the attachment
points in specified direction.

PRO_E_SMT_TWIST_OFFSET_
VAL

PRO_VALUE_TYPE_DOUBLE Specifies the offset value.

This element is applicable when
the value of the element PRO_E_
SMT_TWIST_OFFSET_TYPE is
set to PRO_TWIST_OFFSET_
TYPE_BLIND.

PRO_E_SMT_TWIST_AXIS_
POINT

Compound Specifies a compound element
which defines options for twist
axis.

This element is available when the
value of the element PRO_E_
SMT_TWIST_TYPE is set to
PRO_SMT_TWIST_TYPE_PNT.

PRO_E_SMT_TWIST_POINT_
TYPE

PRO_VALUE_TYPE_INT Specifies the location of the twist
axis using the enumerated data
type
ProSmtTwistPointType.
The valid values are:
• PRO_SMT_TWIST_MID_

PNT—Specifies that the twist
axis is located at the center of
the wall width.

• PRO_SMT_TWIST_DTM_
PNT—Specifies that the twist
axis is located on the specified
datum point.

PRO_E_SMT_TWIST_START_
WIDTH_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the width of the start
wall.

PRO_E_SMT_TWIST_ATT_
POINT_REF

PRO_VALUE_TYPE_
SELECTION

This element is available when the
value of the element PRO_E_
SMT_TWIST_POINT_TYPE is
set to PRO_SMT_TWIST_DTM_
PNT.

Production Applications: Sheetmetal 1429

Element ID Data Type Description

Specifies a datum point on the
attachment edge. The centerline of
the twist wall passes through this
datum point. The centerline of the
twist axis is perpendicular to the
start edge and coplanar with the
existing wall.

PRO_E_SMT_TWIST_ANGLE_
VAL

PRO_VALUE_TYPE_DOUBLE Specifies the rotation angle of the
twist wall.

PRO_E_SMT_TWIST_WALL_
LENGTH_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the length of the twist
wall, measured from the
attachment edge to the end of the
twist axis.

PRO_E_SMT_TWIST_END_
WIDTH

Compound Specifies a compound which
defines options to change the
width of the end wall.

PRO_E_SMT_TWIST_END_
WIDTH_TYPE

PRO_VALUE_TYPE_INT Specifies the width option for the
end wall using the enumerated
data type
ProSmtTwistEndWidthType.
The valid values are:
• PRO_TWIST_END_WIDTH_

SAME_AS_START—Specifies
that the width of the end wall
must be same as the start wall.

• PRO_TWIST_END_WIDTH_
BLIND—Specifies that the
width of the end wall must be
set to the specified value.

PRO_E_SMT_TWIST_END_
WIDTH_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the width of the end
wall.

PRO_E_SMT_TWIST_DEV_
LEN_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the length of wall in
unbent state.

Merge Wall Feature
The merge wall feature enables you to collect unattached walls to merge them
together into one piece using the base reference collector. The edges between
certain pieces of walls can be excluded from the merge operation to keep the
corresponding areas disconnected.
The element tree for the merge wall feature is documented in the header file
ProSmtMergeWalls.h and is shown in the following figure:

1430 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Merge Wall Feature

The following table describes the elements in the element tree for the merge wall
feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the sheet

metal feature. The valid value for
this element is PRO_FEAT_
WALL.

PRO_E_SMT_WALL_TYPE PRO_VALUE_TYPE_INT Specifies the wall type for the
sheet metal feature. The default
value is specified by the
enumerated
typeProSmtWallWallType
and the valid value is PRO_SMT_
WALL_TYPE_MERGE.

Production Applications: Sheetmetal 1431

Element ID Data Type Description
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the feature name of the

sheet metal feature.
PRO_E_SMT_WALL_MERGE_
BASE_REF

Compound Specifies a collection of surfaces
for merging with the base wall.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Specifies the selection of merge
geometry that can be selected to be
designated as sheet metal design
objects.

PRO_E_SMT_WALL_MERGE_
GEOM_REF

Compound Specifies the surfaces of one or
more unattached flat walls to
merge with the base wall.

PRO_E_STEP_MERGE_EDGE PRO_VALUE_TYPE_
SELECTION

Specifies the excluded edges that
are included by the merge of the
surfaces.

PRO_E_SMT_MERGE_KEEP_
LINES

PRO_VALUE_TYPE_BOOLEAN Controls the visibility of merged
edges on surface joints. The valid
values for this element are:
• Pro_B_True—Merged

edges are visible on surface
joints.

• Pro_B_False—Merged
edges are not visible on
surface joints.

PRO_E_SMT_MERGE_KEEP_
BEND_EDGES

PRO_VALUE_TYPE_BOOLEAN Controls the ability to keep edges
between the bend surfaces while
merging surfaces in the merged
walls. The valid values are as
follows:
• Pro_B_True—Keep edges

of bend surfaces between
existing bend surfaces in the
merged walls

• Pro_B_False—Does not
keep edges of bend surfaces in
the merged walls.

Recognizing Sheet Metal Design Objects
From Creo Parametric 4.0 F000 onward, the Sheetmetal Design items are created
as design objects. Bends, bend reliefs, corner reliefs, corner seams, and forms are
sheet metal design objects. The Recognition commands enable you to tag surfaces
as sheet metal design objects or not sheet metal design objects. The following
sheet metal objects can be recognized as, or recognized as not, a sheet metal
design object:
• Bends
• Bend reliefs
• Corner reliefs

1432 Creo® Parametric TOOLKITUser’s Guide

• Corner seams
• Forms

Note
In the ProSmtRecognition.h element tree, you can tag objects of the
same type at a time as sheet metal design object or not sheet metal design
object. This means only one compound element for objects of the same type
can be defined at a time for a feature.

The element tree to recognize as sheet metal design objects or not sheet metal
design objects is documented in the header file ProSmtRecognition.h and is
shown in the following figure:

Production Applications: Sheetmetal 1433

Element Tree for Recognizing Sheetmetal Features

The following table describes the elements in the element tree:

1434 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the sheet

metal feature. The valid value for
this element is PRO_FEAT_SMT_
RECOGNITION.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name for the sheet
metal feature.

PRO_E_SMT_BND_RLF_RCG Compound Specifies a compound element
which defines bend reliefs as sheet
metal design objects.

PRO_E_SMT_RECOGNITION_
SEL_TYPE

PRO_VALUE_TYPE_INT Specifies the mode for selecting
bend reliefs. See the section
Values for PRO_E_SMT_
RECOGNITION_SEL_TYPE on
page 1438, for more information
on valid values.

PRO_E_SMT_PIO_SCOPE PRO_VALUE_TYPE_
SELECTION

Specifies the geometry that can be
selected to be designated as sheet
metal design objects. You can
select driven or offset sheet metal
surface, intent surface that
contains at least one side of bend
relief, a design object which is not
bend relief, thickness edge if the
bend relief does not contain any
surface, bend relief vertex if the
bend relief does not contain any
surface or edge.

PRO_E_SMT_CRN_RLF_RCG Compound Specifies a compound element
which defines corner reliefs as
sheet metal design objects.

PRO_E_SMT_RECOGNITION_
SEL_TYPE

PRO_VALUE_TYPE_INT Specifies the mode for selecting
corner relief. See the section
Values for PRO_E_SMT_
RECOGNITION_SEL_TYPE on
page 1438, for more information
on valid values.

PRO_E_SMT_PIO_SCOPE PRO_VALUE_TYPE_
SELECTION

Specifies the corner relief
geometry that can be selected to be
designated as sheet metal design
objects.

PRO_E_SMT_BEND_RCG Compound Specifies a compound element
which defines bends as sheet metal
design objects.

PRO_E_SMT_RECOGNITION_
SEL_TYPE

PRO_VALUE_TYPE_INT Specifies the mode for selecting
bends. See the section Values for
PRO_E_SMT_RECOGNITION_
SEL_TYPE on page 1438, for
more information on valid values.

PRO_E_SMT_PIO_SCOPE PRO_VALUE_TYPE_
SELECTION

Specifies the bend geometry that
can be selected to be designated as
sheet metal design objects. You
can select cylindrical bend surface,
intent surface that contains a

Production Applications: Sheetmetal 1435

Element ID Data Type Description
cylindrical bend or a design object
which is not a bend.

PRO_E_SMT_CRN_SEAM_RCG Compound Specifies a compound element
which defines corner seams as
sheet metal design objects.

PRO_E_SMT_RECOGNITION_
SEL_TYPE

PRO_VALUE_TYPE_INT Specifies the mode for selecting
corner seams. See the section
Values for PRO_E_SMT_
RECOGNITION_SEL_TYPE on
page 1438, for more information
on valid values.

PRO_E_SMT_PIO_SCOPE PRO_VALUE_TYPE_
SELECTION

Specifies the corner seam
geometry that can be selected to be
designated as sheet metal design
objects.

You can select one or more
references from the following:
• Side surface that can be

associated with a corner seam.

• Not Corner Seam design
objects.

• Planar face or offset surface,
which will be considered as
the reference for all neighbor
corner seams.

• Bend surface, which will be
considered as the reference for
all neighbor corner seams.

PRO_E_SMT_FORM_RCG Compound Specifies a compound element
which defines forms as sheet metal
design objects.

PRO_E_SMT_RECOGNITION_
SEL_TYPE

PRO_VALUE_TYPE_INT Specifies the mode for selecting
forms. See the section Values for
PRO_E_SMT_RECOGNITION_
SEL_TYPE on page 1438, for
more information on valid values.

PRO_E_SMT_RCG_FORM_AS_
ONE

PRO_VALUE_TYPE_BOOLEAN Specifies if the selected form
geometry must be considered as
one form design object.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of form
geometry that can be selected to be
designated as sheet metal design
objects.

PRO_E_SMT_FORM_BOUND_
REFS

PRO_VALUE_TYPE_
SELECTION

Specifies the forms on a reference
surface. You can select driven or
offset sheet metal surfaces or
intent surfaces that contain driven
or offset sheet metal surfaces.

1436 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_SMT_BND_RLF_UNRCG Compound Specifies a compound element

which defines bend reliefs as not
sheet metal design objects.

The child elements and their
values are same as the PRO_E_
SMT_BND_RLF_RCG element.

PRO_E_SMT_CRN_RLF_UNRCG Compound Specifies a compound element
which defines corner reliefs as not
sheet metal design objects.

The child elements and their
values are same as the PRO_E_
SMT_CRN_RLF_RCG element.

PRO_E_SMT_BEND_UNRCG Compound Specifies a compound element
which defines bends as not sheet
metal design objects.

The child elements and their
values are same as the PRO_E_
SMT_BEND_RCG element.

PRO_E_SMT_CRN_SEAM_
UNRCG

Compound Specifies a compound element
which defines corner seams as not
sheet metal design objects.

The child elements and their
values are same as the PRO_E_
SMT_CRN_SEAM_RCG element.

Production Applications: Sheetmetal 1437

Element ID Data Type Description
PRO_E_SMT_PIO_SCOPE PRO_VALUE_TYPE_

SELECTION
Specifies the corner seam
geometry that can be selected to be
designated as not sheet metal
design objects.

You can select one or more
references from the following:
• Side surface that can be

associated with a corner seam.
• Corner Seam design objects.
• Planar face or offset surface,

which will be considered as
the reference for all neighbor
corner seams.

• Bend surface, which will be
considered as the reference for
all neighbor corner seams.

PRO_E_SMT_FORM_UNRCG Compound Specifies a compound element
which defines forms as not sheet
metal design objects.

The child elements and their
values are same as the PRO_E_
SMT_FORM_RCG element.

Values for PRO_E_SMT_RECOGNITION_SEL_TYPE
This element specifies the mode for selecting bends, bend reliefs, corner reliefs,
corner seams, and forms as sheet metal design objects. The valid values are:
• PRO_SMT_RECOGNITION_MANUAL_SEL—Specifies manual selection of

the sheetmetal design object.
• PRO_SMT_RECOGNITION_AUTO_SEL—Specifies automatic selection of

the sheetmetal design object.

1438 Creo® Parametric TOOLKITUser’s Guide

61
Production Applications:

Manufacturing
Manufacturing Models ... 1440
Creating a Manufacturing Model ... 1440
Analyzing a Manufacturing Model ... 1441
Creating Manufacturing Objects ... 1444
Analyzing Manufacturing Features.. 1459

This chapter describes the Creo Parametric TOOLKIT functions for
manufacturing operations. Familiarity with Creo NC functions simplifies the use
of these manufacturing functions.

1439

Manufacturing Models
Functions Introduced:

• ProMfgAssemGet()
• ProMfgTypeGet()
You can use the function ProSolidFeatVisit() to visit all the components
in a manufacturing model. However, this function requires a ProSolid (or one
of its instances, ProPart or ProAssembly) handle to the model as input. The
function ProMfgAssemGet() outputs a ProAssembly handle to the top-
level assembly in the manufacturing model, given its ProMfg handle. This
assembly handle can then be passed to ProSolidFeatVisit().
Manufacturing models, like other models in Creo Parametric, are uniquely
identified by name and type. However, there are several different varieties of
manufacturing models. For example, assembly machining, sheetmetal
manufacturing, and mold manufacturing are all types of manufacturing models.
The ProMfg object is a general purpose, opaque handle used to represent any of
the different manufacturing model varieties. To distinguish between the different
types of manufacturing model, there are manufacturing subtypes. The complete
list of subtypes is as follows:

• PRO_MFGTYPE_MACH_ASSEM

• PRO_MFGTYPE_SHEET_METAL

• PRO_MFGTYPE_MOLD

• PRO_MFGTYPE_CAST

• PRO_MFGTYPE_CMM

The function ProMfgTypeGet() outputs the subtype, given the ProMfg
handle to the manufacturing object.

Creating a Manufacturing Model
Function Introduced

• ProMfgMdlCreate()
The function ProMfgMdlCreate() outputs an initialized ProMfg object
handle, given the model name, manufacturing subtype, and name of the reference
model. For sheetmetal manufacturing, this should be the sheetmetal workpiece.
For all other subtypes, the reference model argument is ignored.

1440 Creo® Parametric TOOLKITUser’s Guide

Analyzing a Manufacturing Model
Creo NC has two modes of operation—part and assembly manufacturing. In both
cases, the top-level model is an assembly that contains the description of the tools.
The following diagram shows the hierarchy of part and assembly manufacturing
models.

Part and Assembly Manufacturing Model Hierarchy

In part manufacturing, the storage solid is a part that represents the workpiece or
stock, and the design piece is another component at the same level. In assembly
manufacturing, the storage solid is the actual assembly representing the design
model. The workpiece can be at any level inside this assembly. In both types of
manufacturing, the manufacturing operations are described as features of the
storage solid.

Production Applications: Manufacturing 1441

The important tasks for Creo Parametric TOOLKIT are to traverse the
manufacturing assembly components, identify the storage solid that contains the
manufacturing operations as its features, and list the manufacturing tools.
This section contains the following subsections:

• Traversing Manufacturing Components on page 1442
• Identifying the Storage Solid on page 1442
• Visiting Manufacturing Tools on page 1443

Traversing Manufacturing Components
Function Introduced:

• ProAsmcompTypeGet()
You can visit the components in a manufacturing assembly using the same
functions that enable you to visit the components of a regular assembly. For a full
description of these functions, see the Assembly: Basic Assembly Access on page
1130 chapter.
The components within a manufacturing assembly perform a variety of different
roles. The function ProAsmcompTypeGet() provides the role of any model
under a manufacturing assembly. The possible roles are as follows:

• PRO_ASM_COMP_TYPE_NONE—A regular component (no special
manufacturing role)

• PRO_ASM_COMP_TYPE_WORKPIECE—Aworkpiece
• PRO_ASM_COMP_TYPE_REF_MODEL—A reference model
• PRO_ASM_COMP_TYPE_FIXTURE—A fixture
• PRO_ASM_COMP_TYPE_MOLD_BASE—A mold base
• PRO_ASM_COMP_TYPE_MOLD_COMP—A mold component
• PRO_ASM_COMP_TYPE_MOLD_ASSEM—A mold assembly
• PRO_ASM_COMP_TYPE_GEN_ASSEM—A general assembly
• PRO_ASM_COMP_TYPE_CAST_ASSEM—A cast assembly
• PRO_ASM_COMP_TYPE_DIE_BLOCK—A die block
• PRO_ASM_COMP_TYPE_DIE_COMP—A die component
• PRO_ASM_COMP_TYPE_SAND_CORE—A sand core
• PRO_ASM_COMP_TYPE_CAST_RESULT—A cast result

Identifying the Storage Solid
Functions Introduced:

1442 Creo® Parametric TOOLKITUser’s Guide

• ProMfgSolidGet()
• ProMfgFeatureOwnerGet()
Another important task in using Creo Parametric TOOLKIT for accessing Creo
NC models is to find the storage solid inside the manufacturing model. This model
is important because the manufacturing operations—workcells, NC sequences,
and so on—are represented as features within it.
Manufacturing features are treated like all other features in Creo Parametric
TOOLKIT. This enables you to search for NC sequences as you would for solid
features. For example, to visit all the workcells of a manufacturing solid, you can
use the ProSolidFeatVisit()function and filter out any model items not of
type PRO_E_WCELL.
The function ProMfgSolidGet() returns the handle to the storage solid, and
ProMfgFeatureOwnerGet() returns the component path to the solid from
the top-level assembly.

Example 1: Identifying Workcell Features of a NC Model
The sample code in UgMfgWcellIdentify.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_mfg shows how to
identify workcell features.

Visiting Manufacturing Tools
Functions Introduced:

• ProMfgToolVisit()
• ProToolTypeGet()
• ProToolModelMdlnameGet()
• ProToolParamGet()
• ProToolAttributesGet()
• ProToolVerify()
Tools are not stored as features of the manufacturing solid, nor as components in
the assembly; they are special objects within the top-level manufacturing model,
so they need their own visit function. This function is ProMfgToolVisit(),
which has the same form as other visit functions in Creo Parametric TOOLKIT,
except it does not offer the option of a user-defined filter function. You call the
action function with an input argument of type ProTool to identify the tool.
The other functions analyze the tool being visited.
The function ProToolTypeGet() returns the tool type. Examples of the types
are as follows:

Production Applications: Manufacturing 1443

• PRO_TOOL_DRILL

• PRO_TOOL_TURN

• PRO_TOOL_SAW

• PRO_TOOL_MILL

The ProToolModelMdlnameGet() function outputs the model name and
type of a tool, given its ProTool handle.
The function ProToolParamGet() retrieves the value of a specified tool
parameter. This yields a value in terms of the type ProParamvalue (see the
Core: Parameters on page 210 chapter for more information).
The function ProToolAttributesGet() provides the current setting of
several Boolean attributes of the tool in the form of an integer bitmap. Currently,
the attributes define whether a solid tool is to be by reference or by copy. See the
section Creating NC Sequences on page 1455 for more information on creating
tools.
The function ProToolVerify() returns a Boolean showing whether a
specified tool handle corresponds to an existing tool.

Creating Manufacturing Objects
This section explains how to create all types of manufacturing feature. This
section assumes you have an understanding of element trees for feature creation
and Creo NC. For an introduction to element trees, see Element Trees: Principles
of Feature Creation on page 764.

Note
You must have a Creo NC license to create manufacturing features using Creo
Parametric TOOLKIT.

An important principle of creating manufacturing features is that all the elements
required to be defined interactively must also be defined when you create that
feature using Creo Parametric TOOLKIT.
As with creating solid features, manufacturing features use element trees to define
the feature before you call ProFeatureCreate() to create the feature.
However, the method of creating tools is slightly different, as described in the
following sections.

Creating Tools
Functions Introduced:

1444 Creo® Parametric TOOLKITUser’s Guide

• ProToolinputAlloc()
• ProToolinputTypeSet()
• ProToolElemParamAdd()
• ProToolElemModelSet()
• ProToolinputElemAdd()
• ProToolInit()
• ProToolCreate()
• ProToolinputFree()
• ProToolFileRead()
• ProToolFileWrite()
In Creo Parametric, and therefore in Creo Parametric TOOLKIT, tools are not
features, and must be created in a slightly different manner for solid and
manufacturing features.
Tool creation involves initializing an input structure using a call to
ProToolinputAlloc().
You set the tool type (for example, center drill or ream) directly in the input
structure using the function ProToolinputTypeSet().
You can then add tool elements to this input structure using a three-step process.
First, initialize each element using the function ProElementAlloc(). Next,
add data to this element using an element-specific function. Finally, add the
element to the tool input structure using ProToolinputElemAdd().
As in Creo Parametric, tools can be defined by parameter or by model. To add a
parameter to a tool, first allocate the space for a parameter element using a call
such as this:
status = ProElementAlloc (PRO_E_PARAM, &element);

Next, add the parameter to the element using the function
ProToolElemParamAdd(), then add the element itself to the input structure
using the function ProToolinputElemAdd().
The following table lists the parameters required to be defined for each turning
tool.
Parameter Turn Turn Groove
NOSE_RADIUS • •
TOOL_WIDTH • •
SIDE_WIDTH •
LENGTH • •
SIDE_ANGLE • •
END_ANGLE • •
GAUGE_X_LENGTH • •
GAUGE_Z_LENGTH • •

Production Applications: Manufacturing 1445

Parameter Turn Turn Groove
TOOL_MATERIAL • •
HOLDER_TYPE •

The following table lists the parameters required to be defined for milling tools.
Parameter Mill Side Mill Thread Mill Groove
CUTTER_DIAM • • • •
CORNER_RADIUS • • •
CUTTER_WIDTH •
SHANK_DIAM •
LENGTH • • • •
INSERT_LENGTH •
END_OFFSET •
SIDE_ANGLE • •
GAUGE_X_
LENGTH

• •

GAUGE_Z_
LENGTH

• • •

NUM_OF_TEETH • • •
TOOL_MATERIAL • •

The following table lists the parameters required to be defined for auxiliary and
contouring tools.
Parameter Auxiliary Contouring
CUTTER_DIAM • •
LENGTH • •

The following table lists the parameters required to be defined for holemaking
tools.
Parameter Drill Csink Tap Ream Center

Drill
Bore Back-

Spot
CUTTER_DIAM • • • • • • •
POINT_
DIAMETER

• •

DRILL_
DIAMETER

•

BODY_
DIAMETER

•

LENGTH • • • • • • •
CHAMFER_
LENGTH

•

DRILL_LENGTH •
INSERT_
LENGTH

•

TIP_OFFSET •
GAUGE_OFFSET •
CUTTING_
OFFSET

•

SIDE_ANGLE •

1446 Creo® Parametric TOOLKITUser’s Guide

Parameter Drill Csink Tap Ream Center
Drill

Bore Back-
Spot

POINT_ANGLE • • •
CSINK_ANGLE • •
GAUGE_X_
LENGTH

• • • • • • •

GAUGE_Z_
LENGTH

• • • • • • •

TOOL_
MATERIAL

• • • • • • •

Refer to the Creo Parametric NC Manufacturing Help for more information.
Creating a tool using a tool model is similar to the previous process. First, allocate
space for an element of type PRO_E_TOOL_MODEL. Set the model in the element
using the function ProToolElemModelSet(), then add it to the input
structure using ProToolinputElemAdd(). As in Creo NC, you must specify
the required number of dimensions within the tool model.
Creating the tool requires two steps. First, initialize a tool handle using
ProToolInit(). This creates a tool identifier that uniquely defines the tool
and is used to reference that tool within the manufacturing model. You pass this
identifier, together with the completed input structure, to the function
ProToolCreate(), which actually creates the tool.
Once the tool has been created, release the memory used by the tool input
structure and its associated elements using the function
ProToolinputFree().
The following table shows the elements required for tool creation. In this table,
the Value column specifies whether the element is required (R) or optional (O).
Element Description Value
Name The name used to identify the tool R
Type Mill, drill, and so on R
Parameters (for parameter-driven tools
only)

Tool parameters R

Model (for solid tools only) Model that represents the tool R

The function ProToolFileRead() creates a new tool or redefines an existing
tool. The input arguments for this function are as follows:
• tool_handle—Specify the handle to the tool to be created or redefined.
• input_file—Specify the full path and name of the input file that contains

all the parameter information about the tool to be created or redefined.

Production Applications: Manufacturing 1447

The function ProToolFileWrite() writes all information about the tool into
a file. Pass the following as input arguments to this function:
• tool_handle—Specify the handle to the tool whose information is to be

saved.
• output_file—Specify the full path and name of the output file where the

tool information is to be saved.

Example 2: Creating a Tool from a Solid Model
The sample code in UgMfgSldToolCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_mfg shows how to
create a tool from solid model.

Example 3: Creating a Parameter-Driven Tool
The sample code in UgMfgParamToolCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_mfg
shows how to create a drilling tool from parameters.

Example 4: Creating a Milling Workcell
The sample code in UgMfgWcellCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_mfg shows the
process to create a milling workcell. Copy the mill_d20.xml file from
<creo_toolkit_loadpoint>/protk_appls/models/mfg to your
working directory to create a workcell using the sample code.

Manufacturing Parameters
In general, there are a number of parameters that are mandatory for a given tool
type or NC sequence, and others that are optional. For example, a milling tool
requires that its length and diameter be specified, while other parameters such as
the number of teeth, or tool material are optional.
The addition of manufacturing parameters to both workcells and operations is
optional.
The following figure shows a parameter element subtree.

1448 Creo® Parametric TOOLKITUser’s Guide

Parameter Element Subtree

The process of creating a parameter element subtree is the same for workcells,
operations, and NC sequences. First, allocate the space for the PRO_E_MFG_
PARAMS array element. The simplest method of creating the tree is to delay
adding the PRO_E_MFG_PARAMS element to its parent until you have fully
defined the tree. As you define each PRO_E_MFG_PARAM element, add it to the
PRO_E_MFG_PARAMS array using ProElemtreeElementAdd(). Use
NULL for the element path as each PRO_E_MFG_PARAM element is added to the
parameter element tree.
The PRO_E_MFG_PARAM element itself is a compound element and requires two
children to be defined. One is the PRO_E_MFG_PARAM_NAME element, a string
(not a wide string) that represents the parameter name to define. The other is a
PRO_E_MFG_PARAMVAL element, which represents the value of the parameter.
Depending on the context, this might be an integer, double, or wide string. For
example, CUT_FEED is represented by a double, whereas NUMBER_OF_ARC_
PNTS is an integer. Refer to the Creo Parametric NC Manufacturing Help for
more information on manufacturing parameters.

Example 4: Creating a Parameter Tree
The sample code in UgMfgParamTreeCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_mfg
shows how to create a parameter element tree.

Using External Functions to Define Parameters in
the Manufacturing Step Table
Creo Parametric TOOLKIT provides the capability to define customized functions
that are available from within the Relations user interface and can be used to
define relations for a given item. This capability is described in the section Adding

Production Applications: Manufacturing 1449

a Customized Function to the Relations Dialog in Creo Parametric on page 208 in
the chapter Core: Relations on page 204. External relation functions can also be
used within relations stored in steps in the Manufacturing Step Table.
External functions can be used to define new parameters for the members of the
step table. For example, if a parameter 'sample_parameter' is defined as
follows:
sample_parameter = protk_user_defined_function (list of arguments)

The definition suggests that the value of the parameter sample_parameter is
set as a result of the calculation done using the function protk_user_
defined_function.
The following steps are required to define new parameters using external relation
functions:

1. Within the Creo Parametric TOOLKIT application, register an appropriate
external function using ProRelationFunctionRegister().

2. In the user interface for the step table, define the relation calling the externally
registered functions.

Creo Parametric TOOLKIT relation functions called from an entry in the Step
Table will have one of two owners for the relation set (ProRelSet) depending
on the following cases:
Case 1: If the step has been applied
The owner will be the manufacturing feature created by this step table entry.
Case 2: If the step has not been applied
The owner will be an object whose type is PRO_NC_STEP_OBJECT.
Using external functions, it is possible to interact with an external database or
application, in order to set the value of some parameters in the Process Table.
Because relations may be reevaluated many times during a regeneration cycle,
PTC recommends that the external functions contain some control that prevents
reconnection to the external database on each invocation.

Note
If no Creo Parametric TOOLKIT application has registered the needed
external function, any relation using the function cannot be evaluated and is
shown as an error. However, when defining Global Relations, even if an
undefined function is encountered, the relation will pass the validation, but,
the relation will not be applied to the steps because the function is not found.

1450 Creo® Parametric TOOLKITUser’s Guide

Creating Manufacturing Features
The creation of manufacturing features mirrors the creation of solid features in
Creo Parametric TOOLKIT. All features at the very least must define a feature
type. Certain manufacturing features also have a requirement that some “non-
redefinable” elements must be defined.
With the exception of fixtures, all features are created in the manufacturing solid.
However, fixtures are owned by the manufacturing assembly.
Like solid feature creation, manufacturing feature creation consists of several
distinct steps:

1. Create the feature element tree.
2. Add nodes or subtrees to the feature tree.
3. Create a selection that represents the model in which to construct the feature.
4. Create the feature.
The following sections document only the first two steps for manufacturing
features, because the actual process of feature creation is common to all.

Creating Fixtures
A fixture setup feature is one of the simplest manufacturing features and contains
a maximum of four elements.
You should name a fixture setup feature. Optionally, you can define the following:

• The time required to perform the setup
• The identifiers of the fixturing components
• Associated comments

To Create an Element Tree for a Fixture Setup Feature
1. Allocate space for the tree using the following call:

ProElementAlloc (PRO_E_FEATURE_TREE);

2. Define the feature type element (PRO_E_FEATURE_TYPE) to be an integer
of value PRO_FEAT_FIXSETUP.

3. Define the name (PRO_E_FEAT_NAME) to be a wide string.
4. Optionally, add the setup time (PRO_E_SETUP_TIME) as a double.
5. Optionally, add the component identifiers of the fixturing models (PRO_E_

FIXT_COMPONENTS).

Production Applications: Manufacturing 1451

Note
Because this is a multivalue element, you can add multiple (integer) values
to the PRO_E_FIXT_COMPONENT element.

When the tree is complete, you can pass it (and a selection handle that represents
the manufacturing assembly) to the function ProFeatureCreate().

Creating Workcells
The element tree for workcells is described in the include file ProWcell.h. For
this feature, the feature type element is PRO_FEAT_WORKCELL.
The following table shows the required and optional elements for workcell
features. In this table, the “Value” column specifies whether the element is
required (R) or optional (O).
Element Description Value
Cell type Mill, mill/turn, and so on. R
Number of axes The number of axes. R
Table direction Horizontal or vertical (for turn or

mill/turn)
R

Machine number heads 1 or 2 (for turn or mill/turn) R
Name The workcell name. O
Tooling Add tools to the workcell. O
Tool table Manipulate the tools in a tool

table.
O

Parameters The workcell parameters. O

The feature element has two complex elements—PRO_E_MFG_PARAMS,
described in the section Manufacturing Parameters on page 1448, and PRO_E_
TOOL_TABLE. The following figure shows how the tool table element is
constructed.

1452 Creo® Parametric TOOLKITUser’s Guide

Tool Table Element

The first thing to note is that a workcell can have multiple tool tables, if it has
more than one machine head. In this case, you can create a tool table for each
head.
A manufacturing table is made up of an array of PRO_E_MFG_TABLE_ROW
elements, which is itself an array of PRO_E_MFG_TABLE_CELL elements. Each
PRO_E_MFG_TABLE_CELL is a compound element that contains two more
elements—the cell type and its value.
The following examples show how to create a tool table with five drill bits,
ranging in size from M8 to M16. The tool table for most workcells (excluding
CMM) is of the following format:

POSITION TOOL_ID REGISTER COMMENTS
1 drill_M8 8MM Drill
2 drill_M10 10MM Drill

For example, to create the first row of the table, you would define the following
PRO_E_MFG_TABLE_CELLs:

• To define the first cell so the position of the tool is index 1, set the value of the
PRO_E_MFG_TABLE_CELL_TYPE to PRO_TOOL_TABLE_INDEX, and set
the value of PRO_E_MFG_TABLE_CELL_VALUE to the integer value 1.

• Similarly, define the tool identifier to be a drill_M8. Set the cell type
element to PRO_TOOL_TABLE_TOOL_ID, and set the value to a wide string
of value drill_M8. Because the register column is empty, it can be ignored.
To set the comments element, set the type to PRO_TOOL_TABLE_
COMMENTS, and set the value to a wide string of value “8MM Drill.”

Production Applications: Manufacturing 1453

Example 5: Creating a 2-Axis Lathe Workcell
The sample code in UgMfgWcellCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_mfg shows how to set
up a simple 2-axis, horizontal lathe, using the previously created tool table. Note
that both the PRO_E_LATHE_DIR and PRO_E_MACH_NUM_HEADS are
required for this workcell type. All the other elements are optional.

Creating Operations
The element tree for manufacturing operations is described in the header file
ProMfgoper.h. For this feature, the feature type element is PRO_FEAT_
WORKCELL.
The following table shows the elements of a manufacturing operation. In this
table, the “Value” column specifies whether the element is required (R) or
optional (O).
Element Description Value
Workcell The identifier of the workcell

feature in which to perform the
operation

R

Machine coordinate system The identifier of the machining
coordinate system

R

Name The operation name O
Comments The operation comments O
From point The datum point from which to

start the operation
O

Home point The datum point on which to end
the operation

O

Parameters The operation parameters O

The creation of the feature tree is simple, apart from the home and point elements.
The following figure shows the element tree for the home points.

Home Point Element Tree

1454 Creo® Parametric TOOLKITUser’s Guide

In this example, there is a from and home point defined for each machining head.
If there is only one head, the value of the PRO_E_MACH_HEAD element should
be 1. Note that the PRO_E_POINT_SEL selection should be initialized not to the
datum point feature, but to the datum point geometry. To find this geometry, call
the function ProFeatureGeomitemVisit()).

Example 6: Creating an Operation
The sample code in UgMfgOperCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_mfg shows how to
create an operation.

Creating NC Sequences
Header file ProNcseq.h describes the element tree for manufacturing NC
sequences.
There are six supported NC sequence types:

• PRO_NCSEQ_PROF_SUR_MILL—Profile milling, feature type PRO_FEAT_
MILL

• PRO_NCSEQ_VOL_MILL—Volume milling, feature type PRO_FEAT_MILL
• PRO_NCSEQ_CONV_SURF_MILL—Conventional surface, feature type

PRO_FEAT_MILL

• PRO_NCSEQ_FACE_MILL—Face milling, feature type PRO_FEAT_MILL
• PRO_NCSEQ_PREV_TOOL_MILL—Local milling using previous tool,

feature type PRO_FEAT_MILL
• PRO_NCSEQ_HOLEMAKING—Holemaking, type PRO_FEAT_DRILL
Like workcells, an NC sequence feature has a number of non-redefinable
elements. For all NC sequences, the PRO_E_NCSEQ_TYPE and PRO_E_NUM_
AXES elements are non-redefinable. For holemaking sequences, the PRO_E_
HOLEMAKING_TYPE, PRO_E_PECK_TYPE, and PRO_E_HOLE_CYCLE_
TYPE elements are non-redefinable. These elements are specific to holemaking
sequences and need not be defined for milling sequences. The following table
shows the elements of an NC sequence. In this table, the Value column specifies
whether the element is required (R) or optional (O).
Element Description Value
Feature type The feature type R
Type The sequence type R
Operation Operation to which to add the NC

sequence
R

Retraction plane The retraction plane R
Tool The tool R
Csys The manufacturing coordinate system R

Production Applications: Manufacturing 1455

Element Description Value
Parameters The manufacturing parameters R
Name The name of the NC sequence O
Number of axes The number of axes O
Machine head The machine head O
Fixture The fixture O
Entities to be machined
Surface The surface R
Holes or volume The holes or volume R
Start path The start path R
End path The end path R

The retraction plane that must be defined as part of the NC sequence requires the
identifier of the underlying geometry of the datum plane. To obtain this identifier,
visit the datum plane geometry items using ProFeatureGeomitemVisit().
There are also a number of required parameters for each NC sequence that must
be defined. For conventional milling, the following parameters are required:

• CUT_FEED

• TOLERANCE

• STEP_OVER

• SPINDLE_SPEED

• CLEAR_DIST

For face milling, the following parameters are required:

• CUT_FEED

• STEP_DEPTH

• TOLERANCE

• STEP_OVER

• SPINDLE_SPEED

• CLEAR_DIST

For holemaking, the following parameters are required:

• CUT_FEED

• TOLERANCE

• SPINDLE_SPEED

• CLEAR_DIST

1456 Creo® Parametric TOOLKITUser’s Guide

Both milling and holemaking features elements require that the entities (and some
associated properties) to be machined are set by API functions, rather than by
element tree. Like the standard elements, these functions require a call to
ProElementAlloc() to reserve space for the elements. Once the elements are
complete, you can add them to the tree like the other standard elements.

Note
Currently, using ProFeatureElemtreeExtract()with NC sequences
yields an element tree without holes or surface elements. In other words, there
is no way to retrieve hole set or surface information.

Milling-Specific Functions
Functions Introduced:

• ProNcseqElemSurfaceAdd()
• ProNcseqElemMillsurfSet()
• ProNcseqElemSurfaceflipSet()
After you allocate the surface element with ProElementAlloc(), you can add
the surface to be milled to the element using the function
ProNcseqElemSurfaceAdd().
If the model contains a milling surface, you can set the whole surface in the NC
sequence using ProNcseqElemMillsurfSet(). To control its orientation,
call ProNcseqElemSurfaceflipSet().

Example 7: Adding Surfaces
The sample code in UgMfgSrfAdd.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_mfg shows how to
use the function ProNcseqElemSurfaceAdd().

Holemaking-Specific Functions
To add hole sets to an element tree, first, obtain the hole set number by calling the
function ProNcseqElemHolesetAdd(). This hole set is used to reference a
set of holes with the same properties, including depth, direction, countersink
diameter, and so on. Note that feature element PRO_E_HOLESETS has limited
support for drill point sets, but allows the user to identify and to delete existing
drill point sets in a feature, or to overwrite drill point sets with drill axes sets.

Production Applications: Manufacturing 1457

For example, you might want one set of holes to be countersunk to a diameter of
10mm, and another set to 14mm. Because these countersinking operations are
done with the same tool, they should be in the same NC sequence. Because the
countersink diameter is different for each, you should create two hole sets.

Note
The following functions (and the element tree PRO_E_HOLES) exist in Pro/
TOOLKIT Revisions 20 and later only to provide backwards compatibility.
Use the more complete and powerful element tree PRO_E_HOLESETS for
holemaking functions.

• ProNcseqElemHolesetAdd()

• ProNcseqElemHolesetDepthTypeSet()

• ProNcseqElemHolesetDepthBySet()

• ProNcseqElemHolesetDepthSet()

• ProNcseqElemHolesetStartSet()

• ProNcseqElemHolesetEndSet()

• ProNcseqElemHolesetDirectionSet()

• ProNcseqElemHolesetAxisAdd()

• ProNcseqElemHolesetDrillpartAdd()

• ProNcseqElemHolesetCsinkdiamSet()

Creating Material Removal Volumes
In Creo Parametric, material removal features can be created by defining
geometry to represent the volume removed, or they can be calculated
automatically from the NC sequence. The current release of Creo Parametric
TOOLKIT supports automatic material removal feature creation only.
The feature tree is very simple, as shown in the following figure.

Feature Tree

1458 Creo® Parametric TOOLKITUser’s Guide

Set the PRO_E_FEATURE_TYPE value to PRO_FEAT_MAT_REMOVAL, and set
the PRO_E_REF_SEQ to the identifier of the NC sequence feature from which to
create the material removal volume.

Example 8: Creating a Conventional Milling Sequence
The sample code in UgMfgMillSeqCreate.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_userguide/ptu_mfg shows how to
create a milling feature using an element tree.

Analyzing Manufacturing Features
Functions Introduced:

• ProMfgoperToolpathDisplay()
• ProNcseqToolpathDisplay()
• ProNcseqNumGet()
• ProNcseqCutTimeGet()
• ProNcseqRemovedVolGet()
You can use the functions ProMfgoperToolpathDisplay() and
ProNcseqToolpathDisplay() to invoke the corresponding toolpath for the
specified object. The function ProNcseqNumGet() returns the number of the
specified NC sequence.
The final two functions access the machining time and the volume of material
removed during the machining sequence.

Production Applications: Manufacturing 1459

62
Production Applications:

Customized Tool Database
Overview .. 1461
Setting up the Database and Custom Search Parameters .. 1461
Registering the External Database.. 1462
Querying the External Database ... 1463
Returning the Search Results... 1465

Creo Parametric TOOLKIT supports integration of theCreo NC tool search
command with external tool databases. These functions and callbacks allow users
to create queries for third-party tool manager applications. These applications
query external databases (you can specify more than one) and return logical tool
data to Creo Parametric.

1460 Creo® Parametric TOOLKITUser’s Guide

Overview
Creo Parametric TOOLKIT supplies functions that allow integration of the Tool
Selection user interface with a third-party tool manager application. This
integration consists of includes three areas of functionality:

• The ability to preregister one or more databases with the Creo Parametric user
interface, and to assign custom search parameters to each database. Custom
search parameters are items which would not be included natively inside of
Creo Parametric, but which could be used to initiate or narrow the tool search.

• Callback functions, that are invoked when the user opts to search inside the
tool database. Within the callback functions, the application can extract the
native and non-negative search parameters and use these parameters to execute
the search.

• The ability to return a list of detailed results to Creo Parametric to be
displayed in the results dialog box.

Setting up the Database and Custom
Search Parameters
The functions described in this section enable you to setup the external database
and custom search parameters supported by the database.
Functions Introduced:

• ProMfgdbDataAlloc()
• ProMfgdbDataDbnameAdd()
• ProMfgdbNameCreate()
• ProMfgdbSearchoptCreate()
• ProMfgdbDataSearchoptAdd()
• ProMfgdbSearchoptApplicDataAdd()
• ProMfgdbSearchoptAllowedValueAdd()
The function ProMfgdbDataAlloc() allocates a ProMfgdbData handle
containing database and search information.
The function ProMfgdbDataDbnameAdd() adds the name of an external tool
database to the handle allocated by ProMfgdbDataAlloc(). To specify more
than one database, make multiple calls to ProMfgdbDataDbnameAdd().
The function ProMfgdbNameCreate() allocates memory for a handle
containing the name of a group into which search options are organized.

Production Applications: Customized Tool Database 1461

The function ProMfgdbSearchoptCreate() allocates and initializes a
structure for a custom search option. It requires that the option be assigned to a
group, typically this would be allocated from ProMfgdbNameCreate().
The function ProMfgdbDataSearchoptAdd()adds a custom search option
to the ProMfgdbData handle.
The function ProMfgdbSearchoptApplicDataAdd() specifies the
category and object type for which a custom search option is valid. Call this
function at least once for each option. Assign an option to multiple categories or
object types with multiple calls to this function.
The function ProMfgdbSearchoptAllowedValueAdd() adds valid values
available for a search option. Assign multiple values with multiple calls to this
function.

Registering the External Database
The function described in this section allows you to register the Creo Parametric
TOOLKIT application to search the external tool database.
Function Introduced:

• ProMfgdbRegister()
The function ProMfgdbRegister() registers an external database with Creo
Parametric. You should supply the ProMfgdbData handle you created for your
external database(s).
The function also requires that you supply three callbacks:

• A ProMfgdbLoginAction, which is called by Creo Parametric when the
user attempts to initiate access to the external database.

• A ProMfgdbLogoffAction, which is called when the user is ready to
close the connection to the external database.

• A ProMfgdbSearchAction, which provides the custom implementation
for the search, and provides the results back to Creo Parametric.

Finally, the function requires that you supply the object category. Although there
are several categories listed for this function, currently the function supports only
the following category:

• PROMFGDBCAT_CUTTING_TOOL

○ When one or more external databases have been registered with Creo
Parametric, a search icon is displayed in the Tool Setup dialog box in Creo
Parametric as shown in the following figure. Click the search icon to
invoke the Cutting Tool Search dialog box.

1462 Creo® Parametric TOOLKITUser’s Guide

Querying the External Database
When users invoke the Search icon to construct a query, they will be presented
with the Cutting Tool Search dialog, as shown in the following figure. Within the
dialog, users can specify the query parameters, values and group the query
constraints with logical operators. When the user completes the query and
executes the Find command, Creo Parametric will call the Creo Parametric
TOOLKIT application with the data from this dialog.

Production Applications: Customized Tool Database 1463

The functions described in this section enable you to convert the Creo Parametric
queries into a format that can be used with the external database.
Creo Parametric tool database queries are arranged in a tree format, as shown in
the following figure. Leaf nodes contain expressions, for example, units and type.

Functions Introduced:

• ProMfgdbQuerynodeIsLeaf()
• ProMfgdbQuerynodeLeftChildGet()
• ProMfgdbQuerynodeRightChildGet()
• ProMfgdbQuerynodeLogicOperGet()
• ProMfgdbQuerynodeExprGet()
• ProMfgdbQueryTargetGet()

1464 Creo® Parametric TOOLKITUser’s Guide

• ProMfgdbExprNameGet()
• ProMfgdbExprCategoryGet()
• ProMfgdbExprValueGet()
• ProMfgdbExprValueTypeGet()
• ProMfgdbExprCompopGet()
ProMfgdbQuerynodeIsLeaf()

The functions ProMfgdbQuerynodeLeftChildGet() and
ProMfgdbQuerynodeRightChildGet() return either the left or right
branch of a query node, respectively.
ProMfgdbQuerynodeLogicOperGet()ProMfgdbQuerynodeI
sLeaf()

ProMfgdbQuerynodeExprGet()

ProMfgdbQueryTargetGet()

After the query functions return expressions from a leaf node, your Creo
Parametric TOOLKIT application can gather information contained in the
expressions. The following functions return attributes and operators contained in
the returned expressions of a leaf node.
The function ProMfgdbExprNameGet() returns the name of the attribute
contained in the specified expression. The function
ProMfgdbExprCategoryGet() returns the category of the attribute
contained in the specified expression. The functions
ProMfgdbExprValueGet() and ProMfgdbExprValueTypeGet()
return the value and value type contained in the specified expression, respectively.
The function ProMfgdbExprCompopGet() returns the comparison operator
(=, <, >, and so on) contained in the specified expression.

Returning the Search Results
The functions in this section enable you to populate the results of the query to the
external database and pass them back to Creo Parametric so that Creo Parametric
will display them appropriately in the results window.
Functions Introduced:

• ProMfgdbMatchAlloc()
• ProMfgdbMatchParamAdd()
Use the function ProMfgdbMatchAlloc() to allocate memory for the
structure used to store a match to the query.
The function ProMfgdbMatchParamAdd() adds a parameter to the match
structure. Make multiple calls to this function to add multiple parameters to the
match.

Production Applications: Customized Tool Database 1465

An example of the results passed back from a database query is shown in the
following figure:

1466 Creo® Parametric TOOLKITUser’s Guide

63
Production Applications: Creo NC
Sequences, Operations and Work

Centers
Overview .. 1469
Element Trees: Roughing Step... 1469
Element Trees: Reroughing Step .. 1474
Element Trees: Finishing Step.. 1480
Element Trees: Corner Finishing Step... 1484
Element Trees: 3–Axis Trajectory Milling Step ... 1490
Manufacturing 2–Axis Curve Trajectory Milling Step... 1496
Element Trees: Manual Cycle Step ... 1501
Element Trees: Thread Milling .. 1507
Element Trees: Turning Step .. 1523
Element Trees: Thread Turning Step... 1529
Element Trees: Creo NC Operation Definition ... 1534
Element Trees: Workcell Definition ... 1539
Element Trees: Manufacturing Mill Workcell .. 1542
Element Trees: Manufacturing Mill/Turn Workcell... 1546
Element Trees: Manufacturing Lathe Workcell ... 1554
Element Trees: Manufacturing CMMWorkcell ... 1558
Element Trees: Profile Milling Step ... 1560
Element Trees: Face Milling Step ... 1567
Element Trees: Fixture Definition .. 1576
Manufacturing Holemaking Step... 1578
Shut off Surface Feature Element Tree ... 1617
Element Trees: Manufacturing Round and Chamfer ... 1620
Element Trees: Engraving Step .. 1627
Element Trees: Manufacturing Cutline Milling Sequence .. 1635
Element Trees: Manufacturing Drill Group Feature... 1651
Manufacturing Volume Milling Feature .. 1657

1467

Element Trees: Skirt Feature.. 1664
Sub-Element Trees: Creo NC Steps.. 1672

This chapter describes the Creo Parametric TOOLKIT support for Creo NC
sequences.

1468 Creo® Parametric TOOLKITUser’s Guide

Overview
This section describes the Creo Parametric TOOLKIT functions that enable you to
access the following types of manufacturing features of Creo NC Sequences,
Operations and Work Centers.
Creo NC Step Header File
Roughing ProMfgFeatRoughing.h

Reroughing ProMfgFeatReroughing.h

Finishing ProMfgFeatFinishing.h

Corner Finishing ProMfgFeatCornerFinishing.h

2–Axis Curve Trajectory Milling ProMfgFeat2xCurvTraj.h

3–Axis Trajectory Milling ProMfgFeatTrajectory.h

Profile Milling ProMfgFeatProfMilling.h

Manual Cycle ProMfgFeatManualCycle.h

Thread Milling ProMfgFeatThreadMilling.h

Area Turning ProMfgFeatTurning.h

Groove Turning ProMfgFeatTurning.h

Profile Turning ProMfgFeatTurning.h

Face Milling ProMfgFeatFacing.h

Creo NC Operation Definition ProMfgFeatOperation.h

Workcell Definition ProMfgFeatWcellWedm.h

ProMfgFeatWcellMill.h

ProMfgFeatWcellMillTurn.h

ProMfgFeatWcellLathe.h

ProMfgFeatWcellCmm.h

Fixture Definition ProMfgFeatFixture.h

Thread Turning ProMfgFeatTurnThread.h

Holemaking ProMfgFeatHolemaking.h

Shut-off Surface Feature ProMoldShutSrf.h
Round and Chamfer ProMfgFeatRoundChamferMilling.h

Engraving ProMfgFeatEngraving.h

Cutline Milling ProMfgFeatCutlineMilling.h

Drill Group Feature ProMfgFeatDrillGroup.h

Element Trees: Roughing Step
This section describes how to construct and access the element tree for a milling
roughing feature. It also describes how to create, redefine, and access the
properties of these features.

Production Applications: Creo NC Sequences, Operations and Work Centers 1469

The Roughing Feature Element Tree:
The element tree for the milling roughing sequence is documented in the header
file ProMfgFeatRoughing.h, and is as shown in the following figure:

1470 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Roughing feature

The following table describes the elements in the element tree for the Roughing
feature.

Production Applications: Creo NC Sequences, Operations and Work Centers 1471

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value is Roughing_
1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_NCSEQ_ROUGHVOL_MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676.

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

1472 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MFG_CMP_MILL_WIND Compound Mandatory compound element.
Specifies the mill window
compound definition. For more
information, refer to the section
Surface Collection with Mill
Window on page 1680.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion type for
this element is : PRO_TM_TYPE_
AUTOMATIC_CUT.

For more information, refer to the
section Tool Motion — Auto Cut
on page 1766.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

Production Applications: Creo NC Sequences, Operations and Work Centers 1473

Element ID Data Type Description
PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Reroughing Step
This section describes how to construct and access the element tree for a milling
reroughing feature. It also describes how to create, redefine, and access the
properties of these features.

1474 Creo® Parametric TOOLKITUser’s Guide

The Reroughing Feature Element Tree:
The element tree for the milling reroughing sequence is documented in the header
file ProMfgFeatReroughing.h, and is as shown in the following figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1475

Element Tree for Reroughing feature

The following table describes the elements in the element tree for the Reroughing
feature.

1476 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature . The valid
value for this element isPRO_
FEAT_MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence
feature name. The default value is
Re-roughing_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence type.
The valid value for this element is
PRO_NCSEQ_REROUGH_MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676.

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Production Applications: Creo NC Sequences, Operations and Work Centers 1477

Element ID Data Type Description

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MFG_CMP_MILL_WIND Compound Mandatory compound element.
Specifies the mill window
compound definition. For more
information, refer to the section
Surface Collection with Mill
Window on page 1680.

PRO_E_MFG_PREV_SEQ PRO_VALUE_TYPE_
SELECTION

Mandatory Element. Specifies the
selection sequence feature that
requires removal of left over
material. The valid values for this
element are:
• Volume Milling
• Profile Milling
• Re-roughing sequence

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion type for
this element is PRO_TM_TYPE_
AUTOMATIC_CUT. For more
information, refer to the section
Tool Motion — Auto Cut on page
1766 .

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_ Optional element. Specifies the

1478 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
SELECTION reference selections such as part,

feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining
step..

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Production Applications: Creo NC Sequences, Operations and Work Centers 1479

Element Trees: Finishing Step
This section describes how to construct and access the element tree for milling
Finishing feature. It also describes how to create, redefine, and access the
properties of these features.

The Finishing Feature Element Tree:
The element tree for the milling Finishing sequence is documented in the header
file ProMfgFeatFinishing.h, and is as shown in the following figure:

1480 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Finishing feature

The following table describes the elements in the element tree for the Finishing
feature.

Production Applications: Creo NC Sequences, Operations and Work Centers 1481

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value is
Finishing_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_NCSEQ_CVNC_FINISH_
MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676.

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

1482 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MFG_CMP_MILL_WIND Compound Mandatory compound element.
Specifies the mill window
compound definition. For more
information, refer to the section
Surface Collection with Mill
Window on page 1680.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion type for
this element is : PRO_TM_TYPE_
AUTOMATIC_CUT.

For more information, refer to the
sectionTool Motion — Auto Cut
on page 1766 .

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682 .

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

Production Applications: Creo NC Sequences, Operations and Work Centers 1483

Element ID Data Type Description
PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Corner Finishing Step
This section describes how to construct and access the element tree for a corner
finishing step. It also describes how to create, redefine, and access the properties
of these features.

1484 Creo® Parametric TOOLKITUser’s Guide

The Corner Finishing Element Tree:
The element tree for the corner finishing sequence is documented in the header
file ProMfgFeatCornerFinishing.h, and is as shown in the following
figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1485

Element Tree for Corner Finishing Step

1486 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value is Corner_
Finishing_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_NCSEQ_CVNC_CORN_
MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676.

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Production Applications: Creo NC Sequences, Operations and Work Centers 1487

Element ID Data Type Description

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MFG_CMP_MILL_WIND Compound Mandatory compound element.
Specifies the mill window
compound definition. For more
information, refer to the section
Surface Collection with Mill
Window on page 1680.

PRO_E_MFG_PREV_TOOL_ID PRO_VALUE_TYPE_WSTRING Optional element. Name of cutting
tool (tool id) which will be used
for calculating the remainder
material.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion type for
this element is : PRO_TM_TYPE_
AUTOMATIC_CUT. For more
information, refer to the section
Tool Motion — Auto Cut on page
1766 .

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682 .

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to

1488 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Production Applications: Creo NC Sequences, Operations and Work Centers 1489

Element Trees: 3–Axis Trajectory Milling
Step
This section describes how to construct and access the element tree for the 3 Axis
Trajectory Milling feature. It also describes how to create, redefine, and access the
properties of these features. For 2-axis curve trajectory milling step, refer to the
section Manufacturing 2–Axis Curve Trajectory Milling Step on page 1496.

The element tree for the 3 axis trajectory milling sequence is documented in the
header file ProMfgFeatTrajectory.h, and is as shown in the following
figure:

1490 Creo® Parametric TOOLKITUser’s Guide

Element Tree for 3 Axis Trajectory Milling feature

The following table describes the elements in the element tree for the 3 Axis
Trajectory Milling feature.

Production Applications: Creo NC Sequences, Operations and Work Centers 1491

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature . The valid
value for this element is PRO_
FEAT_MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence .
The default value is
Trajectory_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence type.
The valid value for this element
isPRO_NCSEQ_TRAJ_MILL_
STEP.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_MFG_SEQ_NUM_AXES_
OPT

PRO_VALUE_TYPE_INT Specifies the number of axes for
milling. You can specify 3, 4, or 5
axes.

Note

You can set this element to 5
only if the work center allows
5-axis machining.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum that will be used as the
coordinate system for the Creo NC
sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673 .

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676 .

1492 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677 .

PRO_E_CHECK_SURF_COLL PRO_VALUE_TYPE_
SELECTION

Optional compound element.
Specifies the check surfaces
compound definition. For more
information, refer to the section
Checking Surfaces on page 1687.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion types for
this element are :
• PRO_TM_TYPE_CURVE

_TRAJECTORY. For more
information, refer to the
section Tool Motion — Curve
Trajectory on page 1740.

• PRO_TM_TYPE_SURF_
TRAJECTORY. For more
information, refer to the
section Tool Motion —
Surface Trajectory on page
1751.

• PRO_TM_TYPE_FOLLOW_
CUT. For more information,
refer to the section Tool
Motion — Follow Cut on page
1770.

• PRO_TM_TYPE_FOLLOW_
CURVE. For more information,
refer to the section Tool
Motion — Follow Curve on
page 1694.

• PRO_TM_TYPE_GOTO

Production Applications: Creo NC Sequences, Operations and Work Centers 1493

Element ID Data Type Description
_POINT. For more
information, refer to the
section Tool Motion — Go To
Point on page 1696.

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to
the section Tool Motion — Go
Delta on page 1700.

• PRO_TM_TYPE_GOHOME.
For more information, refer to
the section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_PLUNGE.
For more information, refer to
the section Tool Motion —
Plunge on page 1772.

• PRO_TM_TYPE_GO_
RETRACT. For more
information, refer to the
section Tool Motion — Go
Retract on page 1708.

• PRO_TM_TYPE_TANGENT_
APPROACH. For more
information, refer to the
section Tool Motion —
Tangent Approach on page
1726.

• PRO_TM_TYPE_TANGENT_
EXIT. For more information,
refer to the section Tool
Motion — Tangent Exit on
page 1728.

• PRO_TM_TYPE_NORMAL_
APPROACH. For more
information, refer to the
section Tool Motion —
Normal Approach on page
1710.

• PRO_TM_TYPE_NORMAL_
EXIT. For more information,
refer to the section Tool
Motion — Normal Exit on
page 1713.

• PRO_TM_TYPE_LEAD_IN.
For more information, refer to
the section Tool Motion —
Lead In on page 1706.

• PRO_TM_TYPE_LEAD_OUT.
For more information, refer to
the section Tool Motion —
Lead Out on page 1715.

1494 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_TM_TYPE_HELICAL_

APPROACH. For more
information, refer to the
section Tool Motion — Helical
Approach on page 1717.

• PRO_TM_TYPE_HELICAL_
EXITFor more information,
refer to the section Tool
Motion — Helical Exit on
page 1720.

• PRO_TM_TYPE_RAMP_
EXIT. For more information,
refer to the section Tool
Motion — Ramp Exit on page
1760.

• PRO_TM_TYPE_CONNECT.
For more information, refer to
the section Tool Motion —
Connect on page 1762.

• PRO_TM_TYPE_CL_
COMMAND. For more
information, refer to the
section Tool Motion — CL
Command on page 1767.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682 .

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Production Applications: Creo NC Sequences, Operations and Work Centers 1495

Element ID Data Type Description

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Manufacturing 2–Axis Curve Trajectory
Milling Step
The element tree for the 2–axis curve trajectory sequence is documented in the
header file ProMfgFeat2xCurvTraj.h, and is as shown in the following
figure:

1496 Creo® Parametric TOOLKITUser’s Guide

The following table describes the elements in the element tree for the 2–axis curve
trajectory sequence feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature . The valid
value for this element is PRO_
FEAT_MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
sequence feature name. The
default value is Curve_
Trajectory_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence type.
The valid value for this element
isPRO_NCSEQ_FF_TRAJ_

Production Applications: Creo NC Sequences, Operations and Work Centers 1497

Element ID Data Type Description
MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
coordinate system datum feature to
be used as a sequence coordinate
system.

PRO_E_RETR_SURF Compound Mandatory element. Specifies the
retract compound definition. The
element tree for the Retract
Elements is defined in the section
Retract Elements on page 1673.
For more information, refer to the
section Retract Elements for more
information on the element tree.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory element. Specifies the
tool reference compound
definition. The element tree for the
Tool Reference is defined in the
header file
ProMfgElemToolRef.h. For
more information, refer to the
section Tool Reference on page
1676for more information on the
element tree.

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of site with default values
for manufacturing parameters.

Note

The name is going to be
ignored if site does not exist
in the manufacturing model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing

1498 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_LOOP_SURF_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Select the
surfaces for which the loops of
edges must be collected. The
collected loops of edges are
machined.

PRO_E_MFG_TRAJ_CRV Compound Mandatory element. Specifies the
machining curves compound
definition.

PRO_E_STD_CURVE_
COLLECTION_APPL

Curve Collection Mandatory element. Specifies the
curve collection.

PRO_E_FF_TRAJ_FLIP_OPT PRO_VALUE_TYPE_INT Optional element. Flips the
machining direction of the tool.
The valid values for this element
are:
• PRO_B_TRUE—Specifies that

the default direction on the
curve will be used.

• PRO_B_FALSE—Specifies
that the opposite direction on
the curve will be used.

PRO_E_MFG_OFFSET Compound Optional element. Specifies the
offset compound definition.

PRO_E_MFG_OFFSET_CUT PRO_VALUE_TYPE_INT Optional element. Specifies the
offset cut. The valid values for this
element are:
• PRO_B_TRUE—Tool offset

will be applied.
• PRO_B_FALSE—Tool offset

will not be applied.
PRO_E_MFG_MAT_TO_RMV PRO_VALUE_TYPE_INT Optional element. Specifies the

material side. The valid values for
this element are:
• PRO_MFG_DIR_SAME

—Specifies the default side
will be used.

• PRO_MFG_DIR_
OPPOSITE—Specifies that
the default side will be flipped.

PRO_E_MFG_DRV_SRF_DIR PRO_VALUE_TYPE_INT Optional element. Specifies the
flip drive Surface direction. The
valid values for this element are:

Production Applications: Creo NC Sequences, Operations and Work Centers 1499

Element ID Data Type Description
• PRO_B_FALSE—Specifies

that the default direction on the
drive surface will be used.

• PRO_B_TRUE—Specifies that
the opposite direction on the
drive surface will be used.

PRO_E_MFG_START_HEIGHT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of the plane where
machining will begin.

PRO_E_MFG_HEIGHT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies single
selection of the plane for the tool
tip to follow.

PRO_E_TOOL_MTN_ARR Array Optional element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Optional element. Specifies the
tool motion compound
specification.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. Allows to
start machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. Allows to
end machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. Specifies the
array of ids of prerequisite
sequences. The element tree for
the Sequence Prerequisites is
defined in the header file
ProMfgElemPrerequisi
te.h. For more information, refer
to the section Sequence
Prerequisites on page 1682 for
more information on the element
tree.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometry references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
view name. It allows you to
associate specific view with a
machining step.

1500 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name. It
allows you to associate a specific
simplified representation with a
machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimate. It allows you to
specify time estimate for the
machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate. It allows you to
specify cost estimate for the
machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time. It allows you to
specify actual time for the
machining step

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Manual Cycle Step
This section describes how to construct and access the element tree for manual
milling cycle feature. It also describes how to create, redefine, and access the
properties of these features.

Production Applications: Creo NC Sequences, Operations and Work Centers 1501

The Manual Cycle Step Feature Element Tree:
The element tree for the manual cycle step feature is documented in the header file
ProMfgFeatManualCycle.h, and is as shown in the following figure:

Element Tree for Manual Cycle Step feature

The following table lists the contents of PRO_E_TOOL_MTN element.

1502 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature . The valid
values for this element are:
• PRO_FEAT_MILL— For

milling manual cycle.
• PRO_FEAT_TURN— For

turning manual cycle.
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the

name for the Creo NC sequence.
The default value is Manual_
Cycle_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid values for this element are:
• PRO_SEQ_MANUAL_

CYCLE_MILL— For milling
manual cycle.

• PRO_SEQ_MANUAL_
CYCLE_TURN— For turning
manual cycle.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_Creo NC SEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound This compound element specifies
retract definition. For more
information, refer to the section
Retract Elements on page 1673

Note

This element is mandatory
for milling manual Creo NC
sequences and is ignored for
turning manual sequences.

.
PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page

Production Applications: Creo NC Sequences, Operations and Work Centers 1503

Element ID Data Type Description
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676.

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

Note

This element is optional for
milling manual sequences
and is ignored for turning
manual sequences.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion types for
this element are:
• PRO_TM_TYPE_FOLLOW_

CURVE. For more information,
refer to the section Tool
Motion — Follow Curve on
page 1694.

• PRO_TM_TYPE_GOTO
_POINT. For more
information, refer to the
section Tool Motion — Go To
Point on page 1696.

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to
the section Tool Motion — Go
Delta on page 1700.

1504 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_TM_TYPE_GOTO_

SURFACE— This tool motion
type is for milling manual
cycle only. For more
information, refer to the
section Tool Motion — Go To
Surface on page 1722.

• PRO_TM_TYPE_GOTO_
AXIS
— This tool motion type is for
milling manual cycle only. For
more information, refer to the
section Tool Motion — Go To
Axis on page 1724.

• PRO_TM_TYPE_GOHOME.
For more information, refer to
the section Tool Motion—
Go Home on page 1704.

• PRO_TM_TYPE_CONNECT.
For more information, refer to
the section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_PLUNGE—
This tool motion type is for
milling manual cycle only. For
more information, refer to the
section Tool Motion — Plunge
on page 1772.

• PRO_TM_TYPE_GO_
RETRACT— This tool motion
type is for milling manual
cycle only. For more
information, refer to the
section Tool Motion — Plunge
on page 1772.

• PRO_TM_TYPE_CL_
COMMAND. For more
information, refer to the
section Tool Motion — CL
Command on page 1767.

The elements related to tool
motion are defined in
ProMfgElemToolMtnAuto
Cut.h. For more information,
refer to the section Tool Motion —
Auto Cut on page 1766 .

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to

Production Applications: Creo NC Sequences, Operations and Work Centers 1505

Element ID Data Type Description
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

1506 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the

actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Thread Milling
This section describes how to construct and access the element tree for a thread
roughing feature. It also describes how to create, redefine, and access the
properties of these features.

The Thread Milling Feature Element Tree:
The element tree for the thread milling Creo NC sequence is documented in the
header file ProMfgFeatThreadMilling.h, and is as shown in the following
figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1507

Element tree for PRO_E_TOOL_MTN element

1508 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value is Thread_
Milling_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_NCSEQ_THREAD_MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

Note

This element is mandatory
when PRO_E_DRILL_MODE
is set to PRO_DRILL_
HOLE_ON_MILL and is
ignored when set to PRO_
DRILL_HOLE_ON_LATHE.

PRO_E_MFG_MILL_THREAD_
TYPE_OPT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
thread type. The valid values for
this element are:
• External

• Internal

The value for this element is
defined by the
ProMillThreadType
parameter.

PRO_E_MFG_MILL_THREAD_
TAPER_OPT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
taper type. The valid values for
this element are:
• None

• NTP

• Custom

The value for this element is
defined by the
ProMillThreadTaperType

Production Applications: Creo NC Sequences, Operations and Work Centers 1509

Element ID Data Type Description
parameter.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676 .

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MFG_THRM_HOLESET_
ARR

Array Specifies an array of thread
holesets. It gives specification of
threads to machine. For more
information, refer to the section
Manufacturing Thread Milling
Holeset on page 1513.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion types for
this element are:

1510 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_TM_TYPE_THREAD

_MILLING. For more
information, refer to the
section Tool Motion — Thread
Milling on page 1780.

• PRO_TM_TYPE_FOLLOW_
CUT. For more information,
refer to the section Tool
Motion — Follow Cut on page
1770.

• PRO_TM_TYPE_GOTO_
POINT. For more information,
refer to the section Tool
Motion — Go To Point on
page 1696.

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to
the section Tool Motion — Go
Delta on page 1700.

• PRO_TM_TYPE_GOHOME.
For more information, refer to
the section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_CONNECT.
For more information, refer to
the section Tool Motion —
Connect on page 1762.

• PRO_TM_TYPE_PLUNGE.
For more information, refer to
the section Tool Motion —
Plunge on page 1772.

• PRO_TM_TYPE_GO_
RETRACT. For more
information, refer to the
section Tool Motion — Go
Retract on page 1708.

• PRO_TM_TYPE_TANGENT_
APPROACH. For more
information, refer to the
section Tool Motion —
Tangent Approach on page
1726.

• PRO_TM_TYPE_TANGENT_
EXIT. For more information,
refer to the section Tool
Motion — Tangent Exit on
page 1728.

• PRO_TM_TYPE_NORMAL_
APPROACH. For more
information, refer to the
section Tool Motion —

Production Applications: Creo NC Sequences, Operations and Work Centers 1511

Element ID Data Type Description
Normal Approach on page
1710.

• PRO_TM_TYPE_NORMAL_
EXIT. For more information,
refer to the section Tool
Motion — Normal Exit on
page 1713.

• PRO_TM_TYPE_LEAD_IN.
For more information, refer to
the section Tool Motion —
Lead In on page 1706.

• PRO_TM_TYPE_LEAD_OUT.
For more information, refer to
the section Tool Motion —
Lead Out on page 1715.

• PRO_TM_TYPE_RAMP_
APPROACH. For more
information, refer to the
section Tool Motion — Ramp
Approach on page 1758.

• PRO_TM_TYPE_RAMP_
EXIT. For more information,
refer to the section Tool
Motion — Ramp Exit on page
1760.

• PRO_TM_TYPE_CL_
COMMAND. For more
information, refer to the
section Tool Motion — CL
Command on page 1767. For
more information, refer to the
section Tool Motion — Auto
Cut on page 1766.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to

1512 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Manufacturing Thread Milling Holeset
The element PRO_E_MFG_THRM_HOLESET_ARR is documented in the header
file ProMfgElemThreadHoleset.h, and is shown in the following figure.

Production Applications: Creo NC Sequences, Operations and Work Centers 1513

Element tree for Manufacturing Thread Milling Holeset

1514 Creo® Parametric TOOLKITUser’s Guide

The following table lists the contents of PRO_E_MFG_THRM_HOLESET_ARR
element.
Element ID Data Type Description
PRO_E_MFG_THRM_HOLESET_
ARR

Array This element specifies an array of
thread holesets. It gives
specifications about machining
references.

PRO_E_MFG_THRM_HOLESET_
COMPOUND

Compound Mandatory element. This
compound element specifies the
thread holeset definition.

Note

Specify this element only
when the holeset array has at
least one member

PRO_E_HOLESET_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
holeset type. The valid value for
this element is PRO_HOLESET_
DRILL_AXES.

PRO_E_HOLESET_START Compound Mandatory element. Specifies the
holemaking start compound
specification.

PRO_E_HOLESET_START_
TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
start surface option using the
enumerated value
ProDrillStartType.

PRO_E_HOLESET_START_
SURFACE

PRO_VALUE_TYPE_
SELECTION

Specifies the starting surface or
quilt selection.

Note

This element is mandatory if
the element PRO_E_
HOLESET_START_TYPE is
set to PRO_DRILL_FROM_
SURFACE.

PRO_E_MFG_THRM_HSET_
END_COMPOUND

Compound Mandatory element. Specifies the
thread depth compound
specification.

PRO_E_HOLESET_END_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
end type option. The valid values
for this element are:
• PRO_DRILL_UPTO_

SURFACE

• PRO_DRILL_AUTO_END

• PRO_DRILL_OFFSET_
FROM_START

PRO_E_HOLESET_END_
SURFACE

PRO_VALUE_TYPE_
SELECTION

Specifies the end surface or quilt

Production Applications: Creo NC Sequences, Operations and Work Centers 1515

Element ID Data Type Description
selection.

Note

This element is mandatory if
the element PRO_E_
HOLESET_END_TYPE is set
to PRO_DRILL_UPTO_
SURFACE.

PRO_E_HOLESET_DEPTH_
VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the depth to the cut
thread from the start.

Note

This element is mandatory if
the element PRO_E_
HOLESET_END_TYPE is set
to PRO_DRILL_OFFSET_
FROM_START.

PRO_E_DRILL_PART_DATA Compound This element gives compound
information about components
used in depth computation.

Note

Specify this element only if
the start or end of machining
has to be computed and the
following conditions hold
true:

• The element PRO_E_
HOLESET_START_

TYPE is set to PRO_
DRILL_AUTO_START.

• The element PRO_E_
HOLESET_END_TYPE is
set to PRO_DRILL_
AUTO or PRO_DRILL_
THRU_ALL

• The element PRO_E_
HOLESET_DEPTH_

TYPE is set to PRO_
DRILL_AUTO or PRO_
DRILL_THRU_ALL

PRO_E_AUTO_SEL_DRILL_
PARTS

PRO_VALUE_TYPE_INT Mandatory element. This element

1516 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
defines the way in which
components are collected. The
valid values for this element are:
• TRUE—All components of

type reference part or
workpiece are considered for
depth calculation.

• FALSE—Only selected
components are considered in
depth calculation.

PRO_E_DRILL_PARTS PRO_VALUE_TYPE_
SELECTION

Specifies the components
selections. This element supports
multiple selections.

Note

• This element is
mandatory if the element
PRO_E_AUTO_SEL_

DRILL_PARTS is set to
FALSE.

• This element is ignored if
the element PRO_E_
AUTO_SEL_DRILL_

PARTS is set to FALSE.
PRO_E_MFG_THRM_HSET_
HOLES_COMP

Compound Mandatory element. This
compound element gives the
compound information about

Production Applications: Creo NC Sequences, Operations and Work Centers 1517

Element ID Data Type Description
location of holes.

Note

Specify this element only
when at least one of the
following have been defined:

• PRO_E_HOLESET_

SEL_INDIV_AXES

• PRO_E_HOLESET_

SEL_AXIS_PATTS

• PRO_E_HOLESET_

SEL_BY_SURFACES

• PRO_E_MFG_HSET_

DIAM_TYPE_OPT

• PRO_E_MFG_HSET_

THREAD_DESCR_ARR

• PRO_E_MFG_HSET_

DIAM_ARR

• PRO_E_MFG_HSET_

PARAM_ARR

PRO_E_HOLESET_SEL_AXIS_
PATTS

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of axes of patterned
holes. This element supports
multiple selections.

Note

If a pattern leader is selected,
all holes in pattern will be
collected.

PRO_E_HOLESET_SEL_BY_
SURFACES

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of surfaces or quilts with
holes. This element supports
multiple selections.

PRO_E_MFG_HSET_DIAM_
TYPE_OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of hole diameters that can be
collected in the element PRO_E_
MFG_HSET_DIAM_ARR. The
type of hole diameter is specified
using the enumerated data type
ProHolesetDiamType. The
valid values are:

1518 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_HSET_ALL_DIAMS—

This is the default value.
Specifies that diameters of
both solid surfaces and
cosmetic threads can be
collected.

Note

If the element PRO_E_
MFG_HSET_DIAM_

TYPE_OPT is not
defined, then by default,
the hole diameter of type
PRO_HSET_ALL_

DIAMS is used.
• PRO_HSET_HOLE_DIAMS—

Specifies that diameters only
of solid surfaces can be
collected.

• PRO_HSET_THREAD_
DIAMS—Specifies that
diameters only of cosmetic
threads can be collected.

PRO_E_MFG_HSET_DIAM_ARR Array Optional element. Specifies an
array of diameters of holes to
machine.

PRO_E_MFG_HSET_DIAM_
COMPOUND

Compound Optional element. Specifies the
compound definition of a hole
diameter.

PRO_E_MFG_HSET_HOLE_
DIAM

PRO_VALUE_TYPE_DOUBLE Specifies the diameter of a hole to
machine.

Note

This element is a mandatory
child element of the element
PRO_E_MFG_HSET_DIAM_

COMPOUND.
PRO_E_MFG_HSET_THREAD_
DESCR_ARR

Array Optional element. This array
element gives thread descriptions
of holes to machine.

PRO_E_MFG_HSET_THREAD_
DESCR_COMP

Compound Optional element. Specifies
compound definition of a thread
description.

Production Applications: Creo NC Sequences, Operations and Work Centers 1519

Element ID Data Type Description
PRO_E_MFG_HSET_THREAD_
DESCR

PRO_VALUE_TYPE_WSTRING Specifies the thread size string.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_THREAD_DESCR_

COMP element.
PRO_E_MFG_HSET_PARAM_
RULE_OPT

PRO_VALUE_TYPE_INT Specifies the type of query that
must be used to search for holes to
machine.

The query type is specified using
the enumerated data type
ProHsetParamRuleOpt. The
valid values are:
• PRO_HSET_BOOL_OPER_

OR—Collects holes that satisfy
at least one of the search
conditions set for a parameter.

PRO_HSET_BOOL_OPER_

AND—Collects holes that
satisfy all the search conditions
set for a parameter.

The search conditions and
parameters are defined in the
elements PRO_E_MFG_HSET_
PARAM*.

PRO_E_MFG_HSET_PARAM_
ARR

Array Optional element. Specifies an
array of search conditions to
collect holes for machining.

PRO_E_MFG_HSET_PARAM_
COMPOUND

Compound Optional element. Specifies a
compound element that defines a
search condition to match with the
user defined parameters in hole
features.

Each condition defines an
expression with user defined
parameter name on the left side of
the expression and value to
compare on the right side.

PRO_E_MFG_HSET_PARAM_
NAME

PRO_VALUE_TYPE_WSTRING Specifies the name of the user

1520 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
defined parameter.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element.
PRO_E_MFG_HSET_PARAM_
DTYPE

PRO_VALUE_TYPE_INT Specifies the data type of the
values using the enumerated value
ProParamvalueType.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element.
PRO_E_MFG_HSET_PARAM_
OPER

PRO_VALUE_TYPE_INT Specifies the type of expression
operator using the enumerated
value ProDrillParamOper.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element.
PRO_E_MFG_HSET_PARAM_
VAL_DBL

PRO_VALUE_TYPE_DOUBLE Specifies the value of the double
data type.

Note
• This element is mandatory

child of PRO_E_MFG_HSET_
PARAM_COMPOUND element
for double data type (PRO_E_
MFG_HSET_PARAM_DTYPE
is set to PRO_PARAM_
DOUBLE). It is ignored for
other data types.

PRO_E_MFG_HSET_PARAM_
VAL_INT

PRO_VALUE_TYPE_INT Specifies the value of the integer

Production Applications: Creo NC Sequences, Operations and Work Centers 1521

Element ID Data Type Description
data type.

Note
• This element is mandatory

child of PRO_E_MFG_HSET_
PARAM_COMPOUND element
for integer data type (PRO_E_
MFG_HSET_PARAM_DTYPE
is set to PRO_PARAM_
INTEGER). It is ignored for
other data types.

PRO_E_MFG_HSET_PARAM_
VAL_STR

PRO_VALUE_TYPE_WSTRING Specifies the value of the string
data type.

Note
• This element is mandatory

child of PRO_E_MFG_HSET_
PARAM_COMPOUND element
for string data type (PRO_E_
MFG_HSET_PARAM_DTYPE
is set to PRO_PARAM_
STRING). It is ignored for
other data types.

PRO_E_MFG_HSET_PARAM_
VAL_BOOL

PRO_VALUE_TYPE_INT Specifies the value of the string
data type.

Note
• This element is mandatory

child of PRO_E_MFG_HSET_
PARAM_COMPOUND element
for boolean data type (PRO_
E_MFG_HSET_PARAM_
DTYPE is set to PRO_
PARAM_BOOLEAN). It is
ignored for other data types.

PRO_E_HOLESET_SEL_
INDIV_AXES

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of datum
axes. This element supports
multiple selections.

1522 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

This element is mandatory if
you have not defined the
following elements:

• PRO_E_HOLESET_

SEL_AXIS_PATTS

• PRO_E_HOLESET_

SEL_BY_SURFACES

• PRO_E_MFG_HSET_

THREAD_DESCR_ARR

• PRO_E_MFG_HSET_

DIAM_ARR

• PRO_E_MFG_HSET_

PARAM_ARR

PRO_E_HOLESET_SEL_
UNSEL_AXES

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of axes of holes to be
excluded for machining. This
element supports multiple
selections.

PRO_E_MFG_HSET_START_
HOLE_REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
axis selection for the hole to be
machined first.

Element Trees: Turning Step
This section describes how to construct and access the element tree for a turning
step. It also describes how to create, redefine, and access the properties of these
features. Refer to the Creo NC Help for more information on the Turn type Creo
NC sequences.

The Turning Element Tree:
The element tree for the turning step is documented in the header file
ProMfgFeatTurning.h, and is as shown in the following figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1523

Element Tree for Turning feature

The following table describes the elements in the element tree for the area turning
feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
TURN.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default values for this element

1524 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
are:
• Area_Turning_2—For area

turning Creo NC sequences.
• Profile_Turning_1—For

profile turning Creo NC
sequences.

• Groove_Turning_1—For
groove turning Creo NC
sequences.

PRO_E_SEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid values for this element are:
• PRO_SEQ_AREA_TURN—For

an area turning sequence.
• PRO_SEQ_GROOVE_TURN—

For a groove turning sequence.
• PRO_SEQ_PROF_TURN—For

a profile turning sequence.
PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_

SELECTION
Mandatory element. Specifies the
operation feature selection.

PRO_E_SEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
Creo NC sequence. This element
can be used when two parts are
machined during the same
operation in different spindles, that
is in the main spindle and in the
sub spindle. The valid values for
this element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Production Applications: Creo NC Sequences, Operations and Work Centers 1525

Element ID Data Type Description

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing parameters.
For more information, refer to the
section Manufacturing Parameters
on page 1677.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion types for
this element are:
• PRO_TM_TYPE_AREA_

TURNING. For more
information, refer to the section
Tool Motion — Area and
Groove Turning on page 1731.

• PRO_TM_TYPE_GROOVE_
TURNING. For more
information, refer to the section
Tool Motion — Area and
Groove Turning on page 1731.

• PRO_TM_TYPE_PROF_
TURNING. For more
information, refer to the section
Tool Motion — Profile Turning
on page 1737.

• PRO_TM_TYPE_FOLLOW_
CUT. For more information,
refer to the section Tool Motion
— Follow Cut on page 1770

PRO_TM_TYPE_FOLLOW_

CURVE. For more information,
refer to the section Tool Motion
— Follow Curve on page 1694.

• PRO_TM_TYPE_GOTO_
POINT. For more information,
refer to the section Tool Motion
— Go To Point on page 1696

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to
the section Tool Motion — Go
Delta on page 1700.

1526 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_TM_TYPE_GOHOME. For

more information, refer to the
section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_TANGENT_
APPROACH. For more
information, refer to the section
Tool Motion — Tangent
Approach on page 1726.

• PRO_TM_TYPE_TANGENT_
EXIT. For more information,
refer to the section Tool Motion
— Tangent Exit on page 1728.

• PRO_TM_TYPE_NORMAL_
APPROACH. For more
information, refer to the section
Tool Motion — Normal
Approach on page 1710.

• PRO_TM_TYPE_NORMAL_
EXIT. For more information,
refer to the section Tool Motion
— Normal Exit on page 1713

• PRO_TM_TYPE_LEAD_IN.
For more information, refer to
the section Tool Motion —
Lead In on page 1706.

• PRO_TM_TYPE_LEAD_OUT.
For more information, refer to
the section Tool Motion —
Lead Out on page 1715.

• PRO_TM_TYPE_RAMP_
APPROACH. For more
information, refer to the section
Tool Motion — Ramp
Approach on page 1758.

• PRO_TM_TYPE_RAMP_
EXIT. For more information,
refer to the section Tool Motion
— Ramp Exit on page 1760.

• PRO_TM_TYPE_CONNECT.
For more information, refer to
the section Tool Motion —
Connect on page 1762

• PRO_TM_TYPE_CL_
COMMAND. For more
information, refer to the section
Tool Motion — CL Command
on page 1767.

For more information, refer to the
section Tool Motion — Auto Cut
on page 1766.

Production Applications: Creo NC Sequences, Operations and Work Centers 1527

Element ID Data Type Description
PRO_E_MFG_START_PNT PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the
prerequisiteCreo NC sequences.
For more information, refer to the
section Sequence Prerequisites on
page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining

1528 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Thread Turning Step
This section describes how to construct and access the element tree for a thread
turning step. It also describes how to create, redefine, and access the properties of
these features.

The Thread Turning Element Tree:
The element tree for the thread turning Creo NCsequence is documented in the
header file ProMfgFeatTurnThread.h, and is as shown in the following
figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1529

Element Tree for Thread Turning feature

1530 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
TURN.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value for this element
is Thread_Turning_1.

PRO_E_SEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_SEQ_THREAD_TURN

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_TURN_THREAD_
LOCATION_TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
location of the thread. The valid
values for this element are:
• PRO_E_TURN_OPTION_

OUT—For external threads
• PRO_E_TURN_OPTION_IN

—For internal threads
PRO_E_TURN_THREAD_
OUTPUT_TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of output You can specify one
of the following valid values for
this element:
• PRO_E_TURN_THREAD_ISO

• PRO_E_TURN_THREAD_AI_
MACRO

PRO_E_TURN_THREAD_FORM_
TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of the thread. . The valid
values for this element are:
• PRO_E_TURN_THREAD_

UNIFIED—For Unified
threads

• PRO_E_TURN_THREAD_
GENERAL—For General
threads

• PRO_E_TURN_THREAD_
BUTTRESS—For Buttress
threads

• PRO_E_TURN_THREAD_
ACME—For Acme threads

PRO_E_SEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in

Production Applications: Creo NC Sequences, Operations and Work Centers 1531

Element ID Data Type Description
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673 .

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing parameters.
For more information, refer to the
section Manufacturing Parameters
on page 1677.

PRO_E_TURN_PROFILE PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies turn
profile selection.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. For more
information, refer to the section
Tool Motion — Auto Cut on page
1766.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,

1532 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

Production Applications: Creo NC Sequences, Operations and Work Centers 1533

Element ID Data Type Description
PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the

actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments

Element Trees: Creo NC Operation
Definition
This section describes how to construct and access the element tree for a Creo NC
operation definition feature. It also describes how to create, redefine, and access
the properties of these features.

The Creo NC Operation Definition Element Tree:
The element tree for the Creo NC operation sequence is documented in the header
file ProMfgFeatOperation.h, and is as shown in the following figure:

1534 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Creo NC operation definition feature

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
OPERATION.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value for this element
is OP040.

Production Applications: Creo NC Sequences, Operations and Work Centers 1535

Element ID Data Type Description
PRO_E_OPER_CSYS PRO_VALUE_TYPE_

SELECTION
Mandatory element. Specifies the
datum coordinate system that will
be used as the operation coordinate
system for the Creo NC sequence.

PRO_E_OPER_SUBSP_CSYS PRO_VALUE_TYPE_
SELECTION

Optional element. Select a
coordinate system geometry item
which can be used as a sub-spindle
coordinate system.

PRO_E_MFG_WCELL_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
workcell feature selection.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_FROM1_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. Allows to
start machining by the head 1 tool
at the specified position.

PRO_E_MFG_HOME1_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. Allows to
end machining by the head 1 tool
at the specified position.

PRO_E_MFG_FROM2_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. Allows to
start machining by the head 2 tool
at the specified position.

Note

This element is ignored for
workcells with single head.

PRO_E_MFG_HOME2_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. Allows to
end machining by head the 2 tool
at the specified position.

Note

This element is ignored for
workcells with single head.

PRO_E_MFG_FROM3_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point geometry item
selection. Allows to start
machining by the head 3 tool at the
specified position.

Note

This element is ignored for
workcells with number of
heads less than 3.

1536 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_HOME3_PNT PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
datum point geometry item
selection. Allows to end machining
by the head 3 tool at the specified
position.

Note

This element is ignored for
workcells with number of
heads less than 3.

PRO_E_MFG_FROM4_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point geometry item
selection. Allows to start
machining by the head 4 tool at the
specified position.

Note

This element is ignored for
workcells with number of
heads less than 4.

PRO_E_MFG_HOME4_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point geometry item
selection. Allows to end machining
by the head 4 tool at the specified
position.

Note

This element is ignored for
workcells with number of
heads less than 4.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of applicable manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h.

Production Applications: Creo NC Sequences, Operations and Work Centers 1537

Element ID Data Type Description

For more information, refer to the
section Manufacturing Parameters
on page 1677 for more information
on the element tree.

Note

For new features, if the
parameter array is not
specified the default values
will be assigned to the
corresponding manufacturing
parameters of the created
feature.

PRO_E_MFG_OPER_STOCK_
MATERIAL

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
stock material name.

PRO_E_MFG_FIXTURE_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of a fixture setup feature.

PRO_E_FIXTURE_
COMPONENT_REF

Array Optional element. Specifies an
array of operation fixture setup
components that can be inserted
into the top assembly. This array
can be can be specified either in
combination with or without a
fixture setup reference specified by
PRO_E_MFG_FIXTURE_REF.
This element supports multiple
selections.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

1538 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the

actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Workcell Definition
This section describes how to construct and access the element tree for a workcell
definition. It also describes how to create, redefine, and access the properties of
these features.

The Manufacturing WEDMWorkcell Element Tree
The element tree for the WEDM workcell type is documented in the header file
ProMfgFeatWcellWedm.h, and is as shown in the following figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1539

Element Tree for WEDM workcell feature

The following table describes the elements in the element tree for the WEDM
workcell feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid
value for this element is PRO_
FEAT_WORKCELL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value for this element
is WEDM01.

PRO_E_WCELL_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of the workcell used for the
Creo NC sequence. The valid
value for this element is PRO_
WCELL_WEDM.

PRO_E_MFG_WCELL_NUM_
AXES

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
number of controlled axes

1540 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
(number of programmable motion
directions). The valid values for
this element are:
• PRO_WCELL_2_AXIS

• PRO_WCELL_4_AXIS

PRO_E_MFG_ENABLE_CMM_
OPT

PRO_VALUE_TYPE_INT Allows enabling/disabling of the
tool head for the creation of CMM
sequences. The valid values for
this element are:
• PRO_B_TRUE: Enables tool

head with CMM probes and
allows the creation of CMM
sequences

• PRO_B_FALSE: Disables
CMM tool head and creation
of CMM sequences.

Note

This element is optional ,
when CMM tool head is not
defined.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MFG_WCELL_HEAD_1 Compound Optional element. Specifies the
tool head compound definition.

PRO_E_MFG_WCELL_TOOL_
SETUP_ARR

Array Optional element. Specifies the
tool setup array. For more
information, refer to the section
Element Trees: Tool Setup on
page 1683.

PRO_E_MFG_WCELL_CMM_
HEAD

Compound Optional element. Specifies the
CMM probes head compound
definition.

Note

This element is ignored if
PRO_E_MFG_ENABLE_

CMM_OPT is set to PRO_B_
FALSE.

PRO_E_MFG_CMM_TOOL_
SETUP_ARR

Array Optional element. Specifies the
CMM probes setup array. For
more information, refer to the
section Element Trees: CMM
Probe Setup on page 1686.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the workcell comments.

Production Applications: Creo NC Sequences, Operations and Work Centers 1541

Element Trees: Manufacturing Mill
Workcell
This section describes how to construct and access the element tree for
manufacturing mill workcell feature. It also describes how to create, redefine, and
access the properties of these features.

The Mill Workcell Feature Element Tree:
The element tree for the manufacturing mill workcell feature is documented in the
header file ProMfgFeatWcellMill.h, and is as shown in the following
figure:

1542 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Mill Workcell feature

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid
value for this element is PRO_
FEAT_WORKCELL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value for this element
is MILL01.

Production Applications: Creo NC Sequences, Operations and Work Centers 1543

Element ID Data Type Description
PRO_E_WCELL_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the workcell used for the
Creo NC sequence. The valid
value for this element is PRO_
WCELL_MILL.

PRO_E_MFG_WCELL_NUM_
AXES

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
number of controlled axes
(number of programmable motion
directions). The valid values for
this element are:
• PRO_WCELL_3_AXIS

• PRO_WCELL_4_AXIS

• PRO_WCELL_5_AXIS

PRO_E_MFG_ENABLE_CMM_
OPT

PRO_VALUE_TYPE_INT Specifies enabling/disabling of the
tool head for the creation of CMM
sequences. The valid values for
this element are:
• PRO_B_TRUE: Enables tool

head with CMM probes and
allows the creation of CMM
sequences

• PRO_B_FALSE: Disables
CMM tool head and creation
of the CMM sequences.

Note

This element is optional,
when CMM tool head is not
defined or is disabled.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677 .

PRO_E_MFG_WCELL_HEAD_1 Compound Optional element. Specifies the
tool head compound definition.

PRO_E_MFG_WCELL_TOOL_
SETUP_ARR

Array Optional element. Specifies the
tool setup array. For more
information, refer to the section
Element Trees: Tool Setup on
page 1683.

PRO_E_MFG_WCELL_CMM_
HEAD

Compound Optional compound element.
Specifies the CMM probes head

1544 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
compound definition.

Note

This element is ignored if
PRO_E_MFG_ENABLE_
CMM_OPT is set to PRO_
B_FALSE.

PRO_E_MFG_CMM_TOOL_
SETUP_ARR

Array Optional element. Specifies the
CMM probes setup array. For
more information, refer to the
section Element Trees: CMM
Probe Setup on page 1686 .

PRO_E_MFG_WCELL_CUST_
CYCLE_ARR

Array Optional element. Specifies the
array of custom cycle names (to
be used by holemaking
sequences). For holemaking
sequences, For more information,
refer to the section Manufacturing
Holemaking Step on page 1578.

PRO_E_MFG_WCELL_CUST_
CYCLE_COMP

Compound Optional compound element.
Specifies the compound definition
of a custom cycle name.

PRO_E_MFG_WCELL_CUST_
CYCLE_NAME

PRO_VALUE_TYPE_WSTRING Specifies the custom cycle name.

Note

This element is a mandatory
child of PRO_E_MFG_
WCELL_CUST_CYCLE_

COMP element.
PRO_E_MFG_WCELL_ASSEM_
COMPOUND

Compound Optional compound element.
Specifies the Simulation assembly
compound definition.

PRO_E_MFG_WCELL_
ASSEMBLY_NAME

Assembly Name Specifies the simulation assembly
model name.

Note

This element is a mandatory
child of PRO_E_MFG_
WCELL_ASSEM_

COMPOUND element.

Production Applications: Creo NC Sequences, Operations and Work Centers 1545

Element ID Data Type Description
PRO_E_MFG_WCELL_LOCAL_
CSYS_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the coordinate system
datum feature. It will be aligned
with the simulation assembly
coordinate system during
machining simulation.

Note

• This element is a
mandatory child element
of PRO_E_MFG_
WCELL_ASSEM_

COMPOUND element.
PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the workcell comments.

Example 1: Creating or Redefining a Tool from a File
The sample code in UgMfgToolFileReadWrite.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_mfg
shows how to create a tool or redefine it from a file and save the information
about the tool to a file.

Element Trees: Manufacturing Mill/Turn
Workcell
This section describes how to construct and access the element tree for a mill turn
workcell. It also describes how to create, redefine, and access the properties of
these features.

The Mill/Turn Workcell Element Tree:
The element tree for the mill/turn workcell is documented in the header file
ProMfgFeatWcellMillTurn.h, and is as shown in the following figure:

1546 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Mill/Turn Workcell

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid
value for this element is PRO_
FEAT_WORKCELL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value for this element
is MILL01.

PRO_E_WCELL_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of the workcell used for the
Creo NC sequence. The valid
value for this element is PRO_
WCELL_MILL_N_TRN.

Production Applications: Creo NC Sequences, Operations and Work Centers 1547

Element ID Data Type Description
PRO_E_MFG_WCELL_NUM_
HEADS

PRO_VALUE_TYPE_INT Optional element. Specifies the
number of tool heads (turrets).
The valid values are:
• PRO_MFG_ONE_HEAD_

WCELL—This is the default
value.

• PRO_MFG_TWO_HEAD_
WCELL

PRO_E_MFG_WCELL_NUM_
SPINDLES

PRO_VALUE_TYPE_INT Optional element. Specifies the
number of spindles to be used for
the feature creation. The valid
values for this element are defined
in the enumerated type
ProMfgWcellNumSpindles
and are as follows:
• PRO_MFG_ONE_SPINDLE_

WCELL—This is the default
value.

• PRO_MFG_TWO_SPINDLE_
WCELL

PRO_E_MFG_LATHE_DIR_OPT PRO_VALUE_TYPE_INT Optional element. Specifies the
lathe orientation . The valid values
for this element are:
• PRO_WCELL_LATHE_

HORIZONTAL—This is the
default value.

• PRO_WCELL_LATHE_
VERTICAL

PRO_E_MFG_WCELL_ENABLE_
TURN_OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
enabling/disabling of the turning
machine. The valid values for this
element are:
• PRO_B_TRUE—Enables the

turning machining on the
workcell. This is he default
value.

• PRO_B_FALSE—Disables
the turning machining on the
workcell.

PRO_E_MFG_ENABLE_CMM_
OPT

PRO_VALUE_TYPE_INT Optional element. Initializes a
CMM operation. The valid values
for this element are:
• PRO_B_TRUE: Enables the

tool head with CMM probes
and allows the creation of
CMM sequences.

• PRO_B_FALSE: Disables the
CMM tool head and allows
the creation of CMM
sequences.

PRO_E_MFG_WCELL_NUM_
AXES

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
number of controlled axes enabled

1548 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
for milling sequences. The valid
values for this element are:
• PRO_WCELL_3_AXIS

• PRO_WCELL_4_AXIS

• PRO_WCELL_5_AXIS

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MFG_WCELL_HEAD_1 Compound Optional compound element.
Specifies the compound definition
for tool head 1.

PRO_E_MFG_WCELL_HEAD_2 Compound Optional element. Specifies the
compound definition for tool head
2.

Note

This element is ignored if
you have set the element
PRO_E_MFG_WCELL_

NUM_HEADS to PRO_MFG_
ONE_HEAD_WCELL value.

PRO_E_MFG_WCELL_TOOL
_SETUP_ARR

Array Optional element. Specifies the
Tool setup array. For more
information, refer to the section
Element Trees: Tool Setup on
page 1683.

PRO_E_MFG_WCELL_HEAD_3 Compound Optional element. Specifies the
tools specification for head 3.

Note

This element is ignored for
workcells with number of
heads less than 3 that is,
when the element PRO_E_
MFG_WCELL_NUM_HEADS

is set to PRO_MFG_ONE_
HEAD_WCELL or PRO_
MFG_TWO_HEAD_WCELL.

PRO_E_MFG_WCELL_TOOL_
SETUP_ARR

Array Optional element. Specifies the
Tool setup array. For more
information, refer to the section
Element Trees: Tool Setup on
page 1683.

PRO_E_MFG_WCELL_HEAD_4 Compound Optional element. Specifies the

Production Applications: Creo NC Sequences, Operations and Work Centers 1549

Element ID Data Type Description
tools specification for head 4.

Note

This element is ignored for
workcells with number of
heads less than 4 that is,
when the element PRO_E_
MFG_WCELL_NUM_HEADS

is set to PRO_MFG_ONE_
HEAD_WCELL, PRO_MFG_
TWO_HEAD_WCELL or
PRO_MFG_THREE_HEAD_

WCELL.
PRO_E_MFG_WCELL_TOOL_
SETUP_ARR

Array Optional element. Specifies the
Tool setup array. For more
information, refer to the section
Element Trees: Tool Setup on
page 1683.

PRO_E_MFG_WCELL_CMM_
HEAD

Compound Optional compound element.
Specifies the CMM probes head
compound definition.

Note

This element is ignored if
PRO_E_MFG_ENABLE_
CMM_OPT is set to PRO_
B_FALSE.

PRO_E_MFG_CMM_TOOL_
SETUP_ARR

Array Optional element. Specifies the
CMM probes setup array. For
more information, refer to the
section Element Trees: CMM
Probe Setup on page 1686 .

PRO_E_MFG_WCELL_CUST_
CYCLE_ARR

Array Optional element. Specifies the
array of custom cycle names (to
be used by holemaking
sequences). For holemaking
sequences, For more information,
refer to the section Manufacturing
Holemaking Step on page 1578.

PRO_E_MFG_WCELL_CUST_
CYCLE_COMP

Compound Optional compound element.
Specifies the compound definition
of a custom cycle name.

1550 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_WCELL_CUST_
CYCLE_NAME

PRO_VALUE_TYPE_WSTRING Specifies the custom cycle name.

Note

This element is a mandatory
child of PRO_E_MFG_
WCELL_CUST_CYCLE_

COMP element.
PRO_E_MFG_WCELL_ASSEM_
COMPOUND

Compound Optional compound element.
Specifies the simulation assembly
compound definition.

PRO_E_MFG_WCELL_
ASSEMBLY_NAME

Assembly Name Specifies the simulation assembly
model name.

Note

This element is a mandatory
child of PRO_E_MFG_
WCELL_ASSEM_

COMPOUND element.
PRO_E_MFG_WCELL_LOCAL_
CSYS_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the coordinate system
datum feature. It will be aligned
with the simulation assembly
coordinate system during
machining simulation.

Note

This element is a mandatory
child element of PRO_E_
MFG_WCELL_ASSEM_

COMPOUND element.
PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the workcell comments.

PRO_E_MFG_MILLTURN_HEADS Element
The compound element PRO_E_MFG_MILLTURN_HEADS contains elements
that can be used to define the parameters for the turret head. The elements of
PRO_E_MFG_MILLTURN_HEADS are as follows:
• PRO_E_MFG_MILLTURN_HEAD_1—Contains the options for the first

turret.
• PRO_E_MFG_MILLTURN_HEAD_2—Contains the options for the second

turret.
• PRO_E_MFG_MILLTURN_HEAD_3—Contains the options for the third

turret.

Production Applications: Creo NC Sequences, Operations and Work Centers 1551

• PRO_E_MFG_MILLTURN_HEAD_4—Contains the options for the fourth
turret.

• PRO_E_MILLTURN_TOOL_ROT_DIR_OPT

Element Tree for PRO_E_MFG_MILLTURN_HEADS element

The elements PRO_E_MFG_MILLTURN_HEAD_1, PRO_E_MFG_MILLTURN_
HEAD_2, PRO_E_MFG_MILLTURN_HEAD_3 and PRO_E_MFG_MILLTURN_
HEAD_4 contain the following elements:

1552 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_WCELL_HEAD_MILL_
OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
turret milling option. The valid
values for this element are:
• PRO_B_TRUE—Enables the

milling operations for the
turret head.

• PRO_B_FALSE—Disables
the milling operations for the
turret head.

PRO_E_WCELL_HEAD_TURN_
OPT

PRO_VALUE_TYPE_INT Specifies the enabling/disabling of
the turning option for the turret.
The valid values for this element
are:
• PRO_B_TRUE—Enables the

turning operations for the
turret. This is the default
value.

• PRO_B_FALSE—Disables
the turning operations for the
turret.

Note

This element is ignored if the
element PRO_E_MFG_
WCELL_ENABLE_TURN_

OPT is set to PRO_B_
FALSE.

PRO_E_WCELL_HEAD_FLASH_
OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
turret flash tool option. The valid
values for this element are:
• PRO_B_TRUE—Enables the

flash tool for the turret.
• PRO_B_FALSE—Disables

the flash tool for the turret.
PRO_E_WCELL_HEAD_ROT_
POS_OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
turret rotation positioning option.
The valid values for this element
are:
• PRO_B_TRUE—Enables the

rotation positioning for the
turret.

• PRO_B_FALSE—Disables
the rotation positioning for the
turret.

Production Applications: Creo NC Sequences, Operations and Work Centers 1553

Element Trees: Manufacturing Lathe
Workcell
This section describes how to construct and access the element tree for a lathe
workcell. It also describes how to create, redefine, and access the properties of
these features.

The Lathe Workcell Element Tree:
The element tree for the lathe workcell is documented in the header file
ProMfgFeatWcellLathe.h, and is as shown in the following figure:

1554 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Lathe Workcell

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid
value for this element is PRO_
FEAT_WORKCELL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value for this element
is LATHE01.

PRO_E_WCELL_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

Production Applications: Creo NC Sequences, Operations and Work Centers 1555

Element ID Data Type Description
type of the workcell used for the
Creo NC sequence. The valid
value for this element is PRO_
WCELL_LATHE.

PRO_E_MFG_WCELL_NUM_
HEADS

PRO_VALUE_TYPE_INT Optional element. Specifies the
number of tool heads (turrets).
The valid values are:
• PRO_MFG_ONE_HEAD_

WCELL—This is the default
value.

• PRO_MFG_TWO_HEAD_
WCELL

PRO_E_MFG_WCELL_NUM_
SPINDLES

PRO_VALUE_TYPE_INT Optional element. Specifies the
number of spindles to be used for
the feature creation. The valid
values for this element are defined
in the enumerated type
ProMfgWcellNumSpindles
and are as follows:
• PRO_MFG_ONE_SPINDLE_

WCELL—This is the default
value.

• PRO_MFG_TWO_SPINDLE_
WCELL

PRO_E_MFG_LATHE_DIR_OPT PRO_VALUE_TYPE_INT Optional element. Specifies the
lathe orientation . The valid values
for this element are:
• PRO_WCELL_LATHE_

HORIZONTAL—This is the
default value.

• PRO_WCELL_LATHE_
VERTICAL

PRO_E_MFG_ENABLE_CMM_
OPT

PRO_VALUE_TYPE_INT Optional element. Initializes a
CMM operation. The valid values
for this element are:
• PRO_B_TRUE: Enables the

tool head with CMM probes
and allows the creation of
CMM sequences.

• PRO_B_FALSE: Disables the
CMM tool head and allows
the creation of CMM
sequences.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MFG_WCELL_HEAD_1 Compound Optional compound element.
Specifies the compound definition
for tool head 1.

PRO_E_MFG_WCELL_HEAD_2 Compound Optional element. Specifies the

1556 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
compound definition for tool head
2.

Note

This element is ignored if
you have set the element
PRO_E_MFG_WCELL_

NUM_HEADS to PRO_MFG_
ONE_HEAD_WCELL value.

PRO_E_MFG_WCELL_TOOL_
SETUP_ARR

Array Optional element. Specifies the
Tool setup array. For more
information, refer to the section
Element Trees: Tool Setup on
page 1683.

PRO_E_MFG_WCELL_CMM_
HEAD

Compound Optional compound element.
Specifies the CMM probes head
compound definition.

Note

This element is ignored if
PRO_E_MFG_ENABLE_

CMM_OPT is set to PRO_B_
FALSE.

PRO_E_MFG_CMM_TOOL_
SETUP_ARR

Array Optional element. Specifies the
CMM probes setup array. For
more information, refer to the
section Element Trees: CMM
Probe Setup on page 1686.

PRO_E_MFG_WCELL_CUST_
CYCLE_ARR

Array Optional element. Specifies the
array of custom cycle names (to
be used by holemaking
sequences). For holemaking
sequences, For more information,
refer to the section Manufacturing
Holemaking Step on page 1578

PRO_E_MFG_WCELL_CUST_
CYCLE_COMP

Compound Optional compound element.
Specifies the compound definition
of a custom cycle name.

PRO_E_MFG_WCELL_CUST_
CYCLE_NAME

PRO_VALUE_TYPE_WSTRING Specifies the custom cycle name.

Note

This element is a mandatory
child of PRO_E_MFG_
WCELL_CUST_CYCLE_

COMP element.
PRO_E_MFG_WCELL_ASSEM_
COMPOUND

Compound Optional compound element.
Specifies the Simulation assembly

Production Applications: Creo NC Sequences, Operations and Work Centers 1557

Element ID Data Type Description
compound definition.

PRO_E_MFG_WCELL_
ASSEMBLY_NAME

Assembly Name Specifies the simulation assembly
model name.

Note

This element is a mandatory
child of PRO_E_MFG_
WCELL_ASSEM_

COMPOUND element.
PRO_E_MFG_WCELL_LOCAL_
CSYS_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the coordinate system
datum feature. It will be aligned
with the simulation assembly
coordinate system during
machining simulation.

Note

This element is a mandatory
child element of PRO_E_
MFG_WCELL_ASSEM_

COMPOUND element.
PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the workcell comments.

Element Trees: Manufacturing CMM
Workcell
This section describes how to construct and access the element tree for a CMM
workcell. It also describes how to create, redefine, and access the properties of
these features.

The CMMWorkcell Element Tree:
The element tree for the CMM workcell is documented in the header file
ProMfgFeatWcellCmm.h, and is as shown in the following figure:

1558 Creo® Parametric TOOLKITUser’s Guide

Element Tree for CMMWorkcell

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid
value for this element is PRO_
FEAT_WORKCELL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value for this element
is Add default value.

PRO_E_WCELL_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of the workcell used for the
Creo NC sequence. The valid
value for this element is PRO_
WCELL_CMM.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677 .

PRO_E_MFG_WCELL_CMM_
HEAD

Compound Optional compound element.
Specifies the CMM probes head
compound definition.

Production Applications: Creo NC Sequences, Operations and Work Centers 1559

Element ID Data Type Description
PRO_E_MFG_CMM_TOOL_
SETUP_ARR

Array Optional element. Specifies the
CMM probes setup array. For
more information, refer to the
section The CMM probe Setup
Element Tree: on page 1686.

PRO_E_MFG_WCELL_ASSEM_
COMPOUND

Compound Optional compound element.
Specifies the simulation assembly
compound definition.

PRO_E_MFG_WCELL_
ASSEMBLY_NAME

Assembly Name Specifies the simulation assembly
model name.

Note

This element is a mandatory
child of PRO_E_MFG_
WCELL_ASSEM_

COMPOUND element.
PRO_E_MFG_WCELL_LOCAL_
CSYS_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the coordinate system
datum feature. It will be aligned
with the simulation assembly
coordinate system during
machining simulation.

Note

This element is a mandatory
child element of PRO_E_
MFG_WCELL_ASSEM_

COMPOUND element.
PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the workcell comments.

Element Trees: Profile Milling Step
This section describes how to construct and access the element tree for a profile
milling step. It also describes how to create, redefine, and access the properties of
these features.

The Profile Milling Element Tree:
The element tree for the profile milling Creo NC sequence is documented in the
header file ProMfgFeatProfMilling.h, and is as shown in the following
figure:

1560 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Profile Milling Sequence

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.

Production Applications: Creo NC Sequences, Operations and Work Centers 1561

Element ID Data Type Description
The default value is Profile_
Milling_1.

PRO_E_SEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_SEQ_PROF_SURF_MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_MFG_SEQ_NUM_AXES_
OPT

PRO_VALUE_TYPE_INT Specifies the number of controlled
axes. The valid values are:
• 3—Applicable if work center

allows 3-axis machining. This
is the default value.

• 4—Applicable if work center
allows 4-axis or 5-axis
machining. It is used for
machining with the tool axis
parallel to the plane specified
in PRO_E_MFG_4_AXIS_
PLANE.

• 5—Applicable if work center
allows 5-axis machining.

PRO_E_SEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673 .

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676.

PRO_E_MFG_TOOL_ADAPTER_ PRO_VALUE_TYPE_WSTRING Optional element. Specifies the

1562 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
NAME tool adapter model name.
PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677 .

PRO_E_MACH_SURFS Compound Mandatory element. Specifies the
machining surfaces compound
definition.

PRO_E_MFG_SURF_SIDE_
COMPOUND

Compound Optional compound element.
Specifies the surfaces side
compound definition. For more
information, refer to the section
Manufacturing Surface Side on
page 1566.

PRO_E_MFG_4_AXIS_PLANE PRO_VALUE_TYPE_
SELECTION

Specifies the selection of datum
plane or planar surface.

Note
• This element is mandatory for

4-axis machining (PRO_E_
MFG_SEQ_NUM_AXES_OPT
set to 4).

• This element is ignored for 3-
axis and 5-axis machining.

PRO_E_SCALLOP_SURF_COLL Compound Optional compound element.
Specifies the scallop surfaces
compound definition.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Optional element. Specifies the
scallop surfaces collection.

PRO_E_CHECK_SURF_COLL PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
check surfaces compound
definition. For more information,
refer to the section Checking
Surfaces on page 1687.

PRO_E_MFG_CMP_APPROACH_
EXIT

Compound Optional element. Specifies the
approach and exit compound
definition. For more information,
refer to the section Approach and
Exit on page 1689.

Production Applications: Creo NC Sequences, Operations and Work Centers 1563

Element ID Data Type Description
PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an

array of tool motions.
PRO_E_TOOL_MTN Compound Optional element. Specifies the

tool motion compound
specification and the applicable
tool motion types for this element
are:
• Tool Motion— Profile

Mill Cut on page 1764

• Tool Motion— Follow
Cut on page 1770

• Tool Motion— Follow
Curve on page 1694

• Tool Motion— Go To
Point on page 1696

• Tool Motion— Go Delta
on page 1700

• Tool Motion— Go Home
on page 1704

• Tool Motion— Plunge
on page 1772

• Tool Motion— Go
Retract on page 1708

• Tool Motion— Tangent
Approach on page 1726

• Tool Motion— Tangent
Exit on page 1728

• Tool Motion— Normal
Approach on page 1710

• Tool Motion— Normal
Exit on page 1713

• Tool Motion— Lead In
on page 1706

• Tool Motion— Lead Out
on page 1715

• Tool Motion— Helical
Approach on page 1717

• Tool Motion— Helical
Exit on page 1720

• Tool Motion— Follow
Curve on page 1694—For
4 and 5 axis machining.

• Approach Along Tool
Axis on page 1690

• Exit Along Tool Axis on
page 1692—For 4 and 5 axis

1564 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
machining.

Note

The Follow Cut motion must
be placed just after the
element PRO_TM_TYPE_
PROFILE_MILL_CUT,
motion or another Follow Cut
motion.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

Production Applications: Creo NC Sequences, Operations and Work Centers 1565

Element ID Data Type Description
PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the

time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Manufacturing Surface Side
The element PRO_E_MFG_SURF_SIDE_COMPOUND is documented in the
header file ProMfgElemSurfSide.h, and is as shown in the following figure:

The following table describes the elements in the element tree for the surface side
feature.

1566 Creo® Parametric TOOLKITUser’s Guide

PRO_E_MFG_SURF_SIDE_
COMPOUND

Compound Specifies the surface Side
compound.

PRO_E_MFG_SURF_SIDE_
TOLERAE

PRO_VALUE_TYPE_DOUBLE Mandatory element. Specifies the
tolerance used for composing
groups of adjacent quilts.

Note

The value for this element
should be nonnegative.

PRO_E_MFG_SURF_SIDE_
FLIP_QUILTS

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of quilts to be flipped.
This element supports multiple
selections.

Element Trees: Face Milling Step
This section describes how to construct and access the element tree for a Face
Milling feature. It also describes how to create, redefine, and access the properties
of these features.

Production Applications: Creo NC Sequences, Operations and Work Centers 1567

The Face Milling Element Tree:
The element tree for the face milling feature is documented in the header file
ProMfgFeatFacing.h, and is as shown in the following figure:

Element Tree for Face Milling feature

The following table lists the contents of PRO_E_FEATURE_TREE element.

1568 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value is Face_
Milling_1.

PRO_E_SEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_SEQ_FACE_MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_SEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676 .

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Production Applications: Creo NC Sequences, Operations and Work Centers 1569

Element ID Data Type Description

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MACH_SURFS Compound Mandatory compound element.
Specifies the machining surfaces
compound definition. For more
information, refer to the section
Element Trees: Machining
Surfaces on page 1573.

PRO_E_MFG_CMP_APPROACH_
EXIT

Compound Optional compound element.
Specifies the approach and exit
compound definition. For more
information, refer to the section
Approach and Exit on page 1689.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion types for
this element are :
• PRO_TM_TYPE_FACE_

MILLING. For more
information, refer to the
section Tool Motion — Face
Milling on page 1777.

• PRO_TM_TYPE_FOLLOW_
CUT. For more information,
refer to the section Tool
Motion — Follow Cut on page
1770.

• PRO_TM_TYPE_FOLLOW_
CURVE. For more information,
refer to the section Tool
Motion — Follow Curve on
page 1694.

• PRO_TM_TYPE_GOTO_
POINT. For more information,
refer to the section Tool
Motion — Go To Point on
page 1696.

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to

1570 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
the section Tool Motion — Go
Delta on page 1700.

• PRO_TM_TYPE_GOHOME.
For more information, refer to
the section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_CONNECT.
For more information, refer to
the section Tool Motion —
Connect on page 1762.

• PRO_TM_TYPE_PLUNGE.
For more information, refer to
the section Tool Motion —
Plunge on page 1772.

• PRO_TM_TYPE_GO_
RETRACT. For more
information, refer to the
section Tool Motion — Go
Retract on page 1708.

• PRO_TM_TYPE_TANGENT_
APPROACH. For more
information, refer to the
section Tool Motion —
Tangent Approach on page
1726.

• PRO_TM_TYPE_TANGENT_
EXIT. For more information,
refer to the section Tool
Motion — Tangent Exit on
page 1728.

• PRO_TM_TYPE_NORMAL_
APPROACH. For more
information, refer to the
section Tool Motion —
Normal Approach on page
1710.

• PRO_TM_TYPE_NORMAL_
EXIT. For more information,
refer to the section Tool
Motion — Normal Exit on
page 1713.

• PRO_TM_TYPE_LEAD_IN.
For more information, refer to
the section Tool Motion —
Lead In on page 1706.

• PRO_TM_TYPE_LEAD_OUT.
For more information, refer to
the section Tool Motion —
Lead Out on page 1715.

• PRO_TM_TYPE_HELICAL_
APPROACH. For more

Production Applications: Creo NC Sequences, Operations and Work Centers 1571

Element ID Data Type Description
information, refer to the
section Tool Motion — Helical
Approach on page 1717.

• PRO_TM_TYPE_HELICAL_
EXIT. For more information,
refer to the section Tool
Motion — Helical Exit on
page 1720.

• PRO_TM_TYPE_RAMP_
APPROACH. For more
information, refer to the
section Tool Motion — Ramp
Approach on page 1758.

• PRO_TM_TYPE_RAMP_
EXIT. Refer to the section
Tool Motion — Ramp Exit on
page 1760.

• PRO_TM_TYPE_CL_
COMMAND. For more
information, refer to the
section Tool Motion — CL
Command on page 1767.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_ENTRY_PNT_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
entry point selection. Effects start
location of the first cut.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

1572 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Machining Surfaces

The Machining Surface Element Tree:
The element tree for the machining surfaces feature is documented in the header
file ProMfgElemMachSurf.h, and is as shown in the following figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1573

Element Tree for Machining Surface Feature

Element ID Data Type Description
PRO_E_MACH_SURF_OPT PRO_VALUE_TYPE_INT This element specifies the

controlling of the object to be
selected. The valid values for this
element are:
• PRO_MACH_SURF_OPT_

SURFACES—Specifies that
surface collection will be
defined.

• PRO_MACH_SURF_OPT_
MILL_WIND—Specifies that
window selection will be
defined (for Face Milling).

• PRO_MACH_SURF_OPT_
PREV_STEP—Specifies that
previous step will be defined
(not for Face Milling).

PRO_E_MACH_SURF_COMP Compound This compound element specifies
the collection of surfaces.

Note

This element is ignored if the
element PRO_E_MACH_
SURF_OPT is not set to
PRO_MACH_SURF_OPT_

SURFACES.
PRO_E_MACH_SURF_REF_
TYPE

PRO_VALUE_TYPE_INTEGER Specifies the reference types. The
valid values for this element are:

1574 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_SURF_REF_TYPE_

REFPART—Specifies that
surfaces from a reference part
are collected.

• PRO_SURF_REF_TYPE_
WORKPIECE—Specifies that
surfaces from a workpiece part
are collected.

• PRO_SURF_REF_TYPE_
MILL_VOLUME—Specifies
that mill volume is selected or
individual surfaces belonging
to a mill volume are collected.

• PRO_SURF_REF_TYPE_
MILL_MVOLSRF—Specifies
that a Mill Surface is selected
or individual surfaces
belonging to a Mill Surface
quilt are collected.

• PRO_SURF_REF_TYPE_
TOP_ASSEM_SRF—Specifies
that quilt created at the
assembly level is selected.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection This element specifies the
collection of selected surfaces to
be machined.

Note

This element is mandatory if
neither PRO_E_MFG_MILL_
WIND_SRF nor PRO_E_
MACH_SURF_PREV_STEP

are defined.
PRO_E_MFG_MILL_WIND_SRF PRO_VALUE_TYPE_

SELECTION
Specifies the selection of mill
window feature.

Note

Specify this element only if
the elements PRO_E_STD_
SURF_COLLECTION_APPL

and PRO_E_MACH_SURF_
PREV_STEP are not defined.

Production Applications: Creo NC Sequences, Operations and Work Centers 1575

Element ID Data Type Description
PRO_E_MACH_SURF_PREV_
STEP

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of an Creo
NC step feature.

Note

This element is mandatory if
neither the element PRO_E_
STD_SURF_COLLECTION_

APPL nor the element PRO_
E_MFG_MILL_WIND_SRF

are defined. This element
must not be set otherwise.

PRO_E_MACH_SRF_FLIP PRO_VALUE_TYPE_INTEGER Specifies the position of flip quilt.
The valid values for this element
are:
• PRO_B_FALSE—Specifies

the machining of the surface
on the side defined by the
default normal.

• PRO_B_TRUE—Specifies the
machining of the surface on
the opposite side defined by
the default normal.

Note

This element is mandatory if
the element PRO_E_MACH_
SURFS is defined and the
reference type is set to PRO_
SURF_REF_TYPE_MILL_

MVOLSRF or PRO_SURF_
REF_TYPE_TOP_ASSEM_

SRF.

Element Trees: Fixture Definition
This section describes how to construct and access the element tree for
Manufacturing Fixture Setup. It also describes how to create, redefine, and access
the properties of these features.

The Manufacturing Fixture Setup Element Tree:
The element tree for the manufacturing fixture setup is documented in the header
file ProMfgFeatFixture.h, and is as shown in the following figure:

1576 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Manufacturing Fixture Setup feature

The following table lists the contents of PRO_E_FEATURE_TREE element.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
FIXSETUP.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value is FSETP1.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_FIXTURE_
COMPONENT_REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of the reference
components. This element
supports multiple selections.

Note

Specify this element only if
the component is inserted in
the manufacturing assembly.

Production Applications: Creo NC Sequences, Operations and Work Centers 1577

Element ID Data Type Description
PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Manufacturing Holemaking Step
The element tree for PRO_E_FEATURE_TREE is documented in the header file
ProMfgFeatHolemaking.h, and is shown in the following figure.

1578 Creo® Parametric TOOLKITUser’s Guide

The following table lists the contents of PRO_E_FEATURE_TREE element.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
DRILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
sequence feature name.

Production Applications: Creo NC Sequences, Operations and Work Centers 1579

Element ID Data Type Description
PRO_E_SEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

sequence type. The valid value for
this element is PRO_SEQ_
HOLEMAKING.

PRO_E_HOLEMAKING_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of holemaking sequence
using the enumerated value
ProHolemakingType.

PRO_E_DRILL_MODE PRO_VALUE_TYPE_INT Specifies the holemaking mode -
machining with rotating part or
rotating tool using the enumerated
value ProDrillModeOption.

Note

This element is mandatory
for drilling on mill-turn work
center.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_MFG_HOLEMAKING_
CYCLE_TYPE

PRO_VALUE_TYPE_INT Specifies the holemaking cycle
type using the enumerated value
ProHmCycleType.

Note

This element is mandatory
for drilling, tapping,
counterboring,
countersinking. For
countersinking, this element
should be set to the value
PRO_HM_CYCLE_TYPE_

STANDARD. This element is
ignored for other types of
holemaking.

PRO_E_MFG_SEQ_NUM_AXES_
OPT

PRO_VALUE_TYPE_INT Specifies the number of axes. The
valid value for this element are:
• 3
• 5

Note

This element can be set to 5
only if work center allows 5-
axis machining.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
coordinate system datum feature to
be used as a sequence coordinate
system.

1580 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_RETR_SURF Compound Specifies the retract compound

definition. For more information,
refer to the section Retract
Elements on page 1673 for more
information on the element tree.

Note

• This element is
mandatory when the
element PRO_E_
DRILL_MODE is set to
PRO_DRILL_HOLE_

ON_MILL.

• This element is ignored
when the element PRO_
E_DRILL_MODE is set to
PRO_DRILL_HOLE_

ON_LATHE.
PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Specifies the tool reference
compound definition. For more
information, refer to the section
Tool Reference on page 1676 for
more information on the element
tree.

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of site with default values

Production Applications: Creo NC Sequences, Operations and Work Centers 1581

Element ID Data Type Description
for manufacturing parameters.

Note

The name will be ignored if
site does not exist in the
manufacturing model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_CUSTOM_CYCLE_
NAME

PRO_VALUE_TYPE_WSTRING Specifies the name of custom
cycle which will be used to define
machining strategy.

Note

• A custom cycle with
specified name must
exists in manufacturing
model.

• This element is
mandatory for custom
cycle holemaking (when
the element PRO_E_
HOLEMAKING_TYPE is
not set to PRO_HOLE_
MK_CUSTOM)

PRO_E_HOLESETS Array Specifies an array of holesets
which gives specification of holes
to machine. For more information,
refer to the section Manufacturing
Holemaking Holeset on page 1584
for more information on the
element tree.

PRO_E_CHECK_SURF_COLL PRO_VALUE_TYPE_
SELECTION

Specifies the check surfaces
compound definition. The element
tree for the Checking Surfaces is
defined in the header file
ProMfgElemCheckSurf.h.
For more information, refer to the
section Checking Surfaces on page
1687 for more information on the
element tree.

1582 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_TOOL_MTN_ARR Array Optional element. Specifies an

array of tool motions.
PRO_E_TOOL_MTN Compound Optional element. Specifies the

tool motion compound
specification. The applicable tool
motion types for this element are:
• Tool Motion— Auto Cut

on page 1766

• Tool Motion— Go To
Point on page 1696

• Tool Motion— Go Delta
on page 1700

• Tool Motion— Go Home
on page 1704

• Tool Motion— Go
Retract on page 1708

• Tool Motion— Connect
on page 1762

• Tool Motion— CL
Command on page 1767

.
PRO_E_MFG_START_PNT PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
datum point selection. Allows to
start machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. Allows to
end machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. Specifies the
array of ids of prerequisite
sequences. The element tree for
the Sequence Prerequisites is
defined in the header file
ProMfgElemPrerequisi
te.h. For more information, refer
to the section Sequence
Prerequisites on page 1682 for
more information on the element
tree.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometry references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
view name. It allows you to

Production Applications: Creo NC Sequences, Operations and Work Centers 1583

Element ID Data Type Description
associate specific view with a
machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name. It
allows you to associate a specific
simplified representation with a
machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimate. It allows you to
specify time estimate for the
machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate. It allows you to
specify cost estimate for the
machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time. It allows you to
specify actual time for the
machining step

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Manufacturing Holemaking Holeset
The element PRO_E_HOLESETS specifies an array of holesets and gives
specifications about machining references. This element is documented in the
header file ProMfgElemHoleset.h, and is shown in the following figure.

1584 Creo® Parametric TOOLKITUser’s Guide

Element tree for Manufacturing Holemaking Holeset

Production Applications: Creo NC Sequences, Operations and Work Centers 1585

The following table lists the contents of PRO_E_HOLESETS element.
Element ID Data Type Description
PRO_E_HOLESET Compound Mandatory element. Specifies the

holeset definition.

Note

The holeset array must have
at least one member.

PRO_E_HOLESET_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
holeset type - axes, points or
geometry. The values for this
element are defined by
ProHolesetType.

PRO_E_HOLESET_START Compound Mandatory element. Specifies the
holemaking start compound
specification.

Note

This element is ignored for
web drilling. Mandatory for
other types of holemaking.

PRO_E_HOLESET_END Compound Specifies the holemaking depth
compound specification.

Note

This element is ignored for
web drilling. Mandatory for
other types of holemaking.

PRO_E_HOLESET_DEPTH Compound Specifies the web drilling depth
compound specification.

Note

Mandatory for web drilling.
Ignored for other types of
holemaking.

PRO_E_HOLESET_CUSTOM_
CYCLE_PLATES

Compound Specifies the compound definition
of the custom cycle.

Note

This element is mandatory
for custom cycle holemaking.
Ignored for other types of
holemaking.

PRO_E_DRILL_PART_DATA Compound Specifies the compound
information about components
used in depth computation.

1586 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
Mandatory element if start or end
of machining has to be computed
and at least one of the following
hold true:
• PRO_E_HOLESET_START_

TYPE is set to PRO_DRILL_
AUTO_START.

• PRO_E_HOLESET_END_
TYPE is set to PRO_DRILL_
AUTO or PRO_DRILL_
THRU_ALL.

• PRO_E_HOLESET_DEPTH_
TYPE is set to PRO_DRILL_
AUTO or PRO_DRILL_
THRU_ALL.

PRO_E_AUTO_SEL_DRILL_
PARTS

PRO_VALUE_TYPE_INT Mandatory element. The option
defines the way components are
collected. The valid values for this
element are:
• TRUE—All components of

type "reference part" or
"workpiece" are considered for
depth calculation.

• FALSE—Only selected
components are considered in
depth calculation.

PRO_E_DRILL_PARTS PRO_VALUE_TYPE_
SELECTION

Specifies the components
selections. This element supports
multiple selections.

Note

Mandatory element if PRO_
E_AUTO_SEL_DRILL_

PARTS is set to FALSE.
PRO_E_AUTODRILL_INFO Compound A compound element specifying

auto drilling information.

Note

This element is mandatory
for auto drilling hole sets.

PRO_E_AUTODRILL_DEPTH_
BY_TABLE

PRO_VALUE_TYPE_INT This element is used for auto
drilling hole sets. The valid values
for this element are:
• TRUE—It reads the depth

information from the auto
drilling table.

• FALSE—It takes the depth
information from the hole set

Production Applications: Creo NC Sequences, Operations and Work Centers 1587

Element ID Data Type Description
definition.

Note

This element is mandatory
for auto drilling hole sets.

PRO_E_HOLESET_ORIENT_
TYPE

PRO_VALUE_TYPE_INT Specifies the machining direction
option for 5-axis holemaking from
the selected reference. The valid
values for this element are:
• Away

• Toward

The values for this element are
defined by
ProDrillOrientType.

Note

This element is optional for
axes holeset for 5-axis
holemaking. Ignored in all
other cases.

PRO_E_HOLESET_ORIENT_
REF

PRO_VALUE_TYPE_
SELECTION

Specifies the single reference
selection (surface, point, axis) to
define the direction of machining
for 5-axis holemaking.The valid
values for this element are:
• Away—Applicable when the

element PRO_E_HOLESET_
ORIENT_TYPE is set to
PRO_DRILL_ORIENT_TO_
REF.

• Toward—Applicable when
the element PRO_E_
HOLESET_ORIENT_TYPE is
set to PRO_DRILL_
ORIENT_FROM_REF

Note

This element is optional for
axes holeset for 5-axis
holemaking. Ignored in all
other cases.

PRO_E_HOLESET_TIP_CTRL_
PNT

PRO_VALUE_TYPE_INT Optional element. Specifies the
cutting tool control tip number. It
defines a point on the cutting tool
to be controlled during machining

1588 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
of the hole set.

Note

The first point of the tool is
used if the element does not
exist.

PRO_E_HOLESET_
SELECTION_RULES

Compound Mandatory element. Specifies the
compound information about
location of holes to drill.

Note

Define this element when at
least one of the following
child elements are defined:

• PRO_E_HOLESET_

SEL_PNTS_ON_

SURFACES

• PRO_E_HOLESET_

SEL_INDIV_PNTS

• PRO_E_HOLESET_

SEL_PNTS_BY_

FEATURE

• PRO_E_HOLESET_

SEL_AUTO_CHAMFER

• PRO_E_HOLESET_

SEL_INDIV_AXES

• PRO_E_HOLESET_

SEL_AXIS_PATTS

• PRO_E_MFG_HSET_

DRILL_GROUP_REF

• PRO_E_HOLESET_

SEL_BY_SURFACES

• PRO_E_MFG_HSET_
DIAM_TYPE_OPT

• PRO_E_MFG_HSET_

DIAM_ARR

• PRO_E_MFG_HSET_

PARAM_ARR

PRO_E_MFG_HSET_START_
HOLE_REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
axis selection (for axes holeset) or

Production Applications: Creo NC Sequences, Operations and Work Centers 1589

Element ID Data Type Description
point selection (for points holeset)
for the hole to be drilled first.

PRO_E_HOLESET_
UNFLIPPED_AXES

PRO_VALUE_TYPE_
SELECTION

Specifies the axis selections for
holes that should be drilled as per
orientation of the axis entities.
This element supports multiple
selections.

Note

This element is optional for
axes holeset for 5-axis
holemaking. Ignored in all
other cases.

PRO_E_HOLESET_FLIPPED_
AXES

PRO_VALUE_TYPE_
SELECTION

Specifies the axis selections for
holes that should be drilled in the
direction opposite to the
orientation of the axis entities.
This element supports multiple
selections.

Note

This element is optional for
axes holeset for 5-axis
holemaking. Ignored in all
other cases.

PRO_E_HOLESET_GANG_
TOOL_INFO

Compound Optional element. A compound
element specifying the gang tool
properties.

PRO_E_HSET_GANG_TOOL_
PARENT_ID

PRO_VALUE_TYPE_INT This element is mandatory for
gang tool specification. Specifies
the parent step id.

PRO_E_HSET_IS_GANG_
TOOL_LEADER

PRO_VALUE_TYPE_INT This element is mandatory for
gang tool specification. Specifies
if holeset is a leader of the gang
tool. It takes the following values:
• True—Specifies that the

holeset is a leader of the gang
tool.

• False—Specifies that the
holeset is not a leader of the
gang tool.

Element tree for PRO_E_HOLESET_START
The element tree for PRO_E_HOLESET_START is as shown in the figure below:

1590 Creo® Parametric TOOLKITUser’s Guide

The following table lists the sub elements of the element PRO_E_HOLESET_
START defined in the header file ProMfgElemHoleset.h.
Element ID Data Type Description
PRO_E_HOLESET_START Compound Mandatory element. Specifies the

holemaking start compound
specification.

Note

This element is ignored for
web drilling. Mandatory for
other types of holemaking.

PRO_E_HOLESET_START_

TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
start surface option using the
enumerated value
ProDrillStartType.

Note

This element is ignored for
web drilling and
counersinking (when PRO_
E_HOLEMAKING_TYPE is
set toPRO_HOLE_MK_
CSINK or PRO_HOLE_MK_
WEB). Mandatory for other
types of holemaking.

Production Applications: Creo NC Sequences, Operations and Work Centers 1591

Element ID Data Type Description
PRO_E_HOLESET_START_

SURFACE

PRO_VALUE_TYPE_

SELECTION
Specifies the starting surface or
quilt selection.

Note

• For countersink, this
element is optional if
auto_chamfer rule is set
and there is no explicit
axes selection.

• For web drilling this
element is ignored.

• For other holemaking
types this element is
mandatory if PRO_E_
HOLESET_START_

TYPE is set to PRO_
DRILL_FROM_

SURFACE.
PRO_E_HOLESET_START_Z_

OFFSET

PRO_VALUE_TYPE_DOUBLE Specifies that the drilling will start
at this offset from sequence
coordinate system origin.

Note

This element is mandatory if
the element PRO_E_
HOLESET_START_TYPE is
set to PRO_DRILL_START_
OFFSET_FROM_CSYS.
Ignored in all other cases.

Element tree for PRO_E_HOLESET_END
The element tree for PRO_E_HOLESET_END is as shown in the figure below:

1592 Creo® Parametric TOOLKITUser’s Guide

The following table lists the sub elements of the element PRO_E_HOLESET_END
defined in the header file ProMfgElemHoleset.h.
Element ID Data Type Description
PRO_E_HOLESET_END Compound Specifies the holemaking depth

compound specification.

Note

This element is ignored for
web drilling. Mandatory for
other types of holemaking.

PRO_E_HOLESET_END_TYPE PRO_VALUE_TYPE_INT Specifies the end type option. The
values for this element are defined
by ProDrillEndType.

Note

This element is ignored for
counersinking. Mandatory for
other types of holemaking.

PRO_E_HOLESET_END_
MEASURE_BY

PRO_VALUE_TYPE_INT Specifies the depth calculation
option.The valid values for this
element are
• Tip
• Shoulder

Production Applications: Creo NC Sequences, Operations and Work Centers 1593

Element ID Data Type Description

The values for this element are
defined by
ProDrillDepthByType.

Note

This element is ignored for
counersinking and web
drilling. Mandatory for other
types of holemaking.

PRO_E_HOLESET_END_
SURFACE

PRO_VALUE_TYPE_
SELECTION

Specifies the end surface or quilt
selection.

Note

• This element is ignored
for countersinking and
web drilling.

• This element is ignored
for custom drilling if
cycle definition does not
use end surface.

• This element is
mandatory if PRO_E_
HOLESET_END_TYPE is
set to PRO_DRILL_
UPTO_SURFACE.
Ignored in all other cases.

PRO_E_HOLESET_DEPTH_
VALUE

PRO_VALUE_TYPE_DOUBLE Specifies the depth to drill from
start.

Note

This element is mandatory if
PRO_E_HOLESET_END_

TYPE is set to PRO_DRILL_
OFFSET_FROM_START.
Ignored in all other cases.

PRO_E_HOLESET_END_Z_
OFFSET

PRO_VALUE_TYPE_DOUBLE Specifies that the drilling will end
at this offset from sequence

1594 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
coordinate system origin.

Note

This element is mandatory if
the element PRO_E_
HOLESET_END_TYPE is set
to PRO_DRILL_END_
OFFSET_FROM_CSYS.
Ignored in all other cases.

PRO_E_HOLESET_CSINK_
DIAM

PRO_VALUE_TYPE_DOUBLE Specifies the countersink diameter.

Note

This element is mandatory
for countersink sequence
(when PRO_E_
HOLEMAKING_TYPE is set
to PRO_HOLE_MK_CSINK).
Ignored in all other cases.

PRO_E_HOLESET_USE_
BRKOUT_DIST

PRO_VALUE_TYPE_DOUBLE Optional element.Specifies the
depth breakout option. The valid
values for this element are:
• TRUE—To drill an additional

BREAKOUT_DISTANCE
(manufacturing parameter)
deeper.

• FALSE—Does not drill
deeper than defined by depth
specification. Ignored for
countersink sequences.

Note

This element is ignored if
end_type is PRO_DRILL_
THRU_ALL_PARTS or
PRO_DRILL_AUTO_END.

Element tree for PRO_E_HOLESET_DEPTH
The element tree for PRO_E_HOLESET_DEPTH is as shown in the figure below:

Production Applications: Creo NC Sequences, Operations and Work Centers 1595

The following table lists the sub elements of the element PRO_E_HOLESET_
DEPTH defined in the header file ProMfgElemHoleset.h.
Element ID Data Type Description
PRO_E_HOLESET_DEPTH Compound Specifies the web drilling depth

compound specification.

Note

Mandatory for web drilling.
Ignored for other types of
holemaking.

PRO_E_HOLESET_DEPTH_
TYPE

PRO_VALUE_TYPE_INT Specifies the web drilling depth
type option. The valid values for
this element are:
• Blind
• Auto
• Through
• The values for this element are

defined by
ProDrillDepthType.

Note

This element is mandatory
for web drilling. Ignored for
other types of holemaking.

PRO_E_HOLESET_DEPTH_BY_
TYPE

PRO_VALUE_TYPE_INT Specifies the web drilling depth
calculation option. The valid
values for this element are:
• Tip
• Shoulder
• The values for this element are

1596 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
defined by
ProDrillDepthByType.

Note

This element is mandatory
for web drilling. Ignored for
other types of holemaking.

PRO_E_HOLESET_DEPTH_
PLATES

Array Specifies an array of web drilling
plates.

Note

This element is mandatory
for web drilling. Ignored for
other types of holemaking.

PRO_E_HOLESET_DEPTH_
PLATE

Compound Mandatory element. Specifies the
web drilling plate definition.

Note

At least one plate must be
defined in array of plates.

PRO_E_HOLESET_PLATE_
START

PRO_VALUE_TYPE_
SELECTION

Specifies the web drilling plate
starting surface or quilt selection.

Note

This element is mandatory if
PRO_E_HOLESET_DEPTH_

TYPE is set to PRO_DRILL_
BLIND. Ignored in all other
cases.

PRO_E_HOLESET_PLATE_
END_OPT

PRO_VALUE_TYPE_INT Specifies the web drilling plate
depth type option. The values for
this element are defined by
ProDrillEndType.

Note

This element is mandatory
for web drilling. Ignored for
other types of holemaking.

PRO_E_HOLESET_PLATE_END PRO_VALUE_TYPE_
SELECTION

Specifies the web drilling plate

Production Applications: Creo NC Sequences, Operations and Work Centers 1597

Element ID Data Type Description
end surface or quilt selection.

Note

This element is mandatory
for web drilling if PRO_E_
HOLESET_PLATE_END_

OPT is set to PRO_DRILL_
UPTO_SURFACE. Ignored in
all other cases.

PRO_E_HOLESET_PLATE_
DEPTH

PRO_VALUE_TYPE_DOUBLE Specifies the web drilling depth
from plate start.

Note

Mandatory for web drilling if
PRO_E_HOLESET_PLATE_

END_OPT is set to PRO_
DRILL_OFFSET_FROM_

START. Ignored in all other
cases.

PRO_E_HOLESET_PLATE_
BRKOUT

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
web drilling depth breakout
option. The valid values for this
element are:
• TRUE—Drills an additional

BREAKOUT_DISTANCE
(manufacturing parameter)
deeper.

• FALSE—Does not drill deeper
than defined by depth
specification.

Note

This element is ignored for
countersink sequences.

Element Tree for PRO_E_HOLESET_CUSTOM_CYCLE_
PLATES
The element tree for PRO_E_HOLESET_CUSTOM_CYCLE_PLATES is as shown
in the figure below:

1598 Creo® Parametric TOOLKITUser’s Guide

The following table lists the sub elements of the element PRO_E_HOLESET_
CUSTOM_CYCLE_PLATES defined in the header file
ProMfgElemHoleset.h.
Element ID Data Type Description
PRO_E_HOLESET_CUSTOM_

CYCLE_PLATES

Compound Specifies the compound definition
of the custom cycle.

Note

This element is mandatory
for custom cycle holemaking.
Ignored for other types of
holemaking.

PRO_E_HOLESET_CUSTOM_

CYCLE_REFERENCES

Array Specifies an array of custom cycle

Production Applications: Creo NC Sequences, Operations and Work Centers 1599

Element ID Data Type Description
references.

Note

• The number of members
in array should match
with number of references
in custom cycle definition
(stored in manufacturing
model).

• Mandatory if references
are used in the custom
cycle definition (see
PRO_E_MFG_CUSTOM_

CYCLE_NAME).
PRO_E_HOLESET_CUSTOM_

CYCLE_REF

Compound Mandatory element for custom
cycle with references. Specifies
the compound definition of a
custom cycle reference.

PRO_E_MFG_CUST_CYCLE_

PLATE_NAME

Compound Mandatory element for reference
definition. Specifies the name of
custom cycle reference.

PRO_E_HOLESET_CUSTOM_

CYCLE_REF_OPT

PRO_VALUE_TYPE_INT Mandatory element for reference
definition. Specifies the type of
reference specification. The values
for this element are defined by
ProCustomRefOption.

PRO_E_HOLESET_CUSTOM_

CYCLE_REF_SEL

PRO_VALUE_TYPE_

SELECTION
Specifies the custom cycle
reference surface or quilt
selection.

Note

Mandatory if PRO_E_
HOLESET_CUSTOM_

CYCLE_REF_OPT is set to
PRO_CUSTOM_DRILL_

SELECT_REFERENCE.
Ignored in all other cases.

PRO_E_HOLESET_CUSTOM_

CYCLE_REF_Z_OFFSET

PRO_VALUE_TYPE_DOUBLE Specifies the custom cycle
reference specification by offset
value from sequence coordinate

1600 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
system origin.

Note

Mandatory if PRO_E_
HOLESET_CUSTOM_

CYCLE_REF_OPT is set to
PRO_CUSTOM_DRILL_

OFFSET_FROM_CSYS.
Ignored in all other cases.

PRO_E_HOLESET_CUSTOM_

CYCLE_REF_DEPTH
Specifies the custom cycle
reference specification by offset
value from start surface.

Note

Mandatory if PRO_E_
HOLESET_CUSTOM_

CYCLE_REF_OPT is set to
PRO_CUSTOM_DRILL_

OFFSET_FROM_START.
Ignored in all other cases.

PRO_E_HOLESET_CUSTOM_

CYCLE_VARIABLES

Array Specifies an array of custom cycle
variables.

Note

• The number of members
in array should match
with number of variables
in the custom cycle
definition (stored in
manufacturing model).

• Mandatory if variables
are used in named custom
cycle (see PRO_E_MFG_
CUSTOM_CYCLE_

NAME).
PRO_E_HOLESET_CUSTOM_

CYCLE_VAR

Compound Mandatory element for custom
cycle with variables. Specifies the
compound definition of a custom
cycle variable.

Production Applications: Creo NC Sequences, Operations and Work Centers 1601

Element ID Data Type Description
PRO_E_MFG_CUST_CYCLE_

VAR_NAME

PRO_VALUE_TYPE_WSTRING Mandatory element for variable
definition. Specifies the name of
custom cycle variable.

PRO_E_HOLESET_CUSTOM_

CYCLE_VAR_VALUE

PRO_VALUE_TYPE_DOUBLE Mandatory element for variable
definition. Specifies the Custom
cycle variable value.

Element tree for PRO_E_HOLESET_SELECTION_RULES
The element tree for PRO_E_HOLESET_SELECTION_RULES is as shown in
the figure below:

1602 Creo® Parametric TOOLKITUser’s Guide

The following table lists the sub elements of the element PRO_E_HOLESET_
SELECTION_RULES defined in the header file ProMfgElemHoleset.h.

Production Applications: Creo NC Sequences, Operations and Work Centers 1603

Element ID Data Type Description
PRO_E_HOLESET_
SELECTION_RULES

Compound Mandatory element. Specifies the
compound information about
location of holes to drill.

Note

Define this element when at
least one of the following
child elements are defined:

• PRO_E_HOLESET_

SEL_PNTS_ON_

SURFACES

• PRO_E_HOLESET_

SEL_INDIV_PNTS

• PRO_E_HOLESET_

SEL_PNTS_BY_

FEATURE

• PRO_E_HOLESET_

SEL_AUTO_CHAMFER

• PRO_E_HOLESET_

SEL_INDIV_AXES

• PRO_E_HOLESET_

SEL_AXIS_PATTS

• PRO_E_MFG_HSET_

DRILL_GROUP_REF

• PRO_E_HOLESET_

SEL_BY_SURFACES

• PRO_E_MFG_HSET_

DIAM_TYPE_OPT

• PRO_E_MFG_HSET_

DIAM_ARR

• PRO_E_MFG_HSET_

PARAM_ARR

PRO_E_HOLESET_SEL_PNTS_
ON_SURFACES

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of surfaces
(or quilts) with points. This
element supports multiple

1604 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
selections.

Note

• This element is optional
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

• This element is ignored
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).
PRO_E_HOLESET_SEL_PNTS_
BY_FEATURE

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of datum
point features. This element
supports multiple selections.

Note

• This element is optional
element for points holeset
(PRO_E_HOLESET_
TYPE is set to PRO_
HOLESET_DRILL_

POINTS).

• This element is ignored
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES)
PRO_E_HOLESET_SEL_
PROJECT_SURFACES

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of surfaces
or quilts. This element supports

Production Applications: Creo NC Sequences, Operations and Work Centers 1605

Element ID Data Type Description
multiple selections.

Note

• This element is
mandatory for five-axis
holemaking (PRO_E_
MFG_SEQ_NUM_AXES_

OPT is set to 5) if at least
one point selection is set
for one of the following
elements:

○ PRO_E_HOLESET_

SEL_INDIV_PNTS

○ PRO_E_HOLESET_

SEL_PNTS_BY_

FEATURE

• Only the points placed on
selected surface will be
considered for machining
in the direction normal to
the surface (at the
location defined by the
point).

• This element is ignored
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).
PRO_E_HOLESET_SEL_MAX_
PROJECT_DIST

PRO_VALUE_TYPE_DOUBLE Specifies the accuracy used to
determine whether a point lies on a

1606 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
surface.

Note

• This element is
mandatory for five-axis
holemaking (PRO_E_
MFG_SEQ_NUM_AXES_

OPTis set to 5) if at least
one point selection is set
for one of the following
elements:

○ PRO_E_HOLESET_

SEL_INDIV_PNTS

○ PRO_E_HOLESET_

SEL_PNTS_BY_

FEATURE

• Only the points placed on
selected surface will be
considered for machining
in the direction normal to
the surface (at the
location defined by the
point).

• This element is ignored
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).
PRO_E_HOLESET_SEL_
UNSEL_PNTS

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of points
for holes to be excluded for
machining. This element supports

Production Applications: Creo NC Sequences, Operations and Work Centers 1607

Element ID Data Type Description
multiple selections.

Note

• This element is optional
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

• This element is ignored
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).
PRO_E_HOLESET_SEL_
INDIV_PNTS

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of points.
This element supports multiple
selections.

Note

• This element is
mandatory for points
holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_POINTS) if
none of the following
elements is defined:

○ PRO_E_HOLESET_

SEL_PNTS_ON_

SURFACES

○ PRO_E_HOLESET_

SEL_PNTS_BY_

FEATURE

• Ignored for axes holeset
(PRO_E_HOLESET_
TYPE is set to PRO_
HOLESET_DRILL_

AXES).
PRO_E_HOLESET_SEL_AUTO_
CHAMFER

PRO_VALUE_TYPE_INT Specifies the auto chamfer option.
The valid values for this element
are:

1608 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• TRUE—Collects holes with

chamfers matching chamfer
angle with angle of cutting tool
(see PRO_E_MFG_TOOL_
REF_COMPOUND for tool
reference).

• FALSE—Does not collect
holes by chamfer dimensions.

Note

This element is ignored for
points holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_DRILL_

POINTS).
PRO_E_HOLESET_SEL_AXIS_
PATTS

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of axes of
patterned holes. If a pattern leader
is selected, all holes in pattern will
be collected. This element
supports multiple selections.

Note

• This element is Optional
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).

• This element is ignored
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

PRO_E_MFG_HSET_DRILL_
GROUP_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of drill
group features. This element

Production Applications: Creo NC Sequences, Operations and Work Centers 1609

Element ID Data Type Description
supports multiple selections.

Note

• This element is Optional
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).

• This element is ignored
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

PRO_E_HOLESET_SEL_BY_
SURFACES

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of surfaces
or quilts with holes. This element
supports multiple selections.

Note

• This element is Optional
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).

• This element is ignored
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

PRO_E_MFG_HSET_DIAM_
TYPE_OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of hole diameters that can be
collected in the element PRO_E_
MFG_HSET_DIAM_ARR. The
type of hole diameter is specified
using the enumerated data type
ProHolesetDiamType. The
valid values are:

1610 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_HSET_ALL_DIAMS—

This is the default value.
Specifies that diameters of
both solid surfaces and
cosmetic threads can be
collected.

Note

If the element PRO_E_
MFG_HSET_DIAM_

TYPE_OPT is not
defined, then by default,
the hole diameter of type
PRO_HSET_ALL_

DIAMS is used.
• PRO_HSET_HOLE_DIAMS—

Specifies that diameters only
of solid surfaces can be
collected.

• PRO_HSET_THREAD_
DIAMS—Specifies that
diameters only of cosmetic
threads can be collected.

Note

This element is not required
for holeset of type points and
geometry.

PRO_E_MFG_HSET_DIAM_ARR Array Specifies an array of diameters of
holes to machine.

Note

• This element is Optional
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).

• This element is ignored
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

PRO_E_MFG_HSET_DIAM_
COMPOUND

Compound Specifies the compound definition

Production Applications: Creo NC Sequences, Operations and Work Centers 1611

Element ID Data Type Description
of a hole diameter.

Note

• This element is Optional
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).

• This element is ignored
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

PRO_E_MFG_HSET_HOLE_
DIAM

PRO_VALUE_TYPE_DOUBLE Specifies the diameter of a hole to
machine.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_DIAM_COMPOUND

element.
PRO_E_MFG_HSET_PARAM_
RULE_OPT

PRO_VALUE_TYPE_INT Specifies the type of query that
must be used to search for holes to
machine.

The query type is specified using
the enumerated data type
ProHsetParamRuleOpt. The
valid values are:
• PRO_HSET_BOOL_OPER_

OR—Collects holes that satisfy
at least one of the search
conditions set for a parameter.

PRO_HSET_BOOL_OPER_

AND—Collects holes that
satisfy all the search conditions
set for a parameter.

The search conditions and
parameters are defined in the
elements PRO_E_MFG_HSET_
PARAM*.

PRO_E_MFG_HSET_PARAM_
ARR

Array Specifies an array of search
conditions to collect holes for

1612 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
machining.

Note

• This element is Optional
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).

• This element is ignored
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

PRO_E_MFG_HSET_PARAM_
COMPOUND

Compound Optional element. Specifies a
compound element that defines a
search condition to match with the
user defined parameters in hole
features.

Each condition defines an
expression with user defined
parameter name on the left side of
the expression and value to
compare on the right side.

Note

• This element is Optional
for axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_

DRILL_AXES).

• This element is ignored
for points holeset (PRO_
E_HOLESET_TYPE is
set to PRO_HOLESET_
DRILL_POINTS).

PRO_E_MFG_HSET_PARAM_
NAME

PRO_VALUE_TYPE_WSTRING Specifies the name of user defined
parameter.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element.

Production Applications: Creo NC Sequences, Operations and Work Centers 1613

Element ID Data Type Description
PRO_E_MFG_HSET_PARAM_
DTYPE

PRO_VALUE_TYPE_INT Specifies the data type of the
value. The values for this element
are defined by defined by
ProParamvalueType.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element.
PRO_E_MFG_HSET_PARAM_
OPER

PRO_VALUE_TYPE_INT Specifies the Ttype of expression
operator. The values for this
element are defined by defined by
ProDrillParamOper.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element.
PRO_E_MFG_HSET_PARAM_
VAL_DBL

PRO_VALUE_TYPE_DOUBLE Specifies the value of type double.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM

_COMPOUND element for
double data type (PRO_E_
MFG_HSET_PARAM_DTYPE

is set to PRO_PARAM_
DOUBLE). Ignored for other
data types.

PRO_E_MFG_HSET_PARAM_
VAL_INT

PRO_VALUE_TYPE_INT Specifies the value of type integer.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element for double data type
(PRO_E_MFG_HSET_
PARAM_DTYPE is set to
PRO_PARAM_INTEGER).
Ignored for other data types.

1614 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_HSET_PARAM_
VAL_STR

PRO_VALUE_TYPE_WSTRING Specifies the value of type string.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element for double data type
(PRO_E_MFG_HSET_
PARAM_DTYPE is set to
PRO_PARAM_STRING).
Ignored for other data types.

PRO_E_MFG_HSET_PARAM_
VAL_BOOL

PRO_VALUE_TYPE_INT Specifies the value of type
ProBoolean.

Note

This element is a mandatory
child of PRO_E_MFG_
HSET_PARAM_COMPOUND

element for double data type
(PRO_E_MFG_HSET_
PARAM_DTYPE is set to
PRO_PARAM_BOOLEAN).
Ignored for other data types.

PRO_E_HOLESET_SEL_
UNSEL_AXES

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of axes of
holes to be excluded for
machining. This element supports
multiple selections.

Note
• This element is Optional for

axes holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_DRILL_
AXES).

• This element is ignored for
points holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_DRILL_
POINTS).

This element supports multiple
selections.

PRO_E_HOLESET_SEL_
INDIV_AXES

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of datum
axes. Mandatory element for axes
holeset (PRO_E_HOLESET_
TYPE is set to PRO_HOLESET_
DRILL_AXES) if none of the
following elements is defined:

Production Applications: Creo NC Sequences, Operations and Work Centers 1615

Element ID Data Type Description
• PRO_E_HOLESET_SEL_

AUTO_CHAMFER

• PRO_E_HOLESET_SEL_
AXIS_PATTS

• PRO_E_MFG_HSET_
DRILL_GROUP_REF

• PRO_E_HOLESET_SEL_
BY_SURFACES

• PRO_E_MFG_HSET_DIAM_
ARR

• PRO_E_MFG_HSET_
PARAM_ARR

Note

This element is ignored for
points holeset (PRO_E_
HOLESET_TYPE is set to
PRO_HOLESET_DRILL_

POINTS).

This element supports multiple
selections.

PRO_E_HOLESET_SEL_
UNSEL_GEOMETRY

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of holes to
be excluded for machining. This
element supports multiple
selections.

Note

• This element is optional
for a geometry holeset
that is, if the element
PRO_E_HOLESET_

TYPE is set to PRO_
HOLESET_DRILL_

GEOM.

• This element is ignored
for points holeset and
axes holeset.

1616 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_HOLESET_SEL_
INDIV_GEOMETRY

PRO_VALUE_TYPE_
SELECTION

Specifies the selection for
individual holes. This element
supports multiple selections. This
element is mandatory for geometry
holeset, if none of the following
elements are defined:
• PRO_E_HOLESET_SEL_

AUTO_CHAMFER

• PRO_E_HOLESET_SEL_
BY_SURFACES

• PRO_E_MFG_HSET_DIAM_
ARR

Note

This element is ignored for
points holeset and axes
holeset.

Shut off Surface Feature Element Tree
The shut off tool creates a surface that caps an opening in a molded part. In the
Mold and Cast Design mode, the shut off tool creates an assembly surface that
references the quilts, surfaces and edges of a part. In the Part design mode, the
shut off tool creates part surfaces that reference solid surfaces and quilt surfaces
with single-sided or double-sided edges.
The element tree for the shut off surface feature is documented in the header file
ProMoldShutSrf.h, and is as shown in the following figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1617

Element Tree for Mold Shut Off feature:

The following table describes the elements in the element tree for the shut-off
surface feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the feature.

The valid value for this element is
PRO_MOLD_SHUTOFF_SRF.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the feature.
PRO_E_SHUT_SRF_REF_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of references to be selected
for the shut off surface. Select
either surface references or curve
references. The valid values for
this element are defined in the
enumerated type
ProShutSrfRefType:
• PRO_SHUT_SRF_SRF_

REF— Specifies the references
for a surface.

• PRO_SHUT_SRF_CRV_
REF— Specifies the references

1618 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
for a curve.

PRO_E_SHUT_SRF_SRF_REFS Compound Mandatory element. Specifies a
compound element that contains
the surface references.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Specifies the surfaces for which
shut off surfaces need to be
created. Select a single surface or
multiple surfaces, if the reference
type PRO_E_SHUT_SRF_REF_
TYPE is set as PRO_SHUT_SRF_
SRF_REF. If PRO_E_SHUT_
SRF_REF_TYPE is set as PRO_
SHUT_SRF_CRV_REF, then all
the surfaces are automatically
selected.

PRO_E_SHUT_SRF_COLL_
CRV_CMP

Compound Specifies a compound element for
curve chains. Chains enable you to
perform operations on all of the
selected curves in that chain or on
multiple chains simultaneously by
either including or excluding them
from creating shut off surfaces.

PRO_E_SHUT_SRF_ARR_
COLL_CRV

Array Specifies an array of curve chain
loops that can be included or
excluded from creating shut off
surfaces. By default all the
selected surfaces are included
while creating the shut off
surfaces.

Note

The selected loops are
excluded while creating shut
off surfaces only if the
element PRO_E_SHUT_
SRF_CLOSE_ALL is set to
PRO_SHUT_SRF_SHUT_

ALL and this element
becomes optional.

PRO_E_STD_CURVE_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Specifies the reference chain loops
to be included or excluded while
creating shut off surfaces. Select
both open and closed chain loops
as reference. By default all the
selected reference chain loops are
included while creating the shut
off surfaces. The reference chain
loops are excluded only if the
value of the element PRO_E_
SHUT_SRF_CLOSE_ALL is set

Production Applications: Creo NC Sequences, Operations and Work Centers 1619

Element ID Data Type Description
to the value True.

Note

You can specify only one-
sided edges as curve chain
loops if the element PRO_E_
SHUT_SRF_REF_TYPE is
set to PRO_SHUT_SRF_
CRV_REF.

PRO_E_SHUT_SRF_CAP_SRFS Compound Optional element. Specifies a
compound element for cap surface
references.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of reference
surfaces for capping open loops.
This is an optional element and
you can select single or multiple
surfaces as reference.

Note

• You can select multiple
surfaces only if the datum
plane is not selected.

• Select a reference surface
only if open curve-chain
loops are selected.

PRO_E_SHUT_SRF_CLOSE_
ALL

PRO_VALUE_TYPE_BOOLEAN Specifies an option to include all
loops while creating shut off
surfaces. The valid value for this
element is PRO_SHUT_SRF_
SHUT_ALL.

Element Trees: Manufacturing Round and
Chamfer
This section describes how to construct and access the element tree for
manufacturing a round and chamfer feature. It also describes how to create,
redefine, and access the properties of these features.

Manufacturing Round And Chamfer Element Tree
The element tree for the Round and Chamfer feature is documented in the header
file ProMfgFeatRoundChamferMilling.h and is as shown in the
following figure:

1620 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Round And Chamfer feature

Production Applications: Creo NC Sequences, Operations and Work Centers 1621

The following table describes the elements in the element tree for the Round and
Chamfer feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value is
Engraving_1.

PRO_E_SEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid values for this element are:
• PRO_SEQ_ROUND_MILL—

For round sequence.
• PRO_SEQ_CHAMFER_

MILL— For chamfer
sequence.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_SEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the sequee coordinate
system for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676 .

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_ PRO_VALUE_TYPE_WSTRING Optional element. Specifies the

1622 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
NAME name of the site file with default

values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MACH_SURFS Compound Mandatory compound element.
Specifies the machining surfaces
compound definition. For more
information, refer to the section
Element Trees: Machining
Surfaces on page 1573.

PRO_E_MFG_CUT_START_
PNT_REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Select a datum
point, or a point on the bottom
edges of the machining surfaces.

Note

This element is applicable
only when the machining
surfaces form a closed loop.
It allows to start machining at
the location nearest to the
selected point.

PRO_E_CHECK_SURF_COLL PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
check surfaces collection. For
more information, refer to the
section Checking Surfaces on page
1687.

PRO_E_TOOL_MTN_ARR Array Optional element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Optional compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion type for
this element are:

Production Applications: Creo NC Sequences, Operations and Work Centers 1623

Element ID Data Type Description
• PRO_TM_TYPE_ROUND_

MILLING— For Round
Sequence. For more
information, refer to the
section Tool Motion — Round
Milling on page 1779.

• PRO_TM_TYPE_CHAMFER_
MILLING— For Chamfer
sequence. For more
information, refer to the
section Tool Motion —
Chamfer Milling on page
1775.

• PRO_TM_TYPE_FOLLOW_
CUT. For more information,
refer to the section Tool
Motion — Follow Cut on page
1770 .

• PRO_TM_TYPE_FOLLOW_
CURVE. For more information,
refer to the section Tool
Motion — Follow Curve on
page 1694.

• PRO_TM_TYPE_GOTO_
POINT. For more information,
refer to the section Tool
Motion — Go To Point on
page 1696.

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to
the section Tool Motion — Go
Delta on page 1700.

• PRO_TM_TYPE_GOHOME.
For more information, refer to
the section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_CONNECT.
For more information, refer to
the section Tool Motion —
Connect on page 1762.

• PRO_TM_TYPE_PLUNGE.
For more information, refer to
the section Tool Motion —
Plunge on page 1772.

• PRO_TM_TYPE_GO_
RETRACT. For more
information, refer to the
section Tool Motion — Go
Retract on page 1708.

• PRO_TM_TYPE_TANGENT_
APPROACH. For more

1624 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
information, refer to the
section Tool Motion —
Tangent Approach on page
1726.

• PRO_TM_TYPE_TANGENT_
EXIT. For more information,
refer to the section Tool
Motion — Tangent Exit on
page 1728.

• PRO_TM_TYPE_NORMAL_
APPROACH. For more
information, refer to the
section Tool Motion —
Normal Approach on page
1710.

• PRO_TM_TYPE_NORMAL_
EXIT. For more information,
refer to the section Tool
Motion — Normal Exit on
page 1713.

• PRO_TM_TYPE_LEAD_IN.
For more information, refer to
the section Tool Motion —
Lead In on page 1706.

• PRO_TM_TYPE_LEAD_OUT.
For more information, refer to
the section Tool Motion —
Lead Out on page 1715.

• PRO_TM_TYPE_HELICAL_
APPROACH. For more
information, refer to the
section Tool Motion — Helical
Approach on page 1717.

• PRO_TM_TYPE_HELICAL_
EXIT. For more information,
refer to the section Tool
Motion — Helical Exit on
page 1720.

• PRO_TM_TYPE_RAMP_
APPROACH. For more
information, refer to the
section Tool Motion — Ramp
Approach on page 1758.

Production Applications: Creo NC Sequences, Operations and Work Centers 1625

Element ID Data Type Description
• PRO_TM_TYPE_RAMP_

EXIT. For more information,
refer to the section Tool
Motion — Ramp Exit on page
1760.

PRO_TM_TYPE_CL_

COMMAND. For more
information, refer to the
section Tool Motion — CL
Command on page 1767.

The applicable tool motion types
for 4 and 5-axis machining are:
• PRO_TM_TYPE_ALONG_

AXIS_APPROACH. For more
information, refer to the
section Approach Along Tool
Axis on page 1690 .

• PRO_TM_TYPE_ALONG_

AXIS_EXIT. For more
information, refer to the
section Exit Along Tool Axis
on page 1692 .

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequees. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
referee selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

1626 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Engraving Step
This section describes how to construct and access the element tree for a
engraving step. It also describes how to create, redefine, and access the properties
of these features.

Production Applications: Creo NC Sequences, Operations and Work Centers 1627

The Engraving Step Element Tree
The element tree for the Engraving Step feature is documented in the header file
ProMfgFeatEngraving.h and is as shown in the following figure:

Element Tree for Engraving feature

The following table describes the elements in the element tree for the Engraving
feature.

1628 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.
The default value is
Engraving_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_NCSEQ_GROOVE_MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_MFG_SEQ_NUM_AXES_
OPT

PRO_VALUE_TYPE_INT Specifies the number of controlled
axes. The valid values for this
element are:
• 3—Default value.
• 4—Used for machining with

tool axis parallel to the plane
specified in PRO_E_MFG_4_
AXIS_PLANE. This is
applicable if work center
allows 4-axis, or 5-axis
machining.

• 5—Used for 5-axis
machining. This is applicable
if work center allows 5-axis
machining.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673 .

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page

Production Applications: Creo NC Sequences, Operations and Work Centers 1629

Element ID Data Type Description
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676 .

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677 .

PRO_E_MFG_MACH_CRVS Compound Mandatory compound element.
Specifies the machining curves
compound definition.

PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Specifies the curve collection.

Note

This element is mandatory if
the element PRO_E_MFG_
CURVE_FEAT is not set.

PRO_E_MFG_CURVE_FEAT PRO_VALUE_TYPE_
SELECTION

Specifies the curve feature
selection. This element supports
multiple selections.

Note

This element is mandatory if
the element PRO_E_STD_
CURVE_COLLECTION_

APPL is not set.
PRO_E_MFG_NORM_SRFS Compound Optional element. Specifies the

normal surfaces compound
definition.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Specifies the normal surfaces
collection and is used for tool axis

1630 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
control.

Note
• This element is mandatory if

the element PRO_E_STD_
CURVE_COLLECTION_
APPL is set with curves.

• This element is ignored for 3-
axis machining.

PRO_E_MFG_NORM_GEOM PRO_VALUE_TYPE_
SELECTION

Specifies the normal surface
selection and is used for tool axis
control.

Note
• This element is mandatory if

the element PRO_E_STD_
CURVE_COLLECTION_
APPL is set with edges.

• This element is ignored for 3-
axis machining.

PRO_E_MFG_4_AXIS_PLANE PRO_VALUE_TYPE_
SELECTION

Specifies the selection of datum
plane or planar surface.

Note

• This element is
mandatory for 4-axis
machining, when the
element PRO_E_MFG_
SEQ_NUM_AXES_OPT
is set to 4.

• This element is ignored
for 3-axis and 5-axis
machining.

PRO_E_TOOL_MTN_ARR Array Optional element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Mandatory compound element.
Specifies the tool motion
compound specifications. The
applicable tool motion type for
this element are:
• PRO_TM_TYPE_GROOVE_

MILLING. For more
information, refer to the
section Tool Motion —
Groove Milling on page 1778.

• PRO_TM_TYPE_FOLLOW_
CURVE. For more information,
refer to the section Tool

Production Applications: Creo NC Sequences, Operations and Work Centers 1631

Element ID Data Type Description
Motion — Follow Curve on
page 1694.

• PRO_TM_TYPE_GOTO_
POINT. For more information,
refer to the section Tool
Motion — Go To Point on
page 1696.

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to
the section Tool Motion — Go
Delta on page 1700.

• PRO_TM_TYPE_GOHOME.
For more information, refer to
the section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_CONNECT.
For more information, refer to
the section Tool Motion —
Connect on page 1762.

• PRO_TM_TYPE_PLUNGE.
For more information, refer to
the section Tool Motion —
Plunge on page 1772.

• PRO_TM_TYPE_GO_
RETRACT. For more
information, refer to the
section Tool Motion — Go
Retract on page 1708.

• PRO_TM_TYPE_TANGENT_
APPROACH. For more
information, refer to the
section Tool Motion —
Tangent Approach on page
1726.

• PRO_TM_TYPE_TANGENT_
EXIT. For more information,
refer to the section Tool
Motion — Tangent Exit on
page 1728.

• PRO_TM_TYPE_NORMAL_
APPROACH. For more
information, refer to the
section Tool Motion —
Normal Approach on page
1710.

• PRO_TM_TYPE_NORMAL_
EXIT. For more information,
refer to the section Tool
Motion — Normal Exit on
page 1713.

• PRO_TM_TYPE_LEAD_IN.

1632 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
For more information, refer to
the section Tool Motion —
Lead In on page 1706.

• PRO_TM_TYPE_LEAD_OUT.
For more information, refer to
the section Tool Motion —
Lead Out on page 1715.

• PRO_TM_TYPE_HELICAL_
APPROACH. For more
information, refer to the
section Tool Motion — Helical
Approach on page 1717.

• PRO_TM_TYPE_HELICAL_
EXIT. For more information,
refer to the section Tool
Motion — Helical Exit on
page 1720.

• PRO_TM_TYPE_RAMP_
APPROACH. For more
information, refer to the
section Tool Motion — Ramp
Approach on page 1758.

• PRO_TM_TYPE_RAMP_
EXIT. For more information,
refer to the section Tool
Motion — Ramp Exit on page
1760.

PRO_TM_TYPE_CL_

COMMAND. For more
information, refer to the
section Tool Motion — CL
Command on page 1767.

The applicable tool motion types
for 4 and 5-axis machining are:
• PRO_TM_TYPE_ALONG_

AXIS_APPROACH. For more
information, refer to the
section Approach Along Tool
Axis on page 1690.

• PRO_TM_TYPE_ALONG_

AXIS_EXIT. For more
information, refer to the
section Exit Along Tool Axis
on page 1692.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified

Production Applications: Creo NC Sequences, Operations and Work Centers 1633

Element ID Data Type Description
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

1634 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Trees: Manufacturing Cutline
Milling Sequence
This section describes how to construct and access the element tree for a cutline
milling sequence. It also describes how to create, redefine, and access the
properties of these features.

The Cutline Milling Element Tree
The element tree for the cutline milling sequence is documented in the header file
ProMfgFeatCutlineMilling.h, and is as shown in the following figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1635

Element Tree for Cutline Milling feature

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the Creo NC sequence.

1636 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
The default value is Cutline_
Milling_1.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of Creo NC sequence. The
valid value for this element is
PRO_NCSEQ_CUTLINE_MILL.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_MFG_SEQ_NUM_AXES_
OPT

PRO_VALUE_TYPE_INT Specifies the number of controlled
axes. The valid values for this
element are:
• 3—Default value.
• 4—Used for machining with

tool axis parallel to the plane
specified in PRO_E_MFG_4_
AXIS_PLANE. This is
applicable if work center
allows 4-axis, or 5-axis
machining.

• 5—Used for 5-axis machining.
This is applicable if work
center allows 5-axis
machining.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system
for the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract compound
definition. For more information,
refer to the section Retract
Elements on page 1673.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. This element can be
used when two parts are machined
during the same operation in
different spindles, that is in the
main spindle and in the sub
spindle. The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to
the section Spindle Types on page
1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference compound
definition. For more information,
refer to the section Tool Reference
on page 1676.

Production Applications: Creo NC Sequences, Operations and Work Centers 1637

Element ID Data Type Description
PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
tool adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an
array of manufacturing
parameters. For more information,
refer to the section Manufacturing
Parameters on page 1677.

PRO_E_MACH_SURFS Compound Mandatory compound element.
Specifies the machining surfaces
compound definition. For more
information, refer to the section
Element Trees: Machining
Surfaces on page 1573.

PRO_E_CUTLINE_TP_
OPTIONS

Compound Optional element. Specifies tool
path options.

PRO_E_CUTLINE_TP_TOOL_
CENTER_OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
tool center curve option.

PRO_E_CUTLINE_CUT_
DEFINITION

Compound Mandatory element. Specifies the
cutline array compound definition.
For more information on the sub
elements, For more information,
refer to the section Element Tree
for PRO_E_CUTLINE_CUT_
DEFINITION on page 1642.

PRO_E_MFG_SURF_SIDE_
COMPOUND

Compound Optional element. Specifies the
surface side definition. For more
information, refer to the section
Manufacturing Surface Side on
page 1566.

PRO_E_MFG_4_AXIS_PLANE PRO_VALUE_TYPE_
SELECTION

Specifies the selection of datum
plane or planar surface.

Note

This element is mandatory
for 4-axis machining, when
the element PRO_E_MFG_
SEQ_NUM_AXES_OPT is set
to 4 and is ignored for 3-axis
and 5-axis machining.

1638 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_SCALLOP_SURF_COLL Compound Optional element. Specifies the

scallop surfaces compound
definition.

PRO_E_CHECK_SURF_COLL PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
check surfaces collection. For
more information, refer to the
section Checking Surfaces on page
1687.

PRO_E_MFG_AXIS_DEF_COMP Compound Optional element. Specifies the
compound element for the axis
definition.

PRO_E_TOOL_MTN_ARR Array Optional element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound Optional element. Specifies the
tool motion compound
specifications. The applicable tool
motion types for this element are :
• PRO_TM_TYPE_CUTLINE_

MILLING. For more
information, refer to the
section The Cutline Milling
Element Tree on page 1635.

• PRO_TM_TYPE_FOLLOW_
CURVE. For more information,
refer to the section Tool
Motion — Follow Curve on
page 1694.

• PRO_TM_TYPE_GOTO_
POINT. For more information,
refer to the section Tool
Motion — Go To Point on
page 1696.

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to
the section Tool Motion — Go
Delta on page 1700.

• PRO_TM_TYPE_GOHOME.
For more information, refer to
the section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_PLUNGE.
For more information, refer to
the section Tool Motion —
Plunge on page 1772.

• PRO_TM_TYPE_GO_
RETRACT. For more
information, refer to the
section Tool Motion — Go
Retract on page 1708.

• PRO_TM_TYPE_TANGENT_
APPROACH. For more
information, refer to the

Production Applications: Creo NC Sequences, Operations and Work Centers 1639

Element ID Data Type Description
section Tool Motion —
Tangent Approach on page
1726.

• PRO_TM_TYPE_TANGENT_
EXIT. For more information,
refer to the section Tool
Motion — Tangent Exit on
page 1728.

• PRO_TM_TYPE_NORMAL_
APPROACH. For more
information, refer to the
section Tool Motion —
Normal Approach on page
1710.

• PRO_TM_TYPE_NORMAL_
EXIT. For more information,
refer to the section Tool
Motion — Normal Exit on
page 1713.

• PRO_TM_TYPE_LEAD_IN.
For more information, refer to
the section Tool Motion —
Lead In on page 1706.

• PRO_TM_TYPE_LEAD_OUT.
For more information, refer to
the section Tool Motion —
Lead Out on page 1715.

• PRO_TM_TYPE_HELICAL_
APPROACH. For more
information, refer to the
section Tool Motion — Helical
Approach on page 1717.

• PRO_TM_TYPE_HELICAL_
EXITFor more information,
refer to the section Tool
Motion — Helical Exit on
page 1720.

• PRO_TM_TYPE_RAMP_
APPROACH. For more
information, refer to the
section Tool Motion — Ramp
Approach on page 1758.

• PRO_TM_TYPE_RAMP_
EXIT. For more information,
refer to the section Tool
Motion — Ramp Exit on page
1760.

• PRO_TM_TYPE_CONNECT.
For more information, refer to
the section Tool Motion —
Connect on page 1762.

1640 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_TM_TYPE_CL_

COMMAND. For more
information, refer to the
section Tool Motion — CL
Command on page 1767.

The applicable tool motion types
for 4 and 5-axis machining are:
• PRO_TM_TYPE_ALONG_

AXIS_APPROACH. For more
information, refer to the
section Approach Along Tool
Axis on page 1690.

• PRO_TM_TYPE_ALONG_

AXIS_EXIT. For more
information, refer to the
section Exit Along Tool Axis
on page 1692.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682 .

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum
plane, axis, point, and datum
coordinate. It allows you to create
additional geometric references to
be used only in special process
application. This element supports
multiple selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.

Production Applications: Creo NC Sequences, Operations and Work Centers 1641

Element ID Data Type Description
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
time estimated for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cost estimate for the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Element Tree for PRO_E_CUTLINE_CUT_
DEFINITION
The element tree for PRO_E_CUTLINE_CUT_DEFINITION is as shown in the
figure below:

1642 Creo® Parametric TOOLKITUser’s Guide

The following table lists the sub elements of the element PRO_E_CUTLINE_
CUT_DEFINITION defined in the header file
ProMfgFeatCutlineMilling.h.
Element ID Data Type Description
PRO_E_CUTLINE_ALT_SRFS Compound Optional element. Specifies the

cutline alternate surface compound
definition.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Optional element. Specifies the
cutline alternate surface collection.

PRO_E_CUTLINE_USE_ALT_
SRFS

PRO_VALUE_TYPE_INT Optional element. Specifies the
cutline alternate surface option
definition.

PRO_E_CUTLINE_AUTO_
OUTER_OPT

PRO_VALUE_TYPE_INT Specifies the auto cutline option
definition. The valid values for
this element are:
• PRO_B_FALSE—Specifies

that cutlines are being defined
manually.

• PRO_B_TRUE—Specifies that
cutlines are being defined
automatically.

PRO_E_CUTLINE_INNER_
POINT

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
auto cutline inner point selection.

PRO_E_CUTLINE_INNER_
FIRST_OPT

PRO_VALUE_TYPE_INT Specifies the auto cutline inner
first option definition. The valid
values for this element are:

Production Applications: Creo NC Sequences, Operations and Work Centers 1643

Element ID Data Type Description
• PRO_B_FALSE—Specifies

that outer auto cutline is first.
• PRO_B_TRUE—Specifies that

innner auto cutline is first.
PRO_E_CUTLINE_REF_ARR Array Mandatory element. Specifies an

array of cutlines.
PRO_E_CUTLINE_SYNC_ARR Array Optional element. Specifies an

array of cutline synchronization
lines.

Element Tree for PRO_E_CUTLINE_REF_ARR
The element tree for PRO_E_CUTLINE_REF_ARR is as shown in the figure
below:

The following table lists the sub elements of the element PRO_E_CUTLINE_
REF_ARR defined in the header file ProMfgFeatCutlineMilling.h.

1644 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_CUTLINE_REF_ITEM Compound Specifies the cutline compound

definition.

Note

This element is mandatory if
the element PRO_E_
CUTLINE_AUTO_OUTER_

OPT is set to PRO_B_FALSE
and is not used if PRO_E_
CUTLINE_AUTO_OUTER_

OPT is set to PRO_B_TRUE.
PRO_E_CUTLINE_ID PRO_VALUE_TYPE_INT Mandatory element. Specifies the

cutline id.
PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Mandatory element. Specifies the
cutline chain collection.

PRO_E_NCD_CURVE_POINT Compound Optional element. Specifies the
cutline start point compound
definition.

PRO_E_NCD_CURVE_POINT_
REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
cutline start point reference.

PRO_E_NCD_CURVE_POINT_
OFFSET_TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
cutline start point offset type.

PRO_E_NCD_CURVE_POINT_
OFFSET

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cutline start point offset definition.

PRO_E_CUTLINE_PROJ_PLN PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
cutline project plane definition.

Element Tree for PRO_E_CUTLINE_SYNC_ARR
The element tree for PRO_E_CUTLINE_SYNC_ARR is as shown in the figure
below:

Production Applications: Creo NC Sequences, Operations and Work Centers 1645

The following table lists the sub elements of the element PRO_E_CUTLINE_
SYNC_ARR defined in the header file ProMfgFeatCutlineMilling.h.
Element ID Data Type Description
PRO_E_CUTLINE_SYNC_ITEM Compound Optional element. Specifies the

cutline synch line compound
definition.

PRO_E_CUTLINE_SYNC_ID PRO_VALUE_TYPE_INT Optional element. Specifies the
cutline synch line id.

PRO_E_CUTLINE_SYNC_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
cutline synch line name.

PRO_E_CUTLINE_SYNC_TYPE PRO_VALUE_TYPE_INT Optional element. Specifies the
cutline synch line type. The valid
values for this element are:
• PRO_E_CUTLINE_SYNC_

TYPE_POINTS— Specifies
the synch between points on
the cutlines.

• PRO_E_CUTLINE_SYNC_
TYPE_REF—Specifies the
synch on the reference chains.

PRO_E_CUTLINE_SYNC_
POINT_ARR

Array Optional element. Specifies an
array of cutline synch points.

PRO_E_CUTLINE_SYNC_
POINT

Compound Optional element. Specifies the
cutline synch point compound
definition.

PRO_E_CUTLINE_SYNC_
POINT_REF_ID

PRO_VALUE_TYPE_INT Optional element. Specifies the
cutline synch point reference ID.

PRO_E_CUTLINE_SYNC_
POINT_RATIO

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
cutline synch point ratio.

PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Optional element. Specifies the
cutline synch line chain collection.

1646 Creo® Parametric TOOLKITUser’s Guide

Element Tree for PRO_E_MFG_AXIS_DEF_COMP
The element tree for PRO_E_MFG_AXIS_DEF_COMP is as shown in the figure
below:

Production Applications: Creo NC Sequences, Operations and Work Centers 1647

PRO_E_MFG_AXIS_DEF_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of the axis definition. The
valid values for this element are
defined in the enumerated type
ProAxisDefType and are as
follows:
• PRO_AXIS_DEF_TYPE_

UNDEF

• PRO_AXIS_DEF_BY_
PIVOT_REF

• PRO_AXIS_DEF_BY_
LOCATIONS

• PRO_AXIS_DEF_BY_TWO_
CONTOURS

• PRO_AXIS_DEF_BY_NORM_
SURF

PRO_E_MFG_AXIS_DEF_
PIVOT_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of the single
reference. You can select either a
point or an axis.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_PIVOT_REF This
element is ignored in all other
cases.

PRO_E_MFG_AXIS_DEF_
NORM_SRF

Compound Normal Surface compound
element.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_ NORM_SURF. This
element is ignored in all other
cases.

1648 Creo® Parametric TOOLKITUser’s Guide

PRO_E_MFG_AXIS_DEF_
LOCATION_ARR

Array Specifies an array of locations.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_LOCATIONS. This
element is ignored in all other
cases.

PRO_E_MFG_AXIS_DEF_
LOCATION

Compound Mandatory element. Specifies the
compound element for the location
axis definition.

PRO_E_MFG_AXIS_DEF_
ORIGIN_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of the single
reference. You can either select a
point on a curve or an edge.

PRO_E_MFG_AXIS_DEF_
ORIENT_COMP

Compound Mandatory element. Specifies the
orientation compound element.

PRO_E_MFG_AXIS_DEF_
ORIENT_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the single reference
selection. You can select either a
point or an axis.

Note

This element is mandatory, if
the elements PRO_E_MFG_
AXES_DEF_ANGLE_X and
PRO_E_MFG_AXES_DEF_

ANGLE_Y are not defined.
PRO_E_MFG_AXES_DEF_
ANGLE_X

PRO_VALUE_TYPE_DOUBLE Specifies the lead angle. The valid
range for this element is from —90
to +90.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_ORIENT_REF

is not defined.
PRO_E_MFG_AXES_DEF_
ANGLE_Y

PRO_VALUE_TYPE_DOUBLE Specifies the tilt angle. The valid
range for this element is from —90
to +90.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_ORIENT_REF

is not defined.

Production Applications: Creo NC Sequences, Operations and Work Centers 1649

PRO_E_MFG_AXIS_DEF_LOC_
FLIP_OPT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
flip direction at a location. The
valid values for this element are:
• PRO_B_TRUE—Specifies that

the direction will be reversed.
• PRO_B_FALSE—Specifies

that the direction will remain
the same.

PRO_E_MFG_AXIS_DEF_
CURVE_COMP

Compound Specifies the compound element
for the pivot curve.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_TYPE is set to
the value PRO_AXIS_DEF_
BY_TWO_CONTOURS. This
element is ignored in all other
cases.

PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Mandatory element. Specifies a
general compound element for
chain collection.

PRO_E_MFG_AXIS_DEF_
SYNC_ARR

Array Optional element. Specifies the
synchronization array.

PRO_E_MFG_AXIS_DEF_
SYNC_COMP

Compound Optional element. Specifies the
synchronization compound
element.

PRO_E_MFG_AXIS_DEF_
SYNC_PNT_1

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
single reference selection. Select a
point on the trajectory curve.

PRO_E_MFG_AXIS_DEF_
SYNC_PNT_2

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
single reference selection. Select a
point on the pivot curve.

PRO_E_MFG_AXIS_DEF_
SYNC_FLIP_OPT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
flip direction.The valid values for
this element are:
• PRO_B_TRUE—Specifies that

the tool motion is flipped in the
reverse direction.

• PRO_B_FALSE—Specifies
that the direction will remain
the same.

PRO_E_MFG_AXIS_DEF_
FLIP_OPT

PRO_VALUE_TYPE_INT Specifies the flip direction. The
valid values for this element are:
• PRO_B_TRUE—Specifies that

the direction will be reversed.
• PRO_B_FALSE—Specifies

that the direction will remain
the same.

1650 Creo® Parametric TOOLKITUser’s Guide

Element Trees: Manufacturing Drill Group
Feature
This section describes how to construct and access the element tree for a Drill
Group feature. It also describes how to create, redefine, and access the properties
of these features.

The Drill Group Feature Element Tree
The element tree for the drill group feature is documented in the header file
ProMfgFeatDrillGroup.h, and is as shown in the following figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1651

Element Tree for Drill Group feature

The following table describes the elements in the element tree for the Drill Group
feature.

1652 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
OPERATION.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name for the NC feature. The
default value is DRILL_GROUP_
1.

PRO_E_DRILL_GRP_CSYS PRO_VALUE_TYPE_
SELECTION

Specifies the selection of datum
coordinate system.

Note

This element is not supported
for the Creo Parametric 2.0
release.

PRO_E_DRILL_GRP_AXES_
COMPOUND

Compound Mandatory element. This
compound element specifies
information about location of
holes to be drilled.

Note

You can use this element only
when at least one of the
following child elements are
defined:

• PRO_E_DRILL_GRP_

AXES_INDIV

• PRO_E_DRILL_GRP_

AXES_PATTERN

• PRO_E_DRILL_GRP_

SURFACES

• PRO_E_DRILL_GRP_

DIAM_ARR

• PRO_E_DRILL_GRP_

PARAM_ARR

PRO_E_DRILL_GRP_AXES_
EXCL

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of axes of holes to be
excluded for machining. This
element supports multiple
selections.

PRO_E_DRILL_GRP_AXES_
PATTERN

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of axes of patterned
holes. This element supports
multiple selections.

Production Applications: Creo NC Sequences, Operations and Work Centers 1653

Element ID Data Type Description

Note

If a pattern leader is selected,
all the holes in the pattern
will be collected.

PRO_E_DRILL_GRP_RULES_
COMPOUND

Compound Optional element. This compound
element specifies the information
about hole search rules.

PRO_E_DRILL_GRP_
SURFACES

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of surfaces or quilts with
holes. This element supports
multiple selections.

PRO_E_DRILL_GRP_DIAM_
TYPE_OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of hole diameters that can be
collected in the element PRO_E_
DRILL_GRP_DIAM_ARR. The
type of hole diameter is specified
using the enumerated data type
ProHolesetDiamType. The
valid values are:
• PRO_HSET_ALL_DIAMS—

This is the default value.
Specifies that diameters of
both solid surfaces and
cosmetic threads can be
collected.

Note

If the element PRO_E_
DRILL_GRP_DIAM_

TYPE_OPT is not
defined, then by default,
the hole diameter of type
PRO_HSET_ALL_

DIAMS is used.
• PRO_HSET_HOLE_DIAMS—

Specifies that diameters only
of solid surfaces can be
collected.

• PRO_HSET_THREAD_
DIAMS—Specifies that
diameters only of cosmetic
threads can be collected.

PRO_E_DRILL_GRP_DIAM_
ARR

Array Optional element. Specifies an
array of diameters of holes to be
machined.

PRO_E_DRILL_GRP_DIAM_
COPMPOUND

Compound Optional element. Specifies a
compound definition of a hole
diameter.

PRO_E_DRILL_GRP_DIAM PRO_VALUE_TYPE_DOUBLE Specifies the diameter of the hole

1654 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
to be machined.

Note

This element is a mandatory
child of PRO_E_DRILL_
GRP_DIAM_COPMPOUND

element.
PRO_E_DRILL_GRP_PARAM_
RULE_OPT

PRO_VALUE_TYPE_INT Specifies the type of query that
must be used to search for holes to
machine.

The query type is specified using
the enumerated data type
ProHsetParamRuleOpt. The
valid values are:
• PRO_HSET_BOOL_OPER_

OR—Collects holes that satisfy
at least one of the search
conditions set for a parameter.

PRO_HSET_BOOL_OPER_

AND—Collects holes that
satisfy all the search conditions
set for a parameter.

The search conditions and
parameters are defined in the
elements PRO_E_DRILL_GRP_
PARAM*.

PRO_E_DRILL_GRP_PARAM_
ARR

Array Optional element. Specifies an
array of search conditions to
collect the holes for machining.

PRO_E_DRILL_GRP_PARAM_
COMPOUND

Compound Optional element. Specifies a
compound definition of a
condition to match the hole
features with the user defined
parameters.

Note

In Creo Parametric, each
condition defines expression
with user defined parameter
name on the left side of the
expression and value on the
right side for comparison.

PRO_E_DRILL_GRP_PARAM_
NAME

PRO_VALUE_TYPE_WSTRING Specifies the name of the user

Production Applications: Creo NC Sequences, Operations and Work Centers 1655

Element ID Data Type Description
defined parameter.

Note

This element is a mandatory
child of PRO_E_DRILL_
GRP_PARAM_COMPOUND

element.
PRO_E_DRILL_GRP_PARAM_
DATA_TYPE

PRO_VALUE_TYPE_INT Specifies the data type of specified
value using the enumerated type
ProParamvalueType.

Note

This element is a mandatory
child of PRO_E_DRILL_
GRP_PARAM_COMPOUND

element.
PRO_E_DRILL_GRP_PARAM_
OPER

PRO_VALUE_TYPE_INT Specifies the type of the
expression operator using the
enumerated type
ProDrillParamOper.

Note

This element is a mandatory
child of PRO_E_DRILL_
GRP_PARAM_COMPOUND

element.
PRO_E_DRILL_GRP_PARAM_
VAL_INT

PRO_VALUE_TYPE_INT Specifies the value of type double.

Note

This element is a mandatory
child of PRO_E_DRILL_
GRP_PARAM_COMPOUND

element for double data type
and is ignored for other data
types.

PRO_E_DRILL_GRP_PARAM_
VAL_DBL

PRO_VALUE_TYPE_DOUBLE Specifies the value of type integer.

Note

This element is a mandatory
child of PRO_E_DRILL_
GRP_PARAM_COMPOUND

element for integer data type
and is ignored for other data
types.

1656 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_DRILL_GRP_PARAM_
VAL_WSTR

PRO_VALUE_TYPE_WSTRING Specifies the value of type string.

Note

This element is a mandatory
child of PRO_E_DRILL_
GRP_PARAM_COMPOUND

element for string data type
and is ignored for other data
types.

PRO_E_DRILL_GRP_PARAM_
VAL_BOOL

PRO_VALUE_TYPE_INT Specifies the value of type
ProBoolean.

Note

This element is a mandatory
child of PRO_E_DRILL_
GRP_PARAM_COMPOUND

element for ProBoolean data
type and is ignored for other
data types.

PRO_E_DRILL_GRP_AXES_
INDIV

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of datum
axes. This element supports
multiple selections.

Note

This element is mandatory if
none of the following
elements are defined:

• PRO_E_DRILL_GRP_

AXES_PATTERN

• PRO_E_DRILL_GRP_

SURFACES

• PRO_E_DRILL_GRP_

DIAM_ARR

• PRO_E_DRILL_GRP_

PARAM_ARR

Manufacturing Volume Milling Feature
This section describes how to construct and access the element tree for a Volume
Milling feature. It also describes how to create, redefine, and access the properties
of this feature.

Production Applications: Creo NC Sequences, Operations and Work Centers 1657

The Volume Milling Feature Element Tree
The element tree for the Volume Milling feature is documented in the header file
ProMfgFeatVolMilling.h, and is as shown in the following figure:

1658 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Volume Milling feature
The following table describes the elements in the element tree for the Volume
Milling feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the feature.

The valid value for this element is
PRO_FEAT_MILL.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the default name for the
feature.

PRO_E_NCSEQ_TYPE PRO_VALUE_TYPE_INT Specifies the feature form and
should be of type PRO_NCSEQ_
VOL_MILL only.

PRO_E_MFG_OPER_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
operation feature selection.

PRO_E_NCSEQ_CSYS PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum coordinate system that will
be used as the coordinate system for
the Creo NC sequence.

PRO_E_RETR_SURF Compound Mandatory compound element.
Specifies retract definition. For
more information, refer to the
section Retract Elements on page
1673.

PRO_E_MFG_SUB_SPINDLE_
OPT

PRO_VALUE_TYPE_INT Optional Element. Specifies the
type of spindle assigned to the
sequence. The default value for this
element is PRO_MFG_MAIN_
SPINDLE.The valid values for this
element are defined by the
enumerated type
ProSubSpindleOpt. For more
information on the values of
ProSubSpindleOpt, refer to the
section Spindle Types on page 1690

PRO_E_MFG_TOOL_REF_
COMPOUND

Compound Mandatory compound element.
Specifies tool reference definition.
For more information, refer to the
section Tool Reference on page
1676.

PRO_E_MFG_TOOL_ADAPTER_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the tool
adapter model name.

PRO_E_MFG_PARAM_SITE_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the site file with default
values for manufacturing
parameters.

Note

The site file name will be
ignored if the site does not
exist in the manufacturing
model.

Production Applications: Creo NC Sequences, Operations and Work Centers 1659

Element ID Data Type Description
PRO_E_MFG_PARAM_ARR Array Mandatory element. Defines an

array of manufacturing parameters.
For more information, refer to the
section Manufacturing Parameters
on page 1677.

PRO_E_MFG_WIN_VOL_REF_
COMPOUND

Compound Mandatory element. Specifies the
machining reference compound
specification.

PRO_E_MFG_WIN_VOL_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
selection of mill window or mill
volume feature.

PRO_E_MFG_CMP_CLOSED_
LOOPS

Compound Optional element. Specifies the
closed loop compound
specification.

PRO_E_MFG_CLOSED_LOOP_
ARR

Array Optional element. Specifies an array
of closed loop specifications.

PRO_E_MFG_CLOSED_LOOP_
REF_ITEM

Compound Optional element. Specifies the
closed loop specification.

PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Optional element. Specifies an
excluded surfaces compound
specification for chain collection.

PRO_E_MFG_WIN_VOL_EXCL_
SURF_COMP

Compound

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Optional element. Specifies surface
collection for the creation of the
volume milling sequence.

PRO_E_MFG_APPR_WALLS_
SURF_COMP

Compound Optional element. Specifies the
approach walls surfaces compound
specification. Use this element only
if mill volume is selected as a
machining reference.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Optional element. Specifies surface
collection for the creation of the
volume milling sequence.

PRO_E_MFG_APPR_WALLS_
CHAIN_COMP

Compound Optional element. Specifies the
approach walls chain compound
specification. Use this element only
if mill volume is selected as a
machining reference.

PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Optional element. Specifies the
chain collection for the creation of
the volume milling sequence.

PRO_E_MFG_MILL_VOL_TOP_
SURF_REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of the top surface. Use this
element only if mill volume is
selected as a machining reference.

PRO_E_SCALLOP_SURF_COLL Compound Optional element. Specifies the
scallop surfaces compound
definition.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Optional element. Specifies the
collection of the scallop surfaces.

1660 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_CHECK_SURF_COLL PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
check surfaces compound
definition. The element tree for the
Checking Surfaces is defined in the
header file
ProMfgElemCheckSurf.h. For
more information, refer to the
section Checking Surfaces on page
1687 for more information on the
element tree.

PRO_E_TOOL_MTN_ARR Array Mandatory element. Specifies an
array of tool motions.

PRO_E_TOOL_MTN Compound • PRO_TM_TYPE_VOLUME_
MILLING. For more
information, refer to the section
Tool Motion — Volume Mill
Cut on page 1781.

• PRO_TM_TYPE_FOLLOW_
CUT. For more information,
refer to the section Tool Motion
— Follow Cut on page 1770.

• PRO_TM_TYPE_FOLLOW_
CURVE. For more information,
refer to the section Tool Motion
— Follow Curve on page 1694.

• PRO_TM_TYPE_GOTO_
POINT. For more information,
refer to the section Tool Motion
— Go To Point on page 1696.

• PRO_TM_TYPE_GO_DELTA.
For more information, refer to
the section Tool Motion — Go
Delta on page 1700.

• PRO_TM_TYPE_GOHOME. For
more information, refer to the
section Tool Motion — Go
Home on page 1704.

• PRO_TM_TYPE_PLUNGE. For
more information, refer to the
section Tool Motion — Plunge
on page 1772.

• PRO_TM_TYPE_GO_
RETRACT. For more
information, refer to the section
Tool Motion — Go Retract on
page 1708.

• PRO_TM_TYPE_TANGENT_
APPROACH. For more
information, refer to the section
Tool Motion — Tangent
Approach on page 1726.

Production Applications: Creo NC Sequences, Operations and Work Centers 1661

Element ID Data Type Description
• PRO_TM_TYPE_TANGENT_

EXIT. For more information,
refer to the section Tool Motion
— Tangent Exit on page 1728.

• PRO_TM_TYPE_NORMAL_
APPROACH. For more
information, refer to the section
Tool Motion — Normal
Approach on page 1710.

• PRO_TM_TYPE_NORMAL_
EXIT. For more information,
refer to the section Tool Motion
— Normal Exit on page 1713.

• PRO_TM_TYPE_LEAD_IN.
For more information, refer to
the section Tool Motion — Lead
In on page 1706.

• PRO_TM_TYPE_LEAD_OUT.
For more information, refer to
the section Tool Motion — Lead
Out on page 1715.

• PRO_TM_TYPE_HELICAL_
APPROACH. For more
information, refer to the section
Tool Motion — Helical
Approach on page 1717.

• PRO_TM_TYPE_HELICAL_
EXITFor more information,
refer to the section Tool Motion
— Helical Exit on page 1720.

• PRO_TM_TYPE_CL_
COMMAND. For more
information, refer to the section
Tool Motion — CL Command
on page 1767.

PRO_E_MFG_START_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
start the machining at the specified
position.

PRO_E_MFG_END_PNT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
datum point selection. It allows to
end the machining at the specified
position.

PRO_E_MFG_PREREQUISITE_
ARR

Array Optional element. This array
specifies the Ids of the prerequisite
sequences. For more information,
refer to the section Sequence
Prerequisites on page 1682.

PRO_E_MFG_PROCESS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
reference selections such as part,
feature, curve, surface, datum plane,

1662 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
axis, point, and datum coordinate. It
allows you to create additional
geometric references to be used
only in special process application.
This element supports multiple
selections.

PRO_E_MFG_FEAT_VIEW_
NAME

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
name of the view. This element
allows you to associate a specific
view with the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_SIMP_REP_NAME PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
simplified representation name.
This element allows you to
associate the specific simplified
representation with the machining
step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the time
estimated for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the cost
estimate for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_TIME_ACTUAL PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
actual time for the machining step.

Note

This element is used only in
special process application.

PRO_E_MFG_COMMENTS PRO_VALUE_TYPE_WSTRING Specifies the sequence comments.

Production Applications: Creo NC Sequences, Operations and Work Centers 1663

Element Trees: Skirt Feature
This section describes how to construct and access the element tree for a Skirt
Surface Extension feature. It also describes how to create, redefine, and access the
properties of these features.

Skirt Surface Extension Feature Element Tree
The element tree for the skirt surface extension feature is documented in the
header file ProMoldSkirtExt.h, and is as shown in the following figure:

1664 Creo® Parametric TOOLKITUser’s Guide

Element Tree for Skirt Surface Extension feature

The following table describes the elements in the element tree for the Skirt
Extension feature.

Production Applications: Creo NC Sequences, Operations and Work Centers 1665

Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the feature.

The valid value for this element is
PRO_FEAT_DATUM_SURF.

PRO_E_FEATURE_FORM PRO_VALUE_TYPE_INT Specifies the feature form and
should be of type PRO_SKIRT_
EXT only.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the default name for the
feature. The default value for this
element isSkirt_Extension_
1

PRO_E_SKIRT_REF_MODEL PRO_VALUE_TYPE_
SELECTION

Mandatory element. Select the
reference model used for creating
the parting extension surface. The
valid reference for this element is
a single PRO_PART.

PRO_E_SKIRT_BOUNDARY_
REF

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specify the
boundary reference for trimming
the outer limits of the skirt surface.
The valid reference for this
element is either a single PRO_
PART or a single PRO_QUILT.

PRO_E_SKIRT_PULL_DIR_
COMPOUND

Compound Specifies the reference for the
view direction. The valid reference
for this element is PRO_E_
DIRECTION_COMPOUND. This
element is optional, if the default
pull direction exists. The default
pull direction is used as a
reference for the view direction.

PRO_E_SKIRT_EXT_SET_ARR Array Mandatory element. Specifies an
array element which contain a set
of PRO_E_SKIRT_EXT_SET_
COMPOUND elements.

PRO_E_SKIRT_EXT_SET_
COMPOUND

Compound Mandatory element. Specify one
element of this type for each
compound set PRO_E_SKIRT_
EXT_SET_COMPOUND contained
in PRO_E_SKIRT_EXT_SET_
ARR. Each set provides
information about the skirt
extension set.

PRO_E_SKIRT_EXT_SET_
REF_IDX

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
reference index, which is unique
for each compound set PRO_E_
SKIRT_EXT_SET_COMPOUND.

PRO_E_SKIRT_EXT_SET_
TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of extension used for the skirt
feature creation. This element
defines the direction of the
extension. The valid values for this
element are defined by the
enumerated type
ProSkirtExtType and are as

1666 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
follows:
• PRO_SKIRT_EXT_TYPE_

NORMAL—Specifies that the
skirt surface extension will be
created normal to the pull
direction and will end in a
direction normal to the curve.
The extension is created
between the edge and the
boundary reference.

• PRO_SKIRT_EXT_TYPE_
PARALLEL—Specifies that
the skirt surface extension will
be created parallel to the pull
direction.

• PRO_SKIRT_EXT_TYPE_
TANGENT—Specifies that the
skirt extension is created
tangent to the model surface of
the selected reference model.

• PRO_SKIRT_EXT_TYPE_
USER—Specifies that the skirt
surface extension is created in
the user-defined direction.

• PRO_SKIRT_EXT_TYPE_
NORMAL_TO_BNDRY—
Specifies that the skirt
extension is created normal to
the pull direction and will end
in a direction normal to the
boundary.

PRO_E_SKIRT_EXT_SET_
CURVE_COMP

Compound Mandatory element. This element
specifies the collection of
extension curves.

PRO_E_STD_CURVE_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of the
curves for the skirt surface
extension.

PRO_E_SKIRT_EXT_SET_
DIR_COMPOUND

Compound Specifies the direction reference
for building the geometry of the
extension. This element is
mandatory, only if the element
PRO_E_SKIRT_EXT_SET_
TYPE is set to the value PRO_
SKIRT_EXT_TYPE_USER.

PRO_E_DIRECTION_
COMPOUND

Compound Specifies the direction reference
for the extension of surfaces. The
valid references for this element
are:
• Straight Edge
• Straight Curve
• Planar Surface
• Datum Plane

Production Applications: Creo NC Sequences, Operations and Work Centers 1667

Element ID Data Type Description
• Datum axis
• Datum Coordinate System

Axis
PRO_E_SKIRT_EXT_SET_
NEXT_DIR_OPT

PRO_VALUE_TYPE_INT Optional element. Specifies an
option to switch between the
tangent or parallel extension
solutions. In tangent extensions,
this element enables you to switch
between the two available tangent
extension solutions, whereas in
parallel extensions, this element
flips the direction of the extension.
The valid values for this element
are defined by the enumerated
type
ProSkirtExtNextDirOpt
and are as follows:
• PRO_SKIRT_EXT_NEXT_

DIR_DEFAULT—This is the
default value for tangent and
parallel extensions. Tangent
extensions, use the default
base geometry whereas
parallel extensions, extend
along the view direction.

• PRO_SKIRT_EXT_NEXT_
DIR_ALTERNATE—In case
of tangent extension, the other
base geometry is used to create
the extension. For parallel
extensions, the extension is
opposite to the view direction.

PRO_E_SKIRT_SHUTOFF_
EXT_COMPOUND

Compound Mandatory element. This element
provides information about the
shut-off extension options.

PRO_E_SKIRT_SHUTOFF_
EXT_TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of the extension shut-off used
during the skirt feature creation.
The valid values for this element
are defined by the enumerated
type
ProSkirtShutoffExtType
and are as follows:
• PRO_SKIRT_EXT_

SHUTOFF_BY_DIST—
Defines the shut-off extension
by a specified distance.

• PRO_SKIRT_EXT_
SHUTOFF_BY_BOUND—
Defines the shut-off extension
till the selected boundary.

PRO_E_SKIRT_SHUTOFF_
EXT_DIST

PRO_VALUE_TYPE_DOUBLE Specifies the shut-off extension
distance. This element is

1668 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
mandatory only if the element
PRO_E_SKIRT_SHUTOFF_
EXT_TYPE is set to the value
PRO_SKIRT_EXT_SHUTOFF_
BY_DIST.

PRO_E_SKIRT_SHUTOFF_
CURVE_COMP

Compound Specifies the selected boundary for
the shut-off extension. This
element is mandatory only if the
element PRO_E_SKIRT_
SHUTOFF_EXT_TYPE is set to
the value PRO_SKIRT_EXT_
SHUTOFF_BY_BOUND.

PRO_E_SKIRT_DRAFT_ANGLE PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
draft angle to define the shut-off
extension. The default value for
this element is zero degrees.

PRO_E_SKIRT_SHUTOFF_
PLANE_REF

PRO_VALUE_TYPE_
SELECTION

Specifies a parting plane on which
the shut-off surface extension is to
be created. It defines how far the
drafted surface will be extended.
This element is mandatory only if
the element PRO_E_SKIRT_
SHUTOFF_EXT_TYPE is set to
the value PRO_SKIRT_EXT_
SHUTOFF_BY_BOUND

PRO_E_SKIRT_CREATE_
TRANS_OPT

PRO_VALUE_TYPE_INT Optional element. Specify a value
to create transitions across
different sets of skirt extensions.

Skirt Fill Feature
The element tree for the skirt fill feature is documented in the header file
ProMoldSkirtFill.h, and is as shown in the following figure:

Production Applications: Creo NC Sequences, Operations and Work Centers 1669

Element Tree for Skirt Fill feature

The following table describes the elements in the element tree for the Skirt Fill
feature.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the feature.

The valid value for this element is
PRO_FEAT_DATUM_SURF.

PRO_E_FEATURE_FORM PRO_VALUE_TYPE_INT Specifies the feature form and
should be of type PRO_SKIRT_
FILL only.

PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the default name of the
feature. The default value for this
element is Skirt_Fill_1

PRO_E_SKIRT_REF_MODEL PRO_VALUE_TYPE_ Mandatory element. Select the

1670 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
SELECTION reference model used for creating

the skirt surface fill feature. The
valid reference for this element is
a single PRO_PART

PRO_E_SKIRT_PULL_DIR_
COMPOUND

Compound Specifies the reference for the
view direction. The valid reference
for this element is PRO_E_
DIRECTION_COMPOUND. This
element is optional, if the default
pull direction exists. The default
pull direction is used as a
reference for the view direction.

PRO_E_DIRECTION_
COMPOUND

Compound Specifies the direction reference
for the skirt surface. The valid
references for this element are:
• Straight Edge
• Straight Curve
• Planar Surface
• Datum Plane
• Datum axis
• Datum Coordinate System

Axis
PRO_E_SKIRT_FILL_SET_
ARR

Array Mandatory element. Specifies an
array element which contains a set
of PRO_E_SKIRT_FILL_SET_
COMPOUND elements.

PRO_E_SKIRT_FILL_SET_
COMPOUND

Compound Mandatory element. Specify one
element of this type for each
compound set PRO_E_SKIRT_
FILL_SET_COMPOUND
contained in PRO_E_SKIRT_
FILL_SET_ARR. Each set gives
provides information about the
skirt fill set.

PRO_E_SKIRT_FILL_SET_
REF_IDX

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
reference index, which is a unique
value for each compound set
PRO_E_SKIRT_FILL_SET_
COMPOUND.

PRO_E_SKIRT_FILL_
CURVES_COMPOUND

Compound Mandatory element. Specifies the
collection of skirt fill closure
curves.

PRO_E_STD_CURVE_
COLLECTION_APPL

Compound Specifies the selection of the
curves for the skirt surface fill
feature.

PRO_E_SKIRT_FILL_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specify the
type of closure to be used for
closing inner loops or holes in a
skirt parting surface. The valid
values for this element are defined
by the enumerated type
ProSkirtFillType and are as

Production Applications: Creo NC Sequences, Operations and Work Centers 1671

Element ID Data Type Description
follows:
• PRO_SKIRT_FILL_

STANDARD—This is the
default closure type.

• PRO_SKIRT_FILL_MID_
PLANE—Specifies the closure
from the middle plane.

• PRO_SKIRT_FILL_MID_
SURF—Specifies the closure
from the middle surface.

• PRO_SKIRT_FILL_CAP_
PLANE—Specifies the closure
from the capping plane.

• PRO_SKIRT_FILL_CAP_
SURF—Specifies the closure
from the capping surface.

• PRO_SKIRT_FILL_
NEAREST_PLANE—Specifies
the closure from the nearest
plane.

PRO_E_SKIRT_FILL_PLANE PRO_VALUE_TYPE_
SELECTION

Select a planar surface. This
element is mandatory, if the
element PRO_E_SKIRT_FILL_
TYPE is set to the value PRO_
SKIRT_FILL_MID_PLANE and
PRO_SKIRT_FILL_CAP_
PLANE.

PRO_E_SKIRT_FILL_SURF_
COMPOUND

Compound Select any surface. You can select
all the surfaces except the
reference model geometry. This
element is mandatory, if the
element PRO_E_SKIRT_FILL_
TYPE is set to the value PRO_
SKIRT_FILL_MID_SURF and
PRO_SKIRT_FILL_CAP_SURF.

PRO_E_SKIRT_FILL
_LOOP_OFFSET

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
loop offset. This element is used
only when the element PRO_E_
SKIRT_FILL_TYPE is set to the
value PRO_SKIRT_FILL_MID_
PLANE or PRO_SKIRT_FILL_
CAP_PLANE.

Sub-Element Trees: Creo NC Steps
This section describes how to construct and access the sub-element trees that are
used in the creation of Creo NC features.

1672 Creo® Parametric TOOLKITUser’s Guide

Retract Elements
The element PRO_E_RETR_SURF is documented in the header file
ProMfgElemRetract.h, and is as shown in the following figure.

Element tree for PRO_E_RETR_SURF element

The following table lists the contents of PRO_E_RETR_SURF element.

Production Applications: Creo NC Sequences, Operations and Work Centers 1673

Element ID Data Type Description
PRO_E_RETR_SURF_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of retract surface. The valid
values for this element are:
• PRO_RETR_SURF_

UNDEFINED—Specifies that
the retract surface type is not
defined. This value is
applicable only for
manufacturing operations.

• PRO_RETR_SURF_PLANE—
Specifies that the retract
surface defined is a planar
surface.

• PRO_RETR_SURF_
CYLINDER—Specifies that
the retract surface defined is a
cylindrical surface.

• PRO_RETR_SURF_
SPHERE—Specifies that the
retract surface defined is a
spherical surface.

• PRO_RETR_SURF_
REVOLVED—Specifies that
the retract surface defined is a
revolved surface.

Note

The values PRO_RETR_
SURF_CYLINDER, PRO_
RETR_SURF_SPHERE, and
PRO_RETR_SURF_

REVOLVED are not
applicable for 3-axis
sequences and operations
with 3-axis workcell.

PRO_E_RETR_SURF_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
selection of retract surface. The
type of reference depends on
values specified for the element
PRO_E_RETR_SURF_TYPE.
The valid values for this element
are:

1674 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• Plane retract: Planar retract

includes datum plane, planar
surface, planar quilt and
coordinate system.

Note

For 3-axis sequence
(operation):

○ Planar surface must
be normal to Z axis of
the sequence
(operation) coordinate
system.

○ Z axis of selected
datum coordinate
system must be
alligned with Z axis
of sequence
(operation) coordinate
system.

• Cylinder retract: Cylinder
retract includes datum axis and
coordinate system.

• Sphere retract: It includes
datum point and coordinate
system.

• Revolved surface retract: It
includes revolved quilts.

PRO_E_RETR_SURF_ORIENT PRO_VALUE_TYPE_INT Specifies the orientation of the
axis for the retract cylinder if
coordinate system is selected as
retract reference

The valid values for this element
are:
• PRO_RETR_SURF_X_DIR

• PRO_RETR_SURF_Y_DIR

• PRO_RETR_SURF_Z_DIR

Note

This element is mandatory if
coordinate system is selected
for cylindrical retract
reference and is ignored in all
other cases.

Production Applications: Creo NC Sequences, Operations and Work Centers 1675

Element ID Data Type Description
PRO_E_RETR_SURF_VALUE PRO_VALUE_TYPE_DOUBLE Mandatory element. Specifies the

offset value for the planar retract.
For cylindrical and spherical
retracts, this element specifies the
value of the radius.

Tool Reference
The element PRO_E_MFG_TOOL_REF_COMPOUND is documented in the header
file ProMfgElemToolRef.h, and is as shown in the following figure.

Element tree for PRO_E_MFG_TOOL_REF_COMPOUND element

The following table lists the contents of PRO_E_MFG_TOOL_REF_COMPOUND
element.

1676 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_TOOL_REF_
HEAD_NUM

PRO_VALUE_TYPE_INT Mandatory element. Head (turret)
number. The valid values for this
element are:
• PRO_MFG_TOOL_HEAD_1—

Specifies that the tool is placed
in the head 1.

• PRO_MFG_TOOL_HEAD_2—
Specifies that the tool is placed
in the head 2.

• PRO_MFG_TOOL_HEAD_3—
Specifies that the tool is placed
in the head 3.

• PRO_MFG_TOOL_HEAD_4
—Specifies that the tool is
placed in the head 4.

Note

You can specify the tools in
head 1 for all types of
workcells. Tools in head 2
can be specified for lathe and
mill-turn workcells and tools
in heads 3 and 4 can be
specified for mill-turn
workcells.

PRO_E_MFG_TOOL_REF_
POCKET

PRO_VALUE_TYPE_INT Mandatory element. This element
defines the position of the tool in
the turret head.

PRO_E_MFG_TOOL_REF_ID PRO_VALUE_TYPE_WSTRING Mandatory element. Specifies the
tool Id.

Manufacturing Parameters
The element PRO_E_MFG_PARAM_ARR is documented in the header file
ProMfgElemParam.h, and is as shown in the following figure.

Production Applications: Creo NC Sequences, Operations and Work Centers 1677

Element tree for PRO_E_MFG_PARAM_ARR element

The element PRO_E_MFG_PARAM_ARR contains the compound element PRO_
E_MFG_PARAM_COMPOUND that defines the name, attribute, and value of the
parameter. You must define this element for parameters, such as, CUT_FEED and
SPINDLE_SPEED, which do not have a default value. Refer to the Creo NC
Manufacturing Help for more information on Creo NC Parameters.
The following table lists the contents of PRO_E_MFG_PARAM_ARR element.
Element ID Data Type Description
PRO_E_MFG_PRM_NAME PRO_VALUE_TYPE_WSTRING Specifies the untranslated

parameter name from the list
predefined names.

Note

This element is a mandatory
child of PRO_E_MFG_
PARAM_COMPOUND

element.
PRO_E_MFG_PRM_ATTR PRO_VALUE_TYPE_INT Mandatory element. Specifies the

option to define logic for
parameter value assignment. The
values for this element are defined
by ProMfgParamAttr. The
valid values for this element are:
• PRO_MFG_PRM_ATTR_

DEFAULT—The value from
PRO_E_MFG_PRM_VAL_
DBL or PRO_E_MFG_PRM_
VAL_STR is going to be
assigned to the corresponding
manufacturing parameter.

• PRO_MFG_PRM_ATTR_
AUTOMATIC—Default value

1678 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
(supplied by Creo NC) is
going to be assigned to the
corresponding manufacturing
parameter. Use PRO_MFG_
PRM_ATTR_DEFAULT to set
param value to dash (if
applicable). Value from PRO_
E_MFG_PRM_VAL_DBL or
PRO_E_MFG_PRM_VAL_
STR is ignored.

• PRO_MFG_PRM_ATTR_
MODIFIED—Value from site
or parent sequence (for tool
motion parameters) is going to
be assigned to the
corresponding manufacturing
parameter. Value from PRO_
E_MFG_PRM_VAL_DBL or
PRO_E_MFG_PRM_VAL_
STR is going to be used only if
site with corresponding name
does not exist in
manufacturing model (The site
name is specified by PRO_E_
MFG_PARAM_SITE_NAME
element in sequence elem
tree).

• PRO_MFG_PRM_ATTR_
INHERITED—Value will be
assigned automatically: either
from site (if exists), or from
system defaults. The Value
from PRO_E_MFG_PRM_
VAL_DBL or PRO_E_MFG_
PRM_VAL_STR is ignored.

Note

This element is a mandatory
child of PRO_E_MFG_
PARAM_COMPOUND

element.
PRO_E_MFG_PRM_VAL_DBL PRO_VALUE_TYPE_DOUBLE Specifies the value of type double.

Note

This element is Mandatory
for Double data type
parameters with attribute set
to PRO_MFG_PRM_ATTR_
MODIFIED. Ignored for
other data types.

Production Applications: Creo NC Sequences, Operations and Work Centers 1679

Element ID Data Type Description
PRO_E_MFG_PRM_VAL_STR PRO_VALUE_TYPE_WSTRING Specifies the value of type string.

Note

Mandatory for String data
type parameters with attribute
set to PRO_MFG_PRM_
ATTR_MODIFIED. Ignored
for other data types.

Surface Collection with Mill Window
The element PRO_E_MFG_CMP_MILL_WIND is documented in the header file
ProMfgElemMachWindow.h, and is as shown in the following figure.

Element tree for PRO_E_MFG_CMP_MILL_WIND element

The following table lists the contents of PRO_E_MFG_CMP_MILL_WIND
element
Element ID Data Type Description
PRO_E_MFG_MILL_WIND PRO_VALUE_TYPE_

SELECTION
Mandatory element. Specifies the
selection of mill window feature.

PRO_E_MFG_CMP_CLOSED_
LOOPS

Compound Optional element. Specifies closed
loop compound specification.

PRO_E_MFG_EXCL_SRF_COLL Compound
:D

Optional element. Defines the

1680 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
excluded surfaces.

Note

Specify a value for this
element only for finishing
and corner finishing
sequences.

PRO_E_STD_SURF_
COLLECTION_APPL

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
surface collection.

PRO_E_MFG_SURF_SIDE_
COMPOUND

Compound Optional element. Specifies the
surface side compound
specification. This element is used
as a sub element of PRO_E_MFG_
CMP_MILL_WIND only when you
click Adjust geometry
collection within window
and selectQuilt during the Mill
Window feature definition in the
Creo Parametric user interface.

PRO_E_MFG_SURF_SIDE_
TOLERANCE

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
tolerance used for the grouping of
quilts.

PRO_E_MFG_SURF_SIDE_
FLIP_QUILTS

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of quilts with changed
normal. This element supports
multiple selections.

PRO_E_MFG_CMP_CLOSED_LOOPS Element
The elements under the compound element PRO_E_MFG_CMP_CLOSED_LOOPS
are described in this section .

Element tree for PRO_E_MFG_CMP_CLOSED_LOOPS element

Production Applications: Creo NC Sequences, Operations and Work Centers 1681

Element ID Data Type Description
PRO_E_MFG_CLOSED_LOOP_
ARR

Array Optional element. Specifies an
array of closed loop specifications.

PRO_E_MFG_CLOSED_LOOP_
REF_ITEM

Compound Optional element. Specifies the
closed loop specification.

PRO_E_STD_CURVE_
COLLECTION_APPL

PRO_VALUE_TYPE_POINTER Specifies the chain collection.

Note

This element is a mandatory
child of PRO_E_MFG_
CLOSED_LOOP_REF_ITEM

compound element.

Sequence Prerequisites
The element PRO_E_MFG_PREREQUISITE_ARR is documented in the header
file ProMfgElemPrerequisite.h, and is shown in the following figure.

Element tree for PRO_E_MFG_PREREQUISITE_ARR element

The following table lists the contents of PRO_E_MFG_PREREQUISITE_ARR
element.
Element ID Data Type Description
PRO_E_MFG_PREREQUISITE_
COMPOUND

Compound Compound element. A compound
element which defines the
prerequisites for the step.

PRO_E_MFG_PREREQUISITE_
ID

PRO_VALUE_TYPE_INT Mandatory child of PRO_E_MFG_
PREREQUISITE_COMPOUND
element. Specifies the Id of the
prerequisite sequence.

1682 Creo® Parametric TOOLKITUser’s Guide

Element Trees: Tool Setup

The Tool Setup Feature Element Tree:
The element tree for the milling roughing sequence is documented in the header
file ProMfgElemToolSetup.h, and is as shown in the following figure:

Element Tree for Tool Setup feature

Production Applications: Creo NC Sequences, Operations and Work Centers 1683

Element ID Data Type Description
PRO_E_MFG_WCELL_TOOL_
SETUP_ARR

Array Optional element. Specifies the
tool setup array.

PRO_E_MFG_WCELL_TOOL_
SETUP

Compound Optional element. Specifies the
tool setup compound
specification.

PRO_E_MFG_WCELL_TOOL_
POCKET_NUM

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
tool position in head (turret).

PRO_E_MFG_WCELL_TOOL_ID PRO_VALUE_TYPE_WSTRING Mandatory feature. Specifies the
tool ID.

Note

Tool with such ID should
exist in manufacturing
model.

PRO_E_MFG_WCELL_TOOL
_OUTPUT_TIP

PRO_VALUE_TYPE_INT Optional element, if not defined or
if the value is set to 1. Specifies
the tip number.

Note

The tool tip number should
not be greater than the
number of children in PRO_
E_MFG_TOOL_TIP_ARR.

PRO_E_MFG_TOOL_TIP_ARR Array Optional element. Specifies an
array of tips.

PRO_E_MFG_TOOL_TIP_
COMPOUND

Compound Optional element. This compound
element defines the tip
specification.

PRO_E_MFG_TOOL_TIP_
REGISTER

PRO_VALUE_TYPE_INT Optional element. Specifies the tip
register number.

PRO_E_MFG_TOOL_TIP_
COMMENT

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the tip
comment.

PRO_E_MFG_TOOL_TIP_
OFFSET_Z

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset value for the tool tip in the
Z-direction.

PRO_E_MFG_TOOL_TIP_
OFFSET_X

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset value for the tool tip in the
X-direction.

PRO_E_MFG_TOOL_TIP_
OFFSET_ANGLE

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the tip
angle offset value.

PRO_E_MFG_TOOL_TIP_
FLASH_OPT

PRO_VALUE_TYPE_INT Optional element, if the element is
not defined or the value of the
element is set to PRO_B_FALSE.
Specifies the enabling/disabling of
the flash option of the tool tip.
The valid values for this element
are:

1684 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_B_TRUE—Enables

flashing capability.
• PRO_B_FALSE—Disables

flashing capability.
PRO_E_MFG_TOOL_TIP_
FLSH_REGISTER

PRO_VALUE_TYPE_INT Optional element. Specifies the
register number for alternate tip
for the flash tool.

Note

This element is ignored if the
element PRO_E_MFG_
TOOL_TIP_FLASH_OPT is
set to PRO_B_FALSE.

PRO_E_MFG_TOOL_TIP_
FLSH_COMMENT

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
flash tool alternate tip comments.

Note

This element is ignored if the
element PRO_E_MFG_
TOOL_TIP_FLASH_OPT is
set to PRO_B_FALSE

PRO_E_MFG_TOOL_TIP_
FLSH_OFFSET_Z

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
flash tool alternate tip Z offset.

Note

This element is ignored if the
element PRO_E_MFG_
TOOL_TIP_FLASH_OPT is
set to PRO_B_FALSE

PRO_E_MFG_TOOL_TIP_
FLSH_OFFSET_X

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
flash tool alternate tip X offset.

Note

This element is ignored if the
element PRO_E_MFG_
TOOL_TIP_FLASH_OPT is
set to PRO_B_FALSE

Production Applications: Creo NC Sequences, Operations and Work Centers 1685

Element Trees: CMM Probe Setup

The CMM probe Setup Element Tree:
The element tree for the CMM probe setup is documented in the header file
ProMfgElemToolSetupCmm.h, and is as shown in the following figure:

Element Tree for CMM Probe Setup

The following table describes the elements in the element tree for the CMM probe
setup feature.
Element ID Data Type Description
PRO_E_MFG_CMM_TOOL_
SETUP_ARR

Array Optional element. Specifies the
CMM probes setup array.

PRO_E_MFG_CMM_TOOL_
SETUP

Compound Optional element. This compound
element defines the probe setup
compound specification.

PRO_E_MFG_CMM_TOOL_
POCKET_NUM

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
probe position in tool magazine.

PRO_E_MFG_CMM_TOOL_
TOOL_ID

PRO_VALUE_TYPE_WSTRING Mandatory element. Specifies the
Probe ID.

Note

Tool with such ID should
exist in manufacturing
model.

PRO_E_MFG_CMM_TOOL_TIP_
NUM

PRO_VALUE_TYPE_INT Optional element, if not defined or
if the value is set to 1. Specifies
the tip number by identifying it
from the array.

1686 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_CMM_TOOL_
REGISTER

PRO_VALUE_TYPE_INT Optional element. Specifies the
register number.

PRO_E_MFG_CMM_TOOL_
COMMENT

PRO_VALUE_TYPE_WSTRING Optional element. Specifies the
probe comments.

PRO_E_MFG_CMM_TOOL_
PITCH_ANGLE

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
pitch angle value.

PRO_E_MFG_CMM_TOOL_
ROLL_ANGLE

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
roll angle value.

Checking Surfaces
The element PRO_E_CHECK_SURF_COLL is documented in the header file
ProMfgElemCheckSurf.h, and is shown in the following figure.

Element tree for PRO_E_CHECK_SURF_COLL element

The following table lists the contents of PRO_E_CHECK_SURF_COLL element.

Production Applications: Creo NC Sequences, Operations and Work Centers 1687

Element ID Data Type Description
PRO_E_ADD_REF_PARTS PRO_VALUE_TYPE_INTEGER Optional element. This element is

used to check the reference parts
for collisions. The valid values for
this element are:
• TRUE—All reference parts

surfaces will be checked for
collisions.

• FALSE—Reference parts
surfaces will not be added for
collision checking.

Note

The FALSE value will be
used if element does not
exist.

PRO_E_USE_MILL_STK PRO_VALUE_TYPE_INTEGER Optional element. This element is
used to apply the stock allowance
parameters of mill surface to the
surfaces being checked. The valid
values for this element are:
• TRUE—Mill surface stock

allowance parameter will be
applied to check surfaces.
Value of stock allowance is
defined by sequence
manufacturing parameter.

• FALSE—Mill surface stock
allowance parameter will not
be applied.

Note

The FALSE value will be
used if element does not
exist.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Optional element. Specifies the
collection of selected surfaces to
be checked for collisions.

1688 Creo® Parametric TOOLKITUser’s Guide

Approach and Exit
The element tree for the approach and exit parameters is defined in the header file
ProMfgElemApproachExit.h, and is as shown in the following figure:

Element tree for PRO_E_MFG_CMP_APPROACH_EXIT element

The following table lists the contents of PRO_E_MFG_CMP_APPROACH_EXIT
element.
Element ID Data Type Description
PRO_E_MFG_CMP_APPROACH Compound Optional element. This compound

element specifies approach
compound. It combines approach
axis and first slice only.

PRO_E_MFG_APPROACH_AXIS PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of a vertical datum axis.

PRO_E_MFG_FIRST_SLICE_
ONLY

PRO_VALUE_TYPE_INT Specifies the flag value for the
approach motion. The valid values
for this element are:
• True
• False

Note

This element is mandatory if
the element PRO_E_MFG_
APPROACH_AXIS is set. It
is not used otherwise.

PRO_E_MFG_CMP_EXIT Compound This compound element specifies
an exit compound. It combines
exit axis and last slice only.

Production Applications: Creo NC Sequences, Operations and Work Centers 1689

Element ID Data Type Description
PRO_E_MFG_EXIT_AXIS PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
selection of a vertical datum axis.

PRO_E_MFG_LAST_SLICE_
ONLY

PRO_VALUE_TYPE_INT Specifies the flag value for the exit
motion. The valid values for this
element are:
• True
• False

Note

This element is mandatory if
the element PRO_E_MFG_
EXIT_AXIS is set. It is not
used otherwise.

Spindle Types
This section describes the types of spindles, which can be used while creating a
sequence feature. The types of spindles are defined by the enumerated type
ProSubSpindleOpt and are as follows:
• PRO_MFG_MAIN_SPINDLE—Specifies that the sequence feature is created

for the part in the main spindle.
• PRO_MFG_SUB_SPINDLE—Specifies that the sequence feature is created

for the part in the sub–spindle.
Two parts can be machined during the same operation using the main spindle and
the sub spindle.

Tool Motions
This section describes how to construct and access the sub-element trees for
various Tool Motion types that are used in the creation of Creo NC features.

Approach Along Tool Axis
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnAlongAxisAppr.h, and is as shown in the following
figure:

1690 Creo® Parametric TOOLKITUser’s Guide

The following table describes the elements in the element tree for the approach
along tool axis feature.

Production Applications: Creo NC Sequences, Operations and Work Centers 1691

Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_ALONG_AXIS_
APPROACH.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_PLUNGE—
Specifies a plunge feed type.
Plunge feed specifies the rate
at which the tool approaches
and plunges into the
workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

Exit Along Tool Axis
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnAlongAxisExit.h, and is as shown in the following
figure:

1692 Creo® Parametric TOOLKITUser’s Guide

The following table describes the elements in the element tree for the approach
along tool axis feature.

Production Applications: Creo NC Sequences, Operations and Work Centers 1693

Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_ALONG_AXIS_EXIT.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

Tool Motion — Follow Curve
The element PRO_E_TOOL_MTN is a compound element that allows you to
specify the tool motion parameters.
This element is a member of PRO_E_TOOL_MTN_ARR array and is documented
in the header file ProMfgElemToolMtnFollowCrv.h, and is shown in the
following figure.

1694 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_FOLLOW_CURVE.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at

Production Applications: Creo NC Sequences, Operations and Work Centers 1695

Element ID Data Type Description
which the tool leaves the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_CRV_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
selection of the curve feature.

PRO_E_TOOL_MTN_CRV_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction of the working for the
curve feature. The direction is
defined by the enumerated data
type ProMfgCrvDir in
ProMfgOptions.h.

The valid values for this element
are:
• PRO_MFG_DIR_OPPOSITE

• PRO_MFG_DIR_SAME

Tool Motion — Go To Point
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnGotoPnt.h,
and is shown in the following figure.

1696 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_GOTO_POINT. The value
for this element is defined by
ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The

Production Applications: Creo NC Sequences, Operations and Work Centers 1697

Element ID Data Type Description
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_PLUNGE—
Specifies a plunge feed type.
Plunge feed specifies the rate
at which the tool approaches
and plunges into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

• PRO_TM_FEED_THREAD—
Specifies a thread feed type.
Thread feed specifies the feed
rate for the tapping step.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_PNT_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
datum point reference.

1698 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_TOOL_MTN_OFFSET Compound Optional element. This compound

element specifies the definition for
the various tool motion offset
parameters.

PRO_E_TOOL_MTN_X_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along X-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Y_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along Y-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Z_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along Z-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE

PRO_E_TOOL_MTN_AXIS_
MOVES

PRO_VALUE_TYPE_INT Mandatory if the element PRO_E_
TOOL_MTN_OFFSET is defined.
Specifies the attributes for the axis
moves.

PRO_E_MFG_TM_TOOL_AXIS_
COMPOUND

Compound Optional element. This compound
element specifies the tool axis.

PRO_E_MFG_TM_TOOL_AXIS_
OPT

PRO_VALUE_TYPE_INT Optional element. This element
specifies the tool axis options
using the enumerated type
ProTmToolAxisOpt. The valid
values for this element are:
• PRO_TM_ALONG_Z

• PRO_TM_USE_PREV

• PRO_TM_AXIS_SEL

Production Applications: Creo NC Sequences, Operations and Work Centers 1699

Element ID Data Type Description
PRO_E_MFG_TM_TOOL_AXIS_
REF

PRO_VALUE_TYPE_
SELECTION

This element specifies the axis
selection.

Note

This element is mandatory if
the element PRO_E_MFG_
TM_TOOL_AXIS_OPT is set
to PRO_TM_AXIS_SEL.

PRO_E_MFG_TM_TOOL_AXIS_
FLIP_OPT

PRO_VALUE_TYPE_INT Specifies the flip options. The
valid values for this element are:
• TRUE

• FALSE

Note

This element is mandatory if
the element PRO_E_MFG_
TM_TOOL_AXIS_OPT is set
to PRO_TM_AXIS_SEL.

Tool Motion — Go Delta
The PRO_E_TOOL_MTN element is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnGoDelta.h,
and is shown in the following figure.

1700 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

Tool motion type . The valid value
for this element is TPRO_TM_
TYPE_GO_DELTA. The value for
this element is defined by
ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:

Production Applications: Creo NC Sequences, Operations and Work Centers 1701

Element ID Data Type Description
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_PLUNGE—
Specifies a plunge feed type.
Plunge feed specifies the rate
at which the tool approaches
and plunges into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

• PRO_TM_FEED_THREAD—
Specifies a thread feed type.
Thread feed specifies the feed
rate for the tapping step.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_OFFSET Compound Optional element. This compound

1702 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
element specifies the offset value.

Note

At least one of elements
below must have a non zero
value.

• PRO_E_TOOL_MTN_X_

OFFSET

• PRO_E_TOOL_MTN_Y_

OFFSET

• PRO_E_TOOL_MTN_Z_

OFFSET
PRO_E_TOOL_MTN_X_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the

offset along X-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Y_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along Y-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Z_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along Z-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE

PRO_E_MFG_TM_TOOL_AXIS_
COMPOUND

Compound Optional element. This compound
element specifies the tool axis.

PRO_E_MFG_TM_TOOL_AXIS_
OPT

PRO_VALUE_TYPE_INT Optional element. This element
specifies the tool axis options. The
valid values for this element are:
• PRO_TM_ALONG_Z

• PRO_TM_USE_PREV

• PRO_TM_AXIS_SEL

Production Applications: Creo NC Sequences, Operations and Work Centers 1703

Element ID Data Type Description
PRO_E_MFG_TM_TOOL_AXIS_
REF

PRO_VALUE_TYPE_
SELECTION

This element specifies the axis
selection.

Note

This element is mandatory if
the element PRO_E_MFG_
TM_TOOL_AXIS_OPT is set
to PRO_TM_AXIS_SEL.

PRO_E_MFG_TM_TOOL_AXIS_
FLIP_OPT

PRO_VALUE_TYPE_INT Specifies the flip options. The
valid values for this element are:
• TRUE

• FALSE

Note

This element is mandatory if
the element PRO_E_MFG_
TM_TOOL_AXIS_OPT is set
to PRO_TM_AXIS_SEL.

Tool Motion — Go Home
The PRO_E_TOOL_MTN element is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnGoHome.h,
and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.

1704 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_TOOL_MTN Compound Compound element. This element

specifies the tool motion
definition.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
tool motion type . The valid value
for this element is PRO_TM_
TYPE_GOHOME. The value for
this element is defined by
ProTmType.

Production Applications: Creo NC Sequences, Operations and Work Centers 1705

Element ID Data Type Description
PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an

array of manufacturing
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Specifies the axis selection. This
element is optional for 5-axis Creo
NC sequences.

Note

By default, Z-axis of the Creo
NC sequence is used to
define the constraint plane.
For 5-axis Creo NC
sequences, you can select an
alternative axis.

Tool Motion — Lead In
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnLeadIn.h,
and is shown in the following figure.

1706 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN Compound Compound element. This element

specifies the tool motion
definition.

PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the
tool motion type. The valid value
for this element is PRO_TM_
TYPE_LEAD_IN. The value for
this element is defined by
ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which

Production Applications: Creo NC Sequences, Operations and Work Centers 1707

Element ID Data Type Description
the tool approaches the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The values which are
used to define this element are:
• ENTRY_ANGLE

• TANGENT_LEAD_STEP

• NORMAL_LEAD_STEP

• LEAD_RADIUS

The element tree for the
manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_APPR_EXIT_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction for the normal approach
type of tool exit. The direction is
defined by the enumerated data
type ProTmSideDirin
ProMfgOptions.h. The valid
values for this element are:
• PRO_TM_DIR_RIGHT_

SIDE

• PRO_TM_DIR_LEFT_SIDE

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
axis selection.

Note

This element is optional for
5-axis Creo NC sequences.
By default Z-axis of the Creo
NC sequence is used to
define the constraint plane.
For 5-axis Creo NC
sequences a user can select an
alternative axis.

Tool Motion — Go Retract
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnGoRetr.h,
and is shown in the following figure.

1708 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN Compound Compound element. This element

specifies Tool motion definition.
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

Tool motion type . The valid value
for this element is PRO_TM_
TYPE_GO_RETRACT. The value
for this element is defined by
ProTmType.

Production Applications: Creo NC Sequences, Operations and Work Centers 1709

Element ID Data Type Description
PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

Tool Motion — Normal Approach
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnNormAppr.h, and is shown in the following figure.

1710 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN Compound Compound element. This element

specifies the tool motion
definition.

PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the
tool motion type. The valid value
for this element is PRO_TM_
TYPE_NORMAL_APPROACH.
The value for this element is
defined by ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:

Production Applications: Creo NC Sequences, Operations and Work Centers 1711

Element ID Data Type Description
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The element
APPROACH_DIST is used to
specify the approach distance.

The element tree for the
manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677for more information
on the element tree.

PRO_E_TOOL_MTN_OFFSET Compound Optional element. This compound
element specifies the offset value.

PRO_E_TOOL_MTN_X_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along X-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Y_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along Y-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Z_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along Z-axis. This element
can range from negative to
positive values. The valid range
values for this element are from

1712 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
-MAX_DIM_VALUE to MAX_
DIM_VALUE

PRO_E_MFG_APPR_EXIT_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction for the normal approach
type of tool exit. The direction is
defined by the enumerated data
type ProTmSideDir in
ProMfgOptions.h. The valid
values for this element are:
• PRO_TM_DIR_RIGHT_

SIDE

• PRO_TM_DIR_LEFT_SIDE

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
axis selection.

Note

This element is optional for
5-axis Creo NC sequences.
By default Z-axis of the Creo
NC sequence is used to
define the constraint plane.
For 5-axis Creo NC
sequences a user can select an
alternative axis.

Tool Motion — Normal Exit
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnNormExit.h, and is shown in the following figure.

Production Applications: Creo NC Sequences, Operations and Work Centers 1713

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN Compound Compound element. This element

specifies the Tool motion
definition.

PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Tool motion
type . The valid value for this
element is PRO_TM_TYPE_
NORMAL_EXIT. The value for
this element is defined by
ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

1714 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an

array of manufacturing
parameters. The element EXIT_
DISTANCE is used to specify the
exit distance.

The element tree for the
manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree

PRO_E_MFG_APPR_EXIT_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction of orientation for the
approach or exit tool motion. The
direction of the orientation is
defined by the enumerated data
type ProTmSideDir in
ProMfgOptions.h. The valid
values for this element are:
• PRO_TM_DIR_RIGHT_

SIDE

• PRO_TM_DIR_LEFT_SIDE

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
axis selection.

Note

This element is optional for
5-axis Creo NC sequences.
By default Z-axis of the Creo
NC sequence is used to
define the constraint plane.
For 5-axis Creo NC
sequences a user can select an
alternative axis.

Tool Motion — Lead Out
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnLeadOut.h,
and is shown in the following figure.

Production Applications: Creo NC Sequences, Operations and Work Centers 1715

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_LEAD_OUT. The value for
this element is defined by
ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing

1716 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
parameters. The following
parameters are used to define the
Lead Out Motion:
• EXIT_ANGLE

• TANGENT_LEAD_STEP

• NORMAL_LEAD_STEP

• LEAD_RADIUS

The element tree for the
manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_APPR_EXIT_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction of orientation for
approach/exit tool motion. The
direction of orientation is defined
by the enumerated data type
ProTmSideDir in
ProMfgOptions.h. The valid
values for this element are:
• PRO_TM_DIR_RIGHT_

SIDE

• PRO_TM_DIR_LEFT_SIDE

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
axis selection.

Note

This element is optional for
5-axis Creo NC sequences.
By default Z-axis of the Creo
NC sequence is used to
define the constraint plane.
For 5-axis Creo NC
sequences a user can select an
alternative axis.

Tool Motion — Helical Approach
The element PRO_E_TOOL_MTN is documented in the header file
ProMfgElemToolMtnHelAppr.h, and is shown in the following figure.

Production Applications: Creo NC Sequences, Operations and Work Centers 1717

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

type of the tool motion used for
the Creo NC sequence. The valid
value for this element is PRO_
TM_TYPE_HELICAL_
APPROACH. The value for this
element is defined by
ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_PLUNGE—
Specifies a plunge feed type.
Plunge feed specifies the rate
at which the tool approaches
and plunges into the

1718 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The following
parameters are used to define the
helical approach motion:
• ENTRY_ANGLE

• CLEAR_DIST

• NORMAL_LEAD_STEP

• LEAD_RADIUS

The element tree for the
manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_APPR_EXIT_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction of orientation for
approach or exit tool motion. The
direction of orientation is defined
by the enumerated data type
ProTmSideDir in
ProMfgOptions.h. The valid
values for this element are:
• PRO_TM_DIR_RIGHT_

SIDE

• PRO_TM_DIR_LEFT_SIDE

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
axis selection.

Note

This element is optional for
5-axis Creo NC sequences.
By default Z-axis of the Creo
NC sequence is used to
define the constraint plane.
For 5-axis Creo NC
sequences a user can select an
alternative axis.

Production Applications: Creo NC Sequences, Operations and Work Centers 1719

Tool Motion — Helical Exit
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnHelExit.h,
and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTNelement.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type. The valid value
for this element is PRO_TM_
TYPE_HELICAL_EXIT. The
value for this element is defined
by ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_RETRACT—

1720 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The following
parameters are used to define the
helical approach motion:
• EXIT_ANGLE

• PULLOUT_DIST

• NORMAL_LEAD_STEP

• LEAD_RADIUS

The element tree for the
manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

Production Applications: Creo NC Sequences, Operations and Work Centers 1721

Element ID Data Type Description
PRO_E_MFG_APPR_EXIT_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the

direction of orientation for
approach or exit tool motion. The
direction of orientation is defined
by the enumerated data type
ProTmSideDir in
ProMfgOptions.h. The valid
values for this element are:
• PRO_TM_DIR_RIGHT_

SIDE

• PRO_TM_DIR_LEFT_SIDE

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
axis selection.

Note

This element is optional for
5-axis Creo NC sequences.
By default Z-axis of the Creo
NC sequence is used to
define the constraint plane.
For 5-axis Creo NC
sequences a user can select an
alternative axis.

Tool Motion — Go To Surface
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnGotoSrf.h,
and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

1722 Creo® Parametric TOOLKITUser’s Guide

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_GOTO_SURFACE. The
value for this element is defined
by ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_PLUNGE—
Specifies a plunge feed type.
Plunge feed specifies the rate
at which the tool approaches
and plunges into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

Production Applications: Creo NC Sequences, Operations and Work Centers 1723

Element ID Data Type Description
PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an

array of manufacturing
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_SRF_REF PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
selection of a surface.

Tool Motion — Go To Axis
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnGotoAxis.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_GOTO_AXIS. The value
for this element is defined by
ProTmType.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type

1724 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_PLUNGE—
Specifies a plunge feed type.
Plunge feed specifies the rate
at which the tool approaches
and plunges into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_GOTO_
AXIS_REF

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
axis selection.

Production Applications: Creo NC Sequences, Operations and Work Centers 1725

Tool Motion — Tangent Approach
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnTanAppr.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_TANGENT_APPROACH.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:

1726 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The parameter
APPROACH_DIST specifies the
approach distance. The element
tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_OFFSET Compound Optional element. This compound
element specifies the tool motion
offset.

PRO_E_TOOL_MTN_X_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset value along the X-axis. This
element can range from negative
to positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Y_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset value along the Y-axis. This
element can range from negative
to positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

Production Applications: Creo NC Sequences, Operations and Work Centers 1727

Element ID Data Type Description
PRO_E_TOOL_MTN_Z_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the

offset value along the Z-axis. This
element can range from negative
to positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Specifies the axis selection.

Note

• This element is optional
for 5-axis Creo NC
sequences

• Z-axis of the Creo NC
sequence is used to define
the constraint plane. This
is the default value.

• For 5-axis Creo NC
sequences you can select
an alternative axis

Tool Motion — Tangent Exit
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnTanExit.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.

1728 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_TANGENT_EXIT.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

Production Applications: Creo NC Sequences, Operations and Work Centers 1729

Element ID Data Type Description
PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an

array of manufacturing
parameters. The parameter
APPROACH_DIST specifies the
approach distance. The element
tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Specifies the axis selection.

Note

• This element is optional
for 5-axis Creo NC
sequences.

• Z-axis of the Creo NC
sequence is used to define
the constraint plane. This
is the default value.

• For 5-axis Creo NC
sequences you can select
an alternative axis.

1730 Creo® Parametric TOOLKITUser’s Guide

Tool Motion — Area and Groove Turning
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnAreaTurn.h and
ProMfgElemToolMtnGrooveTurn.h respectively, and is as shown in the
following figure:

Element tree for PRO_E_TOOL_MTN element:

Production Applications: Creo NC Sequences, Operations and Work Centers 1731

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

Tool motion type. The valid value
for this element is
• PRO_TM_TYPE_AREA

_TURNING—For area turning.

• PRO_TM_TYPE_GROOVE

_TURNING—For groove
turning.

. The value for this element is
defined by ProTmType.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_TURN_

PROF

Compound This compound element specifies
the turning profile definition.

PRO_E_TOOL_MTN_TURN_

PROF_REF

PRO_VALUE_TYPE_

SELECTION
Mandatory element. Specifies the
turning profile reference.

PRO_E_TOOL_MTN_TURN_

PROF_S_VAL

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
start point offset. This element can
range from negative to positive
values. The valid range values for
this element are from -MAX_

DIM_VALUE to MAX_DIM_
VALUE.

PRO_E_TOOL_MTN_TURN_

PROF_E_VAL

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
end point offset. This element can
range from negative to positive
values. The valid range values for
this element are from -MAX_

DIM_VALUE to MAX_DIM_
VALUE.

PRO_E_TOOL_MTN_TURN_

PROF_S_REF

PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
start point adjustment reference.

PRO_E_TOOL_MTN_TURN_ PRO_VALUE_TYPE_ Optional element. Specifies the

1732 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PROF_E_REF SELECTION end point adjustment reference.
PRO_E_TOOL_MTN_TURN_

PROF_S_ORIENT

PRO_VALUE_TYPE_INT Specifies the orientation of the
axis when coordinate system is
selected as the start point
adjustment. The valid values for
this element are:
• PRO_TM_TURN_CSYS_X

• PRO_TM_TURN_CSYS_Y

• PRO_TM_TURN_CSYS_Z

Note

This element is mandatory if
coordinate system is selected
for cylindrical retract
reference and is ignored in all
other cases.

PRO_E_TOOL_MTN_TURN

_PROF_E_ORIENT

PRO_VALUE_TYPE_INT Specifies the orientation of the
axis when coordinate system is
selected as the ending point. The
valid values for this element are:
• PRO_TM_TURN_CSYS_X

• PRO_TM_TURN_CSYS_Y

• PRO_TM_TURN_CSYS_Z

Note

This element is mandatory if
coordinate system is selected
for cylindrical retract
reference and is ignored in all
other cases.

PRO_E_TOOL_MTN_TURN

_DFLT_CORNER_TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
default corner type. The valid
values for this element are:
• PRO_TM_TURN_CORNER_

TYPE_SHARP

• PRO_TM_TURN_CORNER_

TYPE_FILLET

• PRO_TM_TURN_CORNER_

TYPE_CHAMFER

PRO_E_TOOL_MTN_TURN_

CORNER_ARR

Array Optional element. Specifies the
corner conditions array.

PRO_E_TOOL_MTN_TURN_ Compound This compound element defines

Production Applications: Creo NC Sequences, Operations and Work Centers 1733

Element ID Data Type Description
CORNER the elements related to the corner
PRO_E_TOOL_MTN_TURN_

CORNER_TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
corner type. The valid values for
this element are:
• PRO_TM_TURN_CORNER_

TYPE_SHARP

• PRO_TM_TURN_CORNER_

TYPE_FILLET

• PRO_TM_TURN_CORNER_

TYPE_CHAMFER

PRO_E_TOOL_MTN_TURN_

PREV_ENT_ID

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
previous entity id.

PRO_E_TOOL_MTN_TURN_

NEXT_ENT_ID

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
next entity id.

PRO_E_TOOL_MTN_TURN_

CORNER_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the fillet radius or
chamfer dimension. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE

Note

This element is mandatory if
corner type is PRO_TM_
TURN_CORNER_TYPE_

FILLET or PRO_TM_
TURN_CORNER_TYPE_

CHAMFER.
PRO_E_TURN_STK_ALLW_

PROF_ARR

Array Specifies an array for profile stock
allowance.

PRO_E_TURN_STK_ALLW_

ROUGH_ARR

Array Specifies an array for rough stock
allowance.

PRO_E_TURN_STK_

ALLOWANCE

Compound Specifies the compound element
for stock allowance. For more
information, refer to the section
Specifying the Stock Allowance
on page 1735.

PRO_E_TOOL_MTN_TURN_

STK_BND_REF

PRO_VALUE_TYPE_

SELECTION
Mandatory element. Specifies
reference to the workpiece or
stock boundary.

PRO_E_TOOL_MTN_TURN_EXT Compound Mandatory element. This
compound element specifies
extensions.

1734 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_TOOL_MTN_TURN_S_

EXT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
start extension. The valid values
for this element are:
• EXT_POS_Z

• EXT_NEG_Z

• EXT_POS_Y

• EXT_NEG_Y

• EXT_NONE

PRO_E_TOOL_MTN_TURN_E_

EXT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
end extension. The valid values for
this element are:
• EXT_POS_Z

• EXT_NEG_Z

• EXT_POS_Y

• EXT_NEG_Y

• EXT_NONE

Specifying the Stock Allowance
The element PRO_E_TURN_STK_ALLOWANCE is used to specify the stock
allowance and is documented in the header files
ProMfgElemToolMtnAreaTurn.h,
ProMfgElemToolMtnGrooveTurn.h and
ProMfgElemToolMtnProfTurn.h.
The following figure shows the element PRO_E_TURN_STK_ALLOWANCE:

The following table lists the contents of PRO_E_TURN_STK_ALLOWANCE
element.
Element ID Data Type Description
PRO_E_TURN_STK_
ALLOWANCE

Compound Specifies the compound element
for stock allowance.

PRO_E_TURN_STK_ALLW_ PRO_VALUE_TYPE_INT Specifies the ID of the first entity

Production Applications: Creo NC Sequences, Operations and Work Centers 1735

Element ID Data Type Description
FIRST_ENT_ID of the turn profile segment with

stock allowance.
PRO_E_TURN_STK_ALLW_
LAST_ENT_ID

PRO_VALUE_TYPE_INT Specifies the ID of the last entity
of the turn profile segment with
stock allowance.

PRO_E_TURN_STK_
ALLOWANCE_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the value of the stock
allowance.

1736 Creo® Parametric TOOLKITUser’s Guide

Tool Motion — Profile Turning
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnProfTurn.h, and is as shown in the following figure:

Element tree for PRO_E_TOOL_MTN element:

Production Applications: Creo NC Sequences, Operations and Work Centers 1737

Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

Tool motion type. The valid value
for this element is PRO_TM_
TYPE_PROF_TURNING. The
value for this element is defined
by ProTmType.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC
online help for more information
on manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_TURN_
PROF

Compound This compound element specifies
the turning profile definition.

PRO_E_TOOL_MTN_TURN_
PROF_REF

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
turning profile reference.

PRO_E_TOOL_MTN_TURN_
PROF_S_VAL

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
start point offset. This element can
range from negative to positive
values. The valid range values for
this element are from -MAX_
DIM_VALUE to MAX_DIM_
VALUE.

PRO_E_TOOL_MTN_TURN_
PROF_E_VAL

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
end point offset. This element can
range from negative to positive
values. The valid range values for
this element are from -MAX_
DIM_VALUE to MAX_DIM_
VALUE.

PRO_E_TOOL_MTN_TURN_
PROF_S_REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
start point adjustment reference.

PRO_E_TOOL_MTN_TURN_
PROF_E_REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
end point adjustment reference.

PRO_E_TOOL_MTN_TURN_
PROF_S_ORIENT

PRO_VALUE_TYPE_INT Specifies the orientation of the
axis when coordinate system is
selected as the start point
adjustment. The valid values for
this element are:

1738 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_TM_TURN_CSYS_X

• PRO_TM_TURN_CSYS_Y

• PRO_TM_TURN_CSYS_Z

Note

This element is mandatory if
coordinate system is selected
for cylindrical retract
reference and is ignored in all
other cases.

PRO_E_TOOL_MTN_TURN_
PROF_E_ORIENT

PRO_VALUE_TYPE_INT Specifies the orientation of the
axis when coordinate system is
selected as the ending point. The
valid values for this element are:
• PRO_TM_TURN_CSYS_X

• PRO_TM_TURN_CSYS_Y

• PRO_TM_TURN_CSYS_Z

Note

This element is mandatory if
coordinate system is selected
for cylindrical retract
reference and is ignored in all
other cases.

PRO_E_TOOL_MTN_TURN_
PROF_OFFSET_CUT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
offset from turn profile by the tool
radius. The valid values for this
element are:
• PRO_B_TRUE

• PRO_B_FALSE

PRO_E_TOOL_MTN_TURN_
DFLT_CORNER_TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
corner type. The valid values for
this element are:
• PRO_TM_TURN_CORNER_

TYPE_SHARP

• PRO_TM_TURN_CORNER_
TYPE_FILLET

• PRO_TM_TURN_CORNER_
TYPE_CHAMFER

PRO_E_TOOL_MTN_TURN_
CORNER_ARR

Array Optional element. Specifies the
corner conditions array.

PRO_E_TOOL_MTN_TURN_
CORNER

Compound This compound element defines
the elements related to the corner.

PRO_E_TOOL_MTN_TURN_
CORNER_TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
corner type. The valid values for
this element are:

Production Applications: Creo NC Sequences, Operations and Work Centers 1739

Element ID Data Type Description
• PRO_TM_TURN_CORNER_

TYPE_SHARP

• PRO_TM_TURN_CORNER_
TYPE_FILLET

• PRO_TM_TURN_CORNER_
TYPE_CHAMFER

PRO_E_TOOL_MTN_TURN_
PREV_ENT_ID

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
previous entity id.

PRO_E_TOOL_MTN_TURN_
NEXT_ENT_ID

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
next entity id.

PRO_E_TOOL_MTN_TURN_
CORNER_VAL

PRO_VALUE_TYPE_DOUBLE Specifies the fillet radius or
chamfer dimension. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE

Note

This element is mandatory if
corner type is PRO_TM_
TURN_CORNER_TYPE_

FILLET or PRO_TM_
TURN_CORNER_TYPE_

CHAMFER.
PRO_E_TURN_STK_ALLW_
PROF_ARR

Array Specifies an array for profile stock
allowance.

PRO_E_TURN_STK_ALLW_
ROUGH_ARR

Array Specifies an array for rough stock
allowance.

PRO_E_TURN_STK_
ALLOWANCE

Compound Specifies the compound element
for stock allowance. For more
information, refer to the section
Specifying the Stock Allowance
on page 1735.

Tool Motion — Curve Trajectory
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnCrvTraj.h, and is shown in the following figure.

1740 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

Production Applications: Creo NC Sequences, Operations and Work Centers 1741

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_CURVE_TRAJECTORY.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing parameters.
See the Creo NC help for more
information on manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more information
on the element tree.

PRO_E_MFG_TRAJ_CRV Compound Mandatory element. Specifies the
machining curves compound
definition.

PRO_E_STD_CURVE_
COLLECTION_APPL

Curve Collection Mandatory element. Specifies the
curve collection.

PRO_E_NCD_CURVE_POINT Compound Optional element. Specifies the
compound Start Point definition.

Note

This element is applicable for
closed loops only.

PRO_E_NCD_CURVE_POINT_
REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
start point vertex definition to
offset from.

PRO_E_NCD_CURVE_POINT_
OFFSET_TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
start point offset type definition.
The valid values for this element
are:
• PRO_CURVE_POINT_

OFFSET_TYPE_RATIO—
Specifies the offset by
parameter.

• PRO_CURVE_POINT_
OFFSET_TYPE_REAL—
Specifies the offset by length.

PRO_E_NCD_CURVE_POINT_
OFFSET

PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
start point offset definition.

PRO_E_MFG_HELICAL_CUT_
OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
helical cut option. The valid values
for this element are:

1742 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
• PRO_B_TRUE—Specifies that

helical option and parameters
will be applied.

• PRO_B_FALSE—Specifies
that helical option and
parameters will not be applied.

PRO_E_MFG_START_HEIGHT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of start height surface.

PRO_E_MFG_HEIGHT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
multiple selections of height
surfaces.

PRO_E_MFG_OFFSET Compound Optional element. Specifies the
offset compound definition.

PRO_E_MFG_OFFSET_CUT PRO_VALUE_TYPE_INT Optional element. Specifies the
offset cut. The valid values for this
element are:
• PRO_B_TRUE—Tool offset

will be applied.
• PRO_B_FALSE—Tool offset

will not be applied.
PRO_E_MFG_MAT_TO_RMV PRO_VALUE_TYPE_INT Optional element. Specifies the

material side. The values for this
element are defined by the
enumerated value
ProMaterialRmvSide in the
header file ProMfgOptions.h.
The valid values for this element
are:
• PRO_MAT_RMV_LEFT

—Specifies a cut on left from
the curve.

• PRO_MAT_RMV_RIGHT
—Specifies a cut on right from
the curve.

PRO_E_MFG_DRV_SRF_DIR PRO_VALUE_TYPE_INT Optional element. Specifies the flip
drive surface direction. The valid
values for this element are:
• PRO_B_FALSE—The default

direction on the drive surface
will be used.

• PRO_B_TRUE—The opposite
direction on the drive surface
will be used.

PRO_E_CHECK_SURF_COLL Compound Specifies the check surfaces
compound definition. The element
tree for the Checking Surfaces is
defined in the header file
ProMfgElemCheckSurf.h.
For more information, refer to the
section Checking Surfaces on page
1687 for more information on the
element tree.

Production Applications: Creo NC Sequences, Operations and Work Centers 1743

Element ID Data Type Description
PRO_E_MFG_AXIS_DEF_COMP Compound Optional element. Specifies the

compound element for the axis
definition.

PRO_E_MFG_TRAJ_CORNER_
COND

Compound Optional element. Specifies the
compound element for the corner
condition.

PRO_E_MFG_TRAJ_CORNER_
DFLT_TYPE

PRO_VALUE_TYPE_INT Specifies the default corner type.
The valid values for this element
are defined in the enumerated type
ProTmTrajCornerType and
are as follows:
• PRO_TM_TRAJ_CORNER_

TYPE_SHARP

• PRO_TM_TRAJ_CORNER_
TYPE_FILLET

• PRO_TM_TRAJ_CORNER_
TYPE_CHAMFER

• PRO_TM_TRAJ_CORNER_
TYPE_LOOP

• PRO_TM_TRAJ_CORNER_
TYPE_STRAIGHT

PRO_E_MFG_TRAJ_CORNER_
ARR

Array Optional element. Specifies an
array for the corner condition.

PRO_E_MFG_TRAJ_CORNER Compound Optional element. Specifies the
corner condition item.

PRO_E_MFG_TRAJ_CORNER_
TYPE

PRO_VALUE_TYPE_INT Specifies the default corner type.
The valid values for this element
are defined in the enumerated type
ProTmTrajCornerType and
are as follows:
• PRO_TM_TRAJ_CORNER_

TYPE_SHARP

• PRO_TM_TRAJ_CORNER_
TYPE_FILLET

• PRO_TM_TRAJ_CORNER_
TYPE_CHAMFER

• PRO_TM_TRAJ_CORNER_
TYPE_LOOP

• PRO_TM_TRAJ_CORNER_
TYPE_STRAIGHT

PRO_E_MFG_TRAJ_CORNER_
PREV_ID

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
previous Id for the corner.

1744 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MFG_TRAJ_CORNER_
NEXT_ID

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
next Id for the corner.

PRO_E_MFG_TRAJ_CORNER_
VAL

PRO_VALUE_TYPE_DOUBLE Specifies the fillet radius or the
chamfer dimension. The valid
range for this element is from 0 to
MAX_DIM_VALUE.

Note

This element is mandatory if
the corner type is set to PRO_
TM_TRAJ_CORNER_TYPE_

FILLET or PRO_TM_TRAJ_
CORNER_TYPE_CHAMFER.

Production Applications: Creo NC Sequences, Operations and Work Centers 1745

Element Tree for PRO_E_MFG_AXIS_DEF_COMP
The element tree for PRO_E_MFG_AXIS_DEF_COMP is as shown in the figure
below:

Element tree for PRO_E_MFG_AXIS_DEF_COMP element

1746 Creo® Parametric TOOLKITUser’s Guide

The following table lists the contents of PRO_E_MFG_AXIS_DEF_COMP
element.
Element ID Data Type Description
PRO_E_MFG_AXIS_DEF_COMP Compound Optional element. Specifies the

compound element for the axis
definition.

PRO_E_MFG_AXIS_DEF_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of the axis definition. The
valid values for this element are
defined in the enumerated type
ProAxisDefType and are as
follows:
• PRO_AXIS_DEF_TYPE_

UNDEF

• PRO_AXIS_DEF_BY

_PIVOT_REF

• PRO_AXIS_DEF_BY

_LOCATIONS

• PRO_AXIS_DEF_BY

_TWO_CONTOURS

• PRO_AXIS_DEF_BY_

NORM_SURF

PRO_E_MFG_AXIS_DEF_

PIVOT_REF

PRO_VALUE_TYPE_

SELECTION
Specifies the selection of the single
reference. You can select either a
point or an axis.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_

PIVOT_REF. This element is
ignored in all other cases.

PRO_E_MFG_AXIS_DEF_

NORM_SRF_COMP

Compound Specifies the normal surface

Production Applications: Creo NC Sequences, Operations and Work Centers 1747

Element ID Data Type Description
compound element.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_

NORM_SURF. This element is
ignored in all other cases.

PRO_E_MFG_AXIS_DEF_

NORM_SRF

PRO_VALUE_TYPE_

SELECTION
Specifies the selection of multiple
references. You can select surface,
quilt or feature.

Note

The quilt or feature must
represent a Mill surface, if
selected.

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_

NORM_SURF. This element is
ignored in all other cases.

PRO_E_MFG_AXDEF_NORM_

SURF_DIR

PRO_VALUE_TYPE_INT Specifies the normal surface
direction. The valid values for this
element are:
• PRO_B_TRUE—Specifies that

the direction opposite to the
normal to the surface is
selected for the element PRO_
E_MFG_AXIS_

DEF_NORM_SRF.

• PRO_B_FALSE—Specifies
that same direction as the
normal to the surface is
selected for the element PRO_
E_MFG_AXIS_

1748 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
DEF_NORM_SRF.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_

NORM_SURF. This element is
ignored in all other cases.

PRO_E_MFG_AXIS_DEF_

LOCATION_ARR

Array Specifies an array of locations.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_LOCATIONS. This
element is ignored in all other
cases.

PRO_E_MFG_AXIS_DEF_

LOCATION

Compound Mandatory element. Specifies the
compound element for the location
axis definition.

PRO_E_MFG_AXIS_DEF_

ORIGIN_REF

PRO_VALUE_TYPE_

SELECTION
Specifies the selection of the single
reference. You can either select a
point on a curve or an edge.

PRO_E_MFG_AXIS_DEF_

ORIENT_COMP

Compound Mandatory element. Specifies the
orientation compound element.

PRO_E_MFG_AXIS_DEF_

ORIENT_REF

PRO_VALUE_TYPE_

SELECTION
Specifies the single reference
selection. You can select either a
point or an axis.

Note

This element is mandatory, if
the elements PRO_E_MFG_
AXES_DEF_ANGLE_X and
PRO_E_MFG_AXES_DEF_

ANGLE_Y are not defined.
PRO_E_MFG_AXES_DEF_

ANGLE_X

PRO_VALUE_TYPE_DOUBLE Specifies the lead angle. The valid
range for this element is from —90

Production Applications: Creo NC Sequences, Operations and Work Centers 1749

Element ID Data Type Description
to +90.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_ORIENT_REF

is not defined.
PRO_E_MFG_AXES_DEF_

ANGLE_Y

PRO_VALUE_TYPE_DOUBLE Specifies the tilt angle. The valid
range for this element is from —90
to +90.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_ORIENT_REF

is not defined.
PRO_E_MFG_AXIS_DEF_LOC_

FLIP_OPT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
flip direction at a location. The
valid values for this element are:
• PRO_B_TRUE—Specifies that

the direction will be reversed.

• PRO_B_FALSE—Specifies
that the direction will remain
the same.

PRO_E_MFG_AXIS_DEF_LOC_

ALIGN_Z

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
alignment of the tool axis with the
Z axis of the step coordinate
system. Specify the value PRO_B_
TRUE to this element.

PRO_E_MFG_AXIS_DEF_

CURVE_COMP

Compound Specifies the compound element
for the pivot curve.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_TYPE is set to
the value PRO_AXIS_DEF_
BY_TWO_CONTOURS. This
element is ignored in all other
cases.

PRO_E_STD_CURVE_

COLLECTION_APPL
Chain Collection Mandatory element. Specifies a

general compound element for
chain collection.

PRO_E_MFG_AXIS_DEF_ Array Optional element. Specifies the

1750 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
SYNC_ARR synchronization array.
PRO_E_MFG_AXIS_DEF_

SYNC_COMP

Compound Optional element. Specifies the
synchronization compound
element.

PRO_E_MFG_AXIS_DEF_

SYNC_PNT_1

PRO_VALUE_TYPE_

SELECTION
Mandatory element. Specifies the
single reference selection. Select a
point on the trajectory curve.

PRO_E_MFG_AXIS_DEF_

SYNC_PNT_2

PRO_VALUE_TYPE_

SELECTION
Mandatory element. Specifies the
single reference selection. Select a
point on the pivot curve.

PRO_E_MFG_AXIS_DEF_

SYNC_FLIP_OPT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
flip direction.The valid values for
this element are:
• PRO_B_TRUE—Specifies that

the tool motion is flipped in the
reverse direction.

• PRO_B_FALSE—Specifies
that the direction will remain
the same.

PRO_E_MFG_AXIS_DEF_

FLIP_OPT

PRO_VALUE_TYPE_INT Specifies the flip direction. The
valid values for this element are:
• PRO_B_TRUE—Specifies that

the direction will be reversed.

• PRO_B_FALSE—Specifies
that the direction will remain
the same.

Tool Motion — Surface Trajectory
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnSrfTraj.h, and is shown in the following figure.

Production Applications: Creo NC Sequences, Operations and Work Centers 1751

Element tree for PRO_E_TOOL_MTN element

1752 Creo® Parametric TOOLKITUser’s Guide

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type. The valid value
for this element is PRO_TM_
TYPE_SURF_TRAJECTORY.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_TRAJ_SRFS Compound Specifies the drive surfaces
compound definition.

PRO_E_STD_SURF_
COLLECTION_APPL

Surface Collection Mandatory element. Specifies the
drive surfaces collection.

PRO_E_MFG_CUT_START_
PNT_REF

PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of a datum point or a
point on the bottom edges of the
machining surfaces. It allows the
machining to start at the location
which is nearest to the selected
point.

Note

This element is applicable
only when the machining
surfaces form a closed loop.

PRO_E_MFG_HELICAL_CUT_
OPT

PRO_VALUE_TYPE_INT Optional element. Specifies the
helical cut option. The valid values
for this element are:
• PRO_B_TRUE—Specifies that

helical option and parameters
will be applied.

• PRO_B_FALSE—Specifies
that helical option and
parameters will not be applied.

PRO_E_MFG_START_HEIGHT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of start height surface.

PRO_E_MFG_HEIGHT PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
multiple selections of height
surfaces.

PRO_E_MFG_OFFSET Compound Optional element. Specifies the
offset compound definition.

PRO_E_MFG_OFFSET_CUT PRO_VALUE_TYPE_INT Optional element. Specifies the

Production Applications: Creo NC Sequences, Operations and Work Centers 1753

Element ID Data Type Description
offset cut. The valid values for this
element are:
• PRO_B_TRUE—Tool offset

will be applied.
• PRO_B_FALSE—Tool offset

will not be applied.
PRO_E_MFG_MAT_TO_RMV PRO_VALUE_TYPE_INT Optional element. Specifies the

material side. The valid values for
this element are:
• PRO_MFG_DIR_SAME—

Default side will be used.
• PRO_MFG_DIR_

OPPOSITE—The default side
will be flipped.

PRO_E_MFG_DRV_SRF_DIR PRO_VALUE_TYPE_INT Optional element. Specifies the
flip drive Surface direction. The
valid values for this element are:
• PRO_B_FALSE—The default

direction on the drive surface
will be used.

• PRO_B_TRUE—The opposite
direction on the drive surface
will be used.

PRO_E_CHECK_SURF_COLL Compound Optional element. Specifies the
check surfaces compound
definition. The element tree for the
Checking Surfaces is defined in
the header file
ProMfgElemCheckSurf.h.
For more information, refer to the
section Checking Surfaces on page
1687 for more information on the
element tree.

PRO_E_MFG_AXIS_DEF_COMP Compound Optional element. Specifies the
compound element for the axis
definition.

PRO_E_MFG_AXIS_DEF_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the
type of the axis definition. The
valid values for this element are
defined in the enumerated type
ProAxisDefType and are as
follows:
• PRO_AXIS_DEF_TYPE_

UNDEF

• PRO_AXIS_DEF_BY_
PIVOT_REF

• PRO_AXIS_DEF_BY_
LOCATIONS

• PRO_AXIS_DEF_BY_TWO_
CONTOURS

• PRO_AXIS_DEF_BY_

1754 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
NORM_SURF

PRO_E_MFG_AXIS_DEF_
PIVOT_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of the
single reference. You can select
either a point or an axis.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_PIVOT_REF. This
element is ignored in all other
cases.

PRO_E_MFG_AXIS_DEF_
NORM_SRF

Compound Specifies the normal surface
compound element.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_

NORM_SURF. This element is
ignored in all other cases.

PRO_E_MFG_AXIS_DEF_
LOCATION_ARR

Array Specifies an array of locations.

Note

This element is mandatory,
only if the element PRO_E_
MFG_AXIS_DEF_TYPE is
set to the value PRO_AXIS_
DEF_BY_LOCATIONS. This
element is ignored in all other
cases.

PRO_E_MFG_AXIS_DEF_
LOCATION

Compound Mandatory element. Specifies the
compound element for the location
axis definition.

PRO_E_MFG_AXIS_DEF_
ORIGIN_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the selection of the
single reference. You can either
select a point on a curve or an
edge.

PRO_E_MFG_AXIS_DEF_
ORIENT_COMP

Compound Mandatory element. Specifies the
orientation compound element.

PRO_E_MFG_AXIS_DEF_
ORIENT_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the single reference
selection. You can select either a

Production Applications: Creo NC Sequences, Operations and Work Centers 1755

Element ID Data Type Description
point or an axis.

Note

This element is mandatory, if
the elements PRO_E_MFG_
AXES_DEF_ANGLE_X and
PRO_E_MFG_AXES_DEF_

ANGLE_Y are not defined.
PRO_E_MFG_AXES_DEF_
ANGLE_X

PRO_VALUE_TYPE_DOUBLE Specifies the lead angle. The valid
range for this element is from —
90 to +90.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_ORIENT_REF

is not defined.
PRO_E_MFG_AXES_DEF_
ANGLE_Y

PRO_VALUE_TYPE_DOUBLE Specifies the tilt angle. The valid
range for this element is from —
90 to +90.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_ORIENT_REF

is not defined.
PRO_E_MFG_AXIS_DEF_LOC_
FLIP_OPT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
flip direction at a location. The
valid values for this element are:
• PRO_B_TRUE—Specifies that

the direction will be reversed.
• PRO_B_FALSE—Specifies

that the direction will remain
the same.

PRO_E_MFG_AXIS_DEF_
CURVE_COMP

Compound Specifies the compound element
for the pivot curve.

Note

This element is mandatory, if
the element PRO_E_MFG_
AXIS_DEF_TYPE is set to
the value PRO_AXIS_DEF_
BY_TWO_CONTOURS. This
element is ignored in all other
cases.

1756 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_STD_CURVE_
COLLECTION_APPL

Chain Collection Mandatory element. Specifies a
general compound element for
chain collection.

PRO_E_MFG_AXIS_DEF_
SYNC_ARR

Array Optional element. Specifies the
synchronization array.

PRO_E_MFG_AXIS_DEF_
SYNC_COMP

Compound Optional element. Specifies the
synchronization compound
element.

PRO_E_MFG_AXIS_DEF_
SYNC_PNT_1

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
single reference selection. Select a
point on the trajectory curve.

PRO_E_MFG_AXIS_DEF_
SYNC_PNT_2

PRO_VALUE_TYPE_
SELECTION

Mandatory element. Specifies the
single reference selection. Select a
point on the pivot curve.

PRO_E_MFG_AXIS_DEF_
FLIP_OPT

PRO_VALUE_TYPE_INT Specifies the flip direction. The
valid values for this element are:
• PRO_B_TRUE—Specifies that

the direction will be reversed.
• PRO_B_FALSE—Specifies

that the direction will remain
the same.

PRO_E_MFG_TRAJ_CORNER_
COND

Compound Optional element. Specifies the
compound element for the corner
condition.

PRO_E_MFG_TRAJ_CORNER_
DFLT_TYPE

PRO_VALUE_TYPE_INT Specifies the default corner type.
The valid values for this element
are defined in the enumerated type
ProTmTrajCornerType and
are as follows:
• PRO_TM_TRAJ_CORNER_

TYPE_SHARP

• PRO_TM_TRAJ_CORNER_
TYPE_FILLET

• PRO_TM_TRAJ_CORNER_
TYPE_CHAMFER

• PRO_TM_TRAJ_CORNER_
TYPE_LOOP

• PRO_TM_TRAJ_CORNER_
TYPE_STRAIGHT

PRO_E_MFG_TRAJ_CORNER_
ARR

Array Optional element. Specifies an
array for the corner condition.

PRO_E_MFG_TRAJ_CORNER Compound Optional element. Specifies the
corner condition item.

PRO_E_MFG_TRAJ_CORNER_
TYPE

PRO_VALUE_TYPE_INT Specifies the default corner type.
The valid values for this element
are defined in the enumerated type
ProTmTrajCornerType and
are as follows:

Production Applications: Creo NC Sequences, Operations and Work Centers 1757

Element ID Data Type Description
• PRO_TM_TRAJ_CORNER_

TYPE_SHARP

• PRO_TM_TRAJ_CORNER_
TYPE_FILLET

• PRO_TM_TRAJ_CORNER_
TYPE_CHAMFER

• PRO_TM_TRAJ_CORNER_
TYPE_LOOP

• PRO_TM_TRAJ_CORNER_
TYPE_STRAIGHT

PRO_E_MFG_TRAJ_CORNER_
PREV_ID

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
previous Id for the corner.

PRO_E_MFG_TRAJ_CORNER_
NEXT_ID

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
next Id for the corner.

PRO_E_MFG_TRAJ_CORNER_
VAL

PRO_VALUE_TYPE_DOUBLE Specifies the fillet radius or the
chamfer dimension. The valid
range for this element is from 0 to
MAX_DIM_VALUE.

Note

This element is mandatory if
the corner type is set to PRO_
TM_TRAJ_CORNER_TYPE_

FILLET or PRO_TM_
TRAJ_CORNER_TYPE_

CHAMFER.

Tool Motion — Ramp Approach
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnRampAppr.h, and is shown in the following figure.

1758 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type. The valid value
for this element is PRO_TM_
TYPE_RAMP_APPROACH.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_PLUNGE—
Specifies a plunge feed type.
Plunge feed specifies the rate
at which the tool approaches
and plunges into the
workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the
workpiece.

Production Applications: Creo NC Sequences, Operations and Work Centers 1759

Element ID Data Type Description
PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an

array of manufacturing
parameters. Elements that define
the ramp exit motion are:
• EXIT_DIST

• EXIT_ANGLE

• RAMP_ANGLE

See the Creo NC help for more
information on manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_APPR_EXIT_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction for the ramp approach
type of tool exit. The direction is
defined by the enumerated data
type ProTmSideDir in
ProMfgOptions.h. The valid
values for this element are:
• PRO_TM_DIR_RIGHT_

SIDE

• PRO_TM_DIR_LEFT_SIDE

Tool Motion — Ramp Exit
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnRampExit.h, and is shown in the following figure.

1760 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type. The valid value
for this element is PRO_TM_
TYPE_RAMP_EXIT.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

Production Applications: Creo NC Sequences, Operations and Work Centers 1761

Element ID Data Type Description
PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an

array of manufacturing
parameters. Elements that define
the ramp exit motion are:
• EXIT_ANGLE

• TANGENT_LEAD_STEP

• NORMAL_LEAD_STEP

• LEAD_RADIUS

See the Creo NC help for more
information on manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_APPR_EXIT_DIR PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction for the ramp approach
type of tool exit. The direction is
defined by the enumerated data
type ProTmSideDirin
ProMfgOptions.h. The valid
values for this element are:
• PRO_TM_DIR_RIGHT_

SIDE

• PRO_TM_DIR_LEFT_SIDE

Tool Motion — Connect
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnConnect.h, and is shown in the following figure.

1762 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type used for the Creo
NC sequence. The valid value for
this element is PRO_TM_TYPE_
CONNECT.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_RETRACT—
Specifies a retract feed type.
Retract feed specifies the rate
at which the tool moves away
from the workpiece.

• PRO_TM_FEED_
APPROACH—Specifies an
approach feed type. Approach
feed specifies the rate at which
the tool approaches the

Production Applications: Creo NC Sequences, Operations and Work Centers 1763

Element ID Data Type Description
workpiece.

• PRO_TM_FEED_EXIT—
Specifies an exit feed type.
Exit feed specifies the rate at
which the tool leaves the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_AXIS_
MOVES

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
axis move attributes.

Tool Motion — Profile Mill Cut
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array is documented in the header file
ProMfgElemToolMtnProfileMillCut.h, and is shown in the following
figure.

Element tree for PRO_E_TOOL_MTN element

1764 Creo® Parametric TOOLKITUser’s Guide

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type. The valid value
for this element is PRO_TM_
TYPE_PROFILE_MILL_CUT.

PRO_E_TOOL_MTN_PROFILE_
TYPE

PRO_VALUE_TYPE_INT Specifies the type of the tool
motion profile. The values for this
element are defined by Pro_
MillProfCutType.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_MFG_CMP_APPROACH_
EXIT

Compound Optional element. Specifies
approach and exit compound
definition. For more information,
refer to the section Approach and
Exit on page 1689for more
information on the element tree.

Production Applications: Creo NC Sequences, Operations and Work Centers 1765

Element ID Data Type Description
PRO_E_MFG_START_HEIGHT PRO_VALUE_TYPE_

SELECTION
Optional element. Specifies the
starting height and selection of a
horizontal surface.

Note

This element is mandatory if
the element PRO_E_TOOL_
MTN_PROFILE_TYPE is set
to PRO_E_MILL_CUT_
FROM_TO. This element is
ignored otherwise.

PRO_E_MFG_HEIGHT PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
height and enables single surface
selection.

Note

This element is mandatory if
the element PRO_E_TOOL_
MTN_PROFILE_TYPE is set
to PRO_E_MILL_CUT_
FROM_TO,PRO_E_MILL_
CUT_UPTO and PRO_E_
MILL_CUT_ONE_SLICE.
This element is ignored
otherwise.

Tool Motion — Auto Cut
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnAutoCut.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.

1766 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type. The valid value
for this element is PRO_TM_
TYPE_AUTOMATIC_CUT.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

Tool Motion — CL Command
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnClCmd.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

Production Applications: Creo NC Sequences, Operations and Work Centers 1767

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type. The valid value
for this element is PRO_TM_
TYPE_CL_COMMAND.

PRO_E_TOOL_MTN_CL_CMD Compound This compound element defines
elements related to CL command.

PRO_E_TOOL_MTN_CL_
CMD_LOC_TYPE

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
CL command location types. The
valid values for this element are:
• PRO_CL_CMD_LOC_TYPE_

SEL—Specifies that the CL
command position is on tool
path.

Note

The value for the element
PRO_E_TOOL_MTN_

CL_CMD_PARAM must
be assigned.

• PRO_CL_CMD_LOC_TYPE_
BEGIN—Specifies that the CL
command position is at the
beginning of tool path.

• PRO_CL_CMD_LOC_TYPE_
CURR—Specifies that the CL
command position is at the last
point of the previous motion.

• PRO_CL_CMD_LOC_TYPE_
DTM_PNT—Specifies that the
CL command position is at the
projection of given point on
tool path.

Note

The element NCL_CMD_
LOC_

TYPE_DTM_PNT must
be defined.

• PRO_CL_CMD_LOC_TYPE_
ON_SURFACE— Specifies
that the CL command positions
are at intersection s of given

1768 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
surface and tool path.

Note

The element PRO_CL_
CMD_LOC_TYPE_ON_

SURFACE must be
defined

PRO_E_TOOL_MTN_CL_CMD_
STR

PRO_VALUE_TYPE_WSTRING Mandatory element. Specifies a
user specified string.

PRO_E_TOOL_MTN_CL_CMD_
PARAM

PRO_VALUE_TYPE_DOUBLE Specifies the range for the CL
command parameter. The valid
values for this element are 0 or 1.

Note

This element is mandatory
for PRO_CL_CMD_LOC_
TYPE_SEL location type.

PRO_E_TOOL_MTN_CL_CMD_
GEOM_REF

PRO_VALUE_TYPE_
SELECTION

Specifies the reference for a datum
point or a surface.

Note

This element is mandatory
for NCL_CMD_LOC_TYPE_
DTM_PNT and PRO_CL_
CMD_LOC_TYPE_ON_

SURFACE location types.
PRO_E_TOOL_MTN_CL_CMD_
SRF_OPT

PRO_VALUE_TYPE_INT Specifies the CL command surface
options. The valid values for this
element are:
• PRO_CL_COMMAND_ON_

FIRST_PASS—Specifies that
only the first pass is
considered for surface/tool
path intersection .

• PRO_CL_COMMAND_ON_
LAST_PASS—Specifies that
only the last pass is considered
for surface/tool path
intersection .

• PRO_CL_COMMAND_ON_
ALL_PASSES—Specifies that
all passes are considered for

Production Applications: Creo NC Sequences, Operations and Work Centers 1769

Element ID Data Type Description
surface/tool path intersection .

Note

This element is mandatory
for the element NCL_CMD_
LOC_TYPE_ON_SURFACE.

PRO_E_TOOL_MTN_CL_CMD_
ON_EXIST_PNT

PRO_VALUE_TYPE_INT The valid values for this element
are:
• PRO_B_TRUE—It places the

CL command at the nearest
existing point of the tool path;

• PRO_B_FALSE—Adds new
point to the tool path.

Note

This element is mandatory
for PRO_CL_CMD_LOC_
TYPE_DTM_PNT.

PRO_E_TOOL_MTN_PARENT_
REF_ID

PRO_VALUE_TYPE_INT Specifies the tool motion id of the
tool motion referred by the cl
command tool motion.

Note

This element is mandatory
for PRO_CL_CMD_LOC_
TYPE_SEL.

Tool Motion — Follow Cut
The compound element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_
MTN_ARR array and is documented in the header file
ProMfgElemToolMtnFollowCut.h. The Follow Cut tool Motion follows
the following types of tool motions in an array:
• PRO_TM_TYPE_CURVE_TRAJECTORY

• PRO_TM_TYPE_AREA_TURNING

• PRO_TM_TYPE_GROOVE_TURNING

• PRO_TM_TYPE_PROF_TURNING

• PRO_TM_TYPE_SURF_TRAJECTORY

• PRO_TM_TYPE_EDGE_TRAJECTORY

1770 Creo® Parametric TOOLKITUser’s Guide

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type. The valid value
for this element is PRO_TM_
TYPE_TRIM. The value for this
element is defined by
ProTmType.

PRO_E_MFG_PARAM_ARR Array Specifies an array of
manufacturing parameters. See the
Creo NC help for more
information on manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_TRIM_
VAL_OPT

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
value options. The valid values for
this element are:
• PRO_TM_TRIM_VAL_

PARAM—The input value is a
ratio parameter.

• PRO_TM_TRIM_VAL_

Production Applications: Creo NC Sequences, Operations and Work Centers 1771

Element ID Data Type Description
DIST—The input value is a
distance.

PRO_E_TOOL_MTN_TRIM_
START_VAL

PRO_VALUE_TYPE_DOUBLE Mandatory element. Specifies the
start parameter on tool path. The
range specifies by this element is
from [0., 1.].

PRO_E_TOOL_MTN_TRIM_
END_VAL

PRO_VALUE_TYPE_DOUBLE Mandatory element. Specifies the
end parameter on tool path. The
range specifies by this element is
from [0., 1.].

Note

The value for the element
PRO_E_TOOL_MTN_TRIM_

END_VAL must be greater
than PRO_E_TOOL_MTN_
TRIM_START_VAL

PRO_E_TOOL_MTN_TRIM_
FLIP_DIR

PRO_VALUE_TYPE_INT Mandatory element. Specifies the
direction of the tool motion. The
valid values for this element are:
• PRO_B_TRUE—Specifies

reversed direction.
• PRO_B_FALSE—Specifies

same direction.

Tool Motion — Plunge
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file ProMfgElemToolMtnPlunge.h,
and is as shown in the following figure:

1772 Creo® Parametric TOOLKITUser’s Guide

The following table describes the elements in the element tree for the approach
along tool axis feature.
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Species the

tool motion type . The valid value
for this element is Tool Motion
— Plunge on page 1772.

PRO_E_TOOL_MTN_FEED_
TYPE

PRO_VALUE_TYPE_INT Optional element. Specifies the
type of feed for the tool motion
using the enumerated data type
ProToolMtnFeedType. The
valid value for this element are:
• PRO_TM_FEED_FREE—

Specifies a free feed type. Free
feed specifies the rate at which
the tool moves in the
transverse motion, that is, the
non-cutting motion.

• PRO_TM_FEED_CUT—
Specifies a cut feed type. Cut
feed specifies the rate at which
the tool moves into the
workpiece.

• PRO_TM_FEED_PLUNGE—
Specifies a plunge feed type.
Plunge feed specifies the rate

Production Applications: Creo NC Sequences, Operations and Work Centers 1773

at which the tool approaches
and plunges into the
workpiece.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. The element tree for
the manufacturing parameter is
defined in the header file
ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

PRO_E_TOOL_MTN_OFFSET Compound Optional element. This compound
element specifies the offset value.

PRO_E_TOOL_MTN_X_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along X-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Y_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along Y-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE.

PRO_E_TOOL_MTN_Z_OFFSET PRO_VALUE_TYPE_DOUBLE Optional element. Specifies the
offset along Z-axis. This element
can range from negative to
positive values. The valid range
values for this element are from
-MAX_DIM_VALUE to MAX_
DIM_VALUE

PRO_E_TOOL_MTN_AXIS_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
axis selection.

Note

By default Z-axis of the Creo
NC sequence is used to
define the constraint plane.

1774 Creo® Parametric TOOLKITUser’s Guide

Tool Motion — Chamfer Milling
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnChamferMill.h, and is shown in the following
figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_CHAMFER_MILLING.
The value for this element is
defined by ProTmType.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

Production Applications: Creo NC Sequences, Operations and Work Centers 1775

Tool Motion — Cutline Milling
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnCutlineMill.h, and is shown in the following
figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_CUTLINE_MILLING.
The value for this element is
defined by ProTmType.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

1776 Creo® Parametric TOOLKITUser’s Guide

Tool Motion — Face Milling
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnFaceMill.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_FACE_MILLING. The
value for this element is defined
by ProTmType.

PRO_E_MFG_PARAM_ARR Array Optional element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

Note

This element is inherited
from Creo NC Sequence if
not specified.

PRO_E_MFG_CMP_APPROACH_
EXIT

Compound Optional element. Specifies the
approach and exit compound
definition. For more information,
refer to the section Approach and
Exit on page 1689.

Production Applications: Creo NC Sequences, Operations and Work Centers 1777

Tool Motion — Groove Milling
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnGrooveMill.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_GROOVE_MILLING. The
value for this element is defined
by ProTmType.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

1778 Creo® Parametric TOOLKITUser’s Guide

Tool Motion — Round Milling
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnRoundMill.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_ROUND_MILLING. The
value for this element is defined
by ProTmType.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

Production Applications: Creo NC Sequences, Operations and Work Centers 1779

Tool Motion — Thread Milling
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnThreadMill.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

tool motion type . The valid value
for this element is PRO_TM_
TYPE_THREAD_MILLING. The
value for this element is defined
by ProTmType.

PRO_E_MFG_PARAM_ARR Array Mandatory element. Specifies an
array of manufacturing
parameters. See the Creo NC help
for more information on
manufacturing parameters. The
element tree for the manufacturing
parameter is defined in the header
file ProMfgElemParam.h. For
more information, refer to the
section Manufacturing Parameters
on page 1677 for more
information on the element tree.

1780 Creo® Parametric TOOLKITUser’s Guide

Tool Motion — Volume Mill Cut
The element PRO_E_TOOL_MTN is a member of PRO_E_TOOL_MTN_ARR
array and is documented in the header file
ProMfgElemToolMtnVolMillCut.h, and is shown in the following figure.

Element tree for PRO_E_TOOL_MTN element

The following table lists the contents of PRO_E_TOOL_MTN element.
Element ID Data Type Description
PRO_E_TOOL_MTN_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specify the

tool motion type as PRO_TM_
TYPE_VOLUME_MILLING. The
value for this element is defined
by the enumerated
typeProTmType.

PRO_E_TOOL_MTN_PROFILE_
TYPE

PRO_VALUE_TYPE_INT Specifies the tool motion profile
type. The enumerated type
ProMillProfCutType defines
the valid values for this element

Production Applications: Creo NC Sequences, Operations and Work Centers 1781

Element ID Data Type Description
which are as follows:
• PRO_E_MILL_CUT_FULL_

DEPTH— Specifies that the
entire depth of the mill cut is
machined.

• PRO_E_MILL_CUT_FROM_
TO— Specifies that the
machining depth is limited by
the specified start and the end
references.

• PRO_E_MILL_CUT_UPTO—
Specifies that the machining
depth is limited by the
specified end reference.

• PRO_E_MILL_CUT_ONE_
SLICE— Specifies the
machining of a single slice cut.

PRO_E_MFG_PARAM_ARR Array Optional element. Defines an array
of manufacturing parameters. For
more information, refer to the
section Manufacturing Parameters
on page 1677. This element is
inherited from the Creo NC
Sequence, if not specified.

PRO_E_MFG_CMP_APPROACH_
EXIT

Compound Specifies the approach and exit
motions. This optional element is
defined in the header file
ProMfgElemApproachEx
it.h. For more information, refer
to the section Approach and Exit
on page 1689.

PRO_E_MFG_START_HEIGHT PRO_VALUE_TYPE_
SELECTION

Optional element. Select the
horizontal surface from where
machining will begin.

Note

This element is mandatory
only if the element PRO_E_
TOOL_MTN_PROFILE_

TYPE is set to PRO_E_
MILL_CUT_FROM_TO.

PRO_E_MFG_HEIGHT PRO_VALUE_TYPE_
SELECTION

Select a single surface where the

1782 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
machining will begin.

Note

This element is mandatory
only if the element PRO_E_
TOOL_MTN_PROFILE_

TYPE is set to PRO_E_
MILL_CUT_FROM_TO, or
PRO_E_MILL_CUT_UPTO,
or PRO_E_MILL_CUT_
ONE_SLICE.

PRO_E_VOL_MILL_REGION_
ARR

Array Optional element. Specifies an
array of region specifications.
Define this element to overwrite
the default order of machining of
different areas

PRO_E_VOL_MILL_REGION Compound Specifies a compound element that
defines the volume milling region.

PRO_E_VOL_MILL_REGION_
SKIP_OPT

PRO_VALUE_TYPE_INT Specifies the skipping option for
the region. The valid values for
this element are:
• PRO_B_TRUE—Specifies that

the region will be skipped
while machining.

• PRO_B_FALSE—Specifies
that the region will not be
skipped while machining.

PRO_E_VOL_MILL_AP_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of a vertical datum axis,
or a datum point. This element
defines a location for the region to
make an approach move.

PRO_E_VOL_MILL_EX_REF PRO_VALUE_TYPE_
SELECTION

Optional element. Specifies the
selection of a vertical datum axis,
or a datum point. This element
defines a location for the region to
make an exit move.

Production Applications: Creo NC Sequences, Operations and Work Centers 1783

64
Production Applications: Process

Planning
Process Step Objects .. 1785
Visiting Process Steps ... 1785
Process Step Access... 1785
Creating Process Steps ... 1786

This chapter describes how to use the Creo Parametric TOOLKIT functions for
assembly process operations. It assumes that you are familiar with the
functionality of Manufacturing Process Planning for ASSEMBLIES.

1784 Creo® Parametric TOOLKITUser’s Guide

Process Step Objects
Function Introduced:

• ProProcstepInit()
Process steps are represented by the object ProProcstep, which is an instance
of ProModelitem. The object ProProcstep describes the contents and
ownership of a assembly process step.
The declaration is as follows:

typedef struct pro_model_item
{

ProType type;
int id;
ProMdl owner;

} ProProcstep;

To create a new process step handle, use the function ProProcstepInit().

Visiting Process Steps
Function Introduced:

• ProProcstepVisit()
The function ProProcstepVisit() enables you to visit all the process steps
in the specified solid. For a detailed explanation of visiting functions, see the
section Visit Functions on page 62 in the Fundamentals on page 22 chapter.

Process Step Access
Functions Introduced:

• ProProcstepActiveGet()
• ProProcstepActiveSet()
• ProProcstepNumberGet()
These functions access the process step objects.
The functions ProProcstepActiveGet() and
ProProcstepActiveSet() enable you to get and set the current active
process step.
The function ProProcstepNumberGet() retrieves the process step number
for the specified solid and process step.

Production Applications: Process Planning 1785

Creating Process Steps
To create an assembly process step, use the function ProFeatureCreate().
As with any other type of feature, you use the element tree to create a process step
feature.
This chapter describes the basic principles of programmatic process step creation.
The chapter Element Trees: Principles of Feature Creation on page 764 is a
necessary background for this topic; therefore, you should read that chapter first.
The element tree for a process step feature is documented in the header file
ProProcstep.h and has a fairly simple structure, as shown in the following
figure. You can also create a copy of the feature element tree of an existing
process step feature by calling the function
ProFeatureElemtreeExtract() with an input feature of type
ProProcstep.
The following figure shows the element tree of a process step feature.

Element Tree of Process Step Feature

1786 Creo® Parametric TOOLKITUser’s Guide

Feature Elements
The following table describes the tree elements in more detail.
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT PRO_FEAT_PROCESS_STEP

PRO_E_PROCESS_STEP_TYPE PRO_VALUE_TYPE_INT See Types of Process Step on page
1787

PRO_E_COMPONENTS PRO_VALUE_TYPE_
SELECTION

Step components

PRO_E_DESCRIPTION PRO_VALUE_TYPE_WSTRING Step description
PRO_E_POSITION PRO_VALUE_TYPE_

TRANSFORM
Position transformation

PRO_E_GEN_STEP_TYPE PRO_VALUE_TYPE_WSTRING General step type
PRO_E_GEN_STEP_REFS PRO_VALUE_

TYPESELECTION_
General step references

PRO_E_SIMPLFD_REP PRO_VALUE_TYPE_INT Simplified representation identifier
PRO_E_EXPLODE_STATE PRO_VALUE_TYPE_INT Explode state identifier
PRO_E_TIME_ESTIMATE PRO_VALUE_TYPE_DOUBLE Time estimate (greater than 0.0)
PRO_E_COST_ESTIMATE PRO_VALUE_TYPE_DOUBLE Cost estimate (any value)

Types of Process Step
The types of process step are as follows:

• PRO_PROCSTEP_ASSEMBLE—Step to assemble components
• PRO_PROCSTEP_DISASSEMBLE—Step to disassemble components
• PRO_PROCSTEP_REASSEMBLE—Step to reassemble components
• PRO_PROCSTEP_REPOSITION—Step to reposition components
• PRO_PROCSTEP_GENERAL—General step (default or user-defined types)

Optional Elements
The following elements in the tree are optional for all types of process step:

• PRO_E_DESCRIPTION

• PRO_E_SIMPLFD_REP

• PRO_E_EXPLODE_STATE

• PRO_E_TIME_ESTIMATE

• PRO_E_COST_ESTIMATE

For a detailed explanation of explode states and related functions, see the section
Exploded Assemblies on page 1141 in the Assembly: Basic Assembly Access on
page 1130 chapter.

Production Applications: Process Planning 1787

General Process Steps
The following two elements are used for general process steps (type PRO_
PROCSTEP_GENERAL) only:

• PRO_E_GEN_STEP_TYPE—Default types, as well as user-defined types
• PRO_E_GEN_STEP_REFS—The following are valid reference types:

○ PRO_PART

○ PRO_FEATURE

○ PRO_SURFACE

○ PRO_EDGE

○ PRO_CURVE

○ PRO_AXIS

○ PRO_CSYS

○ PRO_POINT

Reposition Process Steps
The element PRO_E_POSITION is used for reposition process steps. It defines
the transformation of the repositioned components.

1788 Creo® Parametric TOOLKITUser’s Guide

65
Production Applications: NC

Process Manager
Overview .. 1790
Accessing the Process Manager... 1790
Manufacturing Process Items ... 1792
Parameters... 1796
Manufacturing Features ... 1799
Import and Export of Process Table Contents .. 1799
Notification.. 1800

1789

Overview
The Process Manager functionality is based on the Process Table, which lists all
the manufacturing process objects, such as workcells, operations, fixture setups,
tooling, and NC sequences.
The Process Table lets you create new manufacturing objects and modify
properties of existing ones. You can create new Holemaking and some milling
steps directly in the Process Table. Steps of other types, that is, NC Sequences
created outside the Process Manager, are also listed in the Process Table. You can
manipulate the NC Sequences like any other steps, for example, reorder or
duplicate them. However, customizations done to the toolpath outside the Process
Table will be lost as a result of manipulation.
You can also define manufacturing templates based on existing Milling and
Holemaking steps, and use these templates to create manufacturing steps in a
different model.
You can add manufacturing templates as annotations to the reference part. This
way, when you bring a reference part into a manufacturing model, the annotation
can be automatically extracted into the manufacturing process to create the
necessary steps, complete with tooling, parameters, and geometric references.

Accessing the Process Manager
You can access the Process Manager in Creo Parametric in the Manufacturing
Mode via Creo Parametric TOOLKIT as follows:

• When the process manager dialog box is not active.
• When the process manager dialog box is active.

Accessing the Process Manager when the Dialog
Box is not Active
You can access and modify the contents of the process manager without opening
the Process Manager User Interface or while editing a manufacturing model in
Creo Parametric.
Functions Introduced:

• ProMfgProctableEnable()
• ProMfgProctableDisable()
The function ProMfgProctableEnable() ensures that the process manager
database is prepared for access or modification by Creo Parametric TOOLKIT
functions. The application must call the function
ProMfgProctableEnable() before using the process manager APIs
discussed in the following sections.

1790 Creo® Parametric TOOLKITUser’s Guide

The function ProMfgProctableDisable() enables Creo Parametric to
perform cleanup of data that was loaded while calling the function
ProMfgProctableEnable().

Accessing the Process Manager User Interface
You can add new items to the Process Manager User Interface using a Creo
Parametric TOOLKIT application. The Creo Parametric TOOLKIT application
should register the new user interface items in Creo Parametric before you open
the Process Manager dialog box. Once the dialog box is opened, Creo Parametric
automatically adds the registered menu buttons and menus to the dialog box.
Functions Introduced:

• ProMfgproctableMenuAdd()
• ProMfgproctablePushbuttonAdd()
• ProMfgproctableItemAccessFunction
• ProMfgproctableItemActionFunction
• ProMfgproctableSelecteditemsGet()
• ProMfgproctableSelecteditemsSet()
• ProMfgproctableDisplayUpdate()
The function ProMfgproctableMenuAdd() adds a new menu or submenu to
an existing menu in the process manager user interface.
The function ProMfgproctablePushbuttonAdd() adds a new button at
the end of the existing menu in the Process Manager user interface. When adding
a new menu button, you must supply two callback functions whose signature
matches ProMfgproctableItemAccessFunction and
ProMfgproctableItemActionFunction respectively.
The function whose signature matches
ProMfgproctableItemAccessFunction sets the access state for the
button in the process manager dialog box. The function whose signature is similar
to ProMfgproctableItemActionFunction provides the implementation
for the new menu button.
Use the functions ProMfgproctableSelecteditemsGet() and
ProMfgproctableSelecteditemsSet() in the context of menu buttons
added to the Process Manager. These functions provide access to the steps,
operations and workcells that are currently selected by the user in the Process
Manager dialog box. This information can guide the application as to which items
it should modify. Select the appropriate type of table for the selected item to be
able to determine the subtype of the process item.
These functions can be used out of context of the menu addition APIs as well.

Production Applications: NC Process Manager 1791

The function ProMfgproctableDisplayUpdate() refreshes the Process
Manager dialog box. It allows the application to update the contents of the process
table after some changes have been made during a custom menu button action.

Manufacturing Process Items
This section gives you more information on the handles that are provided to
enable access to process item data.

Steps, Operations and Workcells
An NC sequence is an assembly feature that represents a single tool path. NC
sequences listed in the Process Table are called steps.
An operation is a series of NC sequences performed in a particular workcell and
using a particular coordinate system for output of Cutter Location data.
Aworkcell is a machine tool definition and is stored in the assembly.
The object ProMfgprocItem will be used for all functions that operate on
steps, operations, and workcells. This item is a derivative of ProModelitem
and is defined as
typedef struct pro_model_item
{
ProType type;
int id;
ProMdl owner;
}ProMfgprocItem;

For all three item types, the ProType field should be PRO_NC_PROCESS_
ITEM.

Step Models
The Step Model object represents the default properties of steps in the process
manager and is a derivative of the ProModelitem and is defined as typedef
struct pro_model_item.
{
ProType type;
int id;
ProMdl owner;
}ProMfgprocItem;

Step objects have a step id, the Mfg owner, and the ProType field as PRO_
NC_PROCESS_MODEL.

1792 Creo® Parametric TOOLKITUser’s Guide

Determining the Subtype of a Process Item
Function Introduced:

• ProMfgprocitemSubtypeGet()
The function ProMfgprocitemSubtypeGet() returns the subtype of a
manufacturing process item. It could be one of the following:

• PRO_MFGPROCITEM_STEP—Specifies if the subtype is a step.
• PRO_MFGPROCITEM_OPERATION—Specifies if the subtype is an

operation.
• PRO_MFGPROCITEM_WORKCELL—Specifies if the subtype is a workcell.

Accessing Details of Process Items
Although a ProMfgprocItem is not a feature, it shares many properties with
Creo Parametric TOOLKIT features. In fact, process items generally map one-to-
one with a specified manufacturing feature. Because of this, many of the process
item’s properties can be accessed via the corresponding manufacturing feature
element tree. Also, new items may be created by populating the element tree for
the new step, operation or workcell.

Visiting Steps, Operations and Workcells
Functions Introduced:

• ProMfgProctableVisit()
• ProMfgprocitemVisitAction()
• ProMfgprocitemFilterAction()
The function ProMfgProctableVisit() enables you to visit the steps,
workcells, and operations in a process table. As with other Creo Parametric
TOOLKIT visit functions, specify the visit action and visit filter functions. For
more information on Visit Functions, refer to the chapter Fundamentals on page
22.

Creating Steps, Operations, and Workcells
Functions Introduced:

• ProMfgprocitemCreate()
• ProMfgprocitemFromTemplateCreate()
Use the function ProMfgprocitemCreate() to create a new step, operation,
or workcell in the process table. The input arguments of this function are:

Production Applications: NC Process Manager 1793

• model—Specifies the manufacturing model in which to create the new item.
• table_type—Specifies the type of table where the item will reside. The valid

values are:

○ PRO_MFGPROCTABLE_PROCESS—Specifies the process table.
○ PRO_MFGPROCTABLE_WORKCELLS—Specifies the workcell table.

• elem_tree—Specifies the manufacturing feature element tree used to
enumerate the properties of the new manufacturing item. To create a step you
must fill one of the following element trees:

○ Milling and Drilling—The element tree documented in header file
ProNcseq.h.

○ Fixture—The element tree documented in header file ProFixture.h.
○ Assembly setup step—The element tree documented in header file

ProFixture.h.

To create an Operation you must fill out the element tree documented in
header file ProMfgoper.h.

To create a Workcell you must fill the element tree documented in header file
ProWcell.h.

• predecessor—Specifies the step or operation immediately before the new
manufacturing item in the process table. When creating workcells, this can be
NULL.

The function ProMfgprocitemCreate() returns the new manufacturing
item.
Use the function ProMfgprocitemFromTemplateCreate() to create a
new manufacturing step or workcell from a predefined template. A template is an
XML file containing information necessary to create the manufacturing step or
workcell, such as:

• Resources, that is, workcells, tools, and fixtures
• Ordered operations
• Ordered steps and their reference information such as manufacturing templates

and manufacturing criteria.
• Retract plane for a step or an operation, as a distance calculated from the step

coordinate system.

Accessing the Properties of Manufacturing Process
Items
The functions described below enable you to access the properties of process
items.

1794 Creo® Parametric TOOLKITUser’s Guide

Functions Introduced:

• ProMfgprocitemFeatureGet()
• ProMfgprocitemElemtreeGet()
• ProMfgprocitemElemtreeFree()
• ProMfgprocitemAnnotationGet()
• ProMfgprocitemReorderlimitsGet()
• ProMfgprocitemNextitemGet()
• ProMfgprocitemPreviousitemGet()
• ProMfgprocitemHolesetdepthGet()
• ProMfgprocitemHolesetdepthtypeGet()
• ProMfgprocitemHolesetdepthSet()
• ProMfgprocitemDefaultfixturesetupstepGet()
The function ProMfgprocitemFeatureGet() returns the feature referenced
by the process item. If the item is related to an actual manufacturing feature, some
of the access functions that follow will not be supported. The properties of the
item can be obtained by reading the feature’s properties and element tree.
The function ProMfgprocitemElemtreeGet() obtains the element tree for
a manufacturing item. This tree should be freed using
ProMfgprocitemElemtreeFree().
The function ProMfgprocitemAnnotationGet() returns the annotation
element that created the process item.
The function ProMfgprocitemReorderlimitsGet() identifies the limits
where the specified process item may be moved in the process table. The top limit
represents the first process item after which you can insert the step. The lower
limit, if any, represents the first process item that must come after the step in the
process sequence.
The limits of reorder are based on step dependencies and priority and prerequisite
rules. The input argument options specifies the checks to determine the position of
reordering the process item elements. The valid values are:

• PRO_MFGPROCREORDER_CHECK_PARENT_CHILD

• PRO_MFGPROCREORDER_CHECK_PREREQUISITES

• PRO_MFGPROCREORDER_CHECK_PRIORITIES

The function ProMfgprocitemNextitemGet() returns the process item
following the specified item in the process table.
The function ProMfgprocitemPreviousitemGet() returns the process
item preceding the specified process item in the process table.

Production Applications: NC Process Manager 1795

The function ProMfgprocitemHolesetdepthtypeGet() returns the type
of holeset and holeset end reference contained in the manufacturing process step.
The output argument end_type can have the following values:

• PRO_MFGSTEP_HOLESETEND_REFERENCE—Specifies the end reference
surface for the hole depth.

• PRO_MFGSTEP_HOLESETEND_ALONG_AXIS—Specifies the end reference
by entering a depth value along the hole axis.

The function ProMfgprocitemHolesetdepthGet() returns the process
item holeset depth for a holeset of type BLIND and end reference type of ALONG
AXIS.
The function ProMfgprocitemHolesetdepthSet() sets the holeset depth
for a step. This function supports steps with only one holeset. The holeset type
must be BLIND and the end reference type will be changed to ALONG AXIS after
using this function.
The function ProMfgprocitemDefaultfixturesetupstepGet()
returns the fixture setup defined for the specified operation.

Modifying Process Items
Functions Introduced:

• ProMfgprocitemRedefine()
• ProMfgprocitemDelete()
• ProMfgprocitemReorder()
Use the function ProMfgprocitemRedefine() to redefine the
manufacturing item created using an element tree.
The function ProMfgprocitemDelete() deletes the specified step,
operation, or workcell from the manufacturing table.
The function ProMfgprocitemReorder() reorders a step or operation
within the process table.

Parameters
Several categories of parameters are accessible for items in the process manager
table:

• Manufacturing parameters
• AE parameters
• Step parameters
• Template parameters

1796 Creo® Parametric TOOLKITUser’s Guide

• Special parameters
• Global Parameters

Manufacturing Parameters
You can access the manufacturing parameters by reading or writing the
manufacturing feature or step element tree.

Annotation Element Parameters
You can access the annotation element parameters by getting the parent
Annotation Element via ProMfgprocitemAnnotationGet() and reading
parameters from that object. Refer to the chapter Parameters for details on how to
read parameters from items such as annotation elements.

Step Parameters and Relations
Step Parameters are parameters assigned to the step object. You can define
parameters and relations to a particular step in the process table.
You can access these parameters by reading them directly from the step object
using the standard parameter functions.
Refer to the chapter Parameters for details on how to read parameters from items.

Template Parameters
Template parameters are inherited from the step’s process template.
Function Introduced:

• ProMfgprocitemTemplateparamGet()
The function ProMfgprocitemTemplateparamGet() obtains a template
parameter value for the process item.

Special Parameters
Other special parameters are properties of steps and can include the extract status,
machining time, the template name, and so on. Some of these properties may be
also accessible via the step element tree.
Functions Introduced:

• ProMfgprocitemPropertyGet()
• ProMfgprocitemPropertySet()

Production Applications: NC Process Manager 1797

The function ProMfgprocitemPropertyGet() returns the value of the
special property of the process manager step or operation. The special property
can be as follows:

• PRO_MFGPROP_EXTRACT_STATUS—Specifies the extraction priority of
the step.

• PRO_MFGPROP_ACTUAL_MACHINING_TIME—Specifies the machining
time of a step.

• PRO_MFGPROP_ACTUAL_MACHINING_LENGTH— Specifies the
machining distance of a step.

• PRO_MFGPROP_TEMPLATE_NAME—Specifies the name of the
manufacturing template used.

• PRO_MFGPROP_GROUP_LEVEL_1—Specifies a merge group created by
merging several Holemaking steps together, to optimize the tool path.

• PRO_MFGPROP_GROUP_LEVEL_2—Specifies a merge group created by
merging PRO_MFGPROP_GROUP_LEVEL_1 type merge groups together.

ProMfgprocitemPropertyGet()returns string values for PRO_
MFGPROP_GROUP_LEVEL_1 and PRO_MFGPROP_GROUP_LEVEL_2
depending on the location of the process manager step in the merged group. The
following table lists all the possible values taken by the special properties.
Step Location Value returned for Value returned for
If the step is a merge leader, but
not a merge member.

“*leader” Empty string

If the step is both a merge leader
and merge member.

Name of the parent merge leader “*leader”

If the step is merge member, but not a merge leader.
Case 1: It is a two level merge. For
example, the parent itself is a
merge member.

Name of the top merge leader Name of the parent merge leader

Case 2: It is a one level merge Name of the parent merge leader Empty string
If the step is neither merge leader
nor a merge member.

Empty string Empty string

The function ProMfgprocitemPropertySet() sets the value of the special
property of the process manager step or operation.

Global Parameters and Relations
Function Introduced:

• ProMfgProctablemodelGet()
The function ProMfgProctablemodelGet() obtains the process model that
provides access to the manufacturing global parameters.

1798 Creo® Parametric TOOLKITUser’s Guide

You can use this function to specify parameters and relations to all or selected
steps in the process table. The modelitem handle returned by this function can
be used to access the Global parameters of the process table.

Manufacturing Features
Functions Introduced:

• ProMfgproctableFeaturesCreate()
• ProMfgproctableFeaturesDelete()
The function ProMfgproctableFeaturesCreate() creates features for
items in the process manufacturing table.
The function ProMfgproctableFeaturesDelete() deletes all existing
manufacturing features from the Creo Parametric model while keeping everything
in the process manager unchanged.

Import and Export of Process Table
Contents
Functions Introduced:

• ProMfgProctableWrite()
• ProMfgProctableSynchronize()
The function ProMfgProctableWrite() exports the contents of the
manufacturing process table to CSV format. The input arguments of the function
are:

• mfg—Specifies the manufacturing model.
• table_type—Specifies the type of table to be generated as output. The valid

values are:

○ PRO_MFGPROCTABLE_PROCESS

○ PRO_MFGPROCTABLE_WORKCELLS

• view_name—Specifies the view name in the setup file; pass NULL to use the
current view.

• output_file—Specifies the full path and name of the output file.
The function ProMfgProctableSynchronize() synchronizes the
manufacturing table with the input CSV file.

Production Applications: NC Process Manager 1799

Notification
Function Introduced:

• ProMfgproctableExtractionPostAction
The notification ProMfgproctableExtractionPostAction identifies
when the user has extracted the process table in order to form manufacturing
features. It provides the path to the extraction log file, which can be examined by
the application for further information.

Example 1: To Add Menu Button to The
Manufacturing Process Table
This example enables you to add the Highlight Prereq and the Update Speed and
Feed options respectively, to the Tools menu in the Manufacturing Process Table.
/*==*\
FUNCTION : user_initialize()
PURPOSE :

==/
int user_initialize(

int argc,
char *argv[],
char *version,
char *build,
wchar_t errbuf[80])

{
uiCmdCmdId cmd_id;
PTUtilInitCounters();

status = ProMfgproctablePushbuttonAdd ("Tools","Highlight Prereq",
L"Highlight Prereq",

L"button_helptext",NULL,
PTMfgProctableItemActionPreReq,

"Callback on the new submenu added in
existing menu");
PT_TEST_LOG_SUCC("ProMfgproctablePushbuttonAdd");

status = ProMfgproctablePushbuttonAdd ("Tools","Update Feed & Speed",
L"Update Feed & Speed",

L"button_helptext",NULL,
PTMfgProctableItemFeedSpeed,

"Callback on the new submenu added in
existing menu");
PT_TEST_LOG_SUCC("ProMfgproctablePushbuttonAdd");

return (PRO_TK_NO_ERROR);
}

1800 Creo® Parametric TOOLKITUser’s Guide

The image above displays the Highlight Prereq and Update Feed & Speed menu
buttons added to the Tools menu in the Manufacturing Process Table. When you
click the Highlight Prereq option the function
PTMfgProctableItemActionPreReq is invoked. The following example
deals with this function in detail.

Example 2: To Highlight the Pre-requisites for the
Selected Step in The Manufacturing Process Table
This example enables you to highlight the pre-requisites for the selected step in
the Manufacturing Process Table.
/*==*\

FUNCTION : PTMfgProctableItemActionPreReq
PURPOSE : Execute Highlighting of Pre-Requisite steps

==/
ProError PTMfgProctableItemActionPreReq (ProMfg mfg, char* button_name,

ProAppData appdata)
{

ProElement elem_tree;

Production Applications: NC Process Manager 1801

status = PTMfgProcitemElemtreeGet(&elem_tree);
PT_TEST_LOG_SUCC("PTMfgProcitemElemtreeGet");

if (status == PRO_TK_NO_ERROR)
{

status = ProElemtreeWrite (elem_tree, PRO_ELEMTREE_XML,
L"selecteditem_prereq.inf");

PT_TEST_LOG_SUCC (" ProElemtreeWrite ");

if (status == PRO_TK_NO_ERROR)
{

status = ProElemtreeElementVisit(elem_tree, (ProElempath)NULL ,
(ProElemtreeVisitFilter) NULL,
(ProElemtreeVisitAction) PTMfgElemtreePreReqAction,

NULL);
PT_TEST_LOG_SUCC (" ProElemtreeElementVisit ");

}

}

return PRO_TK_NO_ERROR;
}

1802 Creo® Parametric TOOLKITUser’s Guide

Example 3: To Update Feed and Spindle Speed
When you click the Update Speed and Feed options in the Tools menu in the
Manufacturing Process Table, the function
PTMfgProctableItemFeedSpeed is invoked. This sample code enables you
to change the cut feed and the spindle speed for the specified tool.
/*==*\

FUNCTION : PTMfgProctableItemFeedSpeed()
PURPOSE : Execute Feed/Speed

==/
ProError PTMfgProctableItemFeedSpeed (ProMfg mfg, char* button_name
, ProAppData appdata)
{
ProAssembly r_solid_obj;
ProMdl mfg_mdl_under_test;
ProElempath epath;
ProElement params_element;
ProElempathItem p_items[3];
ProElemId elem_id;
ProValueDataType value_type = -1;
ProValue value = (ProValue)NULL;
ProValueData value_data;
status =ProMdlCurrentGet(&mfg_mdl_under_test);
PT_TEST_LOG_SUCC("ProMdlCurrentGet");

status = PTMfgProcitemElemtreeGet(&complete_tree);
PT_TEST_LOG_SUCC("PTMfgProcitemElemtreeGet");

if (status == PRO_TK_NO_ERROR)
PTMfgProcitemToolNameGet(complete_tree);

if (status == PRO_TK_NO_ERROR)
{

status = ProElempathAlloc(&epath);
PT_TEST_LOG_SUCC ("ProElempathAlloc ()");

p_items[0].type = PRO_ELEM_PATH_ITEM_TYPE_ID;
p_items[0].path_item.elem_id = PRO_E_MFG_PARAMS ;

status = ProElempathDataSet(epath, p_items, 1);
PT_TEST_LOG_SUCC ("ProElempathDataSet()");
status= ProElemtreeElementGet(complete_tree, epath,

¶ms_element);
PT_TEST_LOG_SUCC ("ProElemtreeElementGet()");

if (status == PRO_TK_NO_ERROR)
{

status = ProElemtreeElementVisit(params_element,NULL,
(ProElemtreeVisitFilter) NULL,
(ProElemtreeVisitAction)
PTMfgElemtreeWalkthroughAction,

Production Applications: NC Process Manager 1803

NULL);
PT_TEST_LOG_SUCC (" ProElemtreeElementVisit ");

}
ProElempathFree(&epath); }

status = ProMfgAssemGet(mfg_mdl_under_test,&r_solid_obj);
PT_TEST_LOG_SUCC ("ProMfgAssemGet");

status = ProSolidFeatVisit ((ProSolid)r_solid_obj,
(ProFeatureVisitAction)PTMfgMaterialGet,
NULL,
NULL);
PT_TEST_LOG_SUCC ("ProSolidFeatureVisit()");

status = PTMfgDialogCreate(params_element);
PTUtilInitCounters();
return PRO_TK_NO_ERROR;

}

The section below describes the action functions for the each of the preceding
sample code.
/***********************ACTION FUNCTIONS*************************/
/*--*\

FUNCTION : PTMfgElemtreeWalkthroughAction()
PURPOSE : Action function for PTUtilElemtreeWalkthroug

--/
ProError PTMfgElemtreeWalkthroughAction (ProElement params_element,

ProElement element, ProElempath elem_path,
ProAppData app_data)

{ ProElempathItem p_items[3];
ProValueDataType value_type = -1;
ProElemId elem_id,p_elem_id; char * actual_value;
ProValue value = (ProValue)NULL;
ProValueData value_data; Data_Input *my_data;
ProElempath epath; my_data = (Data_Input*) app_data;
status = ProElementIdGet(element, &elem_id);
PT_TEST_LOG_SUCC("ProElementIdGet");

if (elem_id == PRO_E_MFG_PARAM_NAME)

1804 Creo® Parametric TOOLKITUser’s Guide

{ status = ProElementValuetypeGet (element, &value_type);
PT_TEST_LOG(" ProElementValuetypeGet ", status,

status != PRO_TK_NO_ERROR && status != PRO_TK_INVALID_TYPE &&
status != PRO_TK_EMPTY);

if(value_type ==PRO_VALUE_TYPE_STRING)
{ status = ProElementStringGet(element,(ProElementStringOptions)

NULL,
&actual_value);

PT_TEST_LOG_SUCC (" ProElementStringGet ");
if ((strcmp ("CUT_FEED",actual_value) == 0)

||(strcmp ("SPINDLE_SPEED",actual_value) == 0))
{
status = ProElempathAlloc(&epath);

PT_TEST_LOG_SUCC ("ProElempathAlloc ()");
p_items[0].type = PRO_ELEM_PATH_ITEM_TYPE_INDEX;

p_items[0].path_item.elem_index = count;
p_items[1].type = PRO_ELEM_PATH_ITEM_TYPE_ID;
p_items[1].path_item.elem_id = PRO_E_MFG_PARAMVAL;

status = ProElempathDataSet(epath, p_items, 2);
PT_TEST_LOG_SUCC ("ProElempathDataSet()");
status= ProElemtreeElementGet(params_element, epath, &p_element);
PT_TEST_LOG_SUCC ("ProElemtreeElementGet()");

status = ProElementIdGet(p_element, &p_elem_id);
PT_TEST_LOG_SUCC (" ProElementIdGet ");

if (p_elem_id ==PRO_E_MFG_PARAMVAL)
{

status = ProElementValueGet (p_element, &value);
PT_TEST_LOG_SUCC("ProElementValueGet");

status = ProValueDataGet (value, &value_data);
PT_TEST_LOG("ProValueDataGet()", status,

(status != PRO_TK_NO_ERROR));
if (strcmp ("CUT_FEED",actual_value) == 0)

{ cut_feed = value_data.v.d;
if (FLAG == 1)

{ value_data.v.d = my_data-cut_feed;
status = ProValueDataSet (value, &value_data);
PT_TEST_LOG("ProValueDataSet()", status,
(status != PRO_TK_NO_ERROR));
status = ProElementValueSet (p_element, value);
PT_TEST_LOG_SUCC("ProElementValueGet");

}
}

if (strcmp ("SPINDLE_SPEED",actual_value) == 0)
{ spindle_speed = value_data.v.d;

if (FLAG == 1)
{ value_data.v.d = my_data-spindle_speed;

status = ProValueDataSet (value, &value_data);
PT_TEST_LOG("ProValueDataSet()", status,

(status != PRO_TK_NO_ERROR));
status = ProElementValueSet

(p_element, value);

Production Applications: NC Process Manager 1805

PT_TEST_LOG_SUCC("ProElementValueGet");
}

} count++;
}
ProElempathFree(&epath);

}
}

status = ProMfgproctableDisplayUpdate ();
PT_TEST_LOG_SUCC ("ProMfgproctableDisplayUpdate");

}
return PRO_TK_NO_ERROR;

}
/*--*\
FUNCTION : PTMfgUsrUpdateAction
PURPOSE : Action function for the File Selection

--/
void PTMfgUsrUpdateAction(char *dialog, char *component, ProAppData data)
{ ProElement params_element;
ProCharName str; ProCharName str2;
double cut_feed_value; double spindle_speed_value;
Data_Input data1; wchar_t* wstr;
wchar_t* wstr2; ProErrorlist p_errors;
params_element = (ProElement) data;

ProUIInputpanelValueGet(DIALOG_NAME,"cut_feed",&wstr);
ProWstringToString(str, wstr);
cut_feed_value= atof(str);
ProUIInputpanelValueGet(DIALOG_NAME,"spindle_speed",&wstr2);
ProWstringToString(str2, wstr2);
spindle_speed_value= atof(str2);
data1.cut_feed = cut_feed_value;
data1.spindle_speed = spindle_speed_value;
count =0; FLAG =1;
status = ProElemtreeWrite (params_element, PRO_ELEMTREE_XML,

L"before_redef.inf");
PT_TEST_LOG_SUCC (" ProElemtreeWrite ");

status = ProElemtreeElementVisit(params_element, (ProElempath)NULL ,
(ProElemtreeVisitFilter) NULL,
(ProElemtreeVisitAction)

PTMfgElemtreeWalkthroughAction,
(ProAppData)&data1);

PT_TEST_LOG_SUCC (" ProElemtreeElementVisit ");
status = ProMfgprocitemRedefine (sel_items,complete_tree,&p_errors);

PT_TEST_LOG_SUCC ("ProMfgprocitemRedefine");
status = ProMfgproctableDisplayUpdate ();

PT_TEST_LOG_SUCC ("ProMfgproctableDisplayUpdate");
PTUtilInitCounters();
status = ProUIDialogExit(DIALOG_NAME, 0);

PT_TEST_LOG_SUCC("ProUIDialogExit");
}
/*--*\
FUNCTION : PTMfgUsrCancelAction

1806 Creo® Parametric TOOLKITUser’s Guide

PURPOSE : Action function for the Directory Selection
--/
void PTMfgUsrCancelAction(char *dialog, char *component, ProAppData data)
{ ProError status;

PTUtilInitCounters();
status = ProUIDialogExit(DIALOG_NAME, 0);

PT_TEST_LOG_SUCC("ProUIDialogExit");
}

/*--*\
FUNCTION : PTMfgElemtreePreReqAction()
PURPOSE : Get the material

--/
ProError PTMfgMaterialGet (ProFeature* feat, ProAppData data)
{ ProAsmcompType f_type;
ProMaterial p_material; ProFeattype feat_type;
ProSolid part; ProMdl p_mdl_handle;
ProCharName c_name; ProMdl mfg_mdl_under_test;

status =ProMdlCurrentGet(&mfg_mdl_under_test);
PT_TEST_LOG_SUCC("ProMdlCurrentGet");

status = ProFeatureTypeGet(feat,&feat_type);
PT_TEST_LOG_SUCC("ProFeatureTypeGet");

if(feat_type==PRO_FEAT_COMPONENT)
{ status = ProAsmcompTypeGet ((ProAsmcomp*)feat,feat-owner, &f_type);

PT_TEST_LOG_SUCC("ProAsmcompTypeGet");
if (f_type == PRO_ASM_COMP_TYPE_REF_MODEL)

{ status = ProAsmcompMdlGet ((ProAsmcomp*)feat,&p_mdl_handle);
PT_TEST_LOG_SUCC("ProAsmcompMdlGet");

status = ProMaterialCurrentGet
((ProSolid)p_mdl_handle,&p_material);

PT_TEST_LOG_SUCC("ProMaterialCurrentGet");
ProWstringToString (c_name, p_material.matl_name);
ProWstringCopy(p_material.matl_name,material_name,
PRO_VALUE_UNUSED);

}
}

return PRO_TK_NO_ERROR;}
/*--*\

FUNCTION : PTMfgElemtreePreReqAction()
PURPOSE : Action function for PTUtilElemtreeWalkthroug

--/
ProError PTMfgElemtreePreReqAction (ProElement elem_tree,

ProElement element, ProElempath elem_path,
ProAppData app_data)

{ ProElemId elem_id;
ProValueData value_data; int ii, counter = 0;
ProValue *values = (ProValue *)NULL;
ProMfgprocItem *item_array; ProMfgprocItem item;
ProAssembly r_solid_obj; ProElement elem_tree_p;

ProMdl mfg_mdl_under_test;
status =ProMdlCurrentGet(&mfg_mdl_under_test);

PT_TEST_LOG_SUCC("ProMdlCurrentGet");

Production Applications: NC Process Manager 1807

status = ProMfgAssemGet(mfg_mdl_under_test,&r_solid_obj);
PT_TEST_LOG_SUCC ("ProMfgAssemGet");

status = ProElementIdGet(element, &elem_id);
PT_TEST_LOG_SUCC("ProElementIdGet");

if (elem_id == PRO_E_NCSEQ_PREREQUISITE_ARR)
{ status = ProArrayAlloc(0, sizeof(ProValue), 1,

(ProArray *)&values);
PT_TEST_LOG_SUCC("ProArrayAlloc");

status = ProArrayAlloc(0, sizeof(ProMfgprocItem), 1, (ProArray *)
&item_array);

PT_TEST_LOG_SUCC("ProArrayAlloc(");
status = ProElementValuesGet(element, &values);

PT_TEST_LOG_SUCC("ProArrayAlloc");
if(status == PRO_TK_NO_ERROR)

status = ProArraySizeGet((ProArray)values, &counter);
for(ii = 0; ii < counter; ii++)

{
if((ProValueDataGet(values[ii], &value_data) == PRO_TK_NO_ERROR)

&& (value_data.type == PRO_VALUE_TYPE_INT))
{ item.type = PRO_NC_STEP_OBJECT;

item.id = value_data.v.i;
item.owner = r_solid_obj; }

status = ProArrayObjectAdd((ProArray*)&item_array,-1,1,&item);
PT_TEST_LOG_SUCC("ProArrayObjectAdd");

}
status = ProMfgproctableSelecteditemsSet (PRO_MFGPROCTABLE_PROCESS,item_array);

PT_TEST_LOG_SUCC ("ProMfgproctableSelecteditemsSet");
status = ProMfgproctableDisplayUpdate ();

PT_TEST_LOG_SUCC ("ProMfgproctableDisplayUpdate");
ProArrayFree ((ProArray *)&values);

ProArrayFree ((ProArray *)&item_array);
} return PRO_TK_NO_ERROR;

}/*--*\
FUNCTION : PTMfgDialogCreate
PURPOSE : Creates the dialog

--/
ProError PTMfgDialogCreate(ProElement params_element)
{ int choice;
ProCharName str; ProName wstr;
status = ProUIDialogCreate(DIALOG_NAME,DIALOG_NAME);
PT_TEST_LOG_SUCC("ProUIPTMfgDialogCreate");

status = ProUIDialogWidthSet(DIALOG_NAME,300);
PT_TEST_LOG_SUCC("ProUIPTMfgDialogCreate");

status = ProUIDialogHeightSet(DIALOG_NAME,160);
PT_TEST_LOG_SUCC("ProUIPTMfgDialogCreate");

status = ProUIDialogTitleSet (DIALOG_NAME,L"Feed/Speed database access");
PT_TEST_LOG_SUCC ("ProUIDialogTitleSet()");

status = ProUILabelTextSet (DIALOG_NAME, "tool_id_val", tool_id);
PT_TEST_LOG_SUCC ("ProUILabelTextSet()");

status = ProUILabelTextSet (DIALOG_NAME, "material_val", material_name);
PT_TEST_LOG_SUCC ("ProUILabelTextSet()");

1808 Creo® Parametric TOOLKITUser’s Guide

sprintf(str,"%f",cut_feed); ProStringToWstring(wstr, str);
ProUIInputpanelValueSet(DIALOG_NAME,"cut_feed",wstr);
PT_TEST_LOG_SUCC("ProUIInputpanelValueSet");
sprintf(str,"%f",spindle_speed);
ProStringToWstring(wstr, str);
ProUIInputpanelValueSet(DIALOG_NAME,"spindle_speed",wstr);
PT_TEST_LOG_SUCC("ProUIInputpanelValueSet");
status = ProUIPushbuttonActivateActionSet
(DIALOG_NAME, UPDATE, PTMfgUsrUpdateAction, params_element);
PT_TEST_LOG_SUCC("ProUIPushbuttonActivateActionSet");
status = ProUIPushbuttonActivateActionSet
(DIALOG_NAME, CANCEL, PTMfgUsrCancelAction, NULL);
PT_TEST_LOG_SUCC("ProUIPushbuttonActivateActionSet");
status = ProUIDialogActivate(DIALOG_NAME, &choice);
PT_TEST_LOG_SUCC("ProUIDialogActivate");
status = ProUIDialogDestroy(DIALOG_NAME);
PT_TEST_LOG_SUCC("ProUIDialogDestroy");

}
/*--*\

FUNCTION : PTMfgProcitemElemtreeGet
PURPOSE : Gets the elem tree of selected item

--/
ProError PTMfgProcitemElemtreeGet(ProElement *elem_tree)
{ status = ProMfgproctableSelecteditemsGet

(PRO_MFGPROCTABLE_PROCESS,&sel_items);
PT_TEST_LOG_SUCC ("ProMfgproctableSelecteditemsGet");

/*TBD : Currently one one (fitst item is checked here...
To be updated with multiple selections of items in ui ..*/
status = ProMfgprocitemElemtreeGet (&sel_items[0], elem_tree);

PT_TEST_LOG_SUCC("ProMfgprocitsmElemtreeGet");
return status;

}
/*--*\

FUNCTION : PTTestMfgProcItemVisit
PURPOSE : Action function for ProMfgProctableVisit

--/
ProError PTTestMfgProcItemVisit
(ProMfgprocItem* item, ProError error,

ProAppData app_data)
{ ProAnnotation annotation;
ProMfgstepHolesetEndType end_type;
ProDrillDepthType depth_type;
status = ProMfgprocitemAnnotationGet (item, &annotation);
PT_TEST_LOG_SUCC ("ProMfgprocitemAnnotationGet");

if (status == PRO_TK_NO_ERROR)
{ status = ProParameterVisit (&annotation,NULL,

PTMfgParameterVisit,"HOLE_ADJUST");
PT_TEST_LOG_SUCC("ProParameterVisit");

} if (found == PRO_B_TRUE)
{

status = ProParameterVisit (&annotation,NULL,PTMfgParameterVisit,

Production Applications: NC Process Manager 1809

"HOLE_DEP_1");
PT_TEST_LOG_SUCC("ProParameterVisit");

status = ProParameterVisit (&annotation,NULL,PTMfgParameterVisit,
"HOLE_DEP_2");

PT_TEST_LOG_SUCC("ProParameterVisit");
}

status = ProMfgprocitemHolesetdepthtypeGet (item,&depth_type,&end_type);
PT_TEST_LOG_SUCC("ProMfgprocitemHolesetdepthtypeGet");

if ((end_type == PRO_MFGSTEP_HOLESETEND_ALONG_AXIS) &&
(depth_type ==PRO_DRILL_BLIND))
{

status = ProMfgprocitemHolesetdepthSet (item ,hole_dep_1);
PT_TEST_LOG_SUCC ("ProMfgprocitemHolesetdepthSet");

} if (end_type ==PRO_MFGSTEP_HOLESETEND_REFERENCE)
{ status = ProMfgprocitemHolesetdepthSet (item ,hole_dep_2);

PT_TEST_LOG_SUCC ("ProMfgprocitemHolesetdepthSet");
}

return PRO_TK_NO_ERROR;
}/*--*\

FUNCTION : PTMfgParameterVisit
PURPOSE : Visit the param.

--/
ProError PTMfgParameterVisit(ProParameter* param, ProError status,
ProAppData data)
{ ProCharName str;
ProParamvalue value; ProParamvalueType type;
short l_val;
ProWstringToString(str,param-id);
if (strcmp (str, data) == 0)

{ status = ProParameterValueGet (param, &value);
PT_TEST_LOG_SUCC ("ProParameterValueGet()");

status = ProParamvalueTypeGet (&value, &type);
PT_TEST_LOG_SUCC ("ProParamvalueTypeGet()");

if (type == PRO_PARAM_BOOLEAN)
{ status = ProParamvalueValueGet (&value, type, (void *) &l_val);

PT_TEST_LOG_SUCC ("ProParamvalueValueGet()");
if (l_val == 1)

found = PRO_B_TRUE;
}

if (type == PRO_PARAM_DOUBLE) {
if (strcmp (str,"HOLE_DEP_1") == 0)

{ status = ProParamvalueValueGet
(&value, type, (void *) &hole_dep_1);
PT_TEST_LOG_SUCC ("ProParamvalueValueGet()");

}
if (strcmp (str,"HOLE_DEP_2") == 0)

{ status = ProParamvalueValueGet
(&value, type, (void *) &hole_dep_2);

PT_TEST_LOG_SUCC ("ProParamvalueValueGet()");
}

} }

1810 Creo® Parametric TOOLKITUser’s Guide

return PRO_TK_NO_ERROR;
}/*--*\

FUNCTION : PTMfgProcitemToolNameGet
PURPOSE : Get the tool name from elem tree.

--/
ProError PTMfgProcitemToolNameGet(ProElement elem)
{ ProElempath epath;
ProElement tool_element; ProElempathItem p_items[3];
ProElemId elem_id; ProValueDataType value_type = -1;
ProValue value = (ProValue)NULL;
ProValueData value_data; char toolname[100];
status = ProElemtreeWrite (elem, PRO_ELEMTREE_XML, L"selecteditem_feed.inf");
PT_TEST_LOG_SUCC (" ProElemtreeWrite ");

status = ProElempathAlloc(&epath);
PT_TEST_LOG_SUCC ("ProElempathAlloc ()");

p_items[0].type = PRO_ELEM_PATH_ITEM_TYPE_ID;
p_items[0].path_item.elem_id = PRO_E_TOOL ;

status = ProElempathDataSet(epath, p_items, 1);
PT_TEST_LOG_SUCC ("ProElempathDataSet()");

status= ProElemtreeElementGet(complete_tree, epath, &tool_element);
PT_TEST_LOG_SUCC ("ProElemtreeElementGet()");

status = ProElementIdGet(tool_element, &elem_id);
PT_TEST_LOG_SUCC("ProElementIdGet");
if (elem_id == PRO_E_TOOL) {

status = ProElementValueGet (tool_element, &value);
PT_TEST_LOG_SUCC("ProElementValueGet");

status = ProValueDataGet (value, &value_data);
PT_TEST_LOG_SUCC("ProValueDataGet()");

if (value_data.v.w == NULL)
ProStringToWstring(tool_id,"TOOL_NOT_SET");

else ProWstringCopy(value_data.v.w,tool_id,PRO_VALUE_UNUSED);
} ProElempathFree(&epath);

return PRO_TK_NO_ERROR;}
/*==*\
FUNCTION : user_terminate()
PURPOSE : To handle any termination actions

==/
void user_terminate(){
}

Example 4: To Add a Submenu to the Manufacturing
Process Table
The following example enables you to add a menu and submenu to an existing
menu option in the Manufacturing Process Table.
#include <ProMenuBar.h>
#include <ProMfgproctable.h>
#include <ProMfg.h>
#include <ProMdl.h>

Production Applications: NC Process Manager 1811

#include <ProMessage.h>
#include <ProUtil.h>
ProName submenulabel;
ProName help;
ProName submenubutton;
ProError APITestCommand (ProMfg mfg, char* button_name,

ProAppData appdata);
ProStringToWstring (submenulabel, "MyNewSubmenu");
ProStringToWstring (submenubutton, "SubmenuButton");
ProStringToWstring (help, "SubmenuHelp");
status = ProMfgproctableMenuAdd ("APITestMenu",
submenulabel, "Insert");
PT_TEST_LOG_SUCC("ProMfgproctableMenuAdd")
status = ProMfgproctablePushbuttonAdd ("APITestMenu", "APITestMain",

submenubutton,
help, NULL, APITestCommand, NULL);
PT_TEST_LOG_SUCC("ProMfgproctablePushbuttonAdd");
ProError APITestCommand (ProMfg mfg, char* button_name,

ProAppData appdata) {
printf("Just some output\n");
return PRO_TK_NO_ERROR;
}

1812 Creo® Parametric TOOLKITUser’s Guide

66
Production Applications: Cabling

Cabling... 1814

This chapter describes the Creo Parametric TOOLKIT cabling functions.

1813

Cabling
This section describes the functions in Creo Parametric TOOLKIT that access the
contents of a cabling harness created using the cabling module in Creo Parametric.
The explanations in this section assume a knowledge of cabling and the
fundamental concepts of Creo Parametric TOOLKIT, especially assemblies.
Be careful with the terminology of cabling. You can route three kinds of objects to
make electrical connections within a harness: wires, cables, and bundles. The
generic word for all three is cable. Unless otherwise specified, the explanations in
the following sections use the word cable, in its generic sense, to include wires,
cables, and bundles.
Creo Parametric TOOLKIT uses the object type ProCable to refer to any type
of cable object. The data object has the same structure as ProModelitem.
Typedef struct pro_model_item {

ProMdl owner;
int id;
protype type;

)ProCable;

Creating a Harness
Function Introduced:

• ProHarnessCreate()
ProCable operates on a Creo Parametric assembly. Cables can belong to one or
more harness. A harness is a special Creo Parametric part designed to contain
cables.
A harness cannot be retrieved into Creo Parametric Part mode. It appears in the
cabling assembly as an assembly component. A harness is identified by the Creo
Parametric object handle ProHarness.
The function ProHarnessCreate() creates a new harness in the specified
assembly.

Finding a Harness
Function Introduced:

• ProAssemblyHarnessesCollect()
• ProAssemblyHarnessesTopCollect()
• ProAsmcompIsHarness()
• ProCablingIsHarness()
• ProHarnessSubharnessesCollect()

1814 Creo® Parametric TOOLKITUser’s Guide

The function ProAssemblyHarnessesCollect() returns an array of
handles to any harness that is part of a specified assembly and its sub-assemblies.
The function ProAssemblyHarnessesTopCollect() returns an array of
handles to the harnesses present in the specified top level assembly.
Use the function ProAsmcompIsHarness() to identify if the specified
component is a harness part. This function returns the value TRUE, if the
component is a harness. The function ProCablingIsHarness() identifies if
the specified model is a harness part.
Use the function ProHarnessSubharnessesCollect() to collect all the
sub harnesses in the specified input harness part.

Finding the Cables in a Harness
Functions Introduced:

• ProHarnessCablesCollect()
• ProCableHarnessesGet()
• ProInputFileRead()
The function ProHarnessCablesCollect() provides an array of names of
cables that exist in the specified harness. The output of the function includes
cables that have not yet been routed.
Each cable can be created in, and routed though, several harnesses. The function
ProCableHarnessesGet() provides an array of the handles to the harnesses
below the current assembly that contain a cable with the specified name.
Use function ProInputFileRead() with argument PRO_WIRELIST_TYPE
to read files in Mentor Graphics LCABLE format. This function does not create
wires, but provides parameters from a wire list for use when creating in a harness
assembly a wire with the same name as that in the LCABLE file.

Harness Parameters
Functions Introduced:

• ProCablelocationAttachToHarnessComponentGet()
• ProCablelocationIsAttachToHarness()
Use the function
ProCablelocationAttachToHarnessComponentGet() to get the
component on which the attach to harness location is dependent.
Use the function ProCablelocationIsAttachToHarness() to identify if
the specified location is a cabling attach to harness location.

Production Applications: Cabling 1815

Importing Neutral Wire List Files
The PTC neutral wire format contains logical information for cabling. It contains
information about the reference designator, pin-to-pin connection, and parameter
values of connectors, pins, spools, wires, and cables.
Functions Introduced:

• ProCablingNeutralwirelistImport()
The function ProCablingNeutralwirelistImport() allows you to
import and load the PTC neutral wire list file (.nwf) in the current session.
Specify the name of the file along with its extension and full path as the input
argument filename.

Managing Spools
Functions Introduced:

• ProAssemblySpoolsCollect()
• ProSpoolCreate()
• ProInputFileRead()
• ProOutputFileMdlnameWrite()
Function ProAssemblySpoolsCollect() returns a list of all spools defined
in the specified assembly.
Use function ProSpoolCreate() to create a new spool of a given cable and
sheath type in the specified assembly.
Use function ProInputFileRead() with argument PRO_SPOOL_FILE to
create new spools or update existing ones. Function
ProOutputFileMdlnameWrite() with the same argument to export a spool
file.

Spool Parameters
Functions Introduced:

• ProSpoolParameterGet()
• ProSpoolParametersCollect()
• ProSpoolParameterDelete()
• ProSpoolParametersSet()
• ProSpoolsFromLogicalGet()
• ProSpoolsFromLogicalCreate()

1816 Creo® Parametric TOOLKITUser’s Guide

• ProSpoolCablesLengthGet()
• ProSubharnessCablesCollect()
Function ProSpoolParameterGet() retrieves a single parameter for the
specified spool. This function supports only single-valued parameters. If you
specify a multivalued parameter, the function returns PRO_TK_E_NOT_FOUND.
Function ProSpoolParameterCollect() retrieves all parameters of the
specified spool, both single- and multi-valued parameters.
Use ProSpoolParameterDelete() to remove a single parameter from the
specified spool. This function deletes both single- and multi-valued parameters.
Function ProSpoolParametersSet() sets all parameters of the specified
spool, both single- and multi-valued parameters. This function overwrites existing
parameter values with values in the input parameter array.
Function ProSpoolsFromLogicalGet() returns a list of spool names in the
specified assembly for which data has been imported from a logical reference but
which have not yet been created. Use function
ProSpoolsFromLogicalCreate() to create instances of spools for which
logical data exists. Refer to the Creo Parametric Cabling Help and Creo
Parametric Harness Help for more information on logical references.
Use the function ProSpoolCablesLengthGet() to get the total length of all
the cables present in the specified input harness, using the specified spool.
Use the function ProSubharnessCablesCollect() to retrieve an array of
all the cables present in the specified sub harness.

Finding Harness Connectors
Functions Introduced:

• ProAssemblyConnectorsGet()
• ProConnectorsFromLogicalGet()
• ProAsmcompIsConnector()
Each connector in a cabling assembly is a Creo Parametric part that is a
component of that assembly. A connector can be at any level in the assembly
hierarchy. Each connector is identified by its assembly component path
(ProAsmcomppath).
The function ProAssemblyConnectorGet() provides an array of member
identifier tables identifying the connectors in the specified assembly. The function
allocates the memory for these tables.

Production Applications: Cabling 1817

Function ProConnectorsFromLogicalGet() returns a list of connector
names in the specified assembly for which data has been imported from a logical
reference but which have not yet been created. Refer to the Creo Parametric
Cabling Help and Creo Parametric Harness Help for more information on logical
references.
Use the function ProAsmcompIsConnector() to identify if the specified
component is a cabling connector. This function returns the value TRUE, if the
component is a cabling connector.

Connectors Parameters
Functions Introduced:

• ProConnectorEntryPortsGet()
• ProConnectorParamsCollect()
• ProConnectorDesignate()
• ProConnectorWithAllParamsDesignate()
• ProConnectorUndesignate()
• ProConnectorParamGet()
• ProConnectorParamDelete()
• ProConnectorParamsSet()
• ProConnectorsFromLogicalGet()
• ProOutputFileMdlnameWrite()
• ProInputFileRead()
• ProConnectorRefModelNameGet()
Each connector contains a set of entry ports to which cables can be connected.
Each entry port is modeled by a coordinate system datum that belongs to the part
that models the connector. The function ProConnectorEntryPortsGet()
returns a ProArray of datum coordinate systems representing the entry ports in
the specified connector. The connector is identified by its component path (its
memb_id_tab).
The function ProConnectorParamsCollect() provides an array of the
user parameters for the connector. However, this array contains only single-valued
parameters that refer to the connector itself, not the parameters that describe the
entry ports.
To access parameters on the connector entry ports, you must call the function
ProOutputFileMdlnameWrite() with the option PRO_CONNECTOR_
PARAMS_FILE. This writes a text file to disk, which is the same format as the
file you edit when using the ProCable command Connector, Modify Parameters,
Mod Param.

1818 Creo® Parametric TOOLKITUser’s Guide

The following example shows a sample connector parameters file. Refer to the
Creo Parametric Cabling Help on the parameters.
The function ProConnectorRefModelNameGet() retrieves the reference
model name of the specified cable connector. The function returns the output
argument p_ref_model_name as a wchar_t* string.

Connector Parameters File
! Enter or modify parameters for the connector. You may use the help
! functionality of Pro/TABLE to enter pre-defined parameters.
! Ref DescrREF_DES MOTOR
! Conn ModelMODEL_NAME MOTOR
! Num Of PinsNUM_OF_PINS 2
! TypeTYPE CONNECTOR
! Entry Port
! TYPE INT_LENGTH
ENTRY_PORT ENTRY1 ROUND 0.2
ENTRY_PORT ENTRY2 ROUND 0.2 !
Signal!

PIN_ID SIGNAL_NAME SIGNAL_VALUE ENTRY_PORT
SIGNAL 1 ENTRY1
SIGNAL 2
! Pin
! PIN_ID CABLE_NAME COND_ID
PIN_ASSIGN 2 WIRE_1
PIN_ASSIGN 1 WIRE_2
! Enter or modify parameters for the connector. You may use the help
! functionality of Pro/TABLE to enter pre-defined parameters.

! Ref Descr REF_DES MOTOR
! Conn Model MODEL_NAME MOTOR
! Num Of Pins NUM_OF_PINS 2
! Type TYPE CONNECTOR
! Entry Port

! TYPE INT_LENGTH
ENTRY_PORT ENTRY1 ROUND 0.2
ENTRY_PORT ENTRY2 ROUND 0.2
! Signal
! PIN_ID SIGNAL_NAME SIGNAL_VALUE ENTRY_PORT
SIGNAL 1 ENTRY1
SIGNAL 2
! Pin
! PIN_ID CABLE_NAME COND_ID
PIN_ASSIGN 2 WIRE_1
PIN_ASSIGN 1 WIRE_2

Note that this file is not free-format. Each parameter name and value is followed
by a tab character, and each empty value is represented by a tab character.
Therefore, the line in the example that assigns the first parameter, SIGNAL,

Production Applications: Cabling 1819

contains three tab characters between the value of the PIN_ID and the value of
ENTRY_PORT: the first tab belongs to the PIN_ID value, and next two tabs
provide null values for SIGNAL_NAME and SIGNAL_VALUE.
The function ProInputFileRead() imports a file in this format, so you can
use it in conjunction with ProOutputFileMdlnameWrite() to edit the
parameters on connectors and their entry ports. To identify the connector, both
functions use the following arguments:

• arg1—Represents the memb_id_tab
• arg2—Represents the memb_num
The function ProConnectorDesignate() designates a component in the
assembly as a cabling connector. It takes as input the component path that
identifies the part in the cabling assembly, and an optional name that will be the
reference descriptor (REF_DES) of the connector.
When a new connector has been designated, it has only the two parameters REF_
DES and MODEL_NAME. The MODEL_NAME is set to be the name of the part
designated, and the REF_DES is set to the value provided as input to the function
ProConnectorDesignate(), if any, or to the MODEL_NAME otherwise.
After you designate a connector, you must call
ProOutputFileMdlnameWrite() and ProInputFileRead() to set up
the necessary parameters.
The function ProConnectorWithAllParamsDesignate() designates a
component in the assembly as a cabling connector using all the logical parameters.
The input arguments are:
• p_connector—Specifies the component path that identifies the part in the

cabling assembly.
• name—Specifies the reference descriptor (REF_DES) of the connector. The

argument can be NULL when the designation is not from a logical reference.
• from_logical—Specifies if the component must be designated using logical

references.
To undesignate a connector, call the function
ProConnectorUndesignate().
Function ProConnectorParamGet() retrieves a single parameter for the
specified connector. This function supports only single-valued parameters. If you
specify a multivalued parameter, the function returns PRO_TK_E_NOT_FOUND.
Use function ProConnectorParamDelete() to remove a single parameter
from the specified connector. This function deletes both single- and multi-valued
parameters.
Function ProConnectorParamsCollect() retrieves all parameters of the
specified connector. This function supports both single- and multi-valued
parameters.

1820 Creo® Parametric TOOLKITUser’s Guide

Function ProConnectorParamsSet() sets all parameters of the specified
connector. This function overwrites all existing parameter values with the values
in the input parameter array. This function supports both single- and multi-valued
parameters.
Function ProConnectorsFromLogicalGet() returns a list of connector
names in the specified assembly for which data has been imported from a logical
reference but which have not yet been created. Refer to the Creo Parametric
Cabling Help and Creo Parametric Harness Help for more information on logical
references.

Managing Cables and Bundles
Functions Introduced:

• ProCableCreate()
• ProCableAndConductorsCreate()
• ProBundleCreate()
• ProBundleCablesCollect()
• ProCablesegmentInfoIsInBundle()
Use the functions ProCableCreate() and
ProCableAndConductorsCreate() to create a new cable or wire in a
specified harness. The type of cable created corresponds to the spool type. This
function creates all required parameters with default values. If the cable or wire
name has already been imported from a wire list, then parameters from that
reference are used instead of default values.

Note
The function ProCableAndConductorsCreate() also creates
conductors if needed. Pass the value of the input argument create_conductors
as PRO_B_TRUE to create conductors.

Use function ProBundleCreate() to create a new bundle in a specified
harness. The type of bundle corresponds with the spool type. This function creates
all required parameters with default values.
Use the function ProCablesegmentInfoIsInBundle() to identify if the
specified cable segment runs into a bundle. This function returns the name of the
bundle only if the specified cable segment runs into a bundle.

Cable Parameters
Functions Introduced:

Production Applications: Cabling 1821

• ProCableParameterGet()
• ProCableParameterDelete()
• ProCableParametersCollect()
• ProCableParametersSet()
• ProCableparammemberFree()
• ProCableparamproarrayFree()
• ProCablesFromLogicalGet()
• ProCablesFromLogicalCreate()
• ProCablesFromLogicalAllCreate()
• ProCableLocationsOnSegEndGet()
• ProOutputFileMdlnameWrite()
• ProInputFileRead()
• ProCableTessellationGet()
• ProCablesegmentInfoIsNew()
• ProCablesegmentInfoPointsGet()
• ProCablesegmentInfosGet()
Function ProCableParameterGet() retrieves a single parameter for the
specified cable. This function supports only single-valued parameters. If you
specify a multivalued parameter, the function returns PRO_TK_E_NOT_FOUND.
Use ProCableParameterDelete() to remove a single parameter from the
specified cable. This function deletes both single- and multi-valued parameters.
Function ProCableParametersCollect() retrieves all parameters of the
specified cable. This function supports both single- and multi-valued parameters.
Function ProCableParametersSet() sets all parameters of the specified
cable. This function overwrites all existing parameter values with the values in the
input parameter array. This function supports both single- and multi-valued
parameters.
Function ProCableparammemberFree() releases the memory assigned to
the ProCableparam object. Function ProCableparamproarrayFree()
releases the memory assigned to the array of ProCableparam objects. The
ProCableparam object stores the names and values of cable parameters.
Function ProCablesFromLogicalGet() returns a list of cable names in the
specified assembly for which data has been imported from a logical reference but
which have not yet been created.
Use function ProCablesFromLogicalCreate() to create instances of
cables for which logical data exists.

1822 Creo® Parametric TOOLKITUser’s Guide

The function ProCablesFromLogicalAllCreate() creates cables and
conductors from logical references. Cables are created using the spool features. If
a cable already has a spool feature defined for it, then such cables are created
using the existing spools in the model. If the spool feature is not defined for a
cable, then this function also creates spools for such cables.
Refer to the Creo Parametric Cabling Help and Creo Parametric Harness Help for
more information on logical references.
The function ProCableLocationsOnSegEndGet() returns the start and
end location of each segment for the specified cable. The locations are returned as
a ProArray.
The functions ProOutputFileMdlnameWrite() and
ProInputFileRead() can be used with the option PRO_CABLE_PARAMS_
FILE to export and import (and therefore edit) parameters on the specified cable.
Use the function ProCableTessellationGet() to get the tessellation for
the specified input cable. Specify the following parameters as input arguments to
create the surface tessellation:
• cable—Specify the input cable on which the tessellation is to be created.
• input_data—Specify the input data used for the tessellation such as

AngleControl, ChordHeight, StepSize and so on. You can choose
the options to use when generating a tessellation for the input cable.

Note
You must set the configuration option display_thick_cables toyes
before using this API.

Use the function ProCablesegmentInfoIsNew() to identify if the specified
cable segment with location information is connected to the previous segment.
Use the function ProCablesegmentInfoPointsGet() to get an array of
points, tangents and location Ids for the specified cable segment.
Use the function ProCablesegmentInfosGet() to collect cable segments
with location Ids of the cable segments present within the specified cable.
The following example shows a sample cable parameters file. Like the file for
connector parameters, the parameter names and values are separated by tab
characters.

Cable Parameters File
! Enter or modify parameters for the cable.
! You can use the help functionality of Pro/TABLE
! to enter pre-defined parameters.
! Cable Name

Production Applications: Cabling 1823

NAME WIRE_2
! Spool Name
SPOOL 24Y
! Modify the "DIRECTION" parameter for the end type of this cable.
! REF_DES ENTRY_PORT DIRECTION
END_TYPE MOTOR ENTRY1 FROM
END_TYPE XCONN2 ENTRY1 TO

Cable Identifiers and Types
Functions Introduced:

• ProCableByNameGet()
• ProCableNameGet()
• ProCableTypeGet()
The functions ProCableByNameGet() and ProCableNameGet() provide
the handle of a cable given its name. The functions also return the cable name
when supplied with the handle.
The function ProCableTypeGet() provides the type of a named cable. The
possible types are as follows:

• Awire—A single conductor
• A cable—With several conductors
• A bundle—A collection of other wires, cables, and bundles

Cable Cosmetic Features
Functions Introduced:

• ProCableCosmeticFeatureCreate()
• ProCableCosmeticFeatureTypeGet()
• ProCableCosmeticDistanceGet()
• ProCablelocationMaxDiameterGet()
• ProCablelocationHeightDimensionGet()
• ProCableTapeWindsGet()
• ProCableTapeWindsSet()
• ProCableTapeFeatSpoolGet()
• ProFeatureIsCableCosmetic()
• ProCableCosmeticfeatureEntityGet()
• ProCableCosmeticfeatureThicknessGet()
• ProCableCosmeticfeatureReferencethicknessGet()

1824 Creo® Parametric TOOLKITUser’s Guide

The function ProCableCosmeticFeatureCreate() creates a cabling
cosmetic feature. The types of cabling cosmetic features are tie wraps, markers,
and tape. The selected cable location or cable segment point to use for the feature
creation. If creating a tape feature, this must contain a cable location. If creating a
marker, this must contain a point on the cable segment. If creating a tie wrap, this
could be a cable location or a point on a cable segment.
Use the function ProCableCosmeticFeatureTypeGet() to retrieve the
type of the specified cosmetic feature. The enumerated data type
ProCableCosmeticType is used to define the types of cosmetic features.
The function ProCableCosmeticDistanceGet() retrieves the position of
a cosmetic feature relative to the start or end of a cable segment. The output
arguments are listed below:
• p_offset—Distance of the cosmetic feature from the start or end of a segment.
• p_start—Boolean value which indicates if the distance is measured from the

start position of a segment.
Use the function ProCablelocationMaxDiameterGet() to retrieve the
maximum diameter of the location for the specified harness.
Use the function ProCablelocationHeightDimensionGet() to retrieve
the height dimension for the specified cable location. The function returns the
error PRO_TK_BAD_CONTEXT if the specified location does not have a height
dimension.
The functions ProCableTapeWindsGet() and
ProCableTapeWindsSet() provide access to the number of winds in a tape
cosmetic feature.
The function ProCableTapeFeatSpoolGet() returns the spool for the
specified tape feature.
Use the function ProFeatureIsCableCosmetic() to check if the specified
feature is a cabling cosmetic feature. Cabling cosmetic feature comprises of tie
wraps, markers, and tape. For more information on cabling cosmetic feature, refer
to the Creo Parametric Help.
Use the function ProCableCosmeticfeatureEntityGet() to get the
entity for the cabling cosmetic feature. This function returns a line entity for the
tie wrapper and tape types of cosmetic features, and spline entity is returned if the
cosmetic feature is of the a marker type.
Use the function ProCableCosmeticfeatureThicknessGet() to get the
thickness of the specified input cable cosmetic feature.
Use the function
ProCableCosmeticfeatureReferencethicknessGet() to obtain the
thickness of the reference cable which is wrapped by the input cable cosmetic
feature.

Production Applications: Cabling 1825

Cable Connectivity
Function Introduced:

• ProCableLogicalEndsGet()
The function ProCableLogicalEndsGet() identifies the entry ports and
their owning connectors to which the specified cable should be connected. This
function depends on the connector parameters SIGNAL and PIN_ASSIGN. A
cable connects logically to an entry port if the connector has a PIN_ASSIGN
parameter that relates a PIN_ID value to that CABLE_NAME, and a SIGNAL
parameter that relates the same PIN_ID value to that ENTRY_PORT name.
In the sample connector parameters file, the cable WIRE_2 connects to connector
MOTOR, entry port ENTRY1.
A cable can have logical ends, even if it has not yet been routed.
The output of the function ProCableLogicalEndsGet() is in the form of
two Pro/Selection structures for the coordinate system datums that represent
the entry ports.

Cable Routing Locations
Functions Introduced:

• ProCableLocationsCollect()
• ProHarnessLocationsCollect()
• ProCablelocationTypeGet()
• ProCablelocationPointGet()
• ProCablelocationCablesGet()
The locations though which a cable is routed are identified by
ProCableLocation structures, which are of the same structure as
ProModelItem. The ProCableLocationsCollect()function provides
an array of the structures for the locations through which the specified cable is
routed. The function ProHarnessLocationsCollect() provides an array
of the structures for the locations in a specified harness.
The function ProCablelocationTypeGet() gives the type of a specified
location. The following table lists the valid location types.
Location Type Equivalent Command in the CBL ROUTE

Menu
PRO_LOC_CONNECTOR Connector
PRO_LOC_POINT Pnt/Vertex
PRO_LOC_FREE Free
PRO_LOC_DEPENDENT Dependent
PRO_LOC_AXIS Along Axis

1826 Creo® Parametric TOOLKITUser’s Guide

Location Type Equivalent Command in the CBL ROUTE
Menu

PRO_LOC_USE_DIR Use Dir
PRO_LOC_OFFSET Offset
PRO_LOC_SPLICE Splice
PRO_LOC_LOC Location
PRO_LOC_OFFSET_CSYS Coordinate Offset
PRO_LOC_OFFSET_AXIS Axis Offset

The function ProCablelocationPointGet() provides the XYZ
coordinates of the location in the coordinate system of the harness.
The function ProCablelocationCablesGet()provides an array of the
names of cables routed through the specified location.

Cable Geometry
Functions Introduced:

• ProCableLengthGet()
• ProCableSegmentsGet()
• ProCablesegmentPointsGet()
• ProCablesegmentIsInBundle()
• ProCablesegmentIsNew()
The function ProCableLengthGet() provides the length of the specified
wire within a specified harness.
The functions ProCableSegmentsGet() and
ProCablesegmentPointsGet() provide the geometry of a named wire,
bundle, or cable within a specified harness part. The geometry of a wire or cable is
divided into a number of segments, each of which represents a region where the
wire or cable is bundled with other wires and cables. The geometry of each such
segment is described by a series of three-dimensional locations and tangent
vectors.
The function ProCablesegmentIsInBundle() determines whether a cable
segment runs into a bundle.
The function ProCablesegmentIsNew() determines whether the cable
segment is connected to a previous cable segment.

Measuring Harness Clearance
Function Introduced:

Production Applications: Cabling 1827

• ProCableClearanceCompute()
The function ProCableClearanceCompute() determines the minimum
distance between two items in a harness. The items can be of any of the following
types, in any combination:

• Part
• Surface
• Cable
• Cable location
The inputs identify the two items in terms of ProSelection structures. The
function outputs a flag to show whether the two items interfere, and, if they do not
interfere, the function also returns the three-dimensional locations of the two
nearest points.

Cable Routing
Functions Introduced:

• ProCableRoutingStart()
• ProCableThruLocationRoute()
• ProCableRoutingEnd()
• ProCablelocationrefAlloc()
• ProCablelocationrefFree()
To Route a Group of Cables Through a Sequence of Locations:

1. Call ProCableRoutingStart() to identify the cables to be routed.
2. Call ProCablelocationrefAlloc() to create a routing reference

location structure.
3. Call ProCableThruLocationRoute() for each location through which

to route the cables.
4. Call ProCablelocationrefFree() to free the location reference.
5. Call ProCableRoutingEnd() to complete the routing.
6. Call ProSolidRegenerate() to make Creo Parametric calculate the

resulting cable geometry and create the necessary cable features.

Note
You must also call the function ProWindowRepaint() to see the new
cables.

1828 Creo® Parametric TOOLKITUser’s Guide

After the call to ProCableRoutingStart(), the information about the
routing in progress is contained in an opaque data structure ProRouting that
ProCableRoutingStart() provides. This pointer is then given as an input
to the functions ProCableThruLocationRoute() and
ProCableRoutingEnd().
The inputs to ProCableRoutingStart() are the cabling assembly and
harness handles, and an array of cables.
The input to ProCableThruLocationRoute() is a structure of type
ProCablelocationref, which contains all the necessary information about
the location through which to route the cables.
The following table shows the possible values of the type field, and the values
that other fields need for each type.
type refs axis_flip offsets
PROLOC_CONNECTOR The coordinate system

datum for the entry port
— —

PROLOC_POINT The datum point — —
PROLOC_AXIS The axis 0 or 1 to show the routing

direction
-—

PROLOC_OFFSET The coordinate system
datum to define the offset
directions

— Offset distances from the
previous location

PROLOC_LOC An existing routing
location

— —

The function ProCableThruLocationRoute() also outputs an array of the
structures for the locations created as a result of the call. (The function usually
creates a single location, but creates two in the case of routing through an axis.)
As input, the ProCableRoutingEnd() function takes only the void* for the
routing data.

Deleting Cable Sections
Function Introduced:

• ProCableSectionsDelete()
The function ProCableSectionsDelete() deletes the section of cables that
lies between designated locations. ProCableSectionsDelete() does not
delete loom bundle cable sections.

Production Applications: Cabling 1829

67
Production Applications: Piping

Piping Terminology .. 1831
Linestock Management Functions .. 1831
Pipeline Features .. 1834
Pipeline Connectivity Analysis .. 1837

This chapter contains information about the Piping API functions. The functions
in this section allow a Creo Parametric TOOLKIT application to create, read, and
write pipe linestock information. These APIs also support analysis of pipeline
connectivity as built with the Creo Parametric module Piping.

1830 Creo® Parametric TOOLKITUser’s Guide

Piping Terminology
Creo Parametric TOOLKIT supports Piping. Piping uses specific terminology.
This section defines this terminology.
A pipeline is set of interconnecting pipes and fitments. A pipeline consists of
an extension which terminates at open ends (that is, ends with no further pipeline
items are attached), non-open ends (that is, ends with equipment such as nozzles
or other pipelines), or junctions. A pipeline also contains extensions that branch
from extensions which branch from it, then others which branch from those, and
so on.
A pipeline extension is a non-branching sequence of pipeline items.
A pipeline feature is a feature which names the pipeline to show its
grouping. All other features in the pipeline refer to this feature. A pipeline feature
does not contain any geometry of its own.
At a branch (or junction), pipes are grouped into extensions such that the
extension which continues across the branch has a continuous direction of flow,
and, if that criterion leaves a choice, has the smallest change of direction possible
for that branch. Other pipes which join that branch then form the end points of
other extensions.
A member of an extension is a terminator, a series, or a junction.
A terminator is the open or non-open ends of the pipeline.
A series is a non-branching sequence of pipeline objects.
A junction is an assembly component or a datum point which represents a part
which joins three or more pipe segments.
A stubin is a datum point which joints three or more series.
A segment is a section of pipe, either straight or arced. If arced, the segment is
manufactured by taking a straight section of tube and bending it.
A fitting is a component that connects two pipe segments, for example, to
form a corner where space does not allow a bent pipe segment, or to represent an
item such as a valve
A pipeline object is a segment, a fitting, or a stubin.
A pipeline network is a data structure which contains references to pipeline
objects. The objects are structured to show their connectivity and sequence in
relation to the flow.

Linestock Management Functions
This section presents functions for management of linestock.

Production Applications: Piping 1831

Linestocks
Functions introduced:

• ProAssemblyLnstksCollect()
• ProPipelineLnstkGet()
• ProPipelineLnstkSet()
• ProLnstkCreate()

typedef struct pro_lnstk
{

ProName name;
ProAssembly owner;

} ProLnstk;

The function ProAssemblyLnstksCollect() finds all the linestocks
defined for a specified assembly.
The functions ProPipelineLnstkGet() and ProPipelineLnstkSet()
get and set the default linestock for a specified pipeline feature.
The function ProLnstkCreate() creates a new linestock in the specified
assembly.

Linestock Parameters
Functions introduced:

• ProLnstkParametersCollect()
• ProLnstkParametersSet()
• ProLnstkParameterAdd()
• ProLnstkParameterDelete()
The parameters of a linestock differ from regular Creo Parametric parameters in
that they may be organized hierarchically. The data structure ProLnstkParam
contains the description of a linestock parameter and its member parameters, if
any. Its declaration follows, along with those of its member types.

typedef enum
{

PROLNSTKPRM_SINGLE,
PROLNSTKPRM_MULTIPLE

} ProLnstkParamType;
typedef struct _pro_lnstk_param_memb_
{

ProName name;
ProParamvalue value;

} ProLnstkParamMemb;
typedef struct _pro_lnstk_param_
{

ProName name;

1832 Creo® Parametric TOOLKITUser’s Guide

ProLnstkParamType param_type;
union {

ProParamvalue value;
ProLnstkParamMemb *members;

} lnstk_param_value;
} ProLnstkParam;

The function ProLnstkParametersCollect() finds all the parameters for
a specified linestock.
The function ProLnstkParametersSet() sets the parameters on a specified
linestock to a specific list.
The function ProLnstkParameterAdd() adds a new parameter to the list of
parameters on a specified linestock.
The function ProLnstkParameterDelete() deletes a named parameter
from a linestock.
The linestock parameters can be set using the following enumerated types:

• ProLnstkPipeSection—Specifies the type of the pipe section as Hollow
or Solid.

• ProLnstkPipeShape—Specifies the type of the pipe shape as Flexible or
Straight.

• ProLnstkPipeCrnrType—Specifies the type of the pipe corner as Bend,
Fitting, or Miter Cut. Corners are not set for flexible pipes.

• ProLnstkPipeXSection—Specifies the cross section of the pipe as
Circular or Rectangular.

For round pipes the value of ProLnstkPipeXSection is set to
PROLNSTKPIPEXSECT_CIRCULAR. Use the function
ProLnstkParametersCollect() to access the values of the following pipe
section parameters:
• OD—Outer diameter of the pipe.
• WALL_THICKNESS—Wall thickness of the pipe.
For rectangular pipes the value of ProLnstkPipeXSection is set to
PROLNSTKPIPEXSECT_RECTANGULAR. Use the function
ProLnstkParametersCollect() to access the values of the following pipe
section parameters:
• RECTANGULAR_HEIGHT—Height of the rectangular pipe.
• RECTANGULAR_WIDTH—Width of the rectangular pipe
• RECTANGULAR_ANGLE—Rotate angle of the pipe solid part around its

reference entity. The angle is relevant only in square pipes.
• WALL_THICKNESS—Wall thickness of the pipe.

Production Applications: Piping 1833

Pipeline Features
The functions in this section are used to create and work with pipeline features.
These functions also allow a Creo Parametric TOOLKIT application to create,
read, and write line stock information.
Functions introduced:

• ProPipelineSpecDrivenCreate()
• ProPipelineCreateFromXML()
• ProPipelineCreate()
• ProPipelineParametersCollect()
• ProPipelineParametersSet()
• ProPipelineParameterAdd()
• ProPipelineParameterDelete()
The function ProPipelineSpecDrivenCreate() creates line stock and
pipeline features according to the specification parameters defined in the structure
ProPipingSpecParams. The pipeline feature is created using the newly
created line stock feature. The name of the line stock feature is generated based on
the specification parameters. The name of the pipeline feature is generated based
on the specification parameter and the configuration option pipeline_label_
format.
The input arguments are:
• model—Specifies the model where the pipeline feature must be created. The

model must be Specfication-Driven, or the configuration option piping_
design_method must be set to spec_driven.

The configuration option piping_design_method enables you to set the
design mode for the piping project. To activate the Spec-Driven design mode
set the value of the configuration option to spec_driven. In this mode, the
piping systems are created using the specified specifications. For Non Spec-
Driven mode, set the value to non_spec_driven. In this mode, the piping
systems are created manually without using project-specific data. To work in
the User-Driven mode, set the value to user_driven. This mode enables
you to switch between Spec-Driven and Non Spec-Driven piping design
modes. You can convert existing assemblies to required design mode at any
time in the design process.

• spec_params—Specifies the specification parameters. These parameters are
defined in the structure ProPipingSpecParams. User must set the
parameter values in the structure based on the values defined in the auto-
selection file. Refer to the Creo Parametric Piping Help for more information
on the auto-selection files.

1834 Creo® Parametric TOOLKITUser’s Guide

• Mnemonic—Specifies the fluid or piping system. If the value is specified as
NULL, then the default mnemonic defined in the Specification Directory file is
used. The path and name of the Specification Directory file are set in the
configuration option piping_spec_dir_file. If you pass an empty
string, then no mnemonic value is assigned to the pipeline feature.

• number—Specifies a number which uniquely identifies the pipeline. If the
value is specified as NULL or an empty string, then no number is assigned to
the pipeline feature.

• insulation—Specifics the insulation for the pipeline. If the value is specified as
NULL, then the default insulation defined in the Specification Directory file is
used. The path and name of the Specification Directory file are set in the
configuration option piping_spec_dir_file. If you pass an empty
string, then the pipeline feature is created without insulation.

• CreateSubAsm—Specifies if the pipeline must be created as a new
subassembly. The pipeline subassembly is created using the template model
defined in the configuration option pipeline_start_assembly_name.

• SubAsmName—Specifies the name of the pipeline subassembly. If you pass
the value of the argument as NULL or an empty string, then the name of the
pipeline subassembly is generated based on the configuration option
pipeline_assembly_name_format.

• csys_reference—Specifies a coordinate system for the placement of the
pipeline subassembly. If the value is specified as NULL, then the coordinate
system of the model is used to place the subassembly.

The function ProPipelineCreateFromXML() creates line stock and
pipeline features according to the schematic information defined in the XML file
for the specified pipeline label. The name of the line stock feature is generated
based on the specification parameters. The name of the pipeline feature is
generated based on the specification parameter and the configuration option
pipeline_label_format.
The input arguments are:
• model—Specifies the model where the pipeline feature must be created. The

model must be Specfication-Driven, or the configuration option piping_
design_method must be set to spec_driven. The model must be enabled
for schematic-driven modeling. The configuration option piping_
schematic_driven must be set to yes.

The configuration option piping_schematic_driven enables or
disables the schematic-driven modeling mode for a piping project. The valid
values are yes and no.

• xml_file—Specifies the path to the XML file which contains schematic
information for pipelines.

Production Applications: Piping 1835

• pipeline_label—Specifies the pipeline label for the XML file. The properties
SPEC, SIZE, SCHEDULE, MNEMONIC, NUMBER, and INSULATION
associated with a pipeline label are updated from the XML file. The property
GRADE, that is, the material code is updated based on the other specification
parameters. The property CATEGORY has its value set as PIPE.

• insulation—Specifics if the pipeline must be created with insulation. If the
value is specified as TRUE, then the pipeline is created with insulation based
on the parameter INSULATION defined in the XML file.

• CreateSubAsm—Specifies if the pipeline must be created as a new
subassembly. The pipeline subassembly is created using the template model
defined in the configuration option pipeline_start_assembly_name.

• SubAsmName—Specifies the name of the pipeline subassembly. If you pass
the value of the argument as NULL or an empty string, then the name of the
pipeline subassembly is generated based on the configuration option
pipeline_assembly_name_format.

• csys_reference—Specifies a coordinate system for the placement of the
pipeline subassembly. If the value is specified as NULL, then the coordinate
system of the model is used to place the subassembly.

The function ProPipelineCreate() creates a Non Specification-Driven
pipeline feature. The pipeline is created under the specified model. The input
arguments are:
• model—Specifies the model where the pipeline feature must be created. The

model must be Non Specfication-Driven.
• lnstk—Specifies the line stock feature. The line stock feature must have the

specified model as its parent.
• pipeline_name—Specifies the name of the pipeline feature.
The function ProPipelineParametersCollect() retrieves all the
parameters of the specified pipeline as a ProArray. Use the function
ProArrayFree to release the memory assigned to the ProArray of
parameters.
Use the function ProPipelineParametersSet() to set the parameters in
the specified pipeline.
The function ProPipelineParameterAdd() adds the parameter in the
specified pipeline.
The function ProPipelineParameterDelete() deletes the parameter in
the specified pipeline.
In this section, we have explained only the configuration options which are
required to work with the piping APIs. Refer to the Creo Parametric Piping Help
for the complete list of piping configuration options and their detailed
descriptions.

1836 Creo® Parametric TOOLKITUser’s Guide

Pipeline Connectivity Analysis
The functions in the section support analysis of pipeline connectivity.

Networks
Functions introduced:

• ProPipelineNetworkEval()
• ProPnetworkFree()
• ProPnetworkLabelGet()
• ProPnetworkSizeGet()
• ProPnetworkSpecGet()
A pipeline is a collection of Creo Parametric piping features and components that
are connected together. A pipeline feature is a single feature that unites all the
features and components in a pipeline. All the features and components that
belong to one pipeline reference the pipeline feature.
A network is a temporary data structure which is the result of analyzing the
connectivity and topology of the features and components in a pipeline. The
functions in this section allow a Creo Parametric TOOLKIT application to create
and analyze the network for a pipeline, which would be the first step in, for
example, an analysis of the fluid flow down the pipeline.
The network is a hierarchical data structure whose branches describe the various
logical subdivisions into which the features and components of a pipeline divide
themselves according to their connectivity.
A network is described by the opaque pointer ProPnetwork. The function
ProPipelineNetworkEval() analyzes the features and components that
belong to a pipeline (specified by its pipeline feature) and builds a network data
structure.
After the structure has been analyzed it should be freed using
ProPnetworkFree().
The functions ProPnetworkLabelGet(), ProPnetworkSizeGet(), and
ProPnetworkSpecGet() get information about the pipeline described by a
specified network.

Extensions
Functions introduced

• ProPnetworkExtensionVisit()
• ProPextensionFlowGet()

Production Applications: Piping 1837

A network contains a list of extensions. An extension is a non branching sequence
of connected pipeline items. At a branch in a pipeline one extension is continuous
across the branch and other extensions terminate at the branch. To decide which
extension is continuous across the branch, the analysis performed by
ProPipelineNetworkEval() uses the following rules:

• The extension must have a continuous direction of flow across the branch.
• Of all such possible extensions, the one chosen is the one that gives the

smallest change of direction across the branch.
An extension is represented by the opaque pointer ProPextension. The function
ProPnetworkExtensionVisit() visits all the extensions in a network.
The function ProPextensionFlowGet() tells you the flow direction in
relation to the sequence of members in the extension.

Members
Functions introduced:

• ProPextensionMemberVisit()
• ProPmemberTypeGet()
An extension is conceptually divided into objects called members, described by
the opaque object ProPmember. The members in an extension divide it at the
pipeline branches which the extension crosses.
There are three types of member:

• Terminator—The end of a pipeline, where it either opens or connects to an
item outside the pipeline, described by the opaque object
ProPterminator.

• Junction—The item that describes how the pipeline branches, described by the
opaque object ProPjunction.

• Series—A non branching sequence of pipeline objects, described by the
opaque object ProPseries.

The function ProPextensionMemberVisit() visits all the members in an
extension, and the function ProPmemberTypeGet() reports which of the three
types the member represents. Each of three types of member is in turn composed
of one or more objects.
The following sections describe the analysis of the three types of members.

Terminators
Functions introduced:

1838 Creo® Parametric TOOLKITUser’s Guide

• ProPmemberTerminatorGet()
• ProPterminatorTypeGet()
The function ProPmemberTerminatorGet() outputs the Pterminator
object, which represents the terminator in the specified member.
The function ProPterminatorTypeGet() tells you whether a terminator is
an input or an output.

Junctions
Functions introduced:

• ProPmemberJunctionGet()
The function ProPmemberJunctionGet() outputs the Pjunction object
which represents the junction in the specified member.

Series
Functions introduced:

• ProPmemberSeriesGet()
• ProPseriesIdGet()
The function ProPmemberSeriesGet() outputs the Pseries object which
represents the series in the specified member.
The function ProPseriesIdGet() yields the integer id of the specified series.

Objects
Functions introduced:

• ProPterminatorObjectGet()
• ProPjunctionObjectGet()
• ProPseriesObjectVisit()
• ProPobjectTypeGet()
• ProSelectionPipelineGet(
• ProPobjectSegmentGet()
• ProPobjectFittingGet()
• ProPfittingAsmcompGet()
• ProPobjectStubinGet()
• ProPstubinPointGet()

Production Applications: Piping 1839

• ProPobjectSelectionGet()
• ProPselectionSelectionGet()
A Piping Object describes a single item in a pipeline and is represented by the
opaque pointer Pobject.
The functions ProPterminatorObjectGet() and
ProPjunctionObjectGet() output the single object used to represent a
terminator or a junction. The function ProPseriesObjectVisit() visits all
the objects that represent the contents of a series.
The function ProPobjectTypeGet() yields one of the following types:

• Segment—A single pipe segment, either bent or straight. Can only belong to a
series.

• Fitting—An assembly component that connects two or more pipeline
segments. Can belong to a Series (if it connects two segments) or a Junction
(if it connects more than two segments).

• Stubin—A datum point that defines the location where two or more pipeline
segments connect directly without a fitting. Can only belong to a Junction.

• Selection—An object that contains a ProSelection describing the item a
pipeline terminator connects to. Can only belong to a Terminator.

The function ProSelectionPipelineGet() outputs the pipeline feature to
which the specified pipeline selection belongs.
The function ProPobjectSegmentGet() outputs the Segment contained by
an Object of the appropriate type. The Segment is described in the next section.
The function ProPobjectFittingGet() outputs the fitting contained by an
object of the appropriate type. The fitting is represented by the opaque object
ProPfitting. The assembly component that represents the fitting can be found
using the function ProPfittingAsmcompGet().
The function ProPobjectStubinGet() outputs the stubin contained by an
object of the appropriate type. The stubin is represented by the opaque pointer
ProPstubin. The function ProPstubinPointGet() yields the 3-D
location of the stubin.
The function ProPobjectSelectionGet() outputs the selection contained
by an object of type terminator. The function
ProPselectionSelectionGet() provides the ProSelection object
that the selection contains and identifies the item outside the pipeline to which the
terminator connects.

Segments
Functions introduced:

1840 Creo® Parametric TOOLKITUser’s Guide

• ProPsegmentTypeGet()
• ProPsegmentLinestockGet()
• ProPsegmentLengthGet()
• ProPsegmentCurvesGet()
A segment is represented by the opaque pointer ProPsegment.
The function ProPsegmentTypeGet() tells you whether the segment is
straight or bent.
The function ProPsegmentLinestockGet() outputs which linestock was
used for this segment. Note that because the pipeline may contain fittings which
cause a change in diameter, some segments in the pipeline may yield a different
linestock from that provided by ProPipelineLnstkGet() for the pipeline
itself.
The function ProPsegmentLengthGet() outputs the physical length of the
segment.
The function ProPsegmentCurvesGet() outputs an array of ProCurve
objects that describes the geometry of the centerline of the segment. The curves
are always listed in the direction of flow.

Connecting Pipeline Segments
You can connect disconnected segments of the same pipeline or entry ports using
the pipe connect feature.
The element tree for the pipe connect feature is documented in the header file
ProPipConnect.h and is shown in the following figure:

Production Applications: Piping 1841

Element Tree for Pipe Connect Feature

The following table describes the elements in the element tree for the pipe connect
feature:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Mandatory element. Specifies the

type of the feature. The valid value
for this element is PRO_FEAT_
PIPE_JOIN.

PRO_E_STD_PIPE_LINE_ENV PRO_ELEM_TYPE_COMPOUND This compound element defines
the pipe options.

PRO_E_STD_PIPE_LINE_ID PRO_ELEM_TYPE_INT This element is mandatory, except
the pipe route environment.

1842 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description

Specifies the ID of the pipeline.
PRO_E_STD_PIPE_LINE_
LNSTK

PRO_ELEM_TYPE_INT Optional element. Specifies the
line stock. The default line stock is
taken from the related pipeline.

PRO_E_STD_PIPE_LINE_
CORNER_TYPE

PRO_ELEM_TYPE_OPTION Optional element. Specifies the
type of corner for the connect
feature. The segments in the
connect feature are joined using
corners. The types of corner are
set in the line stock. The default
type of corner is taken from the
related pipeline.

The valid values for types of
corner are:
• PRO_PIPE_CORNER_

TYPE_FITTING—Creates
sharp corners. You can later
add corner fittings. Fitted
corners create breaks in a
pipeline.

• PRO_PIPE_CORNER_

TYPE_MITER—Creates a
corner by adding a miter cut.

• PRO_PIPE_CORNER_

TYPE_BEND—Creates each
corner by bending the pipe.

PRO_E_STD_PIPE_LINE_
BEND_RAD

PRO_ELEM_TYPE_DOUBLE Optional element. This element is
relevant when the corner type is
set to PRO_PIPE_CORNER_
TYPE_BEND. Specifies the radius
of the bend. The default bend
radius is taken from the related
pipeline.

For Specification-Driven
pipelines, the value of bend radius
is defined in the line stock, which
is related to the pipeline.

PRO_E_STD_PIPE_LINE_
MITER_NUM

PRO_ELEM_TYPE_INT Optional element. This element is
relevant when the corner type is
set to PRO_PIPE_CORNER_
TYPE_MITER. Specifies the
number of miter cuts. The default
number of cuts is taken from the
related pipeline.

Production Applications: Piping 1843

Element ID Data Type Description

For Specification-Driven
pipelines, the number of miter cuts
is defined in the line stock, which
is related to the pipeline.

PRO_E_STD_PIPE_LINE_
MITER_LEN

PRO_ELEM_TYPE_DOUBLE Optional element. This element is
relevant when the corner type is
set to PRO_PIPE_CORNER_
TYPE_MITER. Specifies the
length of the miter cut. The default
length is taken from the related
pipeline.

For Specification-Driven
pipelines, the length of the miter
cut is defined in the line stock,
which is related to the pipeline.

PRO_E_PIPE_CONNECT_
FROM_MAIN_REF

PRO_ELEM_TYPE_SELECT Mandatory element. Specifies the
first end of the connect feature.

PRO_E_PIPE_CONNECT_TO_
MAIN_REF

PRO_ELEM_TYPE_SELECT Mandatory element. Specifies the
second end of the connect feature.

1844 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_PIPE_CONNECT_
DIMS_SCHEME

PRO_ELEM_TYPE_OPTION Optional element. Specifies the
dimensioning scheme to be used to
connect the two ends. The valid
values are:
• PRO_PIPE_DIM_SCHEME_

L1_L2—Sets an offset from
both ends of the connect. This
is the default option.

• PRO_PIPE_DIM_SCHEME_
L1_A1—Sets an offset from
the first end of the connect and
the angle between the first
segment and middle segment
of the connect.

• PRO_PIPE_DIM_SCHEME_
L1_A2—Sets an offset from
the first selected end of the
connect, and the angle between
the middle segment and the
second end.

• PRO_PIPE_DIM_SCHEME_
L2_A1—Sets an offset from
the second selected end of the
connect, and the angle between
the first segment and middle
segment of the connect.

• PRO_PIPE_DIM_SCHEME_
L2_A2—Sets an offset from
the second selected end of the
connect, and the angle between
the middle segment and the
second end.

Production Applications: Piping 1845

Element ID Data Type Description
• PRO_PIPE_DIM_SCHEME_

A1_A2—Sets the angles
between the end segments and
the middle segment of the
connect.

Note

If length is missing, then its
value is considered as 0. If
angle is missing, then the
default dimensioning scheme
PRO_PIPE_DIM_SCHEME_

L1_L2 is used. Here again, if
length is missing, then its
value is considered as 0.

Refer to the Creo Parametric
Piping help for more information
on the segments and angles
created by the connect feature.

PRO_E_PIPE_ROUTE_ENDS PRO_ELEM_TYPE_COMPOUND This compound element defines
the offset and angle values for the
ends in the connect feature.

The two main elements of PRO_E_PIPE_ROUTE_ENDS are:

• PRO_E_PIPE_ROUTE_END_FIRST—This compound element specifies the
values for the first end of the connect feature.

• PRO_E_PIPE_ROUTE_END_SECOND—This compound element specifies
the values for the second end of the connect feature.

The following elements are common to the both the compound elements:

1846 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_PIPE_ROUTE_END_
OPT

PRO_ELEM_TYPE_OPTION Optional element. Specifies the
type of offset. The valid values
are:
• PRO_PIPE_OFFSET_

REFERENCE—Specifies that
the offset is defined from an
reference object. The reference
object can be a datum plane or
coordinate system, which is
perpendicular to the end axis
or coordinate axis.

• PRO_PIPE_OFFSET_END—
Specifies that the offset is
defined from the selected end.

PRO_E_PIPE_ROUTE_END_
LENGTH

PRO_ELEM_TYPE_DOUBLE Optional element. Specifies the
value for offset lengths.
Depending on the dimensioning
scheme, specify the value
length_1 for L1 and length_
2 for L2. The default value is 0.0.

PRO_E_PIPE_ROUTE_END_
REF

PRO_ELEM_TYPE_SELECT This element is mandatory if the
type of offset is set to PRO_
PIPE_OFFSET_REFERENCE.
Specifies the reference object.

PRO_E_PIPE_CONNECT_END_
ANGLE

PRO_ELEM_TYPE_DOUBLE Optional element. Specifies the
value for the segment angles.
Depending on the dimensioning
scheme, specify angle_1 for A1
and angle_2 for A2. The default
value is 0.0.

Note

If the angle is missing, then
the dimensioning scheme
PRO_E_PIPE_CONNECT_

DIMS_SCHEME is changed
to PRO_PIPE_DIM_
SCHEME_L1_L2. The
default values of L1 and L2
are 0.0.

Production Applications: Piping 1847

68
Production Applications: Welding

Read Access to Weld Features... 1849
Customizing Weld Drawing Symbols... 1850

Welding is an optional Creo Parametric module that allows you to model welds in
assemblies. In addition, you can generate report tables about weld parameters and
show welding symbols in assembly drawings. This chapter provides a brief
overview of weld features. For more information, refer to the “Welding Design”
module in the Creo Parametric Online Help.

1848 Creo® Parametric TOOLKITUser’s Guide

Read Access to Weld Features
The functions listed in this section provide access to basic information about
existing weld features.
Functions introduced:

• ProWeldTypeGet()
• ProWeldInfoGet()
• ProWeldIntermittenceGet()
• ProWeldSequenceIdGet()
• ProMdlIsSolidWeld()
• ProWeldGeomTypeGet()
• ProWeldRodGet()
• ProWeldRodNameGet()
• ProWeldCompoundGet()
• ProWeldFilletdataGet()
• ProWeldGroovedataGet()
• ProWeldPlugdataGet()
• ProWeldSlotdataGet()
• ProWeldSpotdataGet()
• ProWeldExtendedInfoToXMLExport()
Use function ProWeldTypeGet() to output the type and subtype of the
specified weld. Function ProWeldInfoGet() outputs the information you get
by using the Creo Parametric command Info, in the Weld group, under the welding
tab.
Function ProWeldIntermittenceGet() outputs information about an
intermittent weld, describing the size, number, and location of the welds that form
it.
Use function ProWeldSequenceIdGet() to obtain the sequence ID of a weld
feature.
In Creo Simulate, you can add the welds created in Creo Parametric Welding
application to models. During meshing, solid elements are created for solid weld
objects while surface weld objects are compressed to shells. The function
ProMdlIsSolidWeld() checks if the specified solid has been created from a
solid weld.

Production Applications: Welding 1849

Use the function ProWeldGeomTypeGet() to get the type of geometry
representation for the specified weld. The types of geometry representations are
defined in the enumerated data type ProWeldGeomType. The valid values are:
• PRO_WELD_LIGHT—Light welds reference existing curves or edges but

have no geometry of their own. The welds are represented by the edge or
surface geometry it references.

• PRO_WELD_SURFACE—Surface welds creates and shows the surface
geometry. It is represented by surface geometry.

• PRO_WELD_SOLID—Solid welds and edge preparations are geometric
models that offer mass properties such as volume and surface area.

Refer to the Creo Parametric Welding for more information.
Use function ProWeldRodGet() to provide the feature handle of the rod for
the specified weld feature. Function ProWeldRodNameGet() gets the name of
the specified weld rod feature.
ProWeldCompoundGet() outputs the list of welds in a compound weld.
Use functions ProWeldFilletdataGet(), ProWeldGroovedataGet(),
ProWeldPlugdataGet(), ProWeldSlotdataGet(), and
ProWeldSpotdataGet() to output data on a specific fillet, groove, plug, slot,
or spot weld respectively.
Use the function ProWeldExtendedInfoToXMLExport() to print the
information that is necessary to automatize the welding info file, in XML format.

Customizing Weld Drawing Symbols
Functions introduced:

• ProDrawingWeldSympathGetAction()
• ProDrawingWeldGroupsGetAction()
• ProDrawingWeldSymtextGetAction()
This section describes three notification functions invoked by Creo Parametric
when the user instantiates a weld symbol that documents a weld in drawing mode.
Your callback functions can output information which is used to modify the weld
symbol that appears on the drawing. The effect is to allow much greater
customization of the appearance of the weld symbol than is possible without Creo
Parametric TOOLKIT .

1850 Creo® Parametric TOOLKITUser’s Guide

Note
From Pro/ENGINEERWildfire 5.0 onward, you can also create weld symbols
in weld features as 3D Symbol Annotation Elements. Creo Parametric
TOOLKIT allows you to access the Weld Symbol Annotation Elements using
exisitng ProAnnotation*() functions. For more information on the
functions, refer the Annotations: Annotation Features and Annotations on page
541 chapter.

Each callback has input arguments which identify the drawing, the weld assembly,
the weld feature being annotated, and the path to the drawing symbol being used.
The functions for read-access to welds, described in the previous section, would
be used inside the callbacks to find out about the weld being annotated.
Refer to the Event-driven Programming: Notifications on page 2010 chapter for
more data on how to set a notification.
Weld symbol notification types are:

• PRO_DRAWING_WELD_SYMPATH_GET—allows the callback function to
override the entire weld symbol by specifying the path and file name of a
substitute symbol.

• PRO_DRAWING_WELD_GROUPIDS_GET—allows the callback to selectively
include or exclude symbol groups contained in the symbol. Additional inputs
to the callback are a flag to show which way the symbol will point (left or
right) and an array of the names of the groups in the symbol; the output is an
array of booleans which select the groups to be included.

• PRO_DRAWING_WELD_SYMTEXT_GET—allows the callback to substitute
for variable text in the symbol.

All three notifications can be set at the same time, allowing you to use your own
set of generic symbols which are designed to be customized according to the weld
type and properties.

Example 1: Weld Callback Notification
The sample code in UgWeld.c located at <creo_toolkit_loadpoint>/
protk_appls/pt_userguide/ptu_weld shows how to use weld callback
notification functions.

Production Applications: Welding 1851

69
Creo Simulate: Items

Entering the Creo Simulate Environment... 1854
Entering the Creo Simulate Environment with Failed Features 1855
Selection of Creo Simulate Items.. 1855
Accessing Creo Simulate Items .. 1856
Creo Simulate Object References... 1857
Geometric References... 1858
Y-directions... 1861
Functions.. 1862
Creo Simulate Expressions .. 1865
Accessing the Properties used for Loads and Constraints... 1866
Creo Simulate Loads ... 1870
Creo Simulate Load Sets ... 1883
Creo Simulate Constraints ... 1884
Creo Simulate Constraint Sets.. 1894
Creo Simulate Matrix Functions.. 1894
Creo Simulate Vector Functions ... 1895
Creo Simulate Beams.. 1895
Creo Simulate Beams: Sections, Sketched Sections, and General Sections 1898
Creo Simulate Beam Sections.. 1904
Sketched Beam Section... 1908
General Beam Section... 1909
Beam Orientations... 1911
Beam Releases... 1914
Creo Simulate Spring Items.. 1915
Creo Simulate Spring Property Items .. 1917
Creo Simulate Mass Items ... 1920
Creo Simulate Mass Properties .. 1923
Creo Simulate Material Assignment .. 1924
Material Orientations ... 1925
Creo Simulate Shells ... 1929
Shell Properties... 1931

1852 Creo® Parametric TOOLKITUser’s Guide

Shell Pairs .. 1938
Interfaces ... 1941
Gaps .. 1948
Mesh Control .. 1950
Welds... 1963
Creo Simulate Features ... 1967
Validating New and Modified Simulation Objects.. 1967

This chapter describes how to access the properties of Creo Simulate items. The
functions described in this chapter evaluate the model's structural characteristics
and thermal profile and provide powerful tools for examining mechanism
performance.

Creo Simulate: Items 1853

Entering the Creo Simulate Environment
You can access the Creo Simulate functions in one of the following situations:

• When the Creo Parametric session is in the Creo Simulate user interface for a
given model.

• When the application initializes the Creo Simulate environment for a given
model.

Functions Introduced:

• ProMechanicaEnter()
• ProMechanicaLeave()
• ProMechanicaIsActive()
The function ProMechanicaEnter() allows you to enter the Creo Simulate
environment to access information about the Creo Simulate items in a specified
model. The model must be displayed in the window.

Note
• You cannot call the function ProMechanicaEnter() from user_

initialize().
• Models created in Creo Simulate Lite mode, in both Structure and Thermal,

are not supported by the Creo Parametric TOOLKIT functions. If you access a
Creo Simulate Lite model in the Creo Simulate environment, the function
ProMechanicaEnter() returns an error PRO_TK_CANT_ACCESS.

The function ProMechanicaLeave() exits the Creo Simulate environment
entered using the previous function.
The function ProMechanicaIsActive() identifies whether the Creo
Simulate environment is currently active. The environment might be active if the
user has entered the Creo Simulate environment interactively, or if the function
ProMechanicaEnter() has been called.

Note
Only functions related to the Creo Simulate database must be called between
the calls to the functions ProMechanicaEnter() and
ProMechanicaLeave(). ProMechanicaEnter() must not be used to
initialize the Creo Simulate User Interface.

1854 Creo® Parametric TOOLKITUser’s Guide

Entering the Creo Simulate Environment
with Failed Features
You can open a model created in Creo Parametric with features that failed to
regenerate in the Creo Simulate environment. The failed features appear on the
Model Tree for the part.
You can use the functions described in this chapter to enter and run applications in
Creo Simulate environment on a model with failed features or components. You
can also create simulation objects on geometry from failed features or components
and regenerate the model.

Selection of Creo Simulate Items
Creo Parametric TOOLKIT supports selection of certain Creo Simulate items.
Refer to the chapter User Interface: Selection on page 503 for details about
selection in Creo Parametric. These items are selected using ProSelect() or
are obtained from the selection buffer while Creo Parametric is in the Creo
Simulate Environment. The following table lists the selectable items and their
ProSelect() filter strings:
Item Type ProSelect() Filter String Model Item Type
Load sim_load* PRO_SIMULATION_LOAD

Constraint sim_load* PRO_SIMULATION_
CONSTRAINT

Beam sim_beam PRO_SIMULATION_BEAM

Spring sim_spring PRO_SIMULATION_SPRING

Gap sim_gap PRO_SIMULATION_GAP

Mass sim_mass PRO_SIMULATION_MASS

Shell sim_shell PRO_SIMULATION_SHELL

Shell pair sim_shlpair PRO_SIMULATION_SHELL_
PAIR

Weld sim_weld PRO_SIMULATION_WELD

Interface sim_connect PRO_SIMULATION_
INTERFACE

*Interactive selection using this filter will by default allow the user to select both
loads and constraints. Use the ProSelect() filters if you desire to only allow
selection of one of these types.

Creo Simulate: Items 1855

Example 1: Interactively Selecting and Deleting a
Creo Simulate Item
The sample code in the file PTMechExDelete.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_mech_examples/pt_
mech_ex_src shows how to select a Creo Simulate item interactively and
delete it.

Accessing Creo Simulate Items
The functions described in this section allow access to Creo Simulate items in
Creo Parametric.
Functions Introduced:

• ProSolidMechitemVisit()
• ProMechitemNameGet()
• ProMechitemStatusGet()
• ProMechitemFilterAction()
• ProMechitemVisitAction()
The Creo Simulate item is a derivative of the structure ProModelitem and is
defined as
typedef struct pro_model_item
{
ProType type;
int id;
ProMdl owner;
}ProMechItem;

The function ProSolidMechitemVisit() traverses the Creo Simulate items
in a specified model. This function allows you to specify the type of item to be
located, or optionally all item types can be visited.
The function ProMechitemNameGet() returns the name of the Creo Simulate
item.
The function ProMechitemStatusGet() returns the visibility status of the
item in the current Creo Simulate environment.
The function ProMechitemFilterAction() is used to filter Creo Simulate
items for visiting them.
The function ProMechitemVisitAction() is used to visit a Creo Simulate
item.

1856 Creo® Parametric TOOLKITUser’s Guide

Creo Simulate Object References
References to specific Creo Simulate items are contained within the Creo
Simulate object references structure. This structure is represented in Creo
Parametric TOOLKIT by the opaque handle, ProMechObjectref.
Functions Introduced:

• ProMechobjectrefAlloc()
• ProMechobjectrefTypeGet()
• ProMechobjectrefTypeSet()
• ProMechobjectrefIdGet()
• ProMechobjectrefIdSet()
• ProMechobjectrefPathGet()
• ProMechobjectrefPathSet()
• ProMechobjectrefFree()
• ProMechobjectrefProarrayFree()
The function ProMechobjectrefAlloc() allocates memory for the Creo
Simulate object references handle.
The function ProMechobjectrefTypeGet() returns the type of the
specified Creo Simulate object. The output argument type is one of the PRO_
SIMULATION* types.
The function ProMechobjectrefTypeSet() sets the type of the Creo
Simulate object.
The function ProMechobjectrefIdGet() obtains the ID of the specified
Creo Simulate object.
The function ProMechobjectrefIdSet() sets the ID of the specified Creo
Simulate object.
The function ProMechobjectrefPathGet() returns the complete path of
the Creo Simulate object reference from the root assembly to the part or assembly
that owns the specified Creo Simulate object.
The function ProMechobjectrefPathSet() sets the complete path for the
Creo Simulate object reference.
Use the function ProMechobjectrefFree() to release the memory assigned
to the Creo Simulate object reference handle.
Use the function ProMechobjectrefProarrayFree() to release the
memory assigned to a ProArray of Creo Simulate object reference handles.

Creo Simulate: Items 1857

Geometric References
Creo Simulate items use a geometric reference structure to contain references to
Creo Parametric geometry items. This structure is represented in Creo Parametric
TOOLKIT by the opaque handle ProMechGeomref.
Functions Introduced:

• ProMechgeomrefAlloc()
• ProMechgeomrefTypeGet()
• ProMechgeomrefSubtypeGet()
• ProMechgeomrefIdGet()
• ProMechgeomrefPathGet()
• ProMechgeomrefFree()
• ProMechgeomrefProarrayFree()
• ProMechgeomrefTypeSet()
• ProMechgeomrefSubtypeSet()
• ProMechgeomrefIdSet()
• ProMechgeomrefPathSet()
The function ProMechgeomrefAlloc() allocates memory for the geometric
entity. The function returns a handle to the geometric entity.
The function ProMechgeomrefTypeGet() returns the type for the specified
geometric entity. The output argument type can have one of the following values:

• PRO_MECH_POINT—Specifies a point.
• PRO_MECH_EDGE—Specifies an edge.
• PRO_MECH_SURFACE—Specifies a surface.
• PRO_MECH_VERTEX—Specifies a vertex.
• PRO_MECH_QUILT—Specifies a quilt.
• PRO_MECH_BOUNDARY—Specifies a boundary. This type is valid for all

surfaces.
• PRO_MECH_CURVE—Specifies a curve.
• PRO_MECH_MODEL—Specifies a model. This type is valid for all parts and

assemblies.
• PRO_MECH_AXIS—Specifies the axis.
• PRO_MECH_COORD_SYSTEM—Specifies the coordinate system.
• PRO_MECH_LAYER—Specifies a layer.

1858 Creo® Parametric TOOLKITUser’s Guide

• PRO_MECH_VOLUME—Specifies a set of associated surfaces that visually
represents an entity with volume.

• PRO_MECH_INT*—Specifies the datum reference features that store the
design intent objects. Intent objects are families of associated points, curves,
edges, or surfaces that logically define boundaries of geometry created or
modified by a feature. The types of datum reference features available are:

○ PRO_MECH_INT_PNT—Specifies intent datum point references.
○ PRO_MECH_INT_CURVE—Specifies intent curve references.
○ PRO_MECH_INT_EDGE—Specifies intent edge references.
○ PRO_MECH_INT_SURFACE—Specifies intent surface references.

• PRO_MECH_FEAT—Specifies the references to a Weld Feature. The weld
feature should be of type:

○ Groove or Fillet
○ A surface weld

• PRO_MECH_COSMETIC—Specifies a cosmetic entity that is created as a
container for lattice beams or walls. The cosmetic entities are created by
simplified lattice features, and also by features that intersect or copy the
lattices, such as extrude and mirror features.

• PRO_MECH_BODY—Specifies a body.
The function ProMechgeomrefTypeSet() sets the type of the geometric
entity.
The function ProMechgeomrefSubtypeGet() returns the subtypes of the
specified geometric entity. Only certain types of geometric entities require
subtypes. The geometric entity types and their respective subtypes are as follows:

• PRO_MECH_POINT

○ PRO_MECH_POINT_SINGLE—Specifies the placement of a point at any
location.

○ PRO_MECH_POINT_FEATURE—Specifies the placement of a point
along a surface.

○ PRO_MECH_POINT_PATTERN—Specifies the placement of a point
along a curve.

• PRO_MECH_VERTEX

○ PRO_MECH_VERTEX_EDGE_START—Specifies the start point of the
referenced edge.

○ PRO_MECH_VERTEX_EDGE_END—Specifies the end point of the
referenced edge.

Creo Simulate: Items 1859

• PRO_MECH_COORD_SYSTEM

○ PRO_MECH_CSYS_CARTESIAN—Specifies a Cartesian coordinate
system.

○ PRO_MECH_CSYS_CYLINDRICAL—Specifies a cylindrical coordinate
system.

○ PRO_MECH_CSYS_SPHERICAL—Specifies a spherical coordinate
system.

• PRO_MECH_SURFACE

○ PRO_MECH_SURFACE_NORMAL—Specifies that the surface reference
uses the standard normal direction.

○ PRO_MECH_SURFACE_REVERSED—Specifies that the surface reference
uses the standard normal direction.

• PRO_MECH_CURVE

○ PRO_MECH_CURVE_NORMAL—Specifies that the curve proceeds in the
default direction (from t=0 to t=1).

○ PRO_MECH_CURVE_REVERSED—Specifies that the curve reference uses
the reverse direction of the curve.

• PRO_MECH_EDGE

○ PRO_MECH_EDGE_SURF_0

○ PRO_MECH_EDGE_SURF_1

• PRO_MECH_FEAT

○ PRO_MECH_FEAT_3D_LATT—Specifies a 3D lattice.
○ PRO_MECH_FEAT_2P5D_LATT—Specifies a 2.5D lattice.

The function ProMechgeomrefSubtypeSet() sets the subtypes for the
specified geometric entity.
The function ProMechgeomrefIdGet() returns the ID of the specified entity.
The function ProMechgeomrefIdSet() sets the ID of the specified entity.
The function ProMechgeomrefPathGet()returns the complete path of the
assembly-component references from the root assembly to the part or assembly
that owns the specified geometric reference entity.
The function ProMechgeomrefPathSet()sets the complete path of the
assembly-component references.
Use the function ProMechgeomrefFree()o free the geometric reference
entity from the memory.
Use the function ProMechgeomrefProarrayFree()to free the array of
geometric entities from the memory.

1860 Creo® Parametric TOOLKITUser’s Guide

Y-directions
Several types of Creo Simulate items require a Y-direction (indicating a direction
governing the properties of the item). In Creo Parametric TOOLKIT , Y-directions
are represented using the opaque handle ProMechYDirection. The functions
described in this section provide access to the y-direction handle.
Functions Introduced:

• ProMechydirectionAlloc()
• ProMechydirectionTypeGet()
• ProMechydirectionCsysGet()
• ProMechydirectionCsysSet()
• ProMechydirectionReferenceGet()
• ProMechydirectionReferenceSet()
• ProMechydirectionVectorGet()
• ProMechydirectionVectorSet()
• ProMechydirectionFree()
The function ProMechydirectionAlloc() allocates memory for the y-
direction handle.
The function ProMechydirectionTypeGet() returns the type of the y-
direction. Pass the y-direction handle as the input to this function. The output
value type can have the following values:

• PRO_MECH_YDIR_VECTOR—Specifies a direction vector.
• PRO_MECH_YDIR_REF—Specifies a referenced coordinate system.
• PRO_MECH_YDIR_CSYS—Specifies a world coordinate system.
The function ProMechydirectionCsysGet() returns the coordinate system
if the specified y-direction handle is of type PRO_MECH_YDIR_CSYS.
The function ProMechydirectionCsysSet() sets the coordinate system
for the specified y-direction handle. Calling this function changes the Y-direction
type to the appropriate type and discards any data related to its previous type.
The function ProMechydirectionReferenceGet() returns the reference
entity if the specified y-direction handle is of type PRO_MECH_YDIR_REF.
The function ProMechydirectionReferenceSet() sets the reference
entity for the specified y-direction handle. Calling this function changes the Y-
direction type to the appropriate type and discards any data related to its previous
type.
The function ProMechydirectionVectorGet() returns the vector
direction if the specified y-direction handle is of type PRO_MECH_YDIR_
VECTOR.

Creo Simulate: Items 1861

The function ProMechydirectionVectorSet() sets the vector for the
specified y-direction handle. Calling this function changes the Y-direction type to
the appropriate type and discards any data related to its previous type.
Use the function ProMechydirectionFree() to free the y-direction handle.

Functions
The functions described in this section provide access to the data and contents of
Creo Simulate function items.
Function items use the ProType field in the ProMechitem structure as PRO_
SIMULATION_FUNCTION.
Functions Introduced:

• ProMechfuncCsysGet()
• ProMechfuncCsysSet()
• ProMechfuncDataGet()
• ProMechfuncDataSet()
• ProMechfuncDescriptionGet()
• ProMechfuncDescriptionSet()
• ProMechfuncVartypeGet()
• ProMechfuncVartypeSet()
• ProMechfuncdataTypeGet()
• ProMechfuncdataTypeSet()
• ProMechfuncdataExpressionGet()
• ProMechfuncdataExpressionSet()
• ProMechfuncdataFuncvalueinterpGet()
• ProMechfuncdataFuncvalueinterpSet()
• ProMechfuncdataIndependentvarGet()
• ProMechfuncdataIndepvarinterpGet()
• ProMechfuncdataIndepvarinterpSet()
• ProMechfuncdataMirrordeflectionflagGet()
• ProMechfuncdataMirrordeflectionflagSet()
• ProMechfuncdataFunctableGet()
• ProMechfuncdataFunctableSet()
• ProMechtablentryFunctionvalueGet()
• ProMechtablentryFunctionvalueSet()

1862 Creo® Parametric TOOLKITUser’s Guide

• ProMechtablentryIndependentvarGet()
• ProMechtablentryIndependentvarSet()
• ProMechfuncdataAlloc()
• ProMechtablentryAlloc()
• ProMechtablentryFree()
• ProMechtablentryProarrayFree()
• ProMechfuncdataFree()
The function ProMechfuncCsysGet() gets the reference co-ordinate system
for the specified Creo Simulate function item. Use the function
ProMechfuncCsysSet() to set the reference co-ordinate system for the
specified Creo Simulate function item.
The function ProMechfuncDataGet() returns the handle to the function data
of the Creo Simulate item. Use the function ProMechfuncDataSet() to set
the value of the function data from the Creo Simulate function item
The function ProMechfuncDescriptionGet() returns the description of
the Creo Simulate function item. Use the function
ProMechfuncDescriptionSet() to set the function description of the Creo
Simulate item
The function ProMechfuncdataVartypeGet() gets the function variation
type of the Creo Simulate item. Use the function
ProMechfuncdataVartypeSet() to set the function variation type for the
Creo Simulate item.
The function variation types are defined by the enumerated type
ProMechfuncVarType, which has the following values:
• PRO_MECH_FUNC_UNIVERSAL—Specifies the default function type for the

load.
• PRO_MECH_FUNC_COORD—Specifies the load as a function of the current

coordinate system.
• PRO_MECH_FUNC_TIME—Specifies the load as a function of time.
• PRO_MECH_FUNC_TEMPERATURE—Specifies the load as a function of

temperature.
• PRO_MECH_FUNC_DEFLECTION—Specifies the load as a function of

deflection.
• PRO_MECH_FUNC_ARCLENGTH—Specifies the load as a function of arc

length.

Creo Simulate: Items 1863

• PRO_MECH_FUNC_COORDS_TIME—Specifies the load as a combination of
spatial (function of current coordinate system) and temporal (function of time)
functions.

• PRO_MECH_FUNC_ARCLENGTH_TIME—Specifies the load as a
combination of spatial (function of arc length) and temporal (function of time)
functions.

The function ProMechfuncdataTypeGet() determines the type of the
function used to create the Creo Simulate item. Specify the handle to the function
data as the input for this function.
The output argument value specifies the type of the function and can have the
following values:

• PRO_MECH_FUNCTION_SYMBOLIC—Specifies a symbolic expression for a
function.

• PRO_MECH_FUNCTION_TABLE—Specifies a function created using data
from an interpolation table.

Use the function ProMechfuncdataTypeSet() to set the function type to be
used to create the Creo Simulate item.
The function ProMechfuncdataExpressionGet() returns the symbolic
expression for the specified symbolic function. Use the function
ProMechfuncdataExpressionSet() to set the symbolic expression for
the specified symbolic function.
The function ProMechfuncdataFuncvalueinterpGet() specifies the
interpolation method used for the function value of the tabular function. The
output argument value can have the following values:

• PRO_MECH_TABLE_LINEAR—This method linearly interpolates the
variable between the values.

• PRO_MECH_TABLE_LOGARITHMIC—This method linearly interpolates the
log of the variable between values.

Use the function ProMechfuncdataFuncvalueinterpSet() to set the
interpolation method for the function value of the tabular function.
The function ProMechfuncdataIndependentvarGet() returns the type
of the independent variable for the specified tabular function. The independent
variable corresponds to the coordinate system axes and has the following values:

• PRO_MECH_INDEP_VAR_X—Specifies the value of the X-axis in the
Cartesian coordinate system.

• PRO_MECH_INDEP_VAR_Y—Specifies the value of the Y-axis in Cartesian
coordinate system

• PRO_MECH_INDEP_VAR_Z—Specifies the value of the Z-axis in the
Cartesian or cylindrical coordinate system.

1864 Creo® Parametric TOOLKITUser’s Guide

• PRO_MECH_INDEP_VAR_R—Specifies the value of the radius in a
cylindrical or spherical coordinate system.

• PRO_MECH_INDEP_VAR_THETA—Specifies the value of the angle in a
cylindrical or spherical coordinate system.

• PRO_MECH_INDEP_VAR_PHI—Specifies the value of the second angle in a
spherical coordinate system.

• PRO_MECH_INDEP_VAR_TIME—Specifies the value of the time variable
(for a time-dependent function).

Use the function ProMechfuncdataIndependentvarSet() to set the
independent variable type for the specified tabular function.
The function ProMechfuncdataIndepvarinterpGet() specifies the
interpolation method used for the independent variable of the tabular function.
Use the function ProMechfuncdataIndepvarinterpSet() to set the
interpolation method to be used for the independent variable of the tabular
function.
The function ProMechfuncdataMirrordeflectionflagGet() gets the
value of the mirror flag for negative deflections from the function data.
Use the function ProMechfuncdataMirrordeflectionflagSet() to
set the value of the mirror flag for the negative deflections in the function data
The function ProMechfuncdataFunctableGet() returns an array of table
entries for the specified tabular function. Free the array of table entries using the
function ProMechtablentryProarrayFree(). Use the function
ProMechfuncdataFunctableSet() to set an array of table entries for the
specified tabular function.
The function ProMechtablentryFunctionvalueGet() returns the value
of the specified function in the table entry. Use the function
ProMechtablentryFunctionvalueSet() to set the value of the specified
function in the table entry.
The function ProMechtablentryIndepedentvarGet() returns the value
for the specified independent variable in the table entry. Use the function
ProMechtablentryIndependentvarSet() to set the value for the
specified independent variable in the table entry.
Use the function ProMechfuncdataFree() to free the array containing the
function data.

Creo Simulate Expressions
Most of the ProMech*Get() functions described in the following sections
return mathematical expressions of the type ProMechExpression. This
mathematical expression specifies a numeric or relational value, which is

Creo Simulate: Items 1865

expressed and stored as a string. Use the function
ProMathExpressionEvaluate() to evaluate such a mathematical
expression. Refer to the Evaluating Mathematical Expressions for a Solid on page
106 section in the Core: Solids, Parts, and Materials on page 92 chapter for more
information on this function.

Accessing the Properties used for Loads
and Constraints
Loads and constraints use complicated structures to mirror the number and type of
properties available in the user interface. Several structures recur in different types
of loads and constraints, and are described by the following table:
Property Creo Parametric TOOLKIT Opaque Handle
Vectored value—Specifies a value applied in a
specified direction.

ProMechvectoredvalue

Direction vector—Represents a defined direction. ProMechdirvector

Value—Specifies a scalar value potentially affected
by a defined variation.

ProMechvalue

Variation—Specifies the components of a defined
variation (either by function or by interpolation).

ProMechvariation

Interpolation point—Specifies an individual
interpolation point used to define a variation.

ProMechinterpolationpnt

The types specified in the preceding table and the functions required to access
these types are defined in the header file ProMechValue.h and
ProMechValueSet.h.
Functions Introduced:

• ProMechvectoredvalueAlloc
• ProMechvectoredvalueDirectiontypeGet()
• ProMechvectoredvalueDirectiontypeSet()
• ProMechvectoredvalueDirectionvectorGet()
• ProMechvectoredvalueDirectionvectorSet()
• ProMechvectoredvalueMagnitudeGet()
• ProMechvectoredvalueMagnitudeSet()
• ProMechvectoredvaluePointsGet()
• ProMechvectoredvaluePointsSet()
• ProMechvectoredvalueFree()
• ProMechdirvectorAlloc()
• ProMechdirvectorComponentsGet()

1866 Creo® Parametric TOOLKITUser’s Guide

• ProMechdirvectorComponentsSet()
• ProMechdirvectorCsysGet()
• ProMechdirvectorCsysSet()
• ProMechdirvectorVariationGet()
• ProMechdirvectorVariationSet()
• ProMechdirvectorFree()
• ProMechvalueAlloc()
• ProMechvalueValueGet()
• ProMechvalueValueSet()
• ProMechvalueVariationGet()
• ProMechvalueVariationSet()
• ProMechvalueFree()
• ProMechvalueProarrayFree()
• ProMechvariationAlloc()
• ProMechvariationTypeGet()
• ProMechvariationFunctionidGet()
• ProMechvariationFunctionidSet()
• ProMechvariationInterpolationGet()
• ProMechvariationInterpolationSet()
• ProMechvariationFree()
• ProMechinterpolationpntAlloc()
• ProMechinterpolationpntPointGet()
• ProMechinterpolationpntPointSet()
• ProMechinterpolationpntMagnitudeGet()
• ProMechinterpolationpntMagnitudeSet()
• ProMechinterpolationpntProarrayFree()
• ProMechinterpolationpntFree()
• ProMechexternalfielddataAlloc()
• ProMechexternalfielddataCsysGet()
• ProMechexternalfielddataCsysSet()
• ProMechexternalfielddataFileGet()
• ProMechexternalfielddataFileSet()
• ProMechexternalfielddataFree()

Creo Simulate: Items 1867

• ProMechvariationExternalfielddataGet()
• ProMechvariationExternalfielddataSet()
The function ProMechvectoredvalueAlloc() allocates memory for the
directed value.
The function ProMechvectoredvalueDirectiontypeGet() returns the
method used to specify the direction for the vectored value. The output argument
type can have one of the following values:

• PRO_MECH_DIRECTION_BY_VECTOR—The vector is defined by
specifying a direction.

• PRO_MECH_DIRECTION_BY_2_POINTS—The direction of the vector is
specified using two points.

The function ProMechvectoredvalueDirectiontypeSet() sets the
direction for the vectored value.
The function ProMechvectoredvalueDirectionvectorGet() returns
the direction of vector for the vectored load of type PRO_MECH_DIRECTION_
BY_VECTOR.
The function ProMechvectoredvalueDirectionvectorSet()sets the
direction vector.
The function ProMechvectoredvalueMagnitudeGet() specifies the
magnitude of the vectored load. If the value of the magnitude is positive, the load
acts in the same direction as the vector and if the value of the magnitude is
negative, the load acts in the direction opposite to that of the vector.
The function ProMechvectoredvalueMagnitudeSet() sets the
magnitude of the vectored load.
The function ProMechvectoredvaluePointsGet() returns an array of
points that define the direction of the vector if type of the vector is PRO_MECH_
DIRECTION_BY_2_POINTS. Use the function
ProMechvectoredvaluePointsSet() to set the array of points.
Use the function ProMechvectoredvalueFree() to free the memory
containing the directed value.
The function ProMechdirvectorComponentsGet() returns the
components of the vector for each coordinate direction. Use the function
ProMechdirvectorComponentsSet() to set the component values of the
vector.
The function ProMechdirvectorCsysGet() returns the coordinate system
used to calculate the vector. Use the function
ProMechdirvectorCsysSet() to set the coordinate system.

1868 Creo® Parametric TOOLKITUser’s Guide

The function ProMechdirvectorVariationGet() specifies the spatial or
time-based variation applied to the direction vector. Use the function
ProMechdirvectorVariationSet() to set the spatial variation to the
direction vector.
The function ProMechvalueValueGet() returns the expression used to
specify the load or constraint value. Use the function
ProMechvalueValueSet() to set the load or constraint value.
The function ProMechvalueVariationGet() returns the spatial or time-
based variation assigned to the specified value. Use the function
ProMechvalueVariationSet() to set the spatial variation.
The function ProMechvariationTypeGet() returns the variation type for
the specified variation handle. The output argument type can have one of the
following values:

• PRO_MECH_VARIATION_UNIFORM—Specifies that the variation of the
load is uniform over the entity.

• PRO_MECH_VARIATION_INTERPOLATION—Specifies that the load
varies along the entity as defined by the interpolation points.

• PRO_MECH_VARIATION_FUNCTION—Indicates that the variation is
defined by specifying a function that is used to vary the property.

The function ProMechvariationFunctionidGet() returns the function id
for the specified variation handle if the variation is of type PRO_MECH_
VARIATION_FUNCTION. The function id is always extracted from the same
model from where the varied value was obtained. Use the function
ProMechvariationFunctionidSet() to set the function id for the
variation.
The function ProMechvariationInterpolationGet() returns an array
of interpolation points for the specified variation handle if the variation is of type
PRO_MECH_VARIATION_INTERPOLATION. Use the function
ProMechvariationInterpolationSet() to set the interpolation points
for the specified variation.
The function ProMechinterpolationpntAlloc() allocates memory for
the interpolation points.
The function ProMechinterpolationpntPointGet() specifies the
geometric entity associated with the specified interpolation point. Use the function
ProMechinterpolationpntPointSet() to set the geometric entity.
The function ProMechinterpolationpntMagnitudeGet() returns the
magnitude of the load at the specified interpolation point. Use the function
ProMechinterpolationpntMagnitudeSet() to set the magnitude of the
load.

Creo Simulate: Items 1869

Use the function ProMechinterpolationpntFree() to free the memory
containing the interpolation point. Use
ProMechinterpolationpntProarrayFree() as a shortcut to free an
entire array of interpolation points.
The function ProMechexternalfielddataAlloc() allocates memory for
the external data structure.
The function ProMechexternalfielddataCsysGet() returns the
reference coordinate system for the external field data. Use the function
ProMechexternalfielddataCsysSet() to set the reference coordinate
system for the external field data.
The function ProMechexternalfielddataFileGet() returns the
information related to the external (FEM Neutral Format) FNF file to be imported
for the external field. Use the function
ProMechexternalfielddataFileSet() to set the path to the fnf file.
The function ProMechvariationExternalfielddataGet() returns the
external field assigned for variation of a value.
Use the function ProMechvariationExternalfielddataSet to set the
external field assigned for variation of a value.

Creo Simulate Loads
Loads are used to simulate forces that act on the model in the real world. Once
you create the loads, you can examine the response of the mechanism to the loads.

Accessing Creo Simulate Loads
The functions described in this section provide a handle to the to the different
types of Creo Simulate loads. Loads use the ProType field in the ProMechitem
structure as PRO_SIMULATION_LOAD.
Functions Introduced:

• ProMechloadTypeGet()
• ProMechloadForcedataGet()
• ProMechloadPressuredataGet()
• ProMechloadBearingdataGet()
• ProMechloadCentrifugaldataGet()
• ProMechloadGravitydataGet()
• ProMechloadStructtempdataGet()
• ProMechloadMecttempdataGet()
• ProMechloadHeatdataGet()

1870 Creo® Parametric TOOLKITUser’s Guide

• ProMechloadReferencesGet()
• ProMechloadLoadsetsGet()
The function ProMechLoadTypeGet() returns the type of load contained in
the structure ProModelItem.
The output argument value can have one of the following values:

• PRO_MECH_LOAD_FORCE—Specifies a force load. Use the function
ProMechloadForcedataGet() to access the data and contents of the
force load structure.

• PRO_MECH_LOAD_PRESSURE—Specifies a pressure load. Use the function
ProMechloadPressuredataGet() to access the data and contents of
the pressure load structure.

• PRO_MECH_LOAD_BEARING—Specifies a bearing load. Use the function
ProMechloadBearingdataGet() to access the data and contents of the
bearing load structure.

• PRO_MECH_LOAD_CENTRIFUGAL—Specifies a centrifugal load. Use the
function ProMechloadCentrifugaldataGet() to access the data and
contents of the centrifugal load structure.

• PRO_MECH_LOAD_GRAVITY—Specifies a gravity load. Use the function
ProMechloadGravitydataGet() to access the data and contents of the
gravity load structure.

• PRO_MECH_LOAD_STRUCTURAL_TEMPERATURE—Specifies a
temperature load. Use the function
ProMechloadStructtempdataGet() to access the data and contents of
the temperature load.

• PRO_MECH_LOAD_MECT_TEMPERATURE—Specifies a Mechanical
temperature load. Use the function ProMechloadMecttempdataGet()
to access the data and contents of the mechanical temperature load.

• PRO_MECH_LOAD_HEAT—Specifies a heat load. Use the function
ProMechloadHeatdataGet() to access the data and contents of the heat
load.

Creo Simulate: Items 1871

Note
From Creo Parametric onward, the load types PRO_MECH_LOAD_GLOBAL_
TEMPERATURE and PRO_MECH_LOAD_EXTERNAL_TEMPERATURE have
been deprecated. The functions ProMechloadGlobaltempdataGet()
and ProMechloadExttempdataGet() have also been deprecated. The
global temperature loads and external temperature are converted to equivalent
structural temperature loads. Use the function
ProMechloadStructtempdataGet() instead to access the data and
contents of the temperature load.

The function ProMechloadReferencesGet() returns the geometric
references. It specifies the geometric references used to define the load.
The function ProMechloadLoadsetsGet() returns the load set(s) that
contain the given load. (Currently, Creo Simulate allows a load to be assigned to
only one set).

Modifying the Creo Simulate Loads
The functions in this section assign load data to a load in the model. The load
should have been created already using ProMechitemCreate(). Changes
made via these functions will not be reflected in the user interface until you call
the function ProMechitemUpdateComplete().

Note
Once a load has been created and updated successfully, its load type cannot be
changed.

The following is the procedure to create a new user-visible load:

1. Create the load using ProMechitemCreate()
2. Set the load references using ProMechloadReferencesSet().
3. Set the load type-specific data using one of the ProMechload*dataSet()

functions.
4. Assign the load to a load set using ProMechloadLoadsetAssign().
5. Check the status of the load using ProMechitemStatusGet().
6. Complete the load set using ProMechitemUpdateComplete().
Functions Introduced:

1872 Creo® Parametric TOOLKITUser’s Guide

• ProMechloadForcedataSet()
• ProMechloadPressuredataSet()
• ProMechloadBearingdataSet()
• ProMechloadCentrifugaldataSet()
• ProMechloadGravitydataSet()
• ProMechloadStructtempdataSet()
• ProMechloadMecttempdataSet()
• ProMechloadHeatdataSet()
• ProMechloadReferencesSet()
• ProMechloadLoadsetAssign()
Use the functionProMechloadForcedataSet() to set the data and the
contents of the force load structure.
Use the function ProMechloadPressuredataSet() to set the data and
contents of the pressure load structure.
Use the function ProMechloadBearingdataSet() to set the data and
contents of the pressure load structure.
Use the function ProMechloadCentrifugaldataSet() to set the data and
contents of the centrifugal load structure.
Use the function ProMechloadGravitydataSet() to set the data for the
gravity load structure.
Use the function ProMechloadStructtempdataSet() to set the data of
the temperature load.
Use the function ProMechloadMecttempdataSet() to set the data of the
mechanical temperature load.
Use the function ProMechloadHeatdataSet() to set the data and contents
of the heat load.
Use the function ProMechloadReferencesSet() to set the geometric
references for the load. This must be a valid set of references for the load type.
Use the function ProMechloadLoadsetAssign() to assign a load to a
particular loadset.

Creo Simulate: Items 1873

Note
The functions ProMechloadGlobaltempdataSet() and
ProMechloadExttempdataSet() have been deprecated. From Creo
Parametric onward, the global temperature loads and external temperature are
converted to equivalent structural temperature loads. Use the function
ProMechloadStructtempdataSet() instead to set the data for the
temperature load.

Example 2: Modifying Magnitude of Force or Pressure Load
The sample code in the file PTMechExMagChange.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_mech_examples/pt_
mech_ex_src shows how to modify the magnitude of a force or pressure load.

Force and Moment Loads
The functions described in this section provide read access to the data and
contents of Creo Simulate force loads.
Functions Introduced:

• ProMechforcedataAlloc()
• ProMechforcedataTypeGet()
• ProMechforcedataTypeSet()
• ProMechforcedataForceGet()
• ProMechforcedataAxialForceIgnoreflagGet()
• ProMechforcedataAxialForceIgnoreflagSet()
• ProMechforcedataForceSet()
• ProMechforcedataMomentGet()
• ProMechforcedataAxialMomentIgnoreflagGet()
• ProMechforcedataAxialMomentIgnoreflagSet()
• ProMechforcedataMomentSet()
• ProMechforcedataRefpntGet()
• ProMechforcedataRefpntSet()
• ProMechforcedataFree()
The function ProMechforcedataAlloc() allocates memory for the Creo
Simulate force load data.

1874 Creo® Parametric TOOLKITUser’s Guide

The function ProMechforcedataTypeGet() specifies the distribution of the
load over the selected entity. The output argument value can have one of the
following values:

• PRO_MECH_FORCE_AT_POINT—Specifies a total load applied to a single
point.

• PRO_MECH_FORCE_TOTAL—Specifies a load distributed along the length
or area of the entity such that the integral of the load over the selected entity
equals the total prescribed value.

• PRO_MECH_FORCE_TOTAL_AT_POINT—Specifies a Total Load At Point
(TLAP) load.

• PRO_MECH_FORCE_PER_UNIT—Specifies a load applied to each unit that
makes up the selected entity.

• PRO_MECH_FORCE_TLAP_UNASSOCIATED—Specifies that the Total
Load At Point (TLAP) loads are un-associated from the selected entities in the
model.

• PRO_MECH_FORCE_TBLAP—Specifies a Total Bearing Load At Point
(TBLAP) for cylindrical surfaces or curves.

Use function ProMechforcedataTypeSet() to set the type of the force
load.
The function ProMechforcedataForceGet() returns the magnitude and
direction of the force applied to a geometric entity.
The function ProMechforcedataAxialForceIgnoreflagGet() returns
a boolean flag indicating whether the axial force is ignored in case of a Total
Bearing Load At Point (TBLAP).
ProMechforcedataAxialForceIgnoreflagSet() sets a boolean flag
indicating whether the axial force is to be applied in case of a Total Bearing Load
At Point (TBLAP).
The function ProMechforcedataForceSet() sets the force component for
the load data.
The function ProMechforcedataMomentGet() returns the magnitude and
direction of the moment applied to a geometric entity.
ProMechforcedataAxialMomentIgnoreflagGet() returns a boolean
flag indicating whether the axial moment applied is ignored in case of a Total
Bearing Load At Point (TBLAP).
ProMechforcedataAxialMomentIgnoreflagSet() sets a boolean flag
indicating whether the axial moment is to be applied in case of a Total Bearing
Load At Point (TBLAP).
The function ProMechforcedataMomentSet() sets the moment component
for the load data.

Creo Simulate: Items 1875

The function ProMechforcedataRefpntGet() returns the reference point
for the specified load if the load was applied at a given point. Use the function
ProMechforcedataRefpntSet() to set the reference point.
The function ProMechforcedataFree() frees the memory of the force load
data handle.

Pressure, Gravity, and Bearing Loads
The functions described in this section provide read access to the data and
contents of the Creo Simulate pressure, gravity, and bearing loads.
Functions Introduced:

• ProMechpressuredataAlloc()
• ProMechpressuredataValueGet()
• ProMechpressuredataValueSet()
• ProMechpressuredataFree()
• ProMechbearingdataValueGet()
• ProMechbearingdataValueSet()
• ProMechbearingdataFree()
• ProMechgravitydataAlloc()
• ProMechgravitydataValueGet()
• ProMechgravitydataValueSet()
• ProMechgravitydataFree()
The function ProMechpressuredataAlloc() allocates memory for the
Creo Simulate pressure load data.
The function ProMechpressuredataValueGet() returns the value of the
pressure load.
The function ProMechpressuredataValueSet() sets the value of the
pressure load.
The function ProMechpressuredataFree() frees the memory of the
pressure load data handle.
The function ProMechbearingdataValueGet() returns the value of the
bearing load.
The function ProMechbearingdataValueSet() sets the value of the
bearing load.
The function ProMechbearingdataFree() frees the memory of the bearing
load data handle.

1876 Creo® Parametric TOOLKITUser’s Guide

The function ProMechgravitydataAlloc() allocates memory for the Creo
Simulate gravity load data.
The function ProMechgravitydataValueGet() returns the value of the
gravity load.
The function ProMechgravitydataValueSet() sets the value of the
gravity load.
The function ProMechgravitydataFree() frees the memory of the gravity
load data handle.

Centrifugal Loads
A centrifugal load results due to the rigid body rotation of the model and is
applied on the entire model. The functions described in this section provide read
access to the data and structure of the Creo Simulate centrifugal loads.
Functions Introduced:

• ProMechcentrifugaldataAlloc()
• ProMechcentrifugaldataVelocityGet()
• ProMechcentrifugaldataVelocitySet()
• ProMechcentrifugaldataAccelerationGet()
• ProMechcentrifugaldataAccelerationSet()
• ProMechcentrifugaldataFree()
The function ProMechcentrifugaldataAlloc() allocates memory for the
centrifugal load data.
The function ProMechcentrifugaldataVelocityGet() returns the
magnitude and direction of the angular velocity of the centrifugal load.
The function ProMechcentrifugaldataVelocitySet() sets the value of
the angular velocity of the centrifugal load.
The function ProMechcentrifugaldataAccelerationGet() returns
the acceleration vector for the centrifugal load. The acceleration vector is the rate
of change of the angular velocity vector, and represents a change in magnitude or
direction of the angular velocity.
The function ProMechcentrifugaldataAccelerationSet() sets the
acceleration vector for the centrifugal load.
The function ProMechcentrifugaldataFree() releases the memory
assigned to the centrifugal load data.

Creo Simulate: Items 1877

Temperature Loads
Temperature loads enable you to simulate a temperature change over your model.
Temperature loads provide valuable information on how the structure of your
model deforms due to a particular temperature change.

Creo Simulate Temperature Loads
The functions described in this section provide access to the data and contents of
Creo Simulate temperature loads.
Functions Introduced:

• ProMechtemperaturedataAlloc()
• ProMechtemperaturedataValueGet()
• ProMechtemperaturedataValueSet()
• ProMechtemperaturedataFree()
The function ProMechtemperaturedataAlloc() allocates memory for the
temperature load data.
The function ProMechtemperaturedataValueGet() returns a structure
that contains the value of the temperature and the spatial variation of the load.
The function ProMechtemperaturedataValueSet() sets the value of the
temperature and the spatial variation of the load.
The function ProMechtemperaturedataFree() releases the memory
assigned to the temperature load data.

Structural Temperature Loads
Structural temperature loads are thermal loads resulting from a temperature
change over a geometric entity or a set of geometric entities. This load is applied
to curves or surfaces. If the model is an assembly, the structural load can be
applied to specific assembly components.
The functions described in this section provide access to the data and contents of
the Creo Simulate structural temperature loads.
Functions Introduced:

• ProMechstructtempdataAlloc()
• ProMechstructtempdataValueGet()
• ProMechstructtempdataValueSet()
• ProMechstructtempdataReftempGet()
• ProMechstructtempdataReftempSet()
• ProMechstructtempdataFree()

1878 Creo® Parametric TOOLKITUser’s Guide

The function ProMechstructtempdataAlloc() allocates memory for the
structural temperature load data.
The function ProMechstructtempdataValueGet() returns a structure
containing the temperature applied to the load and the variation of the load.
The function ProMechstructtempdataValueSet() sets the value of the
structural temperature data.
The function ProMechstructtempdataReftempGet() returns the
reference temperature of the structural temperature object. The reference
temperature is the stress-free temperature for the model.
The function ProMechstructtempdataReftempSet() sets the reference
temperature of the structural temperature data.
The function ProMechstructtempdataFree() releases the memory
assigned to structural temperature load data.

Note
From Creo Parametric onward, the global and external temperature loads are
converted to equivalent structural temperature loads. The functions previously
available to access Creo Simulate global and external temperature loads have
been deprecated. The structural temperature load functions supersede the
global and external temperature load functions.

Global Temperature Loads
A global temperature load specifies a thermal load resulting from a temperature
change over the entire model.
From Creo Parametric onward, the global temperature loads are converted to
equivalent structural temperature loads. The data structure
ProMechglobaltempdata for global temperature loads in
ProMechLoad.h has been deprecated. Functions previously available to access
Creo Simulate global temperature load have also been deprecated. Use the
structural temperature load data structure ProMechstructtempdata and the
functions that access this data structure instead.For more information on structural
load functions, see the section Structural Temperature Loads on page 1878.
The folowing functions have been deprecated:

• ProMechglobaltempdataAlloc()
• ProMechglobaltempdataReftempGet()
• ProMechglobaltempdataReftempSet()
• ProMechglobaltempdataValueGet()

Creo Simulate: Items 1879

• ProMechglobaltempdataValueSet()
• ProMechglobaltempdataFree()

MEC/T Temperature Loads
The MEC/T temperature load applies a temperature load across the entire model
based on a temperature field developed from the results of a steady state or
transient thermal analysis. The functions described in this section provide read and
write access to the data and contents of the MEC/T temperature loads.
Functions Introduced:

• ProMechmecttempdataAlloc()
• ProMechmecttempdataAnalysisidGet()
• ProMechmecttempdataAnalysisidSet()
• ProMechmecttempdataLoadsetidGet()
• ProMechmecttempdataLoadsetidSet()
• ProMechmecttempdataLoadsetSet()
• ProMechmecttempdataLoadsetGet()
• ProMechmecttempdataReftempGet()
• ProMechmecttempdataReftempSet()
• ProMechmecttempdataTimestepGet()
• ProMechmecttempdataTimestepSet()
• ProMechmecttempdataDesignstudySet()
• ProMechmecttempdataDesignstudyGet()
• ProMechmecttempdataFree()
The function ProMechmecttempdataAlloc() allocates memory for the
MEC/T temperature data structure.
The function ProMechmecttempdataAnalysisidGet() returns the ID of
the thermal analysis defined for the model.
The function ProMechmecttempdataAnalysisidSet() sets the ID of the
thermal analysis.
The function ProMechmecttempdataLoadsetidGet() returns the ID of
the load set. The load set is applicable only if the MEC/T temperature load is
coming from a steady state thermal analysis.
The function ProMechmecttempdataLoadsetidSet() sets the ID of the
load set.
The function ProMechmecttempdataLoadsetGet() returns the load set in
the form of the ProMechObjectref object for the MEC/T temperature data.

1880 Creo® Parametric TOOLKITUser’s Guide

The function ProMechmecttempdataLoadsetSet() assigns the load set.
The function ProMechmecttempdataReftempGet() returns the reference
temperature for the MEC/T temperature data.
The function ProMechmecttempdataReftempSet() sets the reference
temperature.
The function ProMechmecttempdataTimestepGet() returns the time step
value if the MEC/T temperature load is coming from a transient thermal analysis.
The function ProMechmecttempdataTimestepSet() sets the time step
value.
The function ProMechmecttempdataDesignstudyGet() returns the
name of the design study for the MEC/T temperature load.
The function ProMechmecttempdataDesignstudySet() assigns the
design study name for the MEC/T temperature load.
The function ProMechmecttempdataFree() releases the memory assigned
to the MEC/T temperature data structure.

External Temperature Loads
An external temperature load involves importing an externally calculated or
measured temperature field as a temperature load. The external temperature field
must contain connectivity of a linear solid element mesh, node locations, and
temperature values at the nodes.
From Creo Parametric onward, the external temperature loads are converted to
equivalent structural temperature loads. The data structure
ProMechexttempdata for external temperature loads in ProMechLoad.h
has been deprecated. Functions previously available to access Creo Simulate
external temperature load have also been deprecated. Use the structural
temperature load data structure ProMechstructtempdata and the functions
that access this data structure instead. For more information on structural load
functions, see the section Structural Temperature Loads on page 1878
The following functions are deprecated:

• ProMechexttempdataAlloc()
• ProMechexttempdataReftempGet()
• ProMechexttempdataReftempSet()
• ProMechexttempdataFemneutralfileGet()
• ProMechexttempdataFemneutralfileSet()
• ProMechexttempdataFree()

Creo Simulate: Items 1881

Heat Loads
Heat loads are entity loads and can be placed on one or more points, edgescurves,
surfaces, components, or volumes. Heat loads provide local heat sources and sinks
for the model and can be used to model internal heat generation or flux.
The functions described in this section provide access to the data and contents of
the Creo Simulate heat loads.
Functions Introduced:

• ProMechheatdataAlloc()
• ProMechheatdataTypeGet()
• ProMechheatdataTypeSet()
• ProMechheatdataValueGet()
• ProMechheatdataValueSet()
• ProMechheatdataTemporalvariationGet()
• ProMechheatdataTemporalvariationSet()
• ProMechheatdataFree()
Functions Superseded:

• ProMechheatdataTimefunctionidGet()

• ProMechheatdataTimefunctionidSet()

The function ProMechheatdataAlloc() allocates memory for the heat load
data.
The function ProMechheatdataTypeGet() returns the type of distribution
for the heat load across the geometric entities. The output argument type can have
one of the following values:

• PRO_MECH_HEAT_TOTAL—Specifies that the heat load is distributed along
the length or area of the entity such that the integral of the load over the
selected entity equals the total prescribed value.

• PRO_MECH_HEAT_PER_UNIT—Specifies that the heat load is applied to
each unit that makes up the selected load.

• PRO_MECH_HEAT_AT_POINT—Specifies that the heat load is applied to a
single point, a feature, or a pattern of points.

• PRO_MECH_HEAT_NONE—No heat load type is assigned.
The function ProMechheatdataTypeSet() sets the type of heat load.
The function ProMechheatdataValueGet() returns the total or distributed
heat transfer rate, depending on the distribution option specified for the entities.
The function ProMechheatdataValueSet()sets the value of the heat load.

1882 Creo® Parametric TOOLKITUser’s Guide

The function ProMechheatdataTemporalvariationGet() returns the
time variation for the specified heat load.
ProMechheatdataTemporalvariationSet() sets the time variation for
the specified heat load.
The functions ProMechheatdataTimefunctionidGet() and
ProMechheatdataTimefunctionidSet() have been deprecated. Use the
functions ProMechheatdataTemporalvariationGet() and
ProMechheatdataTemporalvariationSet() instead.
The function ProMechheatdataFree() releases the memory assigned to the
heat load data.

Creo Simulate Load Sets
A load set is a collection of loads that act together on the model. The functions
described in this section provide access to data and contents of the Creo Simulate
load set items. Load sets use the ProType field in the ProMechitem structure
as PRO_SIMULATION_LOAD_SET.
Functions Introduced:

• ProMechloadsetDescriptionGet()
• ProMechloadsetDescriptionSet()
• ProMechloadsetLoadsGet()
• ProMechloadsetTypeGet()
• ProMechloadLoadsetAssign()
The function ProMechloadsetDescriptionGet() returns the name and
the description of the specified load set.
The function ProMechloadsetDescriptionSet() sets the description of
the specified load set.
The function ProMechloadsetLoadsGet() returns an array containing the
different loads that are included in the specified load set.
The function ProMechloadsetTypeGet() returns the type of the specified
load set. The type can be as follows:

• PRO_MECH_LOADSET_STRUCTURAL—Specifies a structural load set.
• PRO_MECH_LOADSET_THERMAL—Specifies a thermal load set.
Use the function ProMechloadLoadsetAssign() to assign a load to a
particular loadset.

Creo Simulate: Items 1883

Creo Simulate Constraints
To perform analyses on the models you need to apply constraints to at least one
area of the model. The constraints are associated with the model geometry and can
be applied to a single geometric entity or to multiple entities.

Accessing the Creo Simulate Constraints
The functions described in this section provide access to the data and contents of
the Creo Simulate constraints item. Constraints use the ProType field in the
ProMechitem structure as PRO_SIMULATION_CONSTRAINTS.
Functions Introduced:

• ProMechconstrTypeGet()
• ProMechconstrConvectiondataGet()
• ProMechconstrRadiationdataGet()
• ProMechconstrRadiationdataSet()
• ProMechconstrDisplacementdataGet()
• ProMechconstrSymmetrydataGet()
• ProMechconstrTemperaturedataGet()
• ProMechconstrThermalsymmetrydataGet()
• ProMechconstrReferencesGet()
• ProMechconstrConstrsetsGet()
The function ProMechconstrTypeGet() returns the type of constraint
contained in the structure ProModelItem. The output can have one of the
following values:

• PRO_MECH_CONSTR_CONVECTION—Specifies a linear convective heat
exchange condition for one or more geometric or model entities for thermal
mode. Use the function ProMechconstrConvectiondataGet() to
access the data and contents of this constraint type.

• PRO_MECH_CONSTR_DISPLACEMENT—Specifies a displacement
constraint for structural mode. Use the function
ProMechconstrDisplacementdataGet() to access the data and
contents of this constraint type.

• PRO_MECH_CONSTR_SYMMETRY—Specifies cyclic symmetry for structural
mode. Use the function ProMechconstrSymmetrydataGet() to access
the data and contents of this constraint type.

• PRO_MECH_CONSTR_RADIATION—Specifies a thermal radiation exchange
between the model surface and the surroundings. Use the function

1884 Creo® Parametric TOOLKITUser’s Guide

ProMechconstrRadiationdataGet() to access the data and contents
of radiation constraint type from the Creo Simulate item. The function
ProMechconstrRadiationdataSet() sets the handle to the data and
contents of radiation constraint type from the Creo Simulate item.

• PRO_MECH_CONSTR_TEMPERATURE—Specifies a temperature boundary
condition for one or more geometric or model entities for thermal mode. Use
the function to() to access the data and contents of this constraint type.

• PRO_MECH_CONSTR_SYMMETRY_THERM—Specifies a cyclic symmetry
thermal constraint for thermal mode. Use the function
ProMechconstrThermalsymmetrydataGet() to access the data and
contents of this constraint type.

• PRO_MECH_CONSTR_INIT_TEMP—Specifies the initial temperature
boundary condition for one or more geometric entities for thermal mode.

The function ProMechconstrReferencesGet() returns the geometric
references. It specifies the geometric references used to define the constraint.
The function ProMechconstrConstrsetsGet() returns the constraint set
(s) that contain the given constraint. Currently, Creo Simulate allows a constraint
to be assigned to only one set.

Modifying the Creo Simulate Constraints
The functions in this section assign load data to a constraint in the model. The
load should have been already created using ProMechitemCreate(). The
changes made using these functions will not be reflected in the user interface until
you call ProMechitemUpdateComplete().

Note
Once a constraint has been created and updated successfully, its constraint
type cannot be changed.

The following is the procedure to create a new user-visible constraint:

1. Create the load using ProMechitemCreate().
2. Set the constraint references using ProMechconstrReferencesSet().
3. Set the constraint type-specific data using one of the

ProMechconstr*dataSet() functions.
4. Assign the constraint to a constraint set using

ProMechconstrConstrsetAssign().

Creo Simulate: Items 1885

5. Check the status of the constraint using ProMechitemStatusGet().
6. Complete the constraint using ProMechitemUpdateComplete().
Functions Introduced:

• ProMechconstrConvectiondataSet()
• ProMechconstrDisplacementdataSet()
• ProMechconstrSymmetrydataSet()
• ProMechconstrTemperaturedataSet()
• ProMechconstrThermalsymmetrydataSet()
• ProMechconstrReferencesSet()
• ProMechconstrConstrsetAssign()
The function ProMechconstrConvectiondataSet() sets the convection
constraint data.
The function ProMechconstrDisplacementdataSet() sets the
displacement constraint data.
The function ProMechconstrRadiationdataSet() sets the value for the
radiation constraint data.
The function ProMechconstrSymmetrydataSet() sets the value of the
symmetry constraint data.
The function ProMechconstrTemperaturedataSet() sets the value of
the temperature constraint data.
The function ProMechconstrThermalsymmetrydataSet() sets the
value of the thermal symmetry constraint data.
The function ProMechconstrReferencesSet() sets the value of the
constraint geometric references. This must be a valid set of references for the
constraint type.
Use the function ProMechconstrConstrsetAssign() to assign a
constraint to a constraint set.

Convection Constraints
Convection constraints specify a boundary condition on the convective heat
exchange between a moving fluid and geometric entities and/or element entities
within your model.
The functions described in this section provide access to the data and contents of
the Creo Simulate convection constraints. You can define the value of the
convection constraint as a function of temperature.
Functions Introduced:

1886 Creo® Parametric TOOLKITUser’s Guide

• ProMechconvectiondataAlloc()
• ProMechconvectiondataBulktempGet()
• ProMechconvectiondataBulktempSet()
• ProMechconvectiondataBulktempUnset()
• ProMechconvectiondataFilmcoefficientGet()
• ProMechconvectiondataFilmcoefficientSet()
• ProMechconvectiondataTemperaturedependenceGet()
• ProMechconvectiondataTemperaturedependenceSet()
• ProMechconvectiondataTemporalvariationGet()
• ProMechconvectiondataTemporalvariationSet()
• ProMechconvectiondataFree()
The function ProMechconvectiondataAlloc() allocates memory for the
convection load data.
The function ProMechconvectiondataBulktempGet() returns the value
of the bulk temperature. The bulk temperature specifies the temperature of the
fluid in contact with the surface, during convective heat transfer through a surface.
The function ProMechconvectiondataBulktempSet() sets the value of
the bulk temperature.
The function ProMechconvectiondataFilmcoefficientGet() returns
the value of the film coefficient. The film coefficient specifies the constant of
proportionality between the flux through the surface and the difference between
the surface temperature and the bulk temperature, in convective heat transfer
through a surface.
Use the function ProMechconvectiondataFilmcoefficientSet() to
set the value of the film coefficient.
The function
ProMechconvectiondataTemperaturedependenceGet() returns the
temperature variation of the convection constraint. The convection constraint is
specified as a function of temperature. Use the function
ProMechconvectiondataTemperaturedependenceSet() to set the
temperature variation for the convection constraint.
The function ProMechconvectiondataTemporalvariationGet()
returns the temporal variation for the convection constraint. Use the function
ProMechconvectiondataTemporalvariationSet() to set the
temporal variation of the convection constraint. The temporal variation specifies
whether the convection condition is in steady state or a function of time

Creo Simulate: Items 1887

Note
The function ProMechconvectiondataTimefunctionidGet() and
ProMechconvectiondataTimefunctionidSet() have been
deprecated. Use the functions
ProMechconvectiondataTemporalvariationGet() and
ProMechconvectiondataTemporalvariationSet() instead

The function ProMechconvectiondataFree() releases the memory
assigned to the convection load data.

Radiation Constraints
A thermal radiation exchanges heat between the model surface and the
surroundings. Radiation does not take place between the model surfaces. You can
define the value of the radiation constraint as a function of temperature.
The functions described in this section provide access to the data and contents of
the Creo Simulate radiation constraints.
Functions Introduced:

• ProMechradiationdataAlloc()
• ProMechradiationdataAmbienttempExprGet()
• ProMechradiationdataAmbienttempExprSet()
• ProMechradiationdataEmissivityGet()
• ProMechradiationdataEmissivitySet()
• ProMechradiationdataTemperaturedependenceGet()
• ProMechradiationdataTemperaturedependenceSet()
• ProMechradiationdataFree()
The function ProMechradiationdataAlloc() allocates memory for the
radiation load data.
The model emits and absorbs energy from the surroundings at a fixed ambient
temperature. Use the function
ProMechradiationdataAmbienttempExprGet() to get the value of the
ambient temperature for the radiation constraint data. Use the function
ProMechradiationdataAmbienttempExprSet() to set the value of the
ambient temperature for the radiation constraint data.
The function ProMechradiationdataEmissivityGet() gets the
emissivity value. Use the function
ProMechradiationdataEmissivitySet() to set the emissivity value.

1888 Creo® Parametric TOOLKITUser’s Guide

The function ProMechradiationdataTemperaturedependenceGet()
returns the temperature variation of the radiation constraint. Use the function
ProMechradiationdataTemperaturedependenceSet() to set the
temperature variation of the radiation constraint.
The function ProMechradiationdataFree() releases the memory
assigned to the radiation load data.

Displacement Constraints
The functions described in this section provide access to the data and contents of
the Creo Simulate displacement constraints.
Functions Introduced:

• ProMechdisplacementdataAlloc()
• ProMechdisplacementdataTypeGet()
• ProMechdisplacementdataTypeSet()
• ProMechdisplacementdataCsysGet()
• ProMechdisplacementdataCsysSet()
• ProMechdisplacementdataRotationconstrsGet()
• ProMechdisplacementdataRotationconstrsSet()
• ProMechdisplacementdataTranslationconstrsGet()
• ProMechdisplacementdataTranslationconstrsSet()
• ProMechdisplacementdataFree()
• ProMechdisplacementregularconstrAlloc()
• ProMechdisplacementregularconstrTypeSet()
• ProMechdisplacementregularconstrTypeGet()
• ProMechdisplacementregularconstrValueSet()
• ProMechdisplacementregularconstrValueGet()
• ProMechdisplacementdataTranslationinterpretinradiansflagGet()
• ProMechdisplacementdataTranslationinterpretinradiansflagSet()
• ProMechdisplacementregularconstrFree()
• ProMechdisplacementregularconstrProarrayFree()
• ProMechdisplacementdataPinconstrSet()
• ProMechdisplacementdataPinconstrGet()
• ProMechdisplacementpinconstrAlloc()
• ProMechdisplacementdataPinangularconstrTypeSet()

Creo Simulate: Items 1889

• ProMechdisplacementdataPinangularconstrTypeGet()
• ProMechdisplacementdataPinaxialconstrTypeSet()
• ProMechdisplacementdataPinaxialconstrTypeGet()
• ProMechdisplacementpinconstrFree()
The function ProMechdisplacementdataAlloc() allocates the memory
for the displacement constraint data handle.
The function ProMechdisplacementdataTypeGet() returns the type of
displacement constraint data. The types of displacement constraints are:

• PRO_MECH_DISPLACEMENT_REGULAR—Specifies an external limit on the
movement of a portion of the model.

• PRO_MECH_DISPLACEMENT_PLANE—This constraint type allows full
planar movement, but constrains any off-plane displacement.

• PRO_MECH_DISPLACEMENT_PIN— Creates a constraint along a
cylindrical surface for 3D models.

• PRO_MECH_DISPLACEMENT_BALL— Creates a constraint along a
spherical surface for 3D models.

Use the function ProMechdisplacementdataTypeSet() to set the
displacement constraint data.
The function ProMechdisplacementdataCsysGet() returns the reference
coordinate system for the displacement constraint. Use the function
ProMechdisplacementdataCsysSet() to set the reference coordinate
system for the displacement constraint.
The function ProMechdisplacementdataRotationconstrsGet()
returns the rotational component of the displacement about the X, Y, and Z axis.
Use the function ProMechdisplacementdataRotationconstrsSet()
to set the rotational component of displacement.
The function ProMechdisplacementdataTranslationconstrsGet()
returns the translational component of the displacement about the X, Y, and Z
directions. Use the function
ProMechdisplacementdataTranslationconstrsSet() to set the
translational component of displacement.
The function ProMechdisplacementregularconstrAlloc() allocates
memory for the regular displacement constraint data structure.
The method ProMechdisplacementregularconstrTypeGet() returns
the type of setting for the displacement constraint. Valid values are:

1890 Creo® Parametric TOOLKITUser’s Guide

• PRO_MECH_DISPLACEMENT_FREE—Allows freedom of movement in the
specified direction.

• PRO_MECH_DISPLACEMENT_FIXED—Constrains the entity, preventing
movement in the specified direction.

• PRO_MECH_DISPLACEMENT_ENFORCED—Specifies an enforced
displacement or rotation in the specified direction.

The function ProMechdisplacementregularconstrTypeSet() sets
the type of the displacement constraint.
The function ProMechdisplacementregularconstrValueGet()
returns the variation settings of the displacement if the type of displacement
constraint is PRO_MECH_DISPLACEMENT_ENFORCED. The variation settings
are as follows:

• An enforced displacement value in length units for the translational
component

• An enforced rotation in radians for the rotational component
Use the function ProMechdisplacementregularconstrValueSet() to
set the variation settings of the displacement.
The function
ProMechdisplacementdataTranslationinterpretinradians
flagGet() returns the value true if the angular translations are interpreted in
radians. This is applicable only if the displacement is of type PRO_MECH_
DISPLACEMENT_REGULAR and if cylindrical or spherical coordinate system is
selected for the translations. Use the function
ProMechdisplacementdataTranslationinterpretinradians
flagSet() to set the value of the flag interpret angular translations in radians.
The function ProMechdisplacementregularconstrFree() releases the
memory assigned to the regular displacement constraint data handle.
The function ProMechdisplacementregularconstrProarrayFree()
releases the memory assigned to an array of regular displacement contraints.
The function ProMechdisplacementpinconstrAlloc() allocates
memory for the pin constraint data structure.
The function ProMechdisplacementdataPinconstrGet() returns the
pin constraint data structure. The pin constraint can have the following properties:

• Angular—Allows you to control the rotation about the axis of the selected
cylindrical surface.

• Axial—Allows you to control translation along the axis of the selected
cylindrical surface.

The function ProMechdisplacementdataPinconstrSet() sets the
value for the pin constraint data structure.

Creo Simulate: Items 1891

The function
ProMechdisplacementdataPinangularconstrTypeGet() returns
the angular constraint type for the pin constraint. Use the function
ProMechdisplacementdataPinangularconstrTypeSet() to set the
angular constraint type. Valid values are:

• PRO_MECH_DISPLACEMENT_FREE—Allows freedom of movement in the
specified direction.

• PRO_MECH_DISPLACEMENT_FIXED—Constrains the entity, preventing
movement in the specified direction.

Note
The angular constraint cannot be of type PRO_MECH_DISPLACEMENT_
ENFORCED.

The function ProMechdisplacementdataPinaxialconstrTypeGet()
returns the axial constraint type for the pin constraint.
Use the method
ProMechdisplacementdataPinaxialconstrTypeSet() to set the
axial constraint for the pin constraint. Valid values are:

• PRO_MECH_DISPLACEMENT_FREE—Allows freedom of movement in the
specified direction.

• PRO_MECH_DISPLACEMENT_FIXED—Constrains the entity, preventing
movement in the specified direction.

Note
The axial constraint cannot be of type PRO_MECH_DISPLACEMENT_
ENFORCED.

Use the function ProMechdisplacementpinconstrFree() to free the
memory containing the pin constraint data structure.

Example 3: Copying and Assigning a Displacement
Constraint to a New Reference
The sample code in the file PTMechExCopy.c located at <creo_toolkit_
loadpoint>/protk_appls/pt_mech_examples
/pt_mech_ex_src shows how to copy a displacement constraint and assign it
to a new reference.

1892 Creo® Parametric TOOLKITUser’s Guide

Symmetry Constraints
A symmetry constraint allows you to analyze a section of a symmetric model that
simulates the behavior of the whole part or assembly to which it belongs.
The functions described in this section provide read and write access to the data
and contents of the Creo Simulate symmetry constraints.
Functions Introduced:

• ProMechsymmetrydataAlloc()
• ProMechsymmetrydataTypeGet()
• ProMechsymmetrydataTypeSet()
• ProMechsymmetrydataAxisGet()
• ProMechsymmetrydataAxisSet()
• ProMechsymmetrydataSide1Get()
• ProMechsymmetrydataSide1Set()
• ProMechsymmetrydataSide2Get()
• ProMechsymmetrydataSide2Set()
• ProMechsymmetrydataFree()
The function ProMechsymmetrydataAlloc() allocates the memory for the
symmetry constraint data handle.
The function ProMechsymmetrydataTypeGet() returns the type of
symmetry constraint. The argument type can have the following values:

• PRO_MECH_SYMMETRY_CYCLIC—Specifies a cyclic symmetry
• PRO_MECH_SYMMETRY_MIRROR—Specifies a mirror symmetry
Use the function ProMechsymmetrydataTypeSet() to set the type of
symmetry constraint.
The function ProMechsymmetrydataAxisGet() returns the axis of
symmetry of the section. Use the function
ProMechsymmetrydataAxisSet() to set the axis of symmetry.
The function ProMechsymmetrydataSide1Get() returns the first side of
the cut section. Use the function ProMechsymmetrydataSide1Set() to set
the geometric references of the first side.
The function ProMechsymmetrydataSide2Get() returns the second side
of the cut section. Use the function ProMechsymmetrydataSide2Set() to
set the geometric references of the second side.
The function ProMechsymmetrydataFree() releases the memory assigned
to the symmetry constraint data handle.

Creo Simulate: Items 1893

Creo Simulate Constraint Sets
A constraint set is a collection of constraints that act together, and at the same
time, on the model. Constraint sets do not contain loads.
The functions referring to the Creo Simulate constraint sets use the structure
ProModelItem. Constraint sets use the ProType field in the ProMechitem
structure as PRO_SIMULATION_CONSTR_SET.
Functions Introduced:

• ProMechconstrsetTypeGet()
• ProMechconstrsetDescriptionGet()
• ProMechconstrsetDescriptionSet()
• ProMechconstrsetConstrsGet()
• ProMechconstrConstrsetAssign()
The function ProMechconstrsetTypeGet() returns the type of the
constraint sets that are applied to the model. The types are as follows:

• PRO_MECH_LOADSET_STRUCTURAL—Specifies a structural constraint set.
• PRO_MECH_LOADSET_THERMAL—Specifies a thermal constraint set.
The function ProMechconstrsetDescriptionGet() returns the
description of the constraint set. The function
ProMechconstrsetDescriptionSet() enables you to change the
description of the constraint set.
The function ProMechconstrsetConstrsGet() returns the constraints
specified in the constraint set.
Use the function ProMechconstrConstrsetAssign() to assign a
constraint to a constraint set.

Creo Simulate Matrix Functions
The functions described in this section provide read and write access to the matrix
data of the Creo Simulate mass properties, spring properties, beam orientation,
and beam section items.
Functions Introduced:

• ProMechMatrixAlloc()
• ProMechMatrixComponentGet()
• ProMechMatrixComponentSet()
• ProMechMatrixFree()

1894 Creo® Parametric TOOLKITUser’s Guide

The function ProMechMatrixAlloc() allocates memory for the Creo
Simulate matrix handle.
The function ProMechMatrixComponentGet() gets the individual matrix
component value at the given index values. The function
ProMathExpressionEvaluate() is used to evaluate the expression.
The function ProMechMatrixComponentSet() sets the individual matrix
component value at the given index values. You can also set an expression in the
specified index value.
The function ProMechMatrixFree() releases the memory assigned for the
Creo Simulate matrix handle.

Creo Simulate Vector Functions
The functions described in this section provide read and write access to the vector
data of the Creo Simulate a mass properties, spring properties, beam orientation,
and beam section items.
Functions Introduced:

• ProMechVectorAlloc()
• ProMechVectorComponentGet()
• ProMechVectorComponentSet()
• ProMechVectorFree()
The function ProMechVectorAlloc() allocates memory for the Creo
Simulate vector handle.
The function ProMechVectorComponentGet() gets the individual vector
component value at the given index values. The function
ProMathExpressionEvaluate() is used to evaluate the expression.
The function ProMechVectorComponentSet() sets the individual vector
component value at the given index values. You can also set an expression in the
specified index value.
The function ProMechVectorFree() releases the memory assigned for the
Creo Simulate vector handle.

Creo Simulate Beams
A beam is a one-dimensional idealization that, in three dimensions, represents a
structure whose length is much greater than its other two dimensions.
The functions described in this section provide read and write access to the data
and contents of Creo Simulate beam items. Beams use the ProType field in the
ProMechitem structure as PRO_SIMULATION_BEAM.

Creo Simulate: Items 1895

Functions Introduced:

• ProMechbeamdataAlloc()
• ProMechbeamTypeGet()
• ProMechbeamMaterialIdGet()
• ProMechbeamMaterialIdSet()
• ProMechbeamReferencesGet()
• ProMechbeamReferencesSet()
• ProMechbeamBeamdataGet()
• ProMechbeamBeamdataSet()
• ProMechbeamTrussdataGet()
• ProMechbeamTrussdataSet()
• ProMechbeamsideAlloc()
• ProMechbeamdataCompcrvrelGet()
• ProMechbeamdataCompcrvrelSet()
• ProMechbeamdataSidesGet()
• ProMechbeamdataSidesSet()
• ProMechbeamsideOrientGet()
• ProMechbeamsideOrientSet()
• ProMechbeamsideReleaseGet()
• ProMechbeamsideReleaseSet()
• ProMechbeamsideSectionGet()
• ProMechbeamsideSectionSet()
• ProMechbeamsideFree()
• ProMechbeamsideProarrayFree()
• ProMechbeamdataStressrecoveryGet()
• ProMechbeamdataStressrecoverySet()
• ProMechbeamdataXyshearGet()
• ProMechbeamdataXyshearSet()
• ProMechbeamdataXzshearGet()
• ProMechbeamdataXzshearSet()
• ProMechbeamdataYdirectionGet()
• ProMechbeamdataYdirectionSet()
• ProMechbeamdataFree()

1896 Creo® Parametric TOOLKITUser’s Guide

• ProMechtrussdataAlloc()
• ProMechtrussdataSectionGet()
• ProMechtrussdataSectionSet()
• ProMechtrussdataFree()
The function ProMechbeamdataAlloc() allocates the memory for the beam
data handle.
The function ProMechbeamTypeGet() returns the types of beams.
The different types of beams are as follows:

• PRO_MECH_BEAM_BEAM—Specifies a beam. Use the function
ProMechbeamBeamdataGet() to access the data structure for the beam.
Use the function ProMechbeamBeamdataSet() to modify the beam.

• PROMECH_BEAM_TRUSS—Specifies a truss. Use the function
ProMechbeamTrussdataGet() to access the data structure for the truss.
Use the function ProMechbeamTrussdataSet() to modify the truss.

The function ProMechbeamMaterialIdGet() returns the ID of the Creo
Parametric material used to create the beam. Use the function
ProMechbeamMaterialIdSet() to set the material ID for the beam.
The function ProMechbeamReferencesGet() returns the start and end
points of the beam or a curve or surface of the beam. Use the function
ProMechbeamReferencesSet() to set the beam references.
The function ProMechbeamsideAlloc() allocates the memory for the beam
side data handle.
The function ProMechbeamdataCompcrvrelGet() returns a boolean that
indicates whether the beam releases are applied only to the ends of the selected
composite curve or to the ends of the individual curves. Use the function
ProMechbeamdataCompcrvrelSet() to set whether the beam releases are
to be applied only to the ends of the selected composite curve or to the ends of the
individual curves.
The function ProMechbeamdataSidesGet() returns a structure containing
the cross section properties for beam elements, the orientation properties for angle
and offsets, and the degrees of freedom at each beam end. Use the function
ProMechbeamdataSidesSet() to set the cross section properties and
orientation properties of the beam data.
The function ProMechbeamsideOrientGet() returns the orientation ID for
the specified beam elements. Use the function
ProMechbeamsideOrientSet() to set the orientation ID.
The function ProMechbeamsideReleaseGet() returns the beam release ID
for the specified beam elements. Use the function
ProMechbeamsideReleaseSet() to set the beam release ID.

Creo Simulate: Items 1897

The function ProMechbeamsideSectionGet() returns the cross section ID
for the specified beam elements. Use the function
ProMechbeamsideSectionSet() to set the cross section ID.
The function ProMechbeamsideFree() releases the memory assigned to the
beam side handle.
The function ProMechbeamsideProarrayFree() releases the memory
assigned to a ProArray of beam side handles.
The function ProMechbeamdataStressrecoveryGet() returns a boolean
that indicates whether stress recovery is included while creating the beam. If this
option is specified as true, you can access the beam stress at a specific location
on the beam section. Use the function
ProMechbeamdataStressrecoverySet() to set the value of the boolean.
The function ProMechbeamdataXyshearGet() returns the shear relief
coefficient due to taper for the XYplanes. Use the function
ProMechbeamdataXyshearSet() to set the shear relief coefficient relative
to the XYplane.
The function ProMechbeamdataXzshearGet() returns the shear relief
coefficient due to taper for the XZ planes. Use the function
ProMechbeamdataXzshearSet() to set the shear relief coefficient relative
to the XZ plane.
The function ProMechbeamdataYdirectionGet() returns the orientation
of the XYplane of a beam by defining its Y-direction. Use the function
ProMechbeamdataYdirectionSet() to set the Y-direction of the beam.
The function ProMechbeamdataFree() releases the memory assigned to the
beam data handle.
The function ProMechtrussdataAlloc() allocates the memory for the truss
data handle.
The function ProMechtrussdataSectionGet() returns the cross section
ID for the specified truss elements. Use the function
ProMechtrussdataSectionSet() to set the beam section ID for the truss
data.
The function ProMechtrussdataFree() releases the memory assigned to
the truss data handle.

Creo Simulate Beams: Sections,
Sketched Sections, and General Sections
The functions described in this section provide read and write access to the data
and contents of the Creo Simulate beam sections, sketched beam sections, and
general beam sections items.

1898 Creo® Parametric TOOLKITUser’s Guide

Functions Introduced:

• ProMechBeamsectionTypeGet()
• ProMechBeamsectionTypeSet()
• ProMechBeamsectionIntegerGet()
• ProMechBeamsectionIntegerSet()
• ProMechBeamsectionExpressionGet()
• ProMechBeamsectionExpressionSet()
• ProMechBeamsectionMatrixGet()
• ProMechBeamsectionMatrixSet()
• ProMechBeamsectionVectorGet()
• ProMechBeamsectionVectorSet()
These functions use the enumerated type
ProMechBeamsectionPropertyType to define the beam section property
type.
typedef enum
{
PRO_MECH_BEAMSECTION_SKETCHED_FEATURE_ID = 0,
/* int */
PRO_MECH_BEAMSECTION_SKETCHED_SHEARCENTER = 1,
/* ProMechVector (2) [Dy, Dz] */
PRO_MECH_BEAMSECTION_SKETCHED_ORIENTTYPE = 2,
/* ProMechSketchedSectionOrient (int) */

PRO_MECH_BEAMSECTION_SQUARE_DIMENSION = 3,
/* ProMechExpression [a] */

PRO_MECH_BEAMSECTION_RECTANGLE_DIMENSION = 4,
/* ProMechVector (2) [b, d] */

PRO_MECH_BEAMSECTION_HOLLOWRECTANGLE_DIMENSION = 5,
/* ProMechVector (4) [b, d, bi, di] */

PRO_MECH_BEAMSECTION_CHANNEL_DIMENSION = 6,
/* ProMechVector (4) [b, t, di, tw] */
PRO_MECH_BEAMSECTION_CHANNEL_SHEARFACTOR = 7,
/* ProMechVector (2) [Fy, Fz] */

PRO_MECH_BEAMSECTION_IBEAM_DIMENSION = 8,
/* ProMechVector (4) [b, t, di, tw] */

PRO_MECH_BEAMSECTION_LSECTION_DIMENSION = 9,
/* ProMechVector (4) [b, t, di, tw] */
PRO_MECH_BEAMSECTION_LSECTION_SHEARFACTOR = 10,
/* ProMechVector (2) [Fy, Fz] */

Creo Simulate: Items 1899

PRO_MECH_BEAMSECTION_DIAMOND_DIMENSION = 11,
/* ProMechVector (2) [b, d] */

PRO_MECH_BEAMSECTION_SOLIDCIRCLE_DIMENSION = 12,
/* ProMechExpression [R] */

PRO_MECH_BEAMSECTION_HOLLOWCIRCLE_DIMENSION = 13,
/* ProMechVector (2) [R, Ri] */

PRO_MECH_BEAMSECTION_SOLIDELLIPSE_DIMENSION = 14,
/* ProMechVector (2) [a, b]*/

PRO_MECH_BEAMSECTION_HOLLOWELLIPSE_DIMENSION = 15,
/* ProMechVector (3) [a, b, ai] */
PRO_MECH_BEAMSECTION_HOLLOWELLIPSE_SHEARFACTOR = 16,
/* ProMechVector (2) [Fy, Fz] */

PRO_MECH_BEAMSECTION_GENERAL_AREA = 17,
/* ProMechExpression [Area] */
PRO_MECH_BEAMSECTION_GENERAL_INERTIA = 18,
/* ProMechMatrix (2x2, symmetrical)

[Ixx Ixy]
[Iyy]

*/
PRO_MECH_BEAMSECTION_GENERAL_TORSIONSTIFFNESS = 19,
/* ProMechExpression [j] */
PRO_MECH_BEAMSECTION_GENERAL_SHEARFACTOR = 20,
/* ProMechVector (2) [Fy, Fz] */
PRO_MECH_BEAMSECTION_GENERAL_SHEARCENTER = 21,
/* ProMechVector (2) [Dy, Dz] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_1 = 22,
/* ProMechVector (2) [y1, z1] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_2 = 23,
/* ProMechVector (2) [y2, z2] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_3 = 24,
/* ProMechVector (2) [y3, z3] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_4 = 25,
/* ProMechVector (2) [y4, z4] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_5 = 26,
/* ProMechVector (2) [y5, z5] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_6 = 27,
/* ProMechVector (2) [y6, z6] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_7 = 28,
/* ProMechVector (2) [y7, z7] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_8 = 29,
/* ProMechVector (2) [y8, z8] */
PRO_MECH_BEAMSECTION_GENERAL_POINT_9 = 30,
/* ProMechVector (2) [y9, z9] */

PRO_MECH_BEAMSECTION_WARPCOEFFICIENT = 31,
/* ProMechExpression [Warp Coefficient] */

1900 Creo® Parametric TOOLKITUser’s Guide

PRO_MECH_BEAMSECTION_NONSTRUCTMASS = 32,
/* ProMechExpression [Non-Str Mass] */
PRO_MECH_BEAMSECTION_NONSTRUCTMASSMOMENT = 33,
/* ProMechExpression [Non-Str Mass Moment] */
PRO_MECH_BEAMSECTION_CENTERGRAVITY = 34
/* ProMechVector (2) [cg:y, cg:z] */

}
ProMechBeamsectionPropertyType;

The function ProMechBeamsectionTypeGet() returns the type of beam
section. Use the function ProMechBeamsectionTypeSet() to set the type
of beam section.
The types of beam sections are as follows:

• PRO_MECH_BEAM_SECTION_SKETCHED—Specifies a cross section
created using either the sketch solid beam or sketch thin beam type. Use the
enumerated type ProMechBeamsectionPropertyType to get and set
the properties of the sketched beam section.

• PRO_MECH_BEAM_SECTION_SQUARE—Specifies a square beam section
type. The cross section dimension is specified by the length of the sides of the
square. Use the function ProMechBeamsectionExpressionGet() to
get the square beam section data. Use the function
ProMechBeamsectionExpressionSet() to set the properties of the
square beam section.

• PRO_MECH_BEAM_SECTION_RECTANGLE—Specifies a rectangular beam
section type. The cross section dimension is specified by the height and width
of the rectangle. Use the function ProMechBeamsectionVectorGet()
to get the rectangular beam section data. Use the function
ProMechBeamsectionVectorSet() to set the properties of the
rectangular beam section

• PRO_MECH_BEAM_SECTION_HOLLOW_RECTANGLE—Specifies a hollow
rectangular beam section type. The cross section dimension for this beam type
is specified by the Outer height and width, and the inner height and width of
the rectangle. Use the function ProMechBeamsectionVectorGet() to
get the hollow beam section data. Use the function
ProMechBeamsectionVectorSet() to set the properties of the hollow
beam section.

• PRO_MECH_BEAM_SECTION_CHANNEL—Specifies a channel beam section
type. The cross section dimension is specified by the flange width, flange
thickness, web height, and web thickness. Use the function
ProMechBeamsectionVectorGet() to get the channel section data.
Use the function ProMechBeamsectionVectorSet() to set the
properties of the channel beam section.

Creo Simulate: Items 1901

• PRO_MECH_BEAM_SECTION_I_BEAM—Specifies an L-section beam
section type. The cross section dimension for this beam type is specified by
the overall flange width, flange thickness, web height, and web thickness. Use
the function ProMechBeamsectionVectorGet() to get the L-section
data. Use the function ProMechBeamsectionVectorSet() to set the
properties of the L-section beam type.

• PRO_MECH_BEAM_SECTION_L_SECTION—Specifies an L-section beam
section type. The cross section dimension for this beam type is specified by
the overall flange width, flange thickness, web height, and web thickness. Use
the function ProMechBeamsectionVectorGet() to get the L-section
data. Use the function ProMechBeamsectionVectorSet() to set the
properties of the L-section beam type.

• PRO_MECH_BEAM_SECTION_DIAMOND—Specifies a diamond beam
section type. The cross section dimension is specified by the width and height
of the sides. Use the function ProMechBeamsectionVectorGet() to
get the diamond beam section data. Use the function
ProMechBeamsectionVectorSet() to set the properties of the
diamond beam section.

• PRO_MECH_BEAM_SECTION_SOLID_CIRCLE—Specifies a solid circle
beam section type. The cross section dimension for this beam type is specified
by the radius of the circular beam cross-section. Use the function
ProMechsectiondataCirclesectdataGet() to access the solid
circle beam section data structure. Use the function
ProMechsectiondataCirclesectdataSet() to modify the solid
circle beam section data structure.

• PRO_MECH_BEAM_SECTION_HOLLOW_CIRCLE—Specifies a hollow
circle beam section type. The cross section dimension for this beam type is
specified by the outside radius and the inside radius of the hollow beam cross-
section. Use the function ProMechBeamsectionVectorGet() to get the
hollow circle beam section data. Use the
ProMechBeamsectionVectorSet() to set the properties of the hollow
circle beam section.

• PRO_MECH_BEAM_SECTION_SOLID_ELLIPSE—Specifies a solid ellipse
beam section type. The cross section dimension for this beam type is specified
by the length of the major axis and the length of the minor axis. Use the
function ProMechBeamsectionVectorGet() to get the solid ellipse
beam data. Use the function ProMechBeamsectionVectorSet() to set
the properties of the solid ellipse beam section.

• PRO_MECH_BEAM_SECTION_HOLLOW_ELLIPSE—Specifies a hollow
ellipse beam section type. The cross section dimension for this beam type is
specified by the length of the major axis, length of the minor axis, and the

1902 Creo® Parametric TOOLKITUser’s Guide

inside major axis. Use the function ProMechBeamsectionVectorGet()
to get the hollow ellipse beam data. Use the function
ProMechBeamsectionVectorSet() to set the properties of the hollow
ellipse beam section

• PRO_MECH_BEAM_SECTION_GENERAL—Specifies a general beam section
type. A general beam section type does not have a predefined shape. Use the
enumerated type ProMechBeamsectionPropertyType to get and set
the properties of the general beam data.

The function ProMechBeamsectionIntegerGet() returns the integer
value of the specified beam type property. Use the function
ProMechBeamsectionIntegerSet() to set an integer value for the
specified beam type. For example, you can get and set the beam sketch feature id,
the type of orientation used for the sketched beam section, and so on.
The function ProMechBeamsectionExpressionGet() returns the
expression of type ProMechExpression for the specified beam section type.
To evaluate the expression use the function
ProMathExpressionEvaluate(). The function
ProMechBeamsectionExpressionSet() sets the expression of type
ProMechExpression for the specified beam section type. For example, you
can get and set the section area, torsion stiffness (J parameter) of the beam section,
and so on.
The function ProMechBeamsectionExpressionGet() returns the
expression of type ProMechExpression for the specified beam section type.
To evaluate the expression use the function
ProMathExpressionEvaluate(). The function
ProMechBeamsectionExpressionSet() sets the expression of type
ProMechExpression for the specified beam section type. For example, you
can get and set the section area, torsion stiffness (J parameter) of the beam section,
and so on.
The function ProMechBeamsectionMatrixGet() returns the Creo
Simulate matrix handle ProMechMatrix. Use the function
ProMechBeamsectionMatrixSet() to set the handle to
ProMechMatrix. The functions ProMechMatrixComponentGet/Set
provide read and write access to the individual matrix components of the specified
beam section property type. For example, you can get/set the values for moments
of intertia Ixx, Ixy, and Izz. See the section Creo Simulate Matrix Functions on
page 1894, for more information on handling matrix components.
The function ProMechBeamsectionMatrixGet() automatically allocates
memory for the Creo Parametric Creo Simulate matrix handle. Use the function
ProMechMatrixFree() to free the assigned memory.

Creo Simulate: Items 1903

The function ProMechBeamsectionVectorGet() returns the Creo
Simulate vector handle ProMechVector. Use the function
ProMechBeamsectionVectorSet() to set the handle to
ProMechVector. The functions ProMechVectorComponentGet/Set
provide read and write access to the individual vector components of the specified
beam section property type. For example, you can get/set the values for circular,
square, channel, I-beam sections, and so on. See the section Creo Simulate Vector
Functions on page 1895, for more information on handling vector components.
The function ProMechBeamsectionVectorGet() automatically allocates
the memory for the Creo Simulate vector handle. Use the function
ProMechVectorFree() to free the memory.

Creo Simulate Beam Sections
The functions described in this section provide read and write access to the data
and contents of the Creo Simulate beam section items. Beam sections use the
ProType field in the ProMechitem structure as PRO_SIMULATION_BEAM_
SECTION.
Functions Introduced:

• ProMechsectiondataAlloc()
• ProMechbeamsectionDataGet()
• ProMechbeamsectionDataSet()
• ProMechbeamsectionDescriptionGet()
• ProMechbeamsectionDescriptionSet()
• ProMechsectiondataFree()
The beam section functions listed under Functions Superseded have been
deprecated. Use the functions described in the section Creo Simulate Beams:
Sections, Sketched Sections, and General Sections on page 1898 instead.
Functions Superseded:

• ProMechsectiondataSectiontypeGet()
• ProMechsectiondataNonstructcogGet()
• ProMechsectiondataNonstructcogSet()
• ProMechsectiondataNonstructmassGet()
• ProMechsectiondataNonstructmassSet()
• ProMechsectiondataNonstructmomentGet()
• ProMechsectiondataNonstructmomentSet()
• ProMechsectiondataWarpcoeffGet()

1904 Creo® Parametric TOOLKITUser’s Guide

• ProMechsectiondataWarpcoeffSet()
• ProMechsectiondataChannelsectdataGet()
• ProMechsectiondataChannelsectdataSet()
• ProMechsectiondataCirclesectdataGet()
• ProMechsectiondataCirclesectdataSet()
• ProMechsectiondataDiamondsectdataGet()
• ProMechsectiondataDiamondsectdataSet()
• ProMechsectiondataEllipsesectdataGet()
• ProMechsectiondataEllipsesectdataSet()
• ProMechsectiondataGeneralsectdataGet()
• ProMechsectiondataGeneralsectdataSet()
• ProMechsectiondataHollowcirclesectdataGet()
• ProMechsectiondataHollowcirclesectdataSet()
• ProMechsectiondataHollowellipsesectdataGet()
• ProMechsectiondataHollowellipsesectdataSet()
• ProMechsectiondataHollowrectsectdataGet()
• ProMechsectiondataHollowrectsectdataSet()
• ProMechsectiondataIbeamsectdataGet()
• ProMechsectiondataIbeamsectdataSet()
• ProMechsectiondataLsectionsectdataGet()
• ProMechsectiondataLsectionsectdataSet()
• ProMechsectiondataRectanglesectdataGet()
• ProMechsectiondataRectanglesectdataSet()
• ProMechsectiondataSketchedsectdataGet()
• ProMechsectiondataSketchedsectdataSet()
• ProMechsectiondataSquaresectdataGet()
• ProMechsectiondataSquaresectdataSet()
The function ProMechsectiondataAlloc() allocates the memory for the
beam section data handle.
The function ProMechbeamsectionDataGet() provides access to the data
structure containing the properties of the beam section data. Use the function
ProMechbeamsectionDataSet() to set the properties of the beam section
data.
The function ProMechsectiondataSectiontypeGet() returns the types
of beam sections.

Creo Simulate: Items 1905

The types of beam sections are as follows:

• PRO_MECH_BEAM_SECTION_SKETCHED—Specifies a cross section
created using either the sketch solid beam or sketch thin beam type. Use the
function ProMechsectiondataSketchedsectdataGet() to access
the sketched beam data structure. Use the function
ProMechsectiondataSketchedsectdataSet() to set the properties
of the sketched beam data structure.

• PRO_MECH_BEAM_SECTION_SQUARE—Specifies a square beam section
type. The cross section dimension is specified by the length of the sides of the
square. Use the function
ProMechsectiondataSquaresectdataGet() to access the square
section data structure. Use the function
ProMechsectiondataSquaresectdataSet() to set the properties of
the square section data structure.

• PRO_MECH_BEAM_SECTION_RECTANGLE—Specifies a rectangular beam
section type. The cross section dimension is specified by the height and width
of the rectangle. Use the function
ProMechsectiondataRectanglesectdataGet() to access the
rectangular section data structure. Use the function
ProMechsectiondataRectanglesectdataSet() to access the
rectangular section data structure.

• PRO_MECH_BEAM_SECTION_HOLLOW_RECTANGLE— Specifies a hollow
rectangular beam section type. The cross section dimension for this beam type
is specified by the Outer height and width, and the inner height and width of
the rectangle. Use the function
ProMechsectiondataHollowrectsectdataGet() to access the
hollow section data structure. Use the function
ProMechsectiondataHollowrectsectdataSet() to access the
hollow section data structure.

• PRO_MECH_BEAM_SECTION_CHANNEL—Specifies a channel beam section
type. The cross section dimension is specified by the flange width, flange
thickness, web height, and web thickness. Use the function
ProMechsectiondataChannelsectdataGet() to access the channel
section data structure. Use the function
ProMechsectiondataChannelsectdataSet() to access the channel
section data structure.

• PRO_MECH_BEAM_SECTION_I_BEAM—Specifies an I-beam section type.
The cross section dimension for this beam type is specified by the flange
width, flange thickness, web height, and web thickness. Use the function
ProMechsectiondataIbeamsectdataGet() to access the I-beam
section data structure. Use the function

1906 Creo® Parametric TOOLKITUser’s Guide

ProMechsectiondataIbeamsectdataSet() to access the I-beam
section data structure.

• PRO_MECH_BEAM_SECTION_L_SECTION—Specifies an L-section beam
section type. The cross section dimension for this beam type is specified by
the overall flange width, flange thickness, web height, and web thickness. Use
the function ProMechsectiondataLsectionsectdataGet() to
access the L-section data structure. Use the function
ProMechsectiondataLsectionsectdataSet() to access the L-
section data structure.

• PRO_MECH_BEAM_SECTION_DIAMOND—Specifies a diamond beam
section type. The cross section dimension is specified by the width and height
of the sides. Use the function
ProMechsectiondataDiamondsectdataGet() to access the
diamond beam section data structure. Use the function
ProMechsectiondataDiamondsectdataSet() to modify the
diamond beam section data structure.

• PRO_MECH_BEAM_SECTION_SOLID_CIRCLE—Specifies a solid circle
beam section type. The cross section dimension for this beam type is specified
by the radius of the circular beam cross-section. Use the function
ProMechsectiondataCirclesectdataGet() to access the solid
circle beam section data structure. Use the function
ProMechsectiondataCirclesectdataSet() to modify the solid
circle beam section data structure.

• PRO_MECH_BEAM_SECTION_HOLLOW_CIRCLE—Specifies a hollow
circle beam section type. The cross section dimension for this beam type is
specified by the outside radius and the inside radius of the hollow beam cross-
section. Use the function
ProMechsectiondataHollowcirclesectdataGet() to access the
hollow circle beam section data structure. Use the function
ProMechsectiondataHollowcirclesectdataSet() to modify the
hollow circle beam section data structure.

• PRO_MECH_BEAM_SECTION_SOLID_ELLIPSE—Specifies a solid ellipse
beam section type. The cross section dimension for this beam type is specified
by the length of the major axis and the length of the minor axis. Use the
function ProMechsectiondataEllipsesectdataGet() to access
the solid ellipse beam data structure. Use the function
ProMechsectiondataEllipsesectdataSet() to modify the solid
ellipse beam data structure.

• PRO_MECH_BEAM_SECTION_HOLLOW_ELLIPSE—Specifies a hollow
ellipse beam section type. The cross section dimension for this beam type is
specified by the length of the major axis, length of the minor axis, and the

Creo Simulate: Items 1907

inside major axis. Use the function
ProMechsectiondataHollowellipsesectdataGet() to access
the hollow ellipse beam data structure. Use the function
ProMechsectiondataHollowellipsesectdataSet() to access
the hollow ellipse beam data structure.

• PRO_MECH_BEAM_SECTION_GENERAL—Specifies a general beam section
type. A general beam section type does not have a predefined shape. Use the
function ProMechsectiondataGeneralsectdataGet() to access
the general beam data structure. Use the function
ProMechsectiondataGeneralsectdataSet() to access the general
beam data structure.

The function ProMechbeamsectionDescriptionGet() returns the
description for the specified beam section. Use the function
ProMechbeamsectionDescriptionSet() to set the description of the
specified beam section.
The function ProMechsectiondataNonstructcogGet() returns the Y
and Z coordinates of the non-structural mass center of gravity. A non-structural
mass is a mass that responds to gravity, but does not strengthen the structure. Non-
structural masses can have different moments of inertia and gravitational centers
than the specified beam. The function
ProMechsectiondataNonstructcogSet() sets the Y and Z coordinates
of the non-structural mass center of gravity.
The function ProMechsectiondataNonstructmassGet() returns the
non-structural mass per unit length. Use the function
ProMechsectiondataNonstructmassSet() to set the non-structural
mass per unit length the beam section.
The function ProMechsectiondataNonstructmomentGet() returns the
non-structural mass moment of inertia per unit length. Use the function
ProMechsectiondataNonstructmomentSet() to set the non-structural
mass moment of inertia per unit length of the beam section.
The function ProMechsectiondataWarpcoeffGet() returns the warp
coefficient of the beam section. Use the function
ProMechsectiondataWarpcoeffSet() to set the warp coefficient of the
beam section.
The function ProMechsectiondataFree() releases the memory assigned to
the beam section data.

Sketched Beam Section
The sketched beam section functions described below have been deprecated. Use
the functions described in the section Creo Simulate Beams: Sections, Sketched
Sections, and General Sections on page 1898 instead.

1908 Creo® Parametric TOOLKITUser’s Guide

Functions Superseded:

• ProMechsketchedsctndataAlloc()
• ProMechsketchedsctndataFeatureidGet()
• ProMechsketchedsctndataOrienttypeGet()
• ProMechsketchedsctndataOrienttypeSet()
• ProMechsketchedsctndataShearcenterGet()
• ProMechsketchedsctndataShearcenterSet()
• ProMechsketchedsctndataFree()
The function ProMechsketchedsctndataAlloc()allocates the memory
for the sketched beam section data handle.
The function ProMechsketchedsctndataFeatureidGet() returns the
sketch feature id of the sketched beam section.
The function ProMechsketchedsctndataOrienttypeGet() returns the
type of orientation for the sketched beam section. The beam orientation defines
the Y direction of the beam, that is, how it rotates on the XYplane. The types of
orientation is as follows:

• PRO_MECH_BEAM_SECTION_SKET_XY_AS_YZ—The beam section X
and Y coordinates correspond to the beam Yand Z directions, respectively.

• PRO_MECH_BEAM_SECTION_SKET_XY_AS_ZY—The beam section X
and Y coordinates correspond to the beam Z and Y directions, respectively.

Use the function ProMechsketchedsctndataOrienttypeSet() to set
the type of orientation for the sketched beam section.
The function ProMechsketchedsctndataShearcenterGet() returns
the shear center of the beam section. The shear center is the point on a beam
section about which the section rotates under deflection. The function
ProMechsketchedsctndataShearcenterSet() sets the shear center of
the beam section.
The function ProMechsketchedsctndataFree() releases the memory
assigned to sketched beam section data.

General Beam Section
The general beam section functions described below have been deprecated. Use
the functions described in the section Creo Simulate Beams: Sections, Sketched
Sections, and General Sections on page 1898 instead.
Functions Superseded:

Creo Simulate: Items 1909

• ProMechgeneralsctndataAlloc()
• ProMechgeneralsctndataAreaGet()
• ProMechgeneralsctndataAreaSet()
• ProMechgeneralsctndataAreaproductGet()
• ProMechgeneralsctndataAreaproductSet()
• ProMechgeneralsctndataMomentsGet()
• ProMechgeneralsctndataMomentsSet()
• ProMechgeneralsctndataShearcenterGet()
• ProMechgeneralsctndataShearcenterSet()
• ProMechgeneralsctndataShearfactorGet()
• ProMechgeneralsctndataShearfactorSet()
• ProMechgeneralsctndataTorsionstiffnessGet()
• ProMechgeneralsctndataTorsionstiffnessSet()
• ProMechgeneralsctndataStressrecoverypntsGet()
• ProMechgeneralsctndataStressrecoverypntsSet()
• ProMechgeneralsctndataFree()
The function ProMechgeneralsctndataAlloc() allocates the memory for
the general beam section data handle.
The function ProMechgeneralsctndataAreaGet() returns the cross-
sectional area for each beam section. Use the function
ProMechgeneralsctndataAreaSet() to set the cross-sectional area for
the beam section.
The function ProMechgeneralsctndataAreaproductGet() returns the
area product of the moments of inertia. Use the function
ProMechgeneralsctndataAreaproductSet() to set the area product of
inertia.
The function ProMechgeneralsctndataMomentsGet() returns the
second moments of area for each beam section. These properties describe the
stiffness in bending about a beam's principle Y and Z axes. Use the function
ProMechgeneralsctndataMomentsSet() to set the second moments of
area for each beam section.
The function ProMechgeneralsctndataShearcenterGet() returns the
Shear DYand Shear DZ values. These values specify the distance between shear
center (the point on a beam section about which the section rotates under
deflection) and the centroid of the beam section, with respect to the principal axes.
Use the function ProMechgeneralsctndataShearcenterSet() to set
the Shear DYand Shear DZ values.

1910 Creo® Parametric TOOLKITUser’s Guide

The function ProMechgeneralsctndataShearfactorGet() returns the
Shear FY and Shear FZ values for the beam section. These values represent the
ratio of a beam's effective "shear area" to its true cross-sectional area for shear in
the principal Y and Z directions. Use the function
ProMechgeneralsctndataShearfactorSet() to set the Shear FYand
Shear FZ values for the beam section.
The function ProMechgeneralsctndataTorsionstiffnessGet()
returns the second polar moment of area for each beam section. This property
describes the stiffness in torsion. Use the function
ProMechgeneralsctndataTorsionstiffnessSet() to set the torsion
stiffness for each beam section.
The function ProMechgeneralsctndataStressrecoverypntsGet()
returns the stress recovery points of the beam section. Use the
ProMechgeneralsctndataStressrecoverypntsSet() to set the
stress recovery points of the beam section.
The function ProMechgeneralsctndataFree() releases the memory
assigned to the sketched beam section data.

Beam Orientations
The functions described in this section provide read and write access to the data
and contents of the Creo Simulate beam orientations data structure. Beam
orientations use the ProType field in the ProMechitem structure as PRO_
SIMULATION_BEAM_ORIENT.
Functions Introduced:

• ProMechbeamorientDescriptionGet()
• ProMechbeamorientDescriptionSet()
• ProMechBeamorientExpressionGet()
• ProMechBeamorientExpressionSet()
• ProMechBeamorientIntegerGet()
• ProMechBeamorientIntegerSet()
• ProMechBeamorientVectorGet()
• ProMechBeamorientVectorSet()
Functions Superseded:

• ProMechbeamorientDataGet()
• ProMechbeamorientDataSet()
• ProMechbeamorientdataTypeGet()
• ProMechbeamorientdataTypeSet()

Creo Simulate: Items 1911

• ProMechbeamorientdataAngleGet()
• ProMechbeamorientdataAngleSet()
• ProMechbeamorientdataVectorGet()
• ProMechbeamorientdataVectorSet()
• ProMechbeamorientdataFree()
The function ProMechbeamorientDataGet() provides access to the data
structure containing the properties of the beam orientation. Use the function
ProMechbeamorientDataSet() to set the properties of the beam
orientation data. The functions ProMechbeamorientDataGet() and
ProMechbeamorientDataSet() have been deprecated. Use the functions
ProMechBeamorientIntegerGet() and
ProMechBeamorientIntegerSet() instead.
The function ProMechbeamorientDescriptionGet() returns the
description of the beam orientation. Use the function
ProMechbeamorientDescriptionSet() to set the description of the
beam orientation.
The functions ProMechBeamorientExpressionGet/Set,
ProMechBeamorientIntegerGet/Set, and
ProMechBeamorientVectorGet/Set use the enumerated type
ProMechBeamorientPropertyType to define the beam orientation
property type.
The values are as follows:
typedef enum

{

PRO_MECH_BEAM_ORIENT_OFFSET_TYPE = 0, /* ProMechBeamOrientType (int) */

PRO_MECH_BEAM_ORIENT_ANGLE = 1, /* ProMechExpression */

PRO_MECH_BEAM_ORIENT_OFFSET = 2 /* ProMechVector (3)

[Dx Dy Dz]

*/

}

ProMechBeamorientPropertyType;

The function ProMechBeamorientExpressionGet() gets the value for
the defined beam orientation property type. If an expression is defined, the output
value is calculated using ProMathExpressionEvaluate(). Use the
function ProMechBeamorientExpressionSet() to set the value for the
beam orientation property type. For the functions
ProMechBeamorientExpressionGet/Set, the only enumerated value
allowed is PRO_MECH_BEAM_ORIENT_ANGLE. You can get and set the angle
of the beam orientation.

1912 Creo® Parametric TOOLKITUser’s Guide

The function ProMechBeamorientIntegerGet() gets the integer of the specified
beam orientation property type. Use the function ProMechBeamorientIntegerSet()
to set an integer value for the specified beam orientation property type. For the
functions ProMechBeamorientIntegerGet/Set, the only enumerated
value allowed is PRO_MECH_BEAM_ORIENT_OFFSET_TYPE.
PRO_MECH_BEAM_ORIENT_OFFSET_TYPE returns the handle to
ProMechBeamOrientType. You can specify the type of orientation using the
enumerated type ProMechBeamOrientType.
The types of orientations are as follows:

• PRO_MECH_BEAM_ORIENT_OFFSET_SHAPE_ORIGIN— Specifies the
point of origin of the beam shape coordinate system.

• PRO_MECH_BEAM_ORIENT_OFFSET_CENTROID— Specifies the origin
of the principal coordinate system which is at the centroid of the section. For
general sections and all standard sections, it is coincident with PRO_MECH_
BEAM_ORIENT_OFFSET_SHAPE_ORIGIN.

• PRO_MECH_BEAM_ORIENT_OFFSET_SHEAR_CENTER— Specifies the
point on a beam section about which the section rotates under deflection.

The function ProMechBeamorientVectorGet() returns the Creo Simulate
vector handle ProMechVector. Use the function
ProMechBeamorientVectorSet() to set the handle to ProMechVector.
The functions ProMechVectorComponentGet/Set provide read and write
access to the individual vector components of the specified beam orientation
property type. For more information about handling vector components, see Creo
Simulate Vector Functions on page 1895.
For the functions ProMechBeamorientVectorGet/Set, the only
enumerated value allowed is PRO_MECH_BEAM_ORIENT_OFFSET. For
example, you can get/set the direction of the beam vector.
The function ProMechBeamorientVectorGet() automatically allocates the
memory for the Creo Simulate vector handle. Use the function
ProMechVectorFree() to free the memory.
The function ProMechbeamorientdataTypeGet() returns the type of the
orientation specified for the Creo Simulate beam orientation item. Use the
function ProMechbeamorientdataTypeSet() to set the type of orientation
The functions ProMechbeamorientdataTypeGet() and
ProMechbeamorientdataTypeSet() have been deprecated. Use the
enumerated type ProMechBeamOrientType instead.
The function ProMechbeamorientdataAngleGet() returns the angle of
the beam orientation. Use the function
ProMechbeamorientdataAngleSet() to set the angle of the beam
orientation. The functions ProMechbeamorientdataAngleGet() and

Creo Simulate: Items 1913

ProMechbeamorientdataAngleSet() have been deprecated. Use the
functions ProMechBeamorientExpressionGet() and
ProMechBeamorientExpressionSet() instead.
The function ProMechbeamorientdataVectorGet() returns the direction
of the beam vector. Use the function
ProMechbeamorientdataVectorSet() to set the direction of the beam
vector. The functions ProMechbeamorientdataVectorGet() and
ProMechbeamorientdataVectorSet() have been deprecated. Use the
functions ProMechBeamorientVectorGet() and
ProMechBeamorientVectorSet() instead.
Use the function ProMechbeamorientdataFree() to free the memory
allocated to the beam orientation data structure. The function
ProMechbeamorientdataFree() has been deprecated.

Beam Releases
The beam releases specify the degrees of freedom you want to release for a beam
end or beam ends. Beam releases determine the degrees of freedom that do not
participate in a connection at the end of a beam. You can specify beam releases for
both straight and curved beams.
The beam releases data structure contains a combination of the six degrees of
freedom relative to the beam's local axes, that is, translation in X, Y, and Z and
rotation in X, Y, and Z.
The functions described in this section provide read and write access to the data
and contents of the Creo Simulate beam releases data structure. Beam releases use
the ProType field in the ProMechitem structure as PRO_SIMULATION_
BEAM_RELEASE.
Functions Introduced:

• ProMechbeamreleasedataAlloc()
• ProMechbeamreleaseDataGet()
• ProMechbeamreleaseDataSet()
• ProMechbeamreleaseDescriptionGet()
• ProMechbeamreleaseDescriptionSet()
• ProMechbeamreleasedataRotationflagsGet()
• ProMechbeamreleasedataRotationflagsSet()
• ProMechbeamreleasedataTranslationflagsGet()
• ProMechbeamreleasedataTranslationflagsSet()
• ProMechbeamreleasedataFree()

1914 Creo® Parametric TOOLKITUser’s Guide

The function ProMechbeamreleasedataAlloc() allocates the memory for
the beam release data handle.
The function ProMechbeamreleaseDataGet() provides access to the data
structure containing the properties of the beam release item.
The translation and rotation flags correspond to translation or rotation about the X,
Y, and Z directions. Set the value of each flag to PRO_B_TRUE, to indicate that
the beam is not constrained in the specified direction. Set the value to PRO_B_
FALSE to indicate that the beam is constrained in the specified direction.
The function ProMechbeamreleasedataFree() releases the memory
assigned to the beam release data handle.

Creo Simulate Spring Items
A spring connects two points or a point to the ground in the specified model. It
provides the stiffness that you specify at the location on the model where you
place it. The stiffness can be translational (force per unit length) or torsional
(torque). The force generated by the spring is proportional to the amount of
displacement that occurs. The functions described in this section enable you to
access the data and contents of the Creo Simulate spring items. Springs use the
ProType field in the ProMechitem structure as PRO_SIMULATION_
SPRING.
Functions Introduced:

• ProMechspringReferencesGet()
• ProMechspringReferencesSet()
• ProMechspringTypeGet()
• ProMechspringAdvanceddataGet()
• ProMechspringAdvanceddataSet()
• ProMechspringGrounddataGet()
• ProMechspringGrounddataSet()
• ProMechspringSimpledataGet()
• ProMechspringSimpledataSet()
• ProMechsimplespringdataAlloc()
• ProMechsimplespringdataTorsionalstiffnessGet()
• ProMechsimplespringdataTorsionalstiffnessSet()
• ProMechsimplespringdataExtensionalstiffnessValueGet()
• ProMechsimplespringdataExtensionalstiffnessValueSet()
• ProMechsimplespringdataFree()

Creo Simulate: Items 1915

• ProMechadvancedspringdataAlloc()
• ProMechadvancedspringdataPropertiesGet()
• ProMechadvancedspringdataPropertiesSet()
• ProMechadvancedspringdataRotationGet()
• ProMechadvancedspringdataRotationSet()
• ProMechadvancedspringdataYdirectionGet()
• ProMechadvancedspringdataYdirectionSet()
• ProMechadvancedspringdataFree()
• ProMechgroundspringdataAlloc()
• ProMechgroundspringdataCsysGet()
• ProMechgroundspringdataCsysSet()
• ProMechgroundspringdataPropertiesGet()
• ProMechgroundspringdataPropertiesSet()
• ProMechgroundspringdataFree()
The function ProMechspringReferencesGet() returns the geometrical
references specified while modeling the spring. The references define the location
of the spring on the model. Use the function
ProMechspringReferencesSet() to set the geometrical references for the
spring.
The function ProMechspringTypeGet() returns the type of the specified
spring. The output argument Type has one of the following values:

• PRO_MECH_SPRING_SIMPLE—Specifies a simple spring. This type of
spring connects two points, two vertices, a point to an edge, a point to a
surface, a point to a pattern of points, a point to a single point feature. The
extensional and torsional stiffness properties will be defined for this spring.

Use the function ProMechspringSimpledataGet() to provide access
to the data structure containing the simple spring data. Use the function
ProMechspringSimpledataSet() to modify the data structure
containing the simple spring data.

• PRO_MECH_SPRING_GROUND—Specifies a To Ground spring. This type of
string connects a point, a single point feature, or a single pattern of points to
ground. The spring stiffness properties and the orientation are defined for this
spring.

A separate properties object can be defined for this type of spring.

Use the function ProMechspringGrounddataGet() to provide access
to the data structure containing the ground spring data. Use the function

1916 Creo® Parametric TOOLKITUser’s Guide

ProMechspringGrounddataSet() to modify the data structure
containing the ground spring data.

• PRO_MECH_SPRING_ADVANCED—Specifies an Advanced spring. This type
of spring connects two points, a point to an edge, a point to a surface, a point
to a pattern of points, or a point to a single point feature. The stiffness
properties, orientation properties, and an additional rotation are defined for
this spring. Use the function ProMechspringAdvanceddataGet() to
provide access to the data structure containing the advanced spring data. Use
the function ProMechspringAdvanceddataSet() to modify the data
structure containing the advanced spring data.

Extensional stiffness of a spring resists the stretching or compression of the
spring. The extensional stiffness of the spring is of constant stiffness or is defined
by a force-deflection curve. The function
ProMechsimplespringdataExtensionalstiffnessValueGet()
returns the extensional stiffness of the spring. Use the function
ProMechsimplespringdataExtensionalstiffnessValueSet() to
set the extensional stiffness for the spring.

Note
Note: The functions
ProMechsimplespringdataExtensionalstiffnessGet() and
ProMechsimplespringdataExtensionalstiffnessSet() have
been deprecated. Use the functions
ProMechsimplespringdataExtensionalstiffnessValue
Get() and
ProMechsimplespringdataExtensionalstiffnessValue
Set() instead.

Creo Simulate Spring Property Items
The functions described in this section provide access to the data and contents of
the Creo Simulate spring property items. Spring properties use the ProType field
in the ProMechitem structure as PRO_SIMULATION_SPRING_PROPS.
Functions Introduced:

• ProMechspringpropsDescriptionGet()
• ProMechspringpropsDescriptionSet()
• ProMechSpringpropsBooleanGet()
• ProMechSpringpropsBooleanSet()

Creo Simulate: Items 1917

• ProMechSpringpropsMatrixGet()
• ProMechSpringpropsMatrixSet()
• ProMechSpringpropsVectorGet()
• ProMechSpringpropsVectorSet()
Functions Superseded:

• ProMechspringpropsdataAlloc()
• ProMechspringpropsDataGet()
• ProMechspringpropsDataSet()
• ProMechspringpropsdataDampingcoefficientsGet()
• ProMechspringpropsdataDampingcoefficientsSet()
• ProMechspringpropsdataExtensionalcoefficientsGet()
• ProMechspringpropsdataExtensionalcoefficientsSet()
• ProMechspringpropsdataTorsionalcoefficientsGet()
• ProMechspringpropsdataTorsionalcoefficientsSet()
• ProMechspringpropsdataCouplingcoefficientsGet()
• ProMechspringpropsdataCouplingcoefficientsSet()
• ProMechspringpropsdataAutocouplingGet()
• ProMechspringpropsdataAutocouplingSet()
• ProMechspringpropsdataFree()
The function ProMechspringpropsDataGet() provides access to the data
structure containing the Spring Properties data. The function
ProMechspringpropsDataGet() has been deprecated. Use either
ProMechspringpropsMatrixGet() or
ProMechspringpropsVectorGet() instead.
The functions listed above provide read and write access to the definition of the
spring properties. You can access the name, description, extensional, torsional and
coupling stiffness, and the damping coefficients for the spring properties.
The function ProMechspringpropsDescriptionGet() returns the
description for the spring property. Use the function
ProMechspringpropsDescriptionSet() to set the description for the
spring property.
The functions ProMechSpringpropsBooleanGet/Set,
ProMechSpringpropsMatrixGet/Set, and
ProMechSpringpropsVectorGet/Set use the enumerated type
ProMechSpringpropsPropertyType to define the spring property type.

1918 Creo® Parametric TOOLKITUser’s Guide

The enumerated type ProMechSpringpropsPropertyType has the
following values:
• PRO_MECH_SPRINGPROPS_EXTENSIONAL

• PRO_MECH_SPRINGPROPS_TORSIONAL

• PRO_MECH_SPRINGPROPS_COUPLING

• PRO_MECH_SPRINGPROPS_DAMPING

• PRO_MECH_SPRINGPROPS_AUTOCOUPLING

The function ProMechSpringpropsBooleanGet() gets the Boolean value
for the autocoupling option. Use the function
ProMechSpringpropsBooleanSet() to set the Boolean value for the
autocoupling option.
The function ProMechSpringpropsMatrixGet() returns the Creo
Simulate matrix handle ProMechMatrix. Use the function
ProMechSpringpropsMatrixSet() to set the handle to
ProMechMatrix. The functions ProMechMatrixComponentGet/Set
provide read and write access to the individual matrix components. For more
information about handling matrix components, see Creo Simulate Matrix
Functions on page 1894.
The output matrix gets the following values depending on the spring property
type:
• Extensional coefficients (Kxx,Kyy,Kzz,Kxy,Kxz,Kyz)
• Torsional coefficients (Txx,Tyy,Tzz,Txy,Txz,Tyz)
• Coupling coefficients (KTxx, KTxy, KTxz, KTyx, KTyy, KTyz, KTzx, KTzy,

KTzz)
The function ProMechSpringpropsMatrixGet() automatically allocates
memory for the Creo Simulate matrix handle. Use the function
ProMechMatrixFree() to free the assigned memory.
The function ProMechSpringpropsVectorGet() returns the Creo
Simulate vector handle ProMechVector. Use the function
ProMechSpringpropsVectorSet() to set the handle to
ProMechVector. The functions ProMechVectorComponentGet/Set
provide read and write access to the individual vector components. For more
information about handling vector components, see Creo Simulate Vector
Functions on page 1895.. The vector returns the damping coefficients (Cxx, Cyy,
Czz) as output. The function ProMechSpringpropsVectorGet()
automatically allocates the memory for the Creo Simulate vector handle. Use the
function ProMechVectorFree() to free the memory.

Creo Simulate: Items 1919

Creo Simulate Mass Items
A mass is an idealization that you can use to represent a concentrated mass
without a specified shape. The mass of an object determines how that object
resists translation and rotation. You can also add mass that is distributed over
features such as curves, edges, or surfaces.
The functions described in this section provide access to the data and contents of
the Creo Simulate mass items. Masses use the ProType field in the
ProMechitem structure as PRO_SIMULATION_MASS.
Functions Introduced:

• ProMechmassDistributionGet()
• ProMechmassDistributionSet()
• ProMechmassReferencesGet()
• ProMechmassReferencesSet()
• ProMechmassTypeGet()
• ProMechmassSimpledataGet()
• ProMechmassSimpledataSet()
• ProMechmassAdvanceddataGet()
• ProMechmassAdvanceddataSet()
• ProMechmassComponentdataGet()
• ProMechmassComponentpointdataSet()
• ProMechmassComponentdistributeddataSet()
• ProMechsimplemassdataAlloc()
• ProMechsimplemassdataMassGet()
• ProMechsimplemassdataMassSet()
• ProMechsimplemassdataFree()
• ProMechadvancedmassdataAlloc()
• ProMechadvancedmassdataCsysGet()
• ProMechadvancedmassdataCsysSet()
• ProMechadvancedmassdataPropertiesGet()
• ProMechadvancedmassdataPropertiesSet()
• ProMechadvancedmassdataFree()
• ProMechcomponentmassdataAlloc()
• ProMechcomponentmassdataComponentGet()

1920 Creo® Parametric TOOLKITUser’s Guide

• ProMechcomponentmassdataComponentSet()
• ProMechcomponentmassdataFree()
The function ProMechmassDistributionGet() returns the types of
masses that can be applied to curves, surfaces, and edges in FEM Mode.
The output argument type can have the following values:

• PRO_MECH_MASS_DISTR_AT_POINT—Specifies that the mass is added to
a point, vertex, multiple single points, point features, and point patterns.

• PRO_MECH_MASS_DISTR_TOTAL—Specifies the total distribution of mass
along a surface or curve.

• PRO_MECH_MASS_DISTR_PER_UNIT—Specifies the distribution of mass
along a curve or surface per unit length or per unit area respectively.

Use the function ProMechmassDistributionSet() to set the types of
masses that can be applied to curves, surfaces, and edges in FEM Mode.
The function ProMechmassReferencesGet() returns the mass reference
objects. The references can be either curves, edges, or surfaces. Use the function
ProMechmassReferencesSet() to set the mass reference objects.
The function ProMechmassTypeGet() returns the types of masses defined for
a point or vertex. The output argument type can have one of the following values:

• PRO_MECH_MASS_SIMPLE—Specifies a simple mass type. Specify an
integer as the mass value and points, single point, multiple single points, point
features, point patterns, edges, curves, or surfaces as the reference for the
simple mass type. Use the function ProMechmassSimpledataGet() to
access the simple mass data structure. Use the function
ProMechmassSimpledataSet() to modify the simple mass data
structure.

• PRO_MECH_MASS_ADVANCED—Specifies the advanced mass type. Specify
the coordinate system and the mass property object for a single point, multiple
single points, point features, and point patterns. Use the function
ProMechmassAdvanceddataGet() to access the advanced mass data
structure. Use the function ProMechmassAdvanceddataSet() to
modify the advanced mass data structure.

• PRO_MECH_MASS_COMP_AT_POINT—Specifies the component mass data
for a part or subassembly of an assembly. For this type of mass, the mass
definition is specified using the component's mass, moment of inertia, and
center of gravity. This mass type can be created using points, edges or curves,
or Surfaces as the reference. Use the function
ProMechmassComponentdataGet() to access the component mass data
structure. Use the function ProMechmassComponentpointdataSet()
to modify the component at point mass data structure.

Creo Simulate: Items 1921

• This mass type is applicable only for the assembly mode.
• PRO_MECH_MASS_COMP_DISTRIBUTED—Specifies the component

distributed mass data for a part or subassembly of an assembly. For this type
of mass, only the component’s mass is used to specify the mass definition.
This mass type can be created using points, edges or curves, or surfaces as the
reference. Use the function ProMechmassComponentdataGet() to
access the component mass data structure. Use the function
ProMechmassComponentdistributeddataSet() to modify the
component distributed mass data structure.

• This mass type is applicable only for the assembly mode.
The function ProMechsimplemassdataAlloc() allocates memory for a
simple mass data structure.
The function ProMechsimplemassdataMassGet() returns the value of the
mass for a simple mass data and the function
ProMechsimplemassdataMassSet() sets the value of the mass for a
simple mass data.
The function ProMechadvancedmassdataAlloc() allocates memory for
the advanced mass data structure.
The function ProMechadvancedmassdataCsysGet() returns the reference
co-ordinate system for the advanced mass data and the function
ProMechadvancedmassdataCsysSet() sets the reference co-ordinate
system for the advanced mass data.
The function ProMechadvancedmassdataPropertiesGet() returns the
mass property for the advanced mass data.
The function ProMechadvancedmassdataPropertiesSet() sets the
mass property for the advanced mass data.
The function ProMechcomponentmassdataAlloc() allocates memory for
the component mass data structure.
The function ProMechcomponentmassdataComponentGet() specifies a
reference for the component mass data. You can specify only one datum point or
vertex as reference for the mass type PRO_MECH_MASS_COMP_AT_POINT.
You can specify points, edges, curves, or surfaces as reference for the mass type
PRO_MECH_MASS_COMP_DISTRIBUTED.
The function ProMechcomponentmassdataComponentSet() sets the
reference type for the component mass data.

1922 Creo® Parametric TOOLKITUser’s Guide

Creo Simulate Mass Properties
The functions described in this section provide read and write access to the data
and contents of the Creo Simulate property items. Mass properties use the
ProType field in the ProMechitem structure as PRO_SIMULATION_MASS_
PROPS.
Functions Introduced:

• ProMechmasspropsDescriptionGet()
• ProMechmasspropsDescriptionSet()
• ProMechMasspropsExpressionGet()
• ProMechMasspropsExpressionSet()
• ProMechMasspropsMatrixGet()
• ProMechMasspropsMatrixSet()
Functions Superseded:

• ProMechmasspropsMassGet()
• ProMechmasspropsMassSet()
• ProMechmasspropsMomentsGet()
• ProMechmasspropsMomentsSet()
The function ProMechmasspropsDescriptionGet() returns the
description for the mass property. Use the function
ProMechmasspropsmassSet() to set the description for the mass property.
The function ProMechmasspropsMassGet() returns the value of the mass
specified for the mass properties object. Use the function
ProMechmasspropsMassSet() to set the value of the mass. The functions
ProMechmasspropsMassGet() and ProMechmasspropsMassSet()
have been deprecated. Use the functions
ProMechMasspropsExpressionGet() and
ProMechMasspropsExpressionSet() instead.
The function ProMechmasspropsMomentsGet() returns the moment of
inertia about each mass element’s center of gravity with respect to the axes and
principal planes of the WCS. The moment of inertia is returned in the form of a
matrix. Use the function ProMechmasspropsMomentsSet() to set the
moment of inertia matrix. The functions ProMechmasspropsMomentsGet()
and ProMechmasspropsMomentsSet() have been deprecated. Use the
functions ProMechMasspropsMatrixGet() and
ProMechMasspropsMatrixSet() instead

Creo Simulate: Items 1923

The functions ProMechMasspropsExpressionGet() and
ProMechMasspropsExpressionSet() use the enumerated type
ProMechMasspropsPropertyType. The values are:
• PRO_MECH_MASSPROPS_MASS

• PRO_MECH_MASSPROPS_MOMENTS

The function ProMechMasspropsExpressionGet() gets the value of the
defined mass property object. If an expression is defined, the output value can be
calculated using ProMathExpressionEvaluate(). Use the function
ProMechMasspropsExpressionSet() to set the value for the mass
property object.
The function ProMechMasspropsMatrixGet() returns the Creo Simulate
matrix handle ProMechMatrix. Use the function
ProMechMasspropsMatrixSet() to set the handle to ProMechMatrix.
The functions ProMechMatrixComponentGet/Set provide read and write
access to the individual matrix components. For more information about handling
matrix components, see Creo Simulate Matrix Functions on page 1894.

Creo Simulate Material Assignment
The functions described in this section allow you to assign materials to the 2D and
3D models. Material assignment uses the ProType field in the ProMechitem
structure as PRO_SIMULATION_MATL_ASSIGN.
Functions referring to the material assignment elements use the structure
ProMechMatlAssignData which is defined as:
typedef struct pro_matlassign_data
{

int matl_id;
int matl_orient_id;

}
ProMatlassignData;

Accessing ProMechmatlassign
Functions Introduced:

• ProMechmatlassignReferencesGet()
• ProMechmatlassignReferencesSet()
• ProMechmatlassignDataGet()
• ProMechmatlassignDataSet()

1924 Creo® Parametric TOOLKITUser’s Guide

The function ProMechmatlassignReferencesGet() returns the model
references for material assignment. Use the function
ProMechmatlassignReferencesSet() to set the model references for
material assignment.
The function ProMechmatlassignDataGet() provides access to the data
structure containing the properties of the material assignment item. Use the
function ProMechmatlassignDataSet() to set the data structure
containing the properties of the material assignment item.

Material Assignment Data
Functions Introduced:

• ProMechmecttempdataAlloc()
• ProMechmatlassigndataFree()
• ProMechmatlassigndataMaterialidGet()
• ProMechmatlassigndataMaterialidSet()
• ProMechmatlassigndataMaterialorientidGet()
• ProMechmatlassigndataMaterialorientidSet()
The function ProMechmecttempdataAlloc() allocates the memory for a
Creo Simulate material assignment data handle.
The function ProMechmatlassigndataFree() releases the memory
assigned to the Creo Simulate material assignment data handle.
The function ProMechmatlassigndataMaterialidGet() returns the
material id defined for the model references. Use the function
ProMechmatlassigndataMaterialidSet() to set the material id for the
model references.
The function ProMechmatlassigndataMaterialorientidGet()
returns the material orientation id of the model references. Use the function
ProMechmatlassigndataMaterialorientidSet() to set the material
orientation id for the model references.

Material Orientations
The functions described in this section specify material orientation for surfaces,
volumes, shells, solids, 2D solids, and 2D plates. These functions provide read
and write access to the data and contents of Creo Simulate material orientation
objects. Material orientations use the ProType field in the ProMechitem
structure as PRO_SIMULATION_MATL_ORIENT.
Functions Introduced:

Creo Simulate: Items 1925

• ProMechmaterialorientdataAlloc()
• ProMechmaterialorientDataGet()
• ProMechmaterialorientDataSet()
• ProMechmaterialorientDescriptionGet()
• ProMechmaterialorientDescriptionSet()
• ProMechmaterialorientdataObjecttypeGet()
• ProMechmaterialorientdataObjecttypeSet()
• ProMechmaterialorientdataCsysdataGet()
• ProMechmaterialorientdataCsysdataSet()
• ProMechmaterialorientdataProjectiondataGet()
• ProMechmaterialorientdataProjectiondataSet()
• ProMechmaterialorientdataRotationGet()
• ProMechmaterialorientdataRotationSet()
• ProMechmaterialorientdataSurfacerotationGet()
• ProMechmaterialorientdataSurfacerotationSet()
• ProMechmaterialorientdataTypeGet()
• ProMechmaterialorientdataSurfacerotationUnset()
• ProMechmaterialorientdataFirstdirectionSet()
• ProMechmaterialorientdataSeconddirectionSet()
• ProMechmaterialorientdataFree()
• ProMechmaterialorientcsysAlloc()
• ProMechmaterialorientcsysCsysGet()
• ProMechmaterialorientcsysCsysSet()
• ProMechmaterialorientcsysProjectiontypeGet()
• ProMechmaterialorientcsysProjectiontypeSet()
• ProMechmaterialorientcsysXaxisGet()
• ProMechmaterialorientcsysXaxisSet()
• ProMechmaterialorientcsysYaxisGet()
• ProMechmaterialorientcsysYaxisSet()
• ProMechmaterialorientcsysZaxisGet()
• ProMechmaterialorientcsysZaxisSet()
• ProMechmaterialorientcsysFree()
• ProMechmaterialorientprojAlloc()

1926 Creo® Parametric TOOLKITUser’s Guide

• ProMechmaterialorientprojPointsGet()
• ProMechmaterialorientprojPointsSet()
• ProMechmaterialorientprojTypeGet()
• ProMechmaterialorientprojXyzvectorGet()
• ProMechmaterialorientprojXyzvectorSet()
• ProMechmaterialorientprojFree()
The function ProMechMaterialorientDataGet() provides access to the
data structure containing the properties of the material orientation item. Use the
function ProMechmaterialorientDataSet() to set the data structure
containing the properties of the material orientation item.
The function ProMechmaterialorientDescriptionGet() returns the
description of the material orientation. Use the function
ProMechmaterialorientDescriptionSet() to set the description of
the material orientation.
The function ProMechmaterialorientdataObjecttypeGet() returns
the type of object to which the material orientation is applied. The types of object
are:

• PRO_MECH_MATLORI_MODEL—Specifies a model.
• PRO_MECH_MATLORI_SURFACE—Specifies a surface.
Use the function ProMechmaterialorientdataObjecttypeSet() to
set the type of object.
The function ProMechmaterialorientReferencesGet() returns the
geometric references specified for the material orientation object.
The function ProMechmaterialorientdataCsysdataGet() returns a
handle to the data structure containing the coordinate system data for the material
orientation. Use the function
ProMechmaterialorientdataCsysdataSet() to set the coordinate
system data for the material orientation.
The function ProMechmaterialorientdataTypeGet() returns the type
of the material direction. The types are as follows:

• PRO_MECH_MATLORI_COORD_SYSTEM—Specifies that the material
orientation direction is determined by the reference coordinate system.

• PRO_MECH_MATLORI_1_DIR—Specifies that the material orientation
direction is determined by the first parametric direction of the material. Use
the function ProMechmaterialorientdataFirstdirectionSet()
to set the first direction of the material as the orientation type.

• PRO_MECH_MATLORI_2_DIR—Specifies that the material orientation
direction is determined by the second parametric direction of the material. Use

Creo Simulate: Items 1927

the function
ProMechmaterialorientdataSeconddirectionSet() to set the
second direction of the material as the orientation type.

• PRO_MECH_MATLORI_PROJ_VECTOR—Specifies that the material
orientation direction is determined by the projection vector.

The function ProMechmaterialorientdataProjectiondataGet()
returns the structure containing the projection data for the material orientation.
Use the function
ProMechmaterialorientdataProjectiondataSet() to set the
projection data for the material orientation.
The function ProMechmaterialorientdataRotationGet() returns
additional rotations about one or more material directions only if the material
orientation type is PRO_MECH_MATLORI_MODEL. Use the function
ProMechmaterialorientdataRotationSet() to set the additional
rotations about one or more material directions only if the material orientation
type is PRO_MECH_MATLORI_MODEL.
The function ProMechmaterialorientdataSurfacerotationGet()
returns the rotation angle for the material orientation if the orientation type is
PRO_MECH_MATLORI_SURFACE.
Use the function
ProMechmaterialorientdataSurfacerotationSet() to set the
rotation angle for the material orientation if the orientation type is PRO_MECH_
MATLORI_SURFACE.
Use the function
ProMechmaterialorientdataSurfacerotationUnset() removes
the rotation angle for the material orientation if the orientation type is PRO_
MECH_MATLORI_SURFACE.
The function ProMechmaterialorientprojTypeGet() returns the type
of projection assigned to the material orientation. The types of materials are:

• PRO_MECH_MATLORI_PROJ_XYZ—Specifies the values for the X, Y, and
Z components to define the projection vector for the material orientation. Use
the function ProMechmaterialorientprojXyzvectorGet() to
access the projection vector. Use the function
ProMechmaterialorientprojXyzvectorSet() to set the projection
vector for the material orientation.

• PRO_MECH_MATLORI_PROJ_POINTS—Specifies the two points used to
define the projection vector for the material orientation. Use the function
ProMechmaterialorientprojPointsGet() to access the two points.
Use the function ProMechmaterialorientprojPointsSet() to set
the two points used for projection.

1928 Creo® Parametric TOOLKITUser’s Guide

The function ProMechmaterialorientcsysCsysGet() returns the
coordinate system used to specify the material directions. Use the function
ProMechmaterialorientcsysCsysSet() to set the coordinate system
for the material directions.
The function ProMechmaterialorientcsysProjectiontypeGet()
returns the projection vector for the material orientation object. The valid
projection types are as follows:

• PRO_MECH_MATLORI_CSYS_PROJ_CLOSEST—Specifies the material
Direction 1 through a series of calculations.

• PRO_MECH_MATLORI_CSYS_PROJ_X—Specifies that the material
direction 1 is along the direction of the X axis of the referenced coordinate
system projected onto the surface.

Use the function
ProMechmaterialorientcsysProjectiontypeSet() to set the
projection type for the material orientation data.
The function ProMechmaterialorientcsysXaxisGet() returns the
material direction to which the x-axis of the coordinate system is mapped. Use the
function ProMechmaterialorientcsysXaxisSet() to set the material
direction to which the x-axis of the coordinate system is mapped.
The function ProMechmaterialorientcsysYaxisGet() returns the
material direction to which the y-axis of the coordinate system is mapped. Use the
function ProMechmaterialorientcsysYaxisSet() to set the material
direction to which the y-axis of the coordinate system is mapped.
The function ProMechmaterialorientcsysZaxisGet() returns the
material direction to which the z-axis of the coordinate system is mapped. Use the
function ProMechmaterialorientcsysZaxisSet() to set the material
direction to which the z-axis of the coordinate system is mapped.

Example 4: Creating Material Orientations
Referencing a Selected Coordinate System
The sample code in the file PTMechExMatOrient.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_mech_examples/pt_
mech_ex_src shows how to create a new material orientation item in the
current model, referencing a selected coordinate system.

Creo Simulate Shells
Shells are used to model a thin layer of a defined thickness for a specified part. If
the part is relatively thin compared to its length and width, use of shell modeling
is more efficient.

Creo Simulate: Items 1929

The functions described in this section provide read and write access to the data
and contents of the Creo Simulate shell objects. Shells use the ProType field in
the ProMechitem structure as PRO_SIMULATION_SHELL.
Functions Introduced:

• ProMechshellTypeGet()
• ProMechshellMaterialGet()
• ProMechshellMaterialIdGet()
• ProMechshellMaterialIdSet()
• ProMechshellReferencesGet()
• ProMechshellReferencesSet()
• ProMechshellSimpledataGet()
• ProMechshellSimpledataSet()
• ProMechshellAdvanceddataGet()
• ProMechshellAdvanceddataSet()
• ProMechshellsimpleAlloc()
• ProMechshellsimpleThicknessGet()
• ProMechshellsimpleThicknessSet()
• ProMechshellsimpleFree()
• ProMechshelladvancedAlloc()
• ProMechshelladvancedMaterialorientGet()
• ProMechshelladvancedMaterialorientSet()
• ProMechshelladvancedShellpropsGet()
• ProMechshelladvancedShellpropsSet()
• ProMechshelladvancedFree()
The function ProMechshellTypeGet() returns the shell types. You can
define the following types of shells:

• PRO_MECH_SHELL_SIMPLE—Specifies a simple shell of uniform
thickness. Use the function ProMechshellSimpledataGet() to access
the data structure for the simple shell. Use the function
ProMechshellSimpledataSet() to modify the data structure for the
simple shell.

• PRO_MECH_SHELL_ADVANCED—Specifies an advanced shell that uses
specified shell properties. Use the function
ProMechshellAdvanceddataGet() to access the data structure for the

1930 Creo® Parametric TOOLKITUser’s Guide

advanced shells. Use the function ProMechshellAdvanceddataSet()
to modify the data structure for the advanced shell.

The function ProMechshellMaterialGet() returns the material defined for
the shell.
Use the function ProMechshellMaterialIdSet() to set the material id for
the shell.
The function ProMechshellReferencesGet() returns the surfaces
associated with the shell. Use the function
ProMechshellReferencesSet() to set the references for the shell.
The function ProMechshellsimpleThicknessGet() returns the value of
the thickness for the shell. Use the function
ProMechshellsimpleThicknessSet() to set value of the thickness of the
shell.
The function ProMechshelladvancedMaterialorientGet() returns
the material orientations assigned to the advanced shell. Use the function
ProMechshelladvancedMaterialorientSet() to set the material
orientation for the advanced shell.
The function ProMechshelladvancedShellpropsGet() returns the shell
properties associated with the model. Use the function
ProMechshelladvancedShellpropsSet() to set the shell properties
associated with the model.

Shell Properties
Shell properties are used to create shells that are not homogeneous, or to create
shells that are comprised of several layers. A shell property can be assigned to a
face, region, or datum surface.
The functions described in this section provide read and write access to data and
contents of the Creo Simulate shell property objects. Shell properties use the
ProType field in the ProMechitem structure as PRO_SIMULATION_
SHELL_PROPS.
Functions Introduced:

• ProMechshellpropsTypeGet()
• ProMechshellpropsDescriptionGet()
• ProMechshellpropsDescriptionSet()
• ProMechshellpropsHomogeneousdataGet()
• ProMechshellpropsHomogeneousdataSet()
• ProMechshellpropsLaminatelayupdataGet()
• ProMechshellpropsLaminatelayupdataSet()

Creo Simulate: Items 1931

• ProMechshellpropsLaminatestiffdataGet()
• ProMechshellpropsLaminatestiffdataSet()
• ProMechshlprophomogeneousAlloc()
• ProMechshlprophomogeneousThicknessGet()
• ProMechshlprophomogeneousThicknessSet()
• ProMechshlprophomogeneousFree()
• ProMechshlproplaminatestiffAlloc()
• ProMechshlproplaminatestiffAppliedstressGet()
• ProMechshlproplaminatestiffAppliedstressSet()
• ProMechshlproplaminatestiffBendingstiffnessGet()
• ProMechshlproplaminatestiffBendingstiffnessSet()
• ProMechshlproplaminatestiffCouplingstiffnessGet()
• ProMechshlproplaminatestiffCouplingstiffnessSet()
• ProMechshlproplaminatestiffExtensionalstiffnessGet()
• ProMechshlproplaminatestiffExtensionalstiffnessSet()
• ProMechshlproplaminatestiffIntertiaperunitareaGet()
• ProMechshlproplaminatestiffIntertiaperunitareaSet()
• ProMechshlproplaminatestiffMassperunitareaGet()
• ProMechshlproplaminatestiffMassperunitareaSet()
• ProMechshlproplaminatestiffTansverseshearGet()
• ProMechshlproplaminatestiffTansverseshearSet()
• ProMechshlproplaminatestiffThermalresforceGet()
• ProMechshlproplaminatestiffThermalresforceSet()
• ProMechshlproplaminatestiffThermalresmomentGet()
• ProMechshlproplaminatestiffThermalresmomentSet()
• ProMechshlproplaminatestiffFree()
• ProMechstresscalcdataAlloc()
• ProMechstresscalcdataCzGet()
• ProMechstresscalcdataCzSet()
• ProMechstresscalcdataMaterialIdGet()
• ProMechstresscalcdataMaterialIdSet()
• ProMechstresscalcdataPlyorientationGet()
• ProMechstresscalcdataPlyorientationSet()

1932 Creo® Parametric TOOLKITUser’s Guide

• ProMechstresscalcdataFree()
• ProMechstresscalcdataProarrayFree()
• ProMechstiffmatrixEntry11Get()
• ProMechstiffmatrixEntry11Set()
• ProMechstiffmatrixEntry12Get()
• ProMechstiffmatrixEntry12Set()
• ProMechstiffmatrixEntry16Get()
• ProMechstiffmatrixEntry16Set()
• ProMechstiffmatrixEntry22Get()
• ProMechstiffmatrixEntry22Set()
• ProMechstiffmatrixEntry26Get()
• ProMechstiffmatrixEntry26Set()
• ProMechstiffmatrixEntry66Get()
• ProMechstiffmatrixEntry66Set()
• ProMechstiffmatrixFree()
• ProMechtransverseshearEntry44Get()
• ProMechtransverseshearEntry44Set()
• ProMechtransverseshearEntry45Get()
• ProMechtransverseshearEntry45Set()
• ProMechtransverseshearEntry55Get()
• ProMechtransverseshearEntry55Set()
• ProMechtransverseshearFree()
• ProMechthermalrescoeffEntry11Get()
• ProMechthermalrescoeffEntry11Set()
• ProMechthermalrescoeffEntry12Get()
• ProMechthermalrescoeffEntry12Set()
• ProMechthermalrescoeffEntry22Get()
• ProMechthermalrescoeffEntry22Set()
• ProMechthermalrescoeffFree()
• ProMechshlproplaminatelayupAlloc()
• ProMechshlproplaminatelayupLayersGet()
• ProMechshlproplaminatelayupLayersSet()
• ProMechshlproplaminatelayupTypeGet()

Creo Simulate: Items 1933

• ProMechshlproplaminatelayupTypeSet()
• ProMechshlproplaminatelayupFree()
• ProMechshlproplamlayuplayerMaterialIdGet()
• ProMechshlproplamlayuplayerMaterialIdSet()
• ProMechshlproplamlayuplayerNumberGet()
• ProMechshlproplamlayuplayerNumberSet()
• ProMechshlproplamlayuplayerOrientationGet()
• ProMechshlproplamlayuplayerOrientationSet()
• ProMechshlproplamlayuplayerThicknessGet()
• ProMechshlproplamlayuplayerThicknessSet()
• ProMechshlproplamlayuplayerShellpropsGet()
• ProMechshlproplamlayuplayerShellpropsSet()
• ProMechshlproplamlayuplayerFree()
• ProMechshlproplamlayuplayerProarrayFree()
The function ProMechshellpropsTypeGet() returns the type of properties
that have been defined for the shell. The types of shell properties are:

• PRO_MECH_SHLPROP_HOMOGENEOUS—Assigned to homogenous shells.
A homogeneous shell consists of a single material whose properties do not
vary through the thickness of the shell. Use the function
ProMechshellpropsHomogeneousdataGet() to access the data
structure for homogeneous shell property. Use the function
ProMechshellpropsHomogeneousdataSet() to set the
homogeneous shell property.

• PRO_MECH_SHLPROP_LAMINATE_STIFFNESS—Assigned to laminate
shells to specify their degree of stiffness. Laminate shells consists of one or
more materials whose properties may vary through the thickness of the shell.
Use the function ProMechshellpropsLaminatestiffdataGet() to
access the data structure for the laminate stiffness shell property. Use the
function ProMechshellpropsLaminatestiffdataSet() to set the
laminate stiffness shell property.

• PRO_MECH_SHLPROP_LAMINATE_LAYUP—Assigned to laminate shells to
define them as layers of shells. Use the function
ProMechshellpropsLaminatelayupdataGet() to access the data
structure for the laminate layup shell property. Use the function
ProMechshellpropsLaminatelayupdataSet() to set the laminate
layup shell property.

1934 Creo® Parametric TOOLKITUser’s Guide

The function ProMechshellpropsDescriptionGet() returns the
description for the shell properties. Use the function
ProMechshellpropsDescriptionSet() to modify the description for the
shell properties.
The function ProMechshlprophomogeneousThicknessGet() returns
the shell thickness defined for shells. Use the function
ProMechshlprophomogeneousThicknessSet() to set the thickness for
the shell properties.
The function ProMechshlproplaminatestiffAppliedstressGet()
returns the calculation of stresses and strains for the laminate stiffness shell
property type. The resultant array contains the shell "Top" location and the shell
"Bottom" location. The values specified in these areas are used to calculate the
stresses and strains for the corresponding areas. Use the function
ProMechshlproplaminatestiffAppliedstressSet()to set the value
of the stress and strain in the calculation array.
The function ProMechstresscalcdataCzGet() returns the distance from
the midsurface of the shell at which the stresses and strains for the laminate shell
is calculated. The Cz is defined relative to material direction 3 of the material
orientation assigned to the shell. Use the function
ProMechstresscalcdataCzSet() to set the Cz value used to calculate the
stress and strain.
The function ProMechstresscalcdataMaterialIdGet() returns the
material specified at the CZ location. Use the function
ProMechstresscalcdataMaterialIdSet() to set the material id.
The function ProMechstresscalcdataPlyorientationGet() returns
the orientation of the ply material. The ply orientation angle is measured as a
counter-clockwise rotation from material direction 1 about material direction 3.
Use the function ProMechstresscalcdataPlyorientationSet()to set
the orientation of the ply material.
The function
ProMechshlproplaminatestiffBendingstiffnessGet() returns
the shell bending stiffness matrix. Use the function
ProMechshlproplaminatestiffBendingstiffnessSet() to set the
shell bending stiffness matrix.
The function
ProMechshlproplaminatestiffCouplingstiffnessGet() returns
the shell coupling stiffness matrix. Use the function
ProMechshlproplaminatestiffCouplingstiffnessSet()to set the
shell coupling stiffness matrix.

Creo Simulate: Items 1935

The function
ProMechshlproplaminatestiffExtensionalstiffnessGet()
returns the shell extensional stiffness matrix. Use the function
ProMechshlproplaminatestiffExtensionalstiffnessSet() to
set the shell extensional stiffness matrix.
The functions ProMechstiffmatrixEntry11Get(),
ProMechstiffmatrixEntry12Get(),
ProMechstiffmatrixEntry16Get(),
ProMechstiffmatrixEntry22Get(),
ProMechstiffmatrixEntry26Get(), and
ProMechstiffmatrixEntry66Get() provide access the elements of the
stiffness matrix.
Use the functions ProMechstiffmatrixEntry11Set(),
ProMechstiffmatrixEntry12Set(),
ProMechstiffmatrixEntry16Set(),
ProMechstiffmatrixEntry22Set(),
ProMechstiffmatrixEntry26Set(), and
ProMechstiffmatrixEntry66Set() to modify the elements of the
stiffness matrix.
The function
ProMechshlproplaminatestiffIntertiaperunitareaGet()
returns the rotary inertia per unit area for the laminate stiffness properties. Use the
function
ProMechshlproplaminatestiffIntertiaperunitareaSet() to set
the inertia per unit area for the laminate stiffness properties.
The function
ProMechshlproplaminatestiffMassperunitareaGet() returns the
mass per unit area for the laminate stiffness properties. Use the function
ProMechshlproplaminatestiffMassperunitareaSet() to set the
mass per unit area for the laminate stiffness properties.
The function ProMechshlproplaminatestiffTansverseshearGet()
returns the transverse sheer stiffness for the laminate shell. Use the function
ProMechshlproplaminatestiffTansverseshearSet() to set the
transverse sheer stiffness for the laminate shell.
The functions ProMechtransverseshearEntry44Get(),
ProMechtransverseshearEntry45Get(), and
ProMechtransverseshearEntry55Get() provide access to the elements
44, 45, and 55 of the transverse shear matrix. Use the functions
ProMechtransverseshearEntry44Set(),
ProMechtransverseshearEntry45Set(), and
ProMechtransverseshearEntry55Set() to set the elements 44, 45, and
55 of the transverse shear matrix.

1936 Creo® Parametric TOOLKITUser’s Guide

The functions
ProMechshlproplaminatestiffThermalresforceGet() and
ProMechshlproplaminatestiffThermalresmomentGet() return the
thermal resultant coefficients for the laminate shell. The thermal coefficients are
specified as Force and Moment. Use the functions
ProMechshlproplaminatestiffThermalresforceSet() and
ProMechshlproplaminatestiffThermalresmomentSet() to set the
thermal resultant coefficients for the laminate shell.
The functions ProMechthermalrescoeffEntry11Get(),
ProMechthermalrescoeffEntry12Get(), and,
ProMechthermalrescoeffEntry22Get() provide access to the elements
11, 12, and 22 of the thermal resultant coefficient matrix. Use the functions
ProMechthermalrescoeffEntry11Set(),
ProMechthermalrescoeffEntry12Set(),
ProMechthermalrescoeffEntry22Set() to set the elements 11, 12, and
22 of the thermal resultant coefficient matrix.
The function ProMechshlproplaminatelayupLayersGet() returns an
array of layers, or plies, stacked on each other to form the laminate. Use the
function ProMechshlproplaminatelayupLayersSet() to set the layers
assigned to the laminate shell properties.
The function ProMechshlproplaminatelayupTypeGet() returns the
layer repetition pattern for the laminate layup type shells. The types of repetition
patterns are:

• PRO_MECH_LAMLAYUP_SYMMETRIC—Specifies that the layers are
repeated in reverse order.

• PRO_MECH_LAMLAYUP_ANTISYMMETRIC—Specifies that the layers are
repeated in reverse order, and the orientation is also changed.

• PRO_MECH_LAMLAYUP_NEITHER—Specifies that the layers are not
repeated.

Use the function ProMechshlproplaminatelayupTypeSet() to set the
type of laminate layup shell properties.
The function ProMechshlproplamlayuplayerMaterialIdGet()
returns the name of the material assigned to the specified layer Use the function
ProMechshlproplamlayuplayerMaterialIdSet() to set the id of the
specified laminate layer.
The function ProMechshlproplamlayuplayerNumberGet() returns the
number of times a particular layer is repeated for the laminate. Use the function
ProMechshlproplamlayuplayerNumberSet() to set the number for the
laminate layup layer.

Creo Simulate: Items 1937

The function ProMechshlproplamlayuplayerOrientationGet()
returns the orientation of the specified layer of the laminate. Use the function
ProMechshlproplamlayuplayerOrientationSet() to set the
orientation of the specified layer of the laminate.
The function ProMechshlproplamlayuplayerThicknessGet() returns
the thickness of the specified layer of the laminate. Use the function
ProMechshlproplamlayuplayerThicknessSet() to set the thickness
of the specified layer of the laminate.
The function ProMechshlproplamlayuplayerShellpropsGet()
returns the shell properties for the specified laminate layer. Use the function
ProMechshlproplamlayuplayerShellpropsSet() to set the shell
properties.

Shell Pairs
The shell pairs are created based on the surfaces belonging to a part. The shell
pairs are compressed to a mid surface or set of mid surfaces and shell elements are
assigned to it.
The functions described in this section provide read and write access to the data
and contents of the Creo Simulate shell pair objects. Shell pairs use the ProType
field in the ProMechitem structure as PRO_SIMULATION_SHELL_PAIR.
Functions Introduced:

• ProMechshlpairrefsAlloc()
• ProMechshellpairMaterialIdGet()
• ProMechshellpairMaterialIdSet()
• ProMechshellpairMaterialOrientIdGet()
• ProMechshellpairMaterialOrientIdSet()
• ProMechshellpairReferencesGet()
• ProMechshellpairReferencesSet()
• ProMechshlpairrefsTypeGet()
• ProMechshlpairrefsTypeSet()
• ProMechshlpairrefsPlacementtypeGet()
• ProMechshlpairrefsPlacementtypeSet()
• ProMechshlpairrefsBottomreferencesGet()
• ProMechshlpairrefsBottomreferencesSet()
• ProMechshlpairrefsTopreferencesGet()
• ProMechshlpairrefsTopreferencesSet()

1938 Creo® Parametric TOOLKITUser’s Guide

• ProMechshlpairrefsSelectedplacementGet()
• ProMechshlpairrefsSelectedplacementSet()
• ProMechshlpairrefsExtendAdjacentSurfacesGet()
• ProMechshlpairrefsExtendAdjacentSurfacesSet()
• ProMechshlpairrefsFree()
The function ProMechshellpairMaterialIdGet() returns the material
used to create the shell pair. Use the function
ProMechshellpairMaterialIdSet() to set the material id of the shell
pair.
The function ProMechshellpairReferencesGet() returns the geometric
references for the shell pair item. Use the function
ProMechshellpairReferencesSet() to set the geometric references for
the shell pair item.
The function ProMechshlpairrefsTypeGet() returns the type of shell pair
references. The types of shell pairs are:

• PRO_MECH_SHELL_PAIR_CONSTANT—Specifies a shell pair with
constant thickness. All opposing surfaces parallel to each other and equidistant
from the opposing surface for a constant-thickness shell pair.

• PRO_MECH_SHELL_PAIR_VARIABLE—Specifies a variable thickness
shell pair. Both opposing surfaces are neither parallel nor concentric for a
variable thickness shell pair.

Note
From Creo Parametric onwards, the shell type PRO_MECH_SHELL_
PAIR_VARIABLE is also supported in the Native mode of Creo Simulate
.

• PRO_MECH_SHELL_PAIR_MULTI_CONSTANT—Specifies a shell pair
with multiple pairs of surfaces. For a pair of surfaces, each surface is parallel
to and equidistant from the opposing surface. However, the distance between
the surfaces for each of the multiple pairs may vary.

Creo Simulate: Items 1939

Note
From Creo Parametric onwards, the thickness type PRO_MECH_SHELL_
PAIR_MULTI_CONSTANT has been deprecated and the function
ProMechshlpairrefsTypeSet() will return an error type PRO_
TK_UNSUPPORTED.

Use the function ProMechshlpairrefsTypeSet() to set the type of shell
pair references.
The functions ProMechshlpairrefsTopreferencesGet() and
ProMechshlpairrefsBottomreferencesGet() provide access to the
top and bottom references for the shell pair. This should be defined for all shell
pair types. Use the functions
ProMechshlpairrefsBottomreferencesSet() and
ProMechshlpairrefsTopreferencesSet() to set the top and bottom
references for the shell pair.
The function ProMechshlpairrefsPlacementtypeGet() returns the
placement of shell pair. The types of placement references are as follows:

• PRO_MECH_SHELL_PAIR_PLACEMENT_TOP—Specifies that the
placement uses the top surface of the surface pair.

• PRO_MECH_SHELL_PAIR_PLACEMENT_BOTTOM— Specifies that the
placement uses the bottom surface of the surface pair.

• PRO_MECH_SHELL_PAIR_PLACEMENT_MIDDLE— Specifies that the
placement uses the mid surface of the surface pair.

• — Specifies that the placement uses an arbitrary selected surface, which can
be a datum surface.

Use the function ProMechshlpairrefsPlacementtypeSet() to set the
placement type of the shell pair.
Use the function ProMechshlpairrefsSelectedplacementGet() to
access the data structure containing the selected surface. Use the function
ProMechshlpairrefsSelectedplacementSet() to set the surface for
the placement reference of type SELECTED.
Use the function
ProMechshlpairrefsExtendAdjacentSurfacesGet() to retrieve the
value of the flag that indicates whether the adjacent surfaces in a shell pair will be
extended during meshing or not. For a mixed model, you can set this flag to
extend surfaces adjacent to the top and bottom surfaces of the shell pair by using
the function ProMechshlpairrefsExtendAdjacentSurfacesSet().
However, this is possible only if the angle between the shell pair surfaces and their
adjacent surfaces is less than the value specified by the configuration option.

1940 Creo® Parametric TOOLKITUser’s Guide

Note
For a midsurface model, Creo Simulate extends the adjacent surfaces
regardless of the value of sim_extend_surf_max_angle. The default
value of sim_extend_surf_max_angle is 30 degrees.

You must initialize the Creo Simulate environment to use these functions. For
shell pairs defined in Pro/ENGINEER Mechanica 4.0 and earlier, this flag is
set to 1 by default.

Use the function ProMechshlpairrefsFree() to free the simple shell data
handle in Creo Simulate .

Interfaces
Interfaces, also called connections, are used to connect surfaces. When you create
an interface in Creo Simulate , specify how Creo Simulate will treat the connected
surfaces during meshing and analysis. Interfaces use the ProType field in the
ProMechitem structure as PRO_SIMULATION_INTERFACE.
Functions Introduced:

• ProMechinterfaceTypeGet()
• ProMechinterfaceReferencesGet()
• ProMechinterfaceReferencesSet()
• ProMechinterfacebonddataAlloc()
• ProMechinterfaceBonddataGet()
• ProMechinterfaceBonddataSet()
• ProMechinterfacebonddataFree()
• ProMechinterfacefreedataAlloc()
• ProMechinterfaceFreedataGet()
• ProMechinterfaceFreedataSet()
• ProMechinterfacefreedataFree()
• ProMechinterfacecontactdataAlloc()
• ProMechinterfaceContactdataGet()
• ProMechinterfaceContactdataSet()
• ProMechinterfacecontactdataFree()
• ProMechinterfacethrresistdataAlloc()

Creo Simulate: Items 1941

• ProMechinterfaceThrresistdataGet()
• ProMechinterfaceThrresistdataSet()
• ProMechinterfacethrresistdataFree()
The function ProMechinterfaceTypeGet() returns the type of interface
used to connect surfaces. The types of interfaces are:

• Structural—Specifies the default for the interfaces created between the
geometry in a structural model for meshing and running.

○ PRO_MECH_INTERFACE_BOND_STRUCT—Specifies that the
contacting surfaces as bonded. This means that matching nodes on
contacting surfaces merge.

○ PRO_MECH_INTERFACE_CONTACT_STRUCT—Specifies an interface
between components when you want the components to have the freedom
to remain separate from each other, and also when you want the
components to transfer forces between them when they touch, or come into
contact with each other.

○ PRO_MECH_INTERFACE_FREE_STRUCT—Specifies two surfaces as
contacting, but does not merge the nodes. Meshes on the contacting
surfaces are identical, and matching nodes are coincident.

• Thermal—Specifies the default for the interfaces created between the
geometry in a thermal model for meshing and running.

○ PRO_MECH_INTERFACE_BOND_THERM—Specifies that coincident
geometry is bonded.

○ PRO_MECH_INTERFACE_FREE_THERM—Specifies that no geometry in
the assembly is merged.

○ PRO_MECH_INTERFACE_RESIST_THERM—Specify this interface type
to create a thermal resistance interfaces at run-time.

The function ProMechinterfaceReferencesGet() returns the geometric
entities selected to create the interface. Use the function
ProMechinterfaceReferencesSet() to set the geometric entities
selected to create the interface.
The function ProMechinterfacebonddataAlloc() allocates memory for
the Creo Simulate bonded interface data.
The function ProMechinterfaceBonddataGet() provides access to the
bonded interface data. The function returns whether the specified bonded interface
should use links between pairs of nodes.
Use the function ProMechinterfaceBonddataSet() to assign the bonded
interface data to the Creo Simulate item.

1942 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechinterfacebonddataFree() to free the memory
of the bonded interface data.
The function ProMechinterfacefreedataAlloc() allocates memory for
the Creo Simulate free interface data structure.
The function ProMechinterfaceFreedataGet() provides access to the
free interface data. The function returns a flag that indicates whether the meshes
generated on the surfaces of the interface are coincident or not. Use the function
ProMechinterfaceFreedataSet() to assign the free interface data to the
Creo Simulate item.
The function ProMechinterfacecontactdataAlloc() allocates memory
for the Creo Simulate contact interface data structure.
The function ProMechinterfaceContactdataGet() provides access to
the properties of the contact interface data. Use the function
ProMechinterfaceContactdataSet() to assign the contact interface
data to the Creo Simulate item.
The function ProMechinterfacethrresistdataAlloc() allocates
memory for the Creo Simulate thermal resistance interface data structure.
The function ProMechinterfaceThrresistdataGet() provides access
to the thermal resistance interface data. Use the function
ProMechinterfaceThrresistdataSet() to assign the thermal
resistance interface data to the Creo Simulate item.

Bonded Interface
Functions Introduced:

• ProMechbondinterfacedataMergenodesGet()
• ProMechbondinterfacedataMergenodesSet()
The function ProMechbondinterfacedataMergenodesGet() specifies
if coincident nodes of components or surfaces touching each other are merged
during meshing. Use the function
ProMechbondinterfacedataMergenodesSet() to set whether
coincident nodes for bonded interface should merge.

Contact Interface
Functions Introduced:

• ProMechcontactinterfacedataSeparationdistanceExprGet()
• ProMechcontactinterfacedataSeparationdistanceExprSet()
• ProMechcontactinterfacedataAnglebetweensurfacesExprGet()
• ProMechcontactinterfacedataAnglebetweensurfacesExprSet()

Creo Simulate: Items 1943

• ProMechcontactinterfacedataCheckonlyplanarGet()
• ProMechcontactinterfacedataCheckonlyplanarSet()
• ProMechcontactinterfacedataSlippageGet()
• ProMechcontactinterfacedataSlippageSet()
• ProMechcontactinterfacedataCoefffrictionGet()
• ProMechcontactinterfacedataCoefffrictionSet()
• ProMechcontactinterfacedataSplitsurfacesGet()
• ProMechcontactinterfacedataSplitsurfacesSet()
• ProMechcontactinterfacedataCompatiblemeshGet()
• ProMechcontactinterfacedataCompatiblemeshSet()
• ProMechcontactinterfacedataFrictionSet()
• ProMechcontactinterfacedataFrictionGet()
• ProMechcontactinterfacedataDynamicCoefffrictionSet()
• ProMechcontactinterfacedataDynamicCoefffrictionGet()
• ProMechcontactinterfacedataDynamicCoeffSameAsStaticSet()
• ProMechcontactinterfacedataDynamicCoeffSameAsStaticGet()
• ProMechcontactinterfacedataUseSelectionFilterTolSet()
• ProMechcontactinterfacedataUseSelectionFilterTolGet
To create a contact interface between two components of an assembly, with the
reference type as component-component, specify the selection filter tolerance
criteria. You can specify the selection filter tolerance criteria using the following
functions.
Use the function
roMechcontactinterfacedataSeparationdistanceExprGet()to
retrieve the separation distance. Separation distance is the distance between the
surface pairs that you want to use to define a contact interface. This separation
distance is the limit beyond which a contact interface cannot be created. If the
distance between the surfaces of two components is smaller than the separation
distance, the surfaces are used for creation of the contact interface.
The separation distance is returned as an expression of type
ProMechExpression.

1944 Creo® Parametric TOOLKITUser’s Guide

Note
The function
ProMechcontactinterfacedataSeparationdistanceExpr
Get() supersedes the function
ProMechcontactinterfacedataSeparationdistanceGet().

The function
ProMechcontactinterfacedataSeparationdistanceExprSet()
sets the separation distance. Specify this distance as an expression of type
ProMechExpression.

Note
The function
ProMechcontactinterfacedataSeparationdistanceExpr
Set() supersedes the function
ProMechcontactinterfacedataSeparationdistanceSet().

The function
ProMechcontactinterfacedataAnglebetweensurfacesExpr
Get() returns the angle between planar surfaces while creating contact interface.
This angle is returned as an expression of type ProMechExpression.

Note
The function
ProMechcontactinterfacedataAnglebetweensurfacesExpr
Get() supersedes the function
ProMechcontactinterfacedataAnglebetweensurfacesGet().

The function
ProMechcontactinterfacedataAnglebetweensurfacesExpr
Set() sets the angle between surfaces while creating contact interface. Specify
this angle as an expression of type ProMechExpression.

Creo Simulate: Items 1945

Note
The function
ProMechcontactinterfacedataAnglebetweensurfacesExpr
Set() supersedes the function
ProMechcontactinterfacedataAnglebetweensurfacesSet().

The function
ProMechcontactinterfacedataCheckonlyplanarGet() returns a
true if the contact is created between planar surfaces in a component-component
type interface.
Use the function
ProMechcontactinterfacedataCheckonlyplanarSet() to create
contacts only between planar surfaces.
The properties of the contact interface are as follows:
Use the function ProMechcontactinterfacedataFrictionSet() to
set the type of the friction at the contact interface, between the pairs of nodes,
using the enumerated type ProMechInterfaceFrictionType. The valid
values are:
• PRO_MECH_INTERFACE_FRICTION_INFINITE—Specifies that infinite

friction exists at the contact interface that is, the two components or surfaces
cannot slide relative to each other.

• PRO_MECH_INTERFACE_FRICTION_FINITE—Specifies that finite
friction exists at the contact interface that is, that is, the two components or
surfaces are able to slide relative to each other.

Use the function ProMechcontactinterfacedataFrictionGet() to
obtain the type of friction present at the contact interface.
The function ProMechcontactinterfacedataSlippageGet() returns
true if slippage has occurred in the contact region during the analysis. Use the
function ProMechcontactinterfacedataSlippageSet() to check for
slippage in the contact area during analysis.
The function ProMechcontactinterfacedataCoefffrictionGet()
returns the coefficient of friction used to calculate the slippage in the contact
region during analysis. Use the function
ProMechcontactinterfacedataCoefffrictionSet() to set the
coefficient of friction for computing the slippage. Specify a positive value as the
coefficient of friction.
The function ProMechcontactinterfacedataSplitsurfacesGet()
returns true if you split the surface shared by the volumes used to define the
interface.

1946 Creo® Parametric TOOLKITUser’s Guide

Use the function
ProMechcontactinterfacedataSplitsurfacesSet() to specify
whether the interface should split surfaces.
The function ProMechcontactinterfacedataCompatiblemeshGet()
specifies if a compatible mesh is created when components in the assembly are
touching.
Use the function
ProMechcontactinterfacedataCompatiblemeshSet() to create
geometrically-consistent node locations when the mesh for the surfaces of your
interface is generated.
Use the function
ProMechcontactinterfacedataDynamicCoefffrictionSet() to
set the dynamic coefficient of friction for the contact interface. The dynamic
coefficient of friction prevents the axis surfaces from moving freely against each
other which slows down the motion.

Note
Set a value less than or equal to the value of static coefficient of friction for
this interface.

Use the function
ProMechcontactinterfacedataDynamicCoefffrictionGet() to
obtain the dynamic coefficient of friction for the specified contact interface data.
Use the function ProMathExpressionEvaluate() to evaluate the dynamic
coefficient of friction.
Use the function
ProMechcontactinterfacedataDynamicCoeffSameAsStatic
Set() to set the dynamic coefficient of friction same as the static coefficient of
friction. Pass the value PRO_B_TRUE to set the dynamic coefficient of friction
same as static coefficient of friction.
Use the function
ProMechcontactinterfacedataDynamicCoeffSameAsStatic
Get() to identify whether the dynamic coefficient of friction is same as the static
coefficient of friction. This function returns the value PRO_B_TRUE if the
dynamic and static coefficient of friction possess the same value.
Use the function
ProMechcontactinterfacedataUseSelectionFilterTolSet() to
set the selection filter tolerance between contact surfaces. Pass the value PRO_B_
TRUE to switch on the selection filter tolerances.

Creo Simulate: Items 1947

Use the function
ProMechcontactinterfacedataUseSelectionFilterTolGet() to
identify whether the specified contact interface uses the selection filter tolerances
between the contact surfaces. This function returns the value PRO_B_TRUE if the
contact surfaces use the selection filter tolerances.

Thermal Resistance Interface
Functions Introduced:

• ProMechthrresistinterfacedataConductivityGet()
• ProMechthrresistinterfacedataConductivitySet()
The function ProMechthrresistinterfacedataConductivityGet()
returns the heat transfer coefficient for the interface. The heat transfer coefficient
is the heat that passes through the interface per unit time per unit area when the
temperature difference between opposite interface surfaces is one unit.
Use the function
ProMechthrresistinterfacedataConductivitySet() to set the
heat transfer coefficient for the interface. Specify a positive number as the heat
transfer coefficient.

Free Interface
Functions Introduced:

• ProMechfreeinterfacedataSplitsurfacesGet()
• ProMechfreeinterfacedataSplitsurfacesSet()
The function ProMechfreeinterfacedataSplitsurfacesGet()
returns true if you split the surface shared by the volumes used to define the free
interface.
The function ProMechfreeinterfacedataSplitsurfacesSet() to
specify whether the free interface should split surfaces.

Gaps
A gap is a nonlinear element, used to model connection between points, edges and
curves, or surfaces in your model by connecting two nodes in separated
geometries. Gaps use the ProType field in the ProMechitem structure as
PRO_SIMULATION_GAP.
Functions Introduced:

• ProMechgapTypeGet()
• ProMechgapReferencesGet()

1948 Creo® Parametric TOOLKITUser’s Guide

• ProMechgapReferencesSet()
• ProMechgapSimpledataGet()
• ProMechgapSimpledataSet()
• ProMechsimplegapdataAlloc()
• ProMechsimplegapdataFree()
• ProMechsimplegapdataYdirectionGet()
• ProMechsimplegapdataYdirectionSet()
• ProMechsimplegapdataDistributiontypeGet()
• ProMechsimplegapdataDistributiontypeSet()
• ProMechsimplegapdataAxialstiffnessGet()
• ProMechsimplegapdataAxialstiffnessSet()
• ProMechsimplegapdataTransversestiffnessGet()
• ProMechsimplegapdataTransversestiffnessSet()
• ProMechsimplegapdataClearanceGet()
• ProMechsimplegapdataClearanceSet()
The function ProMechgapTypeGet() returns the type of gap for the specified
Creo Simulate Gap.
The function ProMechgapReferencesGet() returns the geometric entities
of the model that are selected to create the gap. Use the function
ProMechgapReferencesSet() to set the valid geometric references for the
specified gap.
The function ProMechgapSimpledataGet() returns the data structure for
the Creo Simulate gap data. The Creo Simulate gap data structure defines the y-
direction and the stiffness properties of the gap. Use the function
ProMechgapSimpledataSet() to set the Creo Simulate gap data structure.
The function ProMechsimplegapdataAlloc() allocates memory for the
Creo Simulate gap data structure.
ProMechsimplegapdataYdirectionGet() returns the orientation of the
XY-plane of the gap. Use the function
ProMechsimplegapdataYdirectionSet() to set the Y-direction of the
gap data.
The function ProMechsimplegapdataDistributiontypeGet() returns
the method used to calculate the axial and transverse stiffnesses for the gap data.
The types of distribution are as follows:

Creo Simulate: Items 1949

• PRO_MECH_GAP_DISTR_TOTAL—Specifies the sum of stiffness of all the
contact elements.

• PRO_MECH_GAP_DISTR_PER_UNIT—Specifies that the stiffness value is
calculated using the area of the first selected surface.

Use the function ProMechsimplegapdataDistributiontypeSet() to
set the distribution type for the gap data.
The function ProMechsimplegapdataAxialstiffnessGet() returns
the axial stiffness for the gap. The axial stiffness defines a stiffness or spring
factor. Use the function ProMechsimplegapdataAxialstiffnessSet()
to set the axial stiffness for the gap.
The function ProMechsimplegapdataTransversestiffnessGet()
returns the transverse stiffness for the gap. The transverse stiffness defines the
elastic stiffness of the material. Use the function
ProMechsimplegapdataTransversestiffnessSet() to set the
transverse stiffness of the gap.
The function ProMechsimplegapdataClearanceGet() returns the
distance between two nodes at which the axial and transverse stiffnesses are active
due to displacement during analysis. Use the function
ProMechsimplegapdataClearanceSet() to set the clearance for the gap
data.

Mesh Control
Mesh controls define the characteristics of a mesh. Mesh controls specify the
minimum or maximum size of the elements, the distribution of nodes along edges,
hard points and hard curves, mesh ID numbering, mesh ID offsets, and the
displacement coordinate system. The functions described in this section provide
access to the data and contents of the Creo Simulate mesh control objects. Mesh
controls use the ProType field in the ProMechitem structure as PRO_
SIMULATION_MESH_CNTRL.
Functions Introduced:

• ProMechmeshcntrlTypeGet()
• ProMechmeshcntrlAutogemedgedistrdataGet()
• ProMechmeshcntrlAutogemedgedistrdataSet()
• ProMechmeshcntrlAutogemminedgedataGet()
• ProMechmeshcntrlAutogemminedgedataSet()
• ProMechmeshcntrlAutogemelemsizedataGet()
• ProMechmeshcntrlAutogemelemsizedataSet()
• ProMechmeshcntrlAutogemedgelencrvdataGet()

1950 Creo® Parametric TOOLKITUser’s Guide

• ProMechmeshcntrlAutogemedgelencrvdataSet()
• ProMechmeshcntrlEdgedistrdataGet()
• ProMechmeshcntrlEdgedistrdataSet()
• ProMechmeshcntrlElemsizedataGet()
• ProMechmeshcntrlElemsizedataSet()
• ProMechmeshcntrlShellcsysGet()
• ProMechmeshcntrlShellcsysSet()
• ProMechmeshcntrlHardpointGet()
• ProMechmeshcntrlHardpointSet()
• ProMechmeshcntrlHardcurveSet()
• ProMechmeshcntrlIdsoffsetGet()
• ProMechmeshcntrlIdsoffsetSet()
• ProMechmeshcntrlNumberingGet()
• ProMechmeshcntrlNumberingSet()
• ProMechmeshcntrlSuppressGet()
• ProMechmeshcntrlSuppressSet()
• ProMechmcautogemsuppressTypeGet()
• ProMechmcautogemsuppressTypeSet()
• ProMechmeshcntrlAutogemsuppressGet()
• ProMechmeshcntrlAutogemsuppressSet()
• ProMechmeshcntrlAutogemisolateexcludedataGet()
• ProMechmeshcntrlAutogemisolateexcludedataSet()
• ProMechmeshcntrlReferencesGet()
• ProMechmeshcntrlReferencesSet()
• ProMechmcautogemHardpointSet()
• ProMechmcautogemHardcurveSet()
The function ProMechmeshcntrlTypeGet() returns the type of mesh
control. The types of mesh controls are:

• PRO_MECH_MC_AGEM_EDGE_DISTR—Specifies the edge distribution data
for AutoGEM. Use the function
ProMechmeshcntrlAutogemedgedistrdataGet() to access the
AutoGEM edge distribution data for the mesh control item. Use the function
ProMechmeshcntrlAutogemedgedistrdataSet() to modify the
AutoGEM edge distribution data for the mesh control item.

Creo Simulate: Items 1951

Note
If you are creating a new mesh control using this type of data, you should
assign the model as a reference using the function
ProMechmeshcntrlReferencesSet().

• PRO_MECH_MC_AGEM_MIN_EDGE—Specifies the minimum edge and face
angles for AutoGEM. Use the function
ProMechmeshcntrlAutogemminedgedataGet() to access the
AutoGEM minimum edge data for the mesh control item. Use the function
ProMechmeshcntrlAutogemminedgedataSet() to modify the
AutoGEM minimum edge data for the mesh control item.

Note
If you are creating a new mesh control using this type of data, you should
assign the model as a reference using the function
ProMechmeshcntrlReferencesSet().

• PRO_MECH_MC_AGEM_MAX_ELEMENT_SIZE—Specifies the maximum
element size for the AutoGEM mesh. Use the function
ProMechmeshcntrlAutogemelemsizedataGet() to access the
AutoGEM maximum element data for the mesh control item. Use the function
ProMechmeshcntrlAutogemelemsizedataSet() to modify the
AutoGEM maximum element data for the mesh control item.

Note
If you are creating a new mesh control using this type of data, you should
assign the model as a reference using the function
ProMechmeshcntrlReferencesSet().

• PRO_MECH_MC_AGEM_EDGE_LEN_CRV—Specifies the ratio of edge
lengths of mesh elements adjacent to concave surfaces to the radius of
curvature of the concave surfaces. Use the function
ProMechmeshcntrlAutogemedgelencrvdataGet() to access the
edge length by curvature data for the mesh control item. Use the function
ProMechmeshcntrlAutogemedgelencrvdataSet() to set the edge
length by curvature ratio.

1952 Creo® Parametric TOOLKITUser’s Guide

• PRO_MECH_MC_EDGE_DISTRIBUTION—Specifies the number of nodes
on one or more edges of the curves in the model. Use the function
ProMechmeshcntrlEdgedistrdataGet() to access the edge
distribution data for the mesh control item. Use the function
ProMechmeshcntrlEdgedistrdataSet() to set the edge distribution
data.

Note
If you are creating a new mesh control using this type of data, you should
assign the model as a reference using the function
ProMechmeshcntrlReferencesSet().

• PRO_MECH_MC_DISPL_CSYS—Specifies the displacement coordinate
system used for displaying results for nodes associated with points, edges,
curves, or surfaces.

• PRO_MECH_MC_MAX_ELEMENT_SIZE—Specifies the maximum element
size for the mesh. Use the function
ProMechmeshcntrlElemsizedataGet() to access the maximum
element size data for the mesh control item. Use the function
ProMechmeshcntrlElemsizedataSet() to set the maximum element
size for the mesh.

Note
If you are creating a new mesh control using this type of data, you should
assign the model as a reference using the function
ProMechmeshcntrlReferencesSet().

• PRO_MECH_MC_MIN_ELEMENT_SIZE—Specifies the minimum element
size for the mesh. Use the function
ProMechmeshcntrlElemsizedataGet() to access the minimum
element size data for the mesh control item. Use the function
ProMechmeshcntrlElemsizedataSet() to set the maximum element
size for the mesh.

• PRO_MECH_MC_SHELL_CSYS—Specifies the coordinate system used for
displaying results for nodes associated with shell or quilt surfaces. Use the
function ProMechmeshcntrlShellcsysGet() to access the shell
coordinate system for the mesh control item. Use the function
ProMechmeshcntrlShellcsysSet() to set the shell coordinate system
for the mesh control item.

Creo Simulate: Items 1953

• PRO_MECH_MC_HARD_POINT—Specifies a datum point that is defined as a
hard point. Use the function ProMechmeshcntrlHardpointGet() to
access the hard point data for the mesh control item. Use the function
ProMechmeshcntrlHardpointSet() to set the hard point data for the
mesh control item.

• PRO_MECH_MC_HARD_CURVE—Specifies a datum curve that is defined as a
hard curve. This type has no data, only references. Use the function
ProMechmeshcntrlHardcurveSet() to set the mesh control item to be
of the type hard curve. The reference for the item will be used for the control.

• PRO_MECH_MC_IDS_OFFSET—Specifies the offset for the node IDs and
element IDs for a component. Use the function
ProMechmeshcntrlIdsoffsetGet() to access the offset data for the
mesh control item. Use the function
ProMechmeshcntrlIdsoffsetSet() to set the offset data.

• PRO_MECH_MC_MESH_NUMBERING—Specifies a node and an element ID
range for a component. Use the function
ProMechmeshcntrlNumberingGet() to access the numbering data for
the mesh control item. Use the function
ProMechmeshcntrlNumberingSet() to set the numbering data for the
mesh control item.

• PRO_MECH_MC_SUPPRESS—Specifies the components that must be
ignored while applying the mesh control to the assembly level. Use the
function ProMechmeshcntrlSuppressGet() to access the suppress
data for the mesh control item. Use the function
ProMechmeshcntrlSuppressSet() to set the suppress data for the
mesh control item.

• PRO_MECH_MC_AGEM_SUPPRESS—Specifies the type of AutoGEM
controls that you want the mesh generator to ignore at the assembly level. Use
the function ProMechmcautogemsuppressTypeGet() to access the
types of AutoGEM control suppressed by this AutoGEM control data. Use the
function ProMechmcautogemsuppressTypeSet() to set the type of
AutoGEM control suppressed by this AutoGEM control data.

The functions ProMechmeshcntrlAutogemsuppressGet() and
ProMechmeshcntrlAutogemsuppressSet() access and set the
suppress data for the AutoGEM control items.

These functions support only the following AGEM mesh control types:

○ PRO_MECH_MC_AGEM_EDGE_DISTR

○ PRO_MECH_MC_AGEM_MIN_EDGE

○ PRO_MECH_MC_AGEM_ISOLATE_EXCLUDE

1954 Creo® Parametric TOOLKITUser’s Guide

○ PRO_MECH_MC_AGEM_MAX_ELEMENT_SIZE

○ PRO_MECH_MC_AGEM_EDGE_LEN_CRV

○ PRO_MECH_MC_AGEM_HARD_POINT

○ PRO_MECH_MC_AGEM_HARD_CURVE

○ PRO_MECH_MC_ALL

• PRO_MECH_MC_AGEM_ISOLATE_EXCLUDE—Specifies points, edges,
curves, and surfaces from the model to isolate during analysis. The function
ProMechmeshcntrlAutogemisolateexcludedataGet() returns
the list of entities that AutoGEM can detect and isolate using mesh refinement.
Use the function
ProMechmeshcntrlAutogemisolateexcludedataSet() to set the
entities for AutoGEM isolation using mesh refinement.

• PRO_MECH_MC_AGEM_HARD_POINT—Specifies points, point features, or
point patterns on the model to guide the AutoGEM mesh creation process.
This control type has only references and no data associated with it. Use the
function ProMechmcautogemHardpointSet() to set the AutoGEM
mesh control item as hard point.

• PRO_MECH_MC_AGEM_HARD_CURVE—Specifies the datum curves on the
model to guide the AutoGEM mesh creation process. This control type has
only references and no data associated with it. Use the function
ProMechmcautogemHardcurveSet() to set the AutoGEM mesh
control item as hard curve.

• PRO_MECH_MC_ALL—Specifies all the types of mesh controls.

Note
If you are creating a new mesh control using this type of data, you should
assign the model as a reference using the function
ProMechmeshcntrlReferencesSet().

The function ProMechmeshcntrlReferencesGet() returns the references
for each of the mesh control type. Use the function
ProMechmeshcntrlReferencesSet() to set the references used by the
mesh control item.

Accessing AutoGEM Edge Distribution and
Minimum Edge Mesh Control Data
The functions described in this section provide access to the data for the
AutoGEM edge distribution Mesh Control.

Creo Simulate: Items 1955

Functions Introduced:

• ProMechmcautogemedgedistrAlloc()
• ProMechmcautogemedgedistrNodesGet()
• ProMechmcautogemedgedistrNodesSet()
• ProMechmcautogemedgedistrRatioGet()
• ProMechmcautogemedgedistrRatioSet()
• ProMechmcautogemedgedistrStrictGet()
• ProMechmcautogemedgedistrStrictSet()
• ProMechmcautogemedgedistrFree()
• ProMechmcautogemminedgeAlloc()
• ProMechmcautogemminedgeEdgesGet()
• ProMechmcautogemminedgeEdgesSet()
• ProMechmcautogemminedgeLengthGet()
• ProMechmcautogemminedgeLengthSet()
• ProMechmcautogemminedgeFree()
The function ProMechmcautogemedgedistrNodesGet() returns the
number of nodes distributed along the selected edge. Use the function
ProMechmcautogemedgedistrNodesSet() to set the number of nodes.
The function ProMechmcautogemedgedistrRatioGet() returns the
aspect ratio defined while creating and editing elements. The aspect ratio is
defined as the ratio of a length to the width of any surface in the model. Use the
function ProMechmcautogemedgedistrRatioSet() to set the aspect
ratio for the AutoGEM edge distribution mesh control data.
The function ProMechmcautogemedgedistrStrictGet() returns the
value true, if the aspect ratio is within the maximum allowable range while
creating and editing elements. Use the function
ProMechmcautogemedgedistrStrictSet() to set the aspect ratio within
the maximum allowable range.
Use the function ProMechmcautogemedgedistrFree() to free the
memory containing the AutoGEM edge distribution data structure.
The function ProMechmcautogemminedgeEdgesGet() specifies the
number of edges in a model for the AutoGEM minimum edge data. Use the
function ProMechmcautogemminedgeEdgesSet() to set the number of
edges.
The function ProMechmcautogemminedgeLengthGet() specifies the
minimum length of any edge in the model. Use the function
ProMechmcautogemminedgeLengthSet() to specify the minimum length
of the edge for the AutoGEM min edge mesh control data.

1956 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechmcautogemminedgeFree() to free the memory
containing the AutoGEM minimum edge data structure.

Accessing the AutoGEM Edge Length by Curvature
Mesh Control Data
The functions described in this section enable you to create a denser element mesh
adjacent to areas such as curves, fillets, and holes, that are likely to have high
stress, using the edge length by curve ratio.

• ProMechmcautogemedgelencrvAlloc()
• ProMechmcautogemedgelencrvRatioGet()
• ProMechmcautogemedgelencrvRatioSet()
• ProMechmcautogemedgelencrvIgnoreRadiusGet()
• ProMechmcautogemedgelencrvIgnoreRadiusSet()
• ProMechmcautogemedgelencrvMinradiusGet()
• ProMechmcautogemedgelencrvMinradiusSet()
• ProMechmcautogemedgelencrvFree()
The function ProMechmcautogemedgelencrvAlloc() allocates memory
for the Creo Simulate mesh control edge length by curvature data handle.
The function ProMechmcautogemedgelencrvRatioGet() returns the
ratio of the expected edge lengths of mesh elements to the radius of the concave
surface. Use the function ProMechmcautogemedgelencrvRatioSet() to
set this ratio. Specify the ratio as a positive real number.
The function ProMechmcautogemedgelencrvMinradiusGet() returns
the cut-off value for the radius of curvature below which the AutoGEM mesh
control data will not be applied. Use the function
ProMechmcautogemedgelencrvMinradiusSet() to set the cut-off
value for the radius of curvature. This value can be specified in the current units of
the model or as a percentage of the model size.
ProMechmcautogemedgelencrvIgnoreRadiusGet()returns true, if the
curves having a radius of curvature lower than the cut-off value must be ignored
by the AutoGEM mesh control data. Use the function
ProMechmcautogemedgelencrvIgnoreRadiusSet() to specify
whether to ignore curves having a radius of curvature lower than the cut-off value.
Use the function ProMechmcautogemedgelencrvFree() to free the
memory containing the edge length by curvature mesh control data structure.

Creo Simulate: Items 1957

Accessing the AutoGEM Maximum Element Size
Mesh Control Data
The functions described in this section enable you to control the size of the
elements created by the mesh generator for components, volumes, surfaces, edges,
or curves.
Functions Introduced:

• ProMechmcautogemelemsizeAlloc()
• ProMechmcautogemelemsizeSizeGet()
• ProMechmcautogemelemsizeSizeSet()
• ProMechmcautogemelemsizeFree()
The function ProMechmcautogemelemsizeAlloc() allocates memory for
the AutoGEM maximum element size mesh control data.
The function ProMechmcautogemelemsizeSizeGet() returns the
maximum element size in the mesh. Use the function
ProMechmcautogemelemsizeSizeSet() to set the element size.
Use the function ProMechmcautogemelemsizeFree() to free the memory
containing the maximum element size mesh control data structure.

Accessing Edge Distribution Mesh Control Data
The functions described in this section provide access to the edge distribution
mesh control data.
Functions Introduced:

• ProMechmcedgedistrAlloc()
• ProMechmcedgedistrNodesGet()
• ProMechmcedgedistrNodesSet()
• ProMechmcedgedistrRatioGet()
• ProMechmcedgedistrRatioSet()
• ProMechmcedgedistrStrictGet()
• ProMechmcedgedistrStrictSet()
• ProMechmcedgedistrFree()
The function ProMechmcedgedistrNodesGet() returns the minimum
number of nodes that are distributed along the selected edge or curve. Use the
function ProMechmcedgedistrNodesSet() to set the number of nodes for
the mesh control data.

1958 Creo® Parametric TOOLKITUser’s Guide

The function ProMechmcedgedistrRatioGet() returns the ratio of the
first interval on the edge or curve to the last interval on the edge or curve. Use the
function ProMechmcedgedistrRatioSet() to set the ratio for the mesh
control data.
The function ProMechmcedgedistrStrictGet() returns a boolean flag
indicating whether the number of nodes must be used exactly. Use the function
ProMechmcedgedistrStrictSet() to set the maximum allowable nodes
for the mesh control data.

Accessing AutoGEM Isolation Data
The functions in this section provide access to the entities that AutoGEM can
detect and isolate using mesh refinement.
Functions Introduced:

• ProMechmcautogemisolateexcludeAlloc()
• ProMechmcautogemisolateexcludeExcludeGet()
• ProMechmcautogemisolateexcludeExcludeSet()
• ProMechmcautogemisolateexcludeFree()
• ProMechmcautogemisolateexcludeShellIsolMaxSizeGet()
• ProMechmcautogemisolateexcludeShellIsolTypeGet()
• ProMechmcautogemisolateexcludeSolidIsolMaxSizeGet()
• ProMechmcautogemisolateexcludeSolidIsolTypeGet()
• ProMechmcautogemisolateexcludeShellIsolMaxSizeSet()
• ProMechmcautogemisolateexcludeShellIsolTypeSet()
• ProMechmcautogemisolateexcludeSolidIsolMaxSizeSet()
• ProMechmcautogemisolateexcludeSolidIsolTypeSet()
The function ProMechmcautogemisolateexcludeExcludeGet()
returns the value of the exclude boolean for the AutoGEM isolation for exclusion
mesh control data. Use the function
ProMechmcautogemisolateexcludeExcludeSet() to set the value of
the exclude boolean for the AutoGEM isolation for exclusion mesh control data.
The function
ProMechmcautogemisolateexcludeShellIsolMaxSizeGet()
returns the value of maximum element size of isolation of shells for the AutoGEM
isolation for exclusion mesh control data. Use the function
ProMechmcautogemisolateexcludeShellIsolMaxSizeSet() to set
the value of maximum element size of isolation of shells for the AutoGEM
isolation.

Creo Simulate: Items 1959

The function
ProMechmcautogemisolateexcludeShellIsolTypeGet() returns
the value of shell isolation type for the AutoGEM isolation for exclusion mesh
control data. Use the function
ProMechmcautogemisolateexcludeShellIsolTypeSet() to set the
value of shell isolation type for the AutoGEM isolation for exclusion mesh control
data.
The function
ProMechmcautogemisolateexcludeSolidIsolMaxSizeGet()
returns the value of maximum element size of isolation of solids for the AutoGEM
isolation for exclusion mesh control data. Use the function
ProMechmcautogemisolateexcludeSolidIsolMaxSizeSet() to set
the maximum element size of isolation of solids for the AutoGEM isolation.
The function
ProMechmcautogemisolateexcludeSolidIsolTypeGet() returns
the value of solid isolation type for the AutoGEM isolation for exclusion mesh
control data. Use the function
ProMechmcautogemisolateexcludeSolidIsolTypeSet() to set the
value of the solid isolation type for the AutoGEM isolation.

Accessing the Displacement Coordinate System
Data
The functions described in this section provide read and write access to the
displacement coordinate system control data.
Functions Introduced:

• ProMechmcdisplacementcsysAlloc()
• ProMechmcdisplacementcsysCsysGet()
• ProMechmcdisplacementcsysCsysSet()
• ProMechmcdisplacementcsysFree()
The function ProMechmcdisplacementcsysCsysGet() returns the
coordinate system used to display the results for the nodes associated with points,
edges, curves, or surfaces.
The function ProMechmcdisplacementcsysCsysSet() sets the co-
ordinate system for the mesh control data.

Accessing the Mesh Control Element Size Data
Functions Introduced:

1960 Creo® Parametric TOOLKITUser’s Guide

• ProMechmcelemsizeSizeGet()
• ProMechmcelemsizeSizeSet()
• ProMechmcelemsizeFree()
The function ProMechmcelemsizeSizeGet() returns the size of the
elements for the mesh control data. Use the function
ProMechmcelemsizeSizeSet() to set the size of the elements for the mesh
control data.

Accessing the Mesh Control Shell Coordinate
System Data
Functions Introduced:

• ProMechmcshellcsysCsysGet()
• ProMechmcshellcsysCsysSet()
• ProMechmcshellcsysDirectionGet()
• ProMechmcshellcsysDirectionSet()
• ProMechmcshellcsysFree()
The function ProMechmcshellcsysCsysGet() returns the coordinate
system specified for the mesh control data. Use the function
ProMechmcshellcsysCsysSet() to set the coordinate system specified for
the mesh control data.
The function ProMechmcshellcsysDirectionGet() returns the positive
direction along the x, y, and z axis. Use the function
ProMechmcshellcsysDirectionSet() to set the positive direction along
the x, y, and z axis.

Accessing the Mesh Control Hard Point Data
Functions Introduced:

• ProMechmchardpntNodeGet()
• ProMechmchardpntNodeSet()
• ProMechmchardpntFree()
The function ProMechmchardpntNodeGet() returns the id of the node that
is defined as a hard point. Use the function ProMechmchardpntNodeSet()
to set the id of the node for the mesh control data.

Accessing the Mesh Control ID Offset Data
Functions Introduced:

Creo Simulate: Items 1961

• ProMechmcidsoffsetOffsetGet()
• ProMechmcidsoffsetOffsetSet()
• ProMechmcidsoffsetFree()
The function ProMechmcidoffsetOffsetGet() returns a positive integer
value to be added to the IDs of each node, element, and local mesh entity. Use the
function ProMechmcidsoffsetOffsetSet() to set the offset value for the
mesh control data.

Accessing the Mesh Control Numbering Data
Functions Introduced:

• ProMechmcnumberingFirstGet()
• ProMechmcnumberingFirstSet()
• ProMechmcnumberingIncrementGet()
• ProMechmcnumberingIncrementSet()
• ProMechmcnumberingLastGet()
• ProMechmcnumberingLastSet()
• ProMechmcnumberingFree()
The function ProMechmcnumberingFirstGet() returns the first ID for the
nodes, elements, and local mesh entities. Use the function
ProMechmcnumberingFirstSet() to set the first value of the mesh control
data.
The function ProMechmcnumberingIncrementGet() returns the
increment id for the nodes, elements, and local mesh entities. Use the function
ProMechmcnumberingIncrementSet() to set the increment value for the
mesh control data.
The function ProMechmcnumberingLastGet() returns the last ID for the
nodes, elements, and local mesh entities. Use the function
ProMechmcnumberingLastSet() to set the last value for the mesh control
data.

Accessing the Suppressed Mesh Control Data
Functions Introduced:

• ProMechmcsuppressTypeGet()
• ProMechmcsuppressTypeSet()
• ProMechmcsuppressFree()

1962 Creo® Parametric TOOLKITUser’s Guide

The function ProMechmcsuppressTypeGet() returns the type of mesh
control data that should be suppressed. Use the function
ProMechmcsuppressTypeSet() to set the type of data to be suppressed.

Welds
Welds are used to bridge gaps that are formed during shell compression between
plates that have been mated because they touch or overlap. Welds use the
ProType field in the ProMechitem structure as PRO_SIMULATION_WELD.
Functions Introduced:

• ProMechweldReferencesGet()
• ProMechweldReferencesSet()
• ProMechweldTypeGet()
• ProMechweldperimeterAlloc()
• ProMechweldPerimeterdataGet()
• ProMechweldPerimeterdataSet()
• ProMechweldperimeterEdgesGet()
• ProMechweldperimeterEdgesSet()
• ProMechweldperimeterFree()
• ProMechweldedgeAlloc()
• ProMechweldedgeEdgeGet()
• ProMechweldedgeEdgeSet()
• ProMechweldedgeThicknessGet()
• ProMechweldedgeThicknessSet()
• ProMechweldedgeMaterialidGet()
• ProMechweldedgeMaterialidSet()
• ProMechweldedgeFree()
• ProMechweldedgeProarrayFree()
• ProMechweldspotAlloc()
• ProMechweldSpotdataGet()
• ProMechweldSpotdataSet()
• ProMechweldspotPointsGet()
• ProMechweldspotPntsSet()
• ProMechweldspotDiameterGet()
• ProMechweldspotDiameterSet()

Creo Simulate: Items 1963

• ProMechweldspotMaterialIdGet()
• ProMechweldspotMaterialIdSet()
• ProMechweldspotFree()
• ProMechweldendSet()
• ProMechweldEnddataGet()
• ProMechweldEnddataSet()
• ProMechweldendAlloc()
• ProMechweldendTypeGet()
• ProMechweldendTypeSet()
• ProMechweldendExtendAdjacentSurfacesGet()
• ProMechweldendExtendAdjacentSurfacesSet()
• ProMechweldendFree()
• ProMechweldFeaturedataGet()
• ProMechweldFeaturedataSet()
• ProMechweldfeatureAlloc()
• ProMechweldfeatureMaterialidGet()
• ProMechweldfeatureOverrideflagGet()
• ProMechweldfeatureThicknessGet()
• ProMechweldedgeMaterialidSet()
• ProMechweldfeatureOverrideflagSet()
• ProMechweldfeatureThicknessSet()
• ProMechweldfeatureFree()
The function ProMechweldReferencesGet() returns the geometric entities
selected to create the weld. Use the function
ProMechweldReferencesSet() to set the references for the specified weld.
The function ProMechweldTypeGet() returns the type of weld used to
connect the gaps. The types of weld are:

• PRO_MECH_WELD_PERIMETER—Specifies a perimeter weld. Perimeter
welds are used to connect parallel plates along the perimeter of one of the
plates in an assembly model.

• PRO_MECH_WELD_END—Specifies an end weld. End welds are used to
connect plates in assembly models.

1964 Creo® Parametric TOOLKITUser’s Guide

• PRO_MECH_WELD_SPOT—Specifies a spot weld. Spot welds are used to
connect two parallel surfaces at the specified datum point.

• PRO_MECH_WELD_FEAT—Specifies a Weld Feature. This weld connection
can be used to select Fillet and Groove types of weld connections for inclusion
in a mid-surface compressed model.

The function ProMechweldPerimeterdataGet() provides access to the
perimeter weld data structure. Use the function
ProMechweldPerimeterdataSet() to set the perimeter weld data
structure.
Use the function ProMechweldperimeterFree() to free the memory
contained in the perimeter weld data structure.
The function ProMechweldperimeterEdgesGet() returns the perimeter
edges of the top plate to be connected to the base plate. Use the function
ProMechweldperimeterEdgesSet() to set the perimeter edges in the
perimeter weld data.
The function ProMechweldedgeEdgeGet() returns the id of the edge
selected to create the perimeter weld. Use the function
ProMechweldedgeEdgeSet() to set the id of the edge.
The function ProMechweldedgeThicknessGet() returns the thickness of
the weld on the selected edge in the perimeter weld. Use the function
ProMechweldedgeThicknessSet() to set the thickness of the weld edge
data.
The function ProMechweldedgeMaterialidGet() returns the type of
material used in shell elements created on the Perimeter Weld surfaces.
Use the function ProMechweldedgeMaterialidSet() to select the
material for the shell elements created on the Perimeter Weld surfaces. Specify the
material ID as the input parameter of this function. In addition to the materials
already present in the model, the input can be the material ID of one of the
following surfaces:

• PRO_MECH_WELD_MTL_BASE—Specifies the base surface to which the
weld extends.

• PRO_MECH_WELD_MTL_DOUBLER—Specifies the doubler surface on which
the Perimeter weld is placed.

The functions ProMechweldedgeFree() and
ProMechweldedgeProarrayFree() free the memory containing the edge
data structure.
The function ProMechweldperimeterFree() frees the memory containing
the data structure for the perimeter weld.

Creo Simulate: Items 1965

The function ProMechweldSpotdataGet() provides access to the spot weld
data structure. Use the function ProMechweldSpotdataSet() to assign data
to the spot weld data structure.
The function ProMechweldspotPointsGet() returns the datum points at
which the spot weld is located. Use the function
ProMechweldspotPntsSet() to set the points for the spot weld data.
The function ProMechweldspotDiameterGet() returns the diameter for
the spot weld. Use the function ProMechweldspotDiameterSet() to set
the diameter for the spot weld data.
The function ProMechweldspotMaterialIdGet() returns the material for
the spot weld. Use the function ProMechweldspotMaterialIdSet() to set
the material for the spot weld.
Use the function ProMechweldspotFree() to free the memory contained in
the spot weld data structure.
Use the function ProMechweldendSet() to set the weld to be an end weld.
The function ProMechweldEnddataGet() returns the end weld data
structure.
Use the function ProMechweldendAlloc() to allocate memory for the end
weld data handle.
Use the method ProMechweldEnddataSet() to set the end weld data
structure.
The function ProMechweldendTypeGet() returns the type of end weld
defined between different surfaces. The valid types of end welds are:

• PRO_MECH_WELD_END_SINGLE_TO_SINGLE—Specifies a weld defined
between a side surface and a shell or shell paired surface.

• PRO_MECH_WELD_END_MANY_TO_SINGLE—Specifies a weld defined
from a solid surface to a solid surface.

• PRO_MECH_WELD_END_SINGLE_TO_MANY—Specifies a weld surface
defined from a solid surface to a shell surface.

Use the function ProMechweldendTypeSet() to set the type of end welds.
The function ProMechweldendExtendAdjacentSurfacesGet()
specifies whether or not surfaces adjacent to the selected source surface will be
extended to the target surface to create the weld. Use the function
ProMechweldendExtendAdjacentSurfacesSet() to control the
placement of the weld on the extension of the adjacent surfaces.
Use the function ProMechweldendFree() to free the memory of the end
weld data structure.
The function ProMechweldFeaturedataGet() returns the Weld Feature
data structure.

1966 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechweldfeatureAlloc() to allocate memory for the
Weld Feature data structure.
Use the function ProMechweldFeaturedataSet() to set the Weld Feature
data structure.
The function ProMechweldfeatureOverrideflagGet() specifies if the
material and thickness properties that will be applied to the shell idealizations
resulting from the weld definitions are inherited from the Weld Feature or not.
Specify the input value of the function
ProMechweldfeatureOverrideflagSet() as true to specify the
properties for the shell idealizations. Specify the value as false to inherit the
properties from the Weld Feature.
You can use the following functions to access and modify the material property
and thickness of the Weld Feature only if you specify the input value as true for
the function ProMechweldfeatureOverrideflagSet() or you select the
option Override Weld Feature Settings from the Creo Simulate user interface.
The function ProMechweldfeatureMaterialidGet() returns the
material type used for the Weld Feature. Use the function
ProMechweldfeatureMaterialidSet() to set the material for the shell
idealizations. Specify the material ID as the input parameter of this function.
The function ProMechweldfeatureThicknessGet() returns the thickness
of the Weld Feature. Use the function
ProMechweldfeatureThicknessSet() to set the thickness of the shell
idealizations.
Use the function ProMechweldfeatureFree() to free the memory
contained in the Weld Feature data structure.

Creo Simulate Features
Functions Introduced:

• ProMechFeaturePromote()
The function ProMechFeaturePromote() promotes the specified Creo
Simulate feature making it accessible in Creo Parametric. The promoted feature
however cannot be transferred back to Creo Simulate .

Validating New and Modified Simulation
Objects
You can check the validity of simulation objects that are created new or modified.
During validation, an error object is created or updated with error, warning, and
information messages.

Creo Simulate: Items 1967

Functions Introduced:

• ProMechitemValidate()
• ProMecherrobjDataGet()
• ProMecherrobjMessageGet()
The function ProMechitemValidate() validates the specified Creo Simulate
item and returns an error object that collects the error, warning, and information
messages. The function sets the error checking mode, validates the Creo Simulate
item, resets the error checking mode, and returns the error object.
The error, warning and information messages are given by the enumerated type
ProMechErrobjType, which has the following values:
• PRO_MECH_ERROBJ_ERROR

• PRO_MECH_ERROBJ_WARNING

• PRO_MECH_ERROBJ_INFO

The function ProMecherrobjDataGet() returns the number of events of an
error object for the given ProMechErrobjType. To get the event message at a
given index in an error object, you can use the function
ProMecherrobjMessageGet().

1968 Creo® Parametric TOOLKITUser’s Guide

70
Creo Simulate: Geometry

Introduction... 1970
Obtaining Creo Simulate Geometry from Creo Parametric TOOLKIT......................... 1971
To Create a Surface Region Feature ... 1985

In Creo Parametric, when analysis is performed on a model (in either FEM or
Native), the geometry that is seen on the screen is processed to create the Creo
Simulate Geometry. This special temporary geometry is more suitable for analysis
than the standard Creo Parametric geometry.

1969

Introduction
Creo Simulate Geometry differs from that of standard Creo Parametric geometry
in several ways.

• Creo Simulate geometry provides a non-manifold representation of assembly
models.

Non-manifold geometry

In assemblies, when two parts are mated, there exist two surfaces where the parts
are mated, each of which does not know the existence of the other.
For analysis applications (particularly in meshing), you want the geometry to have
only one surface in this mated area

• Creo Simulate geometry provides mid-surface geometry for models which
have shells defined.

Mid-surface geometry

• Creo Simulate geometry provides volume and surface region information.

1970 Creo® Parametric TOOLKITUser’s Guide

“Tagged” region

Without access to the Creo Simulate geometry, it is difficult to use the information
on volume and surface region.
The Creo Simulate geometry identifies which surfaces are "duplicated" at the
boundaries within the solid. This makes it easy for external applications to re-
create the non-manifold solid.

• Creo Simulate Geometry model is devoid of the undesirable features (from the
point of view of analysis) present in the Creo Parametric model such as

○ Small, localized misalignments in the geometry
○ Cusps
○ Very small sliver surfaces

Obtaining Creo Simulate Geometry from
Creo Parametric TOOLKIT
Creo Parametric represents the top level access to Creo Simulate geometry as an
opaque handle called ProMechModel. The ProMechModel handle is
generated upon request and can be accessed until it is freed by the application.
There are several modes which can be used to generate the model and its
geometry:

• PRO_MECH_MODEL_SOLID signifies solid surfaces only. Shells will be
ignored.

• PRO_MECH_MODEL_SHELL signifies shell-compressed surfaces. Non shell-
compressed surfaces will not be included.

• PRO_MECH_MODEL_MIXED signifies both solid and shell-compressed
surfaces.

Creo Simulate: Geometry 1971

• PRO_MECH_MODEL_BOUNDARY signifies shell surfaces occurring on the
solid boundary.

• PRO_MECH_MODEL_QUILT signifies shell surfaces on quilts. This option
requires that quilts be specified as additional entities to be processed.

• PRO_MECH_MODEL_BAR signifies bars on given datum curves. This option
requires that curves be specified as additional entities to be processed.

It is not always necessary to have a Creo Simulate license to generate the Creo
Simulate geometry. However, some situations do require the license:

• Use of the options PRO_MECH_MODEL_SHELL, PRO_MECH_MODEL_
MIXED and PRO_MECH_MODEL_BOUNDARY is not permitted unless Creo
Simulate is active. Please see the description for
ProMechanicaIsActive() in the chapter Accessing Creo Simulate
Items on page 1856.

• If any component of the model contains surface or volume region feature,
Creo Simulate must be active to access the geometry of these regions.

Functions Introduced:

• ProMechmodeldataAlloc()
• ProMechmodeldataTypeSet()
• ProMechmodeldataEntitiesSet()
• ProMechmodeldataPreserveidsSet()
• ProMechmodeldataMergeCoincSolidEdgesSet()
• ProMechmodelGet()
• ProMechmodelFree()
• ProMechmodeldataFree()
Use the function ProMechmodeldataAlloc() to allocate an input data
structure for generation of Creo Simulate geometry.
Use the function ProMechmodeldataTypeSet() to assign the type of model
to be generated.
Use the function ProMechmodeldataEntitiesSet() to assign the
additional datum points, quilts, and curves to be included in the geometric
processing.
Use the function ProMechmodeldataPreserveidsSet() to set the
preservation of IDs. In the event of the "Preserve IDs" flag being set, Creo
Simulate tries to preserve the IDs of surfaces and edges in Creo Simulate
geometry between different calls to ProMechmodelGet(). This happens even
if the original geometry of the model has changed slightly, but the success of this
attempt to preserve geometry IDs is not always guaranteed.

1972 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechmodeldataMergeCoincSolidEdgesSet() to
set the flag that determines whether coincident solid edges will be merged. By
default, the flag is PRO_B_FALSE, that is, the solid edges will not be merged.
Use the function ProMechmodelGet() to obtain the root handle of a Creo
Simulate geometry model. The input arguments of this function are:

• solid—signifies the root solid model (part or assembly).
• data—signifies the options for the generation of geometry.
The output arguments are as follows:

• mech_model signifies the root handle of the generated geometry.
• status signifies the status of generation and can have the following values:

○ PRO_MECH_MODEL_SUCCESS signifies success.
○ PRO_MECH_MODEL_GENERAL_FAILURE signifies general failure.
○ PRO_MECH_MODEL_USER_INTERRUPT signifies that the user

interrupted the process before it completed.
○ PRO_MECH_MODEL_SHELL_NO_PAIRS signifies that no shell pairs

were defined (for options that used shell compression).
○ PRO_MECH_MODEL_SHELL_SOME_PAIRS signifies that some paired

and some unpaired surfaces exist.(for options that used shell compression).
Use the function ProMechmodeldataFree() to free a data handle used for
generation of a Creo Simulate geometry model. Use the function
ProMechmodelFree() to free a Creo Simulate model handle. This invalidates
all geometric entities obtained from this handle.

Accessing the ProMechModel
Functions Introduced:

• ProMechmodelMdlGet()
• ProMechmodelSolidVisit()
• ProMechmodelPointVisit()
• ProMechmodelCurveVisit()
• ProMechmodelToleranceGet()
The function ProMechmodelMdlGet() can be used to obtain the root solid
model used for generation of this Creo Simulate model.
The function ProMechmodelSolidVisit() visits the solid volumes that
make up a Creo Simulate geometry model.
The function ProMechmodelPointVisit() visits the datum points that are
included in a Creo Simulate geometry model.

Creo Simulate: Geometry 1973

Note
only datum points that have Creo Simulate items referencing them will be
included unless you pass the additional points as input from
ProMechmodeldataEntitiesSet().

The function ProMechmodelCurveVisit() visits the composite curves that
are included in a Creo Simulate geometry model.

Note
only datum points that have Creo Simulate items referencing them will be
included unless you pass the additional points as input from
ProMechmodeldataEntitiesSet().

Use the function ProMechmodelToleranceGet() to obtain the overall
tolerance or epsilon value used for the preparation of the Creo Simulate geometry.

Accessing the ProMechSolid
An opaque handle called a ProMechSolid represents a solid volume member of
the model (typically, an assembly member).
Functions Introduced:

• ProMechsolidVisitAction()
• ProMechsolidFilterAction()
• ProMechsolidIdGet()
• ProMechsolidModelGet()
• ProMechsolidTypeGet()
• ProMechsolidAsmcomppathGet()
• ProMechsolidSurfaceVisit()
• ProMechsolidEdgeVisit()
• ProMechsolidVertexVisit()
The function types ProMechsolidVisitAction() and
ProMechsolidFilterAction() are used as arguments to functions that
visit ProMechSolid objects.

1974 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechsolidIdGet() to obtain the ID of the solid volume.
This ID is an index in the array of generated solid volumes and is not persistent
among different calls to ProMechmodelCreate().
Use the function ProMechsolidModelGet() to obtain the root Creo
Simulate geometry model for this solid model.
Use the function ProMechsolidTypeGet() to obtain the solid volume type.
Use the function ProMechsolidAsmcomppathGet() to obtain the assembly
component path from the top level assembly to this solid.
Use the function ProMechsolidSurfaceVisit() to visit the surfaces that
are included in a given solid volume.
Use the function ProMechsolidEdgeVisit() to visit the edges that are
included in a given solid volume.
Use the function ProMechsolidVertexVisit() to visit the vertices that are
included in a given solid volume.

Accessing Creo Simulate ProMechSurface
An opaque handle called a ProMechSurface represents a Creo Simulate
geometry surface. A surface can be of the following types:

• PRO_MECH_FACE_SOLID—A solid surface
• PRO_MECH_FACE_SHELL—A shell (mid-plane) surface
• PRO_MECH_FACE_SIDE—A shell side surface
• PRO_MECH_FACE_SHELL_QLT—A quilt surface
• PRO_MECH_FACE_BOUNDARY—A solid boundary surface
• PRO_MECH_FACE_PERIM_WELD—A generated surface for a perimeter

weld object
Functions Introduced:

• ProMechsurfaceVisitAction()
• ProMechsurfaceFilterAction()
• ProMechsurfaceIdGet()
• ProMechsurfaceOwnerGet()
• ProMechsurfaceTypeGet()
• ProMechsurfaceContourVisit()
• ProMechsurfaceEdgeVisit()
• ProMechsurfaceVertexVisit()

Creo Simulate: Geometry 1975

• ProMechsurfaceIncontactfacesGet()
• ProMechsurfaceAncestorsGet()
The function types ProMechsurfaceVisitAction() and
ProMechsurfaceFilterAction() are used as arguments to functions that
visit ProMechSurface objects.
Use the function ProMechsurfaceIdGet() to obtain the surface ID of the
surface.

Note
This ID is not persistent and is not related to the Creo Parametric surface ID.

Use the function ProMechsurfaceOwnerGet() to obtain the owner
ProMechsolid of the surface.
Use the function ProMechsurfaceTypeGet() to obtain the type of surface.
Use the function ProMechsurfaceContourVisit() to visit the contours
that are included in a given surface.
Use the function ProMechsurfaceEdgeVisit() to visit the edges that are
included in a given surface.
Use the function ProMechsurfaceVertexVisit() to visit vertices that are
included in a given surface.
Use the function ProMechsurfaceAncestorsGet() to obtain the ancestor
surfaces for the given surface. These are the actual Creo Parametric geometry
surfaces used to construct this Creo Simulate surface.

Geometry Evaluation of ProMechSurface
For information about how Creo Parametric TOOLKIT represents surface
geometry, see the chapter on Core: 3D Geometry on page 170 and the appendix,
Element Trees: References on page 799.
Functions Introduced:

• ProMechsurfaceParamEval()
• ProMechsurfaceUvpntVerify()
• ProMechsurfaceTessellationGet()
• ProMechsurfaceDataGet()
• ProMechsurfaceToNURBS()

1976 Creo® Parametric TOOLKITUser’s Guide

• ProMechsurfaceTransformGet()
• ProMechsurfaceThicknessEval()
Use the function ProMechsurfaceParamEval() to find the corresponding
UV point on the Creo Simulate geometry surface on the basis of the XYZ point.
Use the function ProMechsurfaceUvpntVerify() to verify whether the
specified UV point lies within the boundaries of the Creo Simulate surface.
Use the function ProMechsurfaceTessellationGet() to calculate the
tessellation for the provided Creo Simulate surface.
Use the function ProMechsurfaceDataGet() to obtain the geometric
representation of the surface.
Use the function ProMechsurfaceToNURBS() to obtain the NURBS
representation of the Creo Simulate surface.
Use the function ProMechsurfaceTransformGet() to obtain UV
transform between the two surfaces in contact.
Use the function ProMechsurfaceThicknessEval() to obtain the
thickness of the shell Creo Simulate surface at the given UV point.

Accessing ProMechContour
An opaque handle called a ProMechContour represents a contour member of
the model. See the chapter on Core: 3D Geometry on page 170 for a discussion of
contours.
Functions Introduced:

• ProMechcontourVisitAction()
• ProMechcontourFilterAction()
• ProMechcontourIdGet()
• ProMechcontourSurfaceGet()
• ProMechcontourTraversalGet()
• ProMechcontourEdgeVisit()
• ProMechcontourUvpntVerify()
• ProMechcontourAreaEval()
• ProMechcontourContainingContourGet()
The function types ProMechcontourVisitAction() and
ProMechcontourFilterAction() are used as arguments to functions that
visit ProMechContour objects.
Use the function ProMechcontourIdGet() to obtain the ID for a given
contour. This ID is unique within the surface that owns the contour.

Creo Simulate: Geometry 1977

Use the function ProMechcontourSurfaceGet() to obtain the surface that
contains the contour.
Use the function ProMechcontourTraversalGet() to obtain the contour
traversal.
Use the function ProMechcontourEdgeVisit() to visit the edges that make
up a contour.
Use the function ProMechcontourUvpntVerify() to verify whether the
specified UV point lies within the given Creo Simulate contour.
Use the function ProMechcontourAreaEval() to find the surface area
inside the given outer contour, accounting for internal voids.
The function ProMechcontourContainingContourGet() returns the
containing contour for a Creo Simulate contour object.

Accessing ProMechEdge
An opaque handle called a ProMechEdge represents an edge member of the
model.
Functions Introduced:

• ProMechedgeVisitAction()
• ProMechedgeFilterAction()
• ProMechedgeIdGet()
• ProMechedgeOwnerGet()
• ProMechedgeSurfaceVisit()
• ProMechedgeContourVisit()
• ProMechedgeEndpointsGet()
• ProMechedgeIncontactedgesGet()
• ProMechedgeAncestorsGet()
The function types ProMechedgeVisitAction() and
ProMechedgeFilterAction() are used as arguments to functions that visit
ProMechEdge objects.
Use the function ProMechedgeIdGet() to obtain the ID of the given edge.

Note
This ID is not persistent and is not related to the Creo Parametric edge ID.

1978 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechedgeOwnerGet() to obtain the owner
ProMechSolid of the given edge.
Use the function ProMechedgeSurfaceVisit() to visit the surfaces that
share this edge.
Use the function ProMechedgeContourVisit() to visit the contours that
contain this edge.
Use the function ProMechedgeEndpointsGet() to obtain the endpoints of
the given edge.
Use the function ProMechedgeIncontactedgesGet() to obtain the list of
edges that are in contact with the given edge.
Use the function ProMechedgeAncestorsGet() to obtain the ancestor
edges for the given edge. These are the actual Creo Parametric geometry edges
used to construct this Creo Simulate edge.

Geometry Evaluation of ProMechEdge
For information about how Creo Parametric TOOLKIT represents edge geometry,
see the chapter on Core: 3D Geometry on page 170 and the appendix, Element
Trees: References on page 799.
Functions Introduced:

• ProMechedgeUvdataEval()
• ProMechedgeXyzdataEval()
• ProMechedgeParamEval()
• ProMechedgeLengthEval()
• ProMechedgeLengthT1T2Eval()
• ProMechedgeParamByLengthEval()
• ProMechedgeTessellationGet()
• ProMechedgeDataGet()
• ProMechedgeToNURBS()
• ProMechedgeDirectionGet()
• ProMechedgeReldirGet()
Use the function ProMechedgeUvdataEval() to evaluate the Creo Simulate
edge in the UV space of the given surface.
Use the function ProMechedgeXyzdataEval() to evaluate the Creo
Simulate edge parameter point in XYZ space.
Use the function ProMechedgeParamEval() to find the corresponding
normalized parameter on the Creo Simulate edge by XYZ point.

Creo Simulate: Geometry 1979

Use the function ProMechedgeLengthEval() to obtain the length of the
edge.
Use the function ProMechedgeLengthT1T2Eval() to find the length of the
Creo Simulate edge between the given parameters.
Use the function ProMechedgeParamByLengthEval() to find the
parameter of the point located at the given length from the given parameter.
Use the function ProMechedgeTessellationGet() to get the edge
tessellation for the Creo Simulate edges.
Use the function ProMechedgeToNURBS() to obtain the NURBs
representation of the Creo Simulate edge.
Use the function ProMechedgeReldirGet() to obtain the relative direction
of two Creo Simulate edges in contact.
Use the function ProMechedgeDataGet() to obtain the geometric
representation of the edge.
Use the function ProMechedgeDirectionGet() to obtain the edge direction
with respect to the given contour.

Accessing ProMechVertex
An opaque handle called a ProMechVertex represents a vertex member of the
model.
Functions Introduced:

• ProMechvertexVisitAction()
• ProMechvertexFilterAction()
• ProMechvertexIdGet()
• ProMechvertexOwnerGet()
• ProMechvertexPointGet()
• ProMechvertexSurfaceVisit()
• ProMechvertexEdgeVisit()
• ProMechvertexIncontactverticesGet()
The function types ProMechvertexVisitAction() and
ProMechvertexFilterAction() are used as arguments to functions that
visit ProMechVertex objects.
Use the function ProMechvertexIdGet() to obtain the ID of the given
vertex.
Use the function ProMechvertexOwnerGet() to obtain the volume that
owns this vertex.

1980 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechvertexPointGet() to obtain the coordinate point
for a given vertex.
Use the function ProMechvertexSurfaceVisit() to visit the surfaces that
include this vertex.
Use the function ProMechvertexEdgeVisit() to visit the edges that
contain this vertex.
Use the function ProMechvertexIncontactverticesGet() to obtain the
list of vertices that are in contact with the given vertex.

Accessing ProMechPoint
An opaque handle called a ProMechPoint represents a datum point member of
the model. By default, the Creo Simulate geometry will include only those points
which have Creo Simulate loads or other items referencing them; you can generate
additional points by including them as inputs to
ProMechmodeldataEntitiesSet().
Functions Introduced:

• ProMechpointVisitAction()
• ProMechpointFilterAction()
• ProMechpointIdGet()
• ProMechpointOwnerGet()
• ProMechpointPointGet()
• ProMechpointPlacementtypeGet()
• ProMechpointPlacementsurfaceGet()
• ProMechpointPlacementedgeGet()
• ProMechpointPlacementvertexGet()
• ProMechpointAncestorsGet()
The function types ProMechpointVisitAction() and
ProMechpointFilterAction() are used as arguments to functions that
visit ProMechPoint objects.
Use the function ProMechpointIdGet() to obtain the ID of the point.

Note
This ID is not persistent and is not related to the Creo Parametric point ID.

Use the function ProMechpointOwnerGet() to obtain the owner model of
the given point.

Creo Simulate: Geometry 1981

Use the function ProMechpointPointGet() to obtain the coordinates of the
point.
Use the function ProMechpointPlacementtypeGet() to obtain the
placement type for the point. Following are list of possible placement types:

• PRO_MECH_PNT_FREE signifies that the point is not attached to a solid or
shell.

• PRO_MECH_PNT_FACE signifies that the point lies on a
ProMechSurface.

• PRO_MECH_PNT_EDGE signifies that the point lies on a ProMechEdge.
• PRO_MECH_PNT_VERTEX signifies that the point lies on a

ProMechVertex.
Use the function ProMechpointPlacementsurfaceGet() to obtain the
placement surface, if the placement type is PRO_MECH_POINT_FACE.
Use the function ProMechpointPlacementedgeGet() to obtain the
placement edge, if placement type is PRO_MECH_POINT_EDGE.
Use the function ProMechpointPlacementvertexGet() to obtain the
placement vertex, if the placement type is PRO_MECH_POINT_VERTEX.
Use the function ProMechpointAncestorsGet() to obtain the ancestor
points for the given point. These are the actual Creo Parametric geometry points
used to construct this Creo Simulate point.

Accessing ProMechCompositeCurve
An opaque handle called a ProMechCompositeCurve represents a composite
curve member of the model. By default, the Creo Simulate geometry will include
only those curves which have Creo Simulate loads or other items referencing
them. You can generate additional curves by including them as inputs to
ProMechmodeldataEntitiesSet().
Functions Introduced:

• ProMechcompositecurveVisitAction()
• ProMechcompositecurveFilterAction()
• ProMechcompositecurveIdGet()
• ProMechcompositecurveOwnerGet()
• ProMechcompositecurveCurveVisit()
• ProMechcompositecurveAncestorsGet()
The function types ProMechcompositecurveVisitAction() and
ProMechcompositecurveFilterAction() are used as arguments to
functions that visit ProMechCompositeCurve objects.

1982 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechcompositecurveIdGet() to obtain the ID of the
composite curve.

Note
This ID is not persistent and is not related to the Creo Parametric composite
curve ID.

Use the function ProMechcompositecurveOwnerGet() to obtain the
owner model of the composite curve.
Use the function ProMechcompositecurveCurveVisit() to visit the
curves that make up this composite curve.
Use the function ProMechcompositecurveAncestorsGet() to obtain the
ancestor curves for the given curve. These are the actual Creo Parametric
geometry curves used to construct this Creo Simulate curve.

Accessing ProMechCurve
An opaque handle called a ProMechCurve represents a curve member of the
model. A curve is always the child of a composite curve.
Functions Introduced:

• ProMechcurveVisitAction()
• ProMechcurveFilterAction()
• ProMechcurveTypeGet()
• ProMechcurveEdgeGet()
• ProMechcurveParentGet()
• ProMechcurveParamGet()
• ProMechcurveEndpointsGet()
• ProMechcurveAncestorsGet()
The function types ProMechcurveVisitAction() and
ProMechcurveFilterAction() are used as arguments to functions that
visit ProMechCurve objects.
Use the function ProMechcurveTypeGet() to obtain the curve's type. Curves
may be of the following types:

• PRO_MECH_SEGMENT_FREE

• PRO_MECH_SEGMENT_ON_EDGE

Creo Simulate: Geometry 1983

Use the function ProMechcurveEdgeGet() to obtain the edge, if the curve
type is PRO_MECH_CURVE_EDGE.
Use the function ProMechcurveParentGet() to obtain the parent composite
curve for this curve.
Use the function ProMechcurveParamGet() to obtain the parameter along
the parent composite curve at which this curve begins.
Use the function ProMechcurveEndpointsGet() to obtain the endpoints of
the curve.
Use the function ProMechcurveAncestorsGet() to obtain the ancestor
curves for the specified Creo Simulate curve. The ancestor curves are the actual
Creo Parametric geometry curves used to construct the Creo Simulate curve.

Geometry Evaluation of ProMechCurves
For information about how Creo Parametric TOOLKIT represents curve
geometry, see the chapter on Core: 3D Geometry on page 170 and the appendix,
Element Trees: References on page 799.
Functions Introduced:

• ProMechcurveXyzdataEval()
• ProMechcurveParamEval()
• ProMechcurveLengthEval()
• ProMechcurveLengthT1T2Eval()
• ProMechcurveParamByLengthEval()
• ProMechcurveDataGet()
• ProMechcurveToNURBS()
Use the function ProMechcurveXyzdataEval() evaluates the Creo
Simulate curve parameter point in the XYZ point.
Use the function ProMechcurveParamEval() to find the corresponding
normalized parameter on the Creo Simulate curve by XYZ point.
Use the function ProMechcurveLengthEval() to obtain the length of the
curve.
Use the function ProMechcurveLengthT1T2Eval() to find the length of
the Creo Simulate curve between the given parameters.
Use the function ProMechcurveParamByLengthEval() to find the
parameter of the point located at the given length from the given parameter.
Use the function ProMechcurveDataGet() to obtain the geometric
representation of the edge.

1984 Creo® Parametric TOOLKITUser’s Guide

Use the function ProMechcurveToNURBS() to obtain the NURBS
representation of the Creo Simulate curve.

To Create a Surface Region Feature
This section describes the use the header file ProSurfReg.h to create a surface
region feature programmatically. The chapter Element Trees: Principles of Feature
Creation on page 764 provides the necessary background for creating features; we
recommend you read that material first.

Note
The Surface Region feature is available and can be regenerated only in the
Creo Simulate environment.

The following figure shows the element tree for the Surface Region feature.

The Surface Region feature element tree contains no non-standard element types.
The following table describes special information about the elements in this tree.
Element ID Value
PRO_E_FEATURE_TYPE PRO_FEAT_SPLIT_SURF

PRO_E_STD_FEATURE_NAME Specifies the name of the Surface Region feature.
The default value is “Surface Region”. This element
is optional.

PRO_E_SURFREG_SPLITTING_OPTION Specifies the method to define the surface contour.
Valid values are:

PRO_SURFREG_SKETCH—Split the surface using a
sketch.

PRO_SURFREG_CHAIN—Split the surface using a
chain.

PRO_E_STD_SECTION Specifies a 2D section or a sketched section. Refer to

Creo Simulate: Geometry 1985

Element ID Value
the section Creating Features Containing Sections on
page 1006 for details on how to create features that
contain sketched sections.

Refer to the section Creating Section Models on page
988 for details on creating 2D sections.

PRO_E_STD_CURVE_COLLECTION_APPL Specifies a collection of selected curves or edges or
both to copy.

PRO_E_STD_SURF_COLLECTION_APPL Specifies a collection of selected surfaces to copy.

1986 Creo® Parametric TOOLKITUser’s Guide

71
Creo Simulate: Finite Element

Modeling (FEM)
Overview .. 1988
Exporting an FEA Mesh ... 1988

This chapter contains descriptions of the Creo Parametric TOOLKIT functions
that support Creo Parametric Finite Element Modeling (FEM).

1987

Overview
The Finite Element Modeling (FEM) functions in this chapter are designed to give
you access to data generated by the Pro/MESH module of Creo Parametric. You
can do the following:

• Export a Pro/MESH output file to disk.

Exporting an FEA Mesh
Function Introduced:

• ProFemmeshExport()
The function ProFemmeshExport() generates the Finite Element Mesh based
on the given parameters, and exports it to the specified file.
The function uses the data structure ProFemmeshData, which is defined as
follows:
typedef struct pro_femmesh_data
{
ProFemmeshType mesh_type;
ProFemshellmeshType shell_type;
int num_quilts;
ProFemquiltref * pro_quilt_ref_arr;
ProFemanalysisType analysis;
ProFemelemshapeType elem_shape;
ProFemsolverType solver;
ProFemcsysref csys_ref;
int num_aux_csys;
ProFemcsysref * aux_csys_ref_arr;

}ProFemmeshData;

The pro_femmesh_data fields are as follows:

• mesh_type—The mesh type. The possible values are as follows:

○ PRO_FEM_SOLID_MESH—Mesh solid parts using tetrahedral solid mesh
elements.

○ PRO_FEM_SHELL_MESH—Shell mesh using triangular or quadrangular
mesh elements. This type is designed for meshing surfaces.

○ PRO_FEM_MIXED_MESH—Mesh models with a mixture of shell and
tetrahedral mesh elements.

○ PRO_FEM_QUILT_MESH—A mesh for any simple or advanced shell
idealizations created for quilt surfaces.

○ PRO_FEM_BOUNDARY_MESH—A shell mesh of triangular or
quadrilateral elements on the model's exterior surfaces.

1988 Creo® Parametric TOOLKITUser’s Guide

○ PRO_FEM_BAR_MESH—A bar mesh for one dimensional idealizations.
• shell_type—The type of shell element. This field is ignored for a solid

mesh. The possible values are as follows:

○ PRO_FEM_TRIANGLE

○ PRO_FEM_QUADRANGLE

• num_quilts—The quilt identifier.
• pro_quilt_ref_arr—An array of references of quilt surfaces in the

assembly.
• analysis—The analysis type. The possible values are as follows:

○ PRO_FEM_ANALYSIS_STRUCTURAL—Structural analysis, including
stress, strain, thermal stress, and displacement.

○ PRO_FEM_ANALYSIS_MODAL—Modal analysis, including the
constraint sets applied to the model.

○ PRO_FEM_ANALYSIS_THERMAL—Thermal analysis, including
temperature, heat flux, and heat gradient.

• elem_shape—The type of element to be used for the solver.

○ PRO_FEM_MIDPNT_LINEAR—Linear elements are used for the
analysis. This includes corner nodes, straight edges, and planar faces.

○ PRO_FEM_MIDPNT_PARABOLIC—Parabolic elements are used for the
analysis.

○ PRO_FEM_MIDPNT_PARABOLIC_FIXED—The excessively curved
edges of solid and shell mesh parabolic elements are slightly straightened
and then used for analysis.

The number of nodes that are as follows:
Tetrahedron PRO_FEA_LINEAR: 4 nodes

PRO_FEA_PARABOLIC: 10 nodes
Triangle PRO_FEA_LINEAR: 3 nodes

PRO_FEA_PARABOLIC: 6 nodes
Quadrangle PRO_FEA_LINEAR: 4 nodes

PRO_FEA_PARABOLIC: 8 nodes

• solver—The type of solver used for analysis. The possible values are:

○ PRO_FEM_FEAS_ANSYS—Specifies an ANSYS solver.
○ PRO_FEM_FEAS_NASTRAN—Specifies a NASTRAN solver.

Creo Simulate: Finite Element Modeling (FEM) 1989

○ PRO_FEM_FEAS_NEUTRAL—Specifies other solvers that support the
FEM Neutral file format for analysis.

• csys_ref—An array of geometric references.
• num_aux_csys—Additional coordinate system to be included in the

analysis.
• aux_csys_ref_arr—An array of geometric references for the auxiliary

coordinate system.

Note
Prior to calling this function, the model (pro_solid) should be displayed in
the graphics window.

The input arguments of this function are as follows:

• pro_solid— The handle of a Creo Parametric model (part or assembly).
• p_mesh_data—The pointer to the data structure containing the mesh

generation parameters.
• file_name—The file name to export mesh to.
This function supersedes the function pro_export_fea_mesh()

1990 Creo® Parametric TOOLKITUser’s Guide

72
Mechanism Design: Mechanism

Features
Mechanism Spring Feature .. 1992
Mechanism Damper Feature .. 1994
Mechanism Belt Feature .. 1995
Mechanism 3D Contact Feature ... 1998
Mechanism Motor Features.. 2002

This chapter describes the programmatic creation of mechanism modeling entities
such as springs and dampers as Creo Parametric features.
The chapter also explains for to add motor features such as, servo motors, forces
motors, and so on.
We recommend you read the section, Overview of Feature Creation on page 765
in the chapter, Element Trees: Principles of Feature Creation on page 764. It
provides the necessary background for creating features using Creo Parametric
TOOLKIT.

1991

Mechanism Spring Feature
A spring generates a translational or rotational spring force in a mechanism. It
produces a linear spring force when stretched or compressed, and a torsion force
when rotated. The magnitude of the spring force is directly proportional to the
amount of displacement from the position of equilibrium.
Springs are created as Creo Parametric features and their values are stored as valid
Creo Parametric parameters.

Feature Element Tree for the Mechanism Spring
Feature
The element tree for the Mechanism Spring feature is documented in the header
file, ProDamperFeat.h. The following figure demonstrates the structure of the
feature element tree.

Feature Element Tree for Mechanism Spring

The following list details special information about the elements in the feature
element tree:

1992 Creo® Parametric TOOLKITUser’s Guide

• PRO_E_STD_FEAT_NAME—Specifies the name of the mechanism spring
feature.

• PRO_E_SPRING_DAMPER_TYPE—Specifies the mechanism spring feature
type. It can have the following values:

○ PRO_SPRING_DAMPER_FORCE—Specifies an extension or
compression spring.

○ PRO_SPRING_DAMPER_TORQUE—Specifies a torsion spring.
• PRO_E_SPRING_DAMPER_REF—Specifies the spring placement

references. For an extension spring or compression spring, you can select the
translational axis or two points on two different bodies as the placement
references. For a torsion spring, you can select the rotational axis as the
placement reference.

• PRO_E_SPRING_K—Specifies the value for the stiffness coefficient of the
spring.

• PRO_E_SPRING_U—Specifies the value for the unstretched length of the
spring.

• PRO_E_SPRING_DIAMETER—Specifies the value for the spring icon
diameter for an extension spring.

• PRO_E_SPRING_USE_DIAMETER—Specifies the Adjust Icon Diameter
option (available in the Creo Parametric user interface) that allows you to
change the value of the spring icon diameter. This element is not available by
default. It takes the following values:

○ PRO_SPRING_USE_DIAMETER_NO

○ PRO_SPRING_USE_DIAMETER_YES

• PRO_E_SPRING_ATTACH_POINTS—Specifies the attachment points for
the two ends of a torsion spring. The attachment points can be of the following
types:

○ PRO_SPRING_USE_MOTION_AXIS_ZERO—Specifies the JAS (Joint
Axis Set) option, where the attachment references are automatically
populated with the selected JAS references.

○ PRO_SPRING_CUSTOM_ATTACHMENT_POINTS—Specifies custom
attachment references where you can specify two attachment references
such as datum planes, datum points, and vertices. The vector between each
attachment reference and the selected rotational axis is automatically
calculated. By default, the greatest angle between the two vectors is
defined as the spring angle. On selecting both the attachment references,
the unstretched value of the torsion spring is automatically updated
according to the current angle between the two vectors.

Mechanism Design: Mechanism Features 1993

• PRO_E_SPRING_ATTACH_REF—Specifies the actual attachment references
for the torsion spring depending upon the attachment type set for the element
PRO_E_SPRING_ATTACH_POINTS.

• PRO_E_SPRING_FLIP_U_ANGLE—Specifies the option to flip the
direction of the current angle between the attachment references for a torsion
spring.

Mechanism Damper Feature
A damper generates a force that removes energy from a moving mechanism and
dampens its motion. The damper force is always proportional to the magnitude of
velocity of the entity on which you are applying the damper, and acts in the
direction opposite to movement.
Dampers are created as Creo Parametric features and their values are stored as
valid Creo Parametric parameters.

Feature Element Tree for the Mechanism Damper
Feature
The element tree for the Mechanism Damper feature is documented in the header
file, ProDamperFeat.h. The following figure demonstrates the structure of the
feature element tree.

Feature Element Tree for Mechanism Damper

The following list details special information about the elements in the feature
element tree:

• PRO_E_STD_FEAT_NAME—Specifies the name of the mechanism damper
feature.

• PRO_E_SPRING_DAMPER_TYPE—Specifies the mechanism damper feature
type. It can have the following values:

1994 Creo® Parametric TOOLKITUser’s Guide

○ PRO_SPRING_DAMPER_FORCE—Specifies an extension damper or
compression damper.

○ PRO_SPRING_DAMPER_TORQUE—Specifies a torsion damper.
• PRO_E_SPRING_DAMPER_REF—Specifies the damper placement

references. For an extension damper or compression damper, you can select
the translational or slot axis, or two points on two different bodies as the
placement references. For a torsion damper, you can select the rotational axis
as the placement reference.

• PRO_E_DMP_CVAL—Specifies the value for the damping coefficient.

Mechanism Belt Feature
A belt is treated as a connection connecting all the pulley bodies. The belt
provides the same angular velocity to all pulleys connected by it.
Belts are created as Creo Parametric features and their values are stored as valid
Creo Parametric parameters.

Feature Element Tree for the Mechanism Belt
Feature
The element tree for the Mechanism Belt feature is documented in the header file,
ProBeltFeat.h. The following figure demonstrates the structure of the feature
element tree.

Mechanism Design: Mechanism Features 1995

Feature Element Tree for Mechanism Belt

The following list details special information about the elements in the feature
element tree:

• PRO_E_FEATURE_TYPE—Specifies the feature type.
• PRO_E_STD_FEATURE_NAME—Specifies the name of the mechanism belt

feature.
• PRO_E_BELT_PULLEYS—Specifies an array of pulley bodies of the type

PRO_E_BELT_PULLEY_RECORD which consists of the following elements:

○ PRO_E_BELT_PULLEY_SEL—Specifies the geometric reference
selected as the pulley body. It can be a cylindrical surface, a circular curve
or edge, or a PIN or Cylinder connection. You must define at least two
pulley bodies for the belt.

Creo Parametric automatically selects both the sides of the cylindrical
surface or the circular curve or edge so that the pulley is complete. In case
of a cylindrical or circular reference, the pulley’s axis of rotation is
automatically detected by detecting a PIN or Cylinder connection aligned
to the theoretical axis of the geometric reference and perpendicular to the
belt plane. If such as a connection does not exist, the reference is
considered invalid. In case of a connection reference, the rotation axis of
the selected connection is used as the pulley axis.

1996 Creo® Parametric TOOLKITUser’s Guide

○ PRO_E_BELT_PULLEY_WRAP_SIDE—Specifies the pulley wrapping
direction. It can be left (-1) or right (+1) and relative to the previous pulley.
You can flip the belt to the other contact point detected between the belt
and the pulley.

○ PRO_E_BELT_PULLEY_DIAMETER—Specifies the pulley diameter. A
cylindrical curve with the specified diameter is displayed around the
selected pulley reference and on the belt plane. The pulley diameter is
coincident with the pulley reference by default, except in case of
connection references.

○ PRO_E_BELT_PULLEY_DIAM_COINCIDENT—Indicates if the pulley
diameter is coincident with the pulley reference. This element is set to
PRO_B_TRUE, which means the pulley diameter is set to the value
Coincident by default for non-connection references.

○ PRO_E_BELT_PULLEY_CONN_NUM—Specifies the number of the PIN
or Cylinder connection selected as the pulley reference from the available
valid connections. One of the bodies that defines the connection is
considered the pulley body, while the other body connected to it is
considered the carrier body.

○ PRO_E_BELT_PULLEY_FLIP_CONN_BODIES—Specifies the option
to flip between the pulley and carrier bodies, in case of connection
references. This option is not available in case of geometric references.

○ PRO_E_BELT_PULLEY_NUM_WRAPS—Specifies the number of full
wraps around the currently selected pulley. The wraps are considered as
not overlapping and are not displayed in the 3D icon for the belt. The
number of wraps affects the belt length. In case of open ended belts, the
number of wraps influences the motion extent of the connected bodies.

• PRO_E_BELT_PLANE—Specifies the planar surface or datum plane that
defines the belt plane. The plane should be perpendicular to the rotation axis
of the first pulley. This element is optional. If the belt plane is not specified, it
is detected based on the selected pulley references as follows:

○ Cylindrical surfaces—If a cylindrical surface is used as the pulley
reference, the perpendicular plane positioned in the center of the
cylindrical surface (for the first pulley in case of multiple pulleys) is used
as the belt plane

○ Circular edge or curve—If a circular edge or curve is used as the pulley
reference, the plane for the corresponding edge or curve (for the first
pulley in case of multiple pulleys) is used as the belt plane.

○ PIN/Cylinder connections—In case of connection references, the internal
orange body zero point (for the first pulley in case of multiple pulleys) is
used as the belt plane.

Mechanism Design: Mechanism Features 1997

• PRO_E_BELT_DEFINE_CUSTOM_U_LENGTH—Identifies if the
unstretched belt length can be specified by the user, or if it is system-defined.
The length is system-defined by default.

• PRO_E_BELT_UNSTRETCHED_LENGTH—Specifies the value for the
unstretched belt length. The system-defined length is calculated based on the
pulley references and their specified diameters. When the user enters a desired
belt length, Creo Parametric tries to reconnect the assembly according to the
specified belt length. If the reconnect operation fails, the belt length reverts to
the previously entered value.

• PRO_E_BELT_STIFFNESS_COEFF—Specifies the belt stiffness coefficient
value.

Mechanism 3D Contact Feature
3D contacts are connections between a group of surfaces selected from two parts.
These connections are similar to cams, joints, gears, and belts. Depending on the
surfaces selected, 3D contacts can be of the following types:

• Sphere to Sphere (point contact)
• Sphere to Planar surface (point contact)
• Cylinder to Cylinder (line contact)
• Cylinder to Planar surface (line contact)
• Sphere to Cylinder (point contact)
• Toroid to Plane (point contact)
3D Contacts are created as Creo Parametric features and their values are stored as
Creo Parametric feature parameters.

Feature Element Tree for the Mechanism 3D Contact
Feature
The element tree for the Mechanism 3D Contact feature is documented in the
header file, ProContact3dFeat.h. The following figure demonstrates the
structure of the feature element tree.

1998 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Mechanism 3D Contact

Note
From Pro/ENGINEERWildfire 5.0 onwards, the feature element tree for the
3D Contact feature has been updated. 3D Contact features created using the
old tree are represented in the new tree format. You will need to rebuild your
existing Pro/TOOLKIT applications according to the new element tree.

The following list details special information about the elements in the feature
element tree:

Mechanism Design: Mechanism Features 1999

• PRO_E_FEATURE_TYPE—Specifies the feature type.
• PRO_E_STD_FEATURE_NAME—Specifies the name of the mechanism 3D

contact feature.
• PRO_E_C3D_MAT_OPTION1—Specifies the material type for the first

contact part. The material type is given by the enumerated type
ProC3dMaterialType that takes the following values:

○ PRO_C3D_MAT_DEFAULT—Specifies the material properties of the
participating contact part. This is the default type. If this type is set, the
elements PRO_E_C3D_POISSON1, PRO_E_C3D_YOUNG1, and PRO_
E_C3D_DAMPING1 are not available for modification and are set by
default.

○ PRO_C3D_MAT_SEL_MAT—Allows you to select a material type from
the list of materials used in the assembly or from the material library
directory. If this type is set, the elements PRO_E_C3D_POISSON1,
PRO_E_C3D_YOUNG1, and PRO_E_C3D_DAMPING1 are not available
for modification and are set as per the selected material.

○ PRO_C3D_MAT_USE_VALS—Allows you to specify the values for the
material properties. The elements PRO_E_C3D_POISSON1, PRO_E_
C3D_YOUNG1, and PRO_E_C3D_DAMPING1 are available and can be
set as required.

• PRO_E_C3D_REF1_RECS—Specifies an array of selected surface references
belonging to the first part that is used in the 3D contact. You can select
multiple surfaces having a common center, equal diameter and a common
edge. The surface reference is of type PRO_E_C3D_REF_REC and consists
of the following elements:

○ PRO_E_C3D_REF—Specifies the selected surface reference. The
reference can be a spherical, cylindrical, toroidal, or planar surface, or a
vertex. If you select a vertex from the first part as one of the references, a
sphere is displayed around the vertex and the vertex is considered as a
sphere in the 3D contact. If the first reference is a vertex, specify the value
for the vertex radius using the element PRO_E_C3D_VERT_RAD. The
first surface determines the second part that can be selected for the
connection.

○ PRO_E_C3D_REF_FULL_GEOM—Specifies whether a complete surface
or a segment of the surface is selected. This option is specified by the
enumerated type ProC3dFullGeomFlag and has the following values:

◆ PRO_C3D_FULL_GEOM—Specifies that a complete surface has been
selected for the 3D contact.

2000 Creo® Parametric TOOLKITUser’s Guide

◆ PRO_C3D_PARTIAL_GEOM—Specifies that a segment of a cylinder,
sphere, or toroid has been selected for the 3D contact.

○ PRO_E_C3D_REF_FLIP—Specifies if the direction for the 3D contact is
flipped. The value for this element is PRO_B_FALSE by default which
means the contact direction is not flipped and the surface direction is used.
This element is applicable only if you use quilt surfaces to create the 3D
contacts.

• PRO_E_C3D_MAT_NAME1—Specifies the name of the material type selected
for the first contact part. This element can be set only if the element PRO_E_
C3D_MAT_OPTION1 is set to PRO_C3D_MAT_SEL_MAT.

• PRO_E_C3D_POISSON1—Specifies the value for Poisson’s ratio for the
first contact part.

• PRO_E_C3D_YOUNG1—Specifies the value for Young’s modulus for the first
contact part.

• PRO_E_C3D_DAMPING1—Specifies the value for the damping coefficient
for the first contact part.

• PRO_E_C3D_MAT_OPTION2—Specifies the material type for the second
contact part. Refer to the description of the element PRO_E_C3D_MAT_
OPTION1 for the material types that you can select.

• PRO_E_C3D_REF2_RECS—Specifies an array of selected surface references
of the type PRO_E_C3D_REF_REC from the second part that is used in the
3D contact. Refer to the description of the element PRO_E_C3D_REF1_
RECS for information on the options that can be set for each surface reference.
If you select a vertex from the second part as one of the references, a sphere is
displayed around the vertex and the vertex is considered as a sphere in the 3D
contact. If the second reference is a vertex, the PRO_E_C3D_VERT_RAD
element becomes available for you to specify the value for the vertex radius.

• PRO_E_C3D_MAT_NAME2—Specifies the name of the material type selected
for the second contact part. This element can be set only if the element PRO_
E_C3D_MAT_OPTION2 is set to PRO_C3D_MAT_SEL_MAT.

• PRO_E_C3D_POISSON2—Specifies the value for Poisson’s ratio for the
second contact part.

• PRO_E_C3D_YOUNG2—Specifies the value for Young’s modulus for the
second contact part.

• PRO_E_C3D_DAMPING2—Specifies the value for the damping coefficient
for the second contact part.

• PRO_E_C3D_VERT_RAD—Specifies the value for the vertex radius if a
vertex is selected as one the references.

Mechanism Design: Mechanism Features 2001

• PRO_E_C3D_FRICTION—Identifies if friction will be used in the contact
calculation. This element is set to PRO_B_FALSE by default which means no
friction.

• PRO_E_C3D_STATIC_FRIC_COEF—Specifies the value for the static
friction coefficient.

• PRO_E_C3D_KINEM_FRIC_COEF—Specifies the value for the kinematic
friction coefficient.

Mechanism Motor Features
The Mechanism Motor element tree enables you to add servo and force motors.
Use servo motors to impose a particular motion on a mechanism. Servo motors
cause a specific type of motion to occur between two bodies in a single degree of
freedom. Add servo motors to your model to prepare it for analysis.
Use force motors to impose a particular load on a mechanism. A force motor
causes motion by applying a force in a single degree of freedom along a
translational, rotational, or slot axis.

Feature Element Tree for the Mechanism Motor
Feature
The element tree for the Mechanism Motor feature is documented in the header
file, ProMotorFeat.h. The following figure demonstrates the structure of the
feature element tree.

2002 Creo® Parametric TOOLKITUser’s Guide

Feature Element Tree for Mechanism Motor

The following table describes the elements in the element tree for the Mechanism
Motor feature:
Element ID Data Type Description
PRO_E_FEATURE_TYPE PRO_VALUE_TYPE_INT Specifies the type of the motor

feature.
PRO_E_STD_FEATURE_NAME PRO_VALUE_TYPE_WSTRING Specifies the name of the

mechanism motor feature.
PRO_E_MOTOR_MOTION_TYPE PRO_VALUE_TYPE_INT Specifies the motion type of

motor. The motion type is
specified using the enumerated
data type
ProMotorMotionType. The
valid values are:

Mechanism Design: Mechanism Features 2003

Element ID Data Type Description
• PRO_MOTOR_

TRANSLATIONAL

• PRO_MOTOR_ROTATIONAL

• PRO_MOTOR_SLOT

PRO_E_MOTOR_DRIVEN_ENT_
REF

PRO_VALUE_TYPE_
SELECTION

Specifies the reference geometry
for driven entity. You can select a
axes of motion or geometry such
as point or plane.

Note

When you select references
that are a point or a plane to
define the servo motor, you
are creating a geometric
servo motor.

PRO_E_MOTOR_ENT_REF PRO_VALUE_TYPE_
SELECTION

Specifies the reference geometry
for a geometric servo motor. You
can select a point or plane.

PRO_E_MOTOR_DIR_MODE PRO_VALUE_TYPE_INT Specifies the type of motion
direction for motors. The valid
values are defined in enumerated
data type
ProMotorFMDirMode:
• PRO_MOTOR_FM_VEC_

DIR—The direction is defined
by explicit vector in a
coordinate system.

• PRO_MOTOR_FM_STD_
DIR—The direction is defined
by standard direction reference
such as, straight edge, curve,
axis, and plane normal.

• PRO_MOTOR_FM_P2P_
DIR—The direction is defined
by a pair of point or vertex.

PRO_E_MOTOR_VEC_DIR_
DATA

PRO_VALUE_TYPE_POINTER This element is applicable only for
geometric force motors.

Specifies a compound element
which defines the options to set
the direction using explicit vector.

PRO_E_MOTOR_VEC_DIR_
CSYS

PRO_VALUE_TYPE_
SELECTION

Specifies the reference frame for
the vector. If the reference frame is
not specified, then the World
Coordinate System is used.

PRO_E_MOTOR_VEC_DIR_X

PRO_E_MOTOR_VEC_DIR_Y

PRO_E_MOTOR_VEC_DIR_Z

PRO_VALUE_TYPE_DOUBLE Specifies the value for X, Y, and Z
vectors.

2004 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_DIRECTION_
COMPOUND

PRO_VALUE_TYPE_POINTER This element is applicable for
geometric servo and force motors.

Specifies a compound element
which defines the options to set
the direction using standard
direction reference.

PRO_E_DIRECTION_
REFERENCE

PRO_VALUE_TYPE_SELECT Specifies a motion reference.

PRO_E_DIRECTION_FLIP PRO_VALUE_TYPE_INT Flips to reverse the direction of the
force or the torque.

PRO_E_MOTOR_PT_TO_PT_
DIR

PRO_VALUE_TYPE_SELECT This element is applicable only for
geometric force motors. Specifies
the selection of a pair of points to
set the direction for point-to-point
direction.

PRO_E_MOTOR_DIR_
RELATIVITY

PRO_VALUE_TYPE_INT This element is applicable only for
geometric force motors. Specifies
the direction of motion relative to
ground or driven body.

PRO_E_MOTOR_FLIP_DIR PRO_VALUE_TYPE_INT Flips to reverse the direction of the
motion.

Note

It defines the direction when
connection axis motors or
geometric motors do no use
the element PRO_E_
DIRECTION_COMPOUND to
define the direction.

PRO_E_MOTOR_PROFILE PRO_VALUE_TYPE_POINTER Specifies a compound element that
defines the profile options for a
motor.

PRO_E_MOTOR_DRIVEN_
QUANTITY

PRO_VALUE_TYPE_INT Specifies the type of driven
quantity. The valid values are
defined in the enumerated data
type
ProMotorDrivenQuantity:
• PRO_MOTOR_POSITION—

Specifies the motion of servo
motor in terms of the position
of the selected entity.

• PRO_MOTOR_VELOCITY—
Specifies the motion of servo
motor in terms of its velocity.

• PRO_MOTOR_
ACCELERATION—Specifies
the motion of servo motor in
terms of its acceleration.

• PRO_MOTOR_FORCE—

Mechanism Design: Mechanism Features 2005

Element ID Data Type Description
Specifies a force motor.

PRO_E_MOTOR_INIT_STATE_
DATA

PRO_VALUE_TYPE_POINTER Specifies a compound element that
defines the options for initial
position of servo motor for PRO_
MOTOR_VELOCITY and PRO_
MOTOR_ACCELERATION type of
motion.

PRO_E_MOTOR_USE_CURR_
POS

PRO_VALUE_TYPE_INT Specifies that the current position
of the servo motor is used as the
initial starting position.

PRO_E_MOTOR_INIT_POS PRO_VALUE_TYPE_DOUBLE This element is applicable only
when PRO_E_MOTOR_USE_
CURR_POS is set to No.

Specifies a starting position for the
servo motor.

PRO_E_MOTOR_INIT_VEL PRO_VALUE_TYPE_DOUBLE This element is applicable only for
PRO_MOTOR_ACCELERATION
type of motion.

Specifies the initial velocity of the
driven entity.

PRO_E_MOTOR_FUNC_TYPE PRO_VALUE_TYPE_INT Specifies the type of motion for
the motor using the enumerated
data type ProMotorFuncType.
The valid values are:
• PRO_MOTOR_CONSTANT—

Creates a constant profile.
• PRO_MOTOR_RAMP—Creates

a profile that changes linearly
over time.

• PRO_MOTOR_COSINE—
Assigns a cosine wave value to
the motor profile.

• PRO_MOTOR_SCCA—
Simulates a cam profile output.
This option is available for
acceleration motors only.

• PRO_MOTOR_CYCLOIDAL—
Simulates a cam profile output.

• PRO_MOTOR_PARABOLIC—
Simulates a trajectory for a
motor.

• PRO_MOTOR_
POLYNOMIAL—Defines third
degree polynomial motor
profiles.

• PRO_MOTOR_TABLE—
Generates the motor motion
with values from a four-
column table. You can use a

2006 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
table of output measure results.

• PRO_MOTOR_USER_
DEFINED—Specifies any
kind of complex profile
defined by multiple expression
segments.

• PRO_MOTOR_CUSTOM_
LOAD—Applies a complex,
externally-defined set of loads
to your model. This option is
only available for the force
motor definition.

PRO_E_MOTOR_FUNC_COEFF_
A

PRO_E_MOTOR_FUNC_COEFF_

B

PRO_E_MOTOR_FUNC_COEFF_

C

PRO_E_MOTOR_FUNC_COEFF_

D

PRO_E_MOTOR_FUNC_COEFF_

L

PRO_E_MOTOR_FUNC_COEFF_

H

PRO_E_MOTOR_FUNC_COEFF_

T

PRO_VALUE_TYPE_DOUBLE Specifies the values for the
function coefficients.

PRO_E_MOTOR_TABLE_DATA PRO_VALUE_TYPE_POINTER Specifies a compound element that
defines all the options for table
motor type.

PRO_E_MOTOR_TBL_
INTERPOL_TYPE

PRO_VALUE_TYPE_INT Specifies the interpolation method
using the enumerated data type
ProMotorTableInterpType.
The valid values are:
• PRO_MOTOR_TBL_

LINEAR—Connects the table
points with a straight line.

• PRO_MOTOR_TBL_
SPLINE—Fits a cubic spline
to each set of points.

• PRO_MOTOR_TBL_
MONOTONIC—Produces a
monotonic trajectory when you
use default velocity values and
monotonic magnitude values.

PRO_E_MOTOR_TBL_ROWS PRO_VALUE_TYPE_POINTER Specifies an array of table rows.
PRO_E_MOTOR_TBL_ROW PRO_VALUE_TYPE_POINTER Specifies a compound element that

Mechanism Design: Mechanism Features 2007

Element ID Data Type Description
defines the options for each table
row.

PRO_E_MOTOR_TBL_VAR_VAL PRO_VALUE_TYPE_DOUBLE Specifies the value for
independent variables in the first
column of the table.

PRO_E_MOTOR_TBL_FUNC_
VAL

PRO_VALUE_TYPE_DOUBLE Specifies the value for driven
quantity variables in the second
column of the table.

PRO_E_MOTOR_TBL_DERIV_
GIVEN

PRO_VALUE_TYPE_INT This element is applicable only if
interpolation type is set to PRO_
MOTOR_TBL_MONOTONIC.

A flag which checks if derivative
value has been specified by the
user.

PRO_E_MOTOR_TBL_DERIV_
VAL

PRO_VALUE_TYPE_DOUBLE This element is applicable only if
interpolation type is set to PRO_
MOTOR_TBL_MONOTONIC.

Specifies the value for function
derivative in a table row.

PRO_E_MOTOR_TBL_DEPEND_
ON_FILE

PRO_VALUE_TYPE_INT A flag which checks if the table
values are dependent on an
external file.

PRO_E_MOTOR_TBL_FILE_
NAME

PRO_VALUE_TYPE_WSTRING Specifies the name of the table.

PRO_E_MOTOR_UD_PROFILE_
DATA

PRO_VALUE_TYPE_POINTER Specifies a compound element that
defines all the options for user-
defined motor type.

PRO_E_MOTOR_UD_EXPR_ARR PRO_VALUE_TYPE_POINTER Specifies an array that defines the
options for user-defined
expressions.

PRO_E_MOTOR_UD_EXPR_
DATA

PRO_VALUE_TYPE_POINTER Specifies a compound that defines
the options for each user-defined
expression.

PRO_E_MOTOR_UD_EXPR PRO_VALUE_TYPE_WSTRING Specifies a user-defined
expression.

PRO_E_MOTOR_UD_DOM_TYPE PRO_VALUE_TYPE_INT Specifies the type of domain for
the expression using the
enumerated data type
ProMotorUDExprDomain
Type.

PRO_E_MOTOR_UD_DOM_
LOWER_BOUND

PRO_VALUE_TYPE_DOUBLE Specifies the value for lower
bound.

2008 Creo® Parametric TOOLKITUser’s Guide

Element ID Data Type Description
PRO_E_MOTOR_UD_DOM_
UPPER_BOUND

PRO_VALUE_TYPE_DOUBLE Specifies the value for upper
bound.

PRO_E_MOTOR_CUST_LOAD_
NAME

PRO_VALUE_TYPE_WSTRING This element is applicable only for
force motors when the element
PRO_E_MOTOR_FUNC_TYPE is
set to PRO_MOTOR_CUSTOM_
LOAD.

Specifies the name of the custom
file that has pre-defined custom
loads.

Mechanism Design: Mechanism Features 2009

73
Event-driven Programming:

Notifications
Using Notify .. 2011
Notification Types.. 2011

Notifications allow your Creo Parametric TOOLKIT application to detect certain
types of events in Creo Parametric and provide that your own function is called
before or after each such event. Creo Parametric notifies your Creo Parametric
TOOLKIT application of these events.

2010 Creo® Parametric TOOLKITUser’s Guide

Using Notify
Functions Introduced:

• ProNotificationSet()
• ProNotificationUnset()
The function ProNotificationSet() sets up a notification by specifying the
type of event and the pointer to the callback function. The event is specified as a
value of the enumerated type ProNotifyType. The argument for the callback
function has the type ProFunction; for consistency, each callback function
returns a ProError status, even in cases where the status is ignored by Creo
Parametric. The callback functions have different arguments, so each callback
type has its own typedef that defines its arguments and their types. When calling
ProNotificationSet(), you must cast the callback function pointer to
ProFunction.

Note
• If you call ProNotificationSet() more than once with the same event

type, the existing callback is overwritten with the one supplied in the later call.
• When notifications are set in Creo Parametric TOOLKIT applications, every

time an event is triggered, notification messages are added to the trail files.
From Creo Parametric 2.0 M210 onward, a new environment variable
PROTK_LOG_DISABLE enables you to disable this behavior. When set to
true, the notifications messages are not added to the trail files.

To cancel a notification, call ProNotificationUnset().

Notification Types
The notification events in Creo Parametric fall into the following classes:

File Management Events
Notifications to all of the file management operations in Creo Parametric, such as
save, retrieve, copy, rename and so on.

Event-driven Programming: Notifications 2011

Note
From Creo Parametric 3.0 onward, some callback functions and events for
notifications have been deprecated, and will be obsolete in future releases.
Refer to the header files ProMdl.h and ProNotify.h for more
information.

The possible file management notifications fall into the following subclasses:

Pre-file Management Events
Your callback function is called before the file management event. It is called only
for models that are the explicit objects of the file management operation. For
example, it is not called when a part is saved as a result of saving a parent
assembly.
If the Creo Parametric user initiated the event, the callback is called before the
prompt asking the user for the name of the Creo Parametric models on which to
act.
The callback function can optionally write output arguments that determine the
Creo Parametric models on which the event will operate. In this case, Creo
Parametric will not prompt the user.
The callback function can, by returning an error status, cancel the file
management event altogether.

Pre-file Management Events
Event type Callback typedef Include file
PRO_FILE_OPEN_OK ProFileOpenOKAction ProNotify.h

PRO_MODEL_SAVE_PRE ProModelSavePreAction ProMdl.h

PRO_MODEL_COPY_PRE ProModelCopyPreAction ProMdl.h

PRO_MODEL_RENAME_PRE ProModelRenamePreAction ProMdl.h

PRO_MODEL_RETRIEVE_PRE ProModelRetrievePreAc
tion

ProMdl.h

PRO_MDL_ERASE_PRE ProMdlErasePreAction ProMdl.h

PRO_MDL_PURGE_PRE ProMdlPurgePreAction ProMdl.h

PRO_MDL_DELETE_PRE ProMdlDeletePreAction ProMdl.h

PRO_MDL_CREATE_PRE ProMdlCreatePreAction ProMdl.h

PRO_MDL_START ProMdlStartAction ProMdl.h

PRO_CHECKIN_UI_PRE ProCheckinUIPreAction ProNotify.h

PRO_MODEL_SAVE_PRE_ALL ProModelSavePreAllAc
tion

ProMdl.h

2012 Creo® Parametric TOOLKITUser’s Guide

The callback function ProMdlRetrievePreAction gets called only when
you click File ▶ Open button in the Creo Parametric user interface. Retrieval of the
models by dragging or by double clicking in browser window results in the not
triggering the call back . Once set, this notification blocks the Creo Parametric's
standard File ▶ Open event. Hence, you must substitute the blocked event with
your own event through this function.

Pre-All File Management Events
Your callback function is called before all file management events on models,
even if those models were not explicitly specified by the user. For example, if you
save an assembly, the callback function is also called for any modified parts that
will be saved as a result of that action.
Event type Callback typedef Include file
PRO_MODEL_SAVE_PRE_ALL ProModelSavePreAllAc

tion
ProMdl.h

Post-file Management Events
Your callback function is called after the file management operation, and is given
input arguments that show which models were the subject of the operation. Like a
pre-file management callback, it is called only for models that are the explicit
objects of the file management operation.

Post-file Management Events
Event type Callback typedef Include file
PRO_MODEL_SAVE_POST ProModelSavePostAction ProMdl.h

PRO_MODEL_COPY_POST ProModelCopyPostAction ProMdl.h

PRO_MODEL_RENAME_POST ProModelRenamePostAc
tion

ProMdl.h

PRO_MODEL_ERASE_POST ProModelErasePostAction ProMdl.h

PRO_MODEL_RETRIEVE_POST ProModelRetrievePostAc
tion

ProMdl.h

PRO_MDL_PURGE_POST ProMdlPurgePostAction ProMdl.h

PRO_MDL_DELETE_POST ProMdlDeletePostAction ProMdl.h

PRO_MDL_CREATE_POST ProMdlCreatePostAction ProMdl.h

PRO_UDF_LIB_COMPLETE_
POST

ProUdfLibraryComplete
PostAction

ProUdf.h

Post All File Management Events
Your the callback function is called for all file management events on models,
even if those models were not explicitly specified by the user. For example, if you
save an assembly, the callback function is also called for any modified parts that
are saved as a result of that action.

Event-driven Programming: Notifications 2013

Post All File Management Events
Event type Callback typedef Include file
PRO_MODEL_SAVE_POST_ALL ProModelSavePostAllAc

tion
ProMdl.h

PRO_MODEL_COPY_POST_ALL ProModelCopyPostAllAc
tion

ProMdl.h

PRO_MODEL_ERASE_POST_
ALL

ProModelErasePostAllAc
tion

ProMdl.h

PRO_MODEL_RETRIEVE_
POST_ALL

ProModelRetrievePostAl
lAction

ProMdl.h

PRO_MDL_DELETE_POST_ALL ProMdlDeletePostAllAc
tion

ProMdl.h

File Management Failure Events
Your callback function is called after a file management operation that failed. The
function is called with arguments that show the type of file management operation
that failed, the models it was operating on, and the type of error encountered (in
the form of a ProError value).

Note
From Creo Parametric 3.0 onward, some callback functions and events for
notifications have been deprecated. Refer to the header files ProMdl.h and
ProNotify.h for more information.

File Management Failed Events
Event type Callback typedef Include file
PRO_MODEL_DBMS_FAILURE ProModelDbmsFailureAc

tion
ProMdl.h

PRO_MDL_CREATE_CANCEL ProMdlCreateCancelAc
tion

ProNotify.h

Model and Feature Modification Events
Notifications that signal a change to the content of the model. They often include
both pre- and post-notifications of change events and include operations on
features, solids, parameters and dimensions. See the section Notes on
Regeneration Events on page 2015 for more information.
Use the notification types PRO_FEATURE_REROUTE_PRE and PRO_
FEATURE_REROUTE_POST to trap the command Feature Reroute in parts or
assemblies. Use notification types PRO_FEATURE_REPLACE_PRE and PRO_

2014 Creo® Parametric TOOLKITUser’s Guide

FEATURE_REPLACE_POST to trap replacement of assembly components
performed in assembly mode with the command Component, Adv Utils,
Replace.
The notification types PRO_ASMCOMP_ACTIVATE_PRE and PRO_ASMCOMP_
ACTIVATE_POST are called before and after an assembly component is activated
within the context of an assembly in Creo Parametric using the right mouse button
Activate. The notification types provide the path to the currently active
component, allowing applications to understand the context of an action in the
assembly.

Notes on Regeneration Events
Notifications which trigger before or after feature regeneration should be used
carefully, because your callback function is being called while the regeneration of
a solid is in progress. This section describes some of the important information
you should keep in mind when using notification for model events.
At the start of model regeneration, Creo Parametric discards all data structures
that describe geometry, although the geometry items themselves are retained (to
preserve the integer identifiers). This means that although you can still traverse
the features (using ProSolidFeatVisit()) and the geometry items in a
feature (using ProFeatureGeomitemVisit()), geometry items belonging to
features not yet regenerated will have no corresponding OHandles. Therefore,
functions such as ProSurfaceInit() and ProEdgeInit() will not work.
If you analyze the geometry of the features already regenerated, you will see it as
unmodified by the features still to be regenerated.
It is dangerous to attempt modifications to the model or file management
operations during a regeneration notification function.

Model Modification Events
Event type Callback typedef Include file
PRO_DIM_MODIFY_VALUE_
PRE

ProDimModifyValuePreAc
tion

ProDimension.h

PRO_FEATURE_CREATE_PRE ProFeatureCreatePreAc
tion

ProFeature.h

PRO_FEATURE_CREATE_POST ProFeatureCreatePostAc
tion

ProFeature.h

PRO_FEATURE_COPY_POST ProFeatureCopyPostAc
tion

ProFeature.h

PRO_FEATURE_DELETE_PRE ProFeatureDeletePreAc
tion

ProFeature.h

PRO_FEATURE_DELETE_POST ProFeatureDeletePostAc
tion

ProFeature.h

PRO_FEATURE_SUPPRESS_
PRE

ProFeatureSuppressPreAc
tion

ProFeature.h

PRO_FEATURE_SUPPRESS_
POST

ProFeatureSuppressPos
tAction

ProFeature.h

PRO_FEATURE_REDEFINE_ ProFeatureRedefinePreAc ProFeature.h

Event-driven Programming: Notifications 2015

Event type Callback typedef Include file
PRE tion
PRO_FEATURE_REDEFINE_
POST

ProFeatureRedefinePos
tAction

ProFeature.h

PRO_FEATURE_REGEN_PRE ProFeatureRegenPreAc
tion

ProFeature.h

PRO_FEATURE_REGEN_POST ProFeatureRegenPostAc
tion

ProFeature.h

PRO_FEATURE_REGEN_
FAILURE

ProFeatureRegenFailure
Action

ProFeature.h

PRO_FEATURE_NEEDS_
REGEN_GET

ProFeatureNeedsRegenGet ProFeature.h

PRO_FEATURE_REROUTE_PRE ProFeatureReroutePreAc
tion

ProFeature.h

PRO_FEATURE_REROUTE_
POST

ProFeatureReroutePostAc
tion

ProFeature.h

PRO_FEATURE_REPLACE_PRE ProFeatureReplacePreAc
tion

ProFeature.h

PRO_FEATURE_REPLACE_
POST

ProFeatureReplacePostAc
tion

ProFeature.h

PRO_GROUP_UNGROUP_PRE ProGroupUngroupPreAc
tion

ProGroup.h

PRO_GROUP_UNGROUP_POST ProGroupUngroupPostAc
tion

ProGroup.h

PRO_PARAM_CREATE_PRE ProParameterCreatePreAc
tion

ProParameter.h

PRO_PARAM_CREATE_POST ProParameterCreatePos
tAction

ProParameter.h

PRO_PARAM_MODIFY_PRE ProParameterModifyPreAc
tion

ProParameter.h

PRO_PARAM_MODIFY_POST ProParameterModifyPos
tAction

ProParameter.h

PRO_PARAM_DELETE_PRE ProParameterDeletePreAc
tion

ProParameter.h

PRO_PARAM_DELETE_POST ProParameterDeletePos
tAction

ProParameter.h

PRO_SOLID_REGEN_PRE ProSolidRegeneratePreAc
tion

ProSolid.h

PRO_SOLID_REGEN_POST ProSolidRegeneratePos
tAction

ProSolid.h

PRO_SOLID_UNIT_CONVERT_
PRE

ProSolidUnitConvertPre
Action

ProNotify.h

PRO_SOLID_UNIT_CONVERT_
POST

ProSolidUnitConvertPos
tAction

ProNotify.h

PRO_SOLID_PRINC_SYS_
UNITS_RENAMED_POST

ProSolidPrincSysUnitsRe
namedPostAction

ProNotify.h

PRO_DWGTABLE_ROW_
DELETE_PRE

ProDwgtableRowDeletePre
Action

ProNotify.h

PRO_DWGTABLE_ROW_DELETE
_POST

ProDwgtableRowDeletePos
tAction

ProNotify.h

2016 Creo® Parametric TOOLKITUser’s Guide

Event type Callback typedef Include file
PRO_DWGTABLE_DELETE_PRE ProDwgtableDeletePreAc

tion
ProNotify.h

PRO_DWGTABLE_DELETE_
POST

ProDwgtableDeletePostAc
tion

ProNotify.h

Context Change Events
Notifications called after events that change details in the current Creo Parametric
context. They allow your application to leverage the details of these changes as
needed.

Session Context Events
Event type Callback typedef Include file
PRO_DIRECTORY_CHANGE_
POST

ProDirectoryChangePos
tAction

ProNotify.h

PRO_WINDOW_CHANGE_POST ProWindowChangePostAc
tion

ProNotify.h

PRO_POPUPMENU_CREATE_
POST

ProPopupmenuCreatePos
tAction

ProPopupmenu.h

PRO_POPUPMENU_DESTROY_
PRE

ProPopupmenuDestroyPre
Action

ProPopupmenu.h

PRO_WINDOW_VACATE_PRE ProWindowVacatePreAc
tion

ProWindows.h

PRO_WINDOW_OCCUPY_POST ProWindowOccupyPostAc
tion

ProWindows.h

PRO_WINDOW_OCCUPY_
MODEL_POST

ProWindowOccupyModelPos
tAction

ProWindows.h

PRO_GLOBAL_INTERF_CALC_
POST

ProGlobalInterfCalcPos
tAction

ProNotify.h

PRO_ASMCOMP_ACTIVATE_
PRE

ProAsmcompActivatePreAc
tion

ProNotify.h

PRO_ASMCOMP_ACTIVATE_
POST

ProAsmcompActivatePos
tAction

ProNotify.h

Graphics Events
Notifications before and after the repainting of the current Creo Parametric
window. This enables you to overlay your own graphics over the window and
ensure that they get refreshed when the Creo Parametric window is repainted, for
any reason.

Event-driven Programming: Notifications 2017

Note
These notifications will be called many times; for this reason, your callback
routine should be as optimized as possible to avoid performance penalties. For
other techniques that may be used to draw graphics, which will repaint with
the Creo Parametric window, refer to the section on Display Lists. Refer to the
User Interface: Basic Graphics on page 476 chapter for details.

Graphics Events
Event type Callback typedef Include file
PRO_MDL_DISPLAY_PRE ProMdlDisplayPreAction ProMdl.h

PRO_MDL_DISPLAY_POST ProMdlDisplayPostAction ProMdl.h

NC Output Events
Notification of the output from Creo NC of an operation CL data file, or an Creo
NC sequence CL data file. This enables you to perform your own post-processing
on these files. The callback functions are called with arguments that provide the
name of the file created.

NC Output Events
Event type Callback typedef Include file
PRO_NCSEQ_CL_POST ProNcseqClPostAction ProNotify.h

PRO_OPER_CL_POST ProMfgoperClPostAction ProNotify.h

CL Command Events
Notifications that give you the ability to create auxiliary NC sequences with
programmatically created CL commands.

CL Command Events
Event type Callback typedef Include file
PRO_NCL_COMMAND_EXPAND ProClCommandExpandAc

tion
ProClCmd.h

PRO_NCL_COMMAND_GET_LOC ProClCommandGetLocAc
tion

ProClCmd.h

2018 Creo® Parametric TOOLKITUser’s Guide

Mold Layout Events
Notifications that are invoked before entering a corresponding Mold Layout
dialog.

Mold Layout UI Events
Event type Callback typedef Include file
PRO_RMDT_CREATE_IMM_PRE ProRmdtCreateImmPreAc

tion
ProRmdt.h

PRO_RMDT_BOUND_BOX_PRE ProRmdtBoundBoxPreAc
tion

ProRmdt.h

PRO_RMDT_CAV_LAYOUT_PRE ProRmdtCavLayoutPreAc
tion

ProRmdt.h

PRO_RMDT_CREATE_WP_PRE ProRmdtCreateWpPreAc
tion

ProRmdt.h

PRO_RMDT_MATERIAL_PRE ProRmdtMaterialPreAc
tion

ProRmdt.h

PRO_RMDT_MBASE_SELECT_
PRE

ProRmdtMBaseSelectPreAc
tion

ProRmdt.h

Weld Events
Notifications that give you the ability to customize the results generated by Creo
Parametric when gathering info for weld operations.

Weld Events
Event type Callback typedef Include file
PRO_DRAWING_WELD_
SYMPATH_GET

ProDrawingWeldSympathGe
tAction

ProNotify.h

PRO_DRAWING_WELD_
GROUPIDS_GET

ProDrawingWeldGroupids
GetAction

ProNotify.h

PRO_DRAWING_WELD_
SYMTEXT_GET

ProDrawingWeldSymtextGe
tAction

ProNotify.h

Event-driven Programming: Notifications 2019

74
Event-driven Programming:

External Objects
Summary of External Objects ... 2021
External Objects and Object Classes .. 2021
External Object Data ... 2024
External Object References ... 2031
Callbacks for External Objects.. 2033
Warning Mechanism for External Objects .. 2034
Example 1: Creating an External Object .. 2036

This chapter describes the Creo Parametric TOOLKIT functions that enable you to
create and manipulate external objects.

2020 Creo® Parametric TOOLKITUser’s Guide

Summary of External Objects
External objects are objects created by an application that is external to Creo
Parametric. Although these objects can be displayed and selected within a Creo
Parametric session, they can not be independently created by Creo Parametric.
Using Creo Parametric TOOLKIT functions, you can define and manipulate
external objects, which are then stored in a model database.

Note
External objects are limited to text and wireframe entities. In addition, external
objects can be created for parts and assemblies only. That is, external objects
can be stored in a part or assembly database only.

In a Creo Parametric TOOLKIT application, an external object is defined by a
ProExtobj object. This DHandle identifies an external object in the Creo
Parametric database, which contains the following information for the object:

• Object class—A class of external objects is a group that contains objects with
similar characteristics. All external objects must belong to a class. Object class
is contained in the ProExtobjClass object.

• Object data—The object data contains information about the display and
selection of an external object. Object data is contained in the
ProWExtobjdata object.

• Object parameters—External objects can own parameters. You can use the
ProParameter API to get, set, and modify external object parameters.

• Object references—External objects can reference any Creo Parametric object.
This functionality is useful when changes to Creo Parametric objects need to
instigate changes in the external objects. The changes are communicated back
to your Creo Parametric TOOLKIT application via the callback functions.

• Callback functions—Creo Parametric TOOLKIT enables you to specify
callback functions for a class of external objects. These functions are called
whenever the external object owner or reference is deleted, suppressed, or
modified. In this manner, the appearance and behavior of your external objects
can depend on the object owner or reference.

External Objects and Object Classes
This section describes the Creo Parametric TOOLKIT functions that relate to the
creation and manipulation of external objects and object classes. Note that this
description does not address the display or selection of the external object. For
more information on this topic, seeExternal Object Data on page 2024 .

Event-driven Programming: External Objects 2021

Creating External Object Classes
Functions Introduced:

• ProExtobjClassCreate()
• ProExtobjClassDelete()
Every external object must belong to a class. The concept of a “class” enables you
to group together external objects that exhibit similar characteristics. In addition,
classes permit multiple applications to create external objects without conflict.
The ProExtobjClass object contains the name and type of an external object
class. PTC recommends that you supply a class name unique to your application.
The type of the class is an integer that should vary among the different classes.
To register an external object class, pass a completed ProExtobjClass object
to the function ProExtobjClassCreate(). To unregister a class, call the
function ProExtobjClassDelete().

Creating External Objects
Functions Introduced:

• ProExtobjCreate()
• ProExtobjDelete()
• ProExtobjClassGet()
After the object class is registered, you can create the external object by calling
the function ProExtobjCreate(). This function requires as input the object
class and owner of the external object. (Currently, the owner of the external object
can be a part or an assembly only.) As output, this function gives a pointer to the
handle of the newly created external object.
When the external object is created, it is assigned an integer identifier that is
persistent from session to session. The external object is saved as part of the
model database and will be available when the model is retrieved next.
To delete an external object, call the function ProExtobjDelete(). This
function requires as input both the object to be deleted and the class to which it
belongs. To determine the class of an external object, call the function
ProExtobjClassGet().

External Object Owners
Functions Introduced:

• ProExtobjOwnerobjGet()
• ProExtobjOwnerobjSet()

2022 Creo® Parametric TOOLKITUser’s Guide

The owner of an external object is set during the call to ProExtobjCreate().
For example, the “owner” would be the part or assembly where the external object
resides.
To determine the owner of an external object, call the function
ProExtobjOwnerobjGet(). To change the owner, call the function
ProExtobjOwnerobjSet().

Recycling External Object Identifiers
Functions Introduced:

• ProExtobjReusableSet()
• ProExtobjReusableGet()
• ProExtobjReusableClear()
By default, the identifier of an external object is not “recycled.” When you delete
an external object, its identifier is not freed for reuse by external objects that are
subsequently created.
You can override this default behavior using the function
ProExtobjReusableSet(). This function enables external object identifiers
to be recycled. To determine whether external object identifiers are set to be
recyclable, call the function ProExtobjReusableGet(). To reset to the
default behavior (no recycling), call the function
ProExtobjReusableClear().

External Object Parameters
As with features and models, external objects can also have user-defined
parameters. Although you can specify parameters for an external object, there is
no method to retrieve these parameters interactively in Creo Parametric.
Therefore, external object parameters are a way to store information in the Creo
Parametric model that is not accessible to end-users.
You can convert a ProExtobj object to a ProModelitem object by casting.
After this conversion, you can use the function ProParameterCreate() to
create parameters for the ProModelitem object. See the Core: Parameters on
page 210 chapter for more information.

External Types and Identifiers for External Objects
Functions Introduced:

• ProExtobjExttypeSet()
• ProExtobjExttypeGet()

Event-driven Programming: External Objects 2023

• ProExtobjExtidSet()
• ProExtobjExtidGet()
ProExtobj is a DHandle that contains the type, identifier, and owner of an
external object. This information identifies the external object in the Creo
Parametric database.
Some applications might require additional type and identifier information to be
assigned to external objects. That is, the type and identifier may need to be
independent of those assigned within Creo Parametric.
The function ProExtobjExttypeSet() sets an external type for an external
object. This function calls ProParameterCreate() internally and creates a
parameter with the name EXTOBJ_EXTTYPE. The function
ProExtobjExttypeGet() obtains the external type for the specified external
object.
The function ProExtobjExtidSet() sets an external integer identifier for the
specified external object. This function calls ProParameterCreate()
internally and creates a parameter with name the EXTOBJ_EXTID. To get the
external identifier for a given external object, call the function
ProExtobjExtidGet().

Visiting External Objects
Function Introduced:

• ProExtobjVisit()
Using the traversal functions for external objects, you can visit each external
object in turn, and perform some action or filtration on it. The function
ProExtobjVisit() specifies action and filter functions of type
ProExtobjVisitAction() and ProExtobjFilterAction(),
respectively.

External Object Data
Simply creating an external object does not allow the object to be displayed or
selected in Creo Parametric. For this, you must supply external object data that is
used, stored, and retrieved by Creo Parametric. The data is removed from the
model database when the external object is deleted.
External object data is described by the opaque workspace handle
ProWExtobjdata. The functions required to initialize and modify this object
are specific to the type of data being created. That is, creating display data
requires one set of functions, whereas creating selection data requires another.

2024 Creo® Parametric TOOLKITUser’s Guide

Once you have created a ProWExtobjdata object, the manipulation of the
external object data is independent of its contents: the functions required to add or
remove data are the same for both display and selection data.
The following sections describe the Creo Parametric TOOLKIT functions that
relate to external object data. The sections are as follows:

• Display Data for External Objects on page 2025
• Selection Data for External Objects on page 2029
• Manipulating External Object Data on page 2030

Display Data for External Objects
Display data gives information to Creo Parametric about how the external object
is to appear in the model window. This data must include the color, scale, line
type, and transformation of the external object. In addition, display data can
include settings that override the user’s ability to zoom and spin the external
object.
Note that setting display data does not result in the external object being
displayed. To see the object, you must repaint the model window using the
function ProWindowRepaint().

Allocating Display Data
Function Introduced:

• ProDispdatAlloc()
For display data, the workspace handle ProWExtobjdata is allocated using the
function ProDispdatAlloc(). Because the other Creo Parametric TOOLKIT
display data functions require ProWExtobjdata as input, you must call
ProDispdatAlloc() before calling the other functions in this section.
The input for ProDispdatAlloc() is the address of a ProWExtobjdata
object that you declare in your application. You must set this ProWExtobjdata
object to NULL before passing its address to ProDispdatAlloc().

Creating the External Object Entity
Functions Introduced:

• ProDispdatEntsSet()
• ProDispdatEntsGet()
• ProDispdatEntsWithColorSet()

Event-driven Programming: External Objects 2025

External objects are currently limited to text and wireframe entities. You can
specify the entities to be displayed by creating an array of ProCurvedata
objects that contain that necessary information. ProCurvedata is a union of
specific entity structures, such as line, arrow, arc, circle, spline, and text. Note that
when you specify the entities in the ProCurvedata array, the coordinate system
used is the default model coordinate system.
After you have created the array of ProCurvedata objects, you can add entities
to the display data by calling the function ProDispdatEntsSet(). Note that
ProDispdatEntsSet() supports only PRO_ENT_LINE and PRO_ENT_ARC
entities. However, you can draw polygons as multiple lines, and circles as arcs of
extent 2 pi.
To obtain the entities that make up an external object, call the function
ProDispdatEntsGet().
The function ProDispdatEntsWithColorSet() sets the display data for a
list of entities and the color for each entity. The entities that are supported are:
• PRO_ENT_LINE

• PRO_ENT_ARC

The entities are specified in the local coordinates of the external object. Use the
function ProDispdatTrfSet() to transform the local coordinates to model
coordinates.
Example 1: Creating an External Object on page 2036 shows how to specify an
external object that is composed of line segments.

Transformation of the External Object
Functions Introduced:

• ProDispdatTrfSet()
• ProDispdatTrfGet()
• ProExtobjScreentrfGet()
To a perform a coordinate transformation on an external object, you must set the
transformation matrix within the associated display data. To do this, call the
function ProDispdatTrfSet() and pass the transformation matrix as an input
argument. To obtain the transformation matrix contained in a particular set of
display data, call the function ProDispdatTrfGet().
Example 1: Creating an External Object on page 2036 implements a
transformation from default coordinates to a coordinate system that is dependent
on the orientation of a selected surface.

2026 Creo® Parametric TOOLKITUser’s Guide

Note
Even if you do not want to transform your external object from the default
coordinate system, you must specify a transformation matrix. In this case, pass
the identity matrix to ProDispdatTrfSet(). If you omit this step, your
external object will not be displayed.

To obtain the complete transformation of an object from external object
coordinates (default coordinates) to screen coordinates, call the function
ProExtobjScreentrfGet().

Note
In the assembly mode, ProExtobjScreentrfGet() is applicable for
external objects owned only by the top assembly model. Use the function
ProDispdatTrfGet() to retrieve the transformation of external objects in
sub-models in the assembly mode. In the part mode,
ProExtobjScreentrfGet() is applicable for all objects.

External Object Display Properties
Functions Introduced:

• ProDispdatPropsSet()
• ProDispdatPropsGet()
By default, when users spin or zoom in on a model, external objects are subjected
to the same spin and zoom scale as the model. In addition, by default external
objects are always displayed, even if the owner or reference objects are
suppressed. Setting external object display properties within display data enables
you to change these default behaviors.
The ProExtobjDispprops object is an enumerated type that contains the
possible settings for display properties. To set any of these properties within
display data, create a ProExtobjDispprops array that contains your settings
and pass this array to the function ProDispdatPropsSet(). To determine the
display settings for specified display data, call the function
ProDispdatPropsGet().
The settings contained in ProExtobjDispprops are as follows:

Event-driven Programming: External Objects 2027

• PRO_EXTOBJ_ZOOM_INVARIANT—Sets the external object to be invariant
with the zoom scale or magnification of the model. The object appears the
same size at all times.

• PRO_EXTOBJ_SPIN_INVARIANT—Set the external object to be invariant
with the spin or orientation of the model. The object has the same orientation
at all times.

• PRO_EXTOBJ_BLANKED—Blank the display of the external object. This
setting is useful if you want the suppress the external object when the
reference or owner objects are suppressed.

External Object Color
Functions Introduced:

• ProDispdatColorGet()
• ProDispdatColorSet()
The enumerated type ProColortype specifies the colors available for external
objects. To set the object color within display data, call the function
ProDispdatColorSet(). To determine the color in the specified display
data, use ProDispdatColorGet().

Line Styles for External Objects
Functions Introduced:

• ProDispdatLinestyleSet()
• ProDispdatLinestyleGet()
The enumerated type ProLinestyle specifies the line styles available for
external objects. To set the object line style within the display data, call the
function ProDispdatLinestyleSet(). To determine the line style in the
specified display data, use ProDispdatLinestyleGet().

External Object Scale
Functions Introduced:

• ProDispdatScaleSet()
• ProDispdatScaleGet()
To vary the size of your external object without altering the entities themselves,
you must specify an object scale factor as part of the display data. To set the scale
factor, call the function ProDispdatScaleSet(). To determine the scale
factor in the specified display data, use ProDispdatScaleGet().

2028 Creo® Parametric TOOLKITUser’s Guide

Example 1: Creating an External Object on page 2036 shows how to set the scale
of an object to be dependent on the size of the owner object.

Selection Data for External Objects
Functions Introduced:

• ProSeldatAlloc()
• ProSeldatSelboxesSet()
• ProSeldatSelboxesGet()
You can select external objects using the Creo Parametric TOOLKIT selection
function ProSelect(), with the selection option ext_obj. For this selection
to be possible, however, you must designate a set of “hot spots,” or selection
boxes for the object. These selection boxes indicate locations in which mouse
selections will cause the external object to be selected. Selection boxes are
specified as part of the external object selection data.
The function ProSeldatAlloc() allocates selection data in preparation for
the specification of the selection boxes.
A selection box is defined by the pair of points contained in a ProSelbox
object. The coordinates of the points are specified in the external object's
coordinate system (the default coordinates). The line between the points forms the
diagonal of the selection box; the edges of the box lie parallel to the coordinate
axes of the external object. To set the selection boxes within the selection data,
call the function ProSeldatSelboxesSet() and pass as input a pointer to a
list of ProSelbox objects. This enables your external object to have more than
one associated selection box.

Note
PTC recommends that the size and arrangement of the selection boxes be
dependent on the size and shape of the external object. If the external object is
compact and uniformly distributed in all coordinate directions, one selection
box will probably suffice.

However, if the external object is distributed nonuniformly, or is interfering
with other objects, you must designate more specific locations at which
selection should occur.

To obtain the list of selection boxes in a given selection data, call the function
ProSeldatSelboxesGet().

Event-driven Programming: External Objects 2029

The ProSelect() function returns an array of ProSelection objects. To
obtain a ProExtobj object from a ProSelection object, call the function
ProSelectionModelitemGet() and cast the output ProModelitem
directly into ProExtobj. (ProExtobj and ProModelitem are DHandles
with identical declarations.)

Selecting the Node from the External Application
Tree
The tree created by an external application (SPEOS tree) is similar to the Creo
Parametric model tree. Each node of this tree represents an external object that has
been created by the application. The external objects could be different types of
entities, such as, light sources, light sensors, and so on.
Functions Introduced:

• ProSelectExternalhighlightRegister()
• ProSelectExternalselectionRecord()
The function ProSelectExternalhighlightRegister() registers the
call back functions when you select or deselect a node in the user tree or an object
in the graphics window. The notification function
ProSelectionStartNotify() is called when the function ProSelect()
is activated. It notifies the application about entering ProSelect(). The call
back function ProSelectionExtHighlightAct() is called when you
select or deselect an external object. The TOOLKIT application will highlight the
external object or remove the highlight according to the selection. On clicking a
tree node, the application creates a ProSelection object and uses the function
ProSelectExternalselectionRecord() to pass it to ProSelect().
The input arguments of this function are:
• selection—Specifies the selection object created by an external application.
• action—Specifes the type of selection. The valid values are:

○ PRO_SELECT_OVERRIDE—For unmodified selection
○ PRO_SELECT_TOGGLE—For CTRL modified selection.

The function ProSelectionEndNotify() notifies the application on exiting
the function ProSelect().

Manipulating External Object Data
Functions Introduced:

• ProExtobjdataAdd()
• ProExtobjdataSet()
• ProExtobjdataGet()

2030 Creo® Parametric TOOLKITUser’s Guide

• ProExtobjdataRemove()
• ProExtobjdataFree()
The previous two sections describe how to create and modify external object data.
In the case of both display and selection data, the data creation process results in
the opaque workspace handle ProWExtobjdata. The functions in this section
enable you to manipulate how the external object data relates to the object itself.
To add new data to an external object, pass the data handle ProWExtobjdata
to the function ProExtobjdataAdd(). To set the contents of existing object
data, call the function ProExtobjdataSet().
The function ProExtobjdataGet() obtains the handle for the display or
selection data associated with an external object. To specify which type of data
you want to retrieve, pass to this function one of the values in the enumerated type
ProExtobjdataType. The declaration is as follows:

typedef enum
{

PRO_EXTOBJDAT_DISPLAY,
PRO_EXTOBJDAT_SELBOX

} ProExtobjdataType;

To remove data from an external object, use the function
ProExtobjdataRemove(). To free the memory occupied by external object
data, call the function ProExtobjdataFree().

External Object References
You can use external object references to make external objects dependent on
model geometry. For example, consider an external object that is modeled as the
outward-pointing normal of a surface. Defining the surface as a reference enables
the external object to behave appropriately when the surface is modified, deleted,
or suppressed.
In general, an external object can reference any of the geometry that belongs to its
owner. In addition, if the owner belongs to an assembly, the external object can
also reference the geometry of other assembly components, provided that you
supply a valid component path.

Note
Setting up the references for an external object does not fully define the
dependency between the object and the reference. You must also specify the
callback function to be called when some action is taken on the reference.

Event-driven Programming: External Objects 2031

Creating External Object References
Functions Introduced:

• ProExtobjRefAlloc()
• ProExtobjRefFree()
• ProExtobjRefselectionSet()
• ProExtobjRefselectionGet()
• ProExtobjReftypeSet()
• ProExtobjReftypeGet()
• ProExtobjRefAdd()
• ProExtobjRefRemove()
The ProWExtobjRef object is an opaque workspace handle that defines an
external object reference. To allocate the memory for a new external object
reference, call the function ProExtobjRefAlloc(). To free the memory
occupied by an object reference, call the function ProExtobjRefFree().
If you have the ProSelection object that corresponds to your intended
reference geometry, you can set this ProSelection to be the reference by
calling the function ProExtobjRefselectionSet(). To obtain the
ProSelection object for a specified reference, use
ProExtobjRefselectionGet().
You might need to use “reference types” to differentiate among the references of
an external object. To set a reference type, call the function
ProExtobjReftypeSet(). To obtain the reference type of the specified
reference, call the function ProExtobjReftypeGet().
Once you have set the ProSelection and the reference type for an external
object reference, you must add the reference to the external object using the
function ProExtobjRefAdd(). To remove a reference from an external object,
use ProExtobjRefRemove().

Visiting External Object References
Function Introduced:

• ProExtobjRefVisit()
Using the traversal functions for external object references, you can visit each
external object reference in turn, and perform some action or filtration on it. The
function ProExtobjRefVisit() specifies action and filter functions of type
ProExtobjRefVisitAction() and ProExtobjRefFilterAction(),
respectively.

2032 Creo® Parametric TOOLKITUser’s Guide

Callbacks for External Objects
Functions Introduced:

• ProExtobjCBAct()
• ProExtobjCBEnable()
• ProExtobjCallbacksSet()
External objects are associated with their owners and the references that you
specify. Currently, the callbacks mechanism for external objects enables you to
receive notification when the reference is deleted, modified, or suppressed. Your
callback function can respond in a manner appropriate for the action taken on the
reference.
The ProExtobjCallbacks object is a structure that specifies the callback
functions for each action on the external object's owner or reference. Each
callback function is specified by a function pointer of type ProExtobjCBAct.
When you create an external object class, you should also fill in a
ProExtobjCallbacks object for that class. To set the callbacks for the class,
call the ProExtobjCallbacksSet() function.
• Currently, the only supported callbacks for external objects are for deletion,

modification, and suppression.
• You cannot use a callback for an external object that references a Creo

Parametric feature (and not some geometry of it).
The ProExtobjCallbacks data structure is defined as follows:

typedef struct
{

int enabled_cbs;
ProExtobjCBAct display_CB; /* not yet implemented */
ProExtobjCBAct select_CB; /* not yet implemented */
ProExtobjCBAct owner_modify_CB; /* not yet implemented */
ProExtobjCBAct owner_suppress_CB; /* not yet implemented */
ProExtobjCBAct owner_delete_CB; /* not yet implemented */
ProExtobjCBAct ref_modify_CB;
ProExtobjCBAct ref_suppress_CB;
ProExtobjCBAct ref_delete_CB;

} ProExtobjCallbacks;

The first field, enabled_cbs, is a flag that enables and disables the callback
functions. Set each of the other fields in the structure to the name of the callback
function appropriate for each action. To enable or disable the callback functions
for a particular action and object class, call the function
ProExtobjCBEnable().
As shown in the previous structure, the external objects callbacks are implemented
only for cases where the reference is modified, suppressed, or deleted. For this
reason, you must exercise caution when enabling callbacks using
ProExtobjCBEnable(). One of the inputs of the function is an action

Event-driven Programming: External Objects 2033

bitmask that specifies which callback actions are to be enabled. The action
bitmask is composed of members of the enumerated type ProExtobjAction.
The values of the enumerated type are as follows:
typedef enum
{

PRO_EO_ALT_DISPLAY = (1 << 6),
/* alternate display --

not implemented */
PRO_EO_ALT_SELECT = (1 << 7),

/* alternate selection --
not implemented */

PRO_EO_ACT_OWN_MODIF = (1 << 9),
/* not implemented */

PRO_EO_ACT_OWN_SUPPR = (1 << 10),
/* not implemented */

PRO_EO_ACT_OWN_DELETE = (1 << 11),
/* not implemented */

PRO_EO_ACT_REF_MODIF = (1 << 13),
PRO_EO_ACT_REF_SUPPR = (1 << 14),
PRO_EO_ACT_REF_DELETE = (1 << 15)

} ProExtobjAction;

The action bitmask must not contain any callback actions that are not supported.
Given the comments in the ProExtobjCallbacks structure, the only allowed
callback actions are PRO_EO_ACT_REF_MODIF, PRO_EO_ACT_REF_SUPPR,
and PRO_EO_ACT_REF_DELETE.
The following table describes the actions given in the ProExtobjCallbacks
data structure.
Callback Type When it is Triggered
display_CB The external object is displayed. Currently, this is not

implemented.
select_CB The external object is selected. Currently, this is not

implemented.
owner_modify_CB The owner of the external object is modified.

Currently, this is not implemented.
owner_suppress_CB The owner of the external object is suppressed.

Currently, this is not implemented.
owner_delete_CB The owner of the external object is deleted.

Currently, this is not implemented.
ref_modify_CB The reference of the external object is modified.
ref_suppress_CB The reference of the external object is suppressed.
ref_delete_CB The reference of the external object is deleted.

Warning Mechanism for External Objects
Functions Introduced:

2034 Creo® Parametric TOOLKITUser’s Guide

• ProExtobjClassWarningEnable()
• ProExtobjClassWarningDisable()
• ProExtobjWarningEnable()
• ProExtobjWarningDisable()
When users perform some action on the references of an external object, you
might want to display a warning message to ask users to confirm the action. Creo
Parametric TOOLKIT includes functions that implement such warnings, either for
all external objects in a class or for individual external objects. For example, if a
user attempts to delete a feature whose geometry is referenced by a class of
external objects, the Creo Parametric TOOLKIT warning mechanism, if enabled,
would open a warning window that states the potential problem. The users would
pick Yes to continue with the deletion, or No to abort the deletion.
To enable the warnings for a class of external objects, call the function
ProExtobjClassWarningEnable(). Note that all external objects that
belong to the class will inherit the enabled warning if they are created subsequent
to the call to ProExtobjClassWarningEnable().
The input arguments to ProExtobjClassWarningEnable() are the class
object ProExtobjClass and an action bitmask composed of members of the
enumerated type ProExtobjAction (described in the section Callbacks for
External Objects on page 2033). The action bitmask specifies for which actions
the warning is to be displayed. Currently, the only supported actions are PRO_
EO_ACT_REF_SUPPR (suppression of the reference) and PRO_EO_ACT_REF_
DELETE (deletion of the reference).
To have the warnings displayed for both reference suppression and deletion, the
call to ProExtobjClassWarningEnable() would appear as follows:

ProExtobjClassWarningEnable (&User_arrow_class,
PRO_EO_ACT_REF_SUPPR|PRO_EO_ACT_REF_DELETE);

In this call, User_arrow_class is declared as a ProExtobjClass (an
external object class).
To disable the warnings for a class of external objects, call
ProExtobjClassWarningDisable(). Note that all external objects that
belong to the class will inherit the disabled warning if they are created subsequent
to the call to the function ProExtobjClassWarningDisable().
To enable warnings for a single external object (not the entire class), call the
function ProExtobjWarningEnable(). This function is similar to
ProExtobjClassWarningEnable() except the first argument for
ProExtobjWarningEnable() is a pointer to a ProExtobj object. To
disable the warnings for a single external object, call the function
ProExtobjWarningDisable().

Event-driven Programming: External Objects 2035

Example 1: Creating an External Object
The sample code in the file UgExtobjCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_extobj
shows how to create an external object at a location specified by the user. The
external object is a green arrow that is aligned with the normal to a selected
surface.

Note
For the sake of simplicity, the example does not implement selection data.

2036 Creo® Parametric TOOLKITUser’s Guide

75
Event-driven Programming:

Toolkit-Based Analysis
Overview .. 2038
Interactive Creation of Toolkit-Based Analysis.. 2038
Interactive Creation of Toolkit-Based Analysis Feature ... 2039
Storage of Toolkit-Based Analysis Feature in Creo Parametric 2039
Registering a Toolkit-Based Analysis with Creo Parametric....................................... 2040
Analysis Callbacks .. 2040
Creo Parametric TOOLKITAnalysis Information .. 2043
Results Data ... 2043
Analysis Attributes... 2045
Visiting Saved Toolkit-Based Analyses.. 2046
Visiting Toolkit-Based Analyses Features .. 2046
Using the Model without Creo Parametric TOOLKIT... 2046

This chapter describes the functions that enable you to create analysis and analysis
feature objects in a Creo Parametric solid.

2037

Overview
Creo Behavioral Modeling allows the creation of two types of objects in a Creo
Parametric solid:

• Analysis
• Analysis Feature
In Creo Parametric you can create an analysis using the commands under the
Analysis tab. Analyses show the results of certain standard types of measurement
or calculation, for example, curvature of an edge or surface, or the center of
gravity of a solid. Users can name an analysis and store it in the solid, along with
the references to the geometry items it analyses. The analysis is then reevaluated
automatically upon each model regeneration, and can be queried at any time using
the Analysis command. Such an analysis is stored separately from the features and
geometry items in the solid.
An analysis feature is a feature that uses an analysis to determine the values of its
feature parameters and the shape of its geometry items. An analysis feature is a
variety of datum feature and is created using the Creo Parametric Datum
command. An example of the use of an analysis feature is the creation of a
coordinate system datum at the center of gravity of a solid, aligned with its axes of
inertia. Another example is a pair of datum points at the closest points of two parts
in an assembly.
Creo Parametric TOOLKIT analysis functions allow definition of analyses and
analysis features whose computations are performed by callback functions
provided by the Creo Parametric TOOLKIT application. This means that Creo
Parametric TOOLKIT can be used to make analysis computations, and determine
feature geometry, in ways not native to Creo Parametric. We refer to the analyses
and analysis features defined by Creo Parametric TOOLKIT as toolkit-based; this
stresses the fact that the computations could be performed by a separate Creo
Parametric TOOLKIT application.
Creo Parametric TOOLKIT users should practice using standard Creo Parametric
analyses and analysis features before studying toolkit-based analyses.
The functions and data structures specific to toolkit-based analysis features are
declared in the header file ProAnalysis.h.

Interactive Creation of Toolkit-Based
Analysis
If a Creo Parametric TOOLKIT application registers a Toolkit-Based Analysis
type, the Analysis menu on the Creo Parametric toolbar contains an extra button
labeled Toolkit-Based. Click this button to see the Toolkit-Based dialog box.

2038 Creo® Parametric TOOLKITUser’s Guide

The selector at the top of the dialog box shows the types of external analysis
registered by the Creo Parametric TOOLKIT application.
When you have chosen the type, click the Analysis UI button; this calls the Creo
Parametric TOOLKIT callback, which prompts the user for the information
needed by the analysis. When you have answered all the prompts, click Compute.
Compute performs the analysis and displays the resulting text, if any, in the text
area of the dialog box. It may also display some graphics.
When you have clicked Compute, you may also click Info, which displays the
output text in an information window.
The Saved Analyses and Close buttons behave as for standard analyses.

Interactive Creation of Toolkit-Based
Analysis Feature
In Creo Parametric, under the Analysis tab, in the Manage group, select the
Analysis command. This displays the Creo Parametric ANALYSIS dialog box,
which leads the user through the definition of the elements of the analysis feature.
If a Creo Parametric TOOLKIT application is running and has registered at least
one type of toolkit-based analysis, there will be an additional button labeled
Toolkit-Based in the Type section.
Set the name of the analysis first, set the type to Toolkit-Based Analysis, and
continue to the next step, which is called “Definition”. The Toolkit-Based dialog
box appears. This behaves exactly as for an external analysis, until you click the
Close button. It then returns to the ANALYSIS dialog box, to allow you to continue
specifying the feature elements.
The remaining elements are Result Params and Result Datums. These behave
exactly as for standard analysis features, except that the parameters and datums
are defined by the Creo Parametric TOOLKIT application. One or other may be
absent if the toolkit-based analysis defines no parameters or no datums.

Storage of Toolkit-Based Analysis
Feature in Creo Parametric
A toolkit-based analysis feature is stored in Creo Parametric in exactly the same
way as any other feature. It appears in the model tree as a feature of type Analysis,
and all the regular Feature commands can be used on it.
The references to existing geometry that the feature needs to calculate its own
parameters and geometry are given to Creo Parametric by the Creo Parametric
TOOLKIT application in the form of ProSelection structures. Creo
Parametric stores these references, using the standard method for storing feature

Event-driven Programming: Toolkit-Based Analysis 2039

references. This means that the Creo Parametric TOOLKIT application does not
need to store this information, and that the feature automatically has the correct
behavior for the following Creo Parametric functions:

• Feature Regeneration—Creo Parametric knows from the feature references
what other features it depends on, and therefore whether the features needs to
be included in a particular regeneration.

• Rerouting Features
• Patterning Features
The Creo Parametric TOOLKIT application may also give Creo Parametric the
values of any variables that control the geometry, and Creo Parametric stores them
as feature dimensions in the new feature. The Creo Parametric TOOLKIT
application can then read the current dimension values when recomputing the
feature geometry. This means the feature correctly responds to dimension changes
as a result of, for example, being driven by a relation.
The Creo Parametric TOOLKIT application must store as external data any
information about toolkit-based analysis features that is not stored as either
geometry references or dimensions.

Registering a Toolkit-Based Analysis with
Creo Parametric
Function Introduced:

• ProAnalysisTypeRegister()
The function ProAnalysisTypeRegister() registers a toolkit-based
analysis with Creo Parametric by specifying its type name and the set of callback
functions to be used when creating it and performing the computation. Call this
function in user_initialize().
If called correctly, both the Analysis command and the ANALYSIS dialog box used
in creating an analysis feature will include the button Toolkit-Based as the analysis
type. Refer to the sections Interactive Creation of Toolkit-Based Analysis on page
2038 and Interactive Creation of Toolkit-Based Analysis Feature on page 2039 for
more information on creating these objects.

Analysis Callbacks
When registering a Toolkit-Based Analysis type, callbacks must be provided for
each of the following 13 types:

• ui

• dims

2040 Creo® Parametric TOOLKITUser’s Guide

• infoalloc

• infofree

• compcheck

• compute

• display

• output

• savecheck

• infosave

• inforetrieve

• infocopy

• result

Each callback is passed an argument of the ProAnalysis type, which is an
opaque handle and identifies the analysis information stored by Creo Parametric.
The following table explains when the callbacks are called, and how each one
should be used.
When Creo Parametric creates a toolkit-based analysis or analysis feature:
Callback Description
infoalloc Allocate memory for the Creo Parametric TOOLKIT

application information about the toolkit-based
analysis.

ui Creo Parametric TOOLKIT prompts the user for
inputs that define the analysisfor example, select a
surface datum point on which to position a csys.

compcheck Tell Creo Parametric whether the computation can be
performed. If the Creo Parametric TOOLKIT
application cannot perform the computation (for
example, because input data is unavailable), it
returns an error and the regeneration fails.

compute Perform the analysis computation and store the
results in memory.

display Display graphics showing the computation result.
output Pass a set of text lines to Creo Parametric for display

in the ANALYSIS dialog box to show the result of
the computation.

infocopy Copy the application information from an existing
analysis to a new one. Call infocopy during
creation because of the way in which Creo
Parametric handles feature creation.

Event-driven Programming: Toolkit-Based Analysis 2041

Callback Description
dims Creo Parametric TOOLKIT gives Creo Parametric a

list of double values needed to calculate the
geometry. Creo Parametric stores these as model
dimensions.

result Creo Parametric TOOLKIT gives Creo Parametric a
description of the feature parameters and geometry
items that result from the computation of the
analysis. Creo Parametric may also call this callback
when it needs to know only the number and names of
parameters and datums; an example is when the user
selects Feature Info. For more details, refer to the
section Results Data on page 2043.

When the Creo Parametric user saves the analysis to the solid:
Callback Description
savecheck Tell Creo Parametric whether the description of the

analysis can be saved.
infosave Give Creo Parametric a list of geometry items

referenced by the analysis. Creo Parametric stores
these using its own internal mechanism for storing
references. The references appear in the model as
feature references, and are used to determine the
relationship of the feature to other features, and
therefore when the feature needs to be regenerated.

OR

Store any other data as external data.

When the Creo Parametric user retrieves a solid containing analyses:
Callback Description
inforetrieve Creo Parametric provides an array of

ProSelection objects representing the geometry
references it stored with the analysis. (This means
that the Creo Parametric TOOLKIT application does
not need to save these references between
sessionsCreo Parametric uses its own mechanism.)

When the Creo Parametric user leaves the ANALYSIS dialog box without saving
the new analysis, or erases a solid containing a toolkit-based analysis:
Callback Description
infofree The Creo Parametric TOOLKIT application frees the

memory used by its internal description of the
analysis.

Many of the callbacks will be called during other commands in Creo Parametric
whenever the toolkit-based analysis or analysis feature is affected.

2042 Creo® Parametric TOOLKITUser’s Guide

Creo Parametric TOOLKITAnalysis
Information
Functions Introduced:

• ProAnalysisInfoGet()
• ProAnalysisInfoSet()
• ProAnalysisTypeGet()
The Creo Parametric TOOLKIT application must keep its own description of the
analysis in memory in order to perform the computation. This memory is
allocated, filled, and freed in the callbacks provided, as described in the section
Analysis Callbacks on page 2040.
The callback-calling sequence may vary depending upon exactly what the Creo
Parametric user does. This means Creo Parametric TOOLKIT applications should
not use global variables to pass the “current” analysis from one callback to
another.
Instead of such variables, Creo Parametric can store a pointer to the Creo
Parametric TOOLKIT data stored inside the ProAnalysis object. Use function
ProAnalysisTypeGet() to return the type of a specified analysis. The
infoalloc callback should end with a call to ProAnalysisInfoSet(),
which gives Creo Parametric the pointer to the new description. Every other
callback that needs to use this data should call ProAnalysisInfoGet() to
get a pointer to the application data for the analysis object, rather than assume this
by context.
Creo Parametric cannot access the user data, nor can it provide general storage of
this data in the Creo Parametric file when the solid is saved. As explained in the
section Analysis Callbacks on page 2040 earlier, the callbacks infosave and
inforetrieve respectively give to Creo Parametric, and return after retrieval,
geometry references contained in the information; double values can be stored as
dimensions. Note that any other information the application needs to store should
be saved and retrieved inside infosave and inforetrieve using Creo Parametric
TOOLKIT external data.

Results Data
This section describes in more detail the data given to Creo Parametric by the
Creo Parametric TOOLKIT application as the output from the results callback.
The output consists of two arrays, one for the feature parameters, the other for the
feature geometry. Each of these is a ProArray allocated by Creo Parametric
before calling the callback.
The structure for a feature parameter is:
typedef struct analysis_param

Event-driven Programming: Toolkit-Based Analysis 2043

{
ProName name;
ProBoolean create;
ProLine description;
ProParamvalue *values;

} ProAnalysisParameter;

The name is that of the feature parameter that will be created. The create flag
shows the default setting of the Create option for the parameter in the ANALYSIS
dialog box. The description appears alongside the parameter in the ANALYSIS
dialog box. The array of values should have only a single item in it in the current
release. The structure ProParamvalue is the same one used for accessing user
parameters through the functions in ProParameter.h and
ProParamvalue.h. The value type must be “double” in the current release.
The structure for a geometry item is:
typedef struct analysis_geom
{

ProName name;
ProBoolean create;
ProAnalysisEntityType type;
ProAnalysisEntity *shapes;

} ProAnalysisGeomitem;

The name is given to the resulting datum (NOT to the feature), but with a
numerical suffix to ensure that the name is unique in the Creo Parametric model.
The create flag is exactly as for parameters.
The entity type is an enum which is a subset of the object types in ProType. The
types supported by this release are:
PRO_ANALYSIS_CURVE Curve
PRO_ANALYSIS_CSYS Coord csys
PRO_ANALYSIS_POINT Datum point
PRO_ANALYSIS_COMP_CRV Composite curve
PRO_ANALYSIS_SURFACE Surface

Array “shapes” contains any number of geometric entities of the same type. The
union that represents an entity shape is:
typedef union
{

ProAnalysisSrfData *surface;
ProQuiltdata *quilt;
ProCurvedata *curve;
ProCsysdata csys;

} ProAnalysisEntity;

The fields in this union all have types that are generic geometry types in Creo
Parametric TOOLKIT, and are declared in the appropriate headers:
ProSurfacedata.h, ProQuiltdata.h, ProCurvedata.h,
ProCsysdata.h, ProEdgedata.h. The first three fields, although they are

2044 Creo® Parametric TOOLKITUser’s Guide

pointers, are not opaque: in spawn mode or asynchronous mode they point to
memory in the Creo Parametric TOOLKIT process, not in the Creo Parametric
process. It is recommended that you build these structures using the functions in
the corresponding header files, for example, ProCurvedataAlloc(),
ProLinedataInit(), and so on.

ProAnalysisSrfData Structure
The ProAnalysisSrfData structure is used to define a datum surface from a
toolkit-based analysis feature. This structure consists of:
typedef struct ProAnalysisSrfData
{

ProEdgedata *edge_data;
ProSurfacedata *pro_surface;

} ProAnalysisSrfData;

The ProSurfacedata* structure contains the surface shape, parameters, and a
populated ProContourdata structure referencing the boundary edges. The
ProEdgedata* member should be a ProArray of edge geometric data whose
ids are referenced by the contour data in the surface data structure.
Function Introduced:

• ProAnalysissrfdataAlloc()
The function ProAnalysissrfdataAlloc() allocates the
ProAnalysisSrfData data structure.

Example 1: Offset Coordinate System Datum
The sample code in the file UgExtAnalysisSurfcsys.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_ext_
analysis shows a Creo Parametric TOOLKIT application that defines a toolkit-
based analysis that builds a coordinate system datum at an offset from a surface
point. The Z axis can be an inward or an outward normal to the surface, the X and
Yaxes are aligned with the UV mesh lines in the surface, and the origin can be
offset in the Z direction. The offset value is stored as a feature dimension.

Analysis Attributes
Functions Introduced:

• ProAnalysisAttrSet()
• ProAnalysisAttrIsSet()
These functions allow you to get and set certain attributes on a toolkit-based
analysis. The only attribute defined in the current release is PROANALYSIS_
COMPUTE_OFF. If this is set, the compute and result callbacks will not be called

Event-driven Programming: Toolkit-Based Analysis 2045

during regeneration of the model. If the toolkit-based analysis belongs to a feature,
the geometry of the feature will be frozen until the PROANALYSIS_COMPUTE_
OFF is unset again. If the feature geometry includes a surface curve, the 3D
location of the curve will be recalculated during regeneration in accordance with
the existing UV curves definition but using the new geometry of the surface. This
means the curve remains in the surface even if the surface moves while
COMPUTE_OFF is TRUE.
Use the PROANALYSIS_COMPUTE_OFF attribute to temporarily turn off the
toolkit-based analysis to save time when making other changes to the model.

Visiting Saved Toolkit-Based Analyses
Functions Introduced:

• ProSolidAnalysisVisit()
• ProAnalysisNameGet()
The function ProSolidAnalysisVisit() visits a saved toolkit-based
analysis in a part or assembly. It does not visit standard saved analyses, nor
toolkit-based analyses in features.
The function ProAnalysisNameGet() provides the name under which a
toolkit-based analysis is saved.

Visiting Toolkit-Based Analyses Features
Functions Introduced:

• ProFeatureAnalysisGet()
To visit analyses in analysis features, use ProSolidFeatureVisit(), filter
for features whose type is PRO_FEAT_ANALYSIS, and call
ProFeatureAnalysisGet() on each feature.

Using the Model without Creo Parametric
TOOLKIT
If a model contains external analyses or external analysis features of a type
defined by a Creo Parametric TOOLKIT application, and that model is retrieved
into Creo Parametric while the Creo Parametric TOOLKIT application is not
running, Creo Parametric will not attempt to recompute those analyses during
regeneration. Saved toolkit-based analyses will retain their old values, and toolkit-
based analysis features will have their geometry frozen.

2046 Creo® Parametric TOOLKITUser’s Guide

If a Creo Parametric TOOLKIT application is terminated during a Creo
Parametric session, any toolkit-based analysis types it registered will be
automatically deregistered, and any analyses that use those types will be frozen.

Event-driven Programming: Toolkit-Based Analysis 2047

76
Event-driven Programming:

Foreign Datum Curves
Foreign Datum Curves... 2049

This chapter describes the Creo Parametric TOOLKIT functions that enable you to
create foreign datum curves.

2048 Creo® Parametric TOOLKITUser’s Guide

Foreign Datum Curves
In Creo Parametric TOOLKIT, you create foreign datum curves using the feature
creation techniques described in the chapter Element Trees: Principles of Feature
Creation on page 764. The header file ProForeignCurve.h contains the
element tree structure and a table that maps each element to an element identifier,
value type, and valid values.
The following figure shows the element tree structure for foreign datum curve
creation. Note that all elements are required.

Element Tree for Foreign Datum Curve

As the element tree implies, foreign datum curve creation requires that you
provide the feature type, curve type, curve class, reference coordinate system, data
used in the analytical representation of the curve, and curve continuity. Creo
Parametric uses this information, together with an evaluation function, to create an
internal representation of the curve.

Providing an Evaluation Function
Function Introduced:

• ProForeignCurveEvalFunction()
In addition to building the element tree for your datum curve feature, you must
provide its analytical representation to Creo Parametric. This representation is
made available to Creo Parametric in a special function called an evaluator, or
evaluation function.

Event-driven Programming: Foreign Datum Curves 2049

The evaluation function must contain parameterized equations for the X, Y, and Z
coordinates of points that define the curve. If C(X,Y,Z) is a function representing
the curve in three-dimensional space, you can represent the parameterized
equations for each coordinate as follows:

X = f(t)
Y = g(t)
Z = h(t)

In these equations, the parameter t ranges from 0 to 1 over the extent of the curve.
For example, a parametric representation of a circle of radius R lying in the XY-
plane, whose center coincides with the origin, is as follows:

X = R*cos(2*PI*t);
Y = R*sin(2*PI*t);
Z = 0;

In these equations, PI = 3.14159.
Creo Parametric TOOLKIT provides the prototype for the evaluation function.
The syntax is as follows:
typedef ProError (*ProForeignCurveEvalFunction)
(
ProName class, /* input */
wchar_t *data_string, /* input */
ProSelection csys, /* input */
double curve_param, /* input */
ProVector xyz_point, /* output */
ProVector deriv1, /* output */
ProVector deriv2 /* output */

);

The function arguments are as follows:

• class—Identifies the type of curves generated by the evaluation function.
• data_string—The flag that controls specific attributes of the curve.
• csys—The reference coordinate system with respect to which the curve

geometry is defined. Pass it to the evaluation function as a ProSelection
object.

• curve_param—The parameter value at which the X, Y, and Z coordinates, as
well as the first and second derivatives, will be evaluated.

• xyz_point—The X, Y, and Z coordinates at the value of curve_param.
• deriv1—The values of the first derivatives of X, Y, and Z with respect to the

parameter, at the value of curve_param.
• deriv2—The values of the second derivatives of X, Y, and Z with respect to

the parameter, at the value of curve_param.
All arguments are passed to the evaluation function by Creo Parametric, based on
the values you provide for the elements in the element tree.

2050 Creo® Parametric TOOLKITUser’s Guide

A single evaluation function can be used to create a number of curve variations
within a given class. The parameterized curve equations typically contain
constants whose values control the shape, size, location, and orientation of the
curve. You can write the evaluation function such that, depending on the value of
the data_string argument, different values of those constants will be used to
calculate the location of points on the curve.

Curve Continuity
Curve continuity, in a sense, defines the smoothness of intersections between the
ends of the foreign curve and other geometry in the model. It also defines the
continuity of three-dimensional geometry created from the curve, such as a swept
surface. First-order continuity implies that the first derivatives of two adjoining
curve segments are equal at the point at which the curves join. Second-order
continuity is similarly defined. Depending on the curve continuity you want, the
evaluator function needs to contain first and second derivatives of the
parameterized curve equations.
You specify the curve continuity using the PRO_E_CURVE_CONTINUITY
element in the element tree. The valid values, contained in the enumerated type
ProForeignCrvCont, are as follows:

• PRO_FOREIGN_CURVE_CALC_XYZ

• PRO_FOREIGN_CURVE_CALC_XYZ_1_DER

• PRO_FOREIGN_CURVE_CALC_XYZ_1_AND_2_DER

These values correspond to zeroth-, first-, and second-order continuity,
respectively. If you use the value PRO_FOREIGN_CURVE_CALC_XYZ, Creo
Parametric passes NULL for deriv1 and deriv2 to the evaluation function.
Similarly, if you use the value PRO_FOREIGN_CURVE_CALC_XYZ_1_DER,
Creo Parametric passes NULL for deriv2 to the evaluation function. Therefore,
you should check for NULL values of deriv1 and deriv2 in your evaluation
function before trying to assign derivative values to them.
Creo Parametric calls your evaluation function multiple times for a series of
values of the curve parameter, ranging from 0 to 1. The function outputs the
following information:

• X, Y, and Z coordinates of the curve at the specified parameter value
• Values of the first and second derivatives, as needed for the desired curve

continuity
These values are then used by Creo Parametric to construct the curve.

Binding the Evaluation Function to a Class
Function Introduced:

Event-driven Programming: Foreign Datum Curves 2051

• ProForeignCurveClassEvalSet()
The evaluation function must be bound to a class. This is done with a call to the
function ProForeignCurveClassEvalSet(). The function takes as
arguments the class name and a pointer to the evaluation function. If you call
ProForeignCurveClassEvalSet() and pass NULL for the evaluation
function pointer, it unbinds a previously bound evaluation function from the class.

2052 Creo® Parametric TOOLKITUser’s Guide

77
Task Based Application Libraries

ProArgument and Argument Management .. 2054
Creating Creo Parametric TOOLKIT DLLTask Libraries ... 2055
Launching Synchronous J-Link Applications.. 2061

Applications created using the different Creo Parametric API products are
interoperable. These products use Creo Parametric as the medium of interactions,
eliminating the task of writing native -platform specific interactions between
different programming languages.

2053

ProArgument and Argument Management
Use the data structure ProArgument to pass application data to and from tasks
in other applications. The declaration for this structure is:

typedef struct pro_argument
{

ProName label;
ProValueData value;

} ProArgument;

The ProValueData structure supports the following argument types:

• Integer
• Double
• String (char*)
• String (wchar_t*)
• Boolean
• ProSelection

• ProMatrix

Do not use the value type PRO_VALUE_TYPE_POINTER (provided with this
structure in order to support feature element tree values) when passing arguments
between applications.
Functions Introduced:

• ProArgumentByLabelGet()
• ProValuedataStringSet()
• ProValuedataWstringSet()
• ProValuedataTransformGet()
• ProValuedataTransformSet()
• ProArgumentProarrayFree()
Use the function ProArgumentByLabelGet() to locate an argument within a
ProArray of ProArgument structures passed between applications.
Use the function ProValuedataStringSet() to allocate and copy memory
into the ProValuedata structure for a char* argument. Using this function
ensures that ProArgumentProarrayFree() releases all memory in an
arguments array.
Use the function ProValuedataWstringSet() to allocate and copy memory
into the ProValuedata structure for a wchar_t* argument. Use this function
to ensure that ProArgumentProarrayFree() releases all memory in an
arguments array.

2054 Creo® Parametric TOOLKITUser’s Guide

Use the function ProValuedataTransformSet() to allocate and copy
memory into the ProValuedata structure for a ProMatrix argument. Use
this function to ensure that ProArgumentProarrayFree() releases all
memory in an arguments array.
Use the function ProValuedataTransformGet() to copy a ProMatrix
value into a local variable. The matrix data is not directly accessible from the
double** member of the ProValuedata structure.
Use the function ProArgumentProarrayFree() to completely free an array
of ProArgument structures.

Creating Creo Parametric TOOLKIT DLL
Task Libraries
Functions that are intended to act as Creo Parametric TOOLKIT task library
functions must have the same signature as ProTkdllFunction():

typedef ProError (*ProTkdllFunction) (
ProArgument* inputs, ProArgument** outputs);

Use the preprocessor macro PRO_TK_DLL_EXPORT with any function that must
be accessible to external applications. This macro provides platform-specific
instructions to the compiler to make the function visible to other external
applications. This macro must be placed in the function prototype, if it exists, and
in the function definition if the prototype does not exist.
Some platforms require externally visible symbols to be declared on the
application link line.

Memory Management in Task Library Functions
To avoid memory leaks or overwrites, the DLL functions must use proper memory
management. The DLL function must:

• Ensure that the contents of the input ProArgument array are not freed. This
is taken care of by the calling application and the Creo Parametric TOOLKIT
communications code.

• Use the ProValuedata*Set() functions to assign values to the output
ProArgument array. This allows the calling application to free the output
array with ProArgumentProarrayFree().

Example 1: An Exported Toolkit Task Function
The sample code in the file UgImportfeatCreate.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
featcreat, function demonstrates how you can set up and implement a Creo

Task Based Application Libraries 2055

Parametric TOOLKIT task function accessible from other Creo Parametric
auxiliary applications. It uses the required signature and macro for task functions.
It parses the input argument array to search for parameters required by the task.

Launching Creo Parametric TOOLKIT DLL
Functions
Functions Introduced:

• ProToolkitDllLoad()
• ProToolkitTaskExecute()
• ProToolkitDllUnload()
• ProToolkitDllIdGet()
• ProToolkitDllHandleGet()
Use the function ProToolkitDllLoad() to register and start a Creo
Parametric TOOLKIT DLL. The input parameters of this function are similar to
the fields of a registry file and are as follows:

• app_name—The name of the application to initialize.
• exec_file—The DLL file to load, including its full path.
• text_dir—The path to the application’s message and UI text files.
• user_display—Set this parameter to PRO_B_TRUE if you want the interactive

user to be able to see the application registered in the Creo Parametric User
Interface and to see error messages if the application fails.

The function outputs a handle to the loaded DLL in the form of a
ProToolkitDllHandle. If the function fails to load the DLL, the function
outputs information describing the failure and the application's user_
initialize() function is called.
Use the function ProToolkitTaskExecute() to call a properly designated
function of the Creo Parametric TOOLKIT DLL library. You can pass arbitrary
combinations of input arguments to the library function.
Use the function ProToolkitDllUnload() to shutdown a Creo Parametric
TOOLKIT DLL previously loaded by ProToolkitDllLoad(). The
application's user_terminate() function is called.
Use the function ProToolkitDllIdGet() to get a string representation of the
DLL application. The string representation can be sent to other applications,
which can use ProToolkitDllHandleGet() to obtain the Creo Parametric
TOOLKIT DLL handle using this string representation. Pass NULL to the first
argument of ProToolkitDllIdGet() to get the identifier for the calling
application.

2056 Creo® Parametric TOOLKITUser’s Guide

Custom Creo Parametric TOOLKIT DLLTasks for
Creo Distributed Batch
You can create a customized Creo Distributed Batch task by providing a Creo
Parametric TOOLKIT DLL to be run by the Creo Distributed Batch service. The
steps required to create and deploy a custom DLL task for Creo Distributed Batch
are as follows:

• Compose the Creo Parametric TOOLKIT DLL containing a function that
meets the criteria for a custom DLL task function. Refer to the Creating Creo
Parametric TOOLKIT DLLTask Libraries on page 2055 section for the
function signature. Use the standard Creo Distributed Batch arguments while
coding the function. Refer to the Coding a Custom DLLTask Function on
page 2057 section for more information on the arguments.

• Create a DLL registry file for Creo Distributed Batch. Refer to the Registry
File for Custom DLLTasks on page 2059 section for more information.

• Create a TTD (Task Type Definition) file specifying the Creo Parametric
TOOLKIT DLL and the custom task function to be executed by the custom
task. Refer to the TTD File Format for Custom DLLTasks on page 2059
section for more information.

Coding a Custom DLLTask Function
Creo Distributed Batch provides the following input arguments to the custom DLL
task function:

Note
All the input arguments are of the widestring data type.

• DBS_WORKING_DIRECTORY—Specifies the full path of the working
directory for the Creo Distributed Batch service. It stores all thelog, inf, and
output files generated during the execution of a custom task.

• DBS_CURRENT_OBJECT_NAME—Specifies the name of the object that will
acted upon by the custom DLL task function.

• DBS_CURRENT_OBJECT_TYPE—Specifies the type of the object such as a
3D model, assembly, or drawing. The value of this argument will be a
widestring containing an integer value of the type that matches with the values
in the enumerated type ProMdlType.

Task Based Application Libraries 2057

Creo Distributed Batch supplies any additional input arguments and their values,
if they are listed in a TTD file, as <USER_DATA></USER_DATA> tags within
the <TKFUNC></TKFUNC> node. Each user data tag is supplied as an
independent argument.
The custom DLL task function can influence the state of Creo Distributed Batch
and the status of the task through one of the following output arguments. If an
argument is not supplied, the current or default value is used.

Note
All the output arguments are of the widestring data type.

• DBS_CURRENT_OBJECT_NAME—Specifies the name of the generated
object. This output informs Creo Distributed Batch that a model with this
name should be used for other TTD entries that follow.

• DBS_CURRENT_OBJECT_TYPE—Specifies the type of the generated object
such as a 3D model, assembly, or drawing. The value of this argument will be
a widestring containing an integer value of the type that matches with the
values in the enumerated type ProMdlType. This output informs Creo
Distributed Batch that a model of this type should be used for other TTD
entries that follow.

• DBS_IGNORE_FILE—By default, the Creo Distributed Batch service returns
any file generated in the working directory, except for report type files such as
log, inf and txt. The names of the files specified by this output argument
will not be included in the output returned to the client. You can return more
than one argument of this type.

• DBS_OUTPUT_FILE—Some file types such as log, inf and txt are not
transferred to the Creo Distributed Batch client by default. File names
specified by this output argument indicate that a particular file such as
trail.txt should be passed back to the client. This file is always returned
even if Creo Distributed Batch ignores it. This argument is not required for
files returned by default. You can return more than one argument of this type.

• DBS_OUTPUT_DIRECTORY—Specifies the output directory containing all
files except ones such as trail files or log files that are ignored by Creo
Distributed Batch. This optional argument is required only if the contents of
the output directory are different from the input working directory.

• DBS_MESSAGE—Specifies the user-visible message that will be printed in the
log file generated by the custom DLL task function. This message is especially
useful if the function returns an error.

2058 Creo® Parametric TOOLKITUser’s Guide

In case of chained TTD tasks (described in the TTD File Format for Custom DLL
Tasks on page 2059 section), the output arguments generated by the first TTD
containing the custom DLL task function are supplied as input arguments to the
second TTD within the same file.
The custom DLL task function should return one of the following types of errors:

• PRO_TK_NO_ERROR—Specifies that the task function executed successfully.
• PRO_TK_BAD_INPUTS—Specifies that the task function was called with

incorrect input arguments.

Registry File for Custom DLLTasks
Registering a custom Creo Parametric TOOLKIT DLL means providing
information to the Creo Distributed Batch service about the files that form the
DLL.
An example of the registry file is as follows:
name pt_userguide.dll
exec_file <creo_toolkit_loadpoint>/$<machine_type>/obj/pt_userguide.dll
text_dir <creo_toolkit_loadpoint>/protk_appls/pt_userguide/text
where:
<creo_toolkit_loadpoint> refers to the directory that forms the loadpoint of
Creo Parametric TOOLKIT under the Creo Parametric installation.
<machine_type> refers to the type of machine on which Creo Parametric
is installed. For example x86e_win64.

The fields of the above registry file are described below:

• name—Specifies the name of the Creo Parametric TOOLKIT DLL to be used
as the dllname attribute in the TTD file.

• exec_file—Specifies the full path to the DLL binary file on the service
machine.

• text_dir—Specifies the directory containing language-specific directories
that include the menu and message files used by the DLL.

The registry file must be named dbatchs.dat The DLL registry file must be
visible to the Creo Distributed Batch service on the service machine. To make it
visible, place the dbatchs.dat file in the same location as the Creo Distributed
Batch service executable dbatchs.exe available in the <creo_loadpoint>\
<datecode>\Common Files\$<machine_type>\nms directory. More than one
custom DLL can be listed in a given dbatchs.dat file.

TTD File Format for Custom DLLTasks
TTD files serve as templates for all the common tasks that can be performed using
Creo Distributed Batch. Refer to the Creo Distributed Batch Help for complete
information about the nodes included in a TTD file.

Task Based Application Libraries 2059

For a custom DLL task, specify the name of the Creo Parametric TOOLKIT DLL
as the dllname attribute and the function ProToolkitTaskExecute() that
causes Creo Parametric to execute the task function as the func attribute within
the <TKFUNC></TKFUNC> node in a TTD file. Specify the name of the custom
DLL task function in the <DLL_FUNCTION></DLL_FUNCTION> tag within
the <TKFUNC></TKFUNC> node. You can also include the required <USER_
DATA></USER_DATA> tags within the <TKFUNC></TKFUNC> node.
Additionally, you can specify an existing Creo Parametric TOOLKIT function
along with its input arguments and enumerated types within a <TKFUNC></
TKFUNC> node. ATTD file containing multiple <TKFUNC></TKFUNC> nodes
is called a chained TTD.

Example 2: Chained TTD Task to convert a Creo Parametric model into a
simplified representation in the VRML format
Following is an example of a TTD file for a custom DLL task function.
<TTD version="1.0" created_by="PTC">

<DESCRIPTION>Load and call external DLL to change the
current model to simprep</DESCRIPTION>

<DETAILS>Load an external Creo Parametric TOOLKIT DLL into the
Creo Parametric session</DETAILS>

<SERVICE name="dbatchs"/>
<TKFUNC func="ProToolkitTaskExecute"

dllname="pt_userguide.dll">
<DLL_FUNCTION>TestSimprepActivateTask</DLL_FUNCTION>
<USER_DATA name="SIMP_REP">NO_B</USER_DATA>

</TKFUNC>
<!-- Export to VRML format -->
<TKFUNC func="ProExportVRML">
</TKFUNC>

</TTD>

In the above simprep.ttd file, the function ProToolkitTaskExecute()
executes the custom task function TestSimrepActivateTask defined in
pt_userguide.dll. The function TestSimrepActivateTask converts a
Creo Parametric model into a simplified representation. The name of the
simplified representation to be created must be specified in the <USER_
DATA></USER_DATA> tag.
The activated simplified representation is converted into the VRML format by the
second <TKFUNC></TKFUNC> node entry in the chained TTD task. This part of
the execution is directly handled by Creo Distributed Batch.
The C language code for the custom task function
TestSimrepActivateTask used in the simprep.ttd file is present in the
sample code in the file UgInterfaceExport.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_
interface.

2060 Creo® Parametric TOOLKITUser’s Guide

Launching Synchronous J-Link
Applications
The functions described in this section allow Creo Parametric TOOLKIT API
users to launch a synchronous J-Link application and call methods within it with
user-specified arguments.
The ability to launch and control a J-Link application by a Creo Parametric
TOOLKIT API enables:

• Code reuse through the ability to create J-Link libraries that can be called from
Creo Parametric TOOLKIT or other APIs.

• Creation of platform independent library routines.
Functions Introduced:

• ProJlinkApplicationStart()
• ProJlinkTaskExecute()
• ProJlinkApplicationStop()
Use the function ProJlinkApplicationStart() to register and start a J-
Link application. The input parameters of this function are similar to the fields of
a registry file and are as follows:

• app_name—Assigns a unique name to this J-Link application.
• java_app_class—Specifies the fully qualified class and package name of the

Java class that contains the J-Link application’s start and stop method.
• java_app_start—Specifies the start method of the program.
• java_app_stop—Specifies the stop method of the program.
• java_app_add_classpath—Specifies the locations of packages and classes that

can be loaded when running a Java program. Can be NULL, if not needed
• text_dir —Specifies the application text path for menus and messages. Can be

NULL if the application does not use menus or messages.
• user_display—Specifies whether to display the application in the Auxiliary

Applications dialog box in Creo Parametric.
The function provides the ProJlinkAppHandle handle to the J-Link
application. If the start method throws an exception, the description of the
exception is stored in the argument startup_exception.
The function ProJlinkTaskExecute() calls a registered task in a J-Link
application. The input parameters are:

• handle—Specifies the handle to the J-Link application.
• task_id—Specifies the task to be executed. The J-Link application should

register the task using the J-Link method

Task Based Application Libraries 2061

pfcSession.BaseSession.RegisterTask(). Refer to J-Link
documentation for more information on the RegisterTask() method.

• input_args—Specifies the input arguments to be passed to the task.
The output of this function is an array of arguments of type ProArgument.
These arguments are returned by the J-Link task method.
If the method throws an exception, the description of the exception is stored in the
output argument exception.
The function ProJlinkApplicationStop() stops the J-Link application
specified by the ProJlinkAppHandle application handle. The function
activates the application’s stop method.
If the stop method throws an exception, the description of the exception is stored
in the output argument exception.

2062 Creo® Parametric TOOLKITUser’s Guide

78
Technical Summary of Changes

Technical Summary of Changes for Creo 8.0.0.0 ... 2064
Technical Summary of Changes for Creo 8.0.1.0 ... 2075
Technical Summary of Changes for Creo 8.0.2.0 ... 2076

2063

Technical Summary of Changes for Creo
8.0.0.0
The critical and miscellaneous technical changes in Creo Parametric 8.0.0.0 and
Creo Parametric TOOLKIT are explained in this section. It also lists the new and
superseded functions for this release.

Critical Technical Changes
This section describes the changes in Creo Parametric 8.0.0.0 and Creo Parametric
TOOLKIT that might require alteration of existing Creo Parametric TOOLKIT,
Creo Elements/Pro TOOLKIT, and Pro/TOOLKIT applications.

Secure Ports in Creo Parametric TOOLKIT
For enhanced security purpose, starting with Creo Parametric 8.0.0.0 and later,
Creo Parametric TOOLKIT connection can only happen from the same machine
where xtop is running.

Separate Download Option for ICU DLLs
For enhanced security purpose, in Creo Parametric 8.0.0.0 and later, the DLLs
ucore46.dll and udata46.dll located at creo_loadpoint>\
<datecode>\Common Files\<platform>\lib and creo_
loadpoint>\<datecode>\Common Files\<platform>\obj are not
installed by default. However, if you need to load applications that are compiled
prior to the Creo 7.0 release, you must install the DLLs separately. To download
and install these DLLs separately, ensure that the Legacy Toolkit Application
Runtime checkbox is selected while installing Creo Parametric.

Compiling and Linking on Windows
In Creo Parametric 8.0.0.0 and later, Creo Parametric TOOLKIT supports Visual
Studio 2019. The compiler flags and libraries are available for Visual Studio 2019.
Creo Parametric TOOLKIT no longer supports Visual Studio 2015.
All Creo Parametric TOOLKIT applications on 64-bit Windows platforms built
using the Microsoft Visual Studio 2019 compiler must set the configuration
property Platform Toolset as Visual Studio 2019 (v142).

Updates to Error Types
Following is the list of the error types added to functions:

2064 Creo® Parametric TOOLKITUser’s Guide

• ProSetdatumtagReferencesAdd(), ProNoteReferencesAdd(),
and ProGtolReferencesAdd()—The error types PRO_TK_MAX_
LIMIT_REACHED and PRO_TK_CANT_MODIFY are added.

○ PRO_TK_MAX_LIMIT_REACHED—indicates that
ProAnnotationReference has more than 1 reference from the type
PRO_ANNOT_REF_SRF_COLLECTION, and only one is allowed. If this
error is returned no reference was added at all.

○ PRO_TK_CANT_MODIFY—indicates that reference from the type PRO_
ANNOT_REF_SRF_COLLECTION already exists.

• ProDimensionAdditionalRefsAdd()—The error types PRO_TK_
MAX_LIMIT_REACHED, PRO_TK_CANT_MODIFY and PRO_TK_BAD_
CONTEXT are added.

○ PRO_TK_MAX_LIMIT_REACHED—indicates that
ProDimensionReferenceType has more than 1 reference from the
type PRO_DIM_SRF_COLL, and only one is allowed. If this error is
returned no reference was added at all.

○ PRO_TK_CANT_MODIFY— indicates that reference from the type PRO_
ANNOT_REF_SRF_COLLECTION already exists.

○ PRO_TK_BAD_CONTEXT— indicates that the reference type that is added
is inconsistent with the reference type that is supported. For example,
reference type PRO_ANNOT_REF_SINGLE and PRO_ANNOT_REF_
SRF_COLLECTION.

• ProAsmcompAssemble()—The error type PRO_TK_GENERAL_ERROR
is added. It indicates that the component creation failed. The function
ProAsmcompAssemble() returns this error if it is called to add an
embedded component in a different owner assembly.

• ProFeatureWithoptionsCreate()—The error type PRO_TK_
UNSUPPORTED is added. It indicates that the embedded component feature is
created in a different owner assembly or subassembly.

• ProFeatureWithoptionsRedefine()—The error type PRO_TK_
UNSUPPORTED is added. It indicates that the embedded component feature is
redefined in a different owner assembly or subassembly.

• ProAsmcompFillFromMdl()—The error type PRO_TK_UNSUPPORTED
is added. It indicates that the model to which the template model is copied is
not supported. For example, it is an embedded model.

• ProDrawingFromTemplateCreate()—The error types PRO_TK_
INVALID_NAME and PRO_TK_DWGCREATE_ERRORS are added.

○ PRO_TK_INVALID_NAME— indicates that the template and/ or the
model name of the drawing is an embedded model name.

Technical Summary of Changes 2065

○ PRO_TK_DWGCREATE_ERRORS—indicates that there are one or more
errors while creating the drawing.

New Functions
This section describes new functions for Creo Parametric TOOLKIT for Creo
Parametric 8.0.0.0.

Annotations
New Function Description
ProNoteURLExtraInfoGet() Retrieves the information of whether

opening the URL for a specified note
appends the extra information
"?<model name>+<note id>".

ProNoteURLExtraInfoSet() Sets whether opening the URL for a
specified note should append the extra
information "?<model
name>+<note id>".

Assemblies and Components
New Function Description
ProAsmcompEmbed() Embeds selected components in its

owner assembly.
ProAsmcompExtract() Extracts the embedded component from

the owner assembly.
ProAsmcompEmbeddedOwnerMdlGet
()

Returns the handle of the nonembedded
owner model for the specified
embedded model.

Cabling
New Function Description
ProConnectorRefModelNameGet() Retrieves the reference model name of

the specified cable connector.

2066 Creo® Parametric TOOLKITUser’s Guide

Cross Section
New Function Description
ProXSectionCreateDataAlloc() Allocates memory for the

ProXSectionCreateData data
structure.

ProXSectionCreateDataFree() Releases the memory of the
ProXSectionCreateData data
structure .

ProXSectionCreateDataQuiltSelGet()
ProXSectionCreateDataQuiltSelSet()

Gets and sets the quilt selection data.

ProXSectionCreateDataQuiltTypeGet()
ProXSectionCreateDataQuiltTypeSet()

Gets and sets the quilt cross section
type using the structure
ProXSectionCreateData.

Data Exchange
New Function Description
ProIntfExportProfileLoad() Loads the specified profile for export.

Drawing
New Function Description
ProDrawingDraftViewsCollect() Collects all draft views in the specified

drawing.
ProDrawingViewIsDraft() Determines whether the specified view

is a draft view.
ProDrawingDraftViewCreate() Creates a draft view in the specified

drawing sheet.
ProDrawingDimAttachpointsViewGet() Retrieves the attachments and sense of

the specified drawing dimension. This
function fetches and interprets the
attachment in the context of the view in
which the dimension is placed.

Features
New Function Description
ProFeatureReferenceEditRefsGet() Returns an array of the original

references of a feature that are used to
perform the edit reference operation.

Technical Summary of Changes 2067

Fundamentals
New Function Description
ProToolkitMajorVersionGet() Returns the version number of the Creo

Parametric executable to which the
Creo Parametric TOOLKIT application
is connected.

Graphics
New Function Description
ProTextFontRetrieve() Loads a font with the specified name

that can be used to display the text.
ProMatrixMakeOrthonormal() Converts a non-orthonormal matrix to

an orthonormal matrix with the
specified scaling factor.

Models
New Function Description
ProMdlIsEmbeddedName() Checks if the specified model name or

full path that includes the model name
is an embedded model name.

ProMdlVisibleGet() Returns the handle to the generic or
visible model for the specified model.

Production Applications: Welding
New Function Description
ProWeldExtendedInfoToXMLExport() Prints the information that is necessary

to automatize the welding info file, in
XML format.

Relations
New Function Description
ProRelationEvalWithUnitsRefResolve
()

Evaluates the expression that is
specified on the right side of a relation
line and returns the value in the form of
ProParamvalue structure.

2068 Creo® Parametric TOOLKITUser’s Guide

Simplified Representations
New Function Description
ProAutomaticSimprepRetrieve() Retrieves a user-defined simplified

representation as automatic
representation.

ProAutomaticSimprepConvert() Converts a user-defined representation
to automatic simplified representation
while maintaining the excluded or
substituted components in the
representation.

ProAutomaticSimprepActivate() Activates a user-defined representation
as an automatic simplified
representation.

Solids and Parts
New Function Description
ProSolidMaxsizeGet() Retrieves the maximum model size of

the specified solid.
ProAssemblySolidMassPropertyGet() Calculates the mass properties of a

solid that is referenced by the specified
coordinate system selection.

Surface Properties
New Function Description
ProSurfaceAppearanceDefaultPropsGet
()

Gets the default appearance properties
of the specified type of surface.

Symbol Instance
New Function Description
ProDtlsyminstReferencesAdd() Adds semantic references to a specified

symbol.
ProDtlsyminstReferencesGet() Returns a ProArray of additional

semantic references for a symbol.
ProDtlsyminstReferenceDelete() Deletes the additional semantic

references.

Technical Summary of Changes 2069

User Interface: Dashboards
New Function Description
ProUIDashboardshowoptionsDefaultO-
penSet()

Sets the specified dashboard as the
open by default page.

ProUIDashboardStdlayoutDefaultBtn-
sAdd()

Adds new standard push buttons to the
Creo Parametric dashboard.

ProUIDashboardStdlayoutButtonAdd() Adds a new push button to the Creo
Parametric dashboard.

ProUIDashboardStdlayoutDefaultBut-
tonNameGet()

Returns the default name of the
specified button id.

ProUIDashboardPauseresumeButton-
StateGet()
ProUIDashboardPauseresumeButton-
StateSet()

Returns and sets the pause and resume
state of the button.

ProUIDashboardpageStateSet() Modifies the visibility of the button that
opens the dashboard page according to
the page state.

User Interface: Dialogs
New Function Description
ProUIPushbuttonModaloverrideSet() Sets the pushbutton modal override

for the specified dialog and component
according to the value defined by the
enumerated data type
ProUIModalOverride.

ProUICheckbuttonModaloverrideSet() Sets the checkbutton modal
override for the specified dialog and
component according to the value
defined by the enumerated data type
ProUIModalOverride.

ProUIDialogAppActionSet() Sets a function to be called only once,
when you return to or enter an event
loop.

ProUIDialogAppActionRemove() Removes a function added via
ProUIDialogAppActionSet().

Superseded Functions
This section describes the superseded functions for Creo Parametric TOOLKIT
for Creo Parametric 8.0.0.0.

2070 Creo® Parametric TOOLKITUser’s Guide

Fundamentals
Superseded Function New Function
ProEngineerReleaseNumericversionGet
()

ProToolkitMajorVersionGet()

Relations
Superseded Function New Function
ProRelationEvalWithUnits() ProRelationEvalWithUnitsRefResolve

()

Miscellaneous Technical Changes
The following changes in Creo Parametric 8.0.0.0 can affect the functional
behavior of Creo Parametric TOOLKIT. PTC does not anticipate that these
changes cause critical issues with existing Creo Parametric TOOLKIT, Creo
Elements/Pro TOOLKIT, or Pro/TOOLKIT applications.

Ability to Create Multiple Holes using Sketch Points as Hole
Placement
In Creo Parametric 8.0.0.0, the elements PRO_E_STD_SECTION and PRO_E_
HOLE_SKDP_OPTIONS are added in the element tree for the Hole Placements in
the header file ProHole.h. These elements enable you to create multiple holes
in a single hole feature. The holes can be placed on sketched entities such as
sketched points, end-points or mid-points of sketched lines.

Event Callback function ProFeatureNeedsRegenGet is
Deprecated
The event callback function ProFeatureNeedsRegenGet() is executed
multiple times for the type PRO_FEATURE_NEEDS_REGEN_GET for the
function ProNotificationSet(). Preferably, the number of calls made to
the callback function must be equivalent to the number of features. However, the
callback function is getting called multiple number of times. Hence, the event
callback function is deprecated and does have a successor function added.

Technical Summary of Changes 2071

Support for Miter Cuts in Flat Walls
In Creo Parametric 8.0.0.0 and later, the following elements are added to the for
element tree for Flat Wall feature in the ProSmtFlatWall.h header file:
• PRO_E_SMT_MTR_CUTS_ADD—Specifies the miter cuts to be added.
• PRO_E_SMT_THREE_BEND_CRNR_RELIEF_TYPE—Specifies the three

bend corner relief type and is defined by the enumerated data type
ProThreeBendCornerType.

• PRO_E_SMT_MITER_CUT_GROOVE_TYPE—Specifies the groove type to
be cut in the miter and is defined by the enumerated data type
ProMiterCutType.

• PRO_E_SMT_MTR_CUTS_WIDTH_VAL—Specifies the width value of the
miter cut.

• PRO_E_SMT_MTR_CUTS_OFFSET_VAL—Specifies the offset value of the
miter cut.

Support for Standard Tapered Holes
In Creo Parametric 8.0.0.0 and later, the element tree for ProHole.h is updated
with standard tapered hole feature elements to control the depth and diameter of
the tapered hole. You can now use straight drill for a tapered hole. The following
elements have been added:
• PRO_E_HLE_TAPERED_STRT_DEPTH_OPT—You can specify the depth

type of the straight drill using the enumerated data type
ProHleTaperStrDepType

• PRO_E_HLE_ADD_TAPERED_TIP_ANGLE—You can choose to add or not
add the tapered tip angle in the tapered hole using the enumerated data type
ProHleAddTaperedTipAngFlag. A tapered tip is a slanted surface at the
bottom of the tapered drill.

• PRO_E_HLE_TAPERED_STRT_DIA—You can specify the diameter of the
tapered straight hole.

• PRO_E_HLE_TAPERED_STRT_DEPTH—You can specify the depth of the
tapered straight hole. It depends on the element PRO_E_HLE_TAPERED_
STRT_DEPTH_OPT. The tapered hole option is available only when the blind
depth value is specified using the enumerated date type
ProHleTaperStrDepType.

• PRO_E_HLE_TAPERED_TIP_ANGLE—You can specify the tapered tip
angle. It depends on the element PRO_E_HLE_ADD_TAPERED_TIP_
ANGLE. The tapered tip angle option is available only when the add tapered
tip value is specified using the enumerated data type
ProHleAddTaperedTipAngFlag

2072 Creo® Parametric TOOLKITUser’s Guide

Creating a Draft Feature Using Round Surfaces
The PRO_DRAFT_UI_RND_HINGE value is added to the enumerated data type
ProDraftHingeType in the ProDraft.h header file. When you create a
draft feature you can now select a round surface as a type of draft hinge. This
round surface must be adjacent to the draft surface.

Support for Tape over Multiple Branches
The PRO_CABLECOSMTYPE_BRANCH_TAPE value is added in the enumerated
data type ProCableCosmeticType in the ProCabling.h header file. This
new value enables you to collect information about the new cosmetic branch tape
feature. You can apply this new feature at branch points of the harnesses where the
tape wraps around each cable branch.

Creating a Datum Plane Using a Datum Point or a Vertex
The PRO_DTMPLN_FIT_POINT value is added in the enumerated data type
ProDtmplnFitType in the ProDtmPln.h header file. When you create a
datum plane, as a size reference, you can select a datum point or a vertex as the
center point. This ensures that the datum plane boundaries are centered around the
reference that is used to create a datum plane. To set the datum plane outline width
and height, set the values of the configuration options datum_outline_
default_width and datum_outline_default_height, respectively.

Elements for Bend Relief Length Added
The elements PRO_E_BEND_RELIEF_LENGTH_TYPE and PRO_E_BEND_
RELIEF_LENGTH are added to the following element trees:
• ProSmtBend.h

• ProSmtEdgeBend.h

• ProSmtEditBendRelief.h

• ProSmtFlatWall.h

• ProSmtJoinWalls.h

The element PRO_E_BEND_RELIEF_LENGTH_TYPE specifies the type of the
relief length and the element PRO_E_BEND_RELIEF_LENGTH specifies the
value of relief length.

ProReferenceTypeGet() returns ProType for Specific
Dimension Attachment Reference
When a surface has multiple silhouettes, the function
ProReferenceTypeGet() returns a value between PRO_SILH_EDGE and
PRO_SILH_EDGE_MAX. The silhouette index is given by Protype value minus
PRO_SILH_EDGE.

Technical Summary of Changes 2073

Support for Datum Axis Types that are Parallel and Normal
to a Linear Entity
When you create a feature, you can use the options PRO_DTMAXIS_PARALLEL
and PRO_DTMAXIS_NORM_ENT added in the enumerated data type
ProDtmAxisType in the ProDtmAxis.h header file. These two options
allow you to create datum axes parallel and normal to linear entity respectively,
and can be used as references for feature creation.
• PRO_DTMAXIS_PARALLEL—Specify this option when you want to create a

datum axis parallel to the linear entity and that passes through a datum point or
vertex

• PRO_DTMAXIS_NORM_ENT—Specify this option when you want to create a
datum axis that is normal to a linear entity and that passes through a datum
point or vertex

Support for Server Registration Error Messages
While performing server registration, the following errors might be thrown:
• PRO_TK_BROWSER_UNAVAILABLE—When the browser service is

unavailable and fails to initialize.
• PRO_TK_DLL_LOAD_ERROR—When the file prowt.dll does not load.
In both the situations, you need to verify the integrity of your installation and try
registering the server again.
The above error messages are added to the header file ProToolkitErrors.h.

Support for Redefining a Combined State with Most
Recently Used Reference States
If you want to create or redefine a combined state, which when invoked leaves
some reference states unchanged, as achieved in the UI for the combined states via
the 'Most Recently Used' option, use the value PRO_COMBSTATE_REF_MRU as
the id for that type of reference state.

Full Version of Creo® Parametric TOOLKIT Release
Notes
To see a full version of the Creo® Parametric TOOLKIT Release Notes, visit the
page Creo® Parametric TOOLKIT Release Notes. The full version contains
information from all the past release notes for Creo Parametric TOOLKIT.

2074 Creo® Parametric TOOLKITUser’s Guide

https://www.ptc.com/en/support/refdoc/Creo_Parametric/8.0/Creo_Toolkit_RelNotes_Creo8000

Technical Summary of Changes for Creo
8.0.1.0
The critical and miscellaneous technical changes in Creo Parametric 8.0.1.0 and
Creo Parametric TOOLKIT are explained in this section. It also lists the new and
superseded functions for this release.

New Functions
This section describes new functions for Creo Parametric TOOLKIT for Creo
Parametric 8.0.1.0.

Annotations: Features
New Function Description
ProAnnotationSecuritymarkingSet() Sets the security marking option for

notes and symbols.
ProAnnotationSecuritymarkingGet() Retrieves the security marking option

for notes and symbols.

Drawings
New Function Description
ProDtlentitydataIsPeriodic() Checks if the draft identity is marked as

periodic.
ProDtlentitydataPeriodicSet() Marks the draft entity to be periodic.

Features
New Function Description
ProFeatureMdltreeDisplaynameGet() Returns the name of the nodes in the

model tree.

Full Version of Creo® Parametric TOOLKIT Release
Notes
To see a full version of the Creo® Parametric TOOLKIT Release Notes, visit the
page Creo® Parametric TOOLKIT Release Notes. The full version contains
information from all the past release notes for Creo Parametric TOOLKIT.

Technical Summary of Changes 2075

https://www.ptc.com/en/support/refdoc/Creo_Parametric/8.0/Creo_Toolkit_RelNotes_Creo8000

Technical Summary of Changes for Creo
8.0.2.0
The critical and miscellaneous technical changes in Creo Parametric 8.0.2.0 and
Creo Parametric TOOLKIT are explained in this section. It also lists the new and
superseded functions for this release.

New Functions
This section describes new functions for Creo Parametric TOOLKIT for Creo
Parametric 8.0.2.0.

Assembly
New Function Description
ProExpldStateExplodeLinesGet() Returns an array of explode lines for

the specified exploded state.

Cross-Sections
New Function Description
ProOffsetXsecInfoGet() Returns the parameters for a specified

offset cross section.

Full Version of Creo® Parametric TOOLKIT Release
Notes
To see a full version of the Creo® Parametric TOOLKIT Release Notes, visit the
page Creo® Parametric TOOLKIT Release Notes. The full version contains
information from all the past release notes for Creo Parametric TOOLKIT.

2076 Creo® Parametric TOOLKITUser’s Guide

https://www.ptc.com/en/support/refdoc/Creo_Parametric/8.0/Creo_Toolkit_RelNotes_Creo8000

A
Unicode Encoding

Introduction to Unicode Encoding ... 2078
Unicode Encoding and Creo Parametric TOOLKIT... 2079
Necessity of Unicode Compliance... 2080
External Interface Handling .. 2080
Special External Interface: printf() and scanf() Functions .. 2081
Special External Interface: Windows-runtime Functions ... 2082
Special External Interface: Hardcoded Strings ... 2082

This appendix describes how the new Unicode support used internally by Pro/
ENGINEER from Wildfire 4.0 onward affects Creo Parametric TOOLKIT and its
applications.

2077

Introduction to Unicode Encoding
UNICODE is an acronym for "Universal Character Encoded System". It is a
unique character encoding scheme allowing characters from European, Greek,
Arabic, Hebrew, Chinese, Japanese, Korean, Thai, Urdu, Hindi, and other world
languages to be encoded in a single character set. This enables applications to
simultaneously support text in multiple languages in their data files. Unicode
encoding covers most of the letters, punctuation marks, and technical symbols
commonly used in the English language that are not covered by the legacy
encoding.
Unicode defines two mapping methods:

• UCS (Universal Character Set) encoding
• UTF (Unicode Transformation Format) encoding
For more information on Unicode Encoding, visit http://unicode.org.
Pro/ENGINEERWildfire 4.0 onward, all string data in Pro/ENGINEER
(previously stored in the legacy encoding format) is now stored in the Unicode
encoding. Pro/ENGINEERWildfire 4.0 uses the UCS-2 encoding on Windows
platforms and UCS-4 encoding in UNIX environments for widestring data. It
reads and writes character data using the mulitbyte UTF-8 encoding on all
platforms. UTF-8 is an 8-bit, variable-length character encoding format that uses
one to four bytes per character.
Some important terminology about string encoding related to Creo Parametric
TOOLKIT that is used throughout this appendix is described as follows:

• “Unicode encoding” refers to the string and widestring encodings used by Pro/
ENGINEERWildfire 4.0 and later.

• “Legacy encoding” refers to the encoding used by Pro/ENGINEERWildfire
3.0 and earlier. Depending on the language, this encoding is typically some
version of an EUC encoding.

• “Native encoding” refers to the encoding used by the operating system in the
language in which the system is running. This encoding is the same as legacy
encoding in most cases.

• “Multibyte string” refers to a character array representing a string in the C
language. Because of the limited size of the character (a single byte),
combinations of multiple bytes are used to represent characters outside the
ASCII range.

• “7-bit ASCII” refers to the character range 0x0 through 0x127. This range is
shared between Unicode and non-Unicode encodings used by Creo
Parametric. Thus, any data of this type is unchanged after transcoding.

• “8-bit ASCII” refers to the character range 0x128 through 0x255. In many
European native encodings, this range is used to represent European accented

2078 Creo® Parametric TOOLKITUser’s Guide

http://unicode.org

vowels and other letters. In Unicode, this range is not directly used. Therefore,
8-bit ASCII native strings are not equivalent in Unicode.

• “Byte Order Mark” (BOM) refers to a string of three bytes U+FEFF
(represented in C language strings by “\357\273\277”), and is placed on the
top of a text file to indicate that the text is Unicode encoded. Unicode has
designated the character U+FEFF as the BOM and reserved U+FFFE as an
illegal character for UTF-8 encoding. Most of the text files generated by Creo
Parametric are written with the BOM and Unicode encoding. Creo Parametric
can accept a Unicode encoded text file with a BOM, or a legacy encoded text
file without a BOM as the input.

• “Transcoding” refers to the act of changing a string or widestring encoding
from one encoding to another, for example, from platform native to Unicode
or vice-versa. For some transcoding operations, there is a possibility of data
loss, since characters from one encoding may not be supported in the target
encoding.

Unicode Encoding and Creo Parametric
TOOLKIT
Pro/TOOKIT applications running with Pro/ENGINEERWildfire 4.0 and later
must, by default, receive and send strings and widestrings to Pro/ENGINEER in
Unicode encoding. This is a change to the encoding previously received by
applications in Wildfire 3.0 and earlier. Because the workstation operating system
will not be running in Unicode and other languages, functions and libraries
accessed by the Creo Parametric TOOLKIT application may not be Unicode
aware, the Creo Parametric TOOLKIT application must deal with the change of
encoding.
Make changes to the application to expect and accept Unicode strings and
widestrings when dealing with Creo Parametric data. At the external interfaces
from the application to the operating system or third-party APIs, perform
necessary transcoding operations to ensure that those other systems receive an
expected encoding.
PTC recommends that all applications be evaluated for Unicode compliance
regardless of their purpose or intended data. However, applications that would
particularly be affected by Unicode encoding are as follows:

• Any Creo Parametric TOOLKIT application expected to work with Creo
Parametric in any language other than English.

• Any Creo Parametric TOOLKIT application expecting Creo Parametric data in
any language other than English (where strings from that data are transferred
to and from Creo Parametric or any other source).

Unicode Encoding 2079

Necessity of Unicode Compliance
It is strongly recommended that you make your existing Creo Parametric
TOOLKIT applications Unicode-compliant for the following reasons:

• Applications that are not Unicode-compliant will be unable to reliably handle
Creo Parametric data saved in the Unicode format with strings (notes,
annotations, table, and so on) in multiple languages other than English. For
example, a Creo Parametric drawing can now contain both German and
Japanese notes. The Creo Parametric TOOLKIT application will not be able to
read or modify those notes correctly without being Unicode compliant. This
could result in data loss or corruption.

• Applications that do not consider the Unicode nature of Creo Parametric data
may try to pass that data directly to the system or third-party APIs that do not
recognize it correctly. This could cause data corruption or crashes.

• Applications that do not transcode non-Unicode data into Unicode before
using the data as strings inside Creo Parametric models will generate corrupt
and incorrect models.

External Interface Handling
Creo Parametric TOOLKIT applications running in Unicode will need to create
utilities around the interfaces between non-Unicode aware third-party APIs and
interfaces. While PTC cannot directly provide such interfaces, this section
discusses the considerations for creating such utilities by showing how one
external API such as the C runtime library can be used from a Unicode
environment.
Any C runtime library accepting char* or wchar_t* as input may be adversely
affected by receiving Unicode data. Typically, it should be possible to create a
simple wrapper for each C runtime interface used in the application, where the
input string to the interface is expected to be in Unicode. The string should be
transcoded before calling the system API. Examples of such C runtime functions
are listed below (this is not an exhaustive list):

• fopen()
• access(), _access()
• chdir(), readdir(), opendir()
• chmod(), _chmod()
• findfirst(), _findnext()
• getcwd()
• getenv()

2080 Creo® Parametric TOOLKITUser’s Guide

• open(), opendir()

○ fgetc()
○ fgets()
○ fputc()
○ fputs()
○ fread(), fwrite()
○ puts()

• remove(), stat(), system(), tmpfile(), unlink()

Special External Interface: printf() and scanf()
Functions
The printf() and scanf() family of C runtime functions are a special case
of an external interface. The format string must be transcoded when these
interfaces are called. The list of variable arguments passed to the functions may
also contain string and widestring data that needs to be transcoded and modified in
format. Because of the complexity of wrapping these C runtime functions, PTC
has provided a standard Creo Parametric TOOLKIT function equivalent for each.
These functions support all the format specifiers and modifiers supported by the C
language specification.
Functions Introduced:

• ProTKPrintf()
• ProTKFprintf()
• ProTKSprintf()
• ProTKSnprintf()
• ProTKVprintf()
• ProTKVfprintf()
• ProTKVsprintf()
• ProTKVsnprintf()
• ProTKScanf()
• ProTKFscanf()
• ProTKSscanf()
• ProTKSnscanf()
• ProTKVscanf()
• ProTKVfscanf()
• ProTKVsscanf()

Unicode Encoding 2081

The function ProTKPrintf() provides the Unicode equivalent to the C
runtime function printf(). The number of characters returned by this function
is sent to stdout. The output data is transcoded to the native encoding format,
which may result in out-of-locale characters in the results.
The function ProTKFprintf() provides the Unicode equivalent to the C
runtime function fprintf(). The number of characters returned by this
function are copied into the file. This file will receive the data in the Unicode-
encoded format.
The functions ProTKSprintf() and ProTKSnprintf() provide the
Unicode equivalent to the C runtime functions sprintf() and snprintf()
respectively. The number of characters returned by these functions are copied into
the output buffer.
The function ProTKScanf() provides the Unicode equivalent to the C runtime
function scanf(). This function parses the contents of the input from stdin. The
output data in the string or character format is in Unicode encoding.
The function ProTKFscanf() provides the Unicode equivalent to the C
runtime function fscanf(). This function parses the contents of the input from
a file.
The functions ProTKSscanf() and ProTKSnscanf() provide the Unicode
equivalent to the C runtime functions sscanf() and snscanf() respectively.
The Unicode equivalent of the C runtime functions v*printf() and
v*scanf(), which take a variable arguments list instead of variable number of
arguments, have also been provided in the form of ProTKV*printf() and
ProTKV*scanf() functions.

Special External Interface: Windows-runtime
Functions
Win32 functions that take char* inputs are not Unicode compliant, and thus
cannot be used with data directly obtained from Pro/ENGINEERWildfire 4.0 and
later. The simplest approach to using Windows runtime functions is to use the
functions accepting wchar_t* inputs since these functions are Unicode compliant
(Windows native encoding for whar_t* is Unicode). For example, use the function
GetMessageW() instead of GetMessage() or GetMessageA().

Special External Interface: Hardcoded Strings
Another example of an external interface is a hardcoded string. You should review
all uses of hardcoded strings in your application and ensure that they fit the
following categories:

2082 Creo® Parametric TOOLKITUser’s Guide

• They use only 7-bit ASCII characters or wide characters.
• They use Unicode escape sequences.
8-bit ASCII or non-Unicode escape sequences in hardcoded strings do not work
correctly unless you transcode the string into Unicode before sending it to Creo
Parametric.

Example 3: Write a Unicode-encoded widestring from Creo
Parametric to a file containing BOM
The sample code in the file UgUnicodeTranscoding.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_main
writes a unicode-encoded widestring from Creo Parametric to a file containing
BOM.

Example 4: Write Unicode-encoded widestring to Creo
Parametric after reading the unicode string from a file
containing the BOM
The sample code in the file UgUnicodeTranscoding.c located at <creo_
toolkit_loadpoint>/protk_appls/pt_userguide/ptu_main
writes a unicode-encoded widestring to Creo Parametric after reading the unicode
string from a file containing the BOM.

Unicode Encoding 2083

B
Updating Older Applications

Overview .. 2085
Tools Available for Updating Applications .. 2085

This appendix describes the tools that are available for updating applications from
older versions to the current release of Creo Parametric TOOLKIT.

2084 Creo® Parametric TOOLKITUser’s Guide

Overview
Creo Parametric TOOLKIT users are responsible for updating their applications
from older versions to use the new Creo Parametric TOOLKIT functions. When
you update the applications, use the functions that have been updated in the
current release.
PTC provides tools that facilitate updating of your Creo Parametric TOOLKIT
applications from older versions. However, in certain scenarios, the tools may not
give expected results.

Tools Available for Updating Applications
PTC provides the mark_deprecated.pl tool to update your applications
from older versions to the current release. This perl script is located at <creo_
loadpoint>\<datecode>\Common Files\protoolkit\scripts.
The script parses directories and looks for files with extensions such as, .c,
.cxx, and .cpp, which are the default extensions included in the script.
The script searches for deprecated symbols, such as, functions, structures,
enumerated data types and so on, in these files. When it finds such symbols, the
script inserts comments with recommendations of possible replacements. By
default, the script uses the mapping table protkmap.txt provided at <creo_
loadpoint>\<datecode>\Common Files\protoolkit\scripts.
The mapping table is based on DEPRECATED and SUCCESSORS tags specified
in the Creo Parametric TOOLKIT header files. Some deprecated functions may
not have direct replacement functions. In such cases, the script adds the comment
AS APPROPRIATE.
The script options are listed when you run mark_deprecated.pl with no
arguments, or with options –h, -? or –help.

Note
The options may vary in future releases.

When you run the script, it saves a copy of the original files. However, PTC
recommends that you back up all the files, before running the script.
The script generates two types of output. The outputs depend on the -m option.
For example, consider a file with the name model.c. It contains the following
code:
void findMdlParam(ProMdl mdl) {

ProMdlnameShortdata *modelList = NULL;

/* should we call ProMdlInit here?? */

error = ProMdlDependenciesList (mdl, &modelList, &noOFModels);

error = ProMdlCopy (mdl); // what to do?

Updating Older Applications 2085

/*who knows? That's a question

btkString errorStr = "\"ProMdlCopy (mdl)\" - error";

PrintModelDependencies(modelList);

/*

* This is long multiline comment, where some Pro/TK

* calls like ProCollectionAlloc or ProCollectioninstrAlloc

* can be found.

*/

return;

}

If you specify the -m option, the original file is retained, and the output file with
the name <filename>_markup.c is created. The comments recommending
new symbols are inserted on separate lines in the output file. For the file
model.c, the following output is generated in the file model_markup.c:
void findMdlParam(ProMdl mdl) {

ProMdlnameShortdata *modelList = NULL;

/* should we call ProMdlInit here?? */

/* Deprecated_API_Used: Replace ProMdlInit with ProMdlnameInit */

error = ProMdlDependenciesList (mdl, &modelList, &noOfModels);

/* Deprecated_API_Used: Replace ProMdlDependenciesList

with ProMdlDependenciesMdlnameList */

error = ProMdlCopy (mdl); // what to do? /*who knows? That's a question

/* Deprecated_API_Used: Replace ProMdlCopy with ProMdlnameCopy */

btkString errorStr = "\"ProMdlCopy (mdl)\" - error";

PrintModelDependencies(modelList);

/*

* This is long multiline comment, where I can also note some Pro/TK

* calls like ProCollectionAlloc or ProCollectioninstrAlloc

** Deprecated_API_Used: Replace ProCollectionAlloc with

ProCrvcollectionAlloc, ProSrfcollectionAlloc **

** Deprecated_API_Used: Replace ProCollectioninstrAlloc with AS APPROPRIATE **

* can be found.

*/

return;

}

If you do not specify the -m option, a copy of the original file is saved as
<filename>.c.orig. The comments with recommendations are inserted in
the original file. For example, the original file is saved as model.c.orig. The
following output is generated in the file model.c:
void findMdlParam(ProMdl mdl) {

ProMdlnameShortdata *modelList = NULL;

/* should we call ** PROTK_DEPRECATED ProMdlInit ->

ProMdlnameInit ** ProMdlInit here?? */

error = /* PROTK_DEPRECATED ProMdlDependenciesList ->

2086 Creo® Parametric TOOLKITUser’s Guide

ProMdlDependenciesMdlnameList */

ProMdlDependenciesList (mdl, &modelList, &noOfModels);

error = /* PROTK_DEPRECATED ProMdlCopy ->

ProMdlnameCopy */ ProMdlCopy

(mdl);

// what to do? /*who knows? That's a question

btkString errorStr = "\"ProMdlCopy (mdl)\" - error";

PrintModelDependencies(modelList);

/*

* This is long multiline comment, where some Pro/TK

* calls like ** PROTK_DEPRECATED ProCollectionAlloc -> ProCrvcollectionAlloc,

ProSrfcollectionAlloc ** ProCollectionAlloc or ** PROTK_DEPRECATED->

AS APPROPRIATE ** ProCollectioninstrAlloc

* can be found.

*/

return;

}

Updating Older Applications 2087

C
Migrating to Creo Object TOOLKIT

C++

Overview .. 2089
Migrating Applications Using Tools.. 2089

This appendix describes how to migrate to Creo Object TOOLKIT C++.

2088 Creo® Parametric TOOLKITUser’s Guide

Overview
PTC introduced Creo Object TOOLKIT C++ as a part of its modernization plan
and to improve productivity.
To enable users to smoothly migrate their existing Creo Parametric TOOLKIT
applications, the Creo Parametric TOOLKIT APIWizard provides links to
equivalent Creo Object TOOLKIT C++ methods.
Additionally, from Creo 3.0 onward, PTC provides a tool to facilitate migration of
Creo Parametric TOOLKIT applications to Creo Object TOOLKIT C++.
Certain functional areas are not yet available in Creo Object TOOLKIT C++. In
such cases, you can continue using the Creo Parametric TOOLKIT functions in
Creo Object TOOLKIT C++ applications, as both the toolkits are compatible.
Refer to the Creo Object TOOLKIT C++ User’s Guide for more information.

Migrating Applications Using Tools
PTC provides the mark_otkmethod.pl tool to help you migrate applications
from Creo Parametric TOOLKIT to Creo Object TOOLKIT C++. This perl script
is located at <creo_loadpoint>\<datecode>\Common Files\
protoolkit\scripts. The script parses directories and looks for files with
extensions such as, .c, .cxx, and .cpp, which are the default extensions included in
the script.
The script searches for Creo Parametric TOOLKIT functions in these files. When
it finds Creo Parametric TOOLKIT functions, the script inserts comments with
recommendations of possible replacing Creo Object TOOLKIT C++ methods. By
default, the script uses the mapping table protk2otkmap.txt provided at
<creo_loadpoint>\<datecode>\Common Files\protoolkit\
scripts.
The script options are listed when you run mark_otkmethod.pl with no
arguments, or with options –h, -? or –help.

Note
The options may vary in future releases.

When you run the script, it saves a copy of the original files. However, PTC
recommends that you back up all the files, before running the script.
The script generates two types of outputs depending on the -m option. The
mark_otkmethod.pl generates output similar to the mark_
deprecated.pl script.
For example, consider a file Xsection.c. It contains the following code:

ProMessageDisplay(msgfil, "USER Pick the start plane");

Migrating to Creo Object TOOLKIT C++ 2089

status = ProSelect("face", 1, NULL, NULL, NULL, NULL, &sel, &n_sel);

if(status != PRO_TK_NO_ERROR || n_sel < 1)

return(0);

ProSelectionModelitemGet(sel[0], &surface_modelitem);

ProSurfaceInit(part, surface_modelitem.id, &surface);

ProSurfaceTypeGet(surface, &stype);

if(stype != PRO_SRF_PLANE)

return(0);

If you specify the -m option, the original file is retained, and the output file with
the name <filename>_markup.c is created. The recommended Creo Object
TOOLKIT C++ methods are inserted as comments on separate lines in the output
file. In this example, for the file Xsection.c, the following output is generated
in the file Xsection_markup.c:

ProMessageDisplay(msgfil, "USER Pick the start plane");

/* Replace ProMessageDisplay with pfcSession::UIDisplayMessage /

pfcSession::UIDisplayLocalizedMessage */

status = ProSelect("face", 1, NULL, NULL, NULL, NULL, &sel, &n_sel);

/* Replace ProSelect with pfcBaseSession::Select */

if(status != PRO_TK_NO_ERROR || n_sel < 1)

return(0);

ProSelectionModelitemGet(sel[0], &surface_modelitem);

/* Replace ProSelectionModelitemGet with pfcSelection::GetSelModel /

pfcSelection::GetSelItem */

ProSurfaceInit(part, surface_modelitem.id, &surface);

ProSurfaceTypeGet(surface, &stype);

if(stype != PRO_SRF_PLANE)

return(0);

If you do not specify the -m option, a copy of the original file is saved as
<filename>.c.orig. The comments with recommendations are inserted in
the original file. In this example, the original file Xsection.c is saved as
Xsection.c.orig. The following output is generated in the file
Xsection.c:

/* Replace ProMessageDisplay -> pfcSession::UIDisplayMessage /

pfcSession::UIDisplayLocalizedMessage */

ProMessageDisplay(msgfil, "USER Pick the start plane");

status =/* Replace ProSelect -> pfcBaseSession::Select */

ProSelect("face", 1, NULL, NULL, NULL, NULL, &sel, &n_sel);

2090 Creo® Parametric TOOLKITUser’s Guide

if(status != PRO_TK_NO_ERROR || n_sel < 1)

return(0);

/* Replace ProSelectionModelitemGet -> pfcSelection::GetSelModel /

pfcSelection::GetSelItem */

ProSelectionModelitemGet(sel[0], &surface_modelitem);

ProSurfaceInit(part, surface_modelitem.id, &surface);

ProSurfaceTypeGet(surface, &stype);

if(stype != PRO_SRF_PLANE)

return(0);

Migrating to Creo Object TOOLKIT C++ 2091

D
Migrating to the Multibody

Environment

Overview .. 2093
Impact on Existing APIs ... 2095
User-Defined Features .. 2096
Update in API Implementation to Support Multibody... 2097
Update in Existing Element Trees ... 2097
New Element Trees for Supporting Multibody Features .. 2098
Update to Values of Enumerated Data Types... 2098
Impact on Existing Structures ... 2098

This appendix describes how to migrate to the Creo Parametric multibody
environment.

2092 Creo® Parametric TOOLKITUser’s Guide

Overview
PTC introduces multibody part design to improve design productivity, flexibility,
and usability.
The existing Creo Parametric TOOLKIT application continues to work seamlessly
for legacy models and models having a single body. However, you must upgrade
to Creo Parametric 7.0.0.0 to use the multibody environment.
To support the multibody environment, Creo Parametric 7.0.0.0 is updated in the
following aspects:

• New APIs are added
• Some existing APIs are deprecated and are superseded by new APIs
• Implementation of existing APIs is updated. No visible changes in Creo

Parametric Toolkit APIs
• New element trees are added to support new multibody features
• Some existing element trees are updated.
• Some enumerated data types and their values are updated
• Existing structures are updated
To enable you to smoothly migrate your existing Creo Parametric TOOLKIT
applications, the Creo Parametric TOOLKIT APIWizard provides the following
APIs to support multibody:

Feature Name API name
Body Operations • ProSolidBodyCreate()

• ProSolidBodyDelete()

• ProSolidDefaultBodySet()

• ProSolidBodyConstruc-
tionSet()

Querying Body • ProSolidBodiesCollect()

• ProSolidBodySurfaceVi-
sit()

• ProSolidDefaultBodyGet()

• ProSolidBodyStateGet()

• ProSolidBodyIsConstruc-
tion()

• ProSolidBodyOutlineGet()

• ProSolidBodyFeatures-
Get()

• ProGeomitemBodyGet()

Migrating to the Multibody Environment 2093

Feature Name API name
Interference • ProVolumeInterferenceBo-

diesGet()

• ProVolumeInterference-
DisplayForBody()

Material Properties • ProSolidBodyMaterial-
Set()

• ProSolidBodyMaterial-
Get()

• ProSolidBodyMaterial-
Get()

• ProSolidBodyDensityGet()

• ProSolidBodyMassProper-
tyGet()

Sheetmetal • ProSolidBodyIsSheetme-
tal()

Cross-Section • ProXSectionExcludeComp-
Get()

• ProXSectionItemDataGet()

• ProXSectionItemFree()

• ProXSectionItemXhatch-
StyleGet()

• ProXSectionItemXhatch-
StyleSet()

• ProXSectionItemsArr-
Free()

• ProXSectionItemsCol-
lect()

• ProXSectionOffset-
Create()

• ProXSectionPlanar-
Create()

• ProXsecMdlnameAlloc()

• ProXsecMdlnameFree()

• ProXsecNewXhatchStyle-
CreateFromName()

• ProXsectionCompXhatch-
StyleGet()

• ProXsectionCompXhatch-
StyleSet()

2094 Creo® Parametric TOOLKITUser’s Guide

Feature Name API name
• ProXsecMdlnameNameGet()

• ProXsecMdlnameNameSet()

• ProXsecMdlnameSolidOw-
nerGet()

• ProXsecMdlnameSolidOw-
nerGet()

• ProXsecMdlnameSolidOw-
nerSet()

Shrinkwrap options • ProShrinkwrapoption-
sIgnoreconstrbodiesSet()

UDF • ProUdfFileIsPreCreo7()

Impact on Existing APIs
You must evaluate the need for using the new APIs based on the logic of your
application. The following table lists the names of the existing APIs and
respective superseding APIs.

Deprecated API New API
ProSolidSurfaceVisit() ProSolidBodiesCollect()

ProSolidyBodySurfaceVi
sit()

ProPartToProIntfData() ProPartToProInterfaceDa
ta()

ProQuiltdataTypeGet()

ProQuiltdataTypeSet()
ProXsecGeometryCollect() ProXSectionItemsCollect()

ProXSectionItemDataGet()
ProXsecPlanarWithoption
sCreate()

ProXSectionPlanarCreate()

ProXsecExcludeCompGet() ProXSectionExcludeComp
Get()

ProXsecCompXhatchStyle
Get()

ProXsectionCompXhatchStyle
Get()

ProXSectionItemXhatchStyle
Get()

ProXsecCompNewXhatchStyle
Get()

ProXsectionCompXhatchStyle
Get ()

Migrating to the Multibody Environment 2095

Deprecated API New API

ProXSectionItemXhatchStyle
Get()

ProXsecCompXhatchStyle
Set()

ProXsectionCompXhatchStyle
Set()

ProXSectionItemXhatchStyle
Set()

ProXsecCompNewXhatchStyle
Set()

ProXsectionCompXhatchStyle
Set()

ProXSectionItemXhatchStyle
Set()

ProXsecCompNewXhatchStyle
SetByName()

ProXsecNewXhatchStyleCrea
teFromName()

/ProXsectionCompXhatchSty
leSet()

ProXSectionItemXhatchStyle
Set()

ProXsecOffsetCreate() ProXSectionOffsetCreate()
ProPartDensitySet() ProMaterialCurrentSet()

ProMaterialPropertySet()

The following points are important to remember:
• Check instances of deprecated API use.
• Modify code to use superseding APIs
• Test the updated application on legacy models and on multibody models.
• Some of the deprecated APIs work on multibody models if the special

configuration option allow_gmb_tkapi is set to yes.

User-Defined Features
With the introduction of bodies in Creo Parametric 7.0.0.0, the following occurs:

• When creating a part, you can add body references to some features, such as to
protrusion and cut features.

• When creating an assembly, you cannot add body references.
• UDFs created in an earlier release of Creo Parametricdo not have body

references.
• UDFs created in an assembly in Creo Parametric 7.0.0.0 do not have body

references.

2096 Creo® Parametric TOOLKITUser’s Guide

For more information about how UDF placement is handled in Creo Parametric
7.0.0.0, refer to the section Multibody support in UDF and Copy feature on page
162 in the Core: Features on page 131 chapter.

Update in API Implementation to Support Multibody
Implementation of some APIs is changed. To programmatically select bodies, pass
the string 3d_body to the API ProSelect to select bodies.

Update in Existing Element Trees
Some existing features are affected due to the introduction of the multibody
features such as creating or adding a body. The following header files are updated:

• ProShell.h

• ProRib.h

• ProSmtDrvSurf.h

• ProExtrude.h

• ProRevolve.h

• ProSweep.h

• ProHole.h

• ProRound.h

• ProChamfer.h

• ProModifyRound.h

• ProModifyChamfer.h

• ProSmtShell.h

The following points are important to remember:
• Check if the affected features are created in the Creo Parametric TOOLKIT

application.
• If you are working in the single body or legacy environment, then no action is

required.
• If you are working in the multibody environment, update the application code

and use the updated element trees for the specific features.
• If you are using an updated version of the Creo Parametric TOOLKIT

application, perform subsequent testing for multibody models.

Migrating to the Multibody Environment 2097

New Element Trees for Supporting Multibody
Features
To support multibody features, the following header files are added:

• ProSplitBody.h

• ProBooleanBodies.h

• ProRemoveBody.h

• ProBodyCopy.h

• ProBodyOpts.h

You can create multibody features using these new feature element trees based on
the logic of your Creo Parametric TOOLKIT application.

Update to Values of Enumerated Data Types
With the introduction of the multibody environment, the following enumerated
values are impacted:

• PRO_SURFCOLL_ALL_SOLID_SRFS is deprecated

Note
As a result, the functions ProSrfcollectionRegenerate(),
ProElementCollectionSet() , and
ProSelbufferCollectionAdd() return the error PRO_TK_
MULTIBODY_UNSUPPORTED for multibody based models.

• The new enum values PRO_SURFCOLL_BODY_SRFS and PRO_
SURFCOLL_ALL_BODY_SRFS are added.

• New enum valuePRO_LAYER_BODY is added.
If the enum value PRO_SURFCOLL_ALL_SOLID_SRFS exists in your Creo
Parametric TOOLKIT application code, then you need to update the code and test
the legacy and multibody models.

Impact on Existing Structures
ProQuiltData is updated with a new structure member to support multibody
environment. As a result, the function ProPartToIntfData() is impacted.

2098 Creo® Parametric TOOLKITUser’s Guide

E
Creo Parametric TOOLKIT

Registry File

Registry File Fields .. 2100
Sample Registry Files.. 2101

This appendix describes how to use the Registry file to have a foreign program
communicate with Creo Parametric.

2099

Registry File Fields
The following table lists the fields in the registry file creotk.dat or
protk.dat.
Field Description
name Assigns a unique name to the Creo Parametric TOOLKIT application.

The name is used to identify the application if there is more than one.
The name can be the product name and does not have to be the same as
the executable name.

This field has a limit of PRO_NAME_SIZE-1 wide characters
(wchar_t).

startup Specifies the method Creo Parametric should use to communicate with
the Creo Parametric TOOLKIT application.

This field can take one of three values; spawn, dll or java.
• spawn— If the value is spawn, Creo Parametric starts the foreign

program using interprocess communications.
• dll – If the value is dll, Creo Parametric loads the foreign

program as a DLL.
• java – If the value is java, Creo Parametric starts the application

as a J-Link class. Consult the J-Link User’s Guide for more details.

The default value is spawn.
fail_tol Specifies the action of Creo Parametric if the call to user_

initialize() in the foreign program returns non-zero, or if the
foreign program subsequently fails. If this is TRUE, Creo Parametric
continues as normal. If this field is missing or is set to FALSE, Creo
Parametric shuts down Creo Parametric and other foreign programs.

exec_file Specifies the full path and name of the file produced by compiling and
linking the Creo Parametric TOOLKIT application. In DLL mode, this is
a dynamically linkable library; in spawn mode, it is a complete
executable.

This field has a limit of PRO_PATH_SIZE-1 wide characters
(wchar_t).

text_dir Specifies the full path name to text directory that contains the language-
specific directories. The language-specific directories contain the
message files, menu files, resource files and UI bitmaps in the language
supported by the Creo Parametric TOOLKIT application. Please refer to
the User Interface: Menus, Commands, and Popupmenus on page 301
and User Interface: Messages on page 284 chapters for more
information.

The text_dir does not need to include the trailing /text; it is added
automatically by Creo Parametric.

The search priority for messages and menu files is as follows:

1. Current working directory
2. text_dir\text

3. <creo_loadpoint>\<datecode>\Common Files\
$<machine type>\text, where <machine_type> is the

2100 Creo® Parametric TOOLKITUser’s Guide

Field Description
machine-specific subdirectory, such as, i486_nt or x86e_
win64. Set the environment variable PRO_MACHINE_TYPE to
define the type of machine on which Creo Parametric is installed.

The text_dir should be different from the Creo Parametric text tree.
This field has a limit of PRO_PATH_SIZE-1 wide characters
(wchar_t).

rbn_path Specifies the name of the ribbon file along with its path, which must be
loaded when you open Creo Parametric. The location of the ribbon file
is relative to the location of the text directory. The field text_dir
specifies the path for the text directory. For example, if you want to
specify a ribbon file app1_rbn.rbn placed at text_dir/app1/
app1_rbn.rbn, specify rbn_path as app1/app1_rbn.rbn.

If the field is not specified, by default, the ribbon file with its location,
text_dir/toolkitribbonui.rbn is used.

delay_start If you set this to TRUE, Creo Parametric does not invoke the Creo
Parametric TOOLKIT application as it starts up, but enables you to
choose when to start the application. If this field is missing or is set to
FALSE, the Creo Parametric TOOLKIT application starts automatically.

description Acts as a help line for your auxiliary application. If you leave the cursor
on an application in the Start/Stop GUI, Creo Parametric displays the
description text (up to 80 characters). You can use non-ASCII
characters, as in menu files.

To make the description appear in multiple languages, you must use
separate protk.dat files in <hierarchy>/<platform>/
<text>/<language>.

allow_stop If you set this to TRUE, you can stop the application during the session.
If this field is missing or is set to FALSE, you cannot stop the
application, regardless of how it was started.

end Indicates the end of the description of the Creo Parametric TOOLKIT
application. It is possible to add further statements that define other
foreign applications. All of these applications are initialized by Creo
Parametric.

Sample Registry Files
This section lists several examples that illustrate the various ways to have a
foreign program communicate with Creo Parametric.

Example 1
In this example, Creo Parametric spawns the foreign program, which runs on the
same machine. The communication is via pipes (the default mode when the
foreign program runs on the same machine as Creo Parametric).
File: protk.dat
[Start of file on next line]
name Product1
exec_file /home/protk/$<machine_type>/obj/frnpgm1

Creo Parametric TOOLKIT Registry File 2101

text_dir /home/protk
end

[End of file on previous line]

Example 2
This example illustrates how to run multiple foreign programs, as specified in the
protk.dat file.
File: protk.dat
[Start of file on next line]
name Product1
startup dll
exec_file /home/protk/$<machine_type>/obj/frnpgm1.dll
text_dir /home/protk
end
name Product2
startup spawn
exec_file /home/protk2/$<machine_type>/obj/frnpgm2
text_dir /home/protk2
end

[End of file on previous line]

2102 Creo® Parametric TOOLKITUser’s Guide

F
Creo Parametric TOOLKIT Library

Types

Overview .. 2104
Linking the Applications ... 2104
Standard Libraries ... 2105
Alternate Libraries ... 2105

This appendix describes the various libraries available in a Creo Parametric
TOOLKIT installation.

2103

Overview
The libraries available in a Creo Parametric TOOLKIT installation have been
classified under:
• Standard Libraries on page 2105
• Alternate Libraries on page 2105
From Creo Parametric 4.0 F000 onward, the libraries listed in the following table
are no longer supported and will not be available with the software. The New
Library Name column provides a list of the equivalent libraries that are now
available. Apart from the compatibility issues explained in the chapter Version
Compatibility: Creo Parametric and Creo Parametric TOOLKIT on page 41,
applications based on Creo Parametric 3.0 and previous releases will continue to
run successfully with Creo Parametric 4.0.
Old Library Name New Library Name
protk_dll.lib protk_dll_NU.lib

protoolkit.lib protoolkit_NU.lib

protk_dllmd.lib protk_dllmd_NU.lib

protkmd.lib protkmd_NU.lib

Linking the Applications
Before you run an existing application in Creo Parametric 8.0, link it to the new
libraries and the import libraries: ucore.lib and udata.lib. The new
libraries do not link the application to the Unicode libraries but use ucore.lib
and udata.lib at runtime to resolve the Unicode dependencies, which also
reduces the size of the application. Since these libraries are import libraries, the
application must resolve Unicode dependencies at runtime by loading the actual
libraries ucore64.dll and udata64.dll. These dlls are located at <creo_
load_point>/Common Files/<platform>/obj and <creo_load_
point>/Common Files/<platform>/lib.
For synchronous applications, the references to ucore64.dll and
udata64.dll are resolved by Creo Parametric when the application is started.
For asynchronous applications, these references must be resolved by the
application. For linking asynchronous applications, add the path where the dlls
ucore64.dll and udata64.dll are located, that is <creo_load_
point>/Common Files/<platform>/lib to the environment variable
PATH.
All the sample makefiles available with Creo Parametric TOOLKIT use the new
libraries. For instance, the sample example make_examples created for Creo
Parametric TOOLKIT applications created for Creo Parametric TOOLKIT

2104 Creo® Parametric TOOLKITUser’s Guide

applications contains information on how to use protk_dll_NU.lib. The
sample file is located at <creo_toolkit_loadpoint>/<platform>/
obj.

Standard Libraries
Most Creo Parametric TOOLKIT users will be able to use the standard Creo
Parametric TOOLKIT libraries. These libraries are available on all platforms and
are used by the majority of Creo Parametric TOOLKIT sample applications.
Library Name Purpose
protoolkit_NU.lib ucore.lib
udata.lib

Spawn mode library

pt_asynchronous.lib Asynchronous mode library
protk_dll_NU.lib ucore.lib udata.lib DLL mode library

Alternate Libraries
Creo Parametric TOOLKIT offers alternate libraries that may be useful for
applications compiled with /MD flag and built with msvcrt.lib. These
libraries are similar to the standard Creo Parametric TOOLKIT libraries in
content, but differ in using msvcrt.lib instead of libcmt.lib.
Library Name Purpose
protkmd_NU.lib Spawn mode library
ptasyncmd.lib Asynchronous mode library
protk_dllmd_NU.lib DLL mode library

The makefiles make_install_md and make_async_md build with these
libraries.

Note
Although /MD provides compatibility with multi-threaded components, Creo
Parametric TOOLKIT calls must be made within a single thread. Creo
Parametric does not respond to calls made from multiple threads. Extra threads
may be created by applications only to do tasks which do not directly call Creo
Parametric TOOLKIT functions.

Creo Parametric TOOLKIT Library Types 2105

G
Creo Parametric TOOLKIT Sample

Applications

Installing Sample Applications .. 2107
Details on Sample Applications .. 2108
pt_inst_test ... 2109
pt_inst_cxx ... 2109
pt_inst_test_md... 2109
pt_autoaxis ... 2110
pt_userguide... 2110
pt_examples ... 2110
pt_geardesign ... 2110
pt_async..2111
pt_async_md ...2111
pt_simple_async ... 2112
pt_basic.. 2112
pt_af_examples... 2112
pt_udf_examples... 2112
pt_mech_examples ... 2112

This appendix describes the sample applications provided with Creo Parametric
TOOLKIT.

2106 Creo® Parametric TOOLKITUser’s Guide

Installing Sample Applications
When you install Creo Parametric TOOLKIT from the Creo Parametric CD, Creo
Parametric TOOLKIT is installed under the loadpoint of Creo Parametric, that is,
<creo_loadpoint>\<datecode>\Common Files\protoolkit\
protk_appls. In Creo Parametric 6.0.0.0 and later, these sample applications
are digitally signed. Refer to the Fundamentals on page 22 chapter for more
information on Installation of Creo Parametric TOOLKIT.
The Creo Parametric TOOLKIT directory contains all the headers, libraries,
example applications, and documentation specific to Creo Parametric TOOLKIT.
The following diagram illustrates the applications installed under the protk_
appls directory after installation.

Creo Parametric TOOLKIT Sample Applications 2107

Details on Sample Applications
The sample applications provided with Creo Parametric TOOLKIT are available
in directories under the following path <creo_loadpoint>\<datecode>\
Common Files\protoolkit\protk_appls.

2108 Creo® Parametric TOOLKITUser’s Guide

pt_inst_test
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_install_test

make_install

The application pt_inst_test is used to check the Creo Parametric
TOOLKIT Installation. It verifies the ProMenubar and custom user interface
dialog box functions.

pt_inst_cxx
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_install_cxx

make_install_cxx

The application pt_inst_cxx is used to check the C++ version of the Creo
Parametric TOOLKIT installation. It verifies the ProMenubar and custom user
interface dialog box functions that use the C++ compiler and classes.

pt_inst_test_md
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_install_test

make_install_md

The application pt_inst_test_md provides the version of the makefile for
Windows platforms that uses MD libraries.
MD libraries are intended for building a DLL for Windows. Some Microsoft
libraries must be linked with these libraries. For more information on MD
libraries, refer to Alternate Libraries on page 2105.

Creo Parametric TOOLKIT Sample Applications 2109

pt_autoaxis
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_autoaxis

make_autoaxis

The sample application pt_autoaxis automatically creates axes on revolved
surfaces if they don't already exist. It is intended for manufacturing engineers who
receive a model with holes which were not made with standard Creo Parametric
hole features. It covers functions for feature creation and geometry analysis.

pt_userguide
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_userguide

make_userguide

The sample application pt_userguide consolidates examples that access the
User Interface.

pt_examples
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_examples

make_examples

The sample application pt_examples consists of Creo Parametric TOOLKIT
application examples. It provides a user interface to access many areas of Creo
Parametric TOOLKIT. This application covers Creo Parametric TOOLKIT
functions and modules, including ProMenubar and ProMenu based UI
functions. The directory pt_examples includes sub-directories containing
useful utility functions.

pt_geardesign
Location Makefile

<creo_toolkit_loadpoint>/protk_
appls/pt_geardesign

make_geardesign

The sample application pt_geardesign provides the user interface to create
gear models. This application covers feature creation using element trees and the
custom user interface dialog box functions.

2110 Creo® Parametric TOOLKITUser’s Guide

pt_async
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_async

make_async

The sample application pt_async provides an example for the full
asynchronous mode.

pt_async_md
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_async

make_async_md

The sample application pt_async_md provides an example for the
asynchronous mode compilation of a DLL using MD libraries on Windows. The
application requires two binaries, namely, pt_async_md.dll, and the wrapper
executable pt_async_md_wrapper.exe which will load the DLL and
invoke it. The application is identical to pt_asyncin all other respects. For more
information on MD libraries, refer to Alternate Libraries on page 2105.

Creo Parametric TOOLKIT Sample Applications 2111

pt_simple_async
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_simple_async

make_simple_async

The sample example pt_simple_async provides an example for the simple
asynchronous mode.

pt_basic
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_basic

make_basic

The sample application pt_basic provides the Creo Parametric TOOLKIT
application template. It verifies the user interface, notifications, and the
application setup.

pt_af_examples
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_af_examples

make_af_examples

The sample application pt_af_examples provides production examples using
annotation features and annotations.

pt_udf_examples
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_udf_examples

make_udf_examples

The sample application pt_udf_examples demonstrates production examples
using UDF placement capabilities. These include a flexible user interface for
placing UDF libraries interactively, by reading the properties of the UDF library
file.

pt_mech_examples
Location Makefile
<creo_toolkit_loadpoint>/protk_
appls/pt_mech_examples

make_mech_examples

The sample application pt_mech_examples provides production examples
using the ability to assign, create and modify Creo Simulate item properties.

2112 Creo® Parametric TOOLKITUser’s Guide

H
Advanced Licensing Options

Advance Licensing Options for Creo Parametric TOOLKIT 2114

This chapter describes the licensing requirements for advanced options in Creo
Parametric TOOLKIT.

2113

Advance Licensing Options for Creo
Parametric TOOLKIT
To use some of the functionality in Pro/TOOLKIT you must have advanced
development license options.
For each TOOLKIT function that requires an advanced license, theCreo
Parametric TOOLKIT header file entry includes a note specifying the
development license requirement. This note is also visible in the APIWizard
description page for the function. Advanced licenses are required in the following
situations:

• To run a locked application, Creo Parametric requires the basic Creo
Parametric TOOLKIT development option and any advanced toolkit options
required by specific functions called by the application. If the application
contains calls to such functions, Creo Parametric checks out the corresponding
advanced license option on demand.

• To unlock an application, the unlock utility requires the basic Creo Parametric
TOOLKIT development option and any advanced toolkit options required by
specific functions called by the application. The utility will not hold any of the
advanced options, as it does the basic Creo Parametric TOOLKIT
development option, after unlock is completed.

• Creo Parametric does not require any of the Creo Parametric TOOLKIT
licenses to run a properly unlocked application.

Applications are assigned requirements for advanced options based on whether the
application is coded to use any functions requiring the advanced option. It does
not matter if an application does not use the function requiring licensing during a
particular invocation of the application. The licensing requirements are resolved
the moment the application is started by or connects to Creo Parametric, not at the
first time an advanced function is invoked.
For more information on how to unlock an application, refer to the section
Unlocking a Creo Parametric TOOLKITApplication on page 44.

2114 Creo® Parametric TOOLKITUser’s Guide

I
Pro/DEVELOP to Creo Parametric

TOOLKIT Function Mapping

The Relationship Between Creo Parametric TOOLKITand Pro/DEVELOP................. 2116
Creo Parametric TOOLKIT OHandles: .. 2116
Converting from Pro/DEVELOP.. 2116
Using Pro/DEVELOPApplications with Creo Parametric TOOLKIT 2116
Techniques of Conversion and Mixing ... 2117
Equivalent Pro/DEVELOP Functions... 2128

This appendix describes how to update legacy applications using Pro/DEVELOP
functions with current Creo Parametric TOOLKIT functions.
From Creo Parametric 2.0 onward, the Pro/Develop functions are obsolete. The
Pro/Develop header files and related support files will not be shipped with Creo
Parametric in future. PTC recommends that you update applications that use Pro/
Develop functions to use equivalent Creo Parametric TOOLKIT functions or Creo
Object TOOLKIT C++ methods.

2115

The Relationship Between Creo
Parametric TOOLKIT and Pro/DEVELOP
Creo Parametric TOOLKIT replaces and contains Pro/DEVELOP, the
customization toolkit until Release 17 of Pro/ENGINEER. Creo Parametric
TOOLKIT uses an Object-Oriented style.

Creo Parametric TOOLKIT OHandles:
Creo Parametric TOOLKIT OHandles are equivalent to the type Prohandle
used in Pro/DEVELOP. You can convert the handles between Creo Parametric
TOOLKIT and Pro/DEVELOP simply by casting to the appropriate type. Creo
Parametric TOOLKIT provides different OHandles for different object types
where Pro/DEVELOP provided only a single generic handle; this provides for
better type-checking during compilation. See Converting from Pro/DEVELOP on
page 2116 for more details.

Converting from Pro/DEVELOP
You can convert functions from Pro/DEVELOP to Creo Parametric TOOLKIT,
and also mix the two styles of functions.

Using Pro/DEVELOPApplications with Creo
Parametric TOOLKIT
Creo Parametric TOOLKIT replaces Pro/DEVELOP and provides most of the
functionality that existed in Pro/DEVELOP. Existing Pro/DEVELOP applications
will not become obsolete however, for the following reasons:

• Creo Parametric TOOLKIT inherits from Pro/DEVELOP the mechanisms by
which the application C code is integrated into Creo Parametric. These
mechanisms will continue to be used by Creo Parametric TOOLKIT for the
indefinite future.

• The complete library of Pro/DEVELOP functions is installed automatically
along with the library of Creo Parametric TOOLKIT functions, and will be
installed in this way from Release 2000i onwards.

Therefore, Pro/DEVELOP applications built using Release 17 will continue to
work with Pro/ENGINEER Release 18 and later, without having to be recompiled
and relinked. Using Creo Parametric TOOLKIT, you can recompile and relink
Pro/DEVELOP applications developed using Release 17 without having to change
the source code. These applications will continue to function as before.
However, you should plan to convert your applications to Creo Parametric
TOOLKIT as soon as possible, even if you do not need to use any of the new
functionality provided by Creo Parametric TOOLKIT. The conversion is desirable

2116 Creo® Parametric TOOLKITUser’s Guide

because Creo Parametric TOOLKIT provides more consistent and complete
functionality, even in areas already well-covered by Pro/DEVELOP. In addition,
PTC will give lower priority to requests for enhancements and maintenance to
Pro/DEVELOP functions than to requests for equivalent Creo Parametric
TOOLKIT functions, where they exist.
Thanks to the technology they share, you can use functions from both Creo
Parametric TOOLKIT and Pro/DEVELOP within a single application. This means
that:

• You can convert a Pro/DEVELOP application to use Creo Parametric
TOOLKIT functions gradually.

• Pro/DEVELOP applications can use the new functionality provided by Creo
Parametric TOOLKIT without the immediate need for a complete conversion.

A final reason for wanting to mix Pro/DEVELOP and Creo Parametric TOOLKIT
functions is that not all of the Pro/DEVELOP functions have been replaced by
equivalent Creo Parametric TOOLKIT functions.

Techniques of Conversion and Mixing
Besides a difference in the conventions they use, Pro/DEVELOP and Creo
Parametric TOOLKIT reference items in the Creo Parametric database in different
ways. The following sections describe the technical points to consider when you
convert from Pro/DEVELOP to Creo Parametric TOOLKIT, or when you mix
both types of functions in a single application.

Terminology
In general, the terminology used by Creo Parametric TOOLKIT is close to that of
Pro/DEVELOP. The following table lists the most important terms that differ in
meaning between the two toolkits.
Creo Parametric TOOLKIT Pro/DEVELOP
Object N/A
Model Object
Solid (part or assembly) Model
Surface Face or surface
Component of an assembly Member
Component path Member identifier table (memb_id_tab)
External data Generic application data

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2117

General Functionality
To find the functions in Creo Parametric TOOLKIT that cover a particular area of
functionality, scan the appendix in this user’s guide, or use the Topical option in
the Creo Parametric TOOLKIT browser. Beware of any difference in terminology
from Pro/DEVELOP identified in the previous section.
If you want to find the Creo Parametric TOOLKIT equivalent of a particular Pro/
DEVELOP function, refer to the table Equivalent Pro/DEVELOP Functions on
page 2128. The table maps each Pro/DEVELOP function to the closest equivalent
Creo Parametric TOOLKIT function (or functions).
In some functional areas, especially where Pro/DEVELOP provided good
coverage, you can use the equivalent Creo Parametric TOOLKIT functions in an
identical way, although the function names, return values, and sometimes the
order of the arguments have been changed to conform to Creo Parametric
TOOLKIT conventions.
For example, the following Pro/DEVELOP functions are almost exactly
equivalent to the Creo Parametric TOOLKIT functions listed.
Pro/DEVELOP Function Creo Parametric TOOLKIT Function
promenu_create() ProMenuFileRegister()

promenu_expand() ProMenuAuxfileRegister()

promenu_on_button() ProMenubuttonActionSet()

Other functions require more care, however. For example, one of the conventions
of Creo Parametric TOOLKIT is that the input arguments come before the output
arguments.
In some areas of functionality, traditional Pro/DEVELOP techniques have been
replaced in Creo Parametric TOOLKIT by techniques that are more general,
flexible, and consistent with the techniques used within Creo Parametric. A good
example is the visit functions, which replace two different Pro/DEVELOP
techniques. For example:
Pro/DEVELOP Function Creo Parametric TOOLKIT Equivalent
prodb_get_feature_ids() ProSolidFeatVisit()

prodb_first_part_face(), prodb_next_
part_face()

ProSolidBodySurfaceVisit()

It is possible to use the Creo Parametric TOOLKIT visit functions to create a
utility that follows one of the Pro/DEVELOP styles. An example is shown in the
section Expandable Arrays on page 59.
Some areas of Creo Parametric TOOLKIT functionality reveal a more general,
and more consistent, view of the contents of the Creo Parametric database than
that familiar to users of Pro/DEVELOP, and therefore require a slightly deeper
understanding. For example, Creo Parametric TOOLKIT does not contain exact
equivalents of the following Pro/DEVELOP functions for traversing the
components of an assembly:

2118 Creo® Parametric TOOLKITUser’s Guide

• prodb_first_member()

• prodb_next_member()

Assembly components (called “members” in Pro/DEVELOP) are represented as
features in the Creo Parametric database, so these two functions can be replaced
by a call to ProSolidFeatVisit(), using ProFeatureTypeGet() to
identify the features of type PRO_FEAT_COMPONENT. The feature identifier for
an assembly component is identical to the member identifier used in Pro/
DEVELOP.
In the same way, the following Pro/DEVELOP functions that find datum planes
and datum curves are also replaced by more generic functions in Creo Parametric
TOOLKIT:

• prodb_first_datum()

• prodb_next_datum()

• prodb_get_datum_curves()

Here, too, the first step is to traverse the features using
ProSolidFeatVisit(). You can then traverse all the geometrical items in a
feature using ProFeatureGeomitemVisit(). Datum planes are geometry
items of type PRO_SURFACE, in features of type PRO_FEAT_DATUM; datum
curves are geometry items of type PRO_CURVE, which can occur in features of
many types.
This manual always explains the structure of the Creo Parametric database
wherever necessary, without assuming any prior knowledge of the Pro/DEVELOP
viewpoint. As shown in the previous examples, if you are converting a Pro/
DEVELOP application that traverses Creo Parametric geometry, you should pay
particular attention to the Core: 3D Geometry on page 170 appendix.
You can use Creo Parametric TOOLKIT functions to create utilities for the
specific cases you need. Many such utilities are provided in the sample code
located under the Creo Parametric TOOLKIT loadpoint.
Finally, Creo Parametric TOOLKIT covers whole new areas of functionality that
were not supported at all by Pro/DEVELOP, such as the direct programmatic
creation of features, including simple kinds of sketched features, datum planes,
and manufacturing features. Some Pro/DEVELOP applications, especially those
that create features using user-defined features (UDFs), and which customize
Manufacturing, may therefore benefit from a complete redesign to take full
advantage of Creo Parametric TOOLKIT.

Registry Files
The Creo Parametric TOOLKIT registry file has the same format as the Pro/
DEVELOP registry file. The search path used by Creo Parametric TOOLKIT to
find the registry file is like that used by Pro/DEVELOP. However, the file name
prodev.dat is now replaced by creotk.dat or protk.dat, and the

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2119

configuration file option prodevdat is now either creotkdat, or
protkdat, or toolkit_registry_file. To convert from Pro/DEVELOP
to Creo Parametric TOOLKIT, simply substitute these names.
For an extended period, the search path for the Pro/DEVELOP registry file will
continue to be used by Creo Parametric, in addition to the search path for Creo
Parametric TOOLKIT. Therefore, you do not need to rename the Pro/DEVELOP
registry file or configuration file option immediately.

Menu and Message Files
Although the Pro/DEVELOP functions for accessing menus and messages have
been replaced by close equivalents in Creo Parametric TOOLKIT, the menu and
message files themselves retain exactly the same form and function. No
conversion is necessary.

Unlocking Your Application
The Creo Parametric TOOLKIT script for unlocking a finished application is
named protk_unlock, but is otherwise identical to prodev_unlock.

Application Program Structure
All the Pro/DEVELOP run modes are available in identical form in Creo
Parametric TOOLKIT, and the structure of a Creo Parametric TOOLKIT
application is the same as that of a Pro/DEVELOP application. Some of the core
functions have been given new Creo Parametric TOOLKIT-style names for the
sake of consistency, but are otherwise the same. The functions user_
initialize() and user_terminate() remain identical in name and
purpose.

Handles and Data Types
Although Creo Parametric TOOLKIT is more rigorous than Pro/DEVELOP in the
way it references objects in the Creo Parametric database, there are some close
correspondences that simplify the task of mixing Pro/DEVELOP and Creo
Parametric TOOLKIT functions.
As a general rule, database items referred to in Pro/DEVELOP by the type
Prohandle, and referred to as OHandles (opaque handles) in Creo Parametric
TOOLKIT, are pointers to the same Creo Parametric data structures. You can
directly convert them by casting. The following table lists the most important
examples.
Pro/DEVELOP Prohandle for the item type Can be cast directly to the Creo Parametric

TOOLKITobject
Object ProMdl

Assembly ProAssembly

2120 Creo® Parametric TOOLKITUser’s Guide

Pro/DEVELOP Prohandle for the item type Can be cast directly to the Creo Parametric
TOOLKITobject

Part ProPart

Model (part or assembly) ProSolid

Surface ProSurface

Contour ProContour

Edge ProEdge

Curve ProCurve

Datum quilt ProQuilt

Point ProPoint

Axis ProAxis

Coordinate system ProCsys

For database items that can be identified in Pro/DEVELOP by an integer
identifier, that identifier is the same one generated by Creo Parametric TOOLKIT
functions such as ProSurfaceIdGet() and ProEdgeIdGet(), and is the
same one required as input to functions such as ProSurfaceInit(). It is also
the value of the id field when one of these objects is represented as a
ProGeomitem.
Converting a Pro/DEVELOP integer identifier to a Creo Parametric TOOLKIT
OHandle can be done in two ways:

• Convert to a Prohandle within Pro/DEVELOP using pro_element_
info(), then cast the resulting pointer.

• Use the identifier directly as the input to the appropriate Pro*Init()
function.

The following diagrams show the possible conversion paths between Pro/
DEVELOP and Creo Parametric TOOLKIT for database items.
The first diagram applies to objects of type Surface, Edge, Axis, Csys, Curve,
Point, and Quilt. In each case, replace the asterisk (*) with the appropriate name.

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2121

Pro/DEVELOP Database Item Conversion Path

The exception to the previous diagram is that the Pro/DEVELOP function pro_
element_info() is not supported for coordinate system datums.
A contour does not have an integer identifier in either Pro/DEVELOP or Creo
Parametric TOOLKIT, but you can convert the Pro/DEVELOP Prohandle to
ProContour and back by casting.
A view does not have an integer identifier in Creo Parametric TOOLKIT, but you
can convert the Pro/DEVELOP Prohandle to ProView by casting.
A vertex is represented in Pro/DEVELOP as an edge (or a curve) and a value for
the parameter tof either 0 or 1. Creo Parametric TOOLKIT uses this technique in
the ProSelection object, but for function inputs and in ProGeomitem it
uses the specific types PRO_EDGE_START and PRO_EDGE_END (and PRO_
CRV_START and PRO_CRV_END for datum curve ends). Because PRO_EDGE_
START and PRO_CRV_START always refer to the end wheret = 0, conversion is
easy.
A feature is represented in Creo Parametric TOOLKIT by ProFeature, which
is a DHandle, and therefore not equivalent to a Pro/DEVELOP Prohandle. The
integer identifier still maps directly, however.
The following diagram applies to converting features.

2122 Creo® Parametric TOOLKITUser’s Guide

Feature Conversion

The following objects are DHandles, which are identical in form to
ProModelitem and were identified only by an integer identifier in Pro/
DEVELOP. They also inherit from ProModelitem, which means that, for example,
ProSelectionModelitemGet() can be used to unpack them from a
ProSelection object after calling ProSelect(). In each case, the id field in
the object handle corresponds to the integer id used to identify these objects in
Pro/DEVELOP.
• ProDimension

• ProGtol

• ProDtlnote

• ProDtlentity

• ProDtlsyminst

• ProDtlsymdef

• ProDtlgroup

• ProDgmitem

• ProNote

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2123

Note
The objects ProDtlnote and ProNote refer to detail (drawing) notes, and
notes respectively. They share the same value of the type field - PRO_NOTE -
but they are distinguished by the type of their owning model.

The following diagram applies to Creo Parametric TOOLKIT objects ProSolid,
ProPart, and ProAssembly when you map to Pro/DEVELOP parts and
assemblies. For objects of type ProMdl that are not parts or assemblies, the
integer identifiers are not applicable, but the rest of the diagram is correct.

Pro/DEVELOP Part and Assembly Mapping

2124 Creo® Parametric TOOLKITUser’s Guide

Many explicit data types from Pro/DEVELOP have been carried across into Creo
Parametric TOOLKIT directly, and, although they generally have been given new
names, they are directly compatible. In fact, the remaining Pro/DEVELOP include
files now reference the new definitions in the Creo Parametric TOOLKIT include
files.
Enumerated types have also been given new names for their values, and in some
cases where Pro/DEVELOP used #defined values of an integer, Creo
Parametric TOOLKIT provides an enum. However, the integer mapping of the
values is retained in every case. Some examples of Pro/DEVELOP data types now
defined in Creo Parametric TOOLKIT are shown in the following table.
Pro/DEVELOP Creo Parametric TOOLKIT
Ptc_surf ProSurfacedata

Ptc_curve ProCurvedata

Pro_linestyle ProLinestyle

pro_mode ProMode

Pro_text_attributes ProTextAttribute

int ProMousebutton
int ProDrawMode
int ProColortype

For some items that have representations in both Creo Parametric TOOLKIT and
Pro/DEVELOP, the data structures are not the same, and no direct conversion is
possible. However, you can always convert by reducing such structures to their
component data items. For example, to convert the Pro/DEVELOP representation
of a parameter, Pro_parameter_info, to the Creo Parametric TOOLKIT
ProParameter object, you can use functions such as
ProParameterInit() and ProParameterValueWithUnitsSet(),
using the fields in the Pro/DEVELOP structure as inputs. (In this case, it would
probably be better to make a complete conversion to the Creo Parametric
TOOLKIT functions, and thus avoid mixing these types in an application.)
A more complex example of this is the Pro/DEVELOP Select3d structure,
whose Creo Parametric TOOLKIT counterpart is ProSelection. The
following table explains the mapping by showing the fields of Select3d
alongside the Creo Parametric TOOLKIT functions that extract the equivalent
information from ProSelection.
Select3d Field Creo Parametric TOOLKIT Read Access
sel_type ProSelectionModelitemGet(), then read

modelitem.type. See the note that follows this table.
selected_id ProSelectionModelitemGet(), then read

modelitem.id.
selected_ptr ProSelectionModelitemGet(), then Pro*Init(),

depending on the type.
select_pnt ProSelectionPoint3dGet().
sel_param ProSelectionUvParamGet().
sel_depth ProSelectionDepthGet().

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2125

Select3d Field Creo Parametric TOOLKIT Read Access
part_ptr ProSelectionAsmcomppathGet(), and

ProAsmcomppathMdlGet().
assembly_ptr ProSelectionAsmcomppathGet(), then read

comppath.owner.
memb_num ProSelectionAsmcomppathGet(), then read

comppath.table_num.
memb_id_tab ProSelectionAsmcomppathGet(), then read

comppath.comp_id_tab.
view_ptr ProSelectionViewGet().

Note
The values of the Select3d field sel_type do not map directly to values
of ProType, used in ProModelitem. Do not convert these types by direct
assignment. See the next table for the mapping.

This table also makes clear what data from Pro/DEVELOP you need to build a
ProSelection object in Creo Parametric TOOLKIT, using the functions
ProSelectionAlloc(), ProSelectionSet(),
ProSelectionUvParamSet(), and ProSelectionVerify().
There was an anomaly in selecting datum points in Pro/DEVELOP that has been
corrected in Creo Parametric TOOLKIT. The selected_id is the identifier of
the feature, and the datum point identifier is given by the field sel_elem_id.
However, this does not carry over into Creo Parametric TOOLKIT—the
ProModelitem identifier is the identifier of the datum point. (To get the
feature, use the function ProGeomitemFeatureGet().)
The following table shows how the values of the sel_type field in Select3d
(and the corresponding pro_select() option strings) map to values of
ProType used in Creo Parametric TOOLKIT for ProModelitem and
ProGeomitem objects used in Creo Parametric TOOLKIT as object handles that
inherit from ProModelitem, such as ProGeomitem, ProDimension,
ProGtol, ProDtlnote, and so forth.
pro_select() option Select3d sel_type ProType
point SEL_3D_PNT PRO_POINT

axis SEL_3D_AXIS PRO_AXIS

datum SEL_3D_SRF PRO_SURFACE

csys SEL_3D_CSYS PRO_CSYS

feature SEL_3D_FEAT PRO_FEATURE

edge SEL_3D_EDG PRO_EDGE

edge_end SEL_3D_VERT PRO_EDGE_START or PRO_
EDGE_END

curve SEL_3D_CURVE PRO_CURVE

2126 Creo® Parametric TOOLKITUser’s Guide

pro_select() option Select3d sel_type ProType
curve_end SEL_CURVE_END PRO_CRV_START or PRO_CRV_

END
sldedge SEL_3D_EDGE PRO_EDGE

qltedge SEL_3D_EDGE PRO_EDGE

surface SEL_3D_SRF PRO_SURFACE

sldface SEL_3D_SRF PRO_SURFACE

qltface SEL_3D_SRF PRO_SURFACE

dtmqlt SEL_3D_SRF_LIST PRO_QUILT

part SEL_3D_PART PRO_PART

prt_or_asm SEL_3D_PART PRO_PART or PRO_ASSEMBLY
dimension DTL_DIM PRO_DIMENSION

ref_dim DTL_REFDIM PRO_REF_DIMENSION

gtol DTL_GTOL PRO_GTOL

dtl_symbol DTL_SYMBOL PRO_SYMBOL_INSTANCE

dwg_table SEL_DWG_TABLE PRO_DRAW_TABL

any_note DTL_USER_NOTE PRO_NOTE

note_3d SEL_3D_NOTE PRO_NOTE

dgm_obj SEL_DGM_REF_OBJ PRO_DIAGRAM_OBJECT

dgm_non_cable_wire DTL_WIRE PRO_DIAGRAM_WIRE

draft_ent DTL_DRAFT_ENT PRO_DRAFT_ENTITY

ext_obj SEL_3D_EXT_OBJ PRO_EXTOBJ

table_cell SEL_TABLE_CELL PRO_DRAW_TABLE_CELL

To minimize the need to convert between Select3d and ProSelection,
follow these guidelines:

• If you need a Select3d as an input to a Pro/DEVELOP function, and the
element referred to is to be selected interactively, use one of the Pro/
DEVELOP select functions listed below instead of ProSelect() until you
can convert the whole application.

○ pro_select()

○ pro_get_selection()

○ pro_set_and_get_selection()

• If you need to use a Pro/DEVELOP function whose output is, or contains, a
Select3d, try to process the output using Pro/DEVELOP functions instead
of converting to a ProSelection object where possible. For example, use
pro_show_select() instead of ProSelectionHighlight().

To help you maintain such mixtures, the online browser retains the description of
the Pro/DEVELOP selection functions and Select3d that are, strictly speaking,
superseded by Creo Parametric TOOLKIT.
However, PTC recommends that you retain your documentation for Pro/
DEVELOP to use with Creo Parametric TOOLKIT.

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2127

Equivalent Pro/DEVELOP Functions
The following table lists the functions that have equivalents in Creo Parametric
TOOLKIT. If the Pro/DEVELOP function is not included in this list, the function
retains the Pro/DEVELOP style in Creo Parametric TOOLKIT. For ease of use,
the Pro/DEVELOP functions are presented by functional group.
Pro/DEVELOP Function Equivalent Creo Parametric TOOLKIT Function
Core Functions
Synchronous Mode
pro_term() ProEngineerEnd()

Asynchronous Mode
prodev_start_proengineer() ProEngineerStart()

prodev_set_interrupt_func() Not supported in Creo Parametric TOOLKIT.It can be safely
removed from applications which call it. For information on
how to structure a full asynchronous mode application to
accept Creo Parametric events, refer to the chapter Core:
Asynchronous Mode on page 277.

prodev_handle_interrupt() ProEventProcess()

prodev_set_proe_term_func() ProTermFuncSet()

user_proe_term_func() ProTerminationAction()

prodev_get_proe_status() ProEngineerStatusGet()

User-Supplied Main
prodev_main() ProToolkitMain()

Menus
Adding a Menu Button
promenu_create() ProMenuFileRegister()

promenu_expand() ProMenuAuxfileRegister()

promenu_on_button() ProMenubuttonActionSet()

promenu_load_action() ProMenubuttonGenactionSet()

New Menus
promenu_action() ProMenuProcess()

promenu_exit_up() ProMenuDelete()

promenu_make() ProMenuCreate()

promenu_no_exit() ProMenuHold()

promenu_exit_action_up() ProMenuDeleteWithStatus()

promenu_make_compound() ProCompoundmenuCreate()

Preempting Creo Parametric Commands
promenu_load_pre_func() ProMenubuttonPreactionSet()

promenu_load_post_func() ProMenubuttonPostactionSet()

Manipulating Menus
promenu_set_item_location() ProMenubuttonLocationSet()

promenu_set_item_visible() PropMenubuttonVisibilitySet()

promenu_remove_item() ProMenubuttonDelete()

Data Menus

2128 Creo® Parametric TOOLKITUser’s Guide

promenu_set_mode() ProMenuModeSet()

promenu_set_data_mode() ProMenuDatamodeSet()

Setting Menu Buttons
promenu_set_item() ProMenubuttonHighlight()

promenu_reset_item() ProMenubuttonUnhighlight()

Controlling Accessibility of Menu Buttons
promenu_make_item_
accessible()

ProMenubuttonActivate()

promenu_make_item_
inaccessible()

ProMenubuttonDeactivate()

Pushing and Popping Menus
promenu_is_up() ProMenuVisibilityGet()

promenu_push() ProMenuPush()

promenu_pop() ProMenuPop()

Run-Time Menus
pro_select_strings() ProMenuStringsSelect()

Entering Creo Parametric Commands
proload_cmd_sequence() ProMacroLoad()

promenu_push_command() ProMenuCommandPush()

Message Window
Writing a Message
promsg_print() ProMessageDisplay()

promsg_clear() ProMessageClear()

Writing a Message to an Internal Buffer
promsg_sprint() ProMessageToBuffer()

Getting Keyboard Input
promsg_getint() ProMessageIntegerRead()

promsg_getdouble() ProMessageDoubleRead()

promsg_getstring() ProMessageStringRead()

promsg_getpasswd() ProMessagePasswordRead()

Graphics and Object Display
Manipulating Windows
pro_clear_window() ProWindowClear()

pro_view_repaint() ProWindowRepaint()

pro_refresh_window() ProWindowRefresh()

pro_get_current_window() ProWindowCurrentGet()

pro_set_current_window() ProWindowCurrentSet()

pro_open_object_window() ProObjectwindowMdlnameCreate()

pro_close_object_window() ProWindowDelete()

Model Orientation
pro_get_cur_window_matrix() ProWindowCurrentMatrixGet()

pro_get_view_matrix() ProViewMatrixGet()

pro_set_view_matrix() ProViewMatrixSet()

pro_reset_view() ProViewReset()

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2129

pro_rotate_view() ProViewRotate()

pro_store_view() ProViewStore()

pro_retrieve_view() ProViewRetrieve()

pro_get_view_names() ProViewNamesGet()

Displaying Creo Parametric Objects
progr_display_object() ProSolidDisplay()(for parts and assemblies)

ProMdlDisplay()

pro_show_select() ProSelectionHighlight()
ProSelectionDisplay()
ProSelectionUnhighlight()

Graphics Colors and Line Styles
progr_text_color() ProTextColorSet()

progr_color() ProGraphicsColorSet()

progr_get_color_map() ProColormapGet()

progr_set_color_map() ProColormapSet()

progr_set_line_style() ProLinestyleSet()

progr_get_line_style_def() ProLinestyleDataGet()

Displaying Graphics
progr_move_3d() ProGraphicsPenPosition()

progr_draw_3d() ProGraphicsLineDraw()

progr_put_polyline() ProGraphicsPolylineDraw()

progr_put_multi_polylines() ProGraphicsMultiPolylinesDraw()

progr_put_arc() ProGraphicsArcDraw()

progr_put_circle() ProGraphicsCircleDraw()

progr_draw_polygon_2d() ProGraphicsPolygonDraw()

Displaying Text
progr_put_text() ProGraphicsTextDisplay()

pro_get_text_attributes() ProCurrentTextAttributesGet()

pro_set_text_attributes() ProCurrentTextAttributesSet()

progr_get_default_font_id() ProTextfontDefaultIdGet()

progr_get_font_id() ProTextfontIdGet()

progr_get_font_name() ProTextFontNameGet()

Getting Mouse Input
promenu_get_pick() ProMousePickGet()

pro_sample_xy() ProMouseTrack()

progr_set_draw_mode() ProGraphicsModeSet()

pro_getbox() ProMouseBoxInput()

Display Lists
pro_create_2d_disp_list() ProDisplist2dCreate()

pro_display_2d_disp_list() ProDisplist2dDisplay()

pro_delete_2d_disp_list() ProDisplist2dDelete()

pro_create_3d_disp_list() ProDisplist3dCreate()

pro_display_3d_disp_list() ProDisplist3dDisplay()

2130 Creo® Parametric TOOLKITUser’s Guide

pro_delete_3d_disp_list() ProDisplist3dDelete()

Layers
prolayer_get_names() ProMdlLayerNamesGet()

prolayer_add_item() ProLayerItemAdd()

prolayer_remove_item() ProLayerItemRemove()

prolayer_display() ProLayerDisplaystatusSet()

prolayer_get_display() ProLayerDisplaystatusGet()

prolayer_create_layer() ProLayerCreate()

prolayer_delete_layer() ProLayerDelete()

prolayer_get_items() ProLayerItemsGet()

Database Support
Session Objects
pro_get_current_object() ProMdlCurrentGet()

pro_get_current_mode() ProModeCurrentGet()

prodb_find_declared_objects() ProMdlDeclaredDataList()

prodb_find_nobject_depend() ProMdlDependenciesDataList()

prodb_get_object_info() ProMdlMdlnameGet()

ProMdlOriginGet()

ProMdlExtensionGet()

ProMdlDirectoryPathGet()

prodb_get_object_ptr() ProMdlInit()

prodb_first_name_in_list() ProSessionMdlList()

prodb_next_name_in_list() ProSessionMdlList()

prodb_was_object_modified() ProMdlModificationVerify()

pro_solid_id_from_ptr() ProSolidToPostfixId()

pro_solid_ptr_from_id() ProPostfixIdToSolid()

File Management Operations
prodb_create_object() ProSolidMdlnameCreate()

prodb_create_obj() ProSolidMdlnameCreate()

prodb_retrieve_object() ProMdlnameRetrieve()

prodb_save_object() ProMdlSave()

prodb_rename_object() ProMdlnameRename()

prodb_copy_object() ProMdlnameCopy()

prodb_erase_object() ProMdlErase()

prodb_backup_object() ProMdlnameBackup()

Simplified Representations
prodb_get_simplfd_rep_info() ProSimprepActiveGet()

prodb_get_simplfd_rep_list() ProSolidSimprepVisit()

prodb_retrieve_simplfd_rep() ProAssemblySimprepRetrieve()

Selecting Objects
pro_select() ProSelect()

pro_get_selection() ProSelect()

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2131

pro_set_and_get_selection() ProSelect()

Tracing a Ray Through a Model
pro_ray_x_model() ProSolidRayIntersectionCompute()

Element Information
pro_element_info() PRO_IDENTIFY:Pro*IdGet(), Pro*Init()PRO_

BELONG_TO: ProGeomitemFeatureGet()
Regenerating Models
pro_regenerate() ProSolidRegenerate()

pro_regenerate_object() ProSolidRegenerate()

Part Accuracy
prodb_get_model_accuracy() ProSolidAccuracyGet()

prodb_set_model_accuracy() ProSolidAccuracySet()

Mass Properties
prodb_mass_prop() ProSolidMassPropertyGet()

Utilities
pro_str_to_wstr() ProStringToWstring()

pro_wstr_to_str() ProWstringToString()

pro_wchar_t_check() ProWcharSizeVerify()

pro_show_file() ProInfoWindowDisplay()

pro_show_info_window() ProInfoWindowDisplay()

prodb_edit_file() ProFileEdit()

Session Tools
pro_get_prodevdat_info() ProToolkitApplExecPathGet()

pro_getenvironment() ProConfigoptGet()

pro_change_dir() ProDirectoryChange()

pro_get_current_directory() ProDirectoryCurrentGet()

pro_is_option_ordered() ProOptionOrderedVerify()

pro_get_config() ProConfigoptGet()

pro_set_config() ProConfigoptSet()

progr_invalidate_display_
list()

ProDisplistInvalidate()

Exporting and Importing Files
pro_export_file_from_pro() ProOutputFileMdlnameWrite()

pro_export_plot_file() ProPlotfileWrite()

pro_read_file_to_pro() ProInputFileRead()

pro_export_fea_mesh() ProFemmeshExport()

Material Names
prodb_get_material_props() ProPartMaterialdataGet()

prodb_get_material_name() ProPartMaterialNameGet()

prodb_set_material_name() ProPartMaterialSet()

Storing Generic Data
proappdata_register_class() ProExtdataClassRegister()

proappdata_create_data() ProExtdataSlotCreate()

proappdata_write_data() ProExtdataSlotWrite()

2132 Creo® Parametric TOOLKITUser’s Guide

proappdata_read_data() ProExtdataSlotRead()

proappdata_delete_data() ProExtdataSlotDelete()

proappdata_list_classes() ProExtdataClassNamesList()

proappdata_list_data_in_
class()

ProExtdataSlotIdsList()

Geometry
Traversing the Geometry of a Part
prodb_first_part_face() ProSolidBodySurfaceVisit()

prodb_next_part_face() ProSolidBodySurfaceVisit()

prodb_get_solid_surfaces() ProSolidBodySurfaceVisit()

prodb_first_face_contour() ProSurfaceContourVisit()

prodb_next_face_contour() ProSolidBodySurfaceVisit()

prodb_first_cntr_edge() ProContourEdgeVisit()

prodb_next_cntr_edge() ProContourEdgeVisit()

prodb_get_datum_curves() ProSolidFeatVisit(),
ProFeatureGeomitemVisit()

prodb_get_datum_surfaces() ProSolidQuiltVisit(),
ProQuiltSurfaceVisit()

prodb_edge_data() ProEdgeNeighborsGet()

prodb_edge_direction() ProEdgeDirGet()

prodb_contour_traversal() ProContourTraversalGet()

prodb_containing_contour() ProContainingContourFind()

prodb_vertex_data() ProEdgeVertexdataGet()

prodb_get_solid_volumes() ProSldsurfaceVolumesFind()

Evaluating Geometry
prodb_edge_tessellation() ProEdgeTessellationGet()

pro_eval_xyz_edge() ProEdgeXyzdataEval()

pro_eval_xyz_entity() ProCurveXyzdataEval()

pro_eval_uv_edge() ProEdgeUvdataEval()

pro_eval_xyz_face() ProSurfaceXyzdataEval()

pro_get_edge_param() ProEdgeParamEval()

pro_get_entity_param() ProCurveParamEval()

pro_get_face_params() ProSurfaceParamEval()

prodb_uv_in_face_domain() ProSurfaceUvpntVerify()

pro_point_on_geom() ProGeometryAtPointFind()

prodb_get_edge_uv_points() ProEdgeTesselationGet()

prodb_get_surface_
tessellation()

ProSurfaceTessellationGet()

Geometry Equations
prodb_get_curve_type() ProCurveTypeGet()

pro_get_curve_type_geom() ProCurvedataGet()

prodb_get_edge_type() ProEdgeTypeGet()

prodb_get_edge_curve() ProEdgedataGet()

prodb_rls_edge_curve() ProGeomitemdataFree()

prodb_get_face_type() ProSurfaceTypeGet()

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2133

prodb_get_surface() ProSurfacedataGet()

prodb_rls_surface() ProGeomitemdataFree()

prodb_surface_to_nurbs() ProSurfaceToNURBS()

prodb_edge_to_nurbs() ProEdgeToNURBS()

prodb_entity_to_nurbs() ProCurveToNURBS()

Measurement
pro_edge_length() ProEdgeLengthEval()

pro_face_area() ProSurfaceAreaEval()

prodb_measure() ProSurfaceDiameterEval(),
ProGeomitemAngleEval(),
ProGeomitemDistanceEval()

pro_face_extremes() ProSurfaceExtremesEval()

prodb_get_envelope() ProSolidOutlineGet()

prodb_compute_outline() ProSolidOutlineCompute()

Parameters and Dimensions
Parameters
prodb_get_parameters() ProParameterVisit() and

ProParameterValueWithUnitsGet()
prodb_set_parameters() ProParameterValueWithUnitsSet()

prodb_add_parameters() ProParameterCreate()

prodb_delete_parameters() ProParameterDelete()

prodb_reset_parameters() ProParameterValueReset()

prodb_designate_param() ProParameterDesignationAdd()

ProParameterDesignationVerify()

Dimensions
prodim_display_dimension ProAnnotationDisplay()

prodim_get_dim_text ProDimensionTextWstringsGet()

prodb_dim_is_visible ProDimensionIsAccessibleInModel()

prodim_get_dimension ProDimensionSymbolGet()

ProDimensionValueGet()

ProDimensionToleranceGet()

ProDimensionTypeGet()

ProDimensionIsFractional()

ProDimensionDecimalsGet()

ProDimensionDenominatorGet()

ProDimensionIsReldriven()

ProDimensionIsRegenednegative().

Features
Listing Features
prodb_get_feature_ids() ProSolidFeatVisit()

prodb_get_feat_parent_child() ProFeatureParentsGet()

prodb_get_feat_type() ProFeatureTypeGet()

2134 Creo® Parametric TOOLKITUser’s Guide

Names of Features and Other Elements
prodb_get_element_name() ProModelitemNameGet()

prodb_set_element_name() ProModelitemNameSet()

Feature Geometry
prodb_get_feature_surfaces() ProFeatureGeomitemVisit()

prodb_get_surface_feature() ProGeomitemFeatureGet()

Manipulating Features
prodb_suppress_feature() ProFeatureSuppress()

prodb_resume_feature() ProFeatureResume()ProSolidFeatstatusSet()

prodb_delete_feature() ProFeatureDelete()

Datum Planes
prodb_first_datum() ProSolidFeatVisit()

prodb_next_datum() ProSolidFeatVisit()

Datum Points
prodb_get_feature_dtm_
points()

ProSolidFeatVisit()

prodb_eval_xyz_dtm_point() ProPointCoordGet()

Axes
prodb_get_first_axis() ProSolidAxisVisit()

prodb_get_next_axis() ProSolidAxisVisit()

Coordinate Systems
prodb_find_csys() ProSolidCsysVisit(),
prodb_unpack_csys() ProCsysdataGet()

Surface Quilts
prodb_get_surface_quilt() ProSurfaceQuiltGet()

Surface Quilts
prodb_get_surface_quilt() ProSurfaceQuiltGet()

Assemblies
Finding Assembly Members
prodb_first_member() ProSolidFeatVisit()

prodb_next_member() ProSolidFeatVisit()

prodb_member_to_object() ProAsmcompMdlGet()

prodb_obj_from_assem_rel() ProPostfixIdToSolid()

Location of Assembly Members
prodb_member_transform() ProAsmcomppathTrfGet()

pro_vectors_to_transf() ProMatrixInit()

prodb_get_asm_transform() ProAsmcomppathTrfGet()

prodb_set_member_transform() ProAsmcomppathTrfSet()

Assembling and Deleting Members
prodb_assemble_by_transform() ProFeatureCreate()

prodb_assemble_component() ProFeatureCreate()

prodb_explode_assembly() ProAssemblyExplode()

prodb_get_asm_constraints() ProFeatureElemtreeCreate()

prodb_is_asm_exploded() ProAssemblyIsExploded()

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2135

Notify
Basic Notify Functions
prodev_notify() ProNotificationSet()

pro_on_regenerate_end() ProNotificationSet()

Notify for File Management Operations

user_menu_dbms_save_pre() ProMdlSavePreAction()

user_menu_dbms_save_post() ProMdlSavePostAction()

user_menu_dbms_copy_pre() ProMdlCopyPreAction()

user_menu_dbms_copy_post() ProMdlCopyPostAction()

user_menu_dbms_rename_pre() ProMdlRenamePreAction()

user_menu_dbms_rename_post() ProMdlRenamePostAction()

user_menu_dbms_erase_pre() ProMdlErasePreAction()

user_menu_dbms_erase_post() ProMdlErasePostAction()

user_menu_dbms_purge_pre() ProMdlPurgePreAction()

user_menu_dbms_purge_post() ProMdlPurgePostAction()

user_menu_dbms_delete_pre() ProMdlDeletePreAction()

user_menu_dbms_delete_post() ProMdlDeletePostAction()

user_menu_dbms_create_pre() ProMdlCreatePreAction()

user_menu_dbms_create_post() ProMdlCreatePostAction()

user_menu_dbms_retrieve_pre() ProMdlRetrievePreAction()

user_menu_dbms_retrieve_
post()

ProMdlRetrievePostAction()

user_dbms_save_post_all() ProMdlSavePostAllAction()

user_dbms_copy_post_all() ProMdlCopyPostAllAction()

user_dbms_erase_post_all() ProMdlErasePostAllAction()

user_dbms_delete_post_all() ProMdlDeletePostAllAction()

user_dbms_retrieve_post_all() ProMdlRetrievePostAllAction()

Failure Notify
user_dbms_failure_function() ProMdlDbmsFailureAction()

Change Notify
user_change_window_post() ProWindowChangePostAction()

user_change_directory() ProDirectoryChangePostAction()

Graphics Notify
user_graphics_object_output_
pre()

ProMdlDisplayPreAction()

user_graphics_object_output_
post()

ProMdlDisplayPostAction()

Manufacturing Notify
user_mfg_oper_cl_file_post() ProMfgoperClPostAction()

user_mfg_feat_cl_file_post() ProNcseqClPostAction()

Manufacturing Operations
Manufacturing Components
promfg_get_tool_ids()
prodb_get_comp_role()

ProMfgAssemGet()

2136 Creo® Parametric TOOLKITUser’s Guide

Manufacturing Parameters
promfg_get_tool_ids() ProMfgToolVisit()

promfg_get_tool_parameters() ProToolParamGet()

promfg_set_tool_parameters() ProToolElemParamAdd()

promfg_get_nc_type() ProNcseqTypeGet()

Cabling Operations
procbl_create_cables_from
_logical()

ProCablesFromLogicalCreate()

procbl_get_cables_from
_logical()

ProCablesFromLogicalGet()

procbl_get_connectors_from
_logical()

ProConnectorsFromLogicalGet()

procbl_get_assy_spools() ProAssemblySpoolsCollect()

procbl_create_spool() ProSpoolCreate()

procbl_get_spool_params() ProSpoolParametersCollect()

procbl_get_spool_param() ProSpoolParameterGet()

procbl_get_assy_connectors() ProAssemblyConnectorsGet()

procbl_designate_connector() ProConnectorDesignate()

procbl_undesignate_
connector()

ProConnectorUndesignate()

procbl_get_connector_entry_
ports()

ProConnectorEntryPortsGet()

procbl_set_spool_params() ProSpoolParametersSet()

procbl_delete_spool_param() ProSpoolParameterDelete()

procbl_get_spools_from_
logical()

ProSpoolsFromLogicalGet()

procbl_get_spools_from_
logical()

ProSpoolsFromLogicalGet()

procbl_get_connector() ProConnectorParamGet()

procbl_delete_connector_
param()

ProConnectorParamDelete()

procbl_get_connector_params() ProConnectorParamsCollect()

procbl_set_connector_params() ProConnectorParamsSet()

procbl_get_assy_harnesses() ProAssemblyHarnessesCollect()

procbl_create_harness() ProHarnessCreate()

procbl_get_harness_cables()

procbl_get_cable_id()

ProHarnessCablesCollect()

procbl_get_harness_
locations()

ProHarnessLocationsCollect()

procbl_get_wire_harnesses() ProCableHarnessesGet()

procbl_get_wire_length() ProCableLengthGet()

procbl_get_cable_id() ProCableByNameGet()

procbl_get_cable_name() ProCableNameGet()

procbl_get_cable_subtype() ProCableTypeGet()

procbl_create_cable() ProCableCreate()

procbl_create_bundle() ProBundleCreate()

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2137

procbl_get_bundle_cables() ProBundleCablesCollect()

procbl_get_cable_logical_
ends()

ProCableLogicalEndsGet()

procbl_get_cable_geom() ProCableIsComplete()

procbl_set_cable_params() ProCableParametersSet()

procbl_delete_cable_param() ProCableParameterDelete()

procbl_get_cable_param() ProCableParameterGet()

procbl_get_cable_params() ProCableParametersCollect()

procbl_cable_clearance() ProCableClearanceCompute()

procbl_get_cable_geom() ProCableSegmentsGet()

procbl_get_cable_geom() ProCablesegmentPointsGet()

procbl_get_cable_geom() ProCablesegmentIsInBundle()

procbl_get_cable_geom() ProCablesegmentIsNew()

procbl_get_cable_locations() ProCableLocationsCollect()

procbl_get_location_cables()

procbl_get_cable_id()

ProCablelocationCablesGet()

procbl_get_location_type() ProCablelocationTypeGet()

procbl_get_location_pnt() ProCablelocationPointGet()

procbl_routing_start() ProCableRoutingStart()

procbl_route_thru_location() ProCableThruLocationRoute()

procbl_routing_end() ProCableRoutingEnd()

UDF Function
prodb_first_udf() ProSolidGroupVisit() or

ProSolidGroupsCollect()

prodb_next_udf() ProSolidGroupVisit() or
ProSolidGroupsCollect()

prodb_get_group() ProFeatureGroupGet()
plusProGroupFeatureVisit() or
ProGroupFeaturesCollect()
plusProGroupIsTabledriven()

prodb_get_udf_name() ProUdfNameGet()

prodb_first_dim_udf() ProUdfDimensionVisit() or
ProUdfDimensionsCollect()

prodb_next_dim_udf() ProUdfDimensionVisit() or
ProUdfDimensionsCollect()

prodb_get_udf_dim_name() ProUdfDimensionNameGet()

prodb_place_udf() Replaced
prodb_create_group() ProUdfCreate()

prodb_get_udf_instance_name() ProUdfNameGet()

Cross Sections
prodb_create_parallel_xsec() ProXsecParallelCreate()

prodb_delete_xsec() ProXsecDelete()

prodb_display_xsec() ProXsecDisplay()

prodb_first_xsec() ProSolidXsecVisit()

prodb_mass_prop_xsec() ProXsecMassPropertyCompute()

prodb_next_xsec() ProSolidXsecVisit()

2138 Creo® Parametric TOOLKITUser’s Guide

prodb_regen_xsec() ProXsecRegenerate()

prodb_xsec_component() ProXsecGeometryCollect()

prodb_xsec_name() ProSolidXsecVisit()

Table-Driven Patterns
proptntbl_add_inst_to_table() Use the Table Pattern feature element tree documented in the

header file ProPattern.h.proptntbl_delete_table()

proptntbl_get_active_table()

proptntbl_get_all_tbl_names()

proptntbl_get_inst_dim_
value()

proptntbl_get_inst_indices()

proptntbl_get_lead_pat_dims()

proptntbl_remove_instance()

proptntbl_rename_table()

proptntbl_set_active_table()

proptntbl_set_dimval_driven()

proptntbl_set_inst_dim_
value()

Merge and Cutout
prodb_merge_members() Use the Merge feature element tree documented in the header

file ProMerge.h.
Automatic Interchange
prodb_auto_interchange ProAssemblyAutointerchange()

Drawing
pro_get_drawing_text_height() ProDrawingSetupOptionGet()

pro_set_drawing_text_height() ProDrawingSetupOptionSet()

prodrw_dim_view_id() ProDrawingDimensionViewGet()

prodrw_get_view_sheet() ProDrawingViewSheetGet()

Notebook
prodb_declare_layout() ProLayoutDeclare()

prodb_undeclare_layout() ProLayoutUndeclare()

prodb_regenerate_layout() ProLayoutRegenerate()

Relations
prodb_import_relations() ProInputFileRead()

prodb_export_relations() ProOutputFileMdlnameWrite()

Surface Properties
prodb_get_surface_props ProSurfaceAppearancepropsGet() or or

ProSurfaceTexturepropsGet() or
ProSurfaceTextureplacementpropsGet()

prodb_set_surface_props ProSurfaceAppearancepropsSet() or
ProSurfaceTexturepropsSet() or
ProSurfaceTextureplacementpropsSet()

prodb_unset_surface_props ProSurfaceAppearancepropsSet() or
ProSurfaceTexturepropsSet() or
ProSurfaceTextureplacementpropsSet()

Data structure pro_surf_props Data structure ProSurfaceAppearanceProps,

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2139

ProSurfaceTextureProps, and
ProSurfaceTexturePlacementProps

pro_get_light_sources ProLightSourcesGet()

pro_set_light_sources ProLightSourcesSet()

Data structure Pro_light ProLightInfo

prodb_surface_tessellation ProSurfaceTessellationGet()

Interference
pro_dist_manifolds() ProSelectionDistanceEval()

ProSelectionWithOptionsDistanceEval()

pro_compute_clearance() ProFitClearanceCompute()

pro_compute_interference() ProFitInterferenceCompute()

pro_compute_global_
interference()

ProFitGlobalinterferenceCompute()

pro_compute_volume() ProFitInterferencevolumeCompute()

pro_display_interf_volume() ProFitInterferencevolumeDisplay()

pro_interference_volume_
release()

ProInterferenceDataFree()

Customized Plot Driver
prointerface_create()

prointerface_load_function()

ProPlotdriverInterfaceCreate()

prointerface_object_set() ProPlotdriverInterfaceobjectsSet()

prointerface_2d() ProPlotdriverExecute()

user_intf_text() ProPlotdriverTextPlot()

ProPlotdriverTextfunctionSet()

user_intf_circle() ProPlotdriverCirclePlot()

ProPlotdriverCirclefunctionSet()

user_intf_arc() ProPlotdriverArcPlot()

ProPlotdriverArcfunctionSet()

user_intf_line() ProPlotdriverLinePlot()

ProPlotdriverLinefunctionSet()

user_intf_polyline() ProPlotdriverPolylinePlot()

ProPlotdriverPolylinefunctionSet()

user_intf_filled_poly() ProPlotdriverPolygonPlot()

ProPlotdriverPolygonfunctionSet()

The following Pro/Develop FEM functions have been replaced with equivalent
Creo Parametric TOOLKIT functions in the mentioned header files:
Pro/DEVELOP Function Equivalent Creo Parametric TOOLKIT

Function
profem_get_con_case_names() ProMechLoadset.h

ProMechConstrset.h
profem_get_constraints() ProMechLoad.h

ProMechConstraint.h

2140 Creo® Parametric TOOLKITUser’s Guide

Pro/DEVELOP Function Equivalent Creo Parametric TOOLKIT
Function

profem_get_mesh_controls() ProMechMeshControl.h

profem_get_bar_elements() ProMechBeam.h

ProMechBeamOrient.h

ProMechBeamRelease.h

ProMechBeamSection.h

ProMechSpring.h

ProMechSpringProps.h

ProMechGap.h

ProMechWeld.h
profem_get_contacts() ProMechContact.h

profem_get_mass_elements() ProMechMass.h

ProMechMassProps.h

profem_get_shell_pairs() ProMechShellPair.h

pro_export_fea_mesh() ProFemMesh.h with the function
ProFemmeshExport()

Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping 2141

J
Geometry Traversal

Overview .. 2143
To Walk Through the Geometry of a Block ... 2143
Geometry Terms.. 2143

This appendix illustrates the relationships between faces, contours, and edges.

2142 Creo® Parametric TOOLKITUser’s Guide

Overview
Note the following:

• A simple rectangular face has one contour and four edges.
• A contour will traverse a boundary such that the part face is always on the

right-hand side (RHS). For an external contour, the direction of traversal is
clockwise. For an internal contour, the direction of traversal is
counterclockwise.

• If a part is extruded from a sketch that has a U-shaped cross section, there will
be separate surfaces at each leg of the U-channel.

• If a part is extruded from a sketch that has a square-shaped cross section, and a
slot feature is then cut into the part to make it look like a U-channel, there will
be one surface across the legs of the U-channel. In other words, the original
surface of the part is represented as one surface with a cut through it.

• Geometry traversal happens on body, solid surface and contour. For quilts,
datum curves, edges, the geometry traversal will happen through a solid. To
collect all the bodies in a specified solid, use the function
ProSolidBodiesCollect().

To Walk Through the Geometry of a Block
1. Walk through the surfaces of a body, using

ProSolidBodySurfaceVisit().
2. Walk through the surfaces of a solid, using ProSolidSurfaceVisit().
3. Walk through the contours of each surface, using

ProSurfaceContourVisit().
4. Walk through the edges of each contour, using

ProContourEdgeVisit().

Geometry Terms
Consider the following definitions:

• surface—An ideal geometric representation, that is, an infinite plane.
• face—A trimmed surface. A face has one or more contours.
• contour—A closed loop on a face. A contour consists of multiple edges. A

contour can belong to one face only.
• edge—The boundary of a trimmed surface.

An edge of a solid is the intersection of two surfaces. The edge belongs to
those two surfaces, hence to two contours. An edge of a datum surface can be

Geometry Traversal 2143

either the intersection of two datum surfaces, or the external boundary of the
surface. If the edge is the intersection of two datum surfaces, it will belong to
those two surfaces (hence, to two contours). If the edge is the external
boundary of the datum surface, it will belong to that surface alone (hence, to a
single contour).

Examples 1 through 5 show some sample parts and list the information about their
surfaces, faces, contours, and edges.

Example 1

This part has 6 faces.

• Face A has 1 contour and 4 edges.
• Edge E2 is the intersection of faces A and B.
• Edge E2 is a component of contours C1 and C2.

Example 2

Face A has 2 contours and 6 edges.

2144 Creo® Parametric TOOLKITUser’s Guide

Example 3

This part was extruded from a rectangular cross section. The feature on the top
was added later as an extruded protrusion in the shape of a semicircle.

• Face A has 1 contour and 6 edges.
• Face B has 2 contours and 8 edges.
• Face C has 1 contour and 4 edges.

Example 4

This part was extruded from a cross section identical to Face A. In the Sketcher,
the top boundary was sketched with two lines and an arc. The sketch was then
extruded to form the base part, as shown.

Geometry Traversal 2145

• Face A has 1 contour and 6 edges.
• Face B has 1 contour and 4 edges.
• Face C has 1 contour and 4 edges.
• Face D has 1 contour and 4 edges.

Example 5

This part was extruded from a rectangular cross section. The slot and hole features
were added later.

• Face A has 1 contour and 8 edges.
• Face B has 3 contours and 10 edges.

2146 Creo® Parametric TOOLKITUser’s Guide

K
Geometry Representations

Domain of Evaluation... 2148
Surface Data Structures... 2148
Plane.. 2149
Cylinder.. 2150
Cone .. 2151
Torus.. 2151
General Surface of Revolution.. 2152
Ruled Surface ... 2153
Tabulated Cylinder... 2153
Coons Patch ... 2154
Fillet Surface... 2155
Spline Surface .. 2155
Second Derivative Spline Surface... 2156
NURBS Surface .. 2157
Cylindrical Spline Surface .. 2158
Foreign Surface .. 2159
Edge and Curve Data Structures .. 2160
Arc ... 2160
Line.. 2160
NURBS .. 2161
Spline... 2161
Ellipse .. 2162

This appendix describes the geometry representations of the data structures
defined in ProGeomitem.h. These structures are output by the geometry
functions described in detail in the Core: 3D Geometry on page 170 chapter.

2147

Domain of Evaluation
Surfaces and edges can be extended from their original domain as the user
continues to add features to the model. For example, the user can add a feature
such as a draft surface or local push, which requires the original surface to be
extended outside its original domain.
When this occurs, you will find that the uv parameters of the surface have been
extended. The ProSurfacedata data structure reflects the extension, and
returns the updated values for the u and v extents.
Because the evaluator functions use the analytical surface (or curve) definition,
they work for any parameter values. Thus, any surface (or curve) can be extended
as needed. In addition, if you pass in parameters outside the current uv domain,
the evaluator functions still return values for the parameters as requested.
If you are using the evaluators supplied by Creo Parametric TOOLKIT, you do
not have to do anything. For surfaces, the evaluator functions work over this
extended range of parameters. Your evaluator function for foreign datum surfaces
is also expected to allow for extrapolation.
Edges are always parameterized between 0.0 and 1.0. When surfaces are
extended, new edges are created that have parameters in the range 0.0 to 1.0.
If you develop your own evaluator functions, you must be aware that the domain
of a surface can be extended, as with foreign datum surfaces.

Surfaces

Surface Data Structures
The surface structure contains data that describes the boundary of the surface, and
a pointer to the primitive surface on which it lies. The primitive surface is a three-
dimensional geometric surface parameterized by two variables (u and v). The
surface boundary consists of closed loops (contours) of edges. Each edge is
attached to two surfaces, and each edge contains the u and v values of the portion

2148 Creo® Parametric TOOLKITUser’s Guide

of the boundary that it forms for both surfaces. Surface boundaries are traversed
clockwise around the outside of a surface, so an edge has a direction in each
surface with respect to the direction of traversal.
Other data found in the surface structure includes the rectangular extents of the
two-dimensional domain, the three-dimensional surface, and a flag indicating
whether the surface normal points towards the inside or outside of the part. The
user data is intended for run-time use only, and this information is not stored with
the surface.
This section describes the surface data structures. The data structures are listed in
order of complexity. For ease of use, the alphabetical listing of the data structures
is as follows:

• Cone on page 2151
• Coons Patch on page 2154
• Cylinder on page 2150
• Cylindrical Spline Surface on page 2158
• Fillet Surface on page 2155
• Foreign Surface on page 2159
• General Surface of Revolution on page 2152
• NURBS Surface on page 2157
• Plane on page 2149
• Ruled Surface on page 2153
• Second Derivative Spline Surface on page 2156
• Spline Surface on page 2155
• Tabulated Cylinder on page 2153
• Torus on page 2151

Plane
Plane

Geometry Representations 2149

The plane entity consists of two perpendicular unit vectors (e1 and e2), the
normal to the plane (e3), and the origin of the plane.
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the plane

Parameterization:
(x, y, z) = u * e1 + v * e2 + origin

Cylinder
Cylinder

The generating curve of a cylinder is a line, parallel to the axis, at a distance R
from the axis. The radial distance of a point is constant, and the height of the point
isv.
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the plane
radius Radius of the cylinder

Parameterization:
(x, y, z) = radius * [cos(u) * e1 + sin(u) * e2] +

v * e3 + origin

Engineering Notes:
For the cylinder, cone, torus, and general surface of revolution, a local coordinate
system is used that consists of three orthogonal unit vectors (e1, e2, and e3) and
an origin. The curve lies in the plane of e1 and e3, and is rotated in the direction
from e1 to e2. The u surface parameter determines the angle of rotation, and the
v parameter determines the position of the point on the generating curve.

2150 Creo® Parametric TOOLKITUser’s Guide

Cone
Cone

The generating curve of a cone is a line at an angle alpha to the axis of revolution
that intersects the axis at the origin. The v parameter is the height of the point
along the axis, and the radial distance of the point is v * tan(alpha).
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the cone
alpha Angle between the axis of the cone

and the generating line

Parameterization:
(x, y, z) = v * tan(alpha) * [cos(u) * e1 +

sin(u) * e2] + v * e3 + origin

Torus
Torus

The generating curve of a torus is an arc of radius R2 with its center at a distance
R1 from the origin. The starting point of the generating arc is located at a distance
R1 + R2 from the origin, in the direction of the first vector of the local coordinate
system. The radial distance of a point on the torus is R1 + R2 * cos(v), and the
height of the point along the axis of revolution is R2 * sin(v) .
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction

Geometry Representations 2151

e3[3] Normal to the plane
origin[3] Origin of the torus
radius1 Distance from the center of the

generating arc to the axis of
revolution

radius2 Radius of the generating arc

Parameterization:
(x, y, z) = (R1 + R2 * cos(v)) * [cos(u) * e1 +

sin(u) * e2] + R2 * sin(v) * e3 +
origin

General Surface of Revolution
General Surface of Revolution

A general surface of revolution is created by rotating a curve entity, usually a
spline, around an axis. The curve is evaluated at the normalized parameter v, and
the resulting point is rotated around the axis through an angle u. The surface of
revolution data structure consists of a local coordinate system and a curve
structure.
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the surface of revolution
curve Generating curve

Parameterization:
curve(v) = (c1, c2, c3) is a point on the curve.
(x, y, z) = [c1 * cos(u) - c2 * sin(u)] * e1 +

[c1 * sin(u) + c2 * cos(u)] * e2 +
c3 * e3 + origin

2152 Creo® Parametric TOOLKITUser’s Guide

Ruled Surface
Ruled Surface

A ruled surface is the surface generated by interpolating linearly between
corresponding points of two curve entities. The u coordinate is the normalized
parameter at which both curves are evaluated, and the v coordinate is the linear
parameter between the two points. The curves are not defined in the local
coordinate system of the part, so the resulting point must be transformed by the
local coordinate system of the surface.
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the ruled surface
curve_1 First generating curve
curve_2 Second generating curve

Parameterization:
(x', y', z') is the point in local coordinates.
(x', y', z') = (1 - v) * C1(u) + v * C2(u)
(x, y, z) = x' * e1 + y' * e2 + z' * e3 + origin

Tabulated Cylinder
Tabulated Cylinder

Geometry Representations 2153

A tabulated cylinder is calculated by projecting a curve linearly through space.
The curve is evaluated at the u parameter, and the z coordinate is offset by the v
parameter. The resulting point is expressed in local coordinates and must be
transformed by the local coordinate system to be expressed in part coordinates.
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the tabulated cylinder
curve Generating curve

Parameterization:
(x', y', z') is the point in local coordinates.
(x', y', z') = C(u) + (0, 0, v)
(x, y, z) = x' * e1 + y' * e2 + z' * e3 + origin

Coons Patch
Coons Patch

A Coons patch is used to blend surfaces together. For example, you would use a
Coons patch at a corner where three fillets (each of a different radius) meet.
Data Format:
le_curve u = 0 boundary
ri_curve u = 1 boundary
dn_curve v = 0 boundary
up_curve v = 1 boundary
point_matrix[2][2] Corner points
uvder_matrix[2][2] Corner mixed derivatives

2154 Creo® Parametric TOOLKITUser’s Guide

Fillet Surface
Fillet Surface

A fillet surface is found where a round or a fillet is placed on a curved edge, or on
an edge with non-constant arc radii. On a straight edge, a cylinder would be used
to represent the fillet.
Data Format:
pnt_spline P(v) spline running along the u = 0 boundary
ctr_spline C(v) spline along the centers of the

fillet arcs
tan_spline T(v) spline of unit tangents to the

axis of the fillet arcs

Parameterization:
R(v) = P(v) - C(v)
(x,y,z) = C(v) + R(v) * cos(u) + T(v) X R(v) *

sin(u)

Spline Surface
Spline Surface

The parametric spline surface is a nonuniform bicubic spline surface that passes
through a grid with tangent vectors given at each point. The grid is curvilinear in
uv space. Use this for bicubic blending between corner points.
Data Format:
u_par_arr[] Point parameters, in the u

Geometry Representations 2155

direction, of size Nu
v_par_arr[] Point parameters, in the v

direction, of size Nv
point_arr[][3] Array of interpolant points, of

size Nu x Nv
u_tan_arr[][3] Array of u tangent vectors

at interpolant points, of size
Nu x Nv

v_tan_arr[][3] Array of v tangent vectors at
interpolant points, of size
Nu x Nv

uvder_arr[][3] Array of mixed derivatives at
interpolant points, of size
Nu x Nv

Engineering Notes:

• Allows for a unique 3x3 polynomial around every patch.
• There is second order continuity across patch boundaries.
• The point and tangent vectors represent the ordering of an array of [i][j],

where u varies with i, and v varies with j. In walking through thepoint_
arr[][3], you will find that the innermost variable representing v(j)
varies first.

Second Derivative Spline Surface
The Second Derivative Spline Surface (ProSpline2ndDersrfdata) is a
bicubic spline surface with possibility of altering the degree of boundary segments
to accommodate corresponding curvature (2nd derivatives) conditions. Use this
for bicubic blending with second degree derivatives along boundaries.
u_par_arr[] Point parameters, in the u direction, of size Nu
v_par_arr[] Point parameters, in the v direction, of size Nv
point_arr[][3] Array of interpolant points, of size Nu x Nv
u_tan_arr[][3] Array of u tangent vectors at interpolant points, of

size Nu x Nv
v_tan_arr[][3] Array of v tangent vectors at interpolant points, of

size Nu x Nv
uvder_arr[][3] Array of mixed derivatives at interpolant points, of

size Nu x Nv
(*u_der2_arrs[2])[3] 2 Arrays of 2nd U derivatives along V boundaries

interpolation points, size of Nv.
(*v_der2_arrs[2])[3] 2 Arrays of 3rd V derivatives along U boundaries

interpolation points, size of Nu.
(*uuv_der[2])[3] 2 Arrays of uuv mixed derivatives along V

boundaries interpolation points, size of Nv.
(*vvu_der[2])[3] Arrays of vvu mixed derivatives along U boundaries

interpolation points, size of Nv.
der4[4][3] UUVV derivatives at the corners

2156 Creo® Parametric TOOLKITUser’s Guide

Engineering notes:

• Each second degree derivatives array can be NULL. If it is defined then
corresponding 3rd degree mixed derivatives should be defined.

• Each der4 can be NULL and should be defined if 2nd degree derivatives are
defined in both directions at the corresponding corner.

NURBS Surface
The NURBS (nonuniform rational B-spline) surface is defined by basis functions
(in u and v), expandable arrays of knots, weights, and control points.

NURBS Surface

Data Format:
deg[2] Degree of the basis

functions (in u and v)
u_par_arr[] Array of knots on the

parameter line u
v_par_arr[] Array of knots on the

parameter line v
wghts[] Array of weights for

rational NURBS, otherwise
NULL

c_point_arr[][3] Array of control points

Definition:

Geometry Representations 2157

k = degree in u
l = degree in v
N1 = (number of knots in u) - (degree in u) - 2
N2 = (number of knots in v) - (degree in v) - 2
B = basis function in u
B = basis function in v
w = weights
C = control points (x,y,z) * w

Engineering Notes:
The weights and f arrays represent matrices of size wghts[N1+1][N2+1]
and c_points_arr [N1+1] [N2+1]. Elements of the matrices are packed
into arrays in row-major order.

Cylindrical Spline Surface
The cylindrical spline surface is a nonuniform bicubic spline surface that passes
through a grid with tangent vectors given at each point. The grid is curvilinear in
modeling space.

Cylindrical Spline Surface

Data Format:
e1[3] x' vector of the local coordinate system
e2[3] y' vector of the local coordinate system
e3[3] z' vector of the local coordinate system,

which corresponds to the axis of revolution
of the surface

origin[3] Origin of the local coordinate system
splsrf Spline surface data structure

The spline surface data structure contains the following fields:
u_par_arr[] Point parameters, in the

u direction, of size Nu
v_par_arr[] Point parameters, in the

v direction, of size Nv

2158 Creo® Parametric TOOLKITUser’s Guide

point_arr[][3] Array of points, in cylindrical
coordinates, of size Nu x Nv.
The array components are as follows:
point_arr[i][0] - Radius
point_arr[i][1] - Theta
point_arr[i][2] - Z

u_tan_arr[][3] Array of u tangent vectors.
in cylindrical coordinates,
of size Nu x Nv

v_tan_arr[][3] Array of v tangent vectors,
in cylindrical coordinates,
of size Nu x Nv

uvder_arr[][3] Array of mixed derivatives,
in cylindrical coordinates,
of size Nu x Nv

Engineering Notes:
If the surface is represented in cylindrical coordinates (r,theta, z), the local
coordinate system values (x', y', z') are interpreted as follows:
x' = r cos (theta)
y' = r sin (theta)
z' = z

A cylindrical spline surface can be obtained, for example, by creating a smooth
rotational blend (shown in the figure on the previous page).
In some cases, you can replace a cylindrical spline surface with a surface such as a
plane, cylinder, or cone. For example, in the figure, the cylindrical spline surface
S1 was replaced with a cone
(r1 = r2, and r3 = r4 and r1 ≠ r3).
If a replacement cannot be done (such as for the surface S0 in the figure (ra ≠ rb
or rc ≠ rd)), leave it as a cylindrical spline surface representation.

Foreign Surface
The foreign surface consists of two perpendicular unit vectors (e1 and e2), the
normal to the plane(e3), the origin of the plane and the foreign ID returned by
the function user_init_surf().
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the plane
foreign_id Foreign ID returned by user_init_surf()

Parameterization is established by the Foreign Surface callback function user_
eval_surf().

Geometry Representations 2159

Edge and Curve Data Structures
The data structures are used to represent edges (line, arc, and spline) as well as the
curves (line, arc, spline, and NURBS) within the surface data structures.
This section describes the edge and curve data structures, arranged in order of
complexity. For ease of use, the alphabetical listing of the edge and curve data
structures is as follows:

• Arc on page 2160
• Line on page 2160
• NURBS on page 2161
• Spline on page 2161
• Ellipse on page 2162

Arc
The arc entity is defined by a plane in which the arc lies. The arc is centered at the
origin, and is parameterized by the angle of rotation from the first plane unit
vector in the direction of the second plane vector. The start and end angle
parameters of the arc and the radius are also given. The direction of the arc is
counterclockwise if the start angle is less than the end angle, otherwise it is
clockwise.
Data Format:
vector1[3] First vector that defines the

plane of the arc
vector2[3] Second vector that defines the

plane of the arc
origin[3] Origin that defines the plane

of the arc
start_angle Angular parameter of the starting

point
end_angle Angular parameter of the ending

point
radius Radius of the arc.

Parameterization:
t' (the unnormalized parameter) is

(1 - t) * start_angle + t * end_angle
(x, y, z) = radius * [cos(t') * vector1 +

sin(t') * vector2] + origin

Line
Data Format:
end1[3] Starting point of the line
end2[3] Ending point of the line

2160 Creo® Parametric TOOLKITUser’s Guide

Parameterization:
(x, y, z) = (1 - t) * end1 + t * end2

NURBS
The NURBS (nonuniform rational B-spline) curve is defined by expandable arrays
of knots, weights, and control points.

Cubic NURBS Curve

Data Format:
degree Degree of the basis function
params[] Array of knots
weights[] Array of weights for rational

NURBS, otherwise NULL.
c_pnts[][3] Array of control points

Definition:

k = degree of basis function
N = (number of knots) - (degree) - 2
w = weights
C = control points (x, y, z) * w
B = basis functions
By this equation, the number of control points equals N+1.

Spline
The spline curve entity is a nonuniform cubic spline, defined by a series of three-
dimensional points, tangent vectors at each point, and an array of unnormalized
spline parameters at each point.

Geometry Representations 2161

Data Format:
par_arr[] Array of spline parameters

(t) at each point.
pnt_arr[][3] Array of spline interpolant points
tan_arr[][3] Array of tangent vectors at

each point

Parameterization:
x, y, and z are a series of unique cubic functions, one per segment, fully
determined by the starting and ending points, and tangents of each segment.
Let p_min be the parameter of the first spline point, and p_max be the parameter
of the last spline point. Then, t', the unnormalized parameter, is t * p_max +
(1-t) * p_min.
Locate the ith spline segment such that:
par_arr[i] < t' < par_arr[i+1]

(If t < 0 or t > +1, use the first or last segment.)
t0 = (t' - par_arr[i]) / (par_arr[i+1] - par_arr[i])
t1 = (par_arr[i+1] - t') / (par_arr[i+1] - par_arr[i])
The coordinates of the points are then:
(x, y, z) = pnt_arr[i] * t1^2 * (1 + 2 * t0) +

pnt_arr[i+1] * t0^2 * (1 + 2 * t1) +
(par_arr[i+1] - par_arr[i]) * t0 * t1 *

(tan_arr[i] * t1 - tan_arr[i+1] * t0)

Ellipse
Ellipses in 3D geometry is split into two identical half-ellipses. The ellipse is
defined by its major and minor axis radius values. Similar to arcs, elliptic
segments are defined by a plane in which the ellipse lies, centered at the origin,
and parameterized by the angle of rotation. The direction of the ellipse is
counterclockwise if the start angle is less than the end angle, otherwise it is
clockwise.
Data Format:
center - Center point of the ellipse
major_axis_unit_vect - Direction for the X-axis of the ellipse
norm_axis_unit_vect - Direction for the Y-axis
major_len - The “radius” in the X-direction
minor_leng – The “radius” in the Y-direction
start_ang – The ellipse start angle
end_ang – The end angle for the ellipse

The y-axis can be found as a vector product of norm_axis_unit_vect on the
major_axis_unit_vect. In actual examples, the major_len can be less
than the minor_len.
Parameterization:
t' (the unnormalized parameter) is

2162 Creo® Parametric TOOLKITUser’s Guide

(1 - t) * start_angle + t * end_angle
(x, y, z) = major_len * [cos(t') * vector1] +

minor_len * [sin(t') * vector2] + origin

References:
Faux, I.D., M.J. Pratt. Computational Geometry for Design and Manufacture. Ellis
Harwood Publishers, 1983.
Mortenson, M.E. Geometric Modeling. John Wiley & Sons, 1985.

Geometry Representations 2163

L
Debugging Creo Parametric

TOOLKITApplications

Building a Creo Parametric TOOLKITApplication for Debugging............................... 2165
Debugging Techniques .. 2165
Debugging an Interactive DLL .. 2165
Debugging a Batch Mode DLL.. 2165
Debugging Creo Parametric TOOLKIT DLLs on Windows .. 2167
Debugging a Multiprocess Application... 2167
Debugging a Synchronous Spawn Mode Application.. 2167
Debugging an Asynchronous Spawn Mode Application .. 2167

This appendix describes how to debug Creo Parametric TOOLKIT applications.

2164 Creo® Parametric TOOLKITUser’s Guide

Building a Creo Parametric TOOLKIT
Application for Debugging
The following tables list commonly used changes for sample makefiles that allow
debugging of a Creo Parametric TOOLKIT application. Consult your compiler
documentation for more information on the flags specified below and other
debugging options.
On Windows
Compile Line Changes Link Line Changes
Change CCFLAGS or CPPFLAGS to add /Od /Z7. Change the /debug flag to /debug:full.

Remove or comment the lines that delete $(OBJS)
after a successful build.

Debugging Techniques
Depending on the type and implementation for your application, you can use one
of the following debugging techniques:

• If your application is a DLL that creates user interface and notification
callbacks to be used by the interactive user, refer to the following section on
Debugging an Interactive DLL.

• If your application is a DLL that runs in batch mode (from user_
initialize()), refer to Debugging an Interactive DLL on page 2165.

• If your application is a spawn or asynchronous application, refer to Debugging
a Multiprocess Application on page 2167.

Debugging an Interactive DLL
1. Start Creo Parametric with the DLL registered and loaded.
2. Use the debugger to attach to the process xtop.exe.
3. Set breakpoints in the callback functions that you wish to debug.

Debugging a Batch Mode DLL

Debugging Without Setting Breakpoints Before Loading
Code
The following steps outline the procedure to debug applications using a debugger
such as dbx that does not allow breakpoints to be set before the code is loaded.

1. Setup a Creo Parametric start command that uses the debugger as follows:

a. Edit the parametric.psf file (or the related psf. file for the given
command).

Debugging Creo Parametric TOOLKITApplications 2165

b. In this file change the RUN line for xtop, to invoke the debugger first, as:

RUN="$PRO_DIRECTORY/bin/parametric1"

RUN="dbx $PRO_DIRECTORY/bin/parametric1"

2. Run the Creo Parametric start command. The debugger starts.
3. Set up a breakpoint that triggers when the DLL is loaded.

In dbx, enter stop dlopen <DLL name> For example, stop dlopen
pt_inst_test.dll.

If you are using a graphical debugger such as Sun’s Workshop, the same
procedure is possible. Workshop allows a “CUSTOM” breakpoint using dbx
syntax, such as dlopenpt_inst_test.dll.

4. Enter run. The program runs to the point of loading the DLL.
5. When the dlopen breakpoint is triggered, add a breakpoint to user_

initialize(). At this point, the DLL is loaded and the user_
initialize() function is in memory.

Debugging With Breakpoints Set Before Loading Code
The following steps outline the procedure to debug applications using a debugger
such as Microsoft Visual Studio that allows breakpoints to be set before the code
is loaded.

1. Setup a Creo Parametric start command that uses the debugger as follows:

a. Edit the parametric.psf file (or the related psf. file for the given
command).

b. In this file, change the RUN line for xtop, to invoke the debugger first as:

RUN="%PRO_DIRECTORY%\%PRO_MACHINE_TYPE%\obj\

xtop.exe"

RUN=devenv

"%PRO_DIRECTORY%\%PRO_MACHINE_TYPE%\obj\

xtop.exe"

2. Run the Creo Parametric start command. The debugger starts.
3. Load the source file containing the functions into the debugger, and

graphically set a breakpoint to the start of user_initialize().
4. Run the program from the debugger User Interface. Even if the debugger

indicates that no debugger information is available for xtop.exe, continue
debugging.

2166 Creo® Parametric TOOLKITUser’s Guide

When the DLL is loaded, the program will stop in the DLL’s user_
initialize().

Debugging Creo Parametric TOOLKIT DLLs on
Windows
The Creo Parametric executable contains a default exception handler on Windows.
This handler will catch and react to exceptions generated by a Creo Parametric
TOOLKIT DLL by default.
To allow debugging on Windows without using the Creo Parametric exception
handler, set the environment variable ALLOW_MS_DEBUG to true in the
Control Panel.
Setting ALLOW_MS_DEBUG to true forces Creo Parametric executable not to
execute the exception handler and thus the process will stop in the debugger on
any exception. Alternatively, it is possible to set exception handling in the
debugger to stop on the first occurrence of the exception, even for exceptions that
are handled.

Debugging a Multiprocess Application

Debugging a Synchronous Spawn Mode Application
1. Start Creo Parametric with the application registered and started.
2. Use the debugger to attach to the application process, for example pt_inst_

test.exe.
3. Set breakpoints in the callback functions that you wish to debug.

Debugging an Asynchronous Spawn Mode
Application
1. Start the application from the debugger. Set a breakpoint to stop the

application before the call to ProEngineerStart() or
ProEngineerConnect().

Debugging Creo Parametric TOOLKITApplications 2167

Glossary

Creo Parametric TOOLKIT and Creo Parametric Terminology
This glossary contains words that have meanings specific to Creo Parametric
TOOLKIT . For definitions of words that apply to Creo Parametric in general, see
the Creo Parametric help.
Term Definition
asynchronous mode The mode in which Creo Parametric TOOLKIT can start or connect to a new

Creo Parametric session and invoke operations in it.
body The term “solid body” denotes a container object for solid geometry.
child An item, such as view, part, or feature, that is dependent on another item for

its existence. See also Parent.
complement mode In this mode, the color becomes the exclusive or of the old color and the color

being drawn. You can use this for creating dynamic graphics, such as
rubberbands.

configuration file A special text file that contains default settings for many Creo Parametric
functions. Default environment, units, files, directories, and so on are set when
Creo Parametric reads this file when it is started. A configuration file can
reside in the startup directory to set the values for your working session only,
or it can reside in the load directory to set values for all users running that
version of Creo Parametric. Also known as the config.pro file.

contour A closed loop on a face. A contour consists of multiple edges. A contour can
belong to only one face.

coordinate system A means of identifying points in space using a particular point in three-
dimensional space (the origin) and three mutually perpendicular axes through
the origin (the coordinate axes). Creo Parametric TOOLKIT uses four
different coordinate systems: model, screen, window, and drawing.

curve A continuous one-dimensional subset of three-dimensional space. The Creo
Parametric TOOLKIT definition covers the geometry of not only datum
curves, but also other features whose geometry is treated in the same way:
axes and geometry edges.

display list A list of vectors used to represent the shape of the model in the view.
domain The portion or portions of a surface that correspond to real geometry.
draft entity The graphical items created in Creo Parametric using the options under the

Sketch tab. The possible values are arc, ellipse, line, point, polygon, spline,
and so on.

draft group A group of detail items that can contain notes and symbol instances, as well as
draft entities.

edge The curve along which two geometrical faces intersect.
element A structural component in a Creo Parametric model that has its own internal

identifier (and sometimes a name) and can be selected. Examples of elements
are face, edge (but not contour), datum plane, datum surface, datum curve,
axis, datum point, and feature.

entity A geometric element that has the geometry of a curve, excluding edges.

2168 Creo® Parametric TOOLKITUser’s Guide

Term Definition
Entities such as datum curves are accessed using their own Creo Parametric
TOOLKIT functions, even though geometrically they behave like edges. Note
that entities and draft entities are quite different: draft entities refer to two-
dimensional items on a drawing.

evaluate To invoke the evaluation, at a point on an edge or surface, of the parametric
equations of Creo Parametric for that edge or surface. Evaluation provides a
description of the three-dimensional geometry, in model coordinates.

face A geometry element that describes a geometrical surface and its relationship
with other geometry elements (edges and faces).

highlight To emphasize an element by modifying its appearance on the workstation
surface, usually by changing its color.

information window A Creo Parametric window that displays information such as object lists, mass
properties, and BOM.

leader The arrow that points from a note or symbol to either a point on an edge of the
geometry of a model in a drawing view or to a point in the drawing.

load directory The directory where Creo Parametric is loaded.
macro keys The function keys or key sequences for which you predefined a menu option

or sequence of menu options. The predefined menu options enable you to pick
a macro from a menu that is currently on the screen.

main menu An autonomous menu with its own title. The other type of menu is a submenu.
mass properties The information about the distribution of mass in the part or assembly. The C

structure used to describe mass properties is ProMassProperty, and is
declared in the header file ProSolid.h. The data structure includes fields
for the following: volume, surface area, density, mass, center of gravity
(COG), inertia matrix, inertia tensor, COG inertia tensor, eigenvalues of the
COG inertia, and eigenvectors of the COG inertia.

matrix A two-dimensional array used for transformations. See also Transformation.
menu A list of options presented by Creo Parametric that you select using the mouse

or predefined macro keys. See the User Interface: Menus, Commands, and
Popupmenus on page 301 for more information on menus.

menu file A text file that enables you to specify your own text for the name of a menu
button, the one-line help text that appears when you place the cursor over that
button, and translations for both of these.

message file A text file that enables you to provide your own translation of the text
message. The message file consists of groups of four lines, one group for each
message that you want to write out.

model A top-level object in a Creo Parametric mode.
model coordinates The coordinate system in Creo Parametric is internally used to define the

geometry of a model. You can visualize these coordinates by creating a
coordinate system datum with the optionModel ▶ Coordinate System.

model item A generic object used to represent any item contained in any type of model,
for the purpose of functions whose actions are applicable to all these types of
item.

notify Enables you to trap certain classes or events in the Creo Parametric session
and arrange for a function in the Creo Parametric TOOLKIT program to be
called before or after such a trapped event.

object An item stored as a single file, such as a part, assembly, or drawing.
overlay view The view for a whole drawing sheet.
parameter A user-driven property that can be added to elements in a Creo Parametric

Glossary 2169

Term Definition
model and used to drive dimensional relations. Parameters consist of a name,
type, and a value that can be an integer, double, or string. Parameters are
accessible through the Creo Parametric user interface, as opposed to attributes
that are private to Creo Parametric TOOLKIT .

parent An item that has other items dependent upon it for their existence. For
example, the base feature has all other features dependent upon it. If a parent
is deleted, all dependent (children) items are deleted.

pipeline A set of interconnecting pipes and fitments consisting of an extension which
terminates at open ends, non-open ends, or junctions (branches).

pipeline branch Pipes grouped into extensions such that the extension which continues across
the branch has a continuous direction of flow.

pipeline extension A non-branching sequence of pipeline items.
pipeline feature A feature which names the pipeline to show its grouping but contains no

geometry.
pipeline fitting A component that connects two pipe segments, for example, a corner or a

valve.
pipeline junction An assembly component or a datum point that represents a part which joins

three or more pipe segments.
pipeline member A extension terminator, series, or junction.
pipeline network A data structure which contains references to pipeline objects and are

structured to show their connectivity and sequence in relation to the flow.
pipeline object A segment, a fitting, or a stubin.
pipeline segment A section of pipe, either straight or arced.
pipeline series A non-branching sequence of pipeline objects.
pipeline stubin A datum point which joints three or more series.
pipeline terminator The open or non-open ends of the pipeline.
scene graph A tree structure which consists of nodes. This term used in reference to the

graphics data.
set mode In this mode, any graphics draw command sets the appropriate pixels to the

color being drawn.
submenu A menu that acts as an extension to the menu above it. A submenu has no title

and is active at the same time as the menu above it. Selecting from the menu
above it does not close the submenu.

surface A continuous two-dimensional subset of three-dimensional space.
synchronous mode The normal mode of operation that makes it appear that Creo Parametric

TOOLKIT is part of the Creo Parametric process.
tessellation The process of subdividing an edge into multiple smaller edges.
transformation A change from one coordinate system to another. A transformation between

two coordinate systems is represented by a 4x4 matrix.
triangle strip A strip of triangles that are connected to each other. The term is used in

reference to the graphics data.
user attributes The attributes added by a user to add description to the object beyond the

geometric definition. For example, stock number, price, and cost per unit are
all user attributes.

vector A straight line segment that has both magnitude and direction.
version stamp Provides a way of keeping track of changes in a Creo Parametric model to

which your Creo Parametric TOOLKIT application may need to respond.
view In Part mode, a view is the orientation of the object. In Drawing mode, a view

2170 Creo® Parametric TOOLKITUser’s Guide

Term Definition
is part of the drawing that represents the model.

wide string A data type that allows for the fact that some character sets (such as Japanese
KANJI) use a bigger character set than can be coded into the usual 1-byte char
type.

window A rectangular area of the workstation surface in which you work or in which
the system displays messages. Creo Parametric uses a Main Window, Message
Window, and subwindows. You can also specify a single-window
environment.

Glossary 2171

Index

2-D
display list, 493
sections
adding dimensions to, 998
adding entities, 995
allocating, 989

3 axis trajectory step
features, 1490

3-D
display list, 493

3D Shaded Data for Rendering, 500
3D Transformation Set
features, 1074

7-bit ASCII
definition, 2078

8-bit ASCII
definition, 2078

A
Access
material data, 119
menu buttons, 333
parameters, 212
to explode states, 1142

Accessing
Creo Simulate Items, 1856

Accessory
window, 479

Accuracy
of solids, 107

Action functions
for visits, 62

Actions
adding, 303

Activate

explode state, 1142
window, 482

Add
action to Creo Parametric Ribbon,
303
animation frames to a movie, 539
animation objects to frames, 537
dimensions to a 2-D section, 998
external object data, 2030
family table items, 234
items to layers, 84
menu buttons, 323
section entities, 995

add or update, 28
Adding a Customized Function to the
Relations Dialog in Creo Parametric,
208
adding buttons, 306
Allocate
2-D sections, 989
display data, 2025
external object references, 2032
selection data for external objects,
2029
simplified representations, 1192
text style structures, 601
version stamps, 83

Analyze
manufacturing model, 1441

Angles
example, 191

Animation, 536
batch, 538
creating, 537
frame
description, 536

2172 Creo® Parametric TOOLKITUser’s Guide

movies, 539
object
description, 536

single, 538
Annotation
associativity
attachment, 563
position, 563

Associativity, 563
convert to latest version, 558
Orientation, 559
plane
datum plane, 559
flat surface, 559
flat to screen, 559
named view, 559

text styles, 559
Annotation Elements
accessing, 547
modifying, 549
parameters,assigned, 552
visiting, 546

Annotation Features
creating, 543
overview, 543
redefining, 544
redefining, interactive, 552
visiting, 545

Annotations
accessing, 554
detail tree, 553
security, security marking, 564
selection, interactive, 565

APIWizard
defined, 23
documentation
online, 23
PDF format, 23

Applications
compiling and linking, 37
core, 48
debugging, 44

program structure, 2120
registering, 38
stopping and restarting, 43
structure of, 2120
unlocking, 44
using with Creo Parametric
TOOLKIT, 2116

Arcs
drawing, 490
edges
extracting the diameter, 189

representation, 2160
Argument
Management, 2054

Arrays
element
description, 765

expandable
allocating, 59
code example, 59
freeing, 59

Assemblies
active explode state, 1142
automatic interchange, 1145
components, 1131
assembling, 1138
assembling by feature creation,
1166
deleting, 1138
locating, 1137
traversing, 1133
visiting, 1133

coordinate systems, 224
explode states, 1142
exploded, 1141
flexible components, 1138
hierarchy, 1131
interference checking, 198
process step, 1784
structure of, 1131

Asynchronous mode
definition, 2168

Index 2173

full, 282-283
non-interactive, 283

Attach
features, 1112

Attach Geometry
features, 1082

Attachment
points and leaders, 1290

Attributes
text, 492
user
definition, 2168

Auto Round Feature, 916
Automatic dimensioning, 995
Automatic filling
body, 162

Automatic interchange, 1145
Auxiliary tools
parameters, 1444

Axes
datums
visiting, 177

geometry of, 191

B
Backup
model, 78

Base window
identifier, 476

Batch animation, 538
code example, 540

Batch mode
example, 52

Batch sessions, 52
Bind
evaluation functions, 2051

Bodies
creating, 1056

Body
body, 127-128, 162
copy

creating, 1056
remove, 1056

definition, 2168
Multibody, 2092
solid body, 127-128, 162

Body Reference
body, 162

Bushing Load
features, 1116

Button
placing, 315

Buttons
accessibility, 333
adding, 323
position, 495
setting, 333

C
Cabling
cable geometry, 1827
cable identifiers, 1824
cable types, 1824
connectivity, 1826
harness clearance, 1827
routing locations, 1826
routing procedure, 1828

Callbacks
external Analysis, 2040
external analysis feature, 2040
for external objects, 2033

Child
definition, 2168

Circles
code example, 491

Classes
external objects, 2022
notification, 2011

Classification of messages
critical, 288
error, 288
info, 288

2174 Creo® Parametric TOOLKITUser’s Guide

prompt, 288
warning, 288

Clear
single animation, 538
window, 478

Clearance
harness, 1827

Close
windows, 480

Collection
access from feature element trees,
531
access from selection buffer, 520
adding to the selection buffer, 521
interactive, 517
introduction, 516
programmatic access, 521
contents of curve collection, 522
contents of surface collection, 525
creation and modification of curve
collections, 524
creation and modification of
surface collections, 528

programmatic access to legacy
collection, 532

Color
changing, 488
external objects, 2028
graphics, 486
map
modifying, 488

Command
adding, 311

Commands
Creo Parametric
entering, 339
preempting, 330

designating, 310
Compiling, 37
Complement mode
definition, 2168

Components

manufacturing
traversing, 1442

simplified representation
gathering, 1196

Composite curves
geometry, 194
visiting, 180

Compound element, 765
Compound menus, 329
Cone, 2151
Configuration file
definition, 2168
options
getting and setting, 262

PROTKDAT option, 38
toolkit_registry_file option, 38

Confirmation
using menu buttons, 331

Connectivity
cable, 1826

Connectors
finding, 1817
parameters, 1818
file, 1819

Constraints
Convection, 1886
Displacement, 1889
Radiation, 1888
section, 990
status values, 990
Symmetry, 1893

Construction
states of bodies, 128

Continuity
of foreign datum curves, 2051

Contouring tools
parameters, 1444

Contours
definition, 2168
traversal, 2143

Contributing
states of bodies, 128

Index 2175

Conventional milling
required parameters, 1455

Conversion
OHandles to DHandles, 57
paths, 2120
techniques, 2117

Convert
ProExt to ProModelitem, 2023
toolkit applications, 2116

Convert annotation to latest version,
558
Coons patch, 2154
Coordinate System Transformations,
225
Coordinate systems, 223
datum, 225
visiting, 177

definition, 2168
drawing, 224
drawing view, 224
in assemblies, 224
screen, 223
section, 225
solid, 223
window, 224

Copy
model, 78

Copying
sections, 990

Cosmetic properties, 495
Cosmetic Thread
features, 1120

Create
2-D sections, 988
code example, 1003

animation movies, 539
animation objects, 537
batch animation
example, 540

body, 127-128
compound menus, 329
conventional milling sequence, 1459

cross sections, 247
datum planes
code example, 779

display lists, 493
drawing views, 1243
external object classes, 2022
external object entities, 2025
external object references, 2032
external objects, 2022
code example, 2034

family table instances, 232
features, 764
file paths, 263
fixtures, 1451
layers, 84
local groups, 145
manufacturing features, 1451
manufacturing objects, 1444
manufacturing operations, 1454
material, 119
material removal volumes, 1458
menus, 325
NC sequences, 1455
operations
elements, 1454

patterns, 985
element tree, 964

process steps, 1786
relation sets, 205
section models, 988
simplified representations, 1192
solid body
element tree, 1056

solid objects, 93
submenus, 331
sweeps, 1042
Task Libraries, 2055
tool tables, 1452
Toolkit DLL
Task Libraries, 2055

tools, 1444
elements, 1444

2176 Creo® Parametric TOOLKITUser’s Guide

window, 480
workcells, 1452
elements, 1452

Creating
3D shaded data for rendering, 500

creating geometric tolerance, 623
Creo ModelCHECK, 268
running, 268

Creo Parametric
commands
entering, 339
preempting, 330

connecting to a process, 280
license data, 263
process status, 281
starting and stopping, 280

Creo Parametric TOOLKIT
actions, 25
application structure, 2120
converting from Pro/DEVELOP,
2116
coordinate systems, 223
core applications, 48
documentation
online (APIWizard), 23
PDF format, 23

expandable arrays, 59
functions
compared to Pro/DEVELOP,
2118

include files, 47
Installation, 28
installing, 27
add or update, 28
loadpoint directories, 27
test of, 29

models, 70
objects, 25
registry file
compared to Pro/DEVELOP,
2119

terminology

contrasted with Pro/DEVELOP,
2117

using a batch session, 52
utility functions, 261

Creo Simulate
Accessing
AutoGEM Maximum Element
Size Mesh Control Data, 1958
Displacement Coordinate System
Data, 1960
Edge Distribution Mesh Control
Data, 1958
Mesh Control Element Size Data,
1960
Mesh Control Hard Point Data,
1961
Mesh Control ID Offset Data,
1961
Mesh Control Numbering Data,
1962
Mesh Control Shell Coordinate
System Data, 1961
Suppressed Mesh Control Data,
1962

AutoGEM Edge Distribution, 1955
Beam Orientations, 1911
Beam Releases, 1914
Beam Section
General, 1909
Sketched, 1908

Beam Sections, 1904
Beams, 1895, 1898
Constraint Sets, 1894
Constraints, 1884
Environment, Entering, 1854
Features, 1967
Functions, 1862
Gaps, 1948
Geometric References, 1858
Interfaces, 1941
Load Sets, 1883
Loads, 1870

Index 2177

Mass
Properties, 1923

Mass Items, 1920
Material Assignment, 1924
Material Orientations, 1925
Matrix Functions, 1894
Mesh Control, 1950
Shell Pairs, 1938
Shell Properties, 1931
Shells, 1929
Spring Items, 1915
Spring Property Items, 1917
Vector Functions, 1895
Welds, 1963
Y-directions, 1861

Creo Simulate Features, 1967
Creo Simulate Items
Accessing, 1856
Selection, 1855

Creo Simulate Objects
Validation, 1967

creotk.dat file, 33
Cross section components
line patterns, 254

Cross sections
creating and modifying, 247
deleting, 247
geometry of, 242
listing, 242
mass properties of, 254
visiting, 247

Current
directory, 263
drawing sheet, 1232
ProMaterialCurrentGet(), 119
ProMaterialCurrentSet(), 119
window, 479

Curves
data structures, 2160
datum
parametric equations, 188
visiting, 179

definition, 2168
evaluating, 185
foreign datum, 2049

Customized plot driver, 745
Cut out, 1145
Cylinders, 2150
spline surfaces, 2158
tabulated, 2153

D
Data
external object, 2024
material, 119
types, 2120

Data menus, 332
Data types
Pro/DEVELOP versus Creo
Parametric TOOLKIT, 2120

Database
search, 1461

Database items
conversion paths, 2120

Datum
axes
visiting, 177

coordinate systems
visiting, 177

curves
geometry, 193
parametric equations, 188
visiting, 179

planes
creating, 779
geometry, 191
visiting, 178

points
geometry, 193
visiting, 181

surfaces
geometry, 193
visiting, 178

Datum axis

2178 Creo® Parametric TOOLKITUser’s Guide

creating, 832
normal planes, 837
point on surface, 832
tangent, 833
through edge or surface, 835
two planes, 836
two points, 836

Datum coordinate system
creating, 843
feature element tree, 838
orienting by selecting csys axes, 845
orienting by selecting references,
845
using 3Planes or 2 edges and axes,
843
using a csys, 845
using a vertex or a datum point, 844
using curve, edges, or plane and
axis, 844

Datum plane
creating, 808
feature element tree, 805

Datum point
at an offset, 824
at center of curve or surface, 828
at intersection of 3 surfaces, 826
at intersection of a curve and a
surface, 827
feature element tree, 816
field, 818
general, 820
offset csys, 819
on a vertex, 824
on curve, 829
on/offset from a Surface, 827
project on planar surface, datum
plane, datum axis, linear curve, or
linear edge, 830
sketched, 817

Datum Target Annotation Features
creating, 543

Datum Targets

creating, 545
Debugging
applications, 44

Default values, 290
constant, 290
in text box, 290
variable, 290

Delete
animation frames, 537
animation objects, 537
body, 127-128
cross sections, 247
display lists, 493
external object classes, 2022
external objects, 2022
features, 138, 1138
layers, 84
material data, 119
menus, 325
models, 78
pattern, 144
relation sets, 205
section dimensions, 998
section entities, 995
simplified representations, 1192
windows, 480

Deleting Cable Sections Cable
Delete, 1829

Density, 117
parts, 117
ProSolidBodyDensityGet(), 115

Deny
constraints, 990

Design intent
defined, 1148

Design Manager
assembly component functions,
1151
assembly structure
design intent, 1148
populating, 1149

Index 2179

external reference data gathering
functions, 1154
external reference functions, 1151
external references, 1149
Overview, 1147
part interdependencies, 1149
product structure, 1148
skeleton model functions, 1150
skeleton models, 1148

Designate
parameters, 218

Designating
command, 312
commands, 310

Designating commands, 310
Detail items, 1255
attachment points, 1290
leaders, 1290

Detail Tree, 553
DHandles
description, 57

Diameter
code example, 189

Dimension
clean up, 579
entity location, 585
references, 577
text, 583
tolerances, 579

Dimension-driven patterns, 968
Dimensions, 566
adding to a 2-D section, 998
designating, 565
driven
accessing, 590

extracting location, 584
feature, 143
modifying, 571
reference
accessing, 590

section, 998
visiting, 566

Directories
changing, 263

Display
display lists, 493
files, 263
graphics, 490
highlighting, 511
messages, 285
objects, 486
solid objects, 95
text, 491

Display data
allocating, 2025
color, 2028
for external objects, 2025
line styles, 2028
properties, 2027
scale, 2028

Display lists, 493
definition, 2168

Display modes, 565
Displayed entities
visiting, 90

Distance
gathering by, 1197
minimum, 186

DLL mode
registry file for, 38

Documentation
see APIWizard, 23

Domain of evaluation, 2148
Draft
entities, 1255
definition, 2168

group
definition, 2168

groups, 1255
Draft Feature
creation, 892, 899
inquiring, 893, 899

Draw
graphics, 490

2180 Creo® Parametric TOOLKITUser’s Guide

Drawing
coordinate system, 224
detail items, 1255
edges, 1289
display properties, 1289
ProDrawingEdgeDisplay, 1289

format, 1232
format size, 1235
models, 1236
code example, 1243

rubber-band lines
example, 495

sheets, 1232
example, 1232

symbol groups, 1286
transformations, 227
views, 1236
code example, 1243
creating, 1243

Drawing symbol groups, 1286
Drawings
access grid locations, 1231
creating, from templates, 1227
errors diagnosing, 1228
setup, 1229

E
ECAD Area Feature
ProEcadArea.h, 1126

Edge and curve data structures, 2160
Edges
definition, 2168
evaluating, 185
getting the description of, 188
parametric equations, 188
traversing, 2143

Edit
files, 263

Edit Menu Features
Merge, 861

Element tree

first features, 1034
Element Tree
body copy features, 1057
body options, 1056
body remove features, 1061
body split features, 1058
boolean body operations, 1062
extruded features, 1014
revolved features, 1025

Element trees
description, 765
patterns, 964

Elements
definition, 2168
in an element tree, 765
paths, 772
roles, 765
types, 765
types of, 765
values, 765

Enter
Creo Simulate Environment, 1854

Entities
adding to 2-D sections, 995
definition, 2168

Epsilon
specifying, 992

Equations
geometry, 187
parametric, 188
of surfaces, 189

Erase
family table instances, 232
family tables, 231

Errors, 27
section, 1001

Evaluation
definition, 2168
domain of, 2148
functions
for foreign datum curves, 2049

inverse, 186

Index 2181

of faces, edges, and curves, 185
of geometry, 184
of relations, 205

Example
creating a datum axis, 832
creating a datum coordinate system,
843
creating a datum plane, 808
creating a field datum point, 819
creating a sketched datum point, 818
creating an offset csys datum point,
820
creating general datum point, 824
offset coordinate system datum,
2043

EXample
weld callback notification, 1850

Examples
3D shaded data for rendering, 502
adding help text, 323
adding items to a layer, 89
adding surfaces to an element, 1457
asking for confirmation on Quit
Window, 331
batch mode, 52
calculating the mass properties of a
cross section, 254
computing the outline of a solid,
106, 118
creating a 2-axis lathe workcell,
1454
creating a batch animation, 540
creating a conventional milling
sequences, 1459
creating a datum plane, 779
creating a menu that selects a value,
329
creating a parameter tree, 1449
creating a parameter-driven tool,
1448
creating a section, 1003
creating a sweep, 1051

creating a tool from a solid model,
1448
creating an external object, 2034
creating an extruded feature, 1024
creating an operation, 1455
creating drawing views, 1243
defining a new menu that closes
itself, 326
defining a new menu that the user
must close, 327
designating a command, 315
display objects, 502
displaying a solid, 95
displaying lines and circles, 491
displaying messages, 290
drawing a rubber-band line, 495
extracting the diameter of an arc
edge, 189
finding the handle to a model, 72
finding the position of a component,
1138
finding the surface penetrated by a
hole, 176
getting the angle of a conical
surface, 191
identifying workcell features of a
NC model, 1443
interference checking for assemblies
and parts, 198
labeling a feature with a string
parameter, 218
listing the holes in a model, 62
listing the members of an assembly,
1137
listing views, 1240
loading and displaying a solid, 95
menu file, 323
modifying colors, 488
renaming a selected surface, 83
retrieving keyboard input, 290
saving views, 486

2182 Creo® Parametric TOOLKITUser’s Guide

transforming solid coordinates, 226-
227
using a new menu, 328
using drawing sheets, 1232
using expandable arrays, 59
visiting the items in a simplified
representation, 1194
writing a family table to a file, 234

Exit actions
defining, 327

Expandable arrays, 59
allocating, 59
code example, 59
freeing, 59

Expanding
lightweight graphics simplified
representati, 1190

Explode states
access, 1142
activating, 1142
visiting, 1142

Exploded assemblies, 1141
Export
2D Models, 667
3D Models, 678
FEA mesh, 1988
information files, 664
Shrinkwrap Models, 694
To PDF format, 698

Exporting LODs
JT format, 691

External analysis
attributes
get and set, 2045
PROANALYSIS_COMPUTE_
OFF, 2045

callbacks, 2040
defined, 2038
entity shape union, 2043
entity type enum, 2043
feature parameter structure, 2043
geometry item structure, 2043

interactive creation, 2038
use without Creo Parametric, 2046

External analysis feature
defined, 2038
interactive creation, 2039
storage as feature dimensions or
geometry references, 2039
use without Creo Parametric, 2046
when stored as external data, 2039

External data, 235
retrieving, 239
slots, 236
storing, 237

External objects
callbacks, 2033
classes, 2022
color, 2028
creating entities, 2025
data, 2024
manipulating, 2030

display data, 2025
allocating, 2025
properties, 2027

displaying, 2025
identifiers, 2023
information for, 2021
line styles, 2028
parameters, 2023
recycling identifiers, 2023
references, 2031
creating, 2032
types, 2032
visiting, 2032

scale, 2028
selection data, 2029
summary, 2021
transformation, 2026
types, 2023
visiting, 2024
warning mechanism, 2034

External references
defined, 1149

Index 2183

F
Face milling
required parameters, 1455

Faces
definition, 2168
evaluating, 185
traversal, 2143

Family tables
editing, 231
instances
creating, 232
erasing, 232
generic, 232
locks, 232
operations, 232
retrieving, 232

items
from model items, 234
from parameters, 234
operations on, 234

objects, 231
showing, 231
utilities, 231
visiting, 231
writing to a file, 234

Feature
extruded
creating, 1024

Feature element tree
datum axis, 830
datum coordinate system, 838
datum plane, 805
datum point, 816
field datum point, 818
general datum point, 820
merge, 862
offset csys datum point, 819
sketched datum point, 817

Feature Element Tree for the Sheet
metal Flat Wall Feature in Creo
Parametric, 1318
Features

3 axis trajectory step, 1490
3D transformation set, 1074
attach, 1112
Attach
access, 883
create, 882
redefine, 883

attach geometry, 1082
Auto Round, 916
bushing load, 1116
chamfer, 916
access, 924
create, 923
feature element tree, 916
redefine, 923

converting from Pro/DEVELOP to
Creo Parametric TOOLKIT, 2120
corner chamfer, 929
access, 930
create, 930
feature element tree, 929
redefine, 930

cosmetic thread, 1120
creating, 764
assembly components by, 1166
code example, 779
datums, 779
steps, 765

datum coordinate system, 838
datum plane, 805
datum point, 816
deleting, 138, 1138
dimensions, 143
draft
access, 893, 899
create, 892, 899
feature element tree, 887
introduction, 887
redefine, 893, 899

ECAD Area, 1126
feature element tree, 1126
ProEcadArea.h, 1126

2184 Creo® Parametric TOOLKITUser’s Guide

element table, 765
element tree, 765
element values, 765
elements
creating, 774
manipulating, 774
paths, 772
values, 770

fill, 859
access, 861
create, 860
feature element tree, 859
redefine, 861

finishing step, 1480
geometry, 138
visiting, 173

incomplete, 779
description, 132

inquiry, 132
detailed explanation, 785

intersect, 861
manipulating, 138
manufacturing
analyzing, 1459
creating, 1451

merge
access, 864

Merge, 861
access, 864
create, 864
feature element tree, 862
ProMerge.h, 862
redefine, 864

mirror, 854, 1105
access, 856
create, 855
feature element tree, 854
redefine, 855

modify analytic surface, 1096
move, 856, 1068
access, 859
create, 858

feature element tree, 857
redefine, 859

move-copy, 1068
objects, 132
offset, 870
offset geometry, 1094
pattern, 864
patterns, 144
creating, 964

planar symmetry recognition, 1110
process steps, 1785
redefining, 138
Remove, 876
access, 881
create, 880
feature element tree, 877
ProRemoveSurf.h, 877
redefine, 881

roughing step, 1469
round, 901
access, 913
create, 912
feature element tree, 902
redefine, 912

selecting, 132
Shell
access, 962
create, 961
feature element tree, 960
introduction, 958
ProShell.h, 960
redefine, 962

solidify, 873
access, 876, 881
create, 875
feature element tree, 873
redefine, 875, 881

status, 132
substitute, 1107
suppressing, 138
sweeps, 1042
thicken, 870

Index 2185

access, 872
create, 872
feature element tree, 871
redefine, 872

trim, 865
access, 870
create, 869
feature element tree, 865
redefine, 870

tweak surface replacement, 884
types, 132
user-defined, 146
visiting, 132
workcell
identifying, 1443

wrap, 864
FEM
exporting an FEA mesh, 1988
overview of functionality, 1988

Files
connector parameters, 1819
displaying, 263
editing, 263
include, 47
management
operations, 78

material, 125
maximum length, 321
menu, 321
message, 286
naming restrictions, 286
opening, 263
parsing, 263
trail, 263
writing a family table to, 234

Fillet surfaces, 2155
Filter functions
for visits, 62

Finishing step
features, 1480

Fixtures
creating, 1451

Flexible modeling
tangency propagation, 1099

Fluid
material properties, 119

Flushing
display command to window, 482

Fonts, 492
Foreign datum curves, 2049
continuity, 2051
evaluation function for
binding, 2051

evaluation functions for, 2049
Foreign programs
running, 2101
multiple, 2101

Free
external object data, 2030
external object references, 2032
text style structure, 601
version stamp, 83

Full asynchronous mode, 282
Functions
action, 62
comparing toolkits, 2118
error statuses, 27
filter, 62
list of equivalent, 2128
prototyping, 26
using expandable arrays, 59
visit, 62

G
Gather
by distance, 1197
by model name, 1196
by parameters, 1197
by rule, 1196
by simplified representation, 1198
by size, 1197
by zone, 1197

General process steps, 1788

2186 Creo® Parametric TOOLKITUser’s Guide

General surface of revolution, 2152
Generic instances, 232
geometric tolerance
creating, 623
reading, 619
setting, 623

Geometry
bodies, 192
body, 192
cables, 1827
composite curves, 194
coordinate system datums, 191
cross-sectional, 242
datum axes, 191
datum curves, 193
datum planes, 191
datum points, 193
datum surfaces, 193
equations, 187
evaluating, 184
feature
visiting, 173

measurement of, 195
NURBS, 198
objects, 171
visiting, 172

of solid edges, 188
of surfaces, 189
quilts, 192
representations, 2147
solid
visiting, 175

terms, 2143
traversal, 2142

Geometry patterns
recognition, 982

Graphics
color and line styles, 486
color map, 488
displaying, 490
line styles
setting, 489

surviving a repaint, 493
Groups, 146
drawing symbol, 1286
identifying symbol definition, 1287
Identifying symbol instance, 1287
local, 145
manipulating symbols, 1288
read access, 146

gtol
additional text, 631
deleting, 630
layout, 630
parameters, 633
prefix, 633
suffix, 633
text style properties, 632
validating, 630

H
Handles
data, 57
description, 56
object, 56
Pro/DEVELOP versus Creo
Parametric TOOLKIT, 2120
workspace, 58

Hardware type
setting, 65

Harnesses
clearance, 1827
connectors, 1817

Height
text, 492

Highlight, 511
definition, 2168
menu buttons, 333

Highlighting
functions described, 511

Holemaking
required parameters, 1455
tool parameters, 1444

Holes

Index 2187

code example, 62

I
Identifiers
cable, 1824
external object, 2023
postfix, 117
recycling, 2023

Identifying
symbol groups
definition, 1287
instance, 1287

Identity matrix
used with external objects, 2026

Import
2D Models, 708
3D Models, 709
Parameter Files, 706

Include files, 47
Incomplete features
description, 132

Information window
definition, 2168
display function, 263

Initialize
assembly component paths, 1133
family tables, 231
process step features, 1785
single animation, 538
tool, 1444

Input
default values, 290
keyboard, 290
mouse, 495

Inquiry
features, 132

Inseparable Assemblies
embedded components, 1140
extract components, 1140

Insert mode, 138
Install

Creo Parametric TOOLKIT, 27
See Creo Parametric TOOLKIT
Installing, 27

Installation
See Creo Parametric TOOLKIT
Installing, 27

Installing, sample applications, 2107
Instances
identifying symbol groups, 1287

Integer
free array, 268

Interactive selection, 507
Interchange domain, 1145
Interface
tools, 745

Interference, 198
Internal buffer
writing a message to, 289

intersect
boolean body operations, 1062

Intersect
body, 127

Inverse evaluation, 186
ISO/DIN Tolerance, use, 582

J
JT format
exporting LODs, 691

K
Keyboard
input, 342
default values, 290
getting, 290

macros
execution rules, 340

L
Launch

2188 Creo® Parametric TOOLKITUser’s Guide

Synchronous J-Link Applications,
2061
Toolkit DLL Functions, 2056

Layers, 84
creating, 84
deleting, 84
getting, 84
items, 84
view dependency, 84
visiting, 84

Leaders
definition in glossary, 2168
patterns, 144

Legacy Encoding
definition, 2078

Libraries
alternate, 2105
MT, for Windows, 2105

standard, 2105
License data, 263
Light sources, 499
Lightweight graphics simplified
representations
expanding, 1190
retrieving, 1190

Line
styles
of external objects, 2028

Lines
code example, 491
drawing, 490
representation, 2160
styles, 486
setting, 489
types, 489

Linking, 37
Load directory
definition, 2168

Loads
Bearing, 1876
Centrifugal, 1877
Creo Simulate, 1870

Force and Moment, 1874
Gravity, 1876
Heat, 1882
Pressure, 1876
Temperature, 1878
Creo Simulate, 1878
External, 1881
Global, 1879
MEC/T, 1880
Structural, 1878

Loads and Constraints
Creo Simulate, 1866

Local groups, 145
Locations
of assembly components, 1137
routing, 1826

Locks, 232

M
Macro keys
definition, 2168

main()
user-supplied, 54

Makefiles
description of, 37

Management
Argument, 2054
Memory, 2055

Manipulating symbol groups, 1288
Manufacturing
analyzing a model, 1441
components
roles, 1442
traversing, 1442

features
analyzing, 1459
creating, 1451

fixtures, 1451
models
create, 1440
types, 1439

Index 2189

NC sequences, 1455
objects
creating, 1444

operations
creating, 1454

parameters, 1448
roles, 1442
storage solids
identifying, 1442

tools
creating, 1444
types, 1443
visiting, 1443

workcells
creating, 1452

Mass properties, 115
definition, 2168
example, 254
of cross sections, 254

Materials
data
accessing, 119

files, 125
properties, 118
removal volumes
creating, 1458

Matrix
definition, 2168
pan and zoom, 483
window, 483

Maximum length
of files, 321

Measurement, 195
Memory
Management
Task Library Functions, 2055

maximum allocated by
ProArrayAlloc, 59

Menu
buttons, 302
pushbutton
adding, 303

Menus
buttons
accessibility, 333
adding, 323
locations, 331
setting, 333

compound
creating, 329

creating
exit actions, 325
for selecting a single value, 328
preempting existing commands,
330

data menus, 332
definition, 2168
exit actions, 325
files
definition, 2168
names and contents, 321
purpose, 321
sample, 323
submenus, 331
syntax, 322
toolkit, 2120

main
definition, 2168

manipulating, 331
accessibility of buttons, 333
data menus, 332
setting buttons, 333

new
creating, 325
defining, 326
using, 327

pushing and popping, 334
run-time, 334
submenus, 331
definition, 2168

merge
boolean body operations, 1062

Merge, 1145
body, 127

2190 Creo® Parametric TOOLKITUser’s Guide

Merge Feature, 861
ProMerge.h, 862

Message
classification of, 288

Message file
definition, 2168
restrictions, 286

Messages
classification of
critical, 288
error, 288
info, 288
prompt, 288
warning, 288

file, 286
files
toolkit, 2120

Milling tools
parameters, 1444

Mirror
features, 1105

Model coordinates
definition, 2168

Model items
definition, 2168
description, 80
names, 80

Model properties
surface, 75

Models, 70
definition, 2168
drawing, 1254
file management operations, 78
finding the handle
example, 72

identifying, 72
in session, 77
names
gathering by, 1196

orientation, 483
section, 988

Modes, 35

complement
definition, 2168

description, 70
set
definition, 2168

Modify
colors
example, 488

cross sections, 247
simplified representations, 1194

Modify Analytic Surface
features, 1096

Mouse
input, 495
positions
example, 495

Move, Move-Copy
features, 1068

Movies
animation, 539

Multi-CAD Assemblies
functionalities not supported, 762
new functions, 754
overview, 749
restrictions on characters length, 758
superseded functions, 756
support for characters in file names,
750
support for file names, 750
supported functionalities, 751

Multi-Threaded (MT) DLL Libraries,
2105
Multibody
body, 127-128, 162
ProSolidBodyStateGet(), 128
states of bodies, 127-128

Multibyte String
definition, 2078

Multiprocess mode
registry file for, 38

Multivalued element, 765

Index 2191

N
Names
simplified representations, 1192

Naming conventions, 25
Native Encoding
definition, 2078

NC sequences
creating, 1455

No Geometry
states of bodies, 128

Notebook, 89
Notes, 597
detail items, 1255
Properties, 598
text styles, 601
visiting, 601

Notify
classes, 2011
definition, 2168

NURBS, 198
representation, 2161
surface, 2157

O
Object
ProDtlitem, 1255

Object handle
ProDtlentity, 1255

Object handles
ProDtlentity, 1255
ProDtlgroup, 1255
ProDtlnote, 1255
ProDtlsymdef, 1255
ProDtlsyminst, 1255

Object, ProDimension, 566
Objects
definition, 2168
displaying, 486
external, 2021
handles, 56
naming conventions, 25

ProSelection
defined, 504

selecting, 504
Offset Geometry
features, 1094

OHandles
converting to DHandles, 57
description, 56
ProView, 1236

Opaque pointers, 56
Operations
creating, 1454
example, 1455

Options
configuration file
getting and setting, 262

Orientation
model, 483

Outlines
code example, 106, 118
of solids, 106

Overlay views
definition, 2168

Owners
external object, 2022
window, 481

P
Pan and zoom matrix, 483
Parameters
accessing, 212
code example, 218
connector, 1818
conventional milling
required, 1455

creating a parameter tree, 1449
definition, 2168
external objects, 2023
for auxiliary tools, 1444
for contouring tools, 1444
for face milling, 1455

2192 Creo® Parametric TOOLKITUser’s Guide

for holemaking tools, 1444
for milling tools, 1444
for turning tools, 1444
from family table items, 234
gathering by, 1197
holemaking
required, 1455

manufacturing, 1448
utility functions, 212
values, 212

Parent
definition, 2168

Parse
file names, 263

Parts, 117
density, 117
interference checking, 198
material properties, 118
postfix identifiers, 117
traversing, 172

Paths
feature element, 772

Pattern
axis patterns, 975

patterns
table patterns, 970

Patterns, 144
attachment options, 978
creating, 964
example, 985

curve patterns, 976
dimension patterns, 968
direction patterns, 972
element tree, 964
getting, 985

fill patterns, 971
Fill type, 144
leaders, 144
manipulating, 144
NC Sequence Pattern, 980
point patterns, 977
recognition, 982

reference patterns, 968
reference selection, 978
table-driven
creating, 970

types, 964
Planar Symmetry Recognition
features, 1110

Planes, 2149
Play
single animation, 538

Plot driver, 745
Points
datum, 181

Polygons, 490
Polylines, 490
Popup Menu
Adding to the Graphics Window,
315
Checking access state, 318
Using Trail files to determine
names, 316

Popup menus
Adding, 318

Popup Menus, 315
Accessing, 317
Creating commands for new buttons,
317
Registering Notifications to create
and destroy menus, 316

Postfix identifiers, 117
Preempt
Creo Parametric commands, 330

PRO_DRAWING_WELD_
GROUPIDS_GET
weld symbol notification type, 1850

PRO_DRAWING_WELD_
SYMPATH_GET
weld symbol notification type, 1850

PRO_DRAWING_WELD_
SYMTEXT_GET
weld symbol notification type, 1850

Index 2193

PRO_E_CURVE_CONTINUITY
element, 2051
PRO_FEAT_ASSEM_CUT, 1131
PRO_FEAT_COMPONENT, 1131
pro_get_selection() function
guidelines, 2120

pro_select() function
guidelines, 2120
options, 2120

pro_set_and_get_selection() function
guidelines, 2120

pro_show_select() function
guidelines, 2120

Pro/DEVELOP
conversion paths, 2120
converting from, 2116
converting to Creo Parametric
TOOLKIT, 2116
enumerated types, 2120
functions
compared to Creo Parametric
TOOLKIT, 2118

list of equivalent functions, 2128
relationship with Creo Parametric
TOOLKIT, 2116

Pro/MESH
functionality, 1988

ProAnalysisAttrIsSet() function
defined, 2045

ProAnalysisAttrSet() function
defined, 2045

ProAnalysisInfoGet function
defined, 2043

ProAnalysisInfoSet function
defined, 2043

ProAnalysisNameGet function
defined, 2046

ProAnalysisTypeRegister function
defined, 2040

ProAnimframeCreate() function
used in a code example, 540

ProAnimframeObjAdd() function

used in a code example, 540
ProAnimmovieCreate() function
used in a code example, 540

ProAnimmovieFrameAdd() function
used in a code example, 540

ProAnimobjectCreate() function
used in a code example, 540

ProAppData data type
declaration, 62

ProArgument
Argument Management, 2054
description, 2054

ProArrayAlloc
maximum allocated memory, 59

ProArrayAlloc() function
used with material data, 119

ProAsmcomp object
description, 1131

ProAsmcomppath structure
declaration, 1131

ProAsmcomppathTrfGet() function
assembly components, 1137

ProAsmcomppathTrfSet() function,
1137
ProAsmcompTypeGet() function
used with manufacturing
components, 1442

ProAssembly object
description, 1131

ProAssemblyDynPosGet() function,
1137
ProAssemblyDynPosSet() function,
1137
ProAxis object
declaration, 56

ProAxisInit() function, 177
ProBatchAnimationStart() function
used in a code example, 540

ProBodyCopy
description, 1056

ProBodyOpts
description, 1056

2194 Creo® Parametric TOOLKITUser’s Guide

ProBooleanBodies
description, 1056

Process steps
access, 1785
creating, 1786
feature elements, 1787
optional elements, 1787
types of, 1787
visiting, 1785

ProColorByTypeGet, 488
ProColormapGet() function
used in a code example, 488

ProColormapSet() function
used in a code example, 488

ProCsys object
declaration, 56

ProCurve object
declaration, 56
description, 179

ProCurveCompVisit() function
for geometry, 194

ProCurvedata objects
used for external objects, 2025

ProDisplist2dCreate() function, 493
ProDisplist2dDelete() function, 493
ProDisplist2dDisplay() function, 493
ProDisplist3dCreate() function, 493
ProDisplist3dDelete() function, 493
ProDisplist3dDisplay() function, 493
ProDrawingSheetTrfGet()
used in a code example, 228

Prodtl_attach structure, 1290
prodtl_create() function
detail items, 1255

Prodtl_leader structure, 1290
ProDtlentity
object handle, 1255

ProDtlgroup
object handle, 1255

ProDtlitem
object, 1255

ProDtlnote

object handle, 1255
ProDtlsymdef
object handle, 1255

ProDtlsyminst
object handle, 1255

ProEdge object
declaration, 56

ProElement object
description, 765

ProElementAlloc() function
creating tools, 1444
to create NC sequences, 1455

ProElemId object
description, 765

ProElempath object
description, 772

ProElempathItem structure
declaration, 772

ProElemtreeElementAdd() function
adding manufacturing elements,
1448

ProEngineerDisplaydatecodeGet()
function
description, 48

ProEngineerEnd() function
batch session, 52

ProErritemType enum
declaration, 779

ProError return type
description, 27

ProErrorlist declaration, 779
ProExpldstate structure
declaration, 1142

ProExtdataClass structure
description, 236

ProExtobj object, 2021
ProExtobjCallbacks structure
declaration, 2033

ProExtobjClass object
description, 2022

ProExtobjdataType enum
declaration, 2030

Index 2195

ProExtobjDispprops object
description, 2027

ProFaminstance object
description, 231

ProFaminstanceValueGet() function
used in a code example, 234

ProFamtable object
description, 231

ProFamtableCheck() function
used in a code example, 234

ProFamtableInit() function
used in a code example, 234

ProFamtableInstanceVisit() function
used in a code example, 234

ProFamtableItem object
description, 231

ProFamtableItemVisit() function
used in a code example, 234

ProFeature object
description, 132

ProFeatureCreate() function
calling, 779
used to assemble components, 1166

ProFeatureCreateOptions enum
description, 779

ProFeatureElemtreeExtract() function
with NC sequences, 1455

ProFeatureGeomitemVisit() function
to create an operation, 1454
to create NC sequences, 1455
used with axis datums, 177
used with composite datum curves,
180
used with coordinate system datums,
177
used with datum curves, 179
used with datum planes, 178
used with datum points, 181

ProFeatureStatusGet() function
possible status values, 132

ProFeatureTypeGet() function
used with assemblies, 1133

ProForeignCurveEvalFunction()
typedef
description, 2049

ProGeomitem
declaration, 57
description, 80
hierarchy, 171
list of types, 171

ProGeomitemdata structure
declaration, 187

ProGeomitemFeatureGet() function
used with selection, 2120

ProGeomitemIsInactive() function
used with axis datums, 177
used with coordinate system datums,
177
used with datum curves, 179
used with datum planes, 178
used with datum points, 181
used with quilts, 178

ProGraphicsCircleDraw() function
used in a code example, 491

ProGraphicsColorSet() function
used in a code example, 491

ProGraphicsLineDraw() function
used in a code example, 491

ProGraphicsModeSet() function, 489
used in a code example, 495

ProGraphicsPenPosition() function
used in a code example, 491

ProGraphicsPolygonDraw() function,
490
ProGtolDelete function
description, 630

ProGtolElbowlengthGet() function
description, 630

ProGtolLineEnvelopeGet() function
description, 630

ProGtolPrefixGet() function
description, 633

ProGtolPrefixSet() function
description, 633

2196 Creo® Parametric TOOLKITUser’s Guide

ProGtolRightTextEnvelopeGet()
function
description, 630

ProGtolRightTextGet() function
description, 631

ProGtolRightTextSet() function
description, 631

ProGtolSuffixGet() function
description, 633

ProGtolSuffixSet() function
description, 633

ProGtolTextstyleGet() function
description, 632

ProGtolTextstyleSet() function
description, 632

ProGtoltextTextstyleGet() function
description, 632

ProGtoltextTextstyleSet() function
description, 632

ProGtolTopTextGet() function
description, 631

ProGtolTopTextSet() function
description, 631

ProInputFileRead() function
for cable parameters, 1821
used with cabling, 1818

ProItemerror structure
declaration, 779

ProLayerDisplay enum
description, 84

ProLinestyleSet() function
displaying graphics, 490

ProMatrixMakeOrthonormal() function
fundamental, 484

ProMdl object
declaration, 56
description, 70

ProMdlGtolvisit function
description, 618

ProMdlSave() function, 78
ProMdlToModelitem() function
used with parameters, 212

ProMdlTypeGet() function
used with assemblies, 1133

ProMechinterfacecontactdataAlloc()
function
description, 1941

ProMenubuttonActionSet() function
using the final arguments, 328

ProMenubuttonPreactionSet() function
used in a code example, 331

ProMenuCreate() function
to create submenus, 331

ProMenuDelete() function
used with ProMenuProcess(), 329

ProMenuFileRegister() function
calling, 324
used in a code example, 331

ProMenuProcess() function
returning a value from, 329

ProMessageDisplay() function
used in a code example, 331

ProMessageStringRead() function
used in a code example, 331

ProMfgdbNameCreate() function
definition, 1461

ProMfgdbSearchoptCreate() function
definition, 1461

ProMode object
description, 70

ProModeCurrentGet() function
used in a code example, 486

ProModelitem object
declaration, 57
description, 80

ProModelitemInit() function
ProCurve to a ProGeomitem, 179
ProPoint to a ProGeomitem, 181
ProQuilt to a ProGeomitem, 178
used in visits, 177
used with parameters, 212

ProModelitemNameSet() function
used with ProGeomitem, 171

ProMouseBoxInput() function, 495

Index 2197

ProMousePickGet() function
used in a code example, 491

ProMouseTrack() function
used in a code example, 495

ProOutputFileMdlnameWrite()
function
for cable parameters, 1821
for cabling, 665, 1818
used with cabling, 1818

ProParameter object
description, 211

ProParameter structure
declaration, 211

ProParameterSelect() function
used with family table items, 212,
234

ProParamfrom enum
declaration, 211

ProParamowner structure
declaration, 211

ProParamvalue structure
declaration, 211

ProParamvalueType structure
declaration, 211

ProParamvalueValue structure
declaration, 211

ProPattern object
description, 964

ProPatternClass object
description, 964

Properties
Loads and Constraints, 1866
material, 118
of external object display, 2027
ProSolidBodyMassPropertyGet(),
115
surface, 496
text style, 601

ProPoint object
declaration, 56

ProPoint3d typedef
declaration, 225

ProProcstep structure
declaration, 1784

ProQuiltSurfaceVisit() function
for geometry, 192

ProRelset object
description, 205

ProRemoveBody
description, 1056

ProRuleEval() function
description, 1196

ProSecdimDelete() function, 998
ProSecdimDiamClear
function definition, 998

ProSecdimDiamInquire
function definition, 998

ProSecdimDiamSet
function definition, 998

ProSecerrorCount() function
used in a code example, 1001

ProSecerrorFree() function
used in a code example, 1001

ProSecerrorMsgGet() function
used in a code example, 1001

ProSection2DAlloc() function
used in a code example, 989

ProSectionEntityAdd() function
used in a code example, 995

ProSectionEntityDelete() function, 995
ProSectionNameGet() function, 989
ProSectionNameSet() function
used in a code example, 989

ProSelbox object
description, 2029

ProSelect() function
arguments, 507
guidelines, 2120

ProSelection, 504
compared to Select3d, 2120
object, 504

ProSelectionAsmcomppathGet()
function, 504
ProSelectionHighlight() function

2198 Creo® Parametric TOOLKITUser’s Guide

guidelines, 2120
ProSelectionModelitemGet() function,
504
used with family table items, 234

ProSelectionPoint3dGet() function,
504
ProSelectionUnhighlight() function
and ProSelection, 506

ProSelectionViewGet() function, 504
ProServerWorkspaceSet() function
description, 645

ProSimprep object
description, 1185

ProSimprepdata structure
description, 1185

ProSimprepitem object
description, 1185

ProSolid object
declaration, 56

ProSolidAnalysisVisit function
defined, 2046

ProSolidBodiesCollect()
body, 128
collect, 128

ProSolidBody, 127
object, 127-128
structure, 128

ProSolidBody object
description, 1056

ProSolidBodyConstructionSet()
object, 128

ProSolidBodyCreate()
body, 128

ProSolidBodyDelete()
body, 128

ProSolidBodyIsConstruction()
body(), 128

ProSolidBodyIsSheetmetal()
body, 128
sheetmetal, 128

ProSolidBodyOutlineGet()
body, 128

ProSolidBodyStateGet()
states of bodies, 128

ProSolidBodySurfaceVisit()
body, 128

ProSolidDefaultBodyGet()
body, 128

ProSolidDefaultBodySet()
body, 128

ProSolidDisplay() function
display lists, 493

ProSolidFeatureVisit() function
defined, 2046

ProSolidFeatVisit() function
explanation of feature visits, 173
used with axis datums, 177
used with composite datum curves,
180
used with coordinate system datums,
177
used with datum curves, 179
used with datum points, 181

ProSolidRayIntersectionCompute()
function
and ProSelection, 504

ProSplitBody
description, 1056

ProStringToWstring() function
used in a code example, 331

ProSurfaceContourVisit() function
used with a datum surface, 178

ProSurfaceDataGet() function
used with datum planes, 191
used with datum surfaces, 193

Prototyping, 26
ProUdfCreate()
body, 162

ProUdfdataRequiredreferencesGet()
body, 162

ProValue object
description, 770

ProValueData structure
declaration, 770

Index 2199

ProValueDataType enum
declaration, 770

ProVector typedef
declaration, 225

Providing
icon, 311

ProView
drawing views and models, 1236

ProViewMatrixGet() function
fundamental, 484

ProViewMatrixSet() function
used in a code example, 486

ProViewReset() function, 483
ProViewRotate() function, 483
ProViewStore() function
used in a code example, 486

ProWExtobjdata object
description, 2024

ProWExtobjRef object
description, 2032

ProWindowCurrentSet() function
displaying graphics, 490

ProWindowRefresh() function
and display lists, 493
used in a code example, 488

ProWindowRepaint() function
to see an external object, 2025

ProWstringToString() function
ensuring portability, 66

Pushbutton
adding to menus, 303

Pushing and popping menus, 334

Q
Query
features, 132

Quick drawing instructions, 672
Quilts
geometry, 192
visiting, 178

R
Rays, 194
Read access
to weld features, 800, 1849

Read status, 132
reading geometric tolerance, 619
Recycle
object identifiers, 2023

Redefine
features, 138

Reference-driven patterns, 968
References
external
defined, 1149

external object, 2031
Refresh
window, 478

Regenerate
2-D sections, 992
assembly components, 1160
relation sets, 205
solid objects, 96

Register
applications, 38
external object classes, 2022

Registry files, 33
examples, 2101
fields of, 2100
functions, 262
toolkit, 2119

Relations, 205
Remove
animation frames from a movie, 539
animation objects from frames, 537
body, 127
external object data, 2030
external object references, 2032
family table items, 234
highlighting, 511
windows, 480

Rename
models, 78

2200 Creo® Parametric TOOLKITUser’s Guide

surfaces
code example, 83

Rendering
Creating 3D shaded data, 500

Repaint
windows, 478

Replace
section entities, 995
tweak surface features, 884

Reporting errors
for sections, 1001

Reposition process steps, 1788
Reset
view, 483

Resolution
specifying, 992

Restart
applications, 43

Retrieve
2-D sections, 1002
external data, 239
family table instances, 232
geometry of a simplified
representation, 1189
models, 78
simplified representations, 1189
views, 484

Retrieving
lightweight graphics simplified
representati, 1190

Reusable identifiers, 2023
Roles
of manufacturing components, 1442

Rotate
views, 483

Rotation angle
text, 492

Roughing step
features, 1469

Routing, 1828
locations, 1826

Ruled surfaces, 2153

Rules
simplified representation, 1196

Run-time menus, 334

S
Sample applications, installing, 2107
Save
2-D sections, 1002
models, 78

Scale
external objects, 2028
view, 1236

Scene graph
definition, 2168

Scope control
defined, 1149

Screen coordinate system, 223
Scroll
messages, 285

Sections
2-D
adding entities, 995
saving, 1002

allocating, 989
automatic dimensioning, 995
constraints, 990
copying, 990
creating
2-D, 988
example, 1003
models, 988

definition, 987
dimensions, 998
entities, 995
errors, 1001
example, 1003
mode, 990
regenerating, 992
retrieving, 1002
saving, 1002
solving, 992

Select3d

Index 2201

compared to ProSelection, 2120
mapping sel_type, 2120

Selection, 504
boxes
size of, 2029

data
for external objects, 2029

explode states, 1142
family table instances, 232
feature, 132
interactive, 507
MechanicaItems, 1855

Session
simplified representations, 1186

Set mode
definition, 2168

setting geometric tolerance, 623
Sheet metal
flat wall feature
feature element tree, 1318

planar wall feature
introduction, 1317

Sheets
drawing, 1232

Simplified representations
adding items, 1195
creating, 1192
deleting, 1192
items, 1195

extracting information from, 1192
modifying, 1194
retrieving
geometry, 1189

rules, 1196
session, 1186
zones, 1197

Single animation, 538
Single-valued element, 765
Size
gathering by, 1197

Skeleton Model Functions, 1150
Sketched features

create, 1006
create with 2D sections, 1007
creating features with 3D sections,
1009
element tree, 1005
overview, 1005
reference entities and use edge, 1009
reusing existing sketches, 1011

Slant angle
text, 492

Slots, 236
Solids
accuracy, 107
contents of, 93
coordinate system, 223
creating, 93
displaying, 95
geometry
visiting, 175

mass properties, 115
orientation, 483
outline, 106
ProSolidBodyDensityGet(), 115
ProSolidBodyMassPropertyGet(),
115
regenerating, 96
transforming coordinates, 226-227
units, 108
accessing individual units, 111
accessing systems of units, 110
conversion of models to a new
unit system, 114
creating a new system of units,
111
creation of a new unit, 114
modifying systems of units, 110
modifying units, 113
retrieving systems of units, 109

Solve
sections, 992

Sources
light, 499

2202 Creo® Parametric TOOLKITUser’s Guide

Splines
cylindrical spline surface, 2158
representation, 2161
surface, 2155

Split
body, 127

Start
batch animation, 538

Statuses
of a Creo Parametric process, 281
read, 132

Stop
applications, 43

Storage solids
identifying, 1442

Store
external data, 237
view, 484

Strings
wide, 65
functions for, 267

Structure
of applications, 2120

Submenus, 331
definition, 2168

Substitute
features, 1107

subtract
boolean body operations, 1062

Subtract
body, 127

Support
third-party tool manager, 1461

Suppress
feature, 138

Surfaces
cylindrical spline, 2158
data structures, 2148
definition, 2168
fillet, 2155
general surface of revolution, 2152
manufacturing code example, 1457

NURBS, 2157
parametric equations, 189
properties of, 496
properties of models, 75
renaming
code examples, 83

replacement features, 884
ruled, 2153
spline, 2155
traversing, 2143
types, 189

Sweeps
code example, 1051
creating, 1042
element tree, 1043

Symbol definitions, 1255
Symbol instances, 1255
Symbols
designating, 565
manipulating groups, 1288

Synchronous J-Link Applications,
2061
Synchronous mode
definition, 2168

T
Tables
drawing, 1290
family
code example, 234
Model items
from family table items, 234

objects, 231
operations on instances, 232
operations on items, 234
utilities, 231
visiting, 231

Tabulated cylinders, 2153
Tangency propagation
flexible modeling, 1099

Task Library Functions

Index 2203

Memory Management, 2055
Tessellation, 181
definition, 2168
surface, 496

Text
attributes, 492
displaying, 491
fonts, 492
message files, 286
message window
identifier, 476

note, 598
style properties, 601
styles
of notes, 601

validating, 493
The Feature Element Tree for Fill
feature in Creo Parametric, 859
The Feature Element Tree for Mirror
feature in Creo Parametric, 854
The Feature Element Tree for Move
feature in Creo Parametric, 857
The Feature Element Tree for Solidify
feature in Creo Parametric, 873
The Feature Element Tree for Thicken
feature in Creo Parametric, 871
The Feature Element Tree for Trim
feature in Creo Parametric, 865
Toolkit DLL
Create, 2055
Functions, 2056
Task Libraries, 2055

TOOLKIT DLL Functions
Launch, 2056

Tools
auxiliary, 1444
contouring, 1444
creating, 1444
holemaking
parameters, 1444

milling
parameters for, 1444

table
creating, 1452

turning
parameters for, 1444

types, 1443
visiting, 1443

Torus, 2151
Trail files, 263
Transformations
coordinates of an assembly member,
228
coordinates of sketched entities, 229
definition, 2168
drawing view to screen coordinates,
227
external object, 2026
screen to drawing coordinates, 227
screen to window coordinates, 227
solid to screen coordinates, 226
in a drawing, 227

to coordinate system datum
coordinates, 228

Traversal
assembly, 1133
geometry, 2142
manufacturing components, 1442
part, 172

Triangle strip
definition, 2168

Turning tools
parameters, 1444

Type of slot
chapter, 236
stream, 236

U
UDFs, 146
uiCmdPriority enum
declaration, 303

Unicode Ecoding
acronym, 2078

2204 Creo® Parametric TOOLKITUser’s Guide

Unicode Encoding, 2078
Byte Order Mark, 2078
definition, 2078
External Interface Handling, 2080
mapping methods, 2078
Necessity, 2080
Pro/ENGINEERWildfire 4.0, 2078
Transcoding, 2078

Unlock
messages, 46
toolkit
comparison, 2120

toolkit application, 44
use same version as ProENGINEER.,
28
User attributes
definition, 2168

User Interface
dialog components
dialogs with menubars, 452

programming dialog components
table inquiry functions, 466

resource files
syntax, 445

user_initialize() function
adding a new menu button, 323
changing the color map, 488
description, 48

user_terminate() function
defined, 48
description, 48

user-initialize()
described, 51

User-supplied main, 54
User’s Guide
documentation
online, 23
online format, 23
PDF format, 23

Utilities, 261
family table, 231

V
Values
feature element, 765
of feature elements, 770
parameter, 212

Vectors
definition, 2168

Version stamps, 83
Views
definition, 2168
drawing, 1236
creating, 1243

listing
example, 1240

modifying, 1240
orientation, 483
overlay
definition, 2168

scale, 1236
storing, 484

Visibility
of assembly components, 1135
of menu buttons, 334

Visit
animation frames, 537
animation movie frames, 539
assembly components, 1133
composite datum curves, 180
coordinate system datums, 177
datum axes, 177
datum curves, 179
datum planes, 178
datum points, 181
datum surfaces, 178
explode states, 1142
external object references, 2032
external objects, 2024
family tables, 231
feature geometry, 173
features, 132
functions
description, 62

Index 2205

geometry objects, 172
layers, 84
manufacturing tools, 1443
notes, 601
process step features, 1785
quilts, 178
relation sets, 205
simplified representations, 1192
solid geometry, 175
windows, 481

Visiting
cross sections, 247
displayed entities, 90

W
Warnings, 2034
wchar_t, 65
Weld
drawing symbols, 1850
notification callbacks, 1850
symbol notification types, 1850
PRO_DRAWING_WELD_
GROUPIDS_GET, 1850
PRO_DRAWING_WELD_
SYMPATH_GET, 1850
PRO_DRAWING_WELD_
SYMTEXT_GET, 1850

Weld features
read access to, 800, 1849

WHandles
description, 58

Wide strings, 65
checking your declaration, 66
definition, 2168
functions, 267
manipulating, 66

Width factor
text, 492

Window coordinate system, 224
Window matrix, 483
Windows

accessory, 479
activating, 482
closing, 480
creating, 480
current, 479
definition, 2168
deleting, 480
flushing display commands, 482
getting the owner, 481
identifiers, 476
information
definition, 2168

manipulating, 477
matrix, 483
orientation, 483
pan and zoom matrix, 483
repainting, 478
visiting, 481

Workcells
creating, 1452
example, 1454
features
code example, 1443

Workspace handles
description, 58

Write
a message to the Message Window,
285
family table to a file, 234
message to an internal buffer, 289

Z
Zones, 1197

2206 Creo® Parametric TOOLKITUser’s Guide

	About This Guide
	Fundamentals
	Introduction to Creo Parametric TOOLKIT
	Online Documentation in Creo Parametric TOOLKIT APIWizard
	To Install the APIWizard
	APIWizard Overview
	APIWizard
	User’s Guide

	Creo Parametric TOOLKIT Style
	Objects and Actions
	Function Prototyping
	Function Error Statuses

	Installing Creo Parametric TOOLKIT
	Overview
	Add or Update Creo Parametric TOOLKIT Installation
	Testing the Creo Parametric TOOLKIT Installation
	Running the Microsoft Visual Studio Solution
	Running the Makefile Project

	Building a Sample Application
	Step 1—Compile and Link
	Step 2—Register
	Step 3—Run Creo Parametric
	Step 4—Repeat the Test in DLL Mode

	Developing a Creo Parametric TOOLKIT Application
	How Creo Parametric TOOLKIT Works
	Compiling and Linking a Creo Parametric TOOLKIT Application
	Makefiles

	Registering a Creo Parametric TOOLKIT Application
	Limit on the Number of Loaded Applications

	Version Compatibility: Creo Parametric and Creo Parametric TOOLKIT
	Application Compatibility: Creo Parametric and Creo Parametric TOOLKIT on Different Architecture
	Stopping and Restarting a Creo Parametric TOOLKIT Application
	Using a Source-Code Debugger on a Creo Parametric TOOLKIT Application
	Unlocking a Creo Parametric TOOLKIT Application
	Digitally Signing the Application
	Unlock Messages

	Structure of a Creo Parametric TOOLKIT Application
	Essential Creo Parametric TOOLKIT Include Files
	Core of a Creo Parametric TOOLKIT Application
	user_initialize() Arguments
	Threading in Creo Parametric TOOLKIT Applications
	Using Creo Parametric TOOLKIT to Make a Batch Creo Parametric Session
	Example 1: Batch Mode Operation

	Creo Parametric TOOLKIT Support for Creo Applications
	User-Supplied Main
	Asynchronous Mode
	Creo Parametric TOOLKIT Techniques
	Object Handles
	OHandles
	DHandles
	Workspace Handles

	Expandable Arrays
	Example 2: Expandable Arrays

	Visit Functions
	Example 3: Listing Holes in a Model

	Support for Creo Model Names and Files Paths
	Wide Strings
	Defining wchar_t
	Setting the Hardware Type
	Checking Your Declaration of wchar_t

	String and Widestring Functions
	Example 4: String Conversion

	Support for IPv6
	Accessing LearningConnector

	Core: Models and Model Items
	Modes
	Models
	The ProMdl Object
	Creating Models
	Identifying Models
	Example 1: Finding the Handle to a Model

	Surface Properties of Models
	Models in Session
	File Management Operations

	Model Items
	Example 2: Renaming a Selected Surface

	Version Stamps
	Layers
	Example 3: Creating a Layer

	Notebook
	Visiting Displayed Entities

	Core: Solids, Parts, and Materials
	Solid Objects
	Creating a Solid
	Contents of a Solid
	Displaying a Solid
	Example 1: Loading and Displaying a Solid

	Regenerating a Solid
	Example 2: Combining Regeneration Flags

	Combined States of a Solid
	Layer State

	Evaluating Mathematical Expressions for a Solid
	Solid Outline
	Example 3: Computing the Outline of a Solid

	Solid Accuracy
	Solid Units
	Introduction to Unit of Measurement and System of Units
	Types of Systems of Units
	Definitions
	Retrieving Systems of Units
	Modifying Systems of Units
	Accessing Systems of Units
	Creating a New System of Units
	Accessing Individual Units
	Modifying Units
	Creation of a new Unit
	Conversion of Models to a New Unit System

	Mass Properties
	Solid Postfix Identifiers

	Part Objects
	Density
	Example 4: Writing the Mass of a Given Part to the Model Tree

	Material Objects
	Accessing Material Data
	Material Types and Properties
	Material Input and Output
	Example 5: Working with Materials and Material Properties
	Example 6: Creating a Non-linear Material

	Core: Solid Body
	Introduction to Solid Body
	States of bodies
	Creating a Body
	Listing Features
	Multibody Operations

	Core: Features
	Feature Objects
	Visiting Features
	Feature Inquiry
	Feature Geometry
	Manipulating Features
	Manipulating Features based on Regeneration Flags
	Feature References

	Feature Dimensions
	Manipulating Patterns
	Patterns as Features
	Fill Patterns

	Table-Driven Patterns

	Creating Local Groups
	Read Access to Groups
	Finding Groups
	Group Information
	Creating Groups
	Deleting Groups

	Updating or Replacing UDFs
	Placing UDFs
	The UDF Input Data Structure ProUdfdata
	Variable Parameters and Annotations
	Variable Dimensions and Pattern Parameters
	UDF References
	Assembly Intersections
	External Symbol: Parameters
	External Symbol: Dimensions
	Copied Model Names

	Reading UDF Properties
	Variable Dimensions
	Variable Parameters
	UDF References
	External Symbols
	Instance Names

	Notification on UDF Library Creation
	Multibody Support in a UDF and a Copy feature
	Automatic Filling of the Body Reference
	API Behavior for All Combinations of UDF Type, Creation and Placement

	Core: 3D Geometry
	Geometry Objects
	Visiting Geometry Objects
	Visiting Feature Geometry
	Visiting Solid Geometry
	Example 1: Finding the Surfaces Penetrated by a Hole
	Visiting Axis Datums
	Visiting Coordinate System Datums
	Visiting Datum Planes
	Visiting Quilts and Datum Surfaces
	Visiting Datum Curves
	Visiting Composite Datum Curves
	Visiting Datum Points

	Tessellation
	Curve and Edge Tessellation
	Surface Tessellation
	Part and Assembly Tessellation

	Evaluating Geometry
	Evaluating Surfaces, Edges, and Curves
	Inverse Evaluation and Minimum Distances
	Geometry at Points

	Geometry Equations
	Geometry of Solid Edges
	Example 2: Extracting the Diameter of an Arc Edge

	Geometry of Surfaces
	Example 3: Getting the Angle of a Conical Surface

	Geometry of Axes
	Geometry of Coordinate System Datums
	Geometry of Datum Planes
	Geometry of Quilts
	Geometry of Datum Surfaces
	Geometry of Datum Points
	Geometry of Datum Curves
	Geometry of Composite Curves

	Ray Tracing
	Measurement
	Geometry as NURBS
	Interference
	Faceted Geometry
	Visiting Facets and Facet Sets
	Accessing Facet Properties

	Core: Relations
	Relations
	Adding a Customized Function to the Relations Dialog in Creo Parametric
	Code Example

	Core: Parameters
	Parameter Objects
	Parameter Values
	Accessing Parameters
	Notification Functions
	Example 1: Labeling a Feature with a String Parameter

	Designating Parameters Windchill Servers
	Restricted Parameters
	Table-Restricted Parameters
	Driven Parameters

	Core: Coordinate Systems and Transformations
	Coordinate Systems
	Solid Coordinate System
	Screen Coordinate System
	Window Coordinate System
	Drawing Coordinate System
	Drawing View Coordinate System
	Assembly Coordinate System
	Datum Coordinate System
	Section Coordinate System

	Coordinate System Transformations
	Transforming Solid to Screen Coordinates
	Example 1: Solid Coordinates to Screen Coordinates
	Example 2: Transform from Solid Coordinates to Screen Coordinates

	Transforming Screen to Window Coordinates
	Transforming from Drawing View to Screen Coordinates in a Drawing
	Transforming from Screen to Drawing Coordinates in a Drawing
	Example 3: Screen Coordinates to Drawing Coordinates
	Example 4: Transform from Screen Coordinates to Drawing Coordinates

	Transforming Coordinates of an Assembly Member
	Transforming to Coordinate System Datum Coordinates
	Transforming Coordinates of Sketched Entities
	Example 5: Using Several Coordinate Transforms

	Core: Family Tables
	Family Table Objects
	Family Table Utilities
	Visiting Family Tables
	Operations on Family Table Instances
	Operations on Family Table Items

	Core: External Data
	Introduction to External Data
	Storing External Data
	Retrieving External Data

	Core: Cross Sections
	Listing Cross Sections
	Extracting Cross-Sectional Geometry
	Visiting Cross Sections
	Creating and Modifying Cross Sections
	Mass Properties of Cross Sections
	Line Patterns of Cross Section Components

	Core: Utilities
	Configuration Options
	Registry File Data
	Trail Files
	Creo Parametric License Data
	Current Directory
	File Handling
	Wide Strings
	Freeing String Outputs

	Freeing Integer Outputs
	Running Creo ModelCHECK
	Creating Custom Checks
	Example 1: Text File for Custom Checks
	Example 2: Registering Custom Creo ModelCheck Checks
	Example 3: Implementing a Model Name Parameter Check
	Example 4: Implementing a Reference Control Info Check
	Example 5: Implementing a Check Looking for Drawing Views Using Generics
	Example 6: Changes to the Creo ModelCheck Configuration Files to enable Custom Checks

	Core: Asynchronous Mode
	Overview
	Setting up an Asynchronous Creo Parametric TOOLKIT Application

	Simple Asynchronous Mode
	Starting and Stopping Creo Parametric
	Connecting to a Creo Parametric Process
	Status of a Creo Parametric Process

	Full Asynchronous Mode
	Setting Up a Non-Interactive Session

	User Interface: Messages
	Writing a Message Using a Popup Dialog
	Example 1: Displaying the UI Message Dialog

	Writing a Message to the Message Window
	Text Message File Format and Restrictions
	Restrictions on the Text Message File
	Contents of the Message File

	Message Classification
	Writing a Message to an Internal Buffer
	Getting Keyboard Input
	Using Default Values
	Example 2: Displaying Messages and Retrieving Keyboard Input

	User Interface: Ribbon Tabs, Groups, and Menu Items
	Creating Ribbon Tabs, Groups, and Menu Items
	Workflow to Add Menu Items to the Ribbon User Interface

	About the Ribbon Definition File
	To Specify the Path for the Ribbon Definition File
	Loading Multiple Applications Using the Ribbon Definition File

	Localizing the Ribbon User Interface Created by Creo Parametric TOOLKIT Applications
	Tab Switching Events
	Support for Legacy Pro/TOOLKIT Applications
	Migration of Legacy Pro/TOOLKIT Applications

	User Interface: Menus, Commands, and Popupmenus
	Introduction
	Menu Buttons and Menus
	Using the Trail File to Determine UI Names
	Adding a PushButton
	Adding an Action to the Creo Parametric Ribbon
	Adding a Button to the Ribbon

	Adding a Check Button to the Ribbon User Interface
	Adding an Option Command to Creo Parametric—Check Button
	Adding a Check Button to the Ribbon

	Adding a Radio Button Group to the Ribbon
	Adding an Option Command to Creo Parametric—Radio Group
	Adding a Radio Button Group

	Manipulating Existing Commands

	Designating Commands
	Adding the Command
	Providing the Icon
	Designating the Command
	Placing the Button
	Example 1: Designating a Command

	Popup Menus
	Adding a Popup Menu to the Graphics Window
	Using the Trail File to Determine Existing Popup Menu Names
	Registering Notifications to Create and Destroy Popup Menus
	Accessing the Popup Menus
	Creating Commands for the New Popup Menu Buttons
	Checking the Access State of a Popup Menu Item
	Adding Creo Parametric Popup Menus
	Adding a Button to the Model Tree Popup Menu
	Example 2: Assigning the Creo Parametric command to popup menus

	Menu Manager Buttons and Menus
	Menu Files
	Names and Contents of Menu Files
	Syntax and Semantics of Menu Files
	Example 3: Sample Menu File
	Example 4: Adding Alternate Names and Help Text to a Button

	Adding a Menu Button
	Calling ProMenuFileRegister()
	Calling ProMenuAuxfileRegister()
	Calling ProMenubuttonActionSet()
	Example 5: Adding a Button to the Creo Parametric Ribbon

	New Menus
	Exit Actions
	Defining a New Menu
	Example 6: Defining a New Menu that Closes Itself
	Example 7: Defining a New Menu the User Must Close

	Defining an Exit Action
	Using a New Menu
	Calling ProMenuCreate()
	Calling ProMenuProcess()
	Example 8: Using a New Menu

	Creating a Menu for Selecting a Single Value
	Use of ProMenubuttonActionSet() Final Arguments
	Returning a Value from ProMenuProcess()
	Example 9: Creating a Menu that Selects a Value

	Compound Menus

	Preempting Creo Parametric Commands
	Calling ProMenubutton*actionSet()
	Example 10: Asking for Confirmation on Quit Window

	Submenus
	Making a Menu a Submenu

	Manipulating Menus
	Data Menus
	Calling ProMenuModeSet() and ProMenuDatamodeSet()

	Setting Menu Buttons
	Calling ProMenubuttonHighlight() and ProMenubuttonUnhighlight()

	Controlling Accessibility of Menu Buttons
	Pushing and Popping Menus
	Run-time Menus

	Customizing the Creo Parametric Navigation Area
	Adding Custom Web Pages
	Adding Custom Dialog Box Components
	Example 11: Customizing the Creo Parametric Navigation Pane
	Registering Notifications to Add and Destroy Content to a New Pane

	Entering Creo Parametric Commands
	Execution Rules
	Ribbon User Interface Macros
	Macros For Feature Creation
	Creo Parametric Navigator Macros

	Specifying Keyboard Input

	User Interface: Dialogs
	Introduction
	About Creo Parametric TOOLKIT Support for User Interface

	UI Components
	Naming Convention for UI Components
	Menubars and Menubar Components
	Dialog Attributes
	Dialog Operations
	Example 1: Source for Dialog with Text Question, OK and Cancel Buttons

	Adding and Removing Components
	Dialog Action Callbacks

	Cascade Button
	Cascade Button Attributes

	Checkbutton
	Checkbutton Attributes
	Checkbutton Operations
	Checkbutton Action Callbacks

	Drawing Area
	Drawing Area Attributes
	Adding and Removing Components
	Drawing Area Action Callbacks
	Drawing Area Operations

	Input Panel
	Input Panel Attributes
	Input Panel Action Callbacks
	Input Panel Operations

	Label
	Label Attributes
	Label Operations

	Layout
	Layout Attributes
	Adding and Removing Components
	Layout Operations

	List
	List Attributes
	List Action Callbacks
	List Operations
	Example 2: To use UI List Functions

	Menubar
	Menubar Attributes

	Menupane
	Menupane Attributes
	Adding and Removing Components

	Optionmenu
	Optionmenu Attributes
	Optionmenu Action Callbacks
	Optionmenu Operations

	Progressbar
	Progressbar Attributes
	Progressbar Operations

	Pushbutton
	Pushbutton Attributes
	Pushbutton Operations
	Pushbutton Action Callbacks
	Example 3: Controlling Component Visibility or Sensitivity at Runtime

	Radiogroup
	Radiogroup Attributes
	Radiogroup Operations
	Radiogroup Action Callback

	Separator
	Separator Attributes

	Slider
	Slider Attributes
	Slider Operations
	Slider Action Callbacks
	Example 4: Source of Dialog with Slider and Linked InputPanel

	Spinbox
	Spinbox Attributes
	Spinbox Action Callbacks
	Spinbox Operations

	Tab
	Tab Attributes
	Tab Operations
	Tab Action Callbacks

	Table
	Table Attributes
	Adding and Removing Components
	Table Cell Functions
	Example 5: To Assign Components into Table Cells

	Table Row Functions
	Table Column Functions
	Example 6: To Access and Modify Names and Labels for the Table Rows and Columns

	Table Operations
	Table Action Callbacks
	Example 7: To Access Selected Names Array from Tables

	Textarea
	Textarea Attributes
	Textarea Operations
	Textarea Action Callbacks

	Thumbwheel
	Thumbwheel Attributes
	Thumbwheel Operations
	Thumbwheel Action Callbacks

	Tree
	Tree Attributes
	Adding and Removing Components
	Tree Column Functions
	Tree Node Functions
	Tree NodeType Functions
	Tree Operations
	Tree Action Callbacks

	Master Table of Resource File Attributes
	Using Resource Files
	Location and Translation of Resource Files
	Syntax of Resource Files
	Example 8: Dialog with All Components
	Example 9: Resource File for Dialog with Four Components on 2x2 Grid
	Example 10: Resource File for Subgrid Dialog
	Example 11: Resource File for Subgrid Dialog with Resize
	Example 12: Resource File with Offsets, Attachments, and Help Text
	Example 13: Resource File with Text Question, OK and Cancel Buttons
	Example 14: UI List Resource File
	Example 15: Resource File for Dialog with Menubar
	Example 16: Progress Bar Resource File
	Example 17: Component Visibility Resource File
	Example 18: Resource File for Dialog with Slider and Linked InputPanel
	Example 19: UG Tables Resource File
	Example 20: UG Tables Component Resource File

	User Interface: Dashboards
	Introduction to Dashboards
	Dashboard
	Showing a Dashboard
	Accessing a Dashboard

	Dashboard Page
	Dashboard Page Options
	Accessing a Dashboard Page
	Accessing Components in the Dashboard Pages

	User Interface: Basic Graphics
	Manipulating Windows
	Windows
	Resizing Windows
	Manipulating the Embedded Browser in Windows
	Repainting Windows
	Controlling Which Window is Current
	Creating and Removing Windows
	Retrieving the Owner of a Window
	Visiting Windows
	Activating Windows

	Flushing the Display Commands to Window
	Solid Orientation
	Getting and Setting the View Matrix
	Converting a Matrix to Orthonormal
	Storing Named Views
	Example 1: Saving Three Views

	Graphics Colors and Line Styles
	Setting Colors to Desired Values
	Setting Colors to Match Existing Entities
	Example 2: Setting the Graphics Color to a Specific RGB Value
	Example 3: Setting The Graphics Color to Follow the Color of Creo Parametric Entity

	Modifying the Creo Parametric Color Map
	Example 4: Modifying the Color of the HALF_TONE Display

	Creo Parametric Color Schemes
	Setting Line Styles for Creo Parametric TOOLKIT Graphics
	Displaying the Color Selection Dialog Box

	Displaying Graphics
	Example 5: Displaying Lines and Circles

	Displaying Text
	Controlling Text Attributes
	Controlling Text Fonts

	Validating Text Styles
	Display Lists
	Getting Mouse Input
	Example 6: Drawing a Rubber-Band Line

	Cosmetic Properties
	Surface Properties
	Setting Light Sources

	Creating 3D Shaded Data for Rendering
	Example 1: Creating a Display Object

	User Interface: Selection
	The Selection Object
	Unpacking a ProSelection Object
	Building a ProSelection Object
	ProSelection Function Examples

	Interactive Selection
	Highlighting
	Selection Buffer
	Introduction to Selection Buffers
	Reading the Contents of the Selection Buffer
	Removing the Items from the Selection Buffer
	Adding Items to the Selection Buffer

	User Interface: Curve and Surface Collection
	Introduction to Curve and Surface Collection
	The ProCollection object

	Interactive Collection
	Accessing Collection object from Selection Buffer
	Adding a Collection Object to the Selection Buffer
	Programmatic Access to Collections
	Contents of Curve Collection
	Creation and Modification of Curve Collections
	Contents of Surface Collection
	Creation and Modification of Surface Collections

	Access of Collection Object from Feature Element Trees
	Programmatic Access to Legacy Collections
	Example 1: Interactive Curve Collection using Creo Parametric TOOLKIT
	Example 2: Interactive Surface Collection using Creo Parametric TOOLKIT

	User Interface: Animation
	Introduction
	Animation Objects
	Animation Frames
	Playing Animations
	Single Animation
	Batch Animation
	Animation Movies
	Playing a Batch Animation
	Example 1: Creating a Batch Animation

	Annotations: Annotation Features and Annotations
	Overview of Annotation Features
	Creating Annotation Features
	Redefining Annotation Features
	Visiting Annotation Features
	Creating Datum Targets
	Visiting Annotation Elements
	Accessing Annotation Elements
	Modification of Annotation Elements
	Parameters Assigned to Annotation Elements

	Automatic Propagation of Annotation Elements
	Detail Tree
	Access to Annotations
	Converting Annotations to Latest Version
	Annotation Text Styles
	Annotation Orientation
	Annotation Associativity
	Annotation Security
	Interactive Selection
	Display Modes
	Designating Dimensions and Symbols
	Dimensions
	The ProDimension Object
	Visiting Dimensions
	Example 2: Changing the Displayed Value of Selected Model Dimension to Rounded or Non-Rounded

	Modifying Dimensions
	Example 3: Modifying a Dimension

	Dimension References
	Clean Up Dimensions
	Dimension Tolerances
	ISO/DIN Tolerance Table Use
	Dimension Text
	Dimension Text Style
	Dimension Prefix and Suffix
	Dimension Location
	Dimension Entity Location
	Example 4: Dimension Location Properties

	Dimension Orientation
	Driving Dimension Annotation Elements
	Accessing Reference and Driven Dimensions
	45-degree Chamfer Dimensions
	Accessing Ordinate and Baseline Dimensions
	Baseline Dimensions
	Ordinate Dimensions

	Notes
	Creating and Deleting Notes
	Note Properties
	Visiting Notes
	Note Text Styles
	Text Style Properties
	Accessing the Note Placement
	Modifying 3D Note Attachments

	Geometric Tolerances
	Accessing Set Datum Tags
	Accessing Set Datums for Datum Axes or Planes
	Surface Finish Annotations
	Symbol Annotations
	Creating, Reading and Modifying 3D Symbols
	Locating and Collecting 3D Symbols and Symbol Definitions

	Annotations: Geometric Tolerances
	Geometric Tolerance Objects
	Overview
	ProGtol
	ProGtolAttach

	Visiting Geometric Tolerances
	Reading Geometric Tolerances
	Creating a Geometric Tolerance
	Attaching the Geometric Tolerances

	Deleting a Geometric Tolerance
	Validating a Geometric Tolerance
	Geometric Tolerance Layout
	Additional Text for Geometric Tolerances
	Geometric Tolerance Text Style
	Prefix and Suffix for Geometric Tolerances
	Parameters for Geometric Tolerance Attributes

	Annotations: Designated Area Feature
	Introduction to Designated Area Feature
	Feature Element Tree for the Designated Area
	Element Details of PRO_E_DSGNTAREA_SET

	Accessing Designated Area Properties

	Data Management: Windchill Operations
	Introduction
	Accessing a Windchill Server from a Creo Parametric Session
	Accessing Information Before Registering a Server
	Registering and Activating a Server
	Accessing Information From a Registered Server

	Accessing the Workspace
	Workspace Data
	Creating and Modifying the Workspace

	Workflow to Register a Server
	To Register a Server with an Existing Workspace
	To Register a Server with a New Workspace

	Aliased URL
	Server Operations
	Save
	Upload
	CheckIn
	Notification Functions

	Retrieval
	Checkout and Download
	Undo Checkout
	Import and Export
	File Copy
	Server Object Status
	Delete Objects
	Conflicts During Server Operations

	Utility APIs
	Sample Batch Workflow

	Interface: Data Exchange
	Exporting Information Files
	Exporting 2D Models
	Example 1 Publishing a Drawing

	Automatic Printing of 3D Models
	Exporting 3D Models
	Example 2: To Export a Model File to IGES Format
	Export Options in the JT Configuration File

	Shrinkwrap Export
	Setting Shrinkwrap Options
	Surface Subset Options
	Faceted Solid Options
	Merged Solid Options

	Example 3: To Export a Model to VRML Format
	Example 4: To Create a Shrinkwrap Part Model as a Merged Solid

	Exporting to PDF and U3D
	Importing Parameter Files
	Importing 2D Models
	Importing 3D Models
	Modifying the Imported Layers
	Example 5: Importing a 3D Model With Layer Filter Options

	Validation Score for Imports

	Interface: Importing Features
	Creating Import Features from Files
	Creating Import Features from Arbitrary Geometric Data
	Allocating ProInterfacedata
	Adding Surfaces
	Initializing Surface Data
	Surfacedata Contours
	Appending the Surface Data to the Interface Data

	Adding Edges
	Appending the Edge Data to the Interface Data

	Adding Quilts
	Adding Datums
	Initializing Datums
	Appending the Datum Data to the Interface Data

	Creating Features from the Interface Data
	Import Feature Attributes

	Redefining the Import Feature
	Import Feature Properties
	Extracting Creo Parametric Geometry as Interface Data
	Associative Topology Bus Enabled Interfaces
	Associative Topology Bus Enabled Models and Features

	Interface: Customized Plot Driver
	Using the Plot Driver Functionality
	Example 1: Sample Plot Driver Program

	Working with Multi-CAD Models Using Creo Unite
	Overview
	Support for File Names in Non-Creo Models
	Character Support for File Names in Non-Creo Models
	Working with Multi-CAD Models in Creo Parametric TOOLKIT
	Working with Notifications
	Working with Basic Graphics
	Working with Simplified Representations
	Working with Constraints
	Working with User-Defined Features (UDF)

	Functions that Support Multi-CAD Assemblies
	Superseded Functions
	Restrictions on Character Length for Multi-CAD Functions
	Functional Areas in Creo that do not Support Multi-CAD Assemblies
	Sample Applications for Multi-CAD Assemblies
	Migrating Applications Using Tools

	Element Trees: Principles of Feature Creation
	Overview of Feature Creation
	References to Feature Creation Data
	Feature Creation
	Feature Element Values
	Feature Element Paths
	Feature Elements
	Access to ProElement Data
	Feature Element Diagnostics
	Calling ProFeatureCreate()
	Example of Complete Feature Creation

	Feature Inquiry
	Feature Redefine
	To Redefine a Feature

	XML Representation of Feature Element Trees
	Introduction to Feature Element Trees in XML
	Validation Using XML Schema
	XML Representations for Common Elements
	Single Valued Element
	Empty or Optional Element
	XML Representation for ProSelection or ProReference
	XML Representation for ProCollection
	Curve Collection
	Surface Collection
	Pointer Element
	Compound Element
	Array Element
	Multivalued Element

	Tips for Recycling XML Output of Element Trees
	A Sample Element Tree in XML for a Shell Feature

	Element Trees: References
	Overview of Reference Objects
	Reading References
	Modifying References

	Element Trees: Datum Features
	Datum Plane Features
	Constraint Reference Types
	Fit Reference Types
	Example 1: Creating a Datum Plane
	Examples
	Example 1: Through a Plane
	Example 2: Offset to a Plane
	Example 3: Offset along a Csys Axis
	Example 4 : Through a Csys Plane
	Example 5: Parallel to a Plane and Through a Point
	Example 6 : Through an Axis and Angle to a Plane
	Example 7: Through a Linear Reference (Axis, Inferred Axis, Straight Edge or Curve) and a Point
	Example 8: Normal to a Linear Reference (Axis, Inferred Axis, Straight Edge or Curve) and a Point
	Example 9: Midplane to a Plane and Parallel to Another Plane
	Example 10: Midplane to a Plane and at an Angle to Another Plane
	Example 11: Midplane to a Plane and Midplane to a Point
	Example 12: Through Three Points
	Example 13: To Flip Direction
	Example 14: To Fit Outline to a Reference

	Datum Point Features
	Sketched Datum Point
	Feature Elements
	Example 2: Creating a Sketched Datum Point

	Field Datum Point
	Feature Elements
	Example 3: Creating a Field Datum Point

	Offset Csys Datum Point
	Feature Elements
	Example 4: Creating an Offset Csys Datum Point

	General Datum Point
	Feature Elements
	Placement Constraint References
	Placement Constraint Type
	Constraint References
	Constraint Type

	Example 5: Creating General Datum Point
	Examples
	Example 1: Point on a Vertex
	Example 2: Offset Point
	Example 3: Point at Intersection of Three Surfaces
	Example 4: Point On a Surface or Offset from a Surface
	Example 5: Point at Intersection of a Curve and a Surface
	Example 6: Point At Center of Curve or Surface
	Example 7: Point at Intersection of Two Curves
	Example 8: Point On Curve
	Example 9: Project Datum Point On a Planar surface, Datum Plane, Datum Axis, Linear Curve or Linear Edge

	Datum Axis Features
	Example 6: Creating a Datum Axis
	Examples
	Example 1: Point on Surface
	Example 2: Tangent
	Example 3: Normal to a Linear Reference (Axis, Inferred Axis, Straight Edge or Curve)
	Example 4: Parallel to a Linear Reference (Axis, Inferred Axis, Straight Edge or Curve)
	Example 5: Through Edge or Surface
	Example 6: Two Planes
	Example 7: Two Points
	Example 8: Normal Planes

	Datum Coordinate System Features
	Feature Elements
	Example 7: Creating a Datum Coordinate System
	Examples
	Example 1: Using Three Planes or Two Edges and Axes
	Example 2: Using Curve, Edges, or Plane and Axis
	Example 3: Using a Vertex or a Datum Point
	Example 4: Orienting by Selecting References
	Example 5: Orienting by Selecting Coordinate System Axes
	Example 6: Using a Coordinate System

	Element Trees: Datum Curves
	Datum Curve Features
	Common Elements

	Datum Curve Types
	Sketched Datum Curves
	Trim Datum Curves
	Intersect Datum Curves
	Wrap Datum Curves
	Offset Datum Curves
	Tangent Offset Datum Curves
	Datum Curves from Cross Section
	Datum Curves from Equation

	Other Datum Curve Types

	Element Trees: Edit Menu Features
	Mirror Feature
	The Feature Element Tree for Mirror feature in Creo Parametric
	Creating a Mirror Feature
	Redefining a Mirror Feature
	Accessing a Mirror Feature

	Move Feature
	The Feature Element Tree for Move feature in Creo Parametric
	Creating a Move Feature
	Redefining a Move Feature
	Accessing a Move Feature

	Fill Feature
	The Feature Element Tree for Fill feature in Creo Parametric
	Creating a Fill Feature
	Redefining a Fill Feature
	Accessing a Fill Feature

	Intersect Feature
	Merge Feature
	Feature Element Tree for Merge feature in Creo Parametric
	Creating a Merge Feature
	Redefining a Merge Feature
	Accessing a Merge Feature

	Pattern Feature
	Wrap Feature
	Trim Feature
	The Feature Element Tree for Trim feature in Creo Parametric
	Creating a Trim Feature
	Redefining a Trim Feature
	Accessing a Trim Feature

	Offset Feature
	Thicken Feature
	The Feature Element Tree for Thicken feature in Creo Parametric
	Creating a Thicken Feature
	Redefining a Thicken Feature
	Accessing a Thicken Feature

	Solidify Feature
	The Feature Element Tree for Solidify Feature in Creo Parametric
	Creating a Solidify Feature
	Redefining a Solidify Feature
	Accessing a Solidify Feature

	Remove Feature
	Feature Element Tree for the Remove Feature
	Element Details of PRO_E_STD_EXCL_CNTRS_ONE_CNTR

	Creating the Remove Feature
	Redefining the Remove Feature
	Accessing the Remove Feature
	Example 1: Creating a Remove Surface Feature

	Attach Feature
	Feature Element Tree for Attach Feature
	Creating the Attach Feature
	Redefining the Attach Feature
	Accessing the Attach Feature

	Element Trees: Replace
	Introduction
	The Feature Element Tree

	Element Trees: Draft Features
	Draft Feature
	Feature Element Tree for the Draft Feature
	Creating a Draft
	Redefining a Draft
	Accessing a Draft
	Example 1: Creation of a Draft Feature
	Example 2: Creation of a Draft Feature using interactive collection
	Example 3: Creation of a Draft Feature based on the Object-Action paradigm

	Variable Pull Direction Draft Feature
	Feature Element Tree for the Variable Pull Direction Draft Feature
	Element Details of the Subtree PRO_E_VPDD_SET_CMP
	Creating a VPDD
	Redefining a VPDD
	Accessing a VPDD

	Element Trees: Round and Chamfer
	Round Feature
	Feature Element Tree for Round Feature
	Element Details of PRO_E_RNDCH_SET for Round
	Element Details of PRO_E_RNDCH_REFERENCES for Round
	Element Details of PRO_E_RNDCH_RADIUS for Round
	Element Details of PRO_E_RNDCH_TRANSITION for Round

	Creating a Round
	Redefining a Round
	Accessing a Round
	Example 1: Sample code for creation of a Round Feature

	Modify Round Radius Feature
	Feature Element Tree for Modify Round Radius Feature

	Auto Round Feature
	Chamfer Feature
	Feature Element Tree for Chamfer Feature
	Element Details of PRO_E_RNDCH_SET for Chamfer
	Element Details of PRO_E_RNDCH_RADIUS for Chamfer
	Element Details of PRO_E_RNDCH_TRANSITION for Chamfer

	Creating a Chamfer
	Redefining a Chamfer
	Accessing a Chamfer
	Example 2: Sample code for creation of a Chamfer Feature
	Example 3: Sample code for creation of a Edge Chamfer Feature
	Edit Chamfer Feature
	Feature Element Tree for Edit Chamfer Feature

	Corner Chamfer Feature
	Feature Element Tree for Corner Chamfer
	Creating a Corner Chamfer
	Redefining a Corner Chamfer
	Accessing a Corner Chamfer

	Element Trees: Hole
	Overview
	Feature Element Tree for Hole Features
	Feature Element Data Types
	Common Element Values
	PRO_E_HLE_COM Values
	Straight Hole
	Straight Hole with Linear Placement

	Sketched Hole
	Procedure Using Techniques from Creating Sketched Features
	Sketched Hole with Conventional Approach
	Example 1: Creating a Standard Sketched Hole with Linear Placement

	Procedure Using ProFeatureCreate()
	Sketched Hole with ProFeatureCreate()
	Example: Creating a Standard Sketched Hole with Linear Placement

	Standard Threaded Hole
	Example 2: Creating a Standard Threaded Hole with Linear Placement

	Standard Clearance Hole
	Custom Hole
	Standard Tapered Hole

	Valid PRO_E_HLE_COM Sub-Elements
	Hole Placement Types
	Hole Placement
	Linear Hole on a Plane
	Radial Hole on Plane with Radial Dimensioning
	Radial Hole on Plane with Diameter Dimensioning
	Radial Hole on Plane with Linear Dimensioning
	Radial Hole on Cone or Cylinder
	Coaxial Hole with Axis as Primary Reference
	Coaxial Hole with Primary Reference not Axis
	Onpoint Hole with Primary Reference as a Point on Surface
	Onpoint Hole with Primary Reference as Datum Point
	Hole with Primary Reference as Sketch
	Onpoint Hole with Primary Reference as Datum Point with Orientation References

	Miscellaneous Information
	Hole Parameter Files
	Hole Diameter
	Order of Element Specification
	Hole-specific Functions

	Element Trees: Shell
	Introduction to Shell Feature
	Feature Element Tree for the Shell Feature
	Creating a Shell Feature
	Redefining a Shell Feature
	Accessing a Shell Feature

	Element Trees: Patterns
	Introduction
	The Element Tree for Pattern Creation
	Reference Patterns
	Dimension Patterns
	Table Patterns
	Fill Patterns
	Direction Patterns
	Axis Patterns
	Curve Patterns
	Point Patterns
	Selecting References for Pattern
	Attachment Options for Pattern
	Pattern Features
	NC Sequence Pattern
	Geometry Pattern Recognition

	Obtaining the Element Tree for a Pattern
	Visiting and Creating a Pattern

	Element Trees: Sections
	Overview
	Creating Section Models
	To Create and Save a Section Model
	Allocating a Two-Dimensional Section
	Setting the Mode of a Section
	Copying the Current Section
	Section Constraints
	Solving and Regenerating a Section
	Automatic Section Dimensioning
	Adding Section Entities
	Accessing Selection Reference of the Entity
	Construction Entities
	Modifying Entities
	Adding Section Dimensions
	Example 1: Creating Spline Point Dimensions in Sections
	Error Reporting
	Retrieving and Saving a Section
	Example 1: Creating a Section Model

	Element Trees: Sketched Features
	Overview
	Element Tree for Sketched Features

	Creating Features Containing Sections
	To Create Sketched Features Element Trees

	Creating Features with 2D Sections
	Verifying Section Shapes
	Creating Features with 3D Sections
	3D Section Location in the Owning Model

	Reference Entities and Use Edge
	Creating Geometry by Offsetting

	Reusing Existing Sketches
	Example 1: Creating an Extruded Protrusion Base Feature
	Example 2: Creating a Sketched Datum Curve

	Element Trees: Extrude and Revolve
	The Element Tree for Extruded Features
	Examples: Creating Extruded Features
	Conventional Approach
	Example 1: Creating an Extruded Feature
	Example 2: To Create an Extruded Cut with Two-sided Thru-all Depth
	Example 3: To Create an Extruded Thin Cut
	Example 4: To Create an Extruded Datum Surface Feature
	Example 5: To Create a Surface Trim Extruded Feature

	Direct Creation Approach

	The Element Tree for Revolved Features
	Examples: Creating Revolved Features
	Example 6: To Create a Revolved Protrusion
	Example 7: To Create a Revolved Thin Cut
	Example 8: To Create a Revolved Surface

	The Element Tree for First Features
	Example 9: Creating the First Extruded Protrusion Feature by Conventional Approach
	Example 10: Creating the First Thin Revolve Protrusion Feature by Conventional Approach

	Element Trees: Ribs
	The Element Tree for Rib Features

	Element Trees: Sweep
	Sweeps in Creo Parametric TOOLKIT
	Sweep Feature
	Element Tree for PRO_E_SWEEP_FRAME_COMP

	Creating a Sweep Feature
	To Create a Sweep Feature
	Example 1: Creating a Sweep Feature

	Simple Sweep Feature
	Creating a Simple Sweep Feature
	To Create a Simple Sweep Feature
	Example 1: Creating a Simple Sweep First Feature Protrusion
	Example 2: Creating a Simple Sweep Protrusion Feature by Conventional Approach

	Element Trees: Solid Body
	Introduction
	The Element Tree for Body Options
	The Element Tree for Body Copy Feature
	The Element Tree for Body Split Feature
	The Element Tree for Body Remove Feature
	The Element Tree for Boolean Body Operations

	Element Trees: Creo Flexible Modeling Features
	Move and Move-Copy Features
	Introduction
	The Element Tree for Move and Move-Copy
	Moved Geometry
	Dimension Elements

	3D Transformation Set Feature
	Introduction
	The Element Tree for 3D Transformation Sets
	Functions for the PRO_E_D3ELEM_MOVE_VALUE element

	Attachment Geometry Feature
	Introduction
	The Element Tree for Attachment Geometry Options
	Default Method for the Pull Option

	Offset Geometry Feature
	Introduction
	The Element Tree for Offset Geometry

	Modify Analytic Surface Feature
	Introduction
	The Element Tree for Modify Analytic Surface

	Tangency Propagation
	Introduction
	The Element Tree for Tangency Propagation
	Setting Conditions for Tangency Propagation

	Mirror Feature
	Introduction
	The Element Tree for Mirror

	Substitute Feature
	Introduction
	The Element Tree for Substitute

	Planar Symmetry Recognition Feature
	Introduction
	The Element Tree for Planar Symmetry Recognition Feature

	Attach Feature
	Introduction
	The Element Tree for Attach Feature

	Example 1: Creating a Flexible Model Feature

	Element Trees: Bushing Load
	Introduction
	The Feature Element Tree for Bushing Loads

	Element Trees: Cosmetic Thread
	Introduction
	The Element Tree for Cosmetic Thread

	Element Trees: ECAD Area Feature
	Introduction to ECAD Area Feature
	Feature Element Tree for the ECAD Area

	Assembly: Basic Assembly Access
	Structure of Assemblies and Assembly Objects
	Visiting Assembly Components
	Properties Related to Component Purpose
	Component Placement
	Simplified Representations
	Modifying Component Properties
	Example 1: Listing the Members of an Assembly

	Locations of Assembly Components
	Example 2: Finding the Position of a Component

	Assembling Components
	Redefining and Rerouting Components
	Deleting Components
	Flexible Components
	Embedded Components and Inseparable Assemblies

	Exploded Assemblies
	Exploded State Objects
	Visiting Exploded States
	Accessing Exploded States
	Manipulating Exploded States

	Merge and Cutout
	Automatic Interchange

	Assembly: Top-down Design
	Overview
	Defining Design Intent
	Defining Preliminary Product Structure
	Introducing Skeleton Models
	Communicating Design Intent Throughout the Assembly Structure
	Continued Population of the Assembly
	Managing Part Interdependencies

	Skeleton Model Functions
	Assembly Component Functions
	External Reference Control Functions
	Feature and CopyGeom Feature Functions
	External Reference Data Gathering

	Assembly: Assembling Components
	Assembling Components by Functions
	Assembling a Component Parametrically
	Example 1: Component Constraints
	Example 2: Assembling Components

	Redefining Components Interactively
	Assembling Components by Element Tree
	The Element Tree for an Assembly Component
	Model
	Attributes
	Initial Position
	Constraint Sets and Mechanism Connections
	Placement Constraints
	Component Movement in Assembly
	Placement via Interface

	Assembling Components Using Intent Datums
	Example 3: Assembling Components Using Intent Datums

	Assembly: Kinematic Dragging and Creating Snapshots
	Connecting to a Kinematic Drag Session
	Performing Kinematic Drag
	Creating and Modifying Snapshots
	Snapshot Constraints
	Snapshot Transforms
	Snapshots in Drawing Views

	Assembly: Simplified Representations
	Overview
	Simplified Representations in Session
	Retrieving Simplified Representations
	Retrieving and Expanding LightWeight Graphics Simplified Representations
	Retrieving User-Defined Simplified Representations
	Creating and Deleting Simplified Representations
	Example 1: Creating a Simplified Representation

	Extracting Information About Simplified Representations
	Example 2: Visiting the Items in a Simplified Representation

	Modifying Simplified Representations
	Adding Items to and Deleting Items from a Simplified Representation
	To Add Items
	To Remove Items

	Gathering Components by Rule
	Gathering by Model Name
	Gathering by Parameters
	Gathering by Zone
	Gathering by Distance from a Point
	Gathering by Size
	Gathering by Simplified Representation

	Assembly: Data Sharing Features
	Copy Geometry, Publish Geometry, and Shrinkwrap Features
	Feature Element Tree for the Copy Geometry, Publish Geometry, and Shrinkwrap Features
	Element Details of the Subtree PRO_E_CG_LOCATION
	Element Details of PRO_E_DSF_PROPAGATE_ANNOTS
	Shrinkwrap Features Created from Copy Geometry References
	Saved Queries for Copy Geometry and Publish Geometry Features
	Retrieving a copy of the annotation item

	General Merge (Merge, Cutout and Inheritance Feature)
	Feature Element Tree

	Inheritance Feature and Flexible Component Variant Items
	Variant Feature Model
	Accessing Properties of Variant Features
	Read Functions Supporting Inheritance Features
	Write and Modification Functions Supporting Inheritance Features

	Variant Model Items
	Variant Parameters
	Variant References

	Drawings
	Creating Drawings from Templates
	Example 1: Drawing Creation from a Template

	Diagnosing Drawing Creation Errors
	Drawing Setup
	Context in Drawing Mode
	Access Drawing Location in Grid
	Drawing Tree
	Example 2: Performing Operations on a Drawing Tree

	Merge Drawings
	Drawing Sheets
	Example 3: Listing Drawing Sheets
	Example 4: Creating a Copy of the Current Drawing Sheet

	Drawing Format Files
	Drawing Views and Models
	Listing Drawing Views
	Example 5: Listing the Views in a Drawing

	Modifying Views
	Creating Views
	Example 6: Creating General and Projected Drawing Views

	Background Views
	Detailed Views
	Auxiliary Views
	Revolved Views
	Draft Views
	View Orientation
	Visible Areas of Views
	Sections of a View
	View States
	Example 7: Creating Drawing Views and Accessing their Properties
	Drawing Models
	Example 8: Replace Drawing Model Solid with a Solid

	Detail Items
	Listing Detail Items
	Displaying Detail Items
	Creating, Modifying and Reading Detail Items
	Draft Entity Data
	Example 9: Create a Draft Line with Predefined Color

	Accessing OLE Objects
	Detail Note Text Data
	Detail Note Line Data
	Detail Attachments and Leaders
	Detail Note Data
	Example 10: Create Drawing Note at Specified Location with Leader to Surface and Surface Name

	Read-Only Notes
	Parameterized Note Text
	Cross-referencing Gtols and Drawing Annotations
	Cross-referencing 3D Notes and Drawing Annotations
	Symbol Definition Attachments
	Symbol Definition Data
	Creating a Symbol Definition
	Example 11: Create Symbol Definition

	Retrieving a Symbol Definition from Disk
	Symbol Instance Variable Text
	Symbol Instance Data
	Cross-referencing Weld Symbols and Drawing Annotations
	Example 12: Create Free Instance of Symbol Definition

	Detail Group Data
	Example 13: Create New Group of Items

	Drawing Symbol Groups
	Identifying Symbol Groups in an Instance
	Identifying Symbol Groups in a Definition
	Manipulating Symbol Groups

	Drawing Edges
	Drawing Tables
	Selecting Drawing Tables and Cells
	Creating Drawing Tables
	Reading Drawing Tables
	Modifying Drawing Tables
	Notification Functions

	Example 14: Creation of Table Listing Datum Points
	Drawing Table Segments
	Repeat Regions

	Creating BOM Balloons
	Drawing Dimensions
	Drawing Dimension Attachments and Dimension Creation
	Ordinate Dimensions
	Example 15: Command Creation of Datum Point Table

	Other Drawing Dimension Properties

	Production Applications: Sheetmetal
	Geometry Analysis
	Bend Tables and Dimensions
	Bend Allowance Parameters
	Update Bend Allowance from Assigned Material
	Bend Allowance Type
	Bend Allowance Factor Value
	Bend Allowance Table Name

	Unattached Planar Wall Feature
	Unattached Planar Wall based on the Fill Tool
	Feature Element Tree for the Attached Flat Wall Feature
	The Element Subtree for PRO_E_SMT_MTR_CUTS
	The Element Subtree for Length Calculation

	Creating a Flat Wall Feature
	Redefining a Flat Wall Feature
	Accessing a Flat Wall Feature
	Example 1: Creation of a Rectangular Flat Wall using a preselected edge

	Flange Wall Feature
	Feature Element Tree for the Flange Wall Feature
	The Element Subtree for PRO_E_SMT_FLANGE_DEPTH
	The Element Subtree for PRO_E_SMT_CORNER_RELIEF
	The Element Subtree for PRO_E_SMT_MTR_CUTS
	The Element Subtree for PRO_E_SMT_CORNERS_ARR
	Relation Value Types

	Creating a Flange Wall Feature
	Redefining a Flange Wall Feature
	Accessing a Flange Wall Feature
	Example 2: Creation of Flange Wall feature using Creo Parametric TOOLKIT
	Sheet metal Wall Features
	Sheet metal Cut Features

	Extend Wall Feature
	Feature Element Tree for the Extend Wall Feature
	The Element Subtree for PRO_E_SMT_EXTEND_WALL_EXTENSIONS_CMP

	Creating a Extend Wall Feature
	Redefining a Extend Wall Feature
	Accessing a Extend Wall Feature

	Split Area Feature
	Feature Element Tree for the Split Area Feature
	Creating a Split Area Feature
	Redefining a Split Area Feature
	Accessing a Split Area Feature

	Punch and Die Form Features
	Feature Element Tree for the Punch and Die Form Features
	Creating a Punch or Die Form Feature
	Redefining a Punch or Die Form Feature
	Accessing a Punch or Die Form Feature

	Quilt Form Feature
	Feature Element Tree for the Quilt Form Feature
	Creating a Quilt Form Feature
	Redefining a Quilt Form Feature
	Accessing a Quilt Form Feature

	Flatten Form Feature
	Feature Element Tree for Flatten Form Feature
	Creating a Flatten Form Feature
	Redefining a Flatten Form Feature
	Accessing a Flatten Form Feature

	Convert Features
	Shell Feature
	Driving Surface Feature

	Rip Features
	Sketched Rip Feature
	Feature Element Tree for Sketched Rip Feature

	Surface Rip Feature
	Feature Element Tree for Surface Rip Feature

	Edge Rip Feature
	Feature Element Tree for Edge Rip Feature
	The Element Subtree for PRO_E_SMT_EDGE_RIP

	Rip Connect Feature
	Creating a Rip Feature
	Redefining a Rip Feature
	Accessing a Rip Feature

	Corner Relief Feature
	Corner Relief Options

	Editing Corner Relief Feature
	Editing Corner Seams
	Bend Feature
	Bend Line Elements
	Bend Relief Elements

	Editing Bend Reliefs
	Edge Bend Feature
	Unbend Feature
	Flat Pattern Feature
	Bend Back Feature
	Sketch Form Feature
	Sub Elements of PRO_E_SMT_FILLET_INTERSECT and PRO_E_SMT_FILLET_QUILT

	Join Feature
	Twist Wall Feature
	Merge Wall Feature
	Recognizing Sheet Metal Design Objects
	Values for PRO_E_SMT_RECOGNITION_SEL_TYPE

	Production Applications: Manufacturing
	Manufacturing Models
	Creating a Manufacturing Model
	Analyzing a Manufacturing Model
	Traversing Manufacturing Components
	Identifying the Storage Solid
	Example 1: Identifying Workcell Features of a NC Model

	Visiting Manufacturing Tools

	Creating Manufacturing Objects
	Creating Tools
	Example 2: Creating a Tool from a Solid Model
	Example 3: Creating a Parameter-Driven Tool
	Example 4: Creating a Milling Workcell

	Manufacturing Parameters
	Example 4: Creating a Parameter Tree

	Using External Functions to Define Parameters in the Manufacturing Step Table
	Creating Manufacturing Features
	Creating Fixtures
	To Create an Element Tree for a Fixture Setup Feature

	Creating Workcells
	Example 5: Creating a 2-Axis Lathe Workcell

	Creating Operations
	Example 6: Creating an Operation

	Creating NC Sequences
	Milling-Specific Functions
	Example 7: Adding Surfaces

	Holemaking-Specific Functions
	Creating Material Removal Volumes
	Example 8: Creating a Conventional Milling Sequence

	Analyzing Manufacturing Features

	Production Applications: Customized Tool Database
	Overview
	Setting up the Database and Custom Search Parameters
	Registering the External Database
	Querying the External Database
	Returning the Search Results

	Production Applications: Creo NC Sequences, Operations and Work Centers
	Overview
	Element Trees: Roughing Step
	The Roughing Feature Element Tree:

	Element Trees: Reroughing Step
	The Reroughing Feature Element Tree:

	Element Trees: Finishing Step
	The Finishing Feature Element Tree:

	Element Trees: Corner Finishing Step
	The Corner Finishing Element Tree:

	Element Trees: 3–Axis Trajectory Milling Step
	Manufacturing 2–Axis Curve Trajectory Milling Step
	Element Trees: Manual Cycle Step
	The Manual Cycle Step Feature Element Tree:

	Element Trees: Thread Milling
	The Thread Milling Feature Element Tree:
	Manufacturing Thread Milling Holeset

	Element Trees: Turning Step
	The Turning Element Tree:

	Element Trees: Thread Turning Step
	The Thread Turning Element Tree:

	Element Trees: Creo NC Operation Definition
	The Creo NC Operation Definition Element Tree:

	Element Trees: Workcell Definition
	The Manufacturing WEDM Workcell Element Tree

	Element Trees: Manufacturing Mill Workcell
	The Mill Workcell Feature Element Tree:
	Example 1: Creating or Redefining a Tool from a File

	Element Trees: Manufacturing Mill/Turn Workcell
	The Mill/Turn Workcell Element Tree:
	PRO_E_MFG_MILLTURN_HEADS Element

	Element Trees: Manufacturing Lathe Workcell
	The Lathe Workcell Element Tree:

	Element Trees: Manufacturing CMM Workcell
	The CMM Workcell Element Tree:

	Element Trees: Profile Milling Step
	The Profile Milling Element Tree:
	Manufacturing Surface Side

	Element Trees: Face Milling Step
	The Face Milling Element Tree:
	Element Trees: Machining Surfaces
	The Machining Surface Element Tree:

	Element Trees: Fixture Definition
	The Manufacturing Fixture Setup Element Tree:

	Manufacturing Holemaking Step
	Manufacturing Holemaking Holeset
	Element tree for PRO_E_HOLESET_START
	Element tree for PRO_E_HOLESET_END
	Element tree for PRO_E_HOLESET_DEPTH
	Element Tree for PRO_E_HOLESET_CUSTOM_CYCLE_PLATES
	Element tree for PRO_E_HOLESET_SELECTION_RULES

	Shut off Surface Feature Element Tree
	Element Trees: Manufacturing Round and Chamfer
	Manufacturing Round And Chamfer Element Tree

	Element Trees: Engraving Step
	The Engraving Step Element Tree

	Element Trees: Manufacturing Cutline Milling Sequence
	The Cutline Milling Element Tree
	Element Tree for PRO_E_CUTLINE_CUT_DEFINITION
	Element Tree for PRO_E_CUTLINE_REF_ARR
	Element Tree for PRO_E_CUTLINE_SYNC_ARR

	Element Tree for PRO_E_MFG_AXIS_DEF_COMP

	Element Trees: Manufacturing Drill Group Feature
	The Drill Group Feature Element Tree

	Manufacturing Volume Milling Feature
	The Volume Milling Feature Element Tree

	Element Trees: Skirt Feature
	Skirt Surface Extension Feature Element Tree
	Skirt Fill Feature

	Sub-Element Trees: Creo NC Steps
	Retract Elements
	Tool Reference
	Manufacturing Parameters
	Surface Collection with Mill Window
	PRO_E_MFG_CMP_CLOSED_LOOPS Element

	Sequence Prerequisites
	Element Trees: Tool Setup
	The Tool Setup Feature Element Tree:

	Element Trees: CMM Probe Setup
	The CMM probe Setup Element Tree:

	Checking Surfaces
	Approach and Exit
	Spindle Types
	Tool Motions
	Approach Along Tool Axis
	Exit Along Tool Axis
	Tool Motion — Follow Curve
	Tool Motion — Go To Point
	Tool Motion — Go Delta
	Tool Motion — Go Home
	Tool Motion — Lead In
	Tool Motion — Go Retract
	Tool Motion — Normal Approach
	Tool Motion — Normal Exit
	Tool Motion — Lead Out
	Tool Motion — Helical Approach
	Tool Motion — Helical Exit
	Tool Motion — Go To Surface
	Tool Motion — Go To Axis
	Tool Motion — Tangent Approach
	Tool Motion — Tangent Exit
	Tool Motion — Area and Groove Turning
	Specifying the Stock Allowance
	Tool Motion — Profile Turning
	Tool Motion — Curve Trajectory
	Element Tree for PRO_E_MFG_AXIS_DEF_COMP
	Tool Motion — Surface Trajectory
	Tool Motion — Ramp Approach
	Tool Motion — Ramp Exit
	Tool Motion — Connect
	Tool Motion — Profile Mill Cut
	Tool Motion — Auto Cut
	Tool Motion — CL Command
	Tool Motion — Follow Cut
	Tool Motion — Plunge
	Tool Motion — Chamfer Milling
	Tool Motion — Cutline Milling
	Tool Motion — Face Milling
	Tool Motion — Groove Milling
	Tool Motion — Round Milling
	Tool Motion — Thread Milling
	Tool Motion — Volume Mill Cut

	Production Applications: Process Planning
	Process Step Objects
	Visiting Process Steps
	Process Step Access
	Creating Process Steps
	Feature Elements
	Types of Process Step
	Optional Elements
	General Process Steps
	Reposition Process Steps

	Production Applications: NC Process Manager
	Overview
	Accessing the Process Manager
	Accessing the Process Manager when the Dialog Box is not Active
	Accessing the Process Manager User Interface

	Manufacturing Process Items
	Steps, Operations and Workcells
	Step Models
	Determining the Subtype of a Process Item
	Accessing Details of Process Items
	Visiting Steps, Operations and Workcells
	Creating Steps, Operations, and Workcells
	Accessing the Properties of Manufacturing Process Items
	Modifying Process Items

	Parameters
	Manufacturing Parameters
	Annotation Element Parameters
	Step Parameters and Relations
	Template Parameters
	Special Parameters
	Global Parameters and Relations

	Manufacturing Features
	Import and Export of Process Table Contents
	Notification
	Example 1: To Add Menu Button to The Manufacturing Process Table
	Example 2: To Highlight the Pre-requisites for the Selected Step in The Manufacturing Process Table
	Example 3: To Update Feed and Spindle Speed
	Example 4: To Add a Submenu to the Manufacturing Process Table

	Production Applications: Cabling
	Cabling
	Creating a Harness
	Finding a Harness
	Finding the Cables in a Harness
	Harness Parameters
	Importing Neutral Wire List Files
	Managing Spools
	Spool Parameters
	Finding Harness Connectors
	Connectors Parameters
	Connector Parameters File

	Managing Cables and Bundles
	Cable Parameters
	Cable Parameters File

	Cable Identifiers and Types
	Cable Cosmetic Features
	Cable Connectivity
	Cable Routing Locations
	Cable Geometry
	Measuring Harness Clearance
	Cable Routing
	Deleting Cable Sections

	Production Applications: Piping
	Piping Terminology
	Linestock Management Functions
	Linestocks
	Linestock Parameters

	Pipeline Features
	Pipeline Connectivity Analysis
	Networks
	Extensions
	Members
	Terminators
	Junctions
	Series
	Objects
	Segments
	Connecting Pipeline Segments

	Production Applications: Welding
	Read Access to Weld Features
	Customizing Weld Drawing Symbols

	Creo Simulate: Items
	Entering the Creo Simulate Environment
	Entering the Creo Simulate Environment with Failed Features
	Selection of Creo Simulate Items
	Example 1: Interactively Selecting and Deleting a Creo Simulate Item

	Accessing Creo Simulate Items
	Creo Simulate Object References
	Geometric References
	Y-directions
	Functions
	Creo Simulate Expressions
	Accessing the Properties used for Loads and Constraints
	Creo Simulate Loads
	Accessing Creo Simulate Loads
	Modifying the Creo Simulate Loads
	Example 2: Modifying Magnitude of Force or Pressure Load

	Force and Moment Loads
	Pressure, Gravity, and Bearing Loads
	Centrifugal Loads
	Temperature Loads
	Creo Simulate Temperature Loads
	Structural Temperature Loads
	Global Temperature Loads
	MEC/T Temperature Loads
	External Temperature Loads

	Heat Loads

	Creo Simulate Load Sets
	Creo Simulate Constraints
	Accessing the Creo Simulate Constraints
	Modifying the Creo Simulate Constraints
	Convection Constraints
	Radiation Constraints
	Displacement Constraints
	Example 3: Copying and Assigning a Displacement Constraint to a New Reference

	Symmetry Constraints

	Creo Simulate Constraint Sets
	Creo Simulate Matrix Functions
	Creo Simulate Vector Functions
	Creo Simulate Beams
	Creo Simulate Beams: Sections, Sketched Sections, and General Sections
	Creo Simulate Beam Sections
	Sketched Beam Section
	General Beam Section
	Beam Orientations
	Beam Releases
	Creo Simulate Spring Items
	Creo Simulate Spring Property Items
	Creo Simulate Mass Items
	Creo Simulate Mass Properties
	Creo Simulate Material Assignment
	Accessing ProMechmatlassign
	Material Assignment Data

	Material Orientations
	Example 4: Creating Material Orientations Referencing a Selected Coordinate System

	Creo Simulate Shells
	Shell Properties
	Shell Pairs
	Interfaces
	Bonded Interface
	Contact Interface
	Thermal Resistance Interface
	Free Interface

	Gaps
	Mesh Control
	Accessing AutoGEM Edge Distribution and Minimum Edge Mesh Control Data
	Accessing the AutoGEM Edge Length by Curvature Mesh Control Data
	Accessing the AutoGEM Maximum Element Size Mesh Control Data
	Accessing Edge Distribution Mesh Control Data
	Accessing AutoGEM Isolation Data
	Accessing the Displacement Coordinate System Data
	Accessing the Mesh Control Element Size Data
	Accessing the Mesh Control Shell Coordinate System Data
	Accessing the Mesh Control Hard Point Data
	Accessing the Mesh Control ID Offset Data
	Accessing the Mesh Control Numbering Data
	Accessing the Suppressed Mesh Control Data

	Welds
	Creo Simulate Features
	Validating New and Modified Simulation Objects

	Creo Simulate: Geometry
	Introduction
	Obtaining Creo Simulate Geometry from Creo Parametric TOOLKIT
	Accessing the ProMechModel
	Accessing the ProMechSolid
	Accessing Creo Simulate ProMechSurface
	Geometry Evaluation of ProMechSurface
	Accessing ProMechContour
	Accessing ProMechEdge
	Geometry Evaluation of ProMechEdge
	Accessing ProMechVertex
	Accessing ProMechPoint
	Accessing ProMechCompositeCurve
	Accessing ProMechCurve
	Geometry Evaluation of ProMechCurves

	To Create a Surface Region Feature

	Creo Simulate: Finite Element Modeling (FEM)
	Overview
	Exporting an FEA Mesh

	Mechanism Design: Mechanism Features
	Mechanism Spring Feature
	Feature Element Tree for the Mechanism Spring Feature

	Mechanism Damper Feature
	Feature Element Tree for the Mechanism Damper Feature

	Mechanism Belt Feature
	Feature Element Tree for the Mechanism Belt Feature

	Mechanism 3D Contact Feature
	Feature Element Tree for the Mechanism 3D Contact Feature

	Mechanism Motor Features
	Feature Element Tree for the Mechanism Motor Feature

	Event-driven Programming: Notifications
	Using Notify
	Notification Types
	File Management Events
	Pre-file Management Events
	Pre-file Management Events
	Pre-All File Management Events

	Post-file Management Events
	Post-file Management Events

	Post All File Management Events
	Post All File Management Events

	File Management Failure Events
	File Management Failed Events

	Model and Feature Modification Events
	Notes on Regeneration Events
	Model Modification Events

	Context Change Events
	Session Context Events

	Graphics Events
	Graphics Events

	NC Output Events
	NC Output Events

	CL Command Events
	CL Command Events

	Mold Layout Events
	Mold Layout UI Events

	Weld Events
	Weld Events

	Event-driven Programming: External Objects
	Summary of External Objects
	External Objects and Object Classes
	Creating External Object Classes
	Creating External Objects
	External Object Owners
	Recycling External Object Identifiers
	External Object Parameters
	External Types and Identifiers for External Objects
	Visiting External Objects

	External Object Data
	Display Data for External Objects
	Allocating Display Data
	Creating the External Object Entity
	Transformation of the External Object
	External Object Display Properties
	External Object Color
	Line Styles for External Objects
	External Object Scale

	Selection Data for External Objects
	Selecting the Node from the External Application Tree
	Manipulating External Object Data

	External Object References
	Creating External Object References
	Visiting External Object References

	Callbacks for External Objects
	Warning Mechanism for External Objects
	Example 1: Creating an External Object

	Event-driven Programming: Toolkit-Based Analysis
	Overview
	Interactive Creation of Toolkit-Based Analysis
	Interactive Creation of Toolkit-Based Analysis Feature
	Storage of Toolkit-Based Analysis Feature in Creo Parametric
	Registering a Toolkit-Based Analysis with Creo Parametric
	Analysis Callbacks
	Creo Parametric TOOLKIT Analysis Information
	Results Data
	ProAnalysisSrfData Structure
	Example 1: Offset Coordinate System Datum

	Analysis Attributes
	Visiting Saved Toolkit-Based Analyses
	Visiting Toolkit-Based Analyses Features
	Using the Model without Creo Parametric TOOLKIT

	Event-driven Programming: Foreign Datum Curves
	Foreign Datum Curves
	Providing an Evaluation Function
	Curve Continuity

	Binding the Evaluation Function to a Class

	Task Based Application Libraries
	ProArgument and Argument Management
	Creating Creo Parametric TOOLKIT DLL Task Libraries
	Memory Management in Task Library Functions
	Example 1: An Exported Toolkit Task Function

	Launching Creo Parametric TOOLKIT DLL Functions
	Custom Creo Parametric TOOLKIT DLL Tasks for Creo Distributed Batch
	Coding a Custom DLL Task Function
	Registry File for Custom DLL Tasks
	TTD File Format for Custom DLL Tasks
	Example 2: Chained TTD Task to convert a Creo Parametric model into a simplified representation in the VRML format

	Launching Synchronous J-Link Applications

	Technical Summary of Changes
	Technical Summary of Changes for Creo 8.0.0.0
	Critical Technical Changes
	Secure Ports in Creo Parametric TOOLKIT
	Separate Download Option for ICU DLLs
	Compiling and Linking on Windows
	Updates to Error Types

	New Functions
	Annotations
	Assemblies and Components
	Cabling
	Cross Section
	Data Exchange
	Drawing
	Features
	Fundamentals
	Graphics
	Models
	Production Applications: Welding
	Relations
	Simplified Representations
	Solids and Parts
	Surface Properties
	Symbol Instance
	User Interface: Dashboards
	User Interface: Dialogs

	Superseded Functions
	Fundamentals
	Relations

	Miscellaneous Technical Changes
	Ability to Create Multiple Holes using Sketch Points as Hole Placement
	Event Callback function ProFeatureNeedsRegenGet is Deprecated
	Support for Miter Cuts in Flat Walls
	Support for Standard Tapered Holes
	Creating a Draft Feature Using Round Surfaces
	Support for Tape over Multiple Branches
	Creating a Datum Plane Using a Datum Point or a Vertex
	Elements for Bend Relief Length Added
	ProReferenceTypeGet() returns ProType for Specific Dimension Attachment Reference
	Support for Datum Axis Types that are Parallel and Normal to a Linear Entity
	Support for Server Registration Error Messages
	Support for Redefining a Combined State with Most Recently Used Reference States

	Full Version of Creo® Parametric TOOLKIT Release Notes

	Technical Summary of Changes for Creo 8.0.1.0
	New Functions
	Annotations: Features
	Drawings
	Features

	Full Version of Creo® Parametric TOOLKIT Release Notes

	Technical Summary of Changes for Creo 8.0.2.0
	New Functions
	Assembly
	Cross-Sections

	Full Version of Creo® Parametric TOOLKIT Release Notes

	Unicode Encoding
	Updating Older Applications
	Migrating to Creo Object TOOLKIT C++
	Migrating to the Multibody Environment
	Creo Parametric TOOLKIT Registry File
	Creo Parametric TOOLKIT Library Types
	Creo Parametric TOOLKIT Sample Applications
	Advanced Licensing Options
	Pro/DEVELOP to Creo Parametric TOOLKIT Function Mapping
	Geometry Traversal
	Geometry Representations
	Debugging Creo Parametric TOOLKIT Applications
	Glossary
	Index

