
PTC Creo® Parametric 3.0
J-Link User’s Guide

Datecode M090

Copyright © 2016 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
"PTC") are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes. Information described herein is
furnished for general information only, is subject to change without notice, and should not be construed as a
warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the
piracy of PTC software products, and we pursue (both civilly and criminally) those who do so using all legal
means available, including public and private surveillance resources. As part of these efforts, PTC uses data
monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our software.
This data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection and
transmission of such data (including to the United States), cease using the illegal version, and contact PTC to
obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Contents

About This Guide .. 11

Setting Up J-Link...15
Setting Up Your Machine ...16
Setting Up a Synchronous J-Link Program..16

Java Programming Considerations ...23
Use of the JDK in J-Link Applications ...24
Java Overview..24
Java Keywords...26
Java Data Types...27
Event Handling ...27
Comments ...28

Overview of J-Link...31
Class Types ...32
Creating Applications ..43

J-Link Programming Considerations ...51
J-Link Thread Restrictions...52
Optional Arguments to J-Link Methods ...52
Parent-Child Relationships Between J-Link Objects ..53
Run-Time Type Identification in J-Link ..54

The J-Link Online Browser ...55
Online Documentation J-Link APIWizard ..56

Session Objects ..65
Overview of Session Objects ...66
Directories ...66
Accessing the PTC Creo Parametric Interface ..69

Selection ..79
Interactive Selection ...80
Accessing Selection Data..81
Programmatic Selection ..83
Selection Buffer ..84

Ribbon Tabs, Groups, and Menu Items ...87
Creating Ribbon Tabs, Groups, and Menu Items ...88
About the Ribbon Definition File ...90
Localizing the Ribbon User Interface Created by the J-Link Applications93
Support for Legacy J-Link Applications ...94
Migration of Legacy J-Link Applications ..95

5

Menus, Commands, and Pop-up Menus ...97
Introduction ..98
Menu Bar Definitions...98
Menus Buttons and Menus ..98
Designating Commands .. 102
Pop-up Menus.. 104

Models ... 109
Overview of Model Objects.. 110
Getting a Model Object.. 110
Model Descriptors... 110
Retrieving Models... 112
Model Information... 112
Model Operations ... 116
Running PTC Creo ModelCHECK.. 117

Drawings .. 121
Overview of Drawings in J-Link .. 122
Creating Drawings from Templates... 122
Obtaining Drawing Models .. 124
Drawing Information.. 125
Drawing Operations .. 125
Drawing Sheets .. 127
Drawing Views ... 130
Drawing Dimensions ... 135
Drawing Tables... 142
Detail Items.. 149
Detail Entities ... 151
OLE Objects... 154
Detail Notes ... 154
Detail Groups ... 158
Detail Symbols ... 160
Detail Attachments.. 172

Solid... 175
Getting a Solid Object ... 176
Solid Information .. 176
Solid Operations... 177
Solid Units.. 179
Mass Properties ... 185
Annotations.. 186
Cross Sections ... 187
Materials .. 187

Windows and Views .. 195
Windows.. 196
Embedded Browser .. 198
Views... 199
Coordinate Systems and Transformations .. 200

6 PTC Creo® Parametric 3.0 J-Link User’s Guide

ModelItem .. 207
Solid Geometry Traversal .. 208
Getting ModelItem Objects .. 208
ModelItem Information .. 209
Duplicating ModelItems... 210
Layer Objects ... 210

Features... 213
Access to Features ... 214
Feature Information .. 214
Feature Operations... 215
Feature Groups and Patterns... 218
User Defined Features .. 220
Creating Features from UDFs .. 222

Datum Features .. 231
Datum Plane Features .. 232
Datum Axis Features .. 234
General Datum Point Features .. 235
Datum Coordinate System Features... 237

Geometry Evaluation ... 241
Geometry Traversal .. 242
Curves and Edges .. 243
Contours .. 246
Surfaces .. 247
Axes, Coordinate Systems, and Points ... 250
Interference.. 251

Dimensions and Parameters .. 255
Overview.. 256
The ParamValue Object .. 256
Parameter Objects.. 257
Dimension Objects.. 264

Relations .. 267
Accessing Relations ... 268
Accessing Post Regeneration Relations ... 268

Assemblies and Components... 271
Structure of Assemblies and Assembly Objects... 272
Assembling Components .. 277
Redefining and Rerouting Assembly Components... 281
Exploded Assemblies.. 282
Skeleton Models... 283

Family Tables.. 285
Working with Family Tables ... 286
Creating Family Table Instances .. 288
Creating Family Table Columns ... 289

Action Listeners .. 291

Contents 7

J-Link Action Listeners .. 292
Creating an ActionListener Implementation... 292
Action Sources ... 293
Types of Action Listeners .. 294
Cancelling an ActionListener Operation.. 299

Interface ... 301
Exporting Files and 2D Models .. 302
Exporting to PDF and U3D .. 310
Exporting 3D Geometry... 317
Shrinkwrap Export .. 321
Importing Files.. 328
Importing 3D Geometry ... 330
Plotting Files .. 333
Printing Files .. 334
Solid Operations... 342
Window Operations .. 343

Simplified Representations .. 345
Overview.. 346
Retrieving Simplified Representations .. 347
Creating and Deleting Simplified Representations ... 348
Extracting Information About Simplified Representations 348
Modifying Simplified Representations... 349
Simplified Representation Utilities .. 350

Asynchronous Mode.. 353
Overview.. 354
Simple Asynchronous Mode .. 355
Starting and Stopping PTC Creo Parametric ... 356
Connecting to a PTC Creo Parametric Process... 357
Full Asynchronous Mode... 359
Troubleshooting Asynchronous J-Link .. 361

Task Based Application Libraries .. 365
Managing Application Arguments... 366
Launching a PTC Creo Parametric TOOLKIT DLL... 367
Creating J-Link Task Libraries.. 370
Launching Tasks from J-Link Task Libraries .. 371

Graphics... 373
Overview.. 374
Getting Mouse Input.. 374
Displaying Graphics.. 375

External Data.. 379
External Data ... 380
Exceptions ... 383

PTC Windchill Connectivity APIs .. 385
Introduction .. 386

8 PTC Creo® Parametric 3.0 J-Link User’s Guide

Accessing a PTC Windchill Server from a PTC Creo Parametric Session.............. 386
Accessing Workspaces ... 389
Workflow to Register a Server.. 391
Aliased URL ... 392
Server Operations .. 393
Utility APIs ... 403

Appendix A.Summary of Technical Changes ... 405
Critical Technical Changes .. 406
New Functions ... 410
Miscellaneous Technical Changes ... 411

Appendix B.Sample Applications .. 413
Installing J-Link... 414
Sample Applications ... 414

Appendix C.Java Options and Debugging ... 421
Supported Java Virtual Machine Versions... 422
Overriding the Java command used by Synchronous J-Link................................. 422
Debugging a Synchronous Mode Application .. 422
CLASSPATH Variables.. 423

Appendix D.Geometry Traversal... 425
Example 1.. 426
Example 2.. 426
Example 3.. 427
Example 4.. 427
Example 5.. 428

Appendix E.Geometry Representations .. 429
Surface Parameterization.. 430
Edge and Curve Parameterization ... 439

Appendix F.J-Link Classes... 443
List of J-Link Classes .. 444

Index.. 473

Contents 9

About This Guide

This section contains information about the contents of this user’s guide and the
conventions used.

Purpose
This manual describes how to use J-Link, a Java language toolkit for PTC Creo
Parametric. J-Link makes possible the development of Java programs that access
the internal components of a PTC Creo Parametric session, to customize PTC
Creo Parametric models.

Note
J-Link is supported only with PTC Creo Parametric. It is not supported with
the other PTC Creo applications.

Audience
This manual is intended for experienced PTC Creo Parametric users who are
already familiar with Java or another object-oriented language.

Prerequisites
This manual assumes you have the following knowledge:
• PTC Creo Parametric
• The syntax and language structure of Java.

11

Documentation
The documentation for J-Link includes the following:
• J-Link User’s Guide
• An online browser that describes the syntax of the J-Link methods and

provides a link to the online version of this manual. The online version of the
documentation is updated more frequently than the printed version. If there are
any discrepancies, the online version is the correct one.

Conventions
The following table lists conventions and terms used throughout this book.
Convention Description
UPPERCASE PTC Creo Parametric-type menu name (for example,

PART).

Boldface Windows-type menu name or menu or dialog box
option (for example, View), or utility. Boldface
font is also used for keywords, J-Link methods,
names of dialog box buttons, and PTC Creo
Parametric commands.

Monospace (Courier) Code samples appear in courier font like
this. Java aspects (methods, classes, data types,
object names, and so on) also appear in Courier font.

Emphasis Important information appears in italics like this.
Italic font is also used for file names and uniform
resource locators (URLs).

Choose Highlight a menu option by placing the arrow cursor
on the option and pressing the left mouse button.

Select A synonym for “choose” as above, Select also
describes the actions of selecting elements on a
model and checking boxes.

Element An element describes redefinable characteristics of a
feature in a model.

Mode An environment in PTC Creo Parametric in which
you can perform a group of closely related functions
(Drawing, for example).

Model An assembly, part, drawing, format, notebook, case
study, sketch, and so on.

Option An item in a menu or an entry in a configuration file
or a setup file.

Solid A part or an assembly.
<creo_loadpoint> The location where the PTC Creo applications are

installed, for example, C:\Program Files\
PTC\Creo 1.0.

<creo_jlink_loadpoint> The location where the J-Link application is
installed, that is, <creo_loadpoint>\
<datecode>\Common Files\jlink.

12 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
• Important information that should not be overlooked appears in notes like

this.
• All references to mouse clicks assume use of a right-handed mouse.

Software Product Concerns and Documentation Comments
For resources and services to help you with PTC software products, see the PTC
Customer Service Guide. It includes instructions for using the World Wide Web or
fax transmissions for customer support.
In regard to documentation, PTC welcomes your suggestions and comments. You
can send feedback in the following ways:
• Send comments electronically to MCAD-documentation@ptc.com.
• Fill out and mail the PTC Documentation Survey in the customer service

guide.

About This Guide 13

1
Setting Up J-Link

Setting Up Your Machine..16
Setting Up a Synchronous J-Link Program ..16

This chapter describes how to set up your environment so you can run J-Link.

15

Setting Up Your Machine
See Java Options and Debugging on page 421 for more information about
supported Java Virtual Machines and how to setup PTC Creo Parametric.

Setting Up a Synchronous J-Link
Program
A synchronous J-Link application is started and managed by PTC Creo
Parametric. Control belongs to either PTC Creo Parametric or the application, but
not both at the same time.
An asynchronous application is started independent of PTC Creo Parametric with
the option to start or connect to PTC Creo Parametric processes. Refer to chapter
Asynchronous Mode on page 353 for details on setting up an asynchronous
application.
You can run synchronous J-Link programs as standalone applications or model-
specific programs. Most of the required settings for these two programs are
independent of the programs themselves. This enables you to convert an
application program to a model program, or vice versa.

Standalone Applications
You can start the J-Link application independently at any time, regardless of
which models are in session. A registry file contains key information regarding
the execution of the program.
Using application programs you can make additions to the PTC Creo Parametric
user interface, gather or change data associated with the models in session, or add
session-level ActionListener routines. See the chapter Action Listeners on
page 291 for more information on ActionListeners.

Registry File
A registry file contains PTC Creo Parametric-specific information about the
standalone application you want to load.
The registry file called protk.dat is a simple text file, where each line consists
of one predefined keyword followed by a value. The standard form of the
protk.dat file is as follows:
name java_demo
startup java
java_app_class MyJavaApp
java_app_start start
java_app_stop stop
allow_stop true
delay_start true

16 PTC Creo® Parametric 3.0 J-Link User’s Guide

text_dir <path to text directory used by
message and menu related commands>

end

The fields of the registry file are as follows:

• name—Assigns a unique name to this J-Link application. The name identifies
the application when there is more than one in the protk.dat file. The
maximum size of the name is 31 characters for the name, plus the end-of-
string character.

• startup—Specifies the method to be used by to communicate with the
application. For J-Link applications, set startup to java.

• java_app_class—Specifies the fully qualified package and name of a
Java class. This class contains the J-Link application’s start and stop methods
(described below).

• java_app_classpath—An optional field to specify the full path to the J-
Link application classes and archives (including the J-Link archive
pfc.jar). Refer to the section CLASSPATH Variables on page 423 section
for more information on the other available mechanisms to set the
CLASSPATH. This field has a character limit of 2047 wide characters
(wchar_t).

• java_app_start—Specifies the start method of your program. See the
section Start and Stop Methods on page 21 for more information.

• java_app_stop—Specifies the stop method of your program. See the
section Start and Stop Methods on page 21 for more information.

• allow_stop—Stops the application during the session if it is set to true. If
this field is missing or set to false, you cannot stop the application, regardless
of how it was started.

• delay_start—Enables you to choose when to start the J-Link application
if it is set to true. PTC Creo Parametric does not start the J-Link application
during startup. If this field is missing or is set to false, the J-Link application
starts automatically.

• text_dir—Specifies the location of the text directory that contains the
language-specific directories. The language-specific directories contain the
message files, menu files, resource files and UI bitmaps in the language
supported by the J-Link application. The files must be located under a
directory called text or text/<language>, if localized messages are

Setting Up J-Link 17

used in the application. This field has a character limit of 2047 wide characters
(wchar_t).

• end—Indicates the end of the description of the J-Link application. You can
define multiple J-Link applications in the registry files. All these applications
are started by PTC Creo Parametric.

Registering a J-Link Application
Registering a J-Link application means providing information about the files that
form the J-Link application to PTC Creo Parametric. To do this, create a small text
file, called the J-Link “registry file,” that PTC Creo Parametric will find and read.
PTC Creo Parametric searches for the registry file in the following order:

1. A file called creotk.dat, protk.dat or prodev.dat in the current
directory

2. A file named in a creotkdat, protkdat, prodevdat, or toolkit_
registry_file statement in the PTC Creo Parametric configuration file

Note
From Creo Parametric 1.0 onward, the file name prodev.dat has been
replaced with creotk.dat or protk.dat. The configuration file
option prodevdat can now be either creotkdat, or protkdat, or
toolkit_registry_file.

3. A file called creotk.dat, protk.dat, or prodev.dat in the directory
<creo_loadpoint>\<datecode>\Common Files\<machine
type>\text\<language>

4. A file called creotk.dat, protk.dat, or prodev.dat in the directory
<creo_loadpoint>\<datecode>\Common Files\text

In the last two options, the variables are as follows:

• <creo_loadpoint>—The PTC Creo Parametric loadpoint (not the J-Link
loadpoint)

• <machine type>—The machine-specific subdirectory such as i486_nt
• <language>—The language of PTC Creo Parametric with which the J-Link

application is used such as usascii (English), german, or japanese
If more than one registry file having the same filename exists in this search path,
J-Link stops searching after finding the first instance of the file and starts all the J-
Link applications specified in it. If more than one registry file having different

18 PTC Creo® Parametric 3.0 J-Link User’s Guide

filenames exists in this search path, PTC Creo Parametric stops searching after
finding one instance of each of them and starts all the J-Link applications
specified in them.
Option 1 is used normally during development, because the J-Link application is
seen only if you start PTC Creo Parametric from the specific directory that
contains creotk.dat, protk.dat, or protk.dev.
Option 2 or 4 is recommended when making an end-user installation, because it
makes sure that the registry file is found irrespective of thedirectory used to start
PTC Creo Parametric.
Option 3 enables you to have a different registry file for each platform, and for
each PTC Creo Parametric language. This is more commonly used for J-Link
applications that have a platform dependent setup.

Starting and Stopping a Standalone Application
If the delay_start field in the registry file is set to false, the J-Link
application starts automatically when you start PTC Creo Parametric. Otherwise
start the program by following these steps:

1. From the PTC Creo Parametric toolbar, select Utilities ▶▶ Auxiliary Applications.
2. Choose the name of the application.
3. Click Start.

• Start - activates start method
• Stop - activates stop method

If the allow_stop field in the registry file is set to true, you can click Stop in
the Auxiliary Applications dialog box to stop the application. Click Start to restart
it. If the allow_stop field is set to false, the program runs until the PTC Creo
Parametric session ends.

Setting Up a Model Program
A model program is a J-Link program specific to a particular solid model, that is
part or assembly. PTC Creo Parametric activates the start method for a program
when it loads the part into memory and activates the stop method when it erases
the part from memory.
Using model programs you can add programming logic to the interaction with a
solid model. You can create a dialog box to drive the regeneration of a part or
create model-specific utilities to generate reports or engineering information from
a model. As Java programs are platform independent, the same model program
runs on any Windows installation of PTC Creo Parametric.
To setupa a model program you need to:

Setting Up J-Link 19

• Associate and run a J-Link application with a model
• Create a JAR file for Model-Program Dependency

Associating and Running a J-Link Application with a Model
1. Load the solid model that you want to associate and run with the J-Link

application.
2. From the PART or ASSEMBLY menu, select Tools ▶▶ Program ▶▶ J-Link.
3. If the application is stored in a Java archive (JAR) file, click Add File in the

Model Programs dialog box and add the JAR file to the list of Java archive
files. If the application is stored in a .class file proceed to the next step.

4. Click Add and enter the following information in the Java Application
Properties dialog box:

• Application Name—A unique name for this J-Link application. The
maximum size of the name is 31 characters for the name, plus the end-of-
string character.

• Class Name—The Java class that contains the start and stop methods for
the J-Link application. This class must reside in a JAR file you have added
to the list or in a directory that is part of your CLASSPATH.

• Start Method Name—The method in the Class Name class that will
be called whenever the model is loaded into a session.

• Stop Method Name—The method in the Class Name class that will be
called whenever the model is erased.

The J-Link application immediately attempts to run. If it cannot start successfully
an exception condition is listed in the Status column of the Model Programs dialog
box.

JAR File Needed for Model-Program Dependency
Although individual class files are associated with a model, there is no
dependency between the model and the program. Therefore, PTC Windchill server
is not able to recognize the relationship between the class files and the model. To
create a dependency, include all the class files and the source code in a Java
archive file (jar file). JAR files are created through the command jar, which is a
part of the standard Java Development Kit (JDK) package.
To create a JAR file use a command similar to the following command string:
jar cvf0 myjar.jar *.java *.class

20 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
You must use the command-line switch 0 (zero) because JAVA cannot read
classes from compressed JAR files.

You can add JAR files to, or remove them from, a model by using the buttons on
the left side of the model program interface. All the JAR files for the model
program must be placed in the PTC Creo Parametric search path.

Note
When naming a J-Link model program JAR file, you must use lower case.

Start and Stop Methods
All synchronous J-Link programs must have a static start and stop method
regardless of whether they will run standalone or as model programs. You can
give these methods any name you want because you identify them in the registry
file or in the model program setup. PTC Creo Parametric automatically calls these
methods upon starting or stopping a program. All methods that you want to call in
a particular program must be called in the start and stop methods, or you must use
the start method to register listeners to react to events in the PTC Creo Parametric
interface.
For example:
public static void startMyProgram()
{

runMyUtilities();
configureMyModels();
addMyUI();

}

public static void stop() {
cleanupModels();
outputToPrinterFiles();

}

J-Link start and stop methods must be public, static, return void and take no
arguments. You can configure applications based on the PTC Creo Parametric
version and build or custom command line arguments using methods described in
the Session Objects on page 65 chapter.

Setting Up J-Link 21

2
Java Programming Considerations
Use of the JDK in J-Link Applications ..24
Java Overview ..24
Java Keywords..26
Java Data Types ...27
Event Handling..27
Comments ..28

This chapter contains a brief overview of the Java programming language. None
of the information provided in this chapter is specific to J-Link.

23

Use of the JDK in J-Link Applications
Sun Microsystems provides a large number of objects and methods with the Java
Development Kit (JDK). These objects and methods include the following:

• Utilities and methods for a large volume of common programming tasks—
Java has APIs for manipulating data, creating vectors (expandable arrays),
responding to events, creating queues, and creating hash tables.

• Methods for file manipulation—The java.io API contains objects that
enable you to read and write data to and from files.

• Creation of Web-enabled applets—The java.applet API enables quick
creation of a Java applet for use in an HTML page.

• Access to user interface components—The java.awt and “Swing” APIs
allow creation of simple and complex user interfaces.

• Java Database Connectivity (JDBC)—JDBC provides interaction with
database objects

For information on specific classes and methods in the Java API’s, visit the Sun
Web site at the following URL:
http://java.sun.com/docs/index.html

Examples in this guide usually do not use classes from the Java API beyond the
ones found in the package java.lang. Most of the other packages can be used
to improve a J-Link program, but they are not absolutely necessary to create the
program.

Java Overview
Java is an object-oriented programming language that offers portability across
multiple platforms.

Note
The Java Overview presented here describes technical information known to
be true for Java version 1.1.5. Later Java versions may render some of this
information incorrect or obsolete.

Java offers the following benefits:

• Inheritance—One of the fundamental concepts of an object-oriented
language is inheritance. A subclass inherits variables and methods not
only from the class above it but also from all of its ancestors. Consider the
following code:

24 PTC Creo® Parametric 3.0 J-Link User’s Guide

class A {
public A() {
// Constructor of class A
}

}

class B extends A {
public B() {
//A is a superclass of B, B is a subclass of A.
}

}

Java does not support multiple inheritance. But implementation of an interface
is a way around this restriction. For example:

interface A {
public void doNothing();
// Only the declaration of a method

}

// Constructor of B
class B implements A {

// Implementation of this method
public void doNothing() {
}

}

• Polymorphism—You can substitute a derived class whenever its base class
is required.

• Method overriding and overloading—You can redefine a superclass
method with an exact signature and return type. In addition, you can define
methods or constructors with different signatures.

• Platform-independent interpreter—Java is architecture-neutral.
When you compile a Java program, the compiler translates your program into
platform-independent instructions called Java bytecodes. You then use an
interpreter to parse each Java bytecode and run it on the computer. Your Java
program is compiled only once, but is interpreted each time you run it.

Java bytecodes are like machine code instructions for the Java Virtual
Machine (JVM).

• High performance—Java is a high-performance language that is dynamic
—you can load Java classes into a running Java interpreter.

• No pointers—Java does not allow you to use pointers to directly reference
memory locations. However, all object references are, in effect, pointers,
because they refer to a location in memory that contains an object. Therefore,
setting one object equal to another does not create a new version of the object.
For example:

String mystring = yourstring;

Java Programming Considerations 25

In this example, a new String object is not created.
• Garbage collection—Java does not require you to free memory after

you are finished with it. The garbage collection routines within the JVM
recognize data that is no longer used and automatically free the memory.

• No preprocessors—Java does not include a command preprocessor like
C or C++. Therefore, you cannot declare global constants as you do in C.
Instead, you can declare a field within an object to be static and final, which
effectively declares that field to be constant.

Java Keywords
This section describes the Java keywords most commonly used when using J-
Link.
The following keywords specify the accessibility to data:

• public—Accessible from the class, subclass, package, and world.
• private—Accessible only from the class.
• protected—Accessible from the class, subclass, and package.
• package—Accessible from the class and package. This is the default access.
The following keywords describe variables or methods:

• static—The method or variable is not attached to a particular object, but to
an entire class.

The advantage of a static method is that you do not need to define an instance
of the class in order to use the method.

• final—Specifies that the class, method, or field will not be modified by
another object.

A static final declaration identifies a constant.
• new—Creates instances of various classes. The following statement shows an

example of instantiation:
String mystring = new String ("This is my string.");

Except for single objects, you cannot use the new keyword to initialize J-Link
objects. You can use new to construct objects that do not explicitly belong to
J-Link (that is, Java API objects).

• instanceof—The Java instanceof operator is a way to determine
whether a particular object can be correctly cast to a specified class. The
instanceof operator produces a Boolean value that identifies whether the
object is a member of that class. The typical use is as follows:

if (<objectname> instanceof <classname>)

26 PTC Creo® Parametric 3.0 J-Link User’s Guide

In J-Link this operator should be used to distinguish between various levels of
inheritance.

Java Data Types
Java allows primitive types to be wrapped inside of classes. These wrappers are
used to provide an object definition for every type of data within Java. In J-Link,
certain methods take a wrapped object argument instead of a primitive type. You
can convert one to the other by creating a new instance, as in the following
example:
boolean yes_or_no = true;
Boolean yes_or_no_object = new Boolean (yes_or_no);
Integer seven = new Integer (7);

The following table lists the type wrappers provided by Java.
Data Type Java Wrapper Class
int Integer
float Float
double Double
char Character
byte Byte
boolean Boolean
— String

Note
Java represents character strings only as objects, not as arrays of characters.
There is no corresponding primitive string type.

The following keywords specify the implementation types:
native—A method implemented in another language (usually C or C++) that
can be called from Java
abstract—A method or class that has no implementation

Event Handling
Java implements listeners and adapters to notify you of certain events. There are
three kinds of listeners:

Java Programming Considerations 27

• ActionListener—Waits for a specified action, such as clicking on a
button in a dialog box

• ItemListener—Waits for a specified item, such as a checked check box
• FocusListener—Waits for a specified keyboard or mouse focus event on

a component
Java exceptions enable you to test for and handle certain events. To create event
handling, use the following keywords:

• try—Execute a control block using predeclared exception handlers.
• catch—Specify the exceptions to “catch” in a try block.
• finally—Specify a control block to be applied after a try block,

regardless of whether an exception is handled by a catch clause within the
try block.

• throw—Immediately send control to a handler for that specific exception.

Comments
Java provides three different types of comment characters: C++-style, C-style, and
javadoc-style.
As in the C++ language, two double slashes (//) are used to specify a one-line
comment. For example:
.
.
.
// This method retrieves the value of the dimension.
.
.
.

Java also supports C-style comment characters (/* */).
All the text within these characters is considered a comment. For example:
.
.
.
{
/* Open the file input.txt with read-only

access. */

inStream = new RandomAccessFile ("input.txt", "r");
.
.
.

28 PTC Creo® Parametric 3.0 J-Link User’s Guide

Java also supports documentation comments for javadoc, a tool that
automatically creates Web pages from your code. See the URL http://
java.sun.com/products/jdk/javadoc/index.html for more
information on javadoc.
Documentation comments are delimited by the characters /** and */. For
example:
/** The following code example shows how to create a
* random-access file. The program reads a line from
* one file (input.txt) and writes it to another file
* (output.txt).
*/

.

.

.

Java Programming Considerations 29

3
Overview of J-Link

Class Types ..32
Creating Applications...43

This chapter provides an overview of J-Link.

31

Class Types
J-Link is made up of a number classes in many packages. The following are the
eight main classes.

• Creo Parametric-Related Interfaces—Contain unique methods
and attributes that are directly related to the functions in PTC Creo Parametric.
See the section PTC Creo Parametric-Related Interfaces on page 32 for
additional information.

• Compact Data Classes—Classes containing data needed as arguments to
some J-Link methods. See the section Compact Data Classes on page 34 for
additional information.

• Union Classes—A class with a potential for multiple types of values. See
the section Unions on page 35 for additional information.

• Sequence Classes—Expandable arrays of objects or primitive data types.
See the section Sequences on page 35 for more information.

• Array Classes—Arrays that are limited to a certain size. See the section
Arrays on page 37 for more information.

• Enumeration Classes—Defines enumerated types. See the section
Enumeration Classes on page 38 for more information.

• ActionListener Classes—Enables you to specify programs that will
run only if certain events in PTC Creo Parametric take place. See the section
Action Listeners on page 40 for more information.

• Utility Classes—Contains static methods used to initialize certain J-
Link objects. See the section Utilities on page 42 for more information.

Each class shares specific rules regarding initialization, attributes, methods,
inheritance, or exceptions. The following seven sections describe these classes in
detail.

PTC Creo Parametric-Related Interfaces
The PTC Creo Parametric-related interfaces contain methods that directly
manipulate objects in PTC Creo Parametric. Examples of these objects include
models, features, and parameters.

Initialization
You cannot construct one of these objects using the Java keyword new. Some
objects that represent PTC Creo Parametric objects cannot be created directly but
are returned by a Get or Create method.

32 PTC Creo® Parametric 3.0 J-Link User’s Guide

For example, pfcSession.Session.GetCurrentModel returns a Model
object set to the current model and
pfcModelItem.ParameterOwner.CreateParam returns a newly created
Parameter object for manipulation.

Attributes
Attributes within PTC Creo Parametric-related objects are not directly accessible,
but can be accessed through Get and Set methods. These methods are of the
following types:
Attribute name: int XYZ
Methods: int GetXYZ();

void SetXYZ (int i);

Some attributes that have been designated as read can only be accessed by the
Get method.

Methods
You must start Methods from the object in question and you must first initialize
that object. For example, the following calls are illegal:
Window window;

window.Activate(); // The window has not yet been
initialized.

Repaint(); // There is no invoking object.

The following calls are legal:
Session session = pfcGlobal.GetProESession();
Window window = session.GetCurrentWindow();

// You have initialized the window object.
window.Activate()
window.Repaint()

Inheritance
All PTC Creo Parametric related objects are defined as interfaces so that they can
inherit methods from other interfaces. To use these methods, call them directly (no
casting is needed). For example:
public interface Feature

extends jxobject,
pfcModelItem.ParameterOwner,
pfcObject.Parent,
pfcObject.Object,
pfcModelItem.ModelItem

Feature myfeature; // Previously initialized

String name = myfeature.GetName();// GetName is in the

Overview of J-Link 33

// class ModelItem.

However, if you have a reverse situation, you need to explicitly cast the object.
For example:
ModelItem item; // You know this is a Feature -- perhaps

// you previously checked its type.
int number = ((Feature)item).GetNumber();

// GetNumber() is a Feature method.

Exceptions
Almost every J-Link method can throw an exception of type
com.ptc.cipjava.jxthrowable. Surround each method you use with a
try-catch-finally block to handle any exceptions that are generated. See
the Exceptions section for more information.

Compact Data Classes
Compact data classes are data-only classes. They are used, as needed, for
arguments and return values for some J-Link methods. They do not represent
actual objects in PTC Creo Parametric.

Initialization
You can create instances of these classes using a static create method.
Example: pfcModel.BOMExportIntructions_Create()

This static method usually belongs to the utility class in the specific package that
the compact data class belong to.

Attributes
Attributes within compact data related classes are not directly accessible, but can
be accessed through Get and Set methods. These methods are of the following
types:
Attribute name: int XYZ
Methods: int GetXYZ();

void SetXYZ (int i);

Methods
You must start Methods from the object in question and you must first initialize
that object. For example, the following calls are illegal:
SelectionOptions options;

options.SetMaxNumSels(); // The object has not been
initialized.

SetOptionsKeywords(); // There is no invoking object

34 PTC Creo® Parametric 3.0 J-Link User’s Guide

Inheritance
Compact objects can inherit methods from other compact interfaces. To use these
methods, call them directly (no casting needed).

Exceptions
Almost every J-Link method can throw an exception of type
com.ptc.cipjava.jxthrowable. Surround each method you use with a
try-catch-finally block to handle any exceptions that are generated.

Unions
Unions are interface-like objects. Every union has a discriminator method with the
pre-defined name Getdiscr(). This method returns a value identifying the type
of data that the union objects holds. For each union member, a pair of (Get/Set)
methods is used to access the different data types. It is illegal to call any Get
method except the one that matches the value returned from Getdiscr().
However, any Set method can be called. This switches the discriminator to the
new value.
The following is an example of a J-Link union:
class ParamValue
{
public:

ParamValueType Getdiscr ();
String GetStringValue ();
void SetStringValue (String value);
int GetIntValue ();
void SetIntValue (int value);
boolean GetBoolValue ();
void SetBoolValue (boolean value);
double GetDoubleValue ();
void SetDoubleValue (double value);
int GetNoteId ();
void SetNoteId (int value);

};

Sequences
Sequences are expandable arrays of primitive data types or objects in J-Link. All
sequence classes have the same methods for adding to and accessing the array.
Sequence classes are identified by a plural name, or the suffix seq.

Overview of J-Link 35

Initialization
You cannot construct one of these objects using the Java keyword new. Static
create methods for each list type are available. For example,
pfcModel.Models.create() returns an empty Models sequence object
for you to fill in.

Attributes
The attributes within sequence objects must be accessed using methods.

Methods
Sequence objects always contain the same methods: get, set,
getarraysize, insert, insertseq, removerange, and create.
Methods must be invoked from an initialized object of the correct type, except for
the static create method, which is invoked from the sequence class.

Inheritance
Sequence classes do not inherit from any other J-Link classes. Therefore, you
cannot cast sequence objects to any other type of J-Link object, including other
sequences. For example, if you have a list of model items that happen to be
features, you cannot make the following call:
Features features = (Features) modelitems;

To construct this array of features, you must insert each member of the list
separately while casting it to a Feature.

Exceptions
If you try to get or remove an object beyond the last object in the sequence, the
exception cipjava.XNoAttribute is thrown.

Example Code: Sequence Class
The following example code shows the sequence class
com.ptc.pfc.pfcModel.Models.
package com.ptc.pfc.pfcModel;

public class Models extends jxobject_i
{

public int getarraysize() throws jxthrowable
public Model get (int idx) throws jxthrowable
public void set (

int idx,
Model value

) throws jxthrowable

36 PTC Creo® Parametric 3.0 J-Link User’s Guide

public void removerange
(

int frominc,
int toexcl

) throws jxthrowable

public void insert
(

int atidx,
Model value

) throws jxthrowable

public void insertseq
(

int atidx,
pfcModel.Models value

) throws jxthrowable

public static pfcModel.Models create() throws jxthrowable
}

Arrays
Arrays are groups of primitive types or objects of a specified size. An array can be
one or two dimensional. The following array classes are in the pfcBase
package: Matrix3D, Point2D, Point3D, Outline2D, Outline3D,
UVVector, UVParams, Vector2D, and Vector3D. See the online reference
documentation to determine the exact size of these arrays.

Initialization
You cannot construct one of these objects using the Java keyword new. Static
creation methods are available for each array type. For example, the method
pfcBase.Point2D.create returns an empty Point2D array object for you
to fill in.

Attributes
The attributes within array objects must be accessed using methods.

Methods
Array objects always contain the same methods: get, set, and create.
Methods must be invoked from an initialized object of the correct type, except for
the create method, which is invoked from the name of the array class.

Overview of J-Link 37

Inheritance
Array classes do not inherit from any other J-Link classes.

Exceptions
If you try to access an object that is not within the size of the array, the exception
cipjava.XNoAttribute is thrown.

Example Code - Array Class
The following example code shows the array class
com.ptc.pfc.pfcBase.Point2D.

package com.ptc.pfc.pfcBase;

public class Point2D extends jxobject_i
{

public double get (int idx0) throws jxthrowable

public void set (
int idx0,
double value

) throws jxthrowable

public static Point2D create() throws jxthrowable
};

Enumeration Classes
In J-Link, enumeration classes are used in the same way that an enum is used in C
or C++. An enumeration class defines a limited number of static final instances
which correspond to the members of the enumeration. Each static final instance
has a corresponding static final integer constant. In the FeatureType
enumeration class the static instance FEATTYPE_HOLE has as it’s integer
equivalent _FEATTYPE_HOLE . Enumeration classes in J-Link generally have
names of the form XYZType or XYZStatus.
Enumeration instances are passes whenever a method requires you to choose
among multiple options. Use the integer constants where an int is required (such
as cases in a switch statement).

Initialization
You cannot construct one of these objects. You simply use the name of the static
instance or static integer constant.

38 PTC Creo® Parametric 3.0 J-Link User’s Guide

Attributes
An enumeration class is made up of constant integer attributes and static instances
of the enumerated class type. Related integers and instances have the same name,
except the integer attribute begins with an underscore (_). The names of these
attributes are all uppercase and describe what the attribute represents. For
example:

• PARAM_INTEGER—An instance of the ParamValueType enumeration
class that is used to indicate that a parameter stores an integer value. The
corresponding integer is _PARAM_INTEGER.

• ITEM_FEATURE—An instance of the ModelItemType enumeration class
that is used to indicate that a model item is a feature. The corresponding
integer is_ ITEM_FEATURE.

An enumeration class always has an integer attribute named “__Last”, which is
one more than the highest acceptable numerical value for that enumeration class.

Methods
Enumeration classes have one method that you are likely to use:

• getValue—Returns the integer value of an enumeration instance.

Inheritance
Enumeration classes do not inherit from any other J-Link classes.

Exceptions
Enumeration classes do not throw exceptions.

Example Code: Enumeration Class
The following example code shows the enumeration class
com.ptc.pfc.pfcBase.Placement.
package com.ptc.pfc.pfcBase;

public final class Placement
{

public static final int _PLACE_INSIDE = 0;

public static final Placement PLACE_INSIDE =
new Placement (_PLACE_INSIDE);

public static final int _PLACE_ON_BOUNDARY = 1;

public static final Placement PLACE_ON_BOUNDARY =
new Placement (_PLACE_ON_BOUNDARY);

Overview of J-Link 39

public static final int _PLACE_OUTSIDE = 2;

public static final Placement PLACE_OUTSIDE =
new Placement (_PLACE_OUTSIDE);

public static final int __Last = 3;

public static Placement FromInt (int value)

public int getValue()
};

Action Listeners
Use ActionListeners in J-Link to assign programmed reactions to events
that occur within PTC Creo Parametric. J-Link defines a set of action listener
interfaces that can be implement enabling PTC Creo Parametric to call your J-
Link application when specific events occur. These interfaces are designed to
respond to events from action sources in PTC Creo Parametric. Examples of
action sources include the session, user-interface commands, models, solids,
parameters, and features.

Initialization
For each of its defined ActionListener interfaces, J-Link provides a
corresponding default implementation class. For example, the
SolidActionListener interface has a corresponding
DefaultSolidActionListener implementation. All of the default action
listener classes override every listener method with an empty method.
You must use the default implementation to construct applications. You cannot
directly implement the SolidActionListener interface, as this interface will
be missing the routing used internally by J-Link.
You implement an action listener class by inheriting the appropriate default class
and overriding the methods that respond to specific events. For the other events,
PTC Creo Parametric calls the empty methods inherited from the default class.
Construct your ActionListener classes using the Java keyword new. Then
assign your ActionListener to an ActionSource using the
AddActionListener() method of the action source.

Attributes
Action listeners do not have any accessible attributes.

40 PTC Creo® Parametric 3.0 J-Link User’s Guide

Methods
You must override the methods you need in the default class to create an
ActionListener object correctly. The methods you create can call other
methods in the ActionListener class or in other classes.

Inheritance
All J-Link ActionListener objects inherit from the interface
pfcBase.ActionListener.

Exceptions
Action listeners cause methods to be called outside of your application start and
stop methods. Therefore, you must include exception-handling code inside the
ActionListener implementation if you want to respond to exceptions. In
some methods called before an event, propagating an exception out of your
method will cancel the impending event.

Example Code: Listener Class
The following example code shows part of the SolidActionListener
interface.
package com.ptc.pfc.pfcSolid;

public interface SolidActionListener extends
jxobject,
com.ptc.pfc.pfcBase.ActionListener

{
void OnBeforeRegen

(
com.ptc.pfc.pfcSolid.Solid Sld,
com.ptc.pfc.pfcFeature.Feature /* optional */ StartFeature

) throws jxthrowable;

void OnAfterRegen (
com.ptc.pfc.pfcSolid.Solid Sld,
com.ptc.pfc.pfcFeature.Feature /* optional */ StartFeature,
boolean WasSuccessful

) throws jxthrowable;

void OnBeforeUnitConvert (
com.ptc.pfc.pfcSolid.Solid Sld,
boolean ConvertNumbers

) throws jxthrowable;

void OnAfterUnitConvert (
com.ptc.pfc.pfcSolid.Solid Sld,

Overview of J-Link 41

boolean ConvertNumbers
) throws jxthrowable;

};

Utilities
Each package in J-Link has one class that contains special static methods used to
create and access some of the other classes in the package. These utility classes
have the same name as the package, such as pfcModel.pfcModel.

Initialization
Because the utility packages have only static methods, you do not need to
initialize them. Simply access the methods through the name of the class, as
follows:
ParamValue pv = pfcModelItem.CreateStringParamValue ("my_param");

Attributes
Utilities do not have any accessible attributes.

Methods
Utilities contain only static methods used for initializing certain J-Link objects.

Inheritance
Utilities do not inherit from any other J-Link classes.

Exceptions
Methods in utilities can throw jxthrowable type exceptions.

Sample Utility Class
The following code example shows the utility class
com.ptc.pfc.pfcGlobal.pfcGlobal.
package com.ptc.pfc.pfcGlobal;

public class pfcGlobal
{
public static pfcSession.Session GetProESession()

throws jxthrowable

public static stringseq GetProEArguments()
throws jxthrowable

42 PTC Creo® Parametric 3.0 J-Link User’s Guide

public static string GetProEVersion()
throws jxthrowable

public static string GetProEBuildCode()
throws jxthrowable

}

Creating Applications
The following sections describe how to create applications. The topics are as
follows:

• Importing Packages on page 43
• Application Hierarchy on page 43
• Exception Handling on page 44

Importing Packages
To use pfc code in your application you must import the necessary packages.
Import each class or package with a statement similar to the following:
For the Parameter class only:
import com.ptc.pfc.pfcModelItem.Parameter;

For the package pfcBase (all classes):
import com.ptc.pfc.pfcBase.*;

You might also need to import the methods in com.ptc.cipjava, which
contains the underlying J-Link structure, including exceptions and certain
sequences.. Use the following statement:
import com.ptc.cipjava.*;

Application Hierarchy
The rules of object orientation require a certain hierarchy of object creation when
you start a J-Link application. The method invoked must be
pfcGlobal.GetProESession, which returns a handle to the current session
of PTC Creo Parametric.
The application must iterate down to the level of object you want to access. For
example, to list all the datum axes contained in the hole features in all models in
session, do the following:

1. Get a handle to the session:
2. Get the models that are active in the session:
3. Get the feature model items in each model:

Overview of J-Link 43

4. Filter out the features of type hole:
5. Get the subitems in each feature that are axes:

Exception Handling
Nearly all J-Link methods are declared as throwing the jxthrowable
exception, as shown here in the declaration of Model.CreateLayer().
com.ptc.pfc.pfcLayer.Layer CreateLayer (

String Name
) throws jxthrowable;

In fact, the jxthrowable exception is never actually thrown. It is the parent
class of all the exceptions that are thrown by J-Link methods and satisfies Java’s
requirement that a method’s declaration include the exceptions that it throws.
The following figure organizes the J-Link exceptions into three categories to
facilitate the discussion that follows.

44 PTC Creo® Parametric 3.0 J-Link User’s Guide

J-Link Exception Classes

Overview of J-Link 45

cipjava Exceptions
The cipjava exceptions are thrown by classes in the com.ptc.cipjava
package. With the exception of the intseq, realseq, boolseq, and
stringseq classes, these classes are only used internally.
The following table describes these exceptions.
Exception Purpose
XInvalidArrayDimIndex,
XInvalidArrayIndex,
XInvalidDictIndex, XNegativeIndex

Illegal index value used when accessing a cipjava
array, sequence, or dictionary. (The J-Link interface
does not currently include any dictionary classes.)

XLicense Licensing error (license does not exist, lost, server
down, etc.)

XMsgStringTooLong Communication synchronization problem between
PTC Creo Parametric and J-Link application. Restart
the J-Link application.

XNativeException Unknown exception occurred in another language.
This usually signals a serious error (such as division
by zero or class not found) that is related to the J-
Link application.

XCannotConnect, XConnectionClosed,
XFlushFailed

Communication problems between PTC Creo
Parametric and the J-Link application.

Other, internal errors Internal assertions that should not append and which
need not be caught individually.

PFC Exceptions
The PFC exceptions are thrown by the classes that make up J-Link’s public
interface. The following table describes these exceptions.
Exception Purpose
XBadExternalData An attempt to read contents of an external data object

which has been terminated.
XBadGetArgValue Indicates attempt to read the wrong type of data from

the ArgValue union.
XBadGetExternalData Indicates attempt to read the wrong type of data from

the ExternalData union.
XBadGetParamValue Indicates attempt to read the wrong type of data from

the ParamValue union.
XBadOutlineExcludeType Indicates an invalid type of item was passed to the

outline calculation method.
XCancelProEAction This exception type will not be thrown by J-Link

methods, but you may instantiate and throw this from
certain ActionListener methods to cancel the
corresponding action in PTC Creo Parametric.

XCannotAccess The contents of a J-Link object cannot be accessed in
this situation.

XEmptyString An empty string was passed to a method that does
not accept this type of input.

XInvalidEnumValue Indicates an invalid value for a specified
enumeration class.

46 PTC Creo® Parametric 3.0 J-Link User’s Guide

Exception Purpose
XInvalidFileName Indicates a file name passed to a method was

incorrectly structured.
XInvalidFileType Indicates a model descriptor contained an invalid file

type for a requested operation.
XInvalidModelItem Indicates that the item requested to be used is no

longer usable (for example, it may have been
deleted).

XInvalidSelection Indicates that the Selection passed is invalid or is
missing a needed piece of information. For example,
its component path, drawing view, or parameters.

XJLinkApplicationException Contains the details when an attempt to call code in
an external J-Link application failed due to an
exception.

XJLinkApplicationInactive Unable to operate on the requested
JLinkApplication object because it has been
shut down.

XJLinkTaskExists Indicates that a J-Link task with the given name
already exists in session.

XJLinkTaskNotFound Indicates that the J-Link task with the given name
could not be found and run.

XModelNotInSession Indicates that the model is no longer in session; it
may have been erased or deleted.

XNegativeNumber Numeric argument was negative.
XNumberTooLarge Numeric argument was too large.
XProEWasNotConnected The PTC Creo Parametric session is not available so

the operation failed.
XSequenceTooLong Sequence argument was too long.
XStringTooLong String argument was too long.
XUnimplemented Indicates unimplemented method.
XUnknownModelExtension Indicates that a file extension does not match a

known PTC Creo Parametric model type.

PTC Creo Parametric TOOLKIT Errors
The XToolkitError exception provides access to error codes from PTC Creo
Parametric TOOLKIT functions that J-Link uses internally and to the names of the
functions returning such errors. XToolkitError is the exception you are most
likely to encounter because J-Link is built on top of PTC Creo Parametric
TOOLKIT. The following table lists the integer values that can be returned by the
XToolkitError.GetErrorCode() method and shows the corresponding
PTC Creo Parametric TOOLKIT constant that indicates the cause of the error.
Each specific XToolkitError exception is represented by an appropriately
named child class, allowing you to catch specific exceptions you need to handle
separately.

Overview of J-Link 47

XToolkitError Child Class PTC Creo Parametric
TOOLKIT Error

#

XToolkitGeneralError PRO_TK_GENERAL_ERROR -1
XToolkitBadInputs PRO_TK_BAD_INPUTS -2
XToolkitUserAbort PRO_TK_USER_ABORT -3
XToolkitNotFound PRO_TK_E_NOT_FOUND -4
XToolkitFound PRO_TK_E_FOUND -5
XToolkitLineTooLong PRO_TK_LINE_TOO_LONG -6
XToolkitContinue PRO_TK_CONTINUE -7
XToolkitBadContext PRO_TK_BAD_CONTEXT -8
XToolkitNotImplemented PRO_TK_NOT_IMPLEMENTED -9
XToolkitOutOfMemory PRO_TK_OUT_OF_MEMORY -10
XToolkitCommError PRO_TK_COMM_ERROR -11
XToolkitNoChange PRO_TK_NO_CHANGE -12
XToolkitSuppressedPar
ents

PRO_TK_SUPP_PARENTS -13

XToolkitPickAbove PRO_TK_PICK_ABOVE -14
XToolkitInvalidDir PRO_TK_INVALID_DIR -15
XToolkitInvalidFile PRO_TK_INVALID_FILE -16
XToolkitCantWrite PRO_TK_CANT_WRITE -17
XToolkitInvalidType PRO_TK_INVALID_TYPE -18
XToolkitInvalidPtr PRO_TK_INVALID_PTR -19
XToolkitUnavailableSec
tion

PRO_TK_UNAV_SEC -20

XToolkitInvalidMatrix PRO_TK_INVALID_MATRIX -21
XToolkitInvalidName PRO_TK_INVALID_NAME -22
XToolkitNotExist PRO_TK_NOT_EXIST -23
XToolkitCantOpen PRO_TK_CANT_OPEN -24
XToolkitAbort PRO_TK_ABORT -25
XToolkitNotValid PRO_TK_NOT_VALID -26
XToolkitInvalidItem PRO_TK_INVALID_ITEM -27
XToolkitMsgNotFound PRO_TK_MSG_NOT_FOUND -28
XToolkitMsgNoTrans PRO_TK_MSG_NO_TRANS -29
XToolkitMsgFmtError PRO_TK_MSG_FMT_ERROR -30
XToolkitMsgUserQuit PRO_TK_MSG_USER_QUIT -31
XToolkitMsgTooLong PRO_TK_MSG_TOO_LONG -32
XToolkitCantAccess PRO_TK_CANT_ACCESS -33
XToolkitObsoleteFunc PRO_TK_OBSOLETE_FUNC -34
XToolkitNoCoordSystem PRO_TK_NO_COORD_SYSTEM -35
XToolkitAmbiguous PRO_TK_E_AMBIGUOUS -36
XToolkitDeadLock PRO_TK_E_DEADLOCK -37
XToolkitBusy PRO_TK_E_BUSY -38
XToolkitInUse PRO_TK_E_IN_USE -39
XToolkitNoLicense PRO_TK_NO_LICENSE -40
XToolkitBsplUnsuitable
Degree

PRO_TK_BSPL_UNSUITABLE_
DEGREE

-41

48 PTC Creo® Parametric 3.0 J-Link User’s Guide

XToolkitError Child Class PTC Creo Parametric
TOOLKIT Error

#

XToolkitBsplNonStdEnd
Knots

PRO_TK_BSPL_NON_STD_
END_
KNOTS

-42

XToolkitBsplMultiInner
Knots

PRO_TK_BSPL_MULTI_
INNER_KNOTS

-43

XToolkitBadSrfCrv PRO_TK_BAD_SRF_CRV -44
XToolkitEmpty PRO_TK_EMPTY -45
XToolkitBadDimAttach PRO_TK_BAD_DIM_ATTACH -46
XToolkitNotDisplayed PRO_TK_NOT_DISPLAYED -47
XToolkitCantModify PRO_TK_CANT_MODIFY -48
XToolkitCheckoutCon
flict

PRO_TK_CHECKOUT_
CONFLICT

-49

XToolkitCreateViewBad
Sheet

PRO_TK_CRE_VIEW_BAD_
SHEET

-50

XToolkitCreateViewBadMo
del

PRO_TK_CRE_VIEW_BAD_
MODEL

-51

XToolkitCreateViewBad
Parent

PRO_TK_CRE_VIEW_BAD_
PARENT

-52

XToolkitCreateViewBad
Type

PRO_TK_CRE_VIEW_BAD_
TYPE

-53

XToolkitCreateViewBadEx
plode

PRO_TK_CRE_VIEW_BAD_
EXPLODE

-54

XToolkitUnattachedFeats PRO_TK_UNATTACHED_FEATS -55
XToolkitRegenerateAgain PRO_TK_REGEN_AGAIN -56
XToolkitDrawingCreateEr
rors

PRO_TK_DWGCREATE_ERRORS -57

XToolkitUnsupported PRO_TK_UNSUPPORTED -58
XToolkitNoPermission PRO_TK_NO_PERMISSION -59
XToolkitAuthentication
Failure

PRO_TK_AUTHENTICATION_
FAILURE

-60

XToolkitAppNoLicense PRO_TK_APP_NO_LICENSE -92
XToolkitAppExcessCall
backs

PRO_TK_APP_XS_CALLBACKS -93

XToolkitAppStartup
Failed

PRO_TK_APP_STARTUP_FAIL -94

XToolkitAppInitializa
tionFailed

PRO_TK_APP_INIT_FAIL -95

XToolkitAppVersionMis
match

PRO_TK_APP_VERSION_
MISMATCH

-96

XToolkitAppCommunica
tionFailure

PRO_TK_APP_COMM_FAILURE -97

XToolkitAppNewVersion PRO_TK_APP_NEW_VERSION -98

The exception XProdevError represents a general error that occurred while
executing a Pro/DEVELOP function and is equivalent to an XZToolkit general
Error. (PTC does not recommend the use of Pro/DEVELOP functions.)
The exception XExternalDataError and it’s children are thrown from
External Data methods. See the chapter on External Data for more information.

Overview of J-Link 49

Approaches to J-Link Exception Handling
To deal with the exceptions generated by J-Link methods surround each method
with a try-catch-finally block. For example:
try {

JLinkObject.DoSomething()
}
catch (jxthrowable x) {

// Respond to the exception.
}

Rather than catching the generic exception, you can set up your code to respond to
specific exception types, using multiple catch blocks to respond to different
situations, as follows:
try
{

Object.DoSomething()
}

catch (XToolkitError x)
{

// Respond based on the error code.
x.GetErrorCode();

}
catch (XStringTooLong x)
{

// Respond to the exception.
}
catch (jxthrowable x) // Do not forget to check for

// an unexpected error!
{

// Respond to the exception.
}

If you do not want to surround every block of code with a try statement, you can
declare your methods to throw the jxthrowable object. For example:
public class MyClass {

public void MyMethod() throws jxthrowable
{

// Includes Pro/J-Link function calls
}

}

However, you must surround any calls to MyMethod() with a try block.

50 PTC Creo® Parametric 3.0 J-Link User’s Guide

4
J-Link Programming

Considerations
J-Link Thread Restrictions..52
Optional Arguments to J-Link Methods..52
Parent-Child Relationships Between J-Link Objects ...53
Run-Time Type Identification in J-Link...54

This chapter contains information needed to develop an application using J-Link.

51

J-Link Thread Restrictions
When you run a synchronous J-Link program, you should configure your program
so it does not interfere with the main thread of the PTC Creo Parametric program.
Because the Java API allows you to run with multiple threads, you should be
cautious of using certain Java routines in your program.
The most obvious restriction involves the use of Java language user interfaces.
Any Java window that you create must be a dialog box that is blocking (or modal).
Creating a nonblocking frame causes a new thread to begin, which can have
unexpected results when running with PTC Creo Parametric. For example, you
can use the javax.swing.JDialog class and set modal true. You cannot use
javax.swing.JWindow, however, because it starts a thread.

Optional Arguments to J-Link Methods
Many methods in J-Link are shown in the online documentation as having
optional arguments.
For example, the pfcModelItem.ModelItemOwner.ListItems method
takes an optional Type argument.
public interface ModelItemOwner extends

jxobject

{
com.ptc.pfc.pfcModelItem.ModelItems ListItems

(
com.ptc.pfc.pfcModelItem.ModelItemType

/* optional */ Type
) throws jxthrowable;

}

You can pass the Java keyword null in place of any such optional argument. In
addition, a return value of null is possible for returns that are declared optional.
The J-Link methods that take optional arguments provide default handling for null
parameters as is described in the online documentation.

Note
• If a J-Link method takes an optional primitive type, such as an int or

boolean, the argument will actually be a Java wrapper class, so that it may
be set to null.

• You can only pass null in place of arguments that are shown in the
documentation to be optional.

52 PTC Creo® Parametric 3.0 J-Link User’s Guide

Optional Returns for J-Link Methods
Some methods in J-Link may have an optional return. Usually these correspond to
lookup methods that may or may not find an object to return. For example, the
pfcSession.BaseSession.GetModel method returns an optional model:
public interface Session
{
/*optional*/ com.ptc.pfc.pfcModel.ModelGetModel
(java.lang.String Name,
com.ptc.pfc.pfcModel.ModelType Type);
}

J-Link might return null in certain cases where these methods are called. You
must use appropriate error checking in your application code.

Parent-Child Relationships Between J-
Link Objects
Some J-Link objects inherit from either the interface
com.ptc.pfc.pfcObject.Parent or
com.ptc.pfc.pfcObject.Child. These interfaces are used to maintain a
relationship between the two objects. This has nothing to do with Java inheritance.
In J-Link, the Child is owned by the Parent.
Methods Introduced:

• pfcObject.Child.GetDBParent
The method GetDBParent returns the owner of the child object. Because the
object is returned as a com.ptc.pfc.pfcObject.Parent object, the
application developer must down cast the return to the appropriate class. The
following table lists parent/child relationships in J-Link.
Parent Child
Session Model
Session Window
Model ModelItem
Solid Feature
Model Parameter
Model ExternalDataAccess
Display DisplayList2D/3D
Part Material
Model View
Model2D View2D
Solid XSection
Session Dll (PTC Creo Parametric TOOLKIT)
Session Application (J-Link)

J-Link Programming Considerations 53

Run-Time Type Identification in J-Link
J-Link and the Java language provides several methods to identify the type of an
object. Each has its adavantages and disadvantages.
Many J-Link classes provide read access to a type enum (for example, the
Feature class has a GetFeatType method, returning a FeatureType
enumeration value representing the type of the feature). Based upon the type, a
user can downcast the Feature object to a particular subtype, such as
ComponentFeat, which is an assembly component.

54 PTC Creo® Parametric 3.0 J-Link User’s Guide

5
The J-Link Online Browser

Online Documentation J-Link APIWizard...56

This chapter describes how to use the online browser provided with J-Link.

55

Online Documentation J-Link APIWizard
J-Link provides an online browser called the J-Link APIWizard that displays
detailed documentation. This browser displays information from the J-Link User’s
Guide and API specifications derived from J-Link header file data.
The J-Link APIWizard contains the following items:

• Definitions of J-Link packages and their hierarchical relationships
• Definitions of J-Link classes and interfaces
• Descriptions of J-Link methods
• Declarations of data types used by J-Link methods
• The J-Link User’s Guide, which you can browse by topic or by class
• Code examples for J-Link methods (taken from the sample applications

provided as part of the J-Link installation)
Read the Release Notes and README file for the most up-to-date information on
documentation changes.

Note
The J-Link User’s Guide is also available in PDF format. This file is located
at:
<creo_jlink_loadpoint>\jlinkug.pdf

Accessing the APIWizard
You can access the APIWizard installed locally or from PTC.com. You can run the
J-Link APIWizard in the following modes:
• Applet Based APIWizard—This APIWizard uses Java applets and requires

that Java version lower than Java 7 Update 21 be installed on the computer.
• Non-Applet Based APIWizard—You do not need to install Java to run this

APIWizard.
• PTC.com—If you do not want to install the APIWizard locally, you can access

it from www.ptc.com/support/apiwizard.htm.

Installing the APIWizard
The J-Link APIWizarda are installed when you install J-Link from the product
CD. The J-Link files are installed at <creo_jlink_loadpoint>\
jlinkdoc.

56 PTC Creo® Parametric 3.0 J-Link User’s Guide

http://www.ptc.com/support/apiwizard.htm

To open the J-Link APIWizard top page point your browser to:
<creo_jlink_loadpoint>\jlinkdoc\index_jlink.html

The top page has links to:
• Applet based APIWizard
• Non-applet based APIWizard

Applet Based APIWizard
The applet based APIWizard is supported on Internet Explorer for Java plug-ins
with versions lower than Java 7 Update 21.
To open the J-Link APIWizard, open Internet Explorer, and type:
<creo_jlink_loadpoint>\jlinkdoc\index.html

The APIWizard opens in the browser. See the section The Applet Based
APIWizard Interface on page 59, for more information.

Note
If Java 7 Update 21 or higher is installed on your computer, then the locally
installed applet based APIWizard will not open due to security issues. Use the
non-applet based APIWizard in such cases.

Troubleshooting
When you open the applet based APIWizard in Internet Explorer and if, the
browser detects the presence of the Java2 plug-in, though it is not be installed on
the computer, the browser the browser opens index.html and waits for the Java
applet to run. Since the Java2 plug-in is not installed, the Java applet is not
available, and the browser remains indefinitely in this state.
The workaround for this is to enable Java console in the Internet Explorer options:

1. Launch the Internet Explorer browser.
2. Click Tools>Internet Options. The Internet Options dialog box opens.
3. Click the Advanced tab.
4. Under Microsoft VM, check Java console enabled.
5. Click OK.
6. Click File>Close.
7. Restart the Internet Explorer browser.

The J-Link Online Browser 57

Automatic Index Tree Updating
A link in an APIWizard HTML file causes the tree in the Selection frame to
update and scroll the tree reference that corresponds to the newly displayed page.
This is automatic tree scrolling.

Non-Applet Based Version of the APIWizard
The non-applet based APIWizard supports Internet Explorer, Firefox, and
Chromium browsers.
If you have installed Java 7 Update 21 or higher on your machine, the applet-
based API Wizard will not open due to security issues. Use the non-applet based
APIWizard in such cases.
Start the non-applet based version of the J-Link APIWizard by pointing your
browser to:
<creo_jlink_loadpoint>\jlinkdoc\manual0\loadToolkitDoc.html

Non-Applet APIWizard Top Page
The top page of non-applet based APIWizard has links to the J-Link APIWizard
and User’s Guide. The APIWizard opens an HTML page that contains links to J-
Link classes and related methods. The User’s Guide opens an HTML page that
displays the Table of Contents of the User’s Guide, with links to the chapters, and
sections under the chapters.
Click APIWizard to open the list of J-Link classes and related methods. Click a
class or method name to read more about it.
You can search for specified information in the APIWizard. Use the search field at
the top left pane to search for methods. You can search for information using the
following criteria:
• Search by method names
• Search using wildcard character *, where * (asterisk) matches zero or more

nonwhite space characters
The resulting method names are displayed in a drop down list with links to html
pages.

You can also hover the mouse over after you enter a string in the search field.
The following search options are displayed:
• Class/Methods—Searches for classes and methods.
• Global Methods—Searches only for global methods.
• Exceptions—Searches only for exceptions.
Select an option and the search results are displayed based on this criteria.

58 PTC Creo® Parametric 3.0 J-Link User’s Guide

User’s Guide
Click User’s Guide to access the J-Link User’s Guide.

APIWizard Available on PTC.com
The latest version of J-Link APIWizard is available at www.ptc.com/support/
apiwizard.htm. This is an applet based APIWizard. However, the Java version on
your system will not affect the display of the APIWizard.

The Applet Based APIWizard Interface
The APIWizard interface consists of two frames. The next sections describe how
to display and use these frames in your Web browser.

Package/Class/Interface/Exception/Topic Selection Frame
This frame, located on the left of the screen, controls what is presented in the
Display frame. Specify what data you want to view by choosing either J-Link
Packages, J-Link Classes, J-Link Interfaces, J-Link Exceptions, or the J-Link
Wildfire User’s Guide.
In Packages mode, this frame displays an alphabetical list of the J-Link packages.
A package is a logical subdivision of functionality within J-Link; for example, the
pfcFamily package contains classes related to family table operations. This
frame can also display J-Link interfaces, classes, and methods as subnodes of the
packages.
In J-Link Classes mode, this frame displays an alphabetical list of the J-Link
Classes. It can also display J-Link methods as subnodes of the classes.
In J-Link Interfaces mode, this frame displays an alphabetical list of the J-Link
interfaces. It can also display J-Link methods as subnodes of the interfaces.
In J-Link Exceptions mode, this frame displays an alphabetical list of named
exceptions in the J-Link library. It can also display the methods for the exceptions
as the subnodes.
In J-Link Wildfire User’s Guide mode, this frame displays the J-Link User’s Guide
table of contents in a tree structure. All chapters are displayed as subnodes of the
main J-Link User’s Guide node.
The Package/Class/Interface/Topic frame includes a Find button for data searches
of the J-Link User’s Guide or of API specifications taken from header files. See
the section The Applet Based APIWizard Search Feature (Find) on page 61 for
more information on the Find feature.

The J-Link Online Browser 59

http://www.ptc.com/support/apiwizard.htm
http://www.ptc.com/support/apiwizard.htm

Display Frame
This frame, located on the right of the screen, displays:

• J-Link package definitions and their hierarchial relationships.
• J-Link classes and interfaces definitions
• J-Link method descriptions
• User's Guide content
• Code examples for J-Link methods

Navigating the Package/Class/Interface/Exception/Topic
Selection Tree
Access all J-Link APIWizard online documentation data for packages, classes,
interfaces, methods, or the J-Link User’s Guide from the Package/Class/Interface
Selection frame. This frame displays a tree structure of the data. Expand and
collapse the tree to navigate this data.
To expand the tree structure, first select J-Link Packages, J-Link Classes, J-Link
Interfaces, J-Link Exceptions, or the J-Link Wildfire User’s Guide at the top of the
frame. The APIWizard displays the tree structure in a collapsed form. The switch
icon to the far left of a node (i.e. a package, a class, a interface or chapter name)
signifies that this node contains subnodes. If a node has no switch icon, it has no
subnodes. Clicking the switch icon (or double-clicking on the node text) moves
the switch to the down position. The APIWizard then expands the tree to display
the subnodes. Select a node or subnode, and the APIWizard displays the online
data in the Display frame.

Browsing the J-Link Packages
View the J-Link packages by choosing J-Link Packages at the top of the Package/
Classes/Interfaces/Topic frame. In this mode, the APIWizard displays all the J-
Link packages in the alphabetical order.
The Display frame for each J-Link package displays the information about all the
classes and interfaces that belong to that package.
Click the switch icon next to the desired package name, or double-click the
package name text to view the clasess or interfaces that belong to that package.
You can also view the methods for each class or interface in the expanded tree by
clicking the switch icon next to the class or interface name, or by double-clicking
the name.

60 PTC Creo® Parametric 3.0 J-Link User’s Guide

Browsing the J-Link User’s Guide
View the J-Link User’s Guide by clicking the J-Link Wildfire User’s Guide at the
top of the Package/Class/Interface/Exception/Topic frame. In this mode, the
APIWizard displays the section headings of the User’s Guide.
View a section by clicking the switch icon next to the desired section name or by
double-clicking the section name. The APIWizard then displays a tree of
subsections under the selected section. The text for the selected section and its
subsections appear in the Display frame. Click the switch icon again (or double-
click the node text) to collapse the subnodes listed and display only the main
nodes.

The Applet Based APIWizard Search Feature (Find)
The APIWizard supports searches for specified strings against both the J-Link
User’s Guide and API definition files. Click the Find button on the Package/Class/
Interface/Exception/Topic frame to display the APIWizard Search dialog.

Note
The APIWizard Search feature is slow when accessed through Internet
Explorer’s Default Virtual Machine. For better performance, access the
APIWizard through Internet Explorer’s Java2 plug-in.

The J-Link Online Browser 61

The Search dialog box contains the following fields, buttons, and frames:

• Enter Search String(s)

Enter the specific search string or strings in this field. By default, the browser
performs a non-case-sensitive search.

• Search/Stop

Select the Search button to begin a search. During a search, this button name
changes to Stop. Select the Stop button to stop a search.

• Help

Select this button for help about the APIWizard search feature. The
APIWizard presents this help data in the Display frame.

• Case Sensitive

Select this button to specify a case-sensitive search.
• Search API References

Select this button to search for data on API methods. Select the API Names
button to search for method names only. Select the Definitions button to search
the API method names and definitions for specific strings.

• Search Manuals

Select this button to search the J-Link User’s Guide data. Select the Table of
Contents button to search on TOC entries only. Select the Index button to
search only the Index. Select the Contents button to search on all text in the J-
Link User’s Guide.

• Name

This frame displays a list of strings found by the APIWizard search.
• Found Under

This frame displays the location in the online help data where the APIWizard
found the string.

Supported Search Types
The APIWizard Search supports the following:

• Case sensitive searches
• Search of API definitions, J-Link User’s Guide data, or both
• Search of API data by API names only or by API names and definitions
• Search of J-Link User’s Guide by Table of Contents only, by TOC and section

titles, or on the User’s Guide contents (the entire text).
• Wildcard searches—valid characters are:

62 PTC Creo® Parametric 3.0 J-Link User’s Guide

○ * (asterisk) matches zero or more non-whitespace characters
○ ? (question mark) matches one and only one non-whitespace character

To search for any string containing the characters Get, any number of other
characters, and the characters Name
Get*Name

To search for any string containing the characters Get, one other character, and
the characters Name

Get?Name

To search for any string containing the characters Get, one or more other
characters, and the characters Name
Get?*Name

To search on the string Feature, followed by an *
Feature*

To search on the string Feature, followed by a ?
Feature\?

To search on the string Feature, followed by a \
Feature\\

• Search string containing white space— Search on strings that contain space
characters (white space) by placing double- or single-quote characters around
the string.
"family table"
'Model* methods'

• Search on multiple strings—Separate multiple search strings with white space
(tabs or spaces). Note that the default logical relationship between multiple
search strings is OR.

To return all strings matching GetName OR GetId, enter:
Get*Name Get*Id

Note
This search specification also returns strings that match both specified
search targets.

For example:
FullName

returns Model.GetName and ModelDescriptor.GetFullName

If a string matches two or more search strings, the APIWizard displays only
one result in the search table, for example:
Full* *Name

The J-Link Online Browser 63

returns only one entry for each FullName property found.

Mix quoted and non-quoted strings as follows:
Get*Name "family table"

returns all instances of strings continaing Get and Name, or strings containing
family table.

Performing an APIWizard Search
Follow these steps to search for information in the APIWizard online help data:

• Select the Find icon at the top of the Package/Class/Interface/Exception/Topic
Selection frame.

• Specify the string or strings to be searched for in the Enter Search String field.
• Select Case Sensitive to specify a case-sensitive search. Note that the default

search is non-case-sensitive.
• Select either or both of the Search API References and Search User’s Guide

buttons. Select the options under these buttons as desired.
• Select the Search button. The APIWizard turns this button red and is renames

it Stop for the duration of the search.
• If the APIWizard finds the search string in the specified search area(s), it

displays the string in the Name frame. In the Where Found frame, the
APIWizard displays links to the online help data that contains the found string.

• During the search, or after the search ends, select an entry in the Name or
Where Found frames to display the online help data for that string. The
APIWizard first updates the Package/Class/Interface/Exception/Topic Selection
frame tree, and then presents in the Display frame the online help data for the
selected string.

64 PTC Creo® Parametric 3.0 J-Link User’s Guide

6
Session Objects

Overview of Session Objects..66
Directories ..66
Accessing the PTC Creo Parametric Interface ...69

This chapter describes how to program on the session level using J-Link .

65

Overview of Session Objects
The PTC Creo Parametric Session object (contained in the class
com.ptc.pfc.pfcSession.Session) is the highest level object in J-Link.
Any program that accesses data from PTC Creo Parametric must first get a handle
to the Session object before accessing more specific data.
The Session object contains methods to perform the following operations:

• Accessing models and windows (described in the Models and Windows
chapters).

• Working with the PTC Creo Parametric user interface.
• Allowing interactive selection of items within the session.
• Accessing global settings such as line styles, colors, and configuration options.
The following sections describe these operations in detail.

Directories
Methods Introduced:

• pfcSession.BaseSession.GetCurrentDirectory
• pfcSession.BaseSession.ChangeDirectory
The method pfcSession.BaseSession.GetCurrentDirectory
returns the absolute path name for the current working directory of PTC Creo
Parametric.
The method pfcSession.BaseSession.ChangeDirectory changes
PTC Creo Parametric to another working directory.

File Handling
Methods Introduced:

• pfcSession.BaseSession.ListFiles
• pfcSession.BaseSession.ListSubdirectories
The method pfcSession.BaseSession.ListFiles returns a list of files
in a directory, given the directory path. You can filter the list to include only files
of a particular type, as specified by the file extension.
Starting with Pro/ENGINEERWildfire 5.0 M040, the method
pfcSession.BaseSession.ListFiles can also list instance objects
when accessing PTC Windchill workspaces or folders. A PDM location (for
workspace or commonspace) must be passed as the directory path. The following
options have been added in the FileListOpt enumerated type:

66 PTC Creo® Parametric 3.0 J-Link User’s Guide

• FILE_LIST_ALL—Lists all the files. It may also include multiple versions
of the same file.

• FILE_LIST_LATEST—Lists only the latest version of each file.
• FILE_LIST_ALL_INST—Same as the FILE_LIST_ALL option. It returns

instances only for PDM locations.
• FILE_LIST_LATEST_INST—Same as the FILE_LIST_LATEST option.

It returns instances only for PDM locations.
The method pfcSession.BaseSession.ListSubdirectories returns
the subdirectories in a given directory location.

Configuration Options
Methods Introduced:

• pfcSession.BaseSession.GetConfigOptionValues
• pfcSession.BaseSession.SetConfigOption
• pfcSession.BaseSession.LoadConfigFile
You can access configuration options programmatically using the methods
described in this section.
Use the method pfcSession.BaseSession.GetConfigOptionValues
to retrieve the value of a specified configuration file option. Pass the Name of the
configuration file option as the input to this method. The method returns an array
of values that the configuration file option is set to. It returns a single value if the
configuration file option is not a multi-valued option. The method returns a null if
the specified configuration file option does not exist.
The method pfcSession.BaseSession.SetConfigOption is used to
set the value of a specified configuration file option. If the option is a multi-value
option, it adds a new value to the array of values that already exist.
The method pfcSession.BaseSession.LoadConfigFile loads an
entire configuration file into PTC Creo Parametric.

Macros
Method Introduced:

• pfcSession.BaseSession.RunMacro
The method pfcSession.BaseSession.RunMacro runs a macro string. A
J-Link macro string is equivalent to a PTC Creo Parametric mapkey minus the key
sequence and the mapkey name. To generate a macro string, create a mapkey in
PTC Creo Parametric. Refer to the PTC Creo Parametric online help for more
information about creating a mapkey.

Session Objects 67

Copy the Value of the generated mapkey Option from the Tools ▶▶ Options dialog
box. An example Value is as follows:
$F2 @MAPKEY_LABELtest;
~ Activate `main_dlg_cur` `ProCmdModelNew.file`;
~ Activate `new` `OK`;

The key sequence is $F2. The mapkey name is @MAPKEY_LABELtest. The
remainder of the string following the first semicolon is the macro string that
should be passed to the method pfcSession.BaseSession.RunMacro.
In this case, it is as follows:
~ Activate `main_dlg_cur` `ProCmdModelNew.file`;
~ Activate `new` `OK`;

Note
Creating or editing the macro string manually is not supported as the mapkeys
are not a supported scripting language. The syntax is not defined for users and
is not guaranteed to remain constant across different datecodes of PTC Creo
Parametric.

Macros are executed from synchronous mode only when control returns to PTC
Creo Parametric from the J-Link program. Macros in synchronous mode are
stored in reverse order (last in, first out).

Colors and Line Styles
Methods Introduced:

• pfcSession.BaseSession.SetStdColorFromRGB
• pfcSession.BaseSession.GetRGBFromStdColor
• pfcSession.BaseSession.SetTextColor
• pfcSession.BaseSession.SetLineStyle
These methods control the general display of a PTC Creo Parametric session.
Use the method pfcSession.BaseSession.SetStdColorFromRGB to
customize any of the PTC Creo Parametric standard colors.
To change the color of any text in the window, use the method
pfcSession.BaseSession.SetTextColor.
To change the appearance of nonsolid lines (for example, datums) use the method
pfcSession.BaseSession.SetLineStyle.

68 PTC Creo® Parametric 3.0 J-Link User’s Guide

Accessing the PTC Creo Parametric
Interface
The Session object has methods that work with the PTC Creo Parametric
interface. These methods provide access to the menu bar and message window.
For more information on accessing menus, refer to the chapter Menus,
Commands, and Pop-up Menus on page 97.

The Text Message File
A text message file is where you define strings that are displayed in the PTC Creo
Parametric user interface. This includes the strings on the command buttons that
you add to the PTC Creo Parametric number, the help string that displays when
the user’s cursor is positioned over such a command button, and text strings that
you display in the Message Window. You have the option of including a
translation for each string in the text message file.

Restrictions on the Text Message File
You must observe the following restrictions when you name your message file:

• The name of the file must be 30 characters or less, including the extension.
• The name of the file must contain lower case characters only.
• The file extension must be three characters.
• The version number must be in the range 1 to 9999.
• All message file names must be unique, and all message key strings must be

unique across all applications that run with PTC Creo Parametric. Duplicate
message file names or message key strings can cause PTC Creo Parametric to
exhibit unexpected behavior. To avoid conflicts with the names of PTC Creo
Parametric or foreign application message files or message key strings, PTC
recommends that you choose a prefix unique to your application, and prepend
that prefix to each message file name and each message key string
corresponding to that application

Note
Message files are loaded into PTC Creo Parametric only once during a
session. If you make a change to the message file while PTC Creo Parametric
is running you must exit and restart PTC Creo Parametric before the change
will take effect.

Session Objects 69

Contents of the Message File
The message file consists of groups of four lines, one group for each message you
want to write. The four lines are as follows:

1. A string that acts as the identifier for the message. This keyword must be
unique for all PTC Creo Parametric messages.

2. The string that will be substituted for the identifier.

This string can include placeholders for run-time information stored in a
stringseq object (shown in Writing Messages to the Message Window).

3. The translation of the message into another language (can be blank).
4. An intentionally blank line reserved for future extensions.

Writing a Message Using a Message Pop-up Dialog
Box
Method Introduced:

• pfcSession.Session.UIShowMessageDialog
The method pfcSession.Session.UIShowMessageDialog displays the
UI message dialog. The input arguments to the method are:

• Message—The message text to be displayed in the dialog.
• Options—An instance of the pfcUI.MessageDialogOptions

containing other options for the resulting displayed message. If this is not
supplied, the dialog will show a default message dialog with an Info
classification and an OK button. If this is not to be null, create an instance of
this options type with pfcUI.pfcUI.MessageDialogOptions_
Create(). You can set the following options:

○ Buttons—Specifies an array of buttons to include in the dialog. If not
supplied, the dialog will include only the OK button. Use the method
pfcUI.MessageDialogOptions.SetButtons to set this option.

○ DefaultButton—Specifies the identifier of the default button for the
dialog box. This must match one of the available buttons. Use the method
pfcUI.MessageDialogOptions.SetDefaultButton to set this
option.

○ DialogLabel—The text to display as the title of the dialog box. If not
supplied, the label will be the english string Info. Use the method
pfcUI.MessageDialogOptions.SetDialogLabel to set this
option.

○ MessageDialogType—The type of icon to be displayed with the
dialog box (Info, Prompt, Warning, or Error). If not supplied, an Info icon is

70 PTC Creo® Parametric 3.0 J-Link User’s Guide

used. Use the method
pfcUI.MessageDialogOptions.SetMessageDialogType to
set this option.

Accessing the Message Window
The following sections describe how to access the message window using J-Link.
The topics are as follows:

• Writing Messages to the Message Window on page 71
• Writing Messages to an Internal Buffer on page 71

Writing Messages to the Message Window
Methods Introduced:

• pfcSession.Session.UIDisplayMessage
• pfcSession.Session.UIDisplayLocalizedMessage
• pfcSession.Session.UIClearMessage
These methods enable you to display program information on the screen.
The input arguments to the methods
pfcSession.Session.UIDisplayMessage and
pfcSession.Session.UIDisplayLocalizedMessage include the
names of the message file, a message identifier, and (optionally) a stringseq
object that contains upto 10 pieces of run-time information. For
pfcSession.Session.UIDisplayMessage, the strings in the
stringseq are identified as %0s, %1s, ... %9s based on their location in the
sequence. For pfcSession.Session.UIDisplayLocalizedMessage,
the strings in the stringseq are identified as %0w, %1w, ... %9w based on their
location in the sequence. To include other types of run-time data (such as integers
or reals) you must first convert the data to strings and store it in the string
sequence.

Writing Messages to an Internal Buffer
Methods Introduced:

• pfcSession.BaseSession.GetMessageContents
• pfcSession.BaseSession.GetLocalizedMessageContents
The methods pfcSession.BaseSession.GetMessageContents and
pfcSession.BaseSession.GetLocalizedMessageContents enable
you to write a message to an internal buffer instead of the PTC Creo Parametric
message area.

Session Objects 71

These methods take the same input arguments and perform exactly the same
argument substitution and translation as the
pfcSession.Session.UIDisplayMessage and
pfcSession.Session.UIDisplayLocalizedMessage methods
described in the previous section.

Message Classification
Messages displayed in J-Link include a symbol that identifies the message type.
Every message type is identified by a classification that begins with the characters
%C. A message classification requires that the message key line (line one in the
message file) must be preceded by the classification code.

Note
Any message key string used in the code should not contain the classification.

J-Link applications can now display any or all of the following message symbols:

• Prompt—This J-Link message is preceded by a green arrow. The user must
respond to this message type. Responding includes, specifying input
information, accepting the default value offered, or canceling the application.
If no action is taken, the progress of the application is halted. A response may
either be textual or a selection. The classification for Prompt messages is %CP

• Info—This J-Link message is preceded by a blue dot. Info message types
contain information such as user requests or feedback from J-Link or PTC
Creo Parametric. The classification for Info messages is %CI

Note
Do not classify messages that display information regarding problems with
an operation or process as Info. These types of messages must be
classified as Warnings.

• Warning—This J-Link message is preceded by a triangle containing an
exclamation point. Warning message types contain information to alert users
to situations that could potentially lead to an error during a later stage of the
process. Examples of warnings could be a process restriction or a suspected
data problem. AWarning will not prevent or interrupt a process. Also, a
Warning should not be used to indicate a failed operation. Warnings must only
caution a user that the completed operation may not have been performed in a
completely desirable way. The classification for Warning messages is %CW

72 PTC Creo® Parametric 3.0 J-Link User’s Guide

• Error—This J-Link message is preceded by a a broken square. An Error
message informs the user that a required task was not completed successfully.
Depending on the application, a failed task may or may not require
intervention or correction before work can continue. Whenever possible
redress this situation by providing a path. The classification for Error
messages is %CE

• Critical—This J-Link message is preceded by a red X. A Critical message
type informs the user of an extremely serious situation that is usually
preceeded by loss of user data. Options redressing this situation, if available,
should be provided within the message. The classification for a Critical
messages is %CC

Example Code: Writing a Message
The sample code in the file pfcSessionExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples demonstrates how
to write a message to the message window. The program uses the message file
mymessages.txt.

Reading Data from the Message Window
Methods Introduced:

• pfcSession.Session.UIReadIntMessage
• pfcSession.Session.UIReadRealMessage
• pfcSession.Session.UIReadStringMessage
These methods enable a program to get data from the user.
The pfcSession.Session.UIReadIntMessage and
pfcSession.Session.UIReadRealMessage methods contain optional
arguments that can be used to limit the value of the data to a certain range.
The method pfcSession.Session.UIReadStringMessage includes an
optional Boolean argument that specifies whether to echo characters entered onto
the screen. You would use this argument when prompting a user to enter a
password.

Displaying Feature Parameters
Method Introduced:

• pfcSession.Session.UIDisplayFeatureParams
The methodpfcSession.Session.UIDisplayFeatureParams forces
PTC Creo Parametric to show dimensions or other parameters stored on a specific
feature. The displayed dimensions may then be interactively selected by the user.

Session Objects 73

File Dialogs
Methods Introduced:

• pfcSession.Session.UIOpenFile
• pfcUI.pfcUI.FileOpenOptions_Create
• pfcUI.FileOpenOptions.SetFilterString
• pfcUI.FileOpenOptions.SetPreselectedItem
• pfcUI.FileUIOptions.SetDefaultPath
• pfcUI.FileUIOptions.SetDialogLabel
• pfcUI.FileUIOptions.SetShortcuts
• pfcUI.pfcUI.FileOpenShortcut_Create
• pfcUI.FileOpenShortcut.SetShortcutName
• pfcUI.FileOpenShortcut.SetShortcutPath
• pfcSession.Session.UISaveFile
• pfcUI.pfcUI.FileSaveOptions_Create
• pfcSession.Session.UISelectDirectory
• pfcUI.pfcUI.DirectorySelectionOptions_Create
The method pfcSession.Session.UIOpenFile opens the relevant dialog
box for browsing directories and opening files. The method lets you specify
several options through the input arguments pfcUI.FileOpenOptions and
pfcUI.FileUIOptions.
Use the method pfcUI.pfcUI.FileOpenOptions_Create to create a
new instance of the pfcUI.FileOpenOptions object. This object contains
the following options:

• FilterString—Specifies the filter string for the type of file accepted by
the dialog box. Multiple file types should be listed with wildcards and
separated by commas, for example, *.prt, *.asm, *.txt, *.avi, and so
on. Use the method pfcUI.FileOpenOptions.SetFilterString to
set this option.

• PreselectedItem—Specifies the name of an item to preselect in the
dialog box. Use the method
pfcUI.FileOpenOptions.SetPreselectedItem to set this option.

The pfcUI.FileUIOptions object contains the following options:

74 PTC Creo® Parametric 3.0 J-Link User’s Guide

• DefaultPath—Specifies the name of the path to be opened by default in
the dialog box. Use the method
pfcUI.FileUIOptions.SetDefaultPath to set this option.

• DialogLabel—Specifies the title of the dialog box. Use the method
pfcUI.FileUIOptions.SetDialogLabel to set this option.

• Shortcuts—Specifies an array of file shortcuts of the type
pfcUI.FileOpenShortcut. Create this object using the method
pfcUI.FileOpenShortcut_Create. This object contains the following
attributes:

○ ShortcutName—Specifies the name of shortcut path to be made
available in the dialog box.

○ ShortcutPath—Specifies the string for the shortcut path.

Use the method pfcUI.FileUIOptions.SetShortcuts to set the
array of file shortcuts.

The method pfcSession.Session.UIOpenFile returns the file selected
by you. The application must use other methods or techniques to perform the
desired action on the file.
The method pfcSession.Session.UISaveFile opens the relevant dialog
box for saving a file. The method accepts options similar to
pfcSession.Session.UIOpenFile through the
pfcUI.FileSaveOptions and pfcUI.FileUIOptions objects. Use the
method pfcUI.pfcUI.FileSaveOptions_Create to create a new
instance of the pfcUI.FileSaveOptions object. When using the Save dialog
box, you can set the name to a non-existent file. The method
pfcSession.Session.UISaveFile returns the name of the file selected
by you; the application must use other methods or techniques to perform the
desired action on the file.
The method pfcSession.Session.UISelectDirectory prompts the
user to select a directory using the PTC Creo Parametric dialog box for browsing
directories. The method accepts options through the
pfcUI.DirectorySelectionOptions object which is similar to the
pfcUI.FileUIOptions object (described for the method
pfcSession.Session.UIOpenFile). Specify the default directory path,
the title of the dialog box, and a set of shortcuts to other directories to start
browsing. If the default path is specified as NULL, the current directory is used.
Use the method pfcUI.pfcUI.DirectorySelectionOptions_Create
to create a new instance of the pfcUI.DirectorySelectionOptions
object. The method pfcSession.Session.UISelectDirectory returns
the selected directory path; the application must use other methods or techniques
to perform other relevant tasks with this selected path.

Session Objects 75

Customizing the PTC Creo Parametric Navigation
Area
The PTC Creo Parametric navigation area includes the Model and Layer Tree
pane, Folder browser pane, and Favorites pane. The methods described in this
section enable J-Link applications to add custom panes that contain Web pages to
the PTC Creo Parametric navigation area.

Adding Custom Web Pages
To add custom Web pages to the navigation area, the J-Link application must:

1. Add a new pane to the navigation area.
2. Set an icon for this pane.
3. Set the URL of the location that will be displayed in the pane.
Methods Introduced:

• pfcSession.Session.NavigatorPaneBrowserAdd
• pfcSession.Session.NavigatorPaneBrowserIconSet
• pfcSession.Session.NavigatorPaneBrowserURLSet
The method pfcSession.Session.NavigatorPaneBrowserAdd adds a
new pane that can display a Web page to the navigation area. The input parameters
are:

• PaneName—Specify a unique name for the pane. Use this name in
susbsequent calls to
pfcSession.Session.NavigatorPaneBrowserIconSet and
pfcSession.Session.NavigatorPaneBrowserURLSet.

• IconFileName—Specify the name of the icon file, including the extension. A
valid format for the icon file is the PTC-proprietary format used by PTC Creo
Parametric .BIF, .GIF, .JPG, or .PNG. The new pane is displayed with the
icon image. If you specify the value as NULL, the default PTC Creo
Parametric icon is used.

The default search paths for finding the icons are:

○ <creo_loadpoint>\<datecode>\Common Files\text\
resource

○ <Application text dir>\resource

○ <Application text dir>\<language>\resource

The location of the application text directory is specified in the registry file.
• URL—Specify the URL of the location to be accessed from the pane.

76 PTC Creo® Parametric 3.0 J-Link User’s Guide

Use the method
pfcSession.Session.NavigatorPaneBrowserIconSet to set or
change the icon of a specified browser pane in the navigation area.
Use the method
pfcSession.Session.NavigatorPaneBrowserURLSet to change the
URL of the page displayed in the browser pane in the navigation area.

Session Objects 77

7
Selection

Interactive Selection ..80
Accessing Selection Data ..81
Programmatic Selection...83
Selection Buffer...84

This chapter describes how to use Interactive Selection in J-Link.

79

Interactive Selection
Methods Introduced:

• pfcSession.BaseSession.Select
• pfcSelect.pfcSelect.SelectionOptions_Create
• pfcSelect.SelectionOptions.SetMaxNumSels
• pfcSelect.SelectionOptions.SetOptionKeywords
The method pfcSession.BaseSession.Select activates the standard
PTC Creo Parametric menu structure for selecting objects and returns a
pfcSelect.Selections sequence that contains the objects the user selected.
Using the Options argument, you can control the type of object that can be
selected and the maximum number of selections.
In addition, you can pass in a pfcSelect.Selections sequence to the
method. The returned pfcSelect.Selections sequence will contain the
input sequence and any new objects.
The methods pfcSelect.pfcSelect.SelectionOptions_Create
pfcSelect.SelectionOptions.SetOptionKeywords take a String
argument made up of one or more of the identifiers listed in the table below,
separated by commas.
For example, to allow the selection of features and axes, the arguments would be
feature, axis.
PTC Creo Parametric
Database Item

String Identifier ModelItemType

Datum point point ITEM_POINT

Datum axis axis ITEM_AXIS

Datum plane datum ITEM_SURFACE

Coordinate system datum csys ITEM_COORD_SYS

Feature feature ITEM_FEATURE

Edge (solid or datum surface) edge ITEM_EDGE

Edge (solid only) sldedge ITEM_EDGE

Edge (datum surface only) qltedge ITEM_EDGE

Datum curve curve ITEM_CURVE

Composite curve comp_crv ITEM_CURVE

Surface (solid or quilt) surface ITEM_SURFACE

Surface (solid) sldface ITEM_SURFACE

Surface (datum surface) qltface ITEM_SURFACE

Quilt dtmqlt ITEM_QUILT

Dimension dimension ITEM_DIMENSION

Reference dimension ref_dim ITEM_REF_DIMENSION

Integer parameter ipar ITEM_DIMENSION

Part part N/A
Part or subassembly prt_or_asm N/A

80 PTC Creo® Parametric 3.0 J-Link User’s Guide

PTC Creo Parametric
Database Item

String Identifier ModelItemType

Assembly component model component N/A
Component or feature membfeat ITEM_FEATURE

Detail symbol dtl_symbol ITEM_DTL_SYM_INSTANCE

Note any_note ITEM_NOTE, ITEM_DTL_NOTE
Draft entity draft_ent ITEM_DTL_ENTITY

Table dwg_table ITEM_TABLE

Table cell table_cell ITEM_TABLE

Drawing view dwg_view N/A

When you specify the maximum number of selections, the argument to
pfcSelect.SelectionOptions.SetMaxNumSels must be an Integer.
The code will be as follows:
sel_options.setMaxNumSels (new Integer (10));

The default value assigned when creating a SelectionOptions object is –1,
which allows any number of selections by the user.

Accessing Selection Data
MethodsIntroduced:

• pfcSelect.Selection.GetSelModel
• pfcSelect.Selection.GetSelItem
• pfcSelect.Selection.GetPath
• pfcSelect.Selection.GetParams
• pfcSelect.Selection.GetTParam
• pfcSelect.Selection.GetPoint
• pfcSelect.Selection.GetDepth
• pfcSelect.Selection.GetSelView2D
• pfcSelect.Selection.GetSelTableCell
• pfcSelect.Selection.GetSelTableSegment
These methods return objects and data that make up the selection object. Using the
appropriate methods, you can access the following data:

• For a selected model or model item use
pfcSelect.Selection.GetSelModel or
pfcSelect.Selection.GetSelItem.

• For an assembly component use pfcSelect.Selection.GetPath.
• For UV parameters of the selection point on a surface use

pfcSelect.Selection.GetParams.

Selection 81

• For the T parameter of the selection point on an edge or curve use
pfcSelect.Selection.GetTParam.

• For a three-dimensional point object that contains the selected point use
pfcSelect.Selection.GetPoint.

• For selection depth, in screen coordinates use
pfcSelect.Selection.GetDepth.

• For the selected drawing view, if the selection was from a drawing, use
pfcSelect.Selection.GetSelView2D.

• For the selected table cell, if the selection was from a table, use
pfcSelect.Selection.GetSelTableCell.

• For the selected table segment, if the selection was from a table, use
pfcSelect.Selection.GetSelTableSegment.

Controlling Selection Display
Methods Introduced:

• pfcSelect.Selection.Highlight
• pfcSelect.Selection.UnHighlight
• pfcSelect.Selection.Display
These methods cause a specific selection to be highlighted or dimmed on the
screen using the color specified as an argument.
The method pfcSelect.Selection.Highlight highlights the selection in
the current window. This highlight is the same as the one used by PTC Creo
Parametric when selecting an item—it just repaints the wire-frame display in the
new color. The highlight is removed if you use the View, Repaint command or
pfcWindow.Window.Repaint; it is not removed if you use
pfcWindow.Window.Refresh.
The method pfcSelect.Selection.UnHighlight removes the highlight.
The method pfcSelect.Selection.Display causes a selected object to
be displayed on the screen, even if it is suppressed or hidden.

Note
This is a one-time action and the next repaint will erase this display.

82 PTC Creo® Parametric 3.0 J-Link User’s Guide

Example Code: Using Interactive Selection
The sample code in the file pfcSessionExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples demonstrates how
to use J-Link to allow interactive selection.

Programmatic Selection
J-Link provides methods whereby you can make your own Selection objects,
without prompting the user. These Selections are required as inputs to some
methods and can also be used to highlight certain objects on the screen.
Methods Introduced:

• pfcSelect.pfcSelect.CreateModelItemSelection
• pfcSelect.pfcSelect.CreateComponentSelection
• pfcSelect.pfcSelect.CreateSelectionFromString
• pfcSelect.Selection.SetSelItem
• pfcSelect.Selection.SetPath
• pfcSelect.Selection.SetParams
• pfcSelect.Selection.SetTParam
• pfcSelect.Selection.SetPoint
• pfcSelect.Selection.SetSelTableCell
• pfcSelect.Selection.SetSelView2D
The method pfcSelect.pfcSelect.CreateModelItemSelection
creates a selection out of any model item object. It takes a
pfcModelItem.ModelItem and optionally a
pfcAssembly.ComponentPath object to identify which component in an
assembly the Selection Object belongs to.
The method pfcSelect.pfcSelect.CreateComponentSelection
creates a selection out of any component in an assembly. It takes a
pfcAssembly.ComponentPath object. For more information about
pfcAssembly.ComponentPath objects, see the section Getting a Solid
Object on page 176 in theSolid on page 175chapter.
The method pfcSelect.pfcSelect.CreateSelectionFromString
creates a new selection object, based on a Web.Link style selection string
specified as the input.
Some J-Link methods require more information to be set in the selection object.
The methods allow you to set the following:
The selected item using the method pfcSelect.Selection.SetSelItem.

Selection 83

The selected component path using the method
pfcSelect.Selection.SetPath.
The selected UV parameters using the method
pfcSelect.Selection.SetParams.
The selected T parameter (for a curve or edge), using the method
pfcSelect.Selection.SetTParam.
The selected XYZ point using the method
pfcSelect.Selection.SetPoint.
The selected table cell using the method
pfcSelect.Selection.SetSelTableCell.
The selected drawing view using the method
pfcSelect.Selection.SetSelView2D.

Selection Buffer

Introduction to Selection Buffers
Selection is the process of choosing items on which you want to perform an
operation. In PTC Creo Parametric, before a feature tool is invoked, the user can
select items to be used in a given tool's collectors. Collectors are like storage bins
of the references of selected items. The location where preselected items are
stored is called the selection buffer.
Depending on the situation, different selection buffers may be active at any one
time. In Part and Assembly mode, PTC Creo Parametric offers the default
selection buffer, the Edit selection buffer, and other more specialized buffers.
Other PTC Creo Parametric modes offer different selection buffers.
In the default Part and Assembly buffer there are two levels at which selection is
done:

• First Level Selection

Provides access to higher-level objects such as features or components. You
can make a second level selection only after you select the higher-level object.

• Second Level Selection

Provides access to geometric objects such as edges and faces.

Note
First-level and second-level objects are usually incompatible in the selection
buffer.

84 PTC Creo® Parametric 3.0 J-Link User’s Guide

J-Link allows access to the contents of the currently active selection buffer. The
available functions allow your application to:

• Get the contents of the active selection buffer.
• Remove the contents of the active selection buffer.
• Add to the contents of the active selection buffer.

Reading the Contents of the Selection Buffer
Methods Introduced:

• pfcSession.Session.GetCurrentSelectionBuffer()
• pfcSelect.SelectionBuffer.GetContents()
The method pfcSession.Session.GetCurrentSelectionBuffer
returns the selection buffer object for the current active model in session. The
selection buffer contains the items preselected by the user to be used by the
selection tool and popup menus.
Use the method pfcSelect.SelectionBuffer.GetContents to access
the contents of the current selection buffer. The method returns independent
copies of the selections in the selection buffer (if the buffer is cleared, this array is
still valid).

Removing the Items of the Selection Buffer
Methods Introduced:

• pfcSelect.SelectionBuffer.RemoveSelection
• pfcSelect.SelectionBuffer.Clear
Use the method pfcSelect.SelectionBuffer.RemoveSelection to
remove a specific selection from the selection buffer. The input argument is the
IndexToRemove specifies the index where the item was found in the call to the
method pfcSelect.SelectionBuffer.GetContents.
Use the method pfcSelect.SelectionBuffer.Clear to clear the
currently active selection buffer of all contents. After the buffer is cleared, all
contents are lost.

Adding Items to the Selection Buffer
Method Introduced:

• pfcSelect.SelectionBuffer.AddSelection
Use the method pfcSelect.SelectionBuffer.AddSelection to add
an item to the currently active selection buffer.

Selection 85

Note
The selected item must refer to an item that is in the current model such as its
owner, component path or drawing view.

This method may fail due to any of the following reasons:

• There is no current selection buffer active.
• The selection does not refer to the current model.
• The item is not currently displayed and so cannot be added to the buffer.
• The selection cannot be added to the buffer in combination with one or more

objects that are already in the buffer. For example: geometry and features
cannot be selected in the default buffer at the same time.

86 PTC Creo® Parametric 3.0 J-Link User’s Guide

8
Ribbon Tabs, Groups, and Menu

Items
Creating Ribbon Tabs, Groups, and Menu Items ..88
About the Ribbon Definition File..90
Localizing the Ribbon User Interface Created by the J-Link Applications........................93
Support for Legacy J-Link Applications..94
Migration of Legacy J-Link Applications...95

This chapter describes the J-Link support for the Ribbon User Interface (UI). It
also describes the impact of the ribbon user interface on legacy J-Link
applications and the procedure to place the commands, buttons, and menu items
created by the legacy applications in the PTC Creo Parametric ribbon user
interface. Refer to the PTC Creo Parametric Help for more information on the
ribbon user interface and the procedure to customize the ribbon.

87

Creating Ribbon Tabs, Groups, and Menu
Items
Customizations to the ribbon user interface using the J-Link applications are
supported through the Customize Ribbon tab in the Creo Parametric Options dialog
box. You can specify the user interface layout for a J-Link application and save
the layout definition in a ribbon definition file, toolkitribbonui.rbn. Set
the configuration option tk_enable_ribbon_custom_save to true
before customizing the ribbon user interface using the J-Link application. When
you run PTC Creo Parametric, the toolkitribbonui.rbn file is loaded
along with the J-Link application and the commands created by the J-Link
application appear in the ribbon user interface. Refer to the section About the
Ribbon Definition File on page 90 for more information on the
toolkitribbonui.rbn file.
You can customize the ribbon user interface only for a particular mode in PTC
Creo Parametric. For example, if you customize the ribbon user interface and save
it to the toolkitribbonui.rbn file in the Part mode, then on loading PTC
Creo Parametric the customized user interface will be visible only in the Part
mode. To view a particular tab or group in all the modes, you must customize the
ribbon user interface and save the toolkitribbonui.rbn file in each mode.
Refer to the PTC Creo Parametric Fundamentals Help for more information on
customizing the ribbon.

Note
You can add a new group to an existing tab or create a new tab using the
Customize Ribbon tab in the Creo Parametric Options dialog box. You will not
be able to modify the tabs or groups that are defined by PTC Creo Parametric.

Workflow to Add Menu Items to the Ribbon User
Interface

Note
The instructions explained below are applicable only if the application is
implemented in full asynchronous mode. This is because applications in
simple asynchronous mode cannot handle requests, that is, command
callbacks, from PTC Creo Parametric. Refer to the chapter on Asynchronous
Mode, for more information.

88 PTC Creo® Parametric 3.0 J-Link User’s Guide

Set the configuration option tk_enable_ribbon_custom_save to true
before customizing the ribbon user interface. The steps to add commands to the
PTC Creo Parametric ribbon user interface are as follows:
1. Create a J-Link application with complete command definition, which

includes specifying command label, help text, large icon name, and small icon
name. Designate the command using
pfcCommand.UICommand.Designate.

2. Start the J-Link application and ensure that it has started or connected to PTC
Creo Parametric. The commands created by the J-Link application will be
loaded in PTC Creo Parametric.

3. Click File ▶▶ Options. The Creo Parametric Options dialog box opens.
4. Click Customize Ribbon.
5. In the Customize the Ribbon list, select a tab and create a new group in it or

create a new tab and a group in it.
6. In the Choose commands from list, select TOOLKIT Commands. The

commands created by the J-Link application are displayed.
7. Click Add to add the commands to the new tab or group.
8. Click Import/Export ▶▶ Save the Auxilliary Application User Interface. The

changes are saved to the toolkitribbonui.rbn file. The
toolkitribbonui.rbn file is saved in the text folder specified in the J-
Link application registry file. For more information refer to the section on
Ribbon Definition File on page 90.

Note
The Save the Auxilliary Application User Interface button is enabled only if
you set the configuration option tk_enable_ribbon_custom_save
to true.

9. Click Apply. The custom settings are saved to the toolkitribbonui.rbn
file.

10. Reload the J-Link application or restart PTC Creo Parametric. The
toolkitribbonui.rbn file will be loaded along with the J-Link
application.

If translated messages are available for the newly added tabs or groups, then PTC
Creo Parametric displays the translated strings by searching for the same string
from the list of string based messages that are loaded. For more information refer
to the section on Localizing the Ribbon User Interface Created by the J-Link
Applications on page 93

Ribbon Tabs, Groups, and Menu Items 89

About the Ribbon Definition File
A ribbon definition file is a file that is created through the Customize Ribbon
interface in PTC Creo Parametric. This file defines the containers, that is, Tabs,
Group, or Cascade menus that are created by a particular J-Link application. It
contains information on whether to show an icon or label. It also contains the size
of the icon to be used, that is, a large icon (32X32) or a small icon (16x16).
The ribbon user interface displays the commands referenced in the ribbon
definition file only if the commands are loaded and are visible in that particular
PTC Creo Parametric mode. If translated messages are available for the newly
added tabs or groups, then PTC Creo Parametric displays the translated strings by
searching for the same string from the list of string based messages that are
loaded. For more information refer to the section on Localizing the Ribbon User
Interface Created by the J-Link Applications on page 93.
Set the configuration option tk_enable_ribbon_custom_save to true
before customizing the ribbon user interface. To save the ribbon user interface
layout definition to the toolkitribbonui.rbn file:
1. Click File ▶▶ Options. The Creo Parametric Options dialog box opens.
2. Click Customize Ribbon.
3. In the Customize the Ribbon list, select a tab and create a new group in it or

create a new tab and a group in it.
4. In the Choose commands from list, select TOOLKIT Commands. The

commands created by the J-Link application are displayed.
5. Click Add to add the commands to the new tab or group.
6. Click Import/Export ▶▶ Save the Auxilliary Application User Interface. The

modified layout is saved to the toolkitribbonui.rbn file located in the
text folder within the J-Link application directory, that is,
<application_dir>/text

Note
The Save the Auxilliary Application User Interface button is enabled only if
you set the configuration option tk_enable_ribbon_custom_save
to true.

7. Click OK.

Note
You cannot edit the toolkitribbonui.rbn file manually.

90 PTC Creo® Parametric 3.0 J-Link User’s Guide

To Specify the Path for the Ribbon Definition File
You can rename the toolkitribbonui.rbn to another filename with the
.rbn extension. To enable the J-Link application to read the ribbon definition file
having a name other than toolkitribbonui.rbn, it must be available at the
location <application_dir>/text/ribbon. The method introduced in
this section enables you to load the ribbon definition file from within a J-Link
application.
method Introduced:

• pfcSession.Session.RibbonDefinitionfileLoad
The method pfcSession.Session.RibbonDefinitionfileLoad
loads a specified ribbon definition file from a default path into the PTC Creo
Parametric application. The input argument is as follows:
• file_name - Specify the name of the ribbon definition file including its

extension. The default search path for this file is:
○ The working directory from where PTC Creo Parametric is loaded.
○ <application_text_dir>/ribbon

○ <application_text_dir>/language/ribbon

Note
◆ The location of the application text directory is specified in the J-Link

registry file.
◆ A J-Link application can load a ribbon definition file only once. After

the application has loaded the ribbon, calls made to the method
pfcSession.Session.RibbonDefinitionfileLoad to
load other ribbon definition files are ignored.

Loading Multiple Applications Using the Ribbon
Definition File
PTC Creo Parametric supports loading of multiple .rbn files in the same session.
You can develop multiple J-Link applications that share the same tabs or groups
and each application will have its own ribbon definition file. As each application
is loaded, its .rbn file will be read and applied. When an application is unloaded,
the containers and command created by its .rbn file will be removed.
For example, consider two J-Link applications, namely, pt_geardesign and
pt_examples that add commands to the same group on a tab on the Ribbon
user interface. The application pt_geardesign adds a command Pro/TOOLKIT
Gear Design to the Advanced Modeling group on the Modeling tab and the

Ribbon Tabs, Groups, and Menu Items 91

application pt_examples adds a command TKPart to the Advanced Modeling
group on the Model tab. The ribbon definition file for each application will contain
an instruction to create the Advanced Modeling group and if both the ribbon files
are loaded, the group will be created only once and the two ribbon customizations
will be merged into the same group.
That is, if both the applications are running in the same PTC Creo Parametric
session, then the commands, Pro/TOOLKIT Gear Design and TKPart will be
available under the Advanced Modeling group on the Model tab.

Note
The order in which the commands will be displayed within the group will
depend on the order of loading of the .rbn file for each application.

The following image displays commands added by two J-Link applications to the
same group.

To save the customization when multiple applications are loaded:
1. Click File ▶▶ Options. The Creo Parametric Options dialog box opens.
2. Click Customize Ribbon.
3. In the Customize the Ribbon list, select a tab and create a new group in it or

create a new tab and a group in it.
4. In the Choose commands from list, select TOOLKIT Commands. The

commands created by the J-Link application are displayed.
5. Click Add to add the commands to the new tab or group.
6. Click Import/Export ▶▶ Save the Auxilliary Application User Interface. The Save

UI Customization dialog box opens.
7. Select a J-Link application and Click Save. The modified layout is saved to the

.rbn file of the specified J-Link application.

92 PTC Creo® Parametric 3.0 J-Link User’s Guide

The Save UI Customization dialog box is shown in the following image:

Localizing the Ribbon User Interface
Created by the J-Link Applications
The labels for the custom tabs, groups, and cascade menus belonging to the J-Link
application can be translated in the languages supported by PTC Creo Parametric.
To display localized labels, specify the translated labels in the ribbonui.txt
file and save this file at the location <application_text_dir>/
<language>. For example, the text file for German locale must be saved at the
location <application_text_dir>/german/ribbonui.txt.
Create a file containing translations for each of the languages in which the J-Link
application is localized. The Localized translation files must use the UTF-8
encoding with BOM character for the translated text to be displayed correctly in
the user interface.
The format of the ribbonui.txt file is as shown below. Specify the following
lines for each label entry in the file:

1. A hash sign (#) followed by the label, as specified in the ribbon definition file.
2. The label as specified in the ribbon definition file and as displayed in the

ribbon user interface.
3. The translated label.
4. Add an empty line at the end of each label entry in the file.
For example, if the PTC Creo Parametric application creates a tab with the name
TK_TAB having a group with the name TK_GROUP, then the translated file will
contain the following:
#TK_TAB

Ribbon Tabs, Groups, and Menu Items 93

TK_TAB

<translation for TK_TAB>

<Empty_line>

#TK_GROUP

TK_GROUP

<translation for TK_GROUP>

<Empty_line>

Support for Legacy J-Link Applications
The user interface for Creo Parametric 1.0 has been restructured to a ribbon user
interface. This may affect the behavior of existing J-Link applications that were
designed to add commands to specific Pro/ENGINEER menus or toolbars. These
menus or toolbars or both have been redesigned in Creo Parametric 1.0. The
commands added by the J-Link applications appear on the PTC Creo Parametric
ribbon in the Home tab under the Pro/TK group. When you open a model, the Pro/
TK group is on the Tools tab.
You can also arrange the commands added by the J-Link applications under a new
tab or an existing tab by customizing the ribbon using the Customize Ribbon tab in
the Creo Parametric Options dialog box. For a list of all the commands added by
the J-Link applications, follow this procedure:
1. Click File ▶▶ Options. The Creo Parametric Options dialog box opens.
2. Click Customize Ribbon.
3. In the Choose commands from list, select TOOLKIT Commands. All the

commands added by legacy J-Link applications are listed.

Note
Commands that have not been designated will not have an icon or will have a
generic icon.

Refer to the PTC Creo Parametric Help for more information on customizing the
Ribbon.

94 PTC Creo® Parametric 3.0 J-Link User’s Guide

Migration of Legacy J-Link Applications
To migrate existing J-Link applications to the PTC Creo Parametric Ribbon user
interface without compiling the source code:
1. Load the J-Link applications in PTC Creo Parametric so that the commands

created in these applications are available in the Customize Ribbon user
interface.

2. Modify the ribbon user interface layout and save the changes to the
toolkitribbonui.rbn.

3. Copy the toolkitribbonui.rbn to the location <application_
text_dir>/ribbon.

4. Reload J-Link application or restart PTC Creo Parametric. The .rbn file will
be loaded along with the J-Link application and the commands will be visible
in the ribbon user interface if its accessibility will be visible.

Ribbon Tabs, Groups, and Menu Items 95

9
Menus, Commands, and Pop-up

Menus
Introduction...98
Menu Bar Definitions ...98
Menus Buttons and Menus...98
Designating Commands... 102
Pop-up Menus .. 104

This chapter describes the methods provided by J-Link to create and modify
menus, buttons, and pop-up menus in the PTC Creo Parametric user interface.
Refer to the chapter Ribbon Tabs, Groups, and Menu Items on page 87 for more
information. Also, refer to the PTC Creo Parametric Help for more information on
customizing the ribbon user interface.

97

Introduction
The J-Link classes enable you to supplement the PTC Creo Parametric ribbon user
interface.
Once the J-Link application is loaded, you can add a new group to an existing tab
or create a new tab using the Customize Ribbon tab in the Creo Parametric Options
dialog box in PTC Creo Parametric. You will not be able to modify the groups that
are defined by PTC Creo Parametric. If the translated messages are available for
the newly added tabs or groups, then PTC Creo Parametric will use them by
searching for the same string in the list of sting based messages loaded.
You can customize the ribbon user interface only for a particular mode in PTC
Creo Parametric. For example, if you customize the ribbon user interface and save
it to the toolkitribbonui.rbn file in the Part mode, then on loading PTC
Creo Parametric the customized user interface will be visible only in the Part
mode. To view a particular tab or group in all the modes, you must customize the
ribbon user interface and save the toolkitribbonui.rbn file in each mode.
Refer to the PTC Creo Parametric Fundamentals Help for more information on
customizing the ribbon.

Menu Bar Definitions
• Menu—A menu, such as the File menu, or a sub-menu, such as the Manage

File menu under the File menu.
• Menu button—A named item in a group or menu that is used to launch a set of

instructions.
• Pop-up menu—A menu invoked by selection of an item in the PTC Creo

Parametric graphics window.
• Command—A procedure in PTC Creo Parametric that may be activated from

a button.

Menus Buttons and Menus
The following methods enable you to add new menu buttons in any location on
the Ribbon user interface.
Methods Introduced:

• pfcSession.Session.UICreateCommand
• pfcSession.Session.UICreateMaxPriorityCommand
• pfcCommand.UICommandActionListener.OnCommand

98 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSession.Session.UICreateCommand creates a
pfcUICommand object that contains a
pfcCommand.UICommandActionListener. You should override the
pfcCommand.UICommandActionListener.OnCommand method with
the code that you want to execute when the user clicks a button.
The method pfcSession.Session.UICreateMaxPriorityCommand
creates a pfcUICommand object having maximum command priority. The
priority of the action refers to the level of precedence the added action takes over
other PTC Creo Parametric actions. Maximum priority actions dismiss all other
actions except asynchronous actions.
Maximum command priority should be used only in commands that open and
activate a new model in a window. Create all other commands using the method
pfcSession.Session.UICreateCommand.
The listener method pfcCommand.UICommandListener.OnCommand is
called when the command is activated in PTC Creo Parametric by pressing a
button.
Designate the command using the function
pfcCommand.UICommand.Designate and add a button to the ribbon user
interface using the using the Customize Ribbon tab in the Creo Parametric Options
dialog box. This operation binds the command to the button.

Finding PTC Creo Parametric Commands
This method enables you to find existing PTC Creo Parametric commands in
order to modify their behavior.
Method Introduced:

• pfcSession.Session.UIGetCommand
The method pfcSession.Session.UIGetCommand returns a
pfcCommand.UICommand object representing an existing PTC Creo
Parametric command. The method allows you to find the command ID for an
existing command so that you can add an access function or bracket function to
the command. You must know the name of the command in order to find its ID.
To find the name of an action command, click the corresponding icon on the
ribbon user interface and then check the last entry in the trail file. For example, for
the Save icon, the trail file will have the corresponding entry:
~ Command `ProCmdModelSave`

The action name for the Save icon is ProCmdModelSave. This string can be
used as input to pfcSession.Session.UIGetCommand to get the
command ID.

Menus, Commands, and Pop-up Menus 99

You can determine a command ID string for an option without an icon by
searching through the resource files located in the <creo_loadpoint>\
<datecode>\Common Files\text\resource directory. If you search for
the menu button name, the line will contain the corresponding action command
for the button.

Access Listeners for Commands
These methods allow you to apply an access listener to a command. The access
listener determines whether or not the command is visible at the current time in
the current session.
Methods Introduced:

• pfcBase.ActionSource.AddActionListener
• pfcCommand.UICommandAccessListener.OnCommandAccess
Use the method pfcBase.ActionSource.AddActionListener to
register a new pfcCommand.UICommandAccessListener on any
command (created either by an application or PTC Creo Parametric). This listener
will be called when buttons based on the command might be shown.
The listener method
pfcCommand.UICommandAccessListener.OnCommandAccess allows
you to impose an access function on a particular command. The method
determines if the action or command should be available, unavailable, or hidden.
The potential return values are listed in the enumerated type CommandAccess
and are as follows:

• ACCESS_REMOVE—The button is not visible and if all of the menu buttons in
the containing menu possess an access function returning ACCESS_REMOVE,
the containing menu will also be removed from the PTC Creo Parametric user
interface..

• ACCESS_INVISIBLE—The button is not visible.
• ACCESS_UNAVAILABLE—The button is visible, but gray and cannot be

selected.
• ACCESS_DISALLOW—The button shows as available, but the command will

not be executed when it is chosen.
• ACCESS_AVAILABLE—The button is not gray and can be selected by the

user. This is the default value.

100 PTC Creo® Parametric 3.0 J-Link User’s Guide

Example 1: Command Access Listeners
The sample code in the file pfcCommandExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples demonstrates the
usage of the access listener method for a particular command. The
CommandAccessOnCommandAccess function returns ACCESS_
UNAVAILABLE that disables button associated with the command, if the model is
not present or if it is not of type PART. Else, the function returns ACCESS_
AVAILABLE that enables button associated with the command.

Bracket Listeners for Commands
These methods allow you to apply a bracket listener to a command. The bracket
listener is called before and after the command runs, which allows your
application to provide custom logic to execute whenever the command is selected.
Methods Introduced:

• pfcBase.ActionSource.AddActionListener
• pfcCommand.UICommandBracketListener.OnBeforeCommand
• pfcCommand.UICommandBracketListener.OnAfterCommand
Use the method pfcBase.ActionSource.AddActionListener to
register a new pfcCommand.UICommandBracketListener on any
command (created either by an application or PTC Creo Parametric. This listener
will be called when the command is selected by the user.
The listener methods
pfcCommand.UICommandBracketListener.OnBeforeCommand and
pfcCommand.UICommandBracketListener.OnAfterCommand allow
the creation of functions that will be called immediately before and after execution
of a given command. These methods are used to add the business logic to the start
or end (or both) of an existing PTC Creo Parametric command.
The method
pfcCommand.UICommandBracketListener.OnBeforeCommand could
also be used to cancel an upcoming command. To do this, throw a
pfcExceptions.XCancelProEAction exception from the body of the
listener method using pfcExceptions.XCancelProEAction.Throw.

Example 2: Bracket Listeners
The sample code in the file pfcCommandExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples demonstrates the
usage of the bracket listener methods that are called before and after when the user
tries to rename the model. If the model contains a certain parameter, the rename
attempt will be aborted by this listener.

Menus, Commands, and Pop-up Menus 101

Designating Commands
Using J-Link you can designate PTC Creo Parametric commands. These
commands can later appear in the PTC Creo Parametric ribbon user interface.
To add a command you must:

1. Define or add the command to be initiated on clicking the icon in the J-Link
application.

2. Optionally designate an icon button to be used with the command.
3. Designate the command to appear in the Customize Ribbon tab in the Creo

Parametric Options dialog box.

Note
Refer to the chapter on Ribbon Tabs, Groups, and Menu Items on page 87
for more information. Also, refer to the PTC Creo Parametric Parametic
Help for more information on customizing the Ribbon User Interface.

4. Save the configuration in PTC Creo Parametric so that changes to the ribbon
user interface appear when a new session of PTC Creo Parametric is started.

Command Icons
Method Introduced:

• pfcCommand.UICommand.SetIcon
The method pfcCommand.UICommand.SetIcon allows you to designate an
icon to be used with the command you created. The method adds the icon to the
PTC Creo Parametric command. Specify the name of the icon file, including the
extension as the input argument for this method. A valid format for the icon file is
a standard .GIF, .JPG, or.PNG. PTC recommends using .PNG format. All
icons in the Creo Parametric ribbon are either 16x16 (small) or 32x32 (large)
size. The naming convention for the icons is as follows:
• Small icon—<iconname.ext>

• Large icon—<iconname_large.ext>

102 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
• The legacy naming convention for icons <icon_name_icon_size.ext>

will not be supported in future releases of PTC Creo Parametric. The icon size
was added as a suffix to the name of the icon. For example, the legacy naming
convention for small icons was iconname16X16.ext. It is recommended
to use the standard naming conventions for icons, that is, iconname.ext or
iconname_large.ext.

• While specifying the name of the icon file, do not specify the full path to the
icon names.

The application searches for the icon files in the following locations:

• <creo_loadpoint>\<datecode>\Common Files\text\
resource

• <Application text dir>\resource

• <Application text dir>\<language>\resource

The location of the application text directory is specified in the registry file.
Commands that do not have an icon assigned to them display the button label.
You may also use this method to assign a small icon to a button. The icon appears
to the left of the button label.

Designating the Command
Method Introduced:

• pfcCommand.UICommand.Designate
This method allows you designate the command as available in the Customize
Ribbon tab in the Creo Parametric Options dialog of PTC Creo Parametric. After a
J-Link application has used the method
pfcCommand.UICommand.Designate on a command, can add the button
associated with this command into the PTC Creo Parametric ribbon user interface.
If this method is not called, the button will not be visible in the Toolkit Commands
list in the Customize Ribbon tab in the Creo Parametric Options dialog of PTC
Creo Parametric.
The arguments to this method are:

• Label—The message string that refers to the icon label. This label (stored in
the message file) identifies the text seen when the button is displayed. If the

Menus, Commands, and Pop-up Menus 103

command is not assigned an icon, the button label string appears on the toolbar
button by default.

• Help—The one-line Help for the icon. This label (stored in the message file)
identifies the help line seen when the mouse moves over the icon.

• Description—The message appears in the Customize Ribbon tab in the Creo
Parametric Options dialog box and also when Description is clicked in PTC
Creo Parametric.

• MessageFile—The message file name. All the labels including the one-line
Help labels must be present in the message file.

Note
This file must be in the directory <text_path>/text or <text_
path>/text/<language>.

Placing the Button
Once the button has been created using the methods discussed, place the button on
the PTC Creo Parametric ribbon user interface. Refer to the chapter on Ribbon
Tabs, Groups, and Menu Items on page 87 for more information. Also, refer to the
PTC Creo Parametric Parametic Help for more information on customizing the
Ribbon User Interface.

Pop-up Menus
PTC Creo Parametric provides shortcut menus that contain frequently used
commands appropriate to the currently selected items. You can access a shortcut
menu by right-clicking a selected item. Shortcut menus are accessible in:

• Graphics window
• Model Tree
• Some dialog boxes
• Any area where you can perform an object-action operation by selecting an

item and choosing a command to perform on the selected item.
The methods described in this section allow you to add menus to a graphics
window pop-up menu.

104 PTC Creo® Parametric 3.0 J-Link User’s Guide

Adding a Pop-up Menu to the Graphics Window
You can activate different pop-up menus during a given session of PTC Creo
Parametric. Every time the PTC Creo Parametric context changes when you open
a different model type, enter different tools or special modes such as Edit, a
different pop-up menu is created. When PTC Creo Parametric moves to the next
context, the pop-up menu may be destroyed.
As a result of this, J-Link applications must attach a button to the pop-up menu
during initialization of the pop-up menu. The J-Link application is notified each
time a particular pop-up menu is created, which then allows the user to add to the
pop-up menu.
Use the following procedure to add items to pop-up menus in the graphics
window:

1. Obtain the name of the existing pop-up menus to which you want to add a new
menu using the trail file.

2. Create commands for the new pop-up menu items.
3. Implement access listeners to provide visibility information for the items.
4. Add an action listener to the session to listen for pop-up menu initialization.
5. In the listener method, if the pop-up menu is the correct menu to which you

wish to add the button, then add it.
The following sections describe each of these steps in detail. You can add push
buttons and cascade menus to the pop-up menus. You can add pop-up menu items
only in the active window. You cannot use this procedure to remove items from
existing menus.

Using the Trail File to Determine Existing Pop-up
Menu Names
The trail file in PTC Creo Parametric contains a comment that identifies the name
of the pop-up menu if the configuration option, auxapp_popup_menu_info
is set to yes.
For example, the pop-up menu, Edit Properties, has the following comment in the
trail file:
~ Close `rmb_popup` `PopupMenu`
~ Activate `rmb_popup` `EditProperties`
!Command ProCmdEditPropertiesDtm was pushed from the software.
!Item was selected from popup menu 'popup_mnu_edit'

Listening for Pop-up Menu Initialization
Methods Introduced:

Menus, Commands, and Pop-up Menus 105

• pfcBase.ActionSource.AddActionListener
• pfcUI.PopupmenuListener.OnPopupmenuCreate
Use the method pfcBase.ActionSource.AddActionListener to
register a new pfcUI.PopupmenuListener to the session. This listener will
be called when pop-up menus are initialized.
The method pfcUI.PopupmenuListener.OnPopupmenuCreate is
called after the pop-up menu is created internally in PTC Creo Parametric and
may be used to assign application-owned buttons to the pop-up menu.

Accessing the Pop-up Menus
The method described in this section provides the name of the pop-up menus used
to access these menus while using other methods.
Method Introduced:

• pfcUI.Popupmenu.GetName
The method pfcUI.Popupmenu.GetName() returns the name of the pop-up
menu.

Adding Content to the Pop-up Menus
Methods Introduced:

• pfcUI.Popupmenu.AddButton
• pfcUI.Popupmenu.AddMenu
Use pfcUI.Popupmenu.AddButton to add a new item to a pop-up menu.
The input arguments are:

• Command—Specifies the command associated with the pop-up menu.
• Options – A pfcUI.PopupmenuOptions object containing other options

for the method. The options that may be included are:

○ PositionIndex—Specifies the position in the pop-up menu at which
to add the menu button. Pass null to add the button to the bottom of the
menu. Use the method
pfcUI.PopupmenuOptions.SetPositionIndex to set this
option.

○ Name—Specifies the name of the added button. The button name is placed
in the trail file when the user selects the menu button. Use the method
pfcUI.PopupmenuOptions.SetName to set this option.

106 PTC Creo® Parametric 3.0 J-Link User’s Guide

○ SetLabel—Specifies the button label. This label identifies the text
displayed when the button is displayed. Use the method
pfcUI.PopupmenuOptions.SetLabel to set this option.

○ Helptext—Specifies the help message associated with the button. Use
the method pfcUI.PopupmenuOptions.SetHelptext to set this
option.

Use the method pfcUI.Popupmenu.AddMenu to add a new cascade menu to
an existing pop-up menu.
The argument for this method is a pfcUI.PopupmenuOptions object, whose
members have the same purpose as described for newly added buttons. This
method returns a new pfcUI.Popupmenu object to which you may add new
buttons.

Example 3: Creating a Pop-up Menu
The sample code in the file pfcPopupExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples demonstrates the
usage of UI functions to add a new model tree pop-up menu.

Menus, Commands, and Pop-up Menus 107

10
Models

Overview of Model Objects... 110
Getting a Model Object .. 110
Model Descriptors ... 110
Retrieving Models ... 112
Model Information ... 112
Model Operations.. 116
Running PTC Creo ModelCHECK... 117

This chapter describes how to program on the model level using J-Link.

109

Overview of Model Objects
Models can be any PTC Creo Parametric file type, including parts, assemblies,
drawings, sections, and notebook. The classes and methods in the package
com.ptc.pfc.pfcModel provide generic access to models, regardless of
their type. The available methods enable you to do the following:

• Access information about a model.
• Open, copy, rename, and save a model.

Getting a Model Object
Methods Introduced:

• pfcFamily.FamilyTableRow.CreateInstance
• pfcSelect.Selection.GetSelModel
• pfcSession.BaseSession.GetModel
• pfcSession.BaseSession.GetCurrentModel
• pfcSession.BaseSession.GetActiveModel
• pfcSession.BaseSession.ListModels
• pfcSession.BaseSession.GetByRelationId
• pfcWindow.Window.GetModel
These methods get a model object that is already in session.
The method pfcSelect.Selection.GetSelModel returns the model that
was interactively selected.
The method pfcSession.BaseSession.GetModel returns a model based
on its name and type, whereas
pfcSession.BaseSession.GetByRelationId returns a model in an
assembly that has the specified integer identifier.
The method pfcSession.BaseSession.GetCurrentModel returns the
current active model.
The method pfcSession.BaseSession.GetActiveModel returns the
active PTC Creo Parametric model.
Use the method pfcSession.BaseSession.ListModels to return a
sequence of all the models in session.
For more methods that return solid models, refer to the chapter Solid on page 175.

Model Descriptors
Methods Introduced:

110 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcModel.pfcModel.ModelDescriptor_Create
• pfcModel.pfcModel.ModelDescriptor_CreateFromFileName
• pfcModel.ModelDescriptor.SetGenericName
• pfcModel.ModelDescriptor.SetInstanceName
• pfcModel.ModelDescriptor.SetType
• pfcModel.ModelDescriptor.SetHost
• pfcModel.ModelDescriptor.SetDevice
• pfcModel.ModelDescriptor.SetPath
• pfcModel.ModelDescriptor.SetFileVersion
• pfcModel.ModelDescriptor.GetFullName
• pfcModel.Model.GetFullName
Model descriptors are data objects used to describe a model file and its location in
the system. The methods in the model descriptor enable you to set specific
information that enables PTC Creo Parametric to find the specific model you
want.
The static utility method pfcModel.pfcModel.ModelDescriptor_
Create allows you to specify as data to be entered a model type, an instance
name, and a generic name. The model descriptor constructs the full name of the
model as a string, as follows:
String FullName = InstanceName+"<"+GenericName+">";

// As long as the
// generic name is
// not an empty
// string ("")

If you want to load a model that is not a family table instance, pass an empty
string as the generic name argument so that the full name of the model is
constructed correctly. If the model is a family table interface, you should specify
both the instance and generic names.

Note
You are allowed to set other fields in the model descriptor object, but they may
be ignored by some methods.

The static utility method pfcModel.pfcModel.ModelDescriptor_
CreateFromFileName allows you to create a new model descriptor from a
given a file name. The file name is a string in the form <name>.<extension>.

Models 111

Retrieving Models
Methods Introduced:

• pfcSession.BaseSession.RetrieveModel
• pfcSession.BaseSession.RetrieveModelWithOpts
• pfcSession.BaseSession.OpenFile
• pfcSolid.Solid.HasRetrievalErrors
These methods cause PTC Creo Parametric to retrieve the model that corresponds
to the ModelDescriptor argument.
The method pfcSession.BaseSession.RetrieveModel retrieves the
specified model into the PTC Creo Parametric session given its model descriptor
from a standard directory. This method ignores the path argument specified in the
model descriptor. But this method does not create a window for it, nor does it
display the model anywhere.
The method pfcSession.BaseSession.RetrieveModelWithOpts
retrieves the specified model into the PTC Creo Parametric session based on the
path specified by the model descriptor. The path can be a disk path, a workspace
path, or a commonspace path. The Opts argument (given by the
Session.RetrieveModelOptions object) provides the user with the
option to specify simplified representations.
The method pfcSession.BaseSession.OpenFile brings the model into
memory, opens a new window for it (or uses the base window, if it is empty), and
displays the model.

Note
pfcSession.BaseSession.OpenFile actually returns a handle to the
window it has created.

To get a handle to the model you need, use the method
pfcWindow.Window.GetModel.
The method pfcSolid.Solid.HasRetrievalErrors returns a true value
if the features in the solid model were suppressed during the RetrieveModel or
OpenFile operations. This method must be called immediately after the
pfcSession.BaseSession.RetrieveModel method or an equivalent
retrieval method.

Model Information
Methods Introduced:

112 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcModel.Model.GetFileName
• pfcModel.Model.GetCommonName
• pfcModel.Model.IsCommonNameModifiable
• pfcModel.Model.GetFullName
• pfcModel.Model.GetGenericName
• pfcModel.Model.GetInstanceName
• pfcModel.Model.GetOrigin
• pfcModel.Model.GetRelationId
• pfcModel.Model.GetDescr
• pfcModel.Model.GetType
• pfcModel.Model.GetIsModified
• pfcModel.Model.GetVersion
• pfcModel.Model.GetRevision
• pfcModel.Model.GetBranch
• pfcModel.Model.GetReleaseLevel
• pfcModel.Model.GetVersionStamp
• pfcModel.Model.ListDependencies
• pfcModel.Model.CleanupDependencies
• pfcModel.Model.ListDeclaredModels
• pfcModel.Model.CheckIsModifiable
• pfcModel.Model.CheckIsSaveAllowed
The method pfcModel.Model.GetFileName retrieves the model file name
in the "name"."type" format.
The method pfcModel.Model.GetCommonName retrieves the common
name for the model. This name is displayed for the model in PTC Windchill
PDMLink.
Use the method pfcModel.Model.GetIsCommonNameModifiable to
identify if the common name of the model can be modified. You can modify the
name for models that are not yet owned by PTC Windchill PDMLink, or in certain
situations if the configuration option let_proe_rename_pdm_objects is
set to yes.
The method pfcModel.Model.GetFullName retrieves the full name of the
model in the instance <generic> format.
The method pfcModel.Model.GetGenericName retrieves the name of the
generic model. If the model is not an instance, this name must be NULL or an
empty string.

Models 113

The method pfcModel.Model.GetInstanceName retrieves the name of
the model. If the model is an instance, this method retrieves the instance name.
The method pfcModel.Model.GetOrigin returns the complete path to the
file from which the model was opened. This path can be a location on disk from a
PTC Windchill workspace, or from a downloaded URL.
The method pfcModel.Model.GetRelationId retrieves the relation
identifier of the specified model. It can be NULL.
The method pfcModel.Model.GetDescr returns the descriptor for the
specified model. Model descriptors can be used to represent models not currently
in session.

Note
From Pro/ENGINEERWildfire 4.0 onwards, the methodsproperties
pfcModel.Model.GetFullName,
pfcModel.Model.GetGenericName, and
pfcModel.Model.GetDescr throw an exception
pfcExceptions.XtoolkitCantOpen if called on a model instance
whose immediate generic is not in session. Handle this exception and typecast
the model as pfcSolid.Solid, which in turn can be typecast as
pfcFamily.FamilyMember, and use the method
pfcFamily.FamilyMember.GetImmediateGenericInfo to get the
model descriptor of the immediate generic model. The model descriptor can be
used to derive the full name or generic name of the model. If you wish to
switch off this behavior and continue to run legacy applications in the pre-
Wildfire 4.0 mode, set the configuration option retrieve_instance_
dependencies to instance_and_generic_deps.

The method pfcModel.Model.GetType returns the type of model in the
form of the pfcModel.ModelType object. The types of models are as follows:

• MDL_ASSEMBLY—Specifies an assembly.
• MDL_PART—Specifies a part.
• MDL_DRAWING—Specifies a drawing.
• MDL_2D_SECTION—Specifies a 2D section.
• MDL_LAYOUT—Specifies a notebook.
• MDL_DWG_FORMAT—Specifies a drawing format.
• MDL_MFG—Specifies a manufacturing model.
• MDL_REPORT—Specifies a report.
• MDL_MARKUP—Specifies a drawing markup.

114 PTC Creo® Parametric 3.0 J-Link User’s Guide

• MDL_DIAGRAM—Specifies a diagram
• MDL_CE_SOLID—Specifies a Layout model.

Note
J-Link methods will only be able to read models of type Layout, but will
not be able to pass Layout models as input to other methods. PTC
recommends that you review all J-Link applications that use the object
pfcModel.ModelType and modify the code as appropriate to ensure
that the applications work correctly.

The method pfcModel.Model.GetIsModified identifies whether the
model has been modified since it was last saved.
The method pfcModel.Model.GetVersion returns the version of the
specified model from the PDM system. It can be NULL, if not set.
The method pfcModel.Model.GetRevision returns the revision number of
the specified model from the PDM system. It can be NULL, if not set.
The method pfcModel.Model.GetBranch returns the branch of the
specified model from the PDM system. It can be NULL, if not set.
The method pfcModel.Model.GetReleaseLevel returns the release level
of the specified model from the PDM system. It can be NULL, if not set.
The method pfcModel.Model.GetVersionStamp returns the version
stamp of the specified model. The version stamp is a PTC Creo Parametric
specific identifier that changes with each change made to the model.
The method pfcModel.Model.ListDependencies returns a list of the
first-level dependencies for the specified model in the PTC Creo Parametric
workspace in the form of the pfcModel.Dependencies object.
Use the method pfcModel.Model.CleanupDependencies to clean the
dependencies for an object in the PTC Creo Parametric workspace.

Note
Do not call the method pfcModel.Model.CleanupDependencies
during operations that alter the dependencies, such as, restructuring
components and creating or redefining features.

The method pfcModel.Model.ListDeclaredModels returns a list of all
the first-level objects declared for the specified model.

Models 115

The method pfcModel.Model.CheckIsModifiable identifies if a given
model can be modified without checking for any subordinate models. This method
takes a boolean argument ShowUI that determines whether the PTC Creo
Parametric conflict resolution dialog box should be displayed to resolve conflicts,
if detected. If this argument is false, then the conflict resolution dialog box is not
displayed, and the model can be modified only if there are no conflicts that cannot
be overridden, or are resolved by default resolution actions. For a generic model,
if ShowUI is true, then all instances of the model are also checked.
The method pfcModel.Model.CheckIsSaveAllowed identifies if a given
model can be saved along with all of its subordinate models. The subordinate
models can be saved based on their modification status and the value of the
configuration option save_objects. This method also checks the current user
interface context to identify if it is currently safe to save the model. Thus, calling
this method at different times might return different results. This method takes a
boolean argument ShowUI. Refer to the previous method for more information on
this argument.

Model Operations
Methods Introduced:

• pfcModel.Model.Backup
• pfcModel.Model.Copy
• pfcModel.Model.CopyAndRetrieve
• pfcModel.Model.Rename
• pfcModel.Model.Save
• pfcModel.Model.Erase
• pfcModel.Model.EraseWithDependencies
• pfcModel.Model.Delete
• pfcModel.Model.Display
• pfcModel.Model.SetCommonName
These model operations duplicate most of the commands available in the PTC
Creo Parametric File menu.
The method pfcModel.Model.Backup makes a backup of an object in
memory to a disk in a specified directory.
The method pfcModel.Model.Copy copies the specified model to another
file.
The method pfcModel.Model.CopyAndRetrieve copies the model to
another name, and retrieves that new model into session.
The method pfcModel.Model.Rename renames a specified model.

116 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcModel.Model.Save stores the specified model to a disk.
The method pfcModel.Model.Erase erases the specified model from the
session. Models used by other models cannot be erased until the models
dependent upon them are erased.
The method pfcModel.Model.EraseWithDependencies erases the
specified model from the session and all the models on which the specified model
depends from disk, if the dependencies are not needed by other items in session.

Note
However, while erasing an active model, pfcModel.Model.Erase and
pfcModel.Model.EraseWithDependencies only clear the graphic
display immediately, they do not clear the data in the memory until the control
returns to PTC Creo Parametric from the J-Link application. Therefore, after
calling them the control must be returned to PTC Creo Parametric before
calling any other function, otherwise the behavior of PTC Creo Parametric
may be unpredictable.

The method pfcModel.Model.Delete removes the specified model from
memory and disk.
The method pfcModel.Model.Display displays the specified model. You
must call this method if you create a new window for a model because the model
will not be displayed in the window until you call pfcModel.Display.
The method pfcModel.Model.SetCommonName modifies the common
name of the specified model. You can modify this name for models that are not yet
owned by PTC Windchill PDMLink, or in certain situations if the configuration
option let_proe_rename_pdm_objects is set to yes.

Running PTC Creo ModelCHECK
PTC Creo Modelcheck is an integrated application that runs transparently within
PTC Creo Parametric. PTC Creo Modelcheck uses a configurable list of company
design standards and best modeling practices. You can configure PTC Creo
Modelcheck to run interactively or automatically when you regenerate or save a
model.
Methods Introduced:

• pfcSession.BaseSession.ExecuteModelCheck
• pfcModelCheck.pfcModelCheck.ModelCheckInstructions_Create
• pfcModelCheck.ModelCheckInstructions.SetConfigDir
• pfcModelCheck.ModelCheckInstructions.SetMode

Models 117

• pfcModelCheck.ModelCheckInstructions.SetOutputDir
• pfcModelCheck.ModelCheckInstructions.SetShowInBrowser
• pfcModelCheck.ModelCheckResults.GetNumberOfErrors
• pfcModelCheck.ModelCheckResults.GetNumberOfWarnings
• pfcModelCheck.ModelCheckResults.GetWasModelSaved
You can run PTC Creo Modelcheck from an external application using the method
pfcSession.BaseSession.ExecuteModelCheck. This method takes
the model Model on which you want to run PTC Creo Modelcheck and
instructions in the form of the object ModelCheckInstructions as its input
parameters. This object contains the following parameters:

• ConfigDir—Specifies the location of the configuration files. If this
parameter is set to NULL, the default PTC Creo Modelcheck configuration
files are used.

• Mode—Specifies the mode in which you want to run PTC Creo Modelcheck.
The modes are:

○ MODELCHECK_GRAPHICS—Interactive mode
○ MODELCHECK_NO_GRAPHICS—Batch mode

• OutputDir—Specifies the location for the reports. If you set this parameter
to NULL, the default PTC Creo Modelcheck directory, as per config_
init.mc, will be used.

• ShowInBrowser—Specifies if the results report should be displayed in the
Web browser.

The method
pfcModelCheck.pfcModelCheck.ModelCheckInstructions_
Create creates the ModelCheckInstructions object containing the PTC
Creo Modelcheck instructions described above.
Use the methods
pfcModelCheck.ModelCheckInstructions.SetConfigDir,
pfcModelCheck.ModelCheckInstructions.SetMode,
pfcModelCheck.ModelCheckInstructions.SetOutputDir, and
pfcModelCheck.ModelCheckInstructions.SetShowInBrowser to
modify the PTC Creo Modelcheck instructions.
The method pfcSession.BaseSession.ExecuteModelCheck returns
the results of the PTC Creo Modelcheck run in the form of the
ModelCheckResults object. This object contains the following parameters:

• NumberOfErrors—Specifies the number of errors detected.
• NumberOfWarnings—Specifies the number of warnings found.
• WasModelSaved—Specifies whether the model is saved with updates.

118 PTC Creo® Parametric 3.0 J-Link User’s Guide

Use the
methodspfcModelCheck.ModelCheckResults.GetNumberOfErrors,
pfcModelCheck.ModelCheckResults.GetNumberOfWarning, and
pfcModelCheck.ModelCheckResults.GetWasModelSaved to access
the results obtained.

Models 119

11
Drawings

Overview of Drawings in J-Link... 122
Creating Drawings from Templates ... 122
Obtaining Drawing Models ... 124
Drawing Information .. 125
Drawing Operations... 125
Drawing Sheets... 127
Drawing Views .. 130
Drawing Dimensions.. 135
Drawing Tables ... 142
Detail Items... 149
Detail Entities.. 151
OLE Objects ... 154
Detail Notes .. 154
Detail Groups.. 158
Detail Symbols .. 160
Detail Attachments .. 172

This chapter describes how to program drawing functions using J-Link.

121

Overview of Drawings in J-Link
This section describes the functions that deal with drawings. You can create
drawings of all PTC Creo Parametric models using the functions in J-Link. You
can annotate the drawing, manipulate dimensions, and use layers to manage the
display of different items.
Unless otherwise specified, J-Link functions that operate on drawings use world
units.

Creating Drawings from Templates
Drawing templates simplify the process of creating a drawing using J-Link. PTC
Creo Parametric can create views, set the view display, create snap lines, and
show the model dimensions based on the template. Use templates to:

• Define layout views
• Set view display
• Place notes
• Place symbols
• Define tables
• Show dimensions
Method Introduced:

• pfcSession.BaseSession.CreateDrawingFromTemplate
Use the method
pfcSession.BaseSession.CreateDrawingFromTemplate to create
a drawing from the drawing template and to return the created drawing. The
attributes are:

• New drawing name
• Name of an existing template
• Name and type of the solid model to use while populating template views
• Sequence of options to create the drawing. The options are as follows:

○ DRAWINGCREATE_DISPLAY_DRAWING—display the new drawing.
○ DRAWINGCREATE_SHOW_ERROR_DIALOG—display the error dialog

box.
○ DRAWINGCREATE_WRITE_ERROR_FILE—write the errors to a file.
○ DRAWINGCREATE_PROMPT_UNKNOWN_PARAMS—prompt the user on

encountering unknown parameters

122 PTC Creo® Parametric 3.0 J-Link User’s Guide

Drawing Creation Errors
Methods Introduced:

• pfcExceptions.XToolkitDrawingCreateErrors.GetErrors
• pfcExceptions.DrawingCreateError.GetType
• pfcExceptions.DrawingCreateError.GetViewName
• pfcExceptions.DrawingCreateError.GetObjectName
• pfcExceptions.DrawingCreateError.GetSheetNumber
• pfcExceptions.DrawingCreateError.GetView
The exception XToolkitDrawingCreateErrors is thrown if an error is
encountered when creating a drawing from a template. This exception contains a
list of errors which occurred during drawing creation.

Note
When this exception type is encountered, the drawing is actually created, but
some of the contents failed to generate correctly.

The error structure contains an array of drawing creation errors. Each error
message may have the following elements:

• Type—The type of error as follows:

○ DWGCREATE_ERR_SAVED_VIEW_DOESNT_EXIST—Saved view does
not exist.

○ DWGCREATE_ERR_X_SEC_DOESNT_EXIST—Specified cross section
does not exist.

○ DWGCREATE_ERR_EXPLODE_DOESNT_EXIST—Exploded state did
not exist.

○ DWGCREATE_ERR_MODEL_NOT_EXPLODABLE—Model cannot be
exploded.

○ DWGCREATE_ERR_SEC_NOT_PERP—Cross section view not
perpendicular to the given view.

○ DWGCREATE_ERR_NO_RPT_REGIONS—Repeat regions not available.
○ DWGCREATE_ERR_FIRST_REGION_USED—Repeat region was unable

to use the region specified.
○ DWGCREATE_ERR_NOT_PROCESS_ASSEM—Model is not a process

assembly view.

Drawings 123

○ DWGCREATE_ERR_NO_STEP_NUM—The process step number does not
exist.

○ DWGCREATE_ERR_TEMPLATE_USED—The template does not exist.
○ DWGCREATE_ERR_NO_PARENT_VIEW_FOR_PROJ—There is no

possible parent view for this projected view.
○ DWGCREATE_ERR_CANT_GET_PROJ_PARENT—Could not get the

projected parent for a drawing view.
○ DWGCREATE_ERR_SEC_NOT_PARALLEL—The designated cross

section was not parallel to the created view.
○ DWGCREATE_ERR_SIMP_REP_DOESNT_EXIST—The designated

simplified representation does not exist.
• ViewName—Name of the view where the error occurred.
• SheetNumber—Sheet number where the error occurred.
• ObjectName—Name of the invalid or missing object.
• View—2D view in which the error occurred.
Use the method
pfcExceptions.XToolkitDrawingCreateErrors.GetErrors to
obtain the preceding array elements from the error object.

Example: Drawing Creation from a Template
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples creates a new
drawing using a predefined template.

Obtaining Drawing Models
This section describes how to obtain drawing models.
Methods Introduced:

• pfcSession.BaseSession.RetrieveModel
• pfcSession.BaseSession.GetModel
• pfcSession.BaseSession.GetModelFromDescr
• pfcSession.BaseSession.ListModels
• pfcSession.BaseSession.ListModelsByType
The method pfcSession.BaseSession.RetrieveModel retrieves the
drawing specified by the model descriptor. Model descriptors are data objects used
to describe a model file and its location in the system. The method returns the
retrieved drawing.

124 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSession.BaseSession.GetModel returns a drawing
based on its name and type, whereas
pfcSession.BaseSession.GetModelFromDescr returns a drawing
specified by the model descriptor. The model must be in session.
Use the method pfcSession.BaseSession.ListModels to return a
sequence of all the drawings in session.

Drawing Information
Methods Introduced:

• pfcModel2D.Model2D.ListModels
• pfcModel2D.Model2D.GetCurrentSolid
• pfcModel2D.Model2D.ListSimplifiedReps
• pfcModel2D.Model2D.GetTextHeight
The method pfcModel2D.Model2D.ListModels returns a list of all the
solid models used in the drawing.
The method pfcModel2D.Model2D.GetCurrentSolid returns the current
solid model of the drawing.
The method pfcModel2D.Model2D.ListSimplifiedReps returns the
simplified representations of a solid model that are assigned to the drawing.
The method pfcModel2D.Model2D.GetTextHeight returns the text
height of the drawing.

Drawing Operations
Methods Introduced:

• pfcModel2D.Model2D.AddModel
• pfcModel2D.Model2D.DeleteModel
• pfcModel2D.Model2D.ReplaceModel
• pfcModel2D.Model2D.SetCurrentSolid
• pfcModel2D.Model2D.AddSimplifiedRep
• pfcModel2D.Model2D.DeleteSimplifiedRep
• pfcModel2D.Model2D.Regenerate
• pfcModel2D.Model2D.SetTextHeight
• pfcModel2D.Model2D.CreateDrawingDimension
• pfcModel2D.Model2D.CreateView

Drawings 125

The method pfcModel2D.Model2D.AddModel adds a new solid model to
the drawing.
The method pfcModel2D.Model2D.DeleteModel removes a model from
the drawing. The model to be deleted should not appear in any of the drawing
views.
The method pfcModel2D.Model2D.ReplaceModel replaces a model in
the drawing with a related model (the relationship should be by family table or
interchange assembly). It allows you to replace models that are shown in drawing
views and regenerates the view.
The method pfcModel2D.Model2D.SetCurrentSolid assigns the
current solid model for the drawing. Before calling this method, the solid model
must be assigned to the drawing using the method
pfcModel2D.Model2D.AddModel. To see the changes to parameters and
fields reflecting the change of the current solid model, regenerate the drawing
using the method pfcSheet.SheetOwner.RegenerateSheet.
The method pfcModel2D.Model2D.AddSimplifiedRep associates the
drawing with the simplified representation of an assembly
The method pfcModel2D.Model2D.DeleteSimplifiedRep removes the
association of the drawing with an assembly simplified representation. The
simplified representation to be deleted should not appear in any of the drawing
views.
Use the method pfcModel2D.Model2D.Regenerate to regenerate the
drawing draft entities and appearance.
The method pfcModel2D.Model2D.SetTextHeight ets the value of the
text height of the drawing.
The method pfcModel2D.Model2D.CreateDrawingDimension creates
a new drawing dimension based on the data object that contains information about
the location of the dimension. This method returns the created dimension. Refer to
the section Drawing Dimensions on page 135.
The method pfcModel2D.Model2D.CreateView creates a new drawing
view based on the data object that contains information about how to create the
view. The method returns the created drawing view. Refer to the section Creating
Drawing Views on page 130.

Example: Replace Drawing Model Solid with its
Generic
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples replaces all solid
model instances in a drawing with its generic. Models are not replaced if the
generic model is already present in the drawing.

126 PTC Creo® Parametric 3.0 J-Link User’s Guide

Drawing Sheets
A drawing sheet is represented by its number. Drawing sheets in J-Link are
identified by the same sheet numbers seen by a PTC Creo Parametric user.

Note
These identifiers may change if the sheets are moved as a consequence of
adding, removing or reordering sheets.

Drawing Sheet Information
Methods Introduced

• pfcSheet.SheetOwner.GetSheetTransform
• pfcSheet.SheetOwner.GetSheetInfo
• pfcSheet.SheetOwner.GetSheetScale
• pfcSheet.SheetOwner.GetSheetFormat
• pfcSheet.SheetOwner.GetSheetFormatDescr
• pfcSheet.SheetOwner.GetSheetBackgroundView
• pfcSheet.SheetOwner.GetNumberOfSheets
• pfcSheet.SheetOwner.GetCurrentSheetNumber
• pfcSheet.SheetOwner.GetSheetUnits
Superseded Method:

• pfcSheet.SheetOwner.GetSheetData
The method pfcSheet.SheetOwner.GetSheetTransform returns the
transformation matrix for the sheet specified by the sheet number. This
transformation matrix includes the scaling needed to convert screen coordinates to
drawing coordinates (which use the designated drawing units).
The method pfcSheet.SheetOwner.GetSheetInfo returns sheet data
including the size, orientation, and units of the sheet specified by the sheet
number.
The method pfcSheet.SheetOwner.GetSheetData and the
pfcSheet.SheetData have been deprecated. Use the method
pfcSheet.SheetOwner.GetSheetInfo and the
pfcSheet.SheetInfo instead.

Drawings 127

The method pfcSheet.SheetOwner.GetSheetScale returns the scale of
the drawing on a particular sheet based on the drawing model used to measure the
scale. If no models are used in the drawing then the default scale value is 1.0.
The method pfcSheet.SheetOwner.GetSheetFormat returns the
drawing format used for the sheet specified by the sheet number. It returns a null
value if no format is assigned to the sheet.
The method pfcSheet.SheetOwner.GetSheetFormatDescr returns the
model descriptor of the drawing format used for the specified drawing sheet.
The method pfcSheet.SheetOwner.GetSheetBackgroundView
returns the view object representing the background view of the sheet specified by
the sheet number.
The method pfcSheet.SheetOwner.GetNumberOfSheets returns the
number of sheets in the model.
The method pfcSheet.SheetOwner.GetCurrentSheetNumber returns
the current sheet number in the model.

Note
The sheet numbers range from 1 to n, where n is the number of sheets.

The method pfcSheet.SheetOwner.GetSheetUnits returns the units
used by the sheet specified by the sheet number.

Drawing Sheet Operations
Methods Introduced:

• pfcSheet.SheetOwner.AddSheet
• pfcSheet.SheetOwner.DeleteSheet
• pfcSheet.SheetOwner.ReorderSheet
• pfcSheet.SheetOwner.RegenerateSheet
• pfcSheet.SheetOwner.SetSheetScale
• pfcSheet.SheetOwner.SetSheetFormat
• pfcSheet.SheetOwner.SetCurrentSheetNumber
The method pfcSheet.SheetOwner.AddSheet adds a new sheet to the
model and returns the number of the new sheet.
The method pfcSheet.SheetOwner.DeleteSheet removes the sheet
specified by the sheet number from the model.

128 PTC Creo® Parametric 3.0 J-Link User’s Guide

Use the method pfcSheet.SheetOwner.ReorderSheet to reorder the
sheet from a specified sheet number to a new sheet number.

Note
The sheet number of other affected sheets also changes due to reordering or
deletion.

The method pfcSheet.SheetOwner.RegenerateSheet regenerates the
sheet specified by the sheet number.

Note
You can regenerate a sheet only if it is displayed.

Use the method pfcSheet.SheetOwner.SetSheetScale to set the scale
of a model on the sheet based on the drawing model to scale and the scale to be
used. Pass the value of the DrawingModel parameter as null to select the current
drawing model.
Use the method pfcSheet.SheetOwner.SetSheetFormat to apply the
specified format to a drawing sheet based on the drawing format, sheet number of
the format, and the drawing model.
The sheet number of the format is specified by the FormatSheetNumber
parameter. This number ranges from 1 to the number of sheets in the format. Pass
the value of this parameter as null to use the first format sheet.
The drawing model is specified by the DrawingModel parameter. Pass the value
of this parameter as null to select the current drawing model.
The method pfcSheet.SheetOwner.SetCurrentSheetNumber sets the
current sheet to the sheet number specified.

Example: Listing Drawing Sheets
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples shows how to list
the sheets in the current drawing. The information is placed in an external browser
window.

Drawings 129

Drawing Views
A drawing view is represented by the pfcView2D.View2D. All model views
in the drawing are associative, that is, if you change a dimensional value in one
view, the system updates other drawing views accordingly. The model
automatically reflects any dimensional changes that you make to a drawing. In
addition, corresponding drawings also reflect any changes that you make to a
model such as the addition or deletion of features and dimensional changes.

Creating Drawing Views
Method Introduced:

• pfcModel2D.Model2D.CreateView
The method pfcModel2D.Model2D.CreateView reates a new view in the
drawing. Before calling this method, the drawing must be displayed in a window.
The pfcView2D.View2DCreateInstructions contains details on how
to create the view. The types of drawing views supported for creation are:

• DRAWVIEW_GENERAL—General drawing views
• DRAWVIEW_PROJECTION—Projected drawing views

General Drawing Views
The pfcView2D.GeneralViewCreateInstructions contains details
on how to create general drawing views.
Methods Introduced:

• pfcView2D.pfcView2D.GeneralViewCreateInstructions_Create
• pfcView2D.GeneralViewCreateInstructions.SetViewModel
• pfcView2D.GeneralViewCreateInstructions.SetLocation
• pfcView2D.GeneralViewCreateInstructions.SetSheetNumber
• pfcView2D.GeneralViewCreateInstructions.SetOrientation
• pfcView2D.GeneralViewCreateInstructions.SetExploded
• pfcView2D.GeneralViewCreateInstructions.SetScale
The method
pfcView2D.pfcView2D.GeneralViewCreateInstructions_
Create creates the pfcView2D.GeneralViewCreateInstructions
ata object used for creating general drawing views.
Use the method
pfcView2D.GeneralViewCreateInstructions.SetViewModel to
assign the solid model to display in the created general drawing view.

130 PTC Creo® Parametric 3.0 J-Link User’s Guide

Use the method
pfcView2D.GeneralViewCreateInstructions.SetLocation to
assign the location in a drawing sheet to place the created general drawing view.
Use the method
pfcView2D.GeneralViewCreateInstructions.SetSheetNumber
to set the number of the drawing sheet in which the general drawing view is
created.
The method
pfcView2D.GeneralViewCreateInstructions.SetOrientation
assigns the orientation of the model in the general drawing view in the form of the
pfcBase.Transform3D data object. The transformation matrix must only
consist of the rotation to be applied to the model. It must not consist of any
displacement or scale components. If necessary, set the displacement to {0, 0, 0}
using the method pfcBase.Transform3D.SetOrigin, and remove any
scaling factor by normalizing the matrix.
Use the method
pfcView2D.GeneralViewCreateInstructions.SetExploded to set
the created general drawing view to be an exploded view.
Use the method
pfcView2D.GeneralViewCreateInstructions.SetScale to assign
a scale to the created general drawing view. This value is optional, if not assigned,
the default drawing scale is used.

Projected Drawing Views
The pfcView2D.ProjectionViewCreateInstructions contains
details on how to create general drawing views.
Methods Introduced:

• pfcView2D.pfcView2D.ProjectionViewCreateInstructions_Create
• pfcView2D.ProjectionViewCreateInstructions.SetParentView
• pfcView2D.ProjectionViewCreateInstructions.SetLocation
• pfcView2D.ProjectionViewCreateInstructions.SetExploded
The method
pfcView2D.pfcView2D.ProjectionViewCreateInstructions_
Create creates the
pfcView2D.ProjectionViewCreateInstructions data object used
for creating projected drawing views.
Use the method
pfcView2D.ProjectionViewCreateInstructions.SetParent
View to assign the parent view for the projected drawing view.

Drawings 131

Use the method
pfcView2D.ProjectionViewCreateInstructions.SetLocation
to assign the location of the projected drawing view. This location determines how
the drawing view will be oriented.
Use the method
pfcView2D.ProjectionViewCreateInstructions.SetExploded
to set the created projected drawing view to be an exploded view.

Example: Creating Drawing Views
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples adds a new sheet
to a drawing and creates three views of a selected model.

Obtaining Drawing Views
Methods Introduced:

• pfcSelect.Selection.GetSelView2D
• pfcModel2D.Model2D.List2DViews
• pfcModel2D.Model2D.GetViewByName
• pfcModel2D.Model2D.GetViewDisplaying
• pfcSheet.SheetOwner.GetSheetBackgroundView
The method pfcSelection.Selection.GetSelView2D returns the
selected drawing view (if the user selected an item from a drawing view). It
returns a null value if the selection does not contain a drawing view.
The method pfcModel2D.Model2D.List2DViews lists and returns the
drawing views found. This method does not include the drawing sheet background
views returned by the method
pfcSheet.SheetOwner.GetSheetBackgroundView.
The method pfcModel2D.Model2D.GetViewByName returns the drawing
view based on the name. This method returns a null value if the specified view
does not exist.
The method pfcModel2D.Model2D.GetViewDisplaying returns the
drawing view that displays a dimension. This method returns a null value if the
dimension is not displayed in the drawing.

Note
This method works for solid and drawing dimensions.

132 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSheet.SheetOwner.GetSheetBackgroundView
returns the drawing sheet background views.

Drawing View Information
Methods Introduced:

• pfcObject.Child.GetDBParent
• pfcView2D.View2D.GetSheetNumber
• pfcView2D.View2D.GetIsBackground
• pfcView2D.View2D.GetModel
• pfcView2D.View2D.GetScale
• pfcView2D.View2D.GetIsScaleUserdefined
• pfcView2D.View2D.GetOutline
• pfcView2D.View2D.GetLayerDisplayStatus
• pfcView2D.View2D.GetIsViewdisplayLayerDependent
• pfcView2D.View2D.GetDisplay
• pfcView2D.View2D.GetTransform
• pfcView2D.View2D.GetName
• pfcView2D.View2D.GetSimpRep
The inherited method pfcObject.Child.GetDBParent, when called on a
View2D object, provides the drawing model which owns the specified drawing
view. The return value of the method can be downcast to a Model2D object.
The method pfcView2D.View2D.GetSheetNumber returns the sheet
number of the sheet that contains the drawing view.
The method pfcView2D.View2D.GetIsBackground returns a value that
indicates whether the view is a background view or a model view.
The method pfcView2D.View2D.GetModel returns the solid model
displayed in the drawing view.
The method pfcView2D.View2D.GetScale returns the scale of the drawing
view.
The method pfcView2D.View2D.GetIsScaleUserdefined specifies if
the drawing has a user-defined scale.
The method pfcView2D.View2D.GetOutline returns the position of the
view in the sheet in world units.
The method pfcView2D.View2D.GetLayerDisplayStatus returns the
display status of the specified layer in the drawing view.

Drawings 133

The method pfcView2D.View2D.GetDisplay returns an output structure
that describes the display settings of the drawing view. The fields in the structure
are as follows:

• Style—Whether to display as wireframe, hidden lines, no hidden lines, or
shaded

• TangentStyle—Linestyle used for tangent edges
• CableStyle—Linestyle used to display cables
• RemoveQuiltHiddenLines—Whether or not to apply hidden-line-removal to

quilts
• ShowConceptModel—Whether or not to display the skeleton
• ShowWeldXSection—Whether or not to include welds in the cross-section
The method pfcView2D.View2D.GetTransform returns a matrix that
describes the transform between 3D solid coordinates and 2D world units for that
drawing view. The transformation matrix is a combination of the following
factors:

• The location of the view origin with respect to the drawing origin.
• The scale of the view units with respect to the drawing units
• The rotation of the model with respect to the drawing coordinate system.
The method pfcView2D.View2D.GetName returns the name of the specified
view in the drawing.
The simplified representations of assembly and part can be used as drawing
models to create general views. Use the method
pfcView2D.View2D.GetSimpRep to retrieve the simplified representation
for the specified view in the drawing.

Example: Listing the Views in a Drawing
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples creates an
information window about all the views in a drawing. The information is placed in
an external browser window.

Drawing Views Operations
Methods Introduced:

• pfcView2D.View2D.SetScale
• pfcView2D.View2D.Translate
• pfcView2D.View2D.Delete
• pfcView2D.View2D.Regenerate

134 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcView2D.View2D.SetLayerDisplayStatus
• pfcView2D.View2D.SetDisplay
The method pfcView2D.View2D.SetScale sets the scale of the drawing
view.
The method pfcView2D.View2D.Translate moves the drawing view by
the specified transformation vector.
The method pfcView2D.View2D.Delete deletes a specified drawing view.
Set the DeleteChildren parameter to true to delete the children of the view. Set
this parameter to false or null to prevent deletion of the view if it has children.
The method pfcView2D.View2D.Regenerate erases the displayed view of
the current object, regenerates the view from the current drawing, and redisplays
the view.
The method pfcView2D.View2D.SetLayerDisplayStatus sets the
display status for the layer in the drawing view.
The method pfcView2D.View2D.SetDisplay sets the value of the display
settings for the drawing view.

Drawing Dimensions
This section describes the J-Link methods that give access to the types of
dimensions that can be created in the drawing mode. They do not apply to
dimensions created in the solid mode, either those created automatically as a result
of feature creation, or reference dimension created in a solid. A drawing
dimension or a reference dimension shown in a drawing is represented by the
com.ptc.pfc.pfcDimension2D.Dimension2D.

Obtaining Drawing Dimensions
Methods Introduced:

• pfcModelItem.ModelItemOwner.ListItems
• pfcModelItem.ModelItemOwner.GetItemById
• pfcSelect.Selection.GetSelItem
The method pfcModelItem.ModelItemOwner.ListItems returns a list
of drawing dimensions specified by the parameter Type or returns null if no
drawing dimensions of the specified type are found. This method lists only those
dimensions created in the drawing.
The values of the parameter Type for the drawing dimensions are:

• ITEM_DIMENSION—Dimension
• ITEM_REF_DIMENSION—Reference dimension

Drawings 135

Set the parameter Type to the type of drawing dimension to retrieve. If this
parameter is set to null, then all the dimensions in the drawing are listed.
The method pfcModelItem.ModelItemOwner.GetItemById returns a
drawing dimension based on the type and the integer identifier. The method
returns only those dimensions created in the drawing. It returns a null if a drawing
dimension with the specified attributes is not found.
The method pfcSelect.Selection.GetSelItem returns the value of the
selected drawing dimension.

Creating Drawing Dimensions
Methods Introduced:

• pfcDimension2D.pfcDimension2D.DrawingDimCreateInstructions_
Create

• pfcModel2D.Model2D.CreateDrawingDimension
• pfcDimension2D.pfcDimension2D.EmptyDimensionSense_Create
• pfcDimension2D.pfcDimension2D.PointDimensionSense_Create
• pfcDimension2D.pfcDimension2D.SplinePointDimensionSense_Create
• pfcDimension2D.pfcDimension2D.TangentIndexDimensionSense_Create
• pfcDimension2D.pfcDimension2D.LinAOCTangentDimensionSense_

Create
• pfcDimension2D.pfcDimension2D.AngleDimensionSense_Create
• pfcDimension2D.pfcDimension2D.PointToAngleDimensionSense_Create
The
methodpfcDimension2D.pfcDimension2D.DrawingDimCreateIn
structions
_Create creates an instructions object that describes how to create a drawing
dimension using the method
pfcModel2D.Model2D.CreateDrawingDimension.
The parameters of the instruction object are:

• Attachments—The entities that the dimension is attached to. The selections
should include the drawing model view.

• IsRefDimension—True if the dimension is a reference dimension, otherwise
null or false.

• OrientationHint—Describes the orientation of the dimensions in cases where
this cannot be deduced from the attachments themselves.

136 PTC Creo® Parametric 3.0 J-Link User’s Guide

• Senses—Gives more information about how the dimension attaches to the
entity, i.e., to what part of the entity and in what direction the dimension runs.
The types of dimension senses are as follows:

○ DIMSENSE_NONE

○ DIMSENSE_POINT

○ DIMSENSE_SPLINE_PT

○ DIMSENSE_TANGENT_INDEX

○ DIMSENSE_LINEAR_TO_ARC_OR_CIRCLE_TANGENT

○ DIMSENSE_ANGLE

○ DIMSENSE_POINT_TO_ANGLE

• TextLocation—The location of the dimension text, in world units.
The method pfcModel2D.Model2D.CreateDrawingDimension creates
a dimension in the drawing based on the instructions data object that contains
information needed to place the dimension. It takes as input an array of
pfcSelection objects and an array of pfcDimensionSense structures that
describe the required attachments. The method returns the created drawing
dimension.
The method
pfcDimension2D.pfcDimension2D.EmptyDimensionSense_
Create creates a new dimension sense associated with the type DIMSENSE
NONE. The sense field is set to Type In this case no information such as location
or direction is needed to describe the attachment points. For example, if there is a
single attachment which is a straight line, the dimension is the length of the
straight line. If the attachments are two parallel lines, the dimension is the distance
between them.
The method
pfcDimension2D.pfcDimension2D.PointDimensionSense_
Create creates a new dimension sense associated with the type DIMSENSE
POINT which specifies the part of the entity to which the dimension is attached.
The sense field is set to the value of the parameter PointType.
The possible values of PointType are:

• DIMPOINT_END1— The first end of the entity
• DIMPOINT_END2—The second end of the entity
• DIMPOINT_CENTER—The center of an arc or circle
• DIMPOINT_NONE—No information such as location or direction of the

attachment is specified. This is similar to setting the PointType to DIMSENSE
NONE.

• DIMPOINT_MIDPOINT—The mid point of the entity

Drawings 137

The method
pfcDimension2D.pfcDimension2D.SplinePointDimension
Sense_Create creates a dimension sense associated with the type
DIMSENSE_SPLINE_PT. This means that the attachment is to a point on a
spline. The sense field is set to SplinePointIndex i.e., the index of the spline
point.
The method
pfcDimension2D.pfcDimension2D.TangentIndexDimension
Sense_Create creates a new dimension sense associated with the type
DIMSENSE_TANGENT_INDEX. The attachment is to a tangent of the entity,
which is an arc or a circle. The sense field is set to TangentIndex, i.e., the index
of the tangent of the entity.
The method
pfcDimension2D.pfcDimension2D.LinAOCTangentDimension
Sense_Create creates a new dimension sense associated with the type
DIMSENSE_LINEAR_TO_ARC_OR_CIRCLE_TANGENT. The dimension is the
perpendicular distance between the a line and a tangent to an arc or a circle that is
parallel to the line. The sense field is set to the value of the parameter
TangentType.
The possible values of TangentType are:

• DIMLINAOCTANGENT_LEFT0—The tangent is to the left of the line, and is
on the same side, of the center of the arc or circle, as the line.

• DIMLINAOCTANGENT_RIGHT0—The tangent is to the right of the line, and
is on the same side, of the center of the arc or circle, as the line.

• DIMLINAOCTANGENT_LEFT1—The tangent is to the left of the line, and is
on the opposite side of the line.

• DIMLINAOCTANGENT_RIGHT1— The tangent is to the right of the line, and
is on the opposite side of the line.

The method
pfcDimension2D.pfcDimension2D.AngleDimensionSense_
Create creates a new dimension sense associated with the type DIMSENSE_
ANGLE. The dimension is the angle between two straight entities. The sense
field is set to the value of the parameter AngleOptions.
The possible values of AngleOptions are:

• IsFirst—Is set to TRUE if the angle dimension starts from the specified
entity in a counterclockwise direction. Is set to FALSE if the dimension ends
at the specified entity. The value is TRUE for one entity and FALSE for the
other entity forming the angle.

• ShouldFlip—If the value of ShouldFlip is FALSE, and the direction of
the specified entity is away from the vertex of the angle, then the dimension

138 PTC Creo® Parametric 3.0 J-Link User’s Guide

attaches directly to the entity. If the direction of the entity is away from the
vertex of the angle, then the dimension is attached to the a witness line. The
witness line is in line with the entity but in the direction opposite to the vertex
of the angle. If the value of ShouldFlip is TRUE then the above cases are
reversed.

The method
pfcDimension2D.pfcDimension2D.PointToAngleDimension
Sense_Create creates a new dimension sense associated with the type
DIMSENSE_POINT_TO_ANGLE. The dimension is the angle between a line
entity and the tangent to a curved entity. The curve attachment is of the type
DIMSENSE_POINT_TO_ANGLE and the line attachment is of the type
DIMSENSE POINT. In this case both the angle and the angle_sense fields
must be set. The field sense shows which end of the curve the dimension is
attached to and the field angle_sense shows the direction in which the
dimension rotates and to which side of the tangent it attaches.

Drawing Dimensions Information
Methods Introduced:

• pfcDimension2D.Dimension2D.GetIsAssociative
• pfcDimension2D.Dimension2D.GetIsReference
• pfcDimension2D.Dimension2D.GetIsDisplayed
• pfcDimension2D.Dimension2D.GetAttachmentPoints
• pfcDimension2D.Dimension2D.GetDimensionSenses
• pfcDimension2D.Dimension2D.GetOrientationHint
• pfcDimension2D.Dimension2D.GetBaselineDimension
• pfcDimension2D.Dimension2D.GetLocation
• pfcDimension2D.Dimension2D.GetView
• pfcDimension2D.Dimension2D.GetTolerance
• pfcDimension2D.Dimension2D.GetIsToleranceDisplayed
The method pfcDimension2D.Dimension2D.GetIsAssociative
returns whether the dimension or reference dimension in a drawing is associative.
The method pfcDimension2D.Dimension2D.GetIsReference
determines whether the drawing dimension is a reference dimension.
The method pfcDimension2D.Dimension2D.GetIsDisplayed
determines whether the dimension will be displayed in the drawing.

Drawings 139

The method pfcDimension2D.Dimension2D.GetAttachmentPoints
returns a sequence of attachment points. The dimension senses array returned by
the method pfcDimension2D.Dimension2D.GetDimensionSenses
gives more information on how these attachments are interpreted.
The method pfcDimension2D.Dimension2D.GetDimensionSenses
returns a sequence of dimension senses, describing how the dimension is attached
to each attachment returned by the method
pfcDimension2D.Dimension2D.GetAttachmentPoints.
The method pfcDimension2D.Dimension2D.GetOrientationHint
returns the orientation hint for placing the drawing dimensions. The orientation
hint determines how PTC Creo Parametric will orient the dimension with respect
to the attachment points.

Note
This methods described above are applicable only for dimensions created in
the drawing mode. It does not support dimensions created at intersection
points of entities.

The method
pfcDimension2D.Dimension2D.GetBaselineDimension returns an
ordinate baseline drawing dimension. It returns a null value if the dimension is not
an ordinate dimension.

Note
The method updates the display of the dimension only if it is currently
displayed.

The method pfcDimension2D.Dimension2D.GetLocation returns the
placement location of the dimension.
The method pfcDimension2D.Dimension2D.GetView returns the
drawing view in which the dimension is displayed. This method applies to
dimensions stored in the solid or in the drawing.
The method pfcDimension2D.Dimension2D.GetTolerance retrieves
the upper and lower tolerance limits of the drawing dimension in the form of the
DimTolerance object. A null value indicates a nominal tolerance.
Use the method
pfcDimension2D.Dimension2D.GetIsToleranceDisplayed
determines whether or not the dimension’s tolerance is displayed in the drawing.

140 PTC Creo® Parametric 3.0 J-Link User’s Guide

Drawing Dimensions Operations
Methods Introduced:

• pfcDimension2D.Dimension2D.ConvertToLinear
• pfcDimension2D.Dimension2D.ConvertToOrdinate
• pfcDimension2D.Dimension2D.ConvertToBaseline
• pfcDimension2D.Dimension2D.SetLocation
• pfcDimension2D.Dimension2D.SwitchView
• pfcDimension2D.Dimension2D.SetTolerance
• pfcDimension2D.Dimension2D.EraseFromModel2D
• pfcModel2D.Model2D.SetViewDisplaying
The method pfcDimension2D.Dimension2D.ConvertToLinear
converts an ordinate drawing dimension to a linear drawing dimension. The
drawing containing the dimension must be displayed.
The method pfcDimension2D.Dimension2D.ConvertToOrdinate
converts a linear drawing dimension to an ordinate baseline dimension.
The method pfcDimension2D.Dimension2D.ConvertToBaseline
converts a location on a linear drawing dimension to an ordinate baseline
dimension. The method returns the newly created baseline dimension.

Note
The method updates the display of the dimension only if it is currently
displayed.

The method pfcDimension2D.Dimension2D.SetLocation sets the
placement location of a dimension or reference dimension in a drawing.
The method pfcDimension2D.Dimension2D.SwitchView changes the
view where a dimension created in the drawing is displayed.
The method pfcDimension2D.Dimension2D.SetTolerance assigns the
upper and lower tolerance limits of the drawing dimension.
The method pfcDimension2D.Dimension2D.EraseFromModel2D
permanently erases the dimension from the drawing.
The method pfcModel2D.Model2D.SetViewDisplaying changes the
view where a dimension created in a solid model is displayed.

Drawings 141

Example: Command Creation of Dimensions from Model
Datum Points
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples shows a command
which creates vertical and horizontal ordinate dimensions from each datum point
in a model in a drawing view to a selected coordinate system datum.

Drawing Tables
A drawing table in J-Link is represented by the
com.ptc.pfc.pfcTable.Table. It is a child of the ModelItem .
Some drawing table methods operate on specific rows or columns. The row and
column numbers in J-Link begin with 1 and range up to the total number of rows
or columns in the table. Some drawing table methods operate on specific table
cells. The com.ptc.pfc.pfcTable.TableCell is used to represent a
drawing table cell.

Creating Drawing Cells
Method Introduced:

• pfcTable.pfcTable.TableCell_Create
The method pfcTable.pfcTable.TableCell_Create creates the
TableCell object representing a cell in the drawing table.
Some drawing table methods operate on specific drawing segment. A
multisegmented drawing table contains 2 or more areas in the drawing. Inserting
or deleting rows in one segment of the table can affect the contents of other
segments. Table segments are numbered beginning with 0. If the table has only a
single segment, use 0 as the segment id in the relevant methods.

Selecting Drawing Tables and Cells
Methods Introduced:

• pfcSession.BaseSession.Select
• pfcSelect.Selection.GetSelItem
• pfcSelect.Selection.GetSelTableCell
• pfcSelect.Selection.GetSelTableSegment
Tables may be selected using the method
pfcSession.BaseSession.Select. Pass the filter dwg_table to select
an entire table and the filter table_cell to prompt the user to select a
particular table cell.

142 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSelect.Selection.GetSelItem returns the selected
table handle. It is a model item that can be cast to a Table object.
The method pfcSelect.Selection.GetSelTableCell returns the row
and column indices of the selected table cell.
The method pfcSelect.Selection.GetSelTableSegment returns the
table segment identifier for the selected table cell. If the table consists of a single
segment, this method returns the identifier 0.

Creating Drawing Tables
Methods Introduced:

• pfcTable.pfcTable.TableCreateInstructions_Create
• pfcTable.TableOwner.CreateTable
The method pfcTable.pfcTable.TableCreateInstructions_
Create creates the TableCreateInstructions data object that describes
how to construct a new table using the method
pfcTable.TableOwner.CreateTable.
The parameters of the instructions data object are:

• Origin—This parameter stores a three dimensional point specifying the
location of the table origin. The origin is the position of the top left corner of
the table.

• RowHeights—Specifies the height of each row of the table.
• ColumnData—Specifies the width of each column of the table and its

justification.
• SizeTypes—Indicates the scale used to measure the column width and row

height of the table.
The method pfcTable.TableOwner.CreateTable creates a table in the
drawing specified by the TableCreateInstructions data object.

Retrieving Drawing Tables
Methods Introduced

• pfcTable.pfcTable.TableRetrieveInstructions_Create
• pfcTable.TableRetrieveInstructions.SetFileName
• pfcTable.TableRetrieveInstructions.SetPath
• pfcTable.TableRetrieveInstructions.SetVersion
• pfcTable.TableRetrieveInstructions.SetPosition
• pfcTable.TableRetrieveInstructions.SetReferenceSolid

Drawings 143

• pfcTable.TableRetrieveInstructions.SetReferenceRep
• pfcTable.TableOwner.RetrieveTable
• pfcTable.TableOwner.RetrieveTableByOrigin
The method pfcTable.TableOwner.RetrieveTable retrieves a table
specified by the TableRetrieveInstructions data object from a file on
the disk. It returns the retrieved table. The data object contains information on the
table to retrieve and is returned by the method
pfcTable.pfcTable.TableRetrieveInstructions_Create.
The method pfcTable.pfcTable.TableRetrieveInstructions_
Create creates the TableRetrieveInstructions data object that
describes how to retrieve a drawing table using the methods
pfcTable.TableOwner.RetrieveTable and
pfcTable.TableOwner.RetrieveTableByOrigin. The method returns
the created instructions data object.
The parameters of the instruction object are:

• FileName—Name of the file containing the drawing table.
• Position—Coordinates of the point on the drawing sheet, where the retrieved

table must be placed. You must specify the value in screen coordinates.
You can also set the parameters for TableRetrieveInstructions data
object using the following method:
• pfcTable.TableRetrieveInstructions.SetFileName—Sets

the name of the drawing table. You must not specify the extension.
• pfcTable.TableRetrieveInstructions.SetPath—Sets the path

to the drawing table file. The path must be specified relative to the working
directory.

• pfcTable.TableRetrieveInstructions.SetVersion—Sets the
version of the drawing table that must be retrieved. If you specify NULL rthe
latest version of the drawing table is retrieved.

• pfcTable.TableRetrieveInstructions.SetPosition—Sets
the coordinates of the point on the drawing sheet, where the table must be
placed. You must specify the value in screen coordinates.

• pfcTable.TableRetrieveInstructions.SetReferenceSol
id—Sets the model from which data must be copied into the drawing table. If
this argument is passed as NULL, an empty table is created.

• pfcTable.TableRetrieveInstructions.SetReferenceRep—
Sets the handle to the simplified representation in a solid, from which data
must be copied into the drawing table. If this argument is passed as NULL, and
the argument solid is not NULL, then data from the solid model is copied into
the drawing table

144 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcTable.TableOwner.RetrieveTable retrieves a table
specified by the TableRetrieveInstructions data object from a file on
the disk. It returns the retrieved table. The upper-left corner of the table is placed
on the drawing sheet at the position specified by the
pfcTableRetrieveInstructions data object.
The method pfcTable.TableOwner.RetrieveTableByOrigin also
retrieves a table specified by the TableRetrieveInstructions data object
from a file on the disk. The origin of the table is placed on the drawing sheet at the
position specified by the TableRetrieveInstructions data object. Tables
can be created with different origins by specifying the option Direction, in the
Insert Table dialog box.

Drawing Tables Information
Methods Introduced:

• pfcTable.TableOwner.ListTables
• pfcTable.TableOwner.GetTable
• pfcTable.Table.GetRowCount
• pfcTable.Table.GetColumnCount
• pfcTable.Table.CheckIfIsFromFormat
• pfcTable.Table.GetRowSize
• pfcTable.Table.GetColumnSize
• pfcTable.Table.GetText
• pfcTable.Table.GetCellNote
The method pfcTable.TableOwner.ListTables returns a sequence of
tables found in the model.
The method pfcTable.TableOwner.GetTable returns a table specified by
the table identifier in the model. It returns a null value if the table is not found.
The method pfcTable.Table.GetRowCount returns the number of rows in
the table.
The method pfcTable.Table.GetColumnCount returns the number of
columns in the table.
The method pfcTable.Table.CheckIfIsFromFormat checks if the
drawing table was created using the format. The method returns a true value if the
table was created by applying the drawing format.
The method pfcTable.Table.GetRowSize returns the height of the
drawing table row specified by the segment identifier and the row number.

Drawings 145

The method pfcTable.Table.GetColumnSize returns the width of the
drawing table column specified by the segment identifier and the column number.
The method pfcTable.Table.GetText returns the sequence of text in a
drawing table cell. Set the value of the parameter Mode to DWGTABLE_NORMAL
to get the text as displayed on the screen. Set it to DWGTABLE_FULL to get
symbolic text, which includes the names of parameter references in the table text.
The method pfcTable.Table.GetCellNote returns the detail note item
contained in the table cell.

Drawing Tables Operations
Methods Introduced:

• pfcTable.Table.Erase
• pfcTable.Table.Display
• pfcTable.Table.RotateClockwise
• pfcTable.Table.InsertRow
• pfcTable.Table.InsertColumn
• pfcTable.Table.MergeRegion
• pfcTable.Table.SubdivideRegion
• pfcTable.Table.DeleteRow
• pfcTable.Table.DeleteColumn
• pfcTable.Table.SetText
• pfcTable.TableOwner.DeleteTable
The method pfcTable.Table.Erase erases the specified table temporarily
from the display. It still exists in the drawing. The erased table can be displayed
again using the method pfcTable.Table.Display. The table will also be
redisplayed by a window repaint or a regeneration of the drawing. Use these
methods to hide a table from the display while you are making multiple changes to
the table.
The method pfcTable.Table.RotateClockwise rotates a table clockwise
by the specified amount of rotation.
The method pfcTable.Table.InsertRow inserts a new row in the drawing
table. Set the value of the parameter RowHeight to specify the height of the row.
Set the value of the parameter InsertAfterRow to specify the row number after
which the new row has to be inserted. Specify 0 to insert a new first row.

146 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcTable.Table.InsertColumn inserts a new column in the
drawing table. Set the value of the parameter ColumnWidth to specify the width of
the column. Set the value of the parameter InsertAfterColumn to specify the
column number after which the new column has to be inserted. Specify 0 to insert
a new first column.
The method pfcTable.Table.MergeRegion merges table cells within a
specified range of rows and columns to form a single cell. The range is a
rectangular region specified by the table cell on the upper left of the region and
the table cell on the lower right of the region.
The method pfcTable.Table.SubdivideRegion removes merges from a
region of table cells that were previously merged. The region to remove merges is
specified by the table cell on the upper left of the region and the table cell on the
lower right of the region.
The methods pfcTable.Table.DeleteRow and
pfcTable.Table.DeleteColumn delete any specified row or column from
the table. The methods also remove the text from the affected cells.
The method pfcTable.Table.SetText sets text in the table cell.
Use the method pfcTable.TableOwner.DeleteTable to delete a
specified drawing table from the model permanently. The deleted table cannot be
displayed again.

Note
Many of the above methods provide a parameter Repaint If this is set to true
the table will be repainted after the change. If set to false or null PTC Creo
Parametric will delay the repaint, allowing you to perform several operations
before showing changes on the screen.

Example: Creation of a Table Listing Datum Points
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples creates a drawing
table that lists the datum points in a model shown in a drawing view.

Drawing Table Segments
Drawing tables can be constructed with one or more segments. Each segment can
be independently placed. The segments are specified by an integer identifier
starting with 0.
Methods Introduced:

Drawings 147

• pfcSelect.Selection.GetSelTableSegment
• pfcTable.Table.GetSegmentCount
• pfcTable.Table.GetSegmentSheet
• pfcTable.Table.MoveSegment
• pfcTable.Table.GetInfo
The method pfcSelect.Selection.GetSelTableSegment returns the
value of the segment identifier of the selected table segment. It returns a null value
if the selection does not contain a segment identifier.
The method pfcTable.Table.GetSegmentCount returns the number of
segments in the table.
The method pfcTable.Table.GetSegmentSheet determines the sheet
number that contains a specified drawing table segment.
The method pfcTable.Table.MoveSegment moves a drawing table
segment to a new location. Pass the co-ordinates of the target position in the
format x, y, z=0.

Note
Set the value of the parameter Repaint to true to repaint the drawing with the
changes. Set it to false or null to delay the repaint.

To get information about a drawing table pass the value of the segment identifier
as input to the method pfcTable.Table.GetInfo. The method returns the
table information including the rotation, row and column information, and the 3D
outline.

Repeat Regions
Methods Introduced:

• pfcTable.Table.IsCommentCell
• pfcTable.Table.GetCellComponentModel
• pfcTable.Table.GetCellReferenceModel
• pfcTable.Table.GetCellTopModel
• pfcTable.TableOwner.UpdateTables
The methods pfcTable.Table.IsCommentCell,
pfcTable.Table.GetCellComponentModel,
pfcTable.Table.GetCellReferenceModel,

148 PTC Creo® Parametric 3.0 J-Link User’s Guide

pfcTable.Table.GetCellTopModel, and
pfcTable.TableOwner.UpdateTables apply to repeat regions in
drawing tables.
The method pfcTable.Table.IsCommentCell tells you whether a cell in a
repeat region contains a comment.
The method pfcTable.Table.GetCellComponentModel returns the
path to the assembly component model that is being referenced by a cell in a
repeat region of a drawing table. It does not return a valid path if the cell attribute
is set to NO DUPLICATE or NO DUPLICATE/LEVEL.
The method pfcTable.Table.GetCellReferenceModel returns the
reference component that is being referred to by a cell in a repeat region of a
drawing table, even if cell attribute is set to NO DUPLICATE or NO
DUPLICATE/LEVEL.
The method pfcTable.Table.GetCellTopModel returns the top model
that is being referred to by a cell in a repeat region of a drawing table, even if cell
attribute is set to NO DUPLICATE or NO DUPLICATE/LEVEL.
Use the method pfcTable.TableOwner.UpdateTables to update the
repeat regions in all the tables to account for changes to the model. It is equivalent
to the command Table, Repeat Region, Update.

Detail Items
The methods described in this section operate on detail items.
In J-Link you can create, delete and modify detail items, control their display, and
query what detail items are present in the drawing. The types of detail items
available are:

• Draft Entities—Contain graphical items created in PTC Creo Parametric. The
items are as follows:

○ Arc
○ Ellipse
○ Line
○ Point
○ Polygon
○ Spline

• Notes—Textual annotations
• Symbol Definitions—Contained in the drawing’s symbol gallery.
• Symbol Instances—Instances of a symbol placed in a drawing.

Drawings 149

• Draft Groups—Groups of detail items that contain notes, symbol instances,
and draft entities.

• OLE objects—Object Linking and Embedding (OLE) objects embedded in the
PTC Creo Parametric drawing file.

Listing Detail Items
Methods Introduced:

• pfcModelItem.ModelItemOwner.ListItems
• pfcDetail.DetailItemOwner.ListDetailItems
• pfcModelItem.ModelItemOwner.GetItemById
• pfcDetail.DetailItemOwner.CreateDetailItem
The method pfcModelItem.ModelItemOwner.ListItems returns a list
of detail items specified by the parameter Type or returns null if no detail items of
the specified type are found.
The values of the parameter Type for detail items are:

• ITEM_DTL_ENTITY—Detail Entity
• ITEM_DTL_NOTE—Detail Note
• ITEM_DTL_GROUP—Draft Group
• ITEM_DTL_SYM_DEFINITION—Detail Symbol Definition
• ITEM_DTL_SYM_INSTANCE—Detail Symbol Instance
• ITEM_DTL_OLE_OBJECT—Drawing embedded OLE object
If this parameter is set to null, then all the model items in the drawing are listed.
The method pfcDetail.DetailItemOwner.ListDetailItems also
lists the detail items in the model. Pass the type of the detail item and the sheet
number that contains the specified detail items.
Set the input parameter Type to the type of detail item to be listed. Set it to null to
return all the detail items. The input parameter SheetNumberdetermines the sheet
that contains the specified detail item. Pass null to search all the sheets. This
argument is ignored if the parameter Type is set to DETAIL_SYM_DEFINITION.
The method returns a sequence of detail items and returns a null if no items
matching the input values are found.
The method pfcModelItem.ModelItemOwner.GetItemById returns a
detail item based on the type of the detail item and its integer identifier. The
method returns a null if a detail item with the specified attributes is not found.

150 PTC Creo® Parametric 3.0 J-Link User’s Guide

Creating a Detail Item
Methods Introduced:

• pfcDetail.DetailItemOwner.CreateDetailItem
• pfcDetail.pfcDetail.DetailGroupInstructions_Create
The method pfcDetail.DetailItemOwner.CreateDetailItem
creates a new detail item based on the instruction data object that describes the
type and content of the new detail item. The instructions data object is returned by
the method pfcDetail.pfcDetail.DetailGroupInstructions_
Create. The method returns the newly created detail item.

Detail Entities
A detail entity in J-Link is represented by the
com.ptc.pfc.pfcDetail.DetailEntityItem. It is a child of the
DetailItem .
The com.ptc.pfc.pfcDetail.DetailEntityInstructions
contains specific information used to describe a detail entity item.

Instructions
Methods Introduced:

• pfcDetail.pfcDetail.DetailEntityInstructions_Create
• pfcDetail.DetailEntityInstructions.GetGeometry
• pfcDetail.DetailEntityInstructions.SetGeometry
• pfcDetail.DetailEntityInstructions.GetIsConstruction
• pfcDetail.DetailEntityInstructions.SetIsConstruction
• pfcDetail.DetailEntityInstructions.GetColor
• pfcDetail.DetailEntityInstructions.SetColor
• pfcDetail.DetailEntityInstructions.GetFontName
• pfcDetail.DetailEntityInstructions.SetFontName
• pfcDetail.DetailEntityInstructions.GetWidth
• pfcDetail.DetailEntityInstructions.SetWidth
• pfcDetail.DetailEntityInstructions.GetView
• pfcDetail.DetailEntityInstructions.SetView
The method pfcDetail.pfcDetail.DetailEntityInstructions_
Create creates an instructions object that describes how to construct a detail
entity, for use in the methods

Drawings 151

pfcDetail.DetailItemOwner.CreateDetailItem,
pfcDetail.DetailSymbolDefItem.CreateDetailItem, and
pfcDetail.DetailEntityItem.Modify.
The instructions object is created based on the curve geometry and the drawing
view associated with the entity. The curve geometry describes the trajectory of the
detail entity in world units. The drawing view can be a model view returned by the
method pfcModel2D.Model2D.List2DViews or a drawing sheet
background view returned by the method
pfcSheet.SheetOwner.GetSheetBackgroundView. The background
view indicates that the entity is not associated with a particular model view.
The method returns the created instructions object.

Note
Changes to the values of a pfcDetail.DetailEntityInstructions
object do not take effect until that instructions object is used to modify the
entity using pfcDetail.DetailEntityItem.Modify.

The method pfcDetail.DetailEntityInstructions.GetGeometry
returns the geometry of the detail entity item.
The method pfcDetail.DetailEntityInstructions.SetGeometry
sets the geometry of the detail entity item. For more information refer to Curve
Descriptors on page 245.
The method
pfcDetail.DetailEntityInstructions.GetIsConstruction
returns a value that specifies whether the entity is a construction entity.
The method
pfcDetail.DetailEntityInstructions.SetIsConstruction
specifies if the detail entity is a construction entity.
The method pfcDetail.DetailEntityInstructions.GetColor
returns the color of the detail entity item.
The method pfcDetail.DetailEntityInstructions.SetColor sets
the color of the detail entity item. Pass null to use the default drawing color.
The method pfcDetail.DetailEntityInstructions.GetFontName
returns the line style used to draw the entity. The method returns a null value if the
default line style is used.
The method pfcDetail.DetailEntityInstructions.SetFontName
sets the line style for the detail entity item. Pass null to use the default line style.

152 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcDetail.DetailEntityInstructions.GetWidth
returns the value of the width of the entity line. The method returns a null value if
the default line width is used.
The method pfcDetail.DetailEntityInstructions.SetWidth
specifies the width of the entity line. Pass null to use the default line width.
The method pfcDetail.DetailEntityInstructions.GetView
returns the drawing view associated with the entity. The view can either be a
model view or a drawing sheet background view.
The method pfcDetail.DetailEntityInstructions.SetView sets
the drawing view associated with the entity. The view can either be a model view
or a drawing sheet background view.

Example: Create a Draft Line with Predefined Color
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples shows a utility that
creates a draft line in one of the colors predefined in PTC Creo Parametric.

Detail Entities Information
Methods Introduced:

• pfcDetail.DetailEntityItem.GetInstructions
• pfcDetail.DetailEntityItem.GetSymbolDef
The method pfcDetail.DetailEntityItem.GetInstructions
returns the instructions data object that is used to construct the detail entity item.
The method pfcDetail.DetailEntityItem.GetSymbolDef returns the
symbol definition that contains the entity. This method returns a null value if the
entity is not a part of a symbol definition.

Detail Entities Operations
Methods Introduced:

• pfcDetail.DetailEntityItem.Draw
• pfcDetail.DetailEntityItem.Erase
• pfcDetail.DetailEntityItem.Modify
The method pfcDetail.DetailEntityItem.Draw temporarily draws a
detail entity item, so that it is removed during the next draft regeneration.
The method pfcDetail.DetailEntityItem.Erase undraws a detail
entity item temporarily, so that it is redrawn during the next draft regeneration.

Drawings 153

The method pfcDetail.DetailEntityItem.Modify modifies the
definition of an entity item using the specified instructions data object.

OLE Objects
An object linking and embedding (OLE) object is an external file, such as a
document, graphics file, or video file that is created using an external application
and which can be inserted into another application, such as PTC Creo Parametric.
You can create and insert supported OLE objects into a two-dimensional PTC
Creo Parametric file, such as a drawing, report, format file, notebook, or diagram.
The functions described in this section enable you to identify and access OLE
objects embedded in drawings.
Methods Introduced:

• pfcDetail.DetailOLEObject.GetApplicationType
• pfcDetail.DetailOLEObject.GetOutline
• pfcDetail.DetailOLEObject.GetPath
• pfcDetail.DetailOLEObject.GetSheet
The method pfcDetail.DetailOLEObject.GetApplicationType
returns the type of the OLE object as a string, for example, Microsoft Word
Document.
The method pfcDetail.DetailOLEObject.GetOutline returns the
extent of the OLE object embedded in the drawing.
The method pfcDetail.DetailOLEObject.GetPath returns the path to
the external file for each OLE object, if it is linked to an external file.
The method pfcDetail.DetailOLEObject.GetSheet returns the sheet
number for the OLE object.

Detail Notes
A detail note in is represented by the
com.ptc.pfc.pfcDetail.DetailNoteItem. It is a child of the
DetailItem .
The com.ptc.pfc.pfcDetail.DetailNoteInstructions contains
specific information that describes a detail note.

Instructions
Methods Introduced:

154 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcDetail.pfcDetail.DetailNoteInstructions_Create
• pfcDetail.DetailNoteInstructions.GetTextLines
• pfcDetail.DetailNoteInstructions.SetTextLines
• pfcDetail.DetailNoteInstructions.GetIsDisplayed
• pfcDetail.DetailNoteInstructions.SetIsDisplayed
• pfcDetail.DetailNoteInstructions.GetIsReadOnly
• pfcDetail.DetailNoteInstructions.SetIsReadOnly
• pfcDetail.DetailNoteInstructions.GetIsMirrored
• pfcDetail.DetailNoteInstructions.SetIsMirrored
• pfcDetail.DetailNoteInstructions.GetHorizontal
• pfcDetail.DetailNoteInstructions.SetHorizontal
• pfcDetail.DetailNoteInstructions.GetVertical
• pfcDetail.DetailNoteInstructions.SetVertical
• pfcDetail.DetailNoteInstructions.GetColor
• pfcDetail.DetailNoteInstructions.SetColor
• pfcDetail.DetailNoteInstructions.GetLeader
• pfcDetail.DetailNoteInstructions.SetLeader
• pfcDetail.DetailNoteInstructions.GetTextAngle
• pfcDetail.DetailNoteInstructions.SetTextAngle
The method pfcDetail.pfcDetail.DetailNoteInstructions_
Create creates a data object that describes how a detail note item should be
constructed when passed to the methods
pfcDetail.DetailItemOwner.CreateDetailItem,
pfcDetail.DetailSymbolDefItem.CreateDetailItem, or
pfcDetail.DetailNoteItem.Modify. The parameter inTextLines
specifies the sequence of text line data objects that describe the contents of the
note.

Note
Changes to the values of apfcDetail.DetailNoteInstructions
object do not take effect until that instructions object is used to modify the
note using pfcDetail.DetailNoteItem.Modify

The method pfcDetail.DetailNoteInstructions.GetTextLines
returns the description of text line contents in the note.

Drawings 155

The method pfcDetail.DetailNoteInstructions.SetTextLines
sets the description of the text line contents in the note.
The method
pfcDetail.DetailNoteInstructions.GetIsDisplayed returns a
boolean indicating if the note is currently displayed.
The method
pfcDetail.DetailNoteInstructions.SetIsDisplayed sets the
display flag for the note.
The method pfcDetail.DetailNoteInstructions.GetIsReadOnly
determines whether the note can be edited by the user, while the method
pfcDetail.DetailNoteInstructions.SetIsReadOnly toggles the
read only status of the note.
The method pfcDetail.DetailNoteInstructions.GetIsMirrored
determines whether the note is mirrored, while the method
pfcDetail.DetailNoteInstructions.SetIsMirrored toggles the
mirrored status of the note.
The method pfcDetail.DetailNoteInstructions.GetHorizontal
returns the value of the horizontal justification of the note, while the method
pfcDetail.DetailNoteInstructions.SetHorizontal sets the
value of the horizontal justification of the note.
The method pfcDetail.DetailNoteInstructions.GetVertical
returns the value of the vertical justification of the note, while the method
pfcDetail.DetailNoteInstructions.SetVertical sets the value
of the vertical justification of the note.
The method pfcDetail.DetailNoteInstructions.GetColor returns
the color of the detail note item. The method returns a null value to represent the
default drawing color.
Use the method pfcDetail.DetailNoteInstructions.SetColor to
set the color of the detail note item. Pass null to use the default drawing color.
The method pfcDetail.DetailNoteInstructions.GetLeader
returns the locations of the detail note item and information about the leaders.
The method pfcDetail.DetailNoteInstructions.SetLeader sets
the values of the location of the detail note item and the locations where the
leaders are attached to the drawing.
The method pfcDetail.DetailNoteInstructions.GetTextAngle
returns the value of the angle of the text used in the note. The method returns a
null value if the angle is 0.0.
The method pfcDetail.DetailNoteInstructions.SetTextAngle
sets the value of the angle of the text used in the note. Pass null to use the angle
0.0.

156 PTC Creo® Parametric 3.0 J-Link User’s Guide

Example: Create Drawing Note at Specified Location with
Leader to Surface and Surface Name
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples creates a drawing
note at a specified location, with a leader attached to a solid surface, and displays
the name of the surface.

Detail Notes Information
Methods Introduced:

• pfcDetail.DetailNoteItem.GetInstructions
• pfcDetail.DetailNoteItem.GetSymbolDef
• pfcDetail.DetailNoteItem.GetLineEnvelope
• pfcDetail.DetailNoteItem.GetModelReference
The method pfcDetail.DetailNoteItem.GetInstructions returns
an instructions data object that describes how to construct the detail note item.
This method takes a ProBoolean argument, GiveParametersAsNames, which
determines whether symbolic representations of parameters and drawing
properties in the note text should be displayed, or the actual text seen by the user
should be displayed.

Note
PTC Creo Parametric does not resolve and replace symbolic callouts for notes
which are not displayed. Therefore, if the note is not displayed or is hidden in
a layer, the text retrieved may contain symbolic callouts, even when
GiveParametersAsNames is false.

The method pfcDetail.DetailNoteItem.GetSymbolDef returns the
symbol definition that contains the note. The method returns a null value if the
note is not a part of a symbol definition.
The method pfcDetail.DetailNoteItem.GetLineEnvelope
determines the screen coordinates of the envelope around the detail note. This
envelope is defined by four points. The following figure illustrates how the point
order is determined.

Drawings 157

The ordering of the points is maintained even if the notes are mirrored or are at an
angle.
The method pfcDetail.DetailNoteItem.GetModelReference
returns the model referenced by the parameterized text in a note. The model is
referenced based on the line number and the text index where the parameterized
text appears.

Details Notes Operations
Methods Introduced:

• pfcDetail.DetailNoteItem.Draw
• pfcDetail.DetailNoteItem.Show
• pfcDetail.DetailNoteItem.Erase
• pfcDetail.DetailNoteItem.Remove
• pfcDetail.DetailNoteItem.Modify
The method pfcDetail.DetailNoteItem.Draw temporarily draws a
detail note item, so that it is removed during the next draft regeneration.
The method pfcDetail.DetailNoteItem.Show displays the note item,
such that it is repainted during the next draft regeneration.
The method pfcDetail.DetailNoteItem.Erase undraws a detail note
item temporarily, so that it is redrawn during the next draft regeneration.
The method pfcDetail.DetailNoteItem.Remove undraws a detail note
item permanently, so that it is not redrawn during the next draft regeneration.
The method pfcDetail.DetailNoteItem.Modify modifies the definition
of an existing detail note item based on the instructions object that describes the
new detail note item.

Detail Groups
A detail group in J-Link is represented by the
com.ptc.pfc.pfcDetail.DetailGroupItem. It is a child of the
DetailItem .
The interface com.ptc.pfc.pfcDetail.DetailGroupInstructions
contains information used to describe a detail group item.

Instructions
Method Introduced:

158 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcDetail.pfcDetail.DetailGroupInstructions_Create
• pfcDetail.DetailGroupInstructions.GetName
• pfcDetail.DetailGroupInstructions.SetName
• pfcDetail.DetailGroupInstructions.GetElements
• pfcDetail.DetailGroupInstructions.SetElements
• pfcDetail.DetailGroupInstructions.GetIsDisplayed
• pfcDetail.DetailGroupInstructions.SetIsDisplayed
The method pfcDetail.pfcDetail.DetailGroupInstructions_
Create creates an instruction data object that describes how to construct a detail
group for use in pfcDetail.DetailItemOwner.CreateDetailItem
and pfcDetail.DetailGroupItem.Modify.

Note
Changes to the values of a pfcDetail.DetailGroupInstructions
object do not take effect until that instructions object is used to modify the
group using pfcDetail.DetailGroupItem.Modify.

The method pfcDetail.DetailGroupInstructions.GetName returns
the name of the detail group.
The method pfcDetail.DetailGroupInstructions.SetName sets the
name of the detail group.
The method pfcDetail.DetailGroupInstructions.GetElements
returns the sequence of the detail items(notes, groups and entities) contained in the
group.
The method pfcDetail.DetailGroupInstructions.SetElements
sets the sequence of the detail items contained in the group.
The method
pfcDetail.DetailGroupInstructions.GetIsDisplayed returns
whether the detail group is displayed in the drawing.
The method
pfcDetail.DetailGroupInstructions.SetIsDisplayed toggles
the display of the detail group.

Detail Groups Information
Method Introduced:

Drawings 159

• pfcDetail.DetailGroupItem.GetInstructions
The method pfcDetail.DetailGroupItem.GetInstructions gets a
data object that describes how to construct a detail group item. The method returns
the data object describing the detail group item.

Detail Groups Operations
Methods Introduced:

• pfcDetail.DetailGroupItem.Draw
• pfcDetail.DetailGroupItem.Erase
• pfcDetail.DetailGroupItem.Modify
The method pfcDetail.DetailGroupItem.Draw temporarily draws a
detail group item, so that it is removed during the next draft generation.
The method pfcDetail.DetailGroupItem.Erase temporarily undraws a
detail group item, so that it is redrawn during the next draft generation.
The method pfcDetail.DetailGroupItem.Modify changes the
definition of a detail group item based on the data object that describes how to
construct a detail group item.

Example: Create New Group of Items
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples creates a group
from a set of selected detail items.

Detail Symbols

Detail Symbol Definitions
A detail symbol definition in J-Link is represented by the
pfcDetail.DetailSymbolDefItem. It is a child of the DetailItem .
The interface pfcDetail.DetailSymbolDefInstructions contains
information that describes a symbol definition. It can be used when creating
symbol definition entities or while accessing existing symbol definition entities.

Instructions
Methods Introduced:

• pfcDetail.pfcDetail.DetailSymbolDefInstructions_Create
• pfcDetail.DetailSymbolDefInstructions.GetSymbolHeight

160 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcDetail.DetailSymbolDefInstructions.SetSymbolHeight
• pfcDetail.DetailSymbolDefInstructions.GetHasElbow
• pfcDetail.DetailSymbolDefInstructions.SetHasElbow
• pfcDetail.DetailSymbolDefInstructions.GetIsTextAngleFixed
• pfcDetail.DetailSymbolDefInstructions.SetIsTextAngleFixed
• pfcDetail.DetailSymbolDefInstructions.GetScaledHeight
• pfcDetail.DetailSymbolDefInstructions.GetAttachments
• pfcDetail.DetailSymbolDefInstructions.SetAttachments
• pfcDetail.DetailSymbolDefInstructions.GetFullPath
• pfcDetail.DetailSymbolDefInstructions.SetFullPath
• pfcDetail.DetailSymbolDefInstructions.GetReference
• pfcDetail.DetailSymbolDefInstructions.SetReference
The method
pfcDetail.pfcDetail.DetailSymbolDefInstructions_Create
creates an instruction data object that describes how to create a symbol definition
based on the path and name of the symbol definition. The instructions object is
passed to the methods pfcDetailItemOwner.CreateDetailItem and
pfcDetailSymbolDefItem.Modify.

Note
Changes to the values of a
pfcDetail.DetailSymbolDefInstructions object do not take
effect until that instructions object is used to modify the definition using the
method pfcDetail.DetailSymbolDefItem.Modify.

The method
pfcDetail.DetailSymbolDefInstructions.GetSymbolHeight
returns the value of the height type for the symbol definition. The symbol
definition height options are as follows:

• SYMDEF_FIXED—Symbol height is fixed.
• SYMDEF_VARIABLE—Symbol height is variable.
• SYMDEF_RELATIVE_TO_TEXT—Symbol height is determined relative to

the text height.
The method
pfcDetail.DetailSymbolDefInstructions.SetSymbolHeight
sets the value of the height type for the symbol definition.

Drawings 161

The method
pfcDetail.DetailSymbolDefInstructions.GetHasElbow
determines whether the symbol definition includes an elbow.
The method
pfcDetail.DetailSymbolDefInstructions.SetHasElbow decides
if the symbol definition should include an elbow.
The method
pfcDetail.DetailSymbolDefInstructions.GetIsTextAngle
Fixed returns whether the text of the angle is fixed.
The method
pfcDetail.DetailSymbolDefInstructions.SetIsTextAngle
Fixed toggles the requirement that the text angle be fixed.
The method
pfcDetail.DetailSymbolDefInstructions.GetScaledHeight
returns the height of the symbol definition in inches.
The method
pfcDetail.DetailSymbolDefInstructions.GetAttachments
returns the value of the sequence of the possible instance attachment points for the
symbol definition.
The method
pfcDetail.DetailSymbolDefInstructions.SetAttachments sets
the value of the sequence of the possible instance attachment points for the
symbol definition.
The method
pfcDetail.DetailSymbolDefInstructions.GetFullPath returns
the value of the complete path of the symbol definition file.
The method
pfcDetail.DetailSymbolDefInstructions.SetFullPath sets the
value of the complete path of the symbol definition path.
The method
pfcDetail.DetailSymbolDefInstructions.GetReference returns
the text reference information for the symbol definition. It returns a null value if
the text reference is not used. The text reference identifies the text item used for a
symbol definition which has a height type of SYMDEF_TEXT_RELATED.
The method
pfcDetail.DetailSymbolDefInstructions.SetReference sets
the text reference information for the symbol definition.

Detail Symbol Definitions Information
Methods Introduced:

162 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcDetail.DetailSymbolDefItem.ListDetailItems
• pfcDetail.DetailSymbolDefItem.GetInstructions
The method pfcDetail.DetailSymbolDefItem.ListDetailItems
lists the detail items in the symbol definition based on the type of the detail item.
The method pfcDetail.DetailSymbolDefItem.GetInstructions
returns an instruction data object that describes how to construct the symbol
definition.

Detail Symbol Definitions Operations
Methods Introduced:

• pfcDetail.DetailSymbolDefItem.CreateDetailItem
• pfcDetail.DetailSymbolDefItem.Modify
The method pfcDetail.DetailSymbolDefItem.CreateDetailItem
creates a detail item in the symbol definition based on the instructions data object.
The method returns the detail item in the symbol definition.
The method pfcDetail.DetailSymbolDefItem.Modify modifies a
symbol definition based on the instructions data object that contains information
about the modifications to be made to the symbol definition.

Retrieving Symbol Definitions
Methods Introduced:

• pfcDetail.DetailItemOwner.RetrieveSymbolDefinition
The method
pfcDetail.DetailItemOwner.RetrieveSymbolDefinition
retrieves a symbol definition from the disk.
The input parameters of this method are:

• FileName—Name of the symbol definition file
• FilePath—Path to the symbol definition file. It is relative to the path specified

by the option "pro_symbol_dir" in the configuration file. A null value
indicates that the function should search the current directory.

• Version—Numerical version of the symbol definition file. A null value
retrieves the latest version.

• UpdateUnconditionally—True if PTC Creo Parametric should update existing
instances of this symbol definition, or false to quit the operation if the
definition exists in the model.

The method returns the retrieved symbol definition.

Drawings 163

Detail Symbol Instances
A detail symbol instance in J-Link is represented by the
pfcDetail.DetailSymbolInstItem. It is a child of the DetailItem .
The Detail.DetailSymbolInstInstructions contains information
that describes a symbol instance. It can be used when creating symbol instances
and while accessing existing groups.

Instructions
Methods Introduced:

• pfcDetail.pfcDetail.DetailSymbolInstInstructions_Create
• pfcDetail.DetailSymbolInstInstructions.GetIsDisplayed
• pfcDetail.DetailSymbolInstInstructions.SetIsDisplayed
• pfcDetail.DetailSymbolInstInstructions.GetColor
• pfcDetail.DetailSymbolInstInstructions.SetColor
• pfcDetail.DetailSymbolInstInstructions.GetSymbolDef
• pfcDetail.DetailSymbolInstInstructions.SetSymbolDef
• pfcDetail.DetailSymbolInstInstructions.GetAttachOnDefType
• pfcDetail.DetailSymbolInstInstructions.SetAttachOnDefType
• pfcDetail.DetailSymbolInstInstructions.GetDefAttachment
• pfcDetail.DetailSymbolInstInstructions.SetDefAttachment
• pfcDetail.DetailSymbolInstInstructions.GetInstAttachment
• pfcDetail.DetailSymbolInstInstructions.SetInstAttachment
• pfcDetail.DetailSymbolInstInstructions.GetAngle
• pfcDetail.DetailSymbolInstInstructions.SetAngle
• pfcDetail.DetailSymbolInstInstructions.GetScaledHeight
• pfcDetail.DetailSymbolInstInstructions.SetScaledHeight
• pfcDetail.DetailSymbolInstInstructions.GetTextValues
• pfcDetail.DetailSymbolInstInstructions.SetTextValues
• pfcDetail.DetailSymbolInstInstructions.GetCurrentTransform
• pfcDetail.DetailSymbolInstInstructions.SetGroups
The method
pfcDetail.pfcDetail.DetailSymbolInstInstructions_Create
creates a data object that contains information about the placement of a symbol
instance.

164 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
Changes to the values of a
pfcDetail.DetailSymbolInstInstructions object do not take
effect until that instructions object is used to modify the instance using
pfcDetail.DetailSymbolInstItem.Modify.

The method
pfcDetail.DetailSymbolInstInstructions.GetIsDisplayed
returns a value that specifies whether the instance of the symbol is displayed.
Use the method
pfcDetail.DetailSymbolInstInstructions.SetIsDisplayed to
switch the display of the symbol instance.
The method
pfcDetail.DetailSymbolInstInstructions.GetColor returns the
color of the detail symbol instance. A null value indicates that the default drawing
color is used.
The method
pfcDetail.DetailSymbolInstInstructions.SetColor sets the
color of the detail symbol instance. Pass null to use the default drawing color.
The method
pfcDetail.DetailSymbolInstInstructions.GetSymbolDef
returns the symbol definition used for the instance.
The method
pfcDetail.DetailSymbolInstInstructions.SetSymbolDef sets
the value of the symbol definition used for the instance.
The method
pfcDetail.DetailSymbolInstInstructions.GetAttachOnDef
Type returns the attachment type of the instance. The method returns a null value
if the attachment represents a free attachment. The attachment options are as
follows:

• SYMDEFATTACH_FREE—Attachment on a free point.
• SYMDEFATTACH_LEFT_LEADER—Attachment via a leader on the left side

of the symbol.
• SYMDEFATTACH_RIGHT_LEADER—Attachment via a leader on the right

side of the symbol.
• SYMDEFATTACH_RADIAL_LEADER—Attachment via a leader at a radial

location.

Drawings 165

• SYMDEFATTACH_ON_ITEM—Attachment on an item in the symbol
definition.

• SYMDEFATTACH_NORMAL_TO_ITEM—Attachment normal to an item in
the symbol definition.

The method
pfcDetail.DetailSymbolInstInstructions.SetAttachOnDef
Type sets the attachment type of the instance.
The method
pfcDetail.DetailSymbolInstInstructions.GetDefAttachment
returns the value that represents the way in which the instance is attached to the
symbol definition.
The method
pfcDetail.DetailSymbolInstInstructions.SetDefAttachment
specifies the way in which the instance is attached to the symbol definition.
The method
pfcDetail.DetailSymbolInstInstructions.GetInstAttach
ment returns the value of the attachment of the instance that includes location and
leader information.
The method
pfcDetail.DetailSymbolInstInstructions.SetInstAttach
ment sets value of the attachment of the instance.
The method
pfcDetail.DetailSymbolInstInstructions.GetAngle returns the
value of the angle at which the instance is placed. The method returns a null value
if the value of the angle is 0 degrees.
The method
pfcDetail.DetailSymbolInstInstructions.SetAngle sets the
value of the angle at which the instance is placed.
The method
pfcDetail.DetailSymbolInstInstructions.GetScaledHeight
returns the height of the symbol instance in the owner drawing or model
coordinates. This value is consistent with the height value shown for a symbol
instance in the Properties dialog box in the PTC Creo Parametric User Interface.

166 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
The scaled height obtained using the above method is partially based on the
properties of the symbol definition assigned using the method
pfcDetail.DetailSymbolInstInstructions.GetSymbolDef.
Changing the symbol definition may change the calculated value for the scaled
height.

The method
pfcDetail.DetailSymbolInstInstructions.SetScaledHeight
sets the value of the height of the symbol instance in the owner drawing or model
coordinates.
The method
pfcDetail.DetailSymbolInstInstructions.GetTextValues
returns the sequence of variant text values used while placing the symbol instance.
The method
pfcDetail.DetailSymbolInstInstructions.SetTextValues sets
the sequence of variant text values while placing the symbol instance.
The method
pfcDetail.DetailSymbolInstInstructions.GetCurrentTrans
form returns the coordinate transformation matrix to place the symbol instance.
The method
pfcDetail.DetailSymbolInstInstructions.SetGroups
DetailSymbolGroupOption

• DETAIL_SYMBOL_GROUP_INTERACTIVE—Symbol groups are
interactively selected for display. This is the default value in the GRAPHICS
mode.

• DETAIL_SYMBOL_GROUP_ALL—All non-exclusive symbol groups are
included for display.

• DETAIL_SYMBOL_GROUP_NONE—None of the non-exclusive symbol
groups are included for display.

• DETAIL_SYMBOL_GROUP_CUSTOM—Symbol groups specified by the
application are displayed.

Refer to the section Detail Symbol Groups on page 169 for more information on
detail symbol groups.

Detail Symbol Instances Information
Method Introduced:

Drawings 167

• pfcDetail.DetailSymbolInstItem.GetInstructions
The method pfcDetail.DetailSymbolInstItem.GetInstructions
returns an instructions data object that describes how to construct a symbol
instance. This method takes a ProBoolean argument, GiveParametersAsNames,
which determines whether symbolic representations of parameters and drawing
properties in the symbol instance should be displayed, or the actual text seen by
the user should be displayed.

Detail Symbol Instances Operations
Methods Introduced:

• pfcDetail.DetailSymbolInstItem.Draw
• pfcDetail.DetailSymbolInstItem.Erase
• pfcDetail.DetailSymbolInstItem.Show
• pfcDetail.DetailSymbolInstItem.Remove
• pfcDetail.DetailSymbolInstItem.Modify
The method pfcDetail.DetailSymbolInstItem.Draw draws a symbol
instance temporarily to be removed on the next draft regeneration.
The method pfcDetail.DetailSymbolInstItem.Erase undraws a
symbol instance temporarily from the display to be redrawn on the next draft
generation.
The method pfcDetail.DetailSymbolInstItem.Show displays a
symbol instance to be repainted on the next draft regeneration.
The method pfcDetail.DetailSymbolInstItem.Remove deletes a
symbol instance permanently.
The method pfcDetail.DetailSymbolInstItem.Modify modifies a
symbol instance based on the instructions data object that contains information
about the modifications to be made to the symbol instance.

Example: Create a Free Instance of Symbol Definition
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples creates a free
instance of a symbol definition.

Example: Create a Free Instance of a Symbol Definition with drawing unit
heights, variable text and groups
The sample code in the file pfcDrawingExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples creates a free
instance of a symbol definition with drawing unit heights, variable text and
groups.

168 PTC Creo® Parametric 3.0 J-Link User’s Guide

Detail Symbol Groups
A detail symbol group in J-Link is represented by the
pfcDetail.DetailSymbolGroup. It is a child of the
pfcObject.Object . A detail symbol group is accessible only as a part of the
contents of a detail symbol definition or instance.
The interface pfcDetail.DetailSymbolGroupInstructions contains
information that describes a symbol group. It can be used when creating new
symbol groups, or while accessing or modifying existing groups.

Instructions
Methods Introduced:

• pfcDetail.pfcDetail.DetailSymbolGroupInstructions_Create
• pfcDetail.DetailSymbolGroupInstructions.GetItems
• pfcDetail.DetailSymbolGroupInstructions.SetItems
• pfcDetail.DetailSymbolGroupInstructions.GetName
• pfcDetail.DetailSymbolGroupInstructions.SetName
The method
pfcDetail.pfcDetail.DetailSymbolGroupInstructions_
Create creates the pfcDetail.DetailSymbolGroupInstructions
data object that stores the name of the symbol group and the list of detail items to
be included in the symbol group.

Note
Changes to the values of the
pfcDetail.DetailSymbolGroupInstructions data object do not
take effect until this object is used to modify the instance using the method
pfcDetail.DetailSymbolGroup.Modify.

The method
pfcDetail.DetailSymbolGroupInstructions.GetItems returns
the list of detail items included in the symbol group.
The method
pfcDetail.DetailSymbolGroupInstructions.SetItems sets the
list of detail items to be included in the symbol group.
The method
pfcDetail.DetailSymbolGroupInstructions.GetName returns the
name of the symbol group.

Drawings 169

The method
pfcDetail.DetailSymbolGroupInstructions.SetName assigns the
name of the symbol group.

Detail Symbol Group Information
Methods Introduced:

• pfcDetail.DetailSymbolGroup.GetInstructions
• pfcDetail.DetailSymbolGroup.GetParentGroup
• pfcDetail.DetailSymbolGroup.GetParentDefinition
• pfcDetail.DetailSymbolGroup.ListChildren
• pfcDetail.DetailSymbolDefItem.ListSubgroups
• pfcDetail.DetailSymbolDefItem.IsSubgroupLevelExclusive
• pfcDetail.DetailSymbolInstItem.ListGroups
The method pfcDetail.DetailSymbolGroup.GetInstructions
returns the pfcDetail.DetailSymbolGroupInstructions data object
that describes how to construct a symbol group.
The method pfcDetail.DetailSymbolGroup.GetParentGroup
returns the parent symbol group to which a given symbol group belongs.
The method
pfcDetail.DetailSymbolGroup.GetParentDefinition returns the
symbol definition of a given symbol group.
The method pfcDetail.DetailSymbolGroup.ListChildren lists the
subgroups of a given symbol group.
The method pfcDetail.DetailSymbolDefItem.ListSubgroups lists
the subgroups of a given symbol group stored in the symbol definition at the
indicated level.
The method
pfcDetail.DetailSymbolDefItem.IsSubgroupLevelExclusive
identifies if the subgroups of a given symbol group stored in the symbol definition
at the indicated level are exclusive or independent. If groups are exclusive, only
one of the groups at this level can be active in the model at any time. If groups are
independent, any number of groups can be active.
The method pfcDetail.DetailSymbolInstItem.ListGroups lists the
symbol groups included in a symbol instance. The SymbolGroupFilter
argument determines the types of symbol groups that can be listed. It takes the
following values:

170 PTC Creo® Parametric 3.0 J-Link User’s Guide

• DTLSYMINST_ALL_GROUPS—Retrieves all groups in the definition of the
symbol instance.

• DTLSYMINST_ACTIVE_GROUPS—Retrieves only those groups that are
actively shown in the symbol instance.

• DTLSYMINST_INACTIVE_GROUPS—Retrieves only those groups that are
not shown in the symbol instance.

Detail Symbol Group Operations
Methods Introduced:

• pfcDetail.DetailSymbolGroup.Delete
• pfcDetail.DetailSymbolGroup.Modify
• pfcDetail.DetailSymbolDefItem.CreateSubgroup
• pfcDetail.DetailSymbolDefItem.SetSubgroupLevelExclusive
• pfcDetail.DetailSymbolDefItem.SetSubgroupLevelIndependent
The method pfcDetail.DetailSymbolGroup.Delete deletes the
specified symbol group from the symbol definition. This method does not delete
the entities contained in the group.
The method pfcDetail.DetailSymbolGroup.Modify modifies the
specified symbol group based on the
pfcDetail.DetailSymbolGroupInstructions data object that
contains information about the modifications that can be made to the symbol
group.
The method
pfcDetail.DetailSymbolDefItem.CreateSubgroupcreates a new
subgroup in the symbol definition at the indicated level below the parent group.
The method
pfcDetail.DetailSymbolDefItem.SetSubgroupLevelExclusive
makes the subgroups of a symbol group exclusive at the indicated level in the
symbol definition.

Note
After you set the subgroups of a symbol group as exclusive, only one of the
groups at the indicated level can be active in the model at any time.

The method
pfcDetail.DetailSymbolDefItem.SetSubgroupLevelIndepend
ent makes the subgroups of a symbol group independent at the indicated level in
the symbol definition.

Drawings 171

Note
After you set the subgroups of a symbol group as independent, any number of
groups at the indicated level can be active in the model at any time.

Detail Attachments
A detail attachment in J-Link is represented by the pfcDetail.Attachment.
It is used for the following tasks:

• The way in which a drawing note or a symbol instance is placed in a drawing.
• The way in which a leader on a drawing note or symbol instance is attached.
Method Introduced:

• pfcDetail.Attachment.GetType
The method pfcDetail.Attachment.GetType returns the
pfcDetail.AttachmentTypeobject containing the types of detail
attachments. The detail attachment types are as follows:

• ATTACH_FREE—The attachment is at a free point possibly with respect to a
given drawing view.

• ATTACH_PARAMETRIC—The attachment is to a point on a surface or an
edge of a solid.

• ATTACH_OFFSET—The attachment is offset to another drawing view, to a
model item, or to a 3D model annotation.

• ATTACH_TYPE_UNSUPPORTED—The attachment is to an item that cannot
be represented in PFC at the current time. However, you can still retrieve the
location of the attachment.

Free Attachment
The ATTACH_FREE detail attachment type is represented by the
pfcDetail.FreeAttachment. It is a child of the
pfcDetail.Attachment .
MethodsIntroduced:

• pfcDetail.FreeAttachment.GetAttachmentPoint
• pfcDetail.FreeAttachment.SetAttachmentPoint
• pfcDetail.FreeAttachment.GetView
• pfcDetail.FreeAttachment.SetView

172 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcDetail.FreeAttachment.GetAttachmentPoint
returns the attachment point. This location is in screen coordinates for drawing
items, symbol instances and surface finishes on flat-to-screen annotation planes,
and in model coordinates for symbols and surface finishes on 3D model
annotation planes.
The method pfcDetail.FreeAttachment.SetAttachmentPoint sets
the attachment point.
The method pfcDetail.FreeAttachment.GetView returns the drawing
view to which the attachment is related. The attachment point is relative to the
drawing view, that is the attachment point moves when the drawing view is
moved. This method returns a NULL value, if the detail attachment is not related
to a drawing view, but is placed at the specified location in the drawing sheet, or if
the attachment is offset to a model item or to a 3D model annotation.
The method pfcDetail.FreeAttachment.SetView sets the drawing
view.

Parametric Attachment
The ATTACH_PARAMETRIC detail attachment type is represented by the
pfcDetail.ParametricAttachment. It is a child of the
pfcDetail.Attachment .
MethodsIntroduced:

• pfcDetail.ParametricAttachment.GetAttachedGeometry
• pfcDetail.ParametricAttachment.SetAttachedGeometry
The method
pfcDetail.ParametricAttachment.GetAttachedGeometry returns
the pfcSelect.Selection object representing the item to which the detail
attachment is attached. This includes the drawing view in which the attachment is
made.
The method
pfcDetail.ParametricAttachment.SetAttachedGeometry
assigns the pfcSelect.Selection object representing the item to which the
detail attachment is attached. This object must include the target drawing view.
The attachment will occur at the selected parameters.

Offset Attachment
The ATTACH_OFFSET detail attachment type is represented by the
pfcDetail.OffsetAttachment. It is a child of the
pfcDetail.Attachment .
MethodsIntroduced:

Drawings 173

• pfcDetail.OffsetAttachment.GetAttachedGeometry
• pfcDetail.OffsetAttachment.SetAttachedGeometry
• pfcDetail.OffsetAttachment.GetAttachmentPoint
• pfcDetail.OffsetAttachment.SetAttachmentPoint
The method pfcDetail.OffsetAttachment.GetAttachedGeometry
returns the pfcSelect.Selection object representing the item to which the
detail attachment is attached. This includes the drawing view where the
attachment is made, if the offset reference is in a model.
The method pfcDetail.OffsetAttachment.SetAttachedGeometry
assigns the pfcSelect.Selection object representing the item to which the
detail attachment is attached. This can include the drawing view. The attachment
will occur at the selected parameters.
The method pfcDetail.OffsetAttachment.GetAttachmentPoint
returns the attachment point. This location is in screen coordinates for drawing
items, symbol instances and surface finishes on flat-to-screen annotation planes,
and in model coordinates for symbols and surface finishes on 3D model
annotation planes. The distance from the attachment point to the location of the
item to which the detail attachment is attached is saved as the offset distance.
The method pfcDetail.OffsetAttachment.SetAttachmentPoint
sets the attachment point in screen coordinates.

Unsupported Attachment
The ATTACH_TYPE_UNSUPPORTED detail attachment type is represented by
the pfcDetail.UnsupportedAttachment. It is a child of the
pfcDetail.Attachment .
Method Introduced:

• pfcDetail.UnsupportedAttachment.GetAttachmentPoint
• pfcDetail.UnsupportedAttachment.SetAttachmentPoint
The method
pfcDetail.UnsupportedAttachment.GetAttachmentPoint returns
the attachment point. This location is in screen coordinates for drawing items,
symbol instances and surface finishes on flat-to-screen annotation planes, and in
model coordinates for symbols and surface finishes on 3D model annotation
planes.
The method
pfcDetail.UnsupportedAttachment.SetAttachmentPoint
assigns the attachment point in screen coordinates.

174 PTC Creo® Parametric 3.0 J-Link User’s Guide

12
Solid

Getting a Solid Object .. 176
Solid Information ... 176
Solid Operations.. 177
Solid Units .. 179
Mass Properties .. 185
Annotations .. 186
Cross Sections.. 187
Materials... 187

Most of the objects and methods in J-Link are used with solid models (parts and
assemblies). Because solid objects inherit from the interface Model, you can use
any of the Model methods on any Solid, Part, or Assembly object.

175

Getting a Solid Object
Methods Introduced:

• pfcSession.BaseSession.CreatePart
• pfcSession.BaseSession.CreateAssembly
• pfcAssembly.ComponentPath.GetRoot
• pfcAssembly.ComponentPath.GetLeaf
• pfcMFG.MFG.GetSolid
The methods pfcSession.BaseSession.CreatePart and
pfcSession.BaseSession.CreateAssembly create new solid models
with the names you specify.
The methods pfcAssembly.ComponentPath.GetRoot and
pfcAssembly.ComponentPath.GetLeaf specify the solid objects that
make up the component path of an assembly component model. You can get a
component path object from any component that has been interactively selected.
The method pfcMFG.MFG.GetSolid retrieves the storage solid in which the
manufacturing model’s features are placed. In order to create a UDF group in the
manufacturing model, call the method pfcSolid.Solid.CreateUDFGroup
on the storage solid.

Solid Information
Methods Introduced:

• pfcSolid.Solid.GetRelativeAccuracy
• pfcSolid.Solid.SetRelativeAccuracy
• pfcSolid.Solid.GetAbsoluteAccuracy
• pfcSolid.Solid.SetAbsoluteAccuracy
You can set the relative and absolute accuracy of any solid model using these
methods. Relative accuracy is relative to the size of the solid. For example, a
relative accuracy of .01 specifies that the solid must be accurate to within 1/100 of
its size. Absolute accuracy is measured in absolute units (inches, centimeters, and
so on).

Note
For a change in accuracy to take effect, you must regenerate the model.

176 PTC Creo® Parametric 3.0 J-Link User’s Guide

Solid Operations
Methods Introduced:

• pfcSolid.Solid.Regenerate
• pfcSolid.pfcSolid.RegenInstructions_Create
• pfcSolid.RegenInstructions.SetAllowFixUI
• pfcSolid.RegenInstructions.SetForceRegen
• pfcSolid.RegenInstructions.SetFromFeat
• pfcSolid.RegenInstructions.SetRefreshModelTree
• pfcSolid.RegenInstructions.SetResumeExcludedComponents
• pfcSolid.RegenInstructions.SetUpdateAssemblyOnly
• pfcSolid.RegenInstructions.SetUpdateInstances
• pfcSolid.Solid.GetGeomOutline
• pfcSolid.Solid.EvalOutline
• pfcSolid.Solid.GetIsSkeleton
• pfcSolid.Solid.ListGroups
The method pfcSolid.Solid.Regenerate causes the solid model to
regenerate according to the instructions provided in the form of the
pfcSolid.RegenInstructions object. Passing a null value for the
instructions argument causes an automatic regeneration.
Pro/ENGINEERWildfire 5.0 introduces the No-Resolve mode, wherein if a
model and feature regeneration fails, failed features and children of failed features
are created and regeneration of other features continues. However, J-Link does not
support regeneration in this mode. The method
pfcSolid.Solid.Regenerate throws an exception
pfcExceptions.XToolkitBadContext, if PTC Creo Parametric is
running in the No-Resolve mode. To continue with the Pro/ENGINEERWildfire
4.0 behavior in the Resolve mode, set the configuration option regen_
failure_handling to resolve_mode in the PTC Creo Parametric session.

Note
Setting the configuration option to switch to Resolve mode ensures the old
behavior as long as you do not retrieve the models saved under the No-
Resolve mode. To consistently preserve the old behavior, use Resolve mode
from the beginning and throughout your PTC Creo Parametric session.

Solid 177

The pfcSolid.RegenInstructions object contains the following input
parameters:

• AllowFixUI—Determines whether or not to activate the Fix Model user
interface, if there is an error.

Use the method pfcSolid.RegenInstructions.SetAllowFixUI to
modify this parameter.

• ForceRegen—PTC Creo Parametric

Use the method pfcSolid.RegenInstructions.SetForceRegen to
modify this parameter.

• FromFeat—Not currently used. This parameter is reserved for future use.

Use the method pfcSolid.RegenInstructions.SetFromFeat to
modify this parameter.

• RefreshModelTree—PTC Creo Parametric Model Tree

Use the method
pfcSolid.RegenInstructions.SetRefreshModelTree to
modify this parameter.

• ResumeExcludedComponents—PTC Creo Parametric

Use the method
pfcSolid.RegenInstructions.SetResumeExcludedCompo
nents to modify this parameter.

• UpdateAssemblyOnly—Updates the placements of an assembly and all its sub-
assemblies, and regenerates the assembly features and intersected parts. If the
affected assembly is retrieved as a simplified representation, then the locations
of the components are updated. If this attribute is false, the component
locations are not updated, even if the simplified representation is retrieved. By
default, it is false.

Use the method
pfcSolid.RegenInstructions.SetUpdateAssemblyOnly to
modify this parameter.

• UpdateInstances—Updates the instances of the solid model in memory. This
may slow down the regeneration process. By default, this attribute is false.

Use the method
pfcSolid.RegenInstructions.SetUpdateInstances to modify
this parameter.

178 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSolid.Solid.GetGeomOutline returns the three-
dimensional bounding box for the specified solid. The method
pfcSolid.Solid.EvalOutline also returns a three-dimensional bounding
box, but you can specify the coordinate system used to compute the extents of the
solid object.
The method pfcSolid.Solid.GetIsSkeleton determines whether the
part model is a skeleton or a concept model. It returns a true value if the model is
a skeleton, else it returns a false.
The method pfcSolid.Solid.ListGroups returns the list of groups
(including UDFs) in the solid.

Solid Units
Each model has a basic system of units to ensure all material properties of that
model are consistently measured and defined. All models are defined on the basis
of the system of units. A part can have only one system of unit.
The following types of quantities govern the definition of units of measurement:

• Basic Quantities—The basic units and dimensions of the system of units. For
example, consider the Centimeter Gram Second (CGS) system of unit.
The basic quantities for this system of units are:

○ Length—cm

○ Mass—g

○ Force—dyne

○ Time—sec

○ Temperature—K

• Derived Quantities—The derived units are those that are derived from the
basic quantities. For example, consider the Centimeter Gram Second
(CGS) system of unit. The derived quantities for this system of unit are as
follows:

○ Area—cm^2

○ Volume—cm^3

○ Velocity—cm/sec

In J-Link, individual units in the model are represented by the interface
pfcUnits.Unit.

Types of Unit Systems
The types of systems of units are as follows:

Solid 179

• Pre-defined system of units—This system of unit is provided by default.
• Custom-defined system of units—This system of unit is defined by the user

only if the model does not contain standard metric or nonmetric units, or if the
material file contains units that cannot be derived from the predefined system
of units or both.

In PTC Creo Parametric, the system of units are categorized as follows:

• Mass Length Time (MLT)—The following systems of units belong to this
category:

○ CGS—Centimeter Gram Second

○ MKS—Meter Kilogram Second

○ mmKS—millimeter Kilogram Second

• Force Length Time (FLT)—The following systems of units belong to this
category:

○ PTC Creo Parametric Default—Inch lbm Second. This is the default
system followed by PTC Creo Parametric.

○ FPS—Foot Pound Second

○ IPS—Inch Pound Second

○ mmNS—Millimeter Newton Second

In J-Link, the system of units followed by the model is represented by the
interface pfcUnits.UnitSystem.

Accessing Individual Units
Methods Introduced:

• pfcSolid.Solid.ListUnits
• pfcSolid.Solid.GetUnit
• pfcUnits.Unit.GetName
• pfcUnits.Unit.GetExpression
• pfcUnits.Unit.GetType
• pfcUnits.Unit.GetIsStandard
• pfcUnits.Unit.GetReferenceUnit
• pfcUnits.Unit.GetConversionFactor
• pfcUnits.UnitConversionFactor.GetOffset
• pfcUnits.UnitConversionFactor.GetScale

180 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSolid.Solid.ListUnits returns the list of units available
to the specified model.
The method pfcSolid.Solid.GetUnit retrieves the unit, based on its name
or expression for the specified model in the form of the pfcUnits.Unit object.
The method pfcUnits.Unit.GetName returns the name of the unit.
The method pfcUnits.Unit.GetExpression returns a user-friendly unit
description in the form of the name (for example,) for ordinary units and the
expression (for example, N/m^3) for system-generated units.
The method pfcUnits.Unit.GetType returns the type of quantity
represented by the unit in terms of the pfcBase.UnitType object. The types
of units are as follows:

• UNIT_LENGTH—Specifies length measurement units.
• UNIT_MASS—Specifies mass measurement units.
• UNIT_FORCE—Specifies force measurement units.
• UNIT_TIME—Specifies time measurement units.
• UNIT_TEMPERATURE—Specifies temperature measurement units.
• UNIT_ANGLE—Specifies angle measurement units.
The method pfcUnits.Unit.GetIsStandard identifies whether the unit is
system-defined (if the property IsStandard is set to true) or user-defined (if the
property IsStandard is set to false).
The method pfcUnits.Unit.GetReferenceUnit returns a reference unit
(one of the available system units) in terms of the pfcUnits.Unit object.
The method pfcUnits.Unit.GetConversionFactor identifies the
relation of the unit to its reference unit in terms of the
pfcUnits.UnitConversionFactor object. The unit conversion factors are
as follows:

• Offset—Specifies the offset value applied to the values in the reference
unit.

• Scale—Specifies the scale applied to the values in the reference unit to get
the value in the actual unit.
Example - Consider the formula to convert temperature from Centigrade
to Fahrenheit
F = a + (C * b)
where
F is the temperature in Fahrenheit
C is the temperature in Centigrade
a = 32 (constant signifying the offset value)
b = 9/5 (ratio signifying the scale of the unit)

Solid 181

Note
PTC Creo Parametric scales the length dimensions of the model using the
factors listed above. If the scale is modified, the model is regenerated.
When you scale the model, the model units are not changed. Imported
geometry cannot be scaled.

Use the methods pfcUnits.UnitConversionFactor.GetOffset and
pfcUnits.UnitConversionFactor.GetScale to retrieve the unit
conversion factors listed above.

Modifying Individual Units
Methods Introduced:

• pfcUnits.Unit.Modify
• pfcUnits.Unit.Delete
• pfcUnits.Unit.SetName
• pfcUnits.UnitConversionFactor.SetOffset
• pfcUnits.UnitConversionFactor.SetScale
The method pfcUnits.Unit.Modify modifies the definition of a unit by
applying a new conversion factor specified by the
pfcUnits.UnitConversionFactor object and a reference unit.
The method pfcUnits.Unit.Delete deletes the unit.

Note
You can delete only custom units and not standard units.

The method pfcUnits.Unit.SetName modifies the name of the unit.
Use the methods pfcUnits.UnitConversionFactor.SetOffset and
pfcUnits.UnitConversionFactor.SetScale to modify the unit
conversion factors.

Creating a New Unit
Methods Introduced:

• pfcSolid.Solid.CreateCustomUnit
• pfcUnits.pfcUnits.UnitConversionFactor_Create

182 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSolid.Solid.CreateCustomUnit creates a custom unit
based on the specified name, the conversion factor given by the
pfcUnits.UnitConversionFactor object, and a reference unit.
The method pfcUnits.pfcUnits.UnitConversionFactor_Create
creates the pfcUnits.UnitConversionFactor object containing the unit
conversion factors.

Accessing Systems of Units
Methods Introduced:

• pfcSolid.Solid.ListUnitSystems
• pfcSolid.Solid.GetPrincipalUnits
• pfcUnits.UnitSystem.GetUnit
• pfcUnits.UnitSystem.GetName
• pfcUnits.UnitSystem.GetType
• pfcUnits.UnitSystem.GetIsStandard
The method pfcSolid.Solid.ListUnitSystems returns the list of unit
systems available to the specified model.
The method pfcSolid.Solid.GetPrincipalUnits returns the system of
units assigned to the specified model in the form of the
pfcUnits.UnitSystem object.
The method pfcUnits.UnitSystem.GetUnit retrieves the unit of a
particular type used by the unit system.
The method pfcUnits.UnitSystem.GetName returns the name of the unit
system.
The method pfcUnits.UnitSystem.GetType returns the type of the unit
system in the form of the pfcUnits.UnitSystemType object. The types of
unit systems are as follows:

• UNIT_SYSTEM_MASS_LENGTH_TIME—Specifies the Mass Length Time
(MLT) unit system.

• UNIT_SYSTEM_FORCE_LENGTH_TIME—Specifies the Force Length Time
(FLT) unit system.

For more information on these unit systems listed above, refer to the section Types
of Unit Systems on page 179.
The method pfcUnits.UnitSystem.GetIsStandard identifies whether
the unit system is system-defined (if the property IsStandard is set to true) or user-
defined (if the property IsStandard is set to false).

Solid 183

Modifying Systems of Units
Methods Introduced:

• pfcUnits.UnitSystem.Delete
• pfcUnits.UnitSystem.SetName
The method pfcUnits.UnitSystem.Delete deletes a custom-defined
system of units.

Note
You can delete only a custom-defined system of units and not a standard
system of units.

Use the method pfcUnits.UnitSystem.SetName to rename a custom-
defined system of units. Specify the new name for the system of units as an input
parameter for this function.

Creating a New System of Units
Method Introduced:

• pfcSolid.Solid.CreateUnitSystem
The method pfcSolid.Solid.CreateUnitSystem creates a new system
of units in the model based on the specified name, the type of unit system given
by the pfcUnits.UnitSystemType object, and the types of units specified
by the pfcUnits.Units sequence to use for each of the base measurement
types (length, force or mass, and temperature).

Conversion to a New Unit System
Methods Introduced:

• pfcSolid.Solid.SetPrincipalUnits
• pfcUnits.pfcUnits.UnitConversionOptions_Create
• pfcUnits.UnitConversionOptions.SetDimensionOption
• pfcUnits.UnitConversionOptions.SetIgnoreParamUnits
The method pfcSolid.Solid.SetPrincipalUnits changes the principal
system of units assigned to the solid model based on the the unit conversion
options specified by the pfcUnits.UnitConversionOptions object. The
method pfcUnits.pfcUnits.UnitConversionOptions_Create
creates the pfcUnits.UnitConversionOptions object containing the unit
conversion options listed below.

184 PTC Creo® Parametric 3.0 J-Link User’s Guide

The types of unit conversion options are as follows:

• DimensionOption—Use the option while converting the dimensions of
the model.

Use the method
pfcUnits.UnitConversionOptions.SetDimensionOption to
modify this option.

This option can be of the following types:

○ UNITCONVERT_SAME_DIMS—Specifies that unit conversion occurs by
interpreting the unit value in the new unit system. For example, 1 inch will
equal to 1 millimeter.

○ UNITCONVERT_SAME_SIZE—Specifies that unit conversion will occur
by converting the unit value in the new unit system. For example, 1 inch
will equal to 25.4 millimeters.

• IgnoreParamUnits—This boolean attribute determines whether or not
ignore the parameter units. If it is null or true, parameter values and units do
not change when the unit system is changed. If it is false, parameter units are
converted according to the rule.

Use the method
pfcUnits.UnitConversionOptions.SetIgnoreParamUnits to
modify this attribute.

Mass Properties
Method Introduced:

• pfcSolid.Solid.GetMassProperty
The function pfcSolid.Solid.GetMassProperty provides information
about the distribution of mass in the part or assembly. It can provide the
information relative to a coordinate system datum, which you name, or the default
one if you provide null as the name. It returns a class called MassProperty.
The class contains the following fields:

• The volume.
• The surface area.
• The density. The density value is 1.0, unless a material has been assigned.
• The mass.
• The center of gravity (COG).
• The inertia matrix.
• The inertia tensor.

Solid 185

• The inertia about the COG.
• The principal moments of inertia (the eigen values of the COG inertia).
• The principal axes (the eigenvectors of the COG inertia).

Example Code: Retrieving a Mass Property Object
The sample code in the file pfcSolidMassPropExample.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples retrieves
a MassProperty object from a specified solid model. The solid's mass, volume,
and center of gravity point are then printed.

Annotations
Methods Introduced:

• pfcNote.Note.GetLines
• pfcNote.Note.SetLines
• pfcNote.Note.GetText
• pfcNote.Note.GetURL
• pfcNote.Note.SetURL
• pfcNote.Note.Display
• pfcNote.Note.Delete
• pfcNote.Note.GetOwner
3D model notes are instance of ModelItem objects. They can be located and
accessed using methods that locate model items in solid models, and downcast to
the Note interface to use the methods in this section.
The method pfcNote.Note.GetLines returns the text contained in the 3D
model note. The method pfcNote.Note.SetLines modifies the note text.
The method pfcNote.Note.GetText returns the the text of the solid model
note. If you set the parameter GiveParametersAsNames to TRUE, then the text
displays the parameter callouts with ampersands (&). If you set the parameter to
FALSE, then the text displays the parameter values with no callout information.
The method pfcNote.Note.GetURL returns the URL stored in the 3D model
note. The method pfcNote.Note.SetURL modifies the note URL.
The method pfcNote.Note.Display forces the display of the model note.
The method pfcNote.Note.Delete deletes a model note.
The method pfcNote.Note.GetOwner returns the solid model owner of the
note.

186 PTC Creo® Parametric 3.0 J-Link User’s Guide

Cross Sections
Methods Introduced:

• pfcSolid.Solid.ListCrossSections
• pfcSolid.Solid.GetCrossSection
• pfcXSection.XSection.GetName
• pfcXSection.XSection.SetName
• pfcXSection.XSection.GetXSecType
• pfcXSection.XSection.Delete
• pfcXSection.XSection.Display
• pfcXSection.XSection.Regenerate
The method pfcSolid.Solid.ListCrossSections returns a sequence of
cross section objects represented by the Xsection interface. The method
pfcSolid.Solid.GetCrossSection searches for a cross section given its
name.
The method pfcXSection.XSection.GetName returns the name of the
cross section in PTC Creo Parametric. The method
pfcXSection.XSection.SetName modifies the cross section name.
The method pfcXSection.XSection.GetXSecType returns the type of
cross section, that is planar or offset, and the type of item intersected by the cross
section.
The method pfcXSection.XSection.Delete deletes a cross section.
The method pfcXSection.XSection.Display forces a display of the
cross section in the window.
The method pfcXSection.XSection.Regenerate regenerates a cross
section.

Materials
J-Link enables you to programmatically access the material types and properties
of parts. Using the methods and properties described in the following sections,
you can perform the following actions:

• Create or delete materials
• Set the current material
• Access and modify the material types and properties
Methods Introduced:

Solid 187

• pfcPart.Material.Save
• pfcPart.Material.Delete
• pfcPart.Part.GetCurrentMaterial
• pfcPart.Part.SetCurrentMaterial
• pfcPart.Part.ListMaterials
• pfcPart.Part.CreateMaterial
• pfcPart.Part.RetrieveMaterial
The method pfcPart.Material.Save writes to a material file that can be
imported into any PTC Creo Parametric part.
The method pfcPart.Material.Delete removes material from the part.
The method pfcPart.Part.GetCurrentMaterial returns the currently
assigned material for the part.
The method pfcPart.Part.SetCurrentMaterial sets the material
assigned to the part.

Note
By default, while assigning a material to a sheetmetal part, the method
pfcPart.Part.SetCurrentMaterial modifies the values of the
sheetmetal properties such as Y factor and bend table according to the material
file definition. This modification triggers a regeneration and a modification of
the developed length calculations of the sheetmetal part. However, you can
avoid this behavior by setting the value of the configuration option
material_update_smt_bend_table to never_replace

The method pfcPart.Part.SetCurrentMaterial may change the
model display, if the new material has a default appearance assigned to it.

The method may also change the family table, if the parameter PTC_
MATERIAL_NAME is a part of the family table.

The methodpfcPart.Part.ListMaterials returns a list of the materials
available in the part.
The method pfcPart.Part.CreateMaterial creates a new empty
material in the specified part.
The method pfcPart.Part.RetrieveMaterial imports a material file
into the part. The name of the file read can be as either:

188 PTC Creo® Parametric 3.0 J-Link User’s Guide

• <name>.mtl—Specifies the new material file format.
• <name>.mat—Specifies the material file format prior to Pro/ENGINEER

Wildfire 3.0.
If the material is not already in the part database,
pfcPart.Part.RetrieveMaterial adds the material to the database after
reading the material file. If the material is already in the database, the function
replaces the material properties in the database with those contained in the
material file.

Accessing Material Types
Methods Introduced:

• pfcPart.Material.GetStructuralMaterialType
• pfcPart.Material.SetStructuralMaterialType
• pfcPart.Material.GetThermalMaterialType
• pfcPart.Material.SetThermalMaterialType
• pfcPart.Material.GetSubType
• pfcPart.Material.SetSubType
• pfcPart.Material.GetPermittedSubTypes
The method pfcPart.Material.GetStructuralMaterialType
returns the material type for the structural properties of the material. The material
types are as follows:

• MTL_ISOTROPIC—Specifies a a material with an infinite number of planes
of material symmetry, making the properties equal in all directions.

• MTL_ORTHOTROPIC—Specifies a material with symmetry relative to three
mutually perpendicular planes.

• MTL_TRANSVERSELY_ISOTROPIC—Specifies a material with rotational
symmetry about an axis. The properties are equal for all directions in the plane
of isotropy.

Use the method pfcPart.Material.SetStructuralMaterialType to
set the material type for the structural properties of the material.
The method pfcPart.Material.GetThermalMaterialType returns the
material type for the thermal properties of the material. The material types are as
follows:

Solid 189

• MTL_ISOTROPIC—Specifies a material with an infinite number of planes of
material symmetry, making the properties equal in all directions.

• MTL_ORTHOTROPIC—Specifies a material with symmetry relative to three
mutually perpendicular planes.

• MTL_TRANSVERSELY_ISOTROPIC—Specifies a material with rotational
symmetry about an axis. The properties are equal for all directions in the plane
of isotropy.

Use the method pfcPart.Material.SetThermalMaterialType to set
the material type for the thermal properties of the material.
The method pfcPart.Material.GetSubType returns the subtype for the
MTL_ISOTROPIC material type.
Use the method pfcPart.Material.SetSubType to set the subtype for the
MTL_ISOTROPIC material type.
Use the method pfcPart.Material.GetPermittedSubTypes to retrieve
a list of the permitted string values for the material subtype.

Accessing Material Properties
The methods listed in this section enable you to access material properties.
Methods Introduced:

• pfcPart.pfcPart.MaterialProperty_Create
• pfcPart.Material.GetPropertyValue
• pfcPart.Material.SetPropertyValue
• pfcPart.Material.SetPropertyUnits
• pfcPart.Material.RemoveProperty
• pfcPart.Material.GetDescription
• pfcPart.Material.SetDescription
• pfcPart.Material.GetFatigueType
• pfcPart.Material.SetFatigueType
• pfcPart.Material.GetPermittedFatigueTypes
• pfcPart.Material.GetFatigueMaterialType
• pfcPart.Material.SetFatigueMaterialType
• pfcPart.Material.GetPermittedFatigueMaterialTypes
• pfcPart.Material.GetFatigueMaterialFinish
• pfcPart.Material.SetFatigueMaterialFinish
• pfcPart.Material.GetPermittedFatigueMaterialFinishes

190 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcPart.Material.GetFailureCriterion
• pfcPart.Material.SetFailureCriterion
• pfcPart.Material.GetPermittedFailureCriteria
• pfcPart.Material.GetHardness
• pfcPart.Material.SetHardness
• pfcPart.Material.GetHardnessType
• pfcPart.Material.SetHardnessType
• pfcPart.Material.GetCondition
• pfcPart.Material.SetCondition
• pfcPart.Material.GetBendTable
• pfcPart.Material.SetBendTable
• pfcPart.Material.GetCrossHatchFile
• pfcPart.Material.SetCrossHatchFile
• pfcPart.Material.GetMaterialModel
• pfcPart.Material.SetMaterialModel
• pfcPart.Material.GetPermittedMaterialModels
• pfcPart.Material.GetModelDefByTests
• pfcPart.Material.SetModelDefByTests
The method pfcPart.pfcPart.MaterialProperty_Create creates a
new instance of a material property object.
All numerical material properties are accessed using the same set of APIs. You
must provide a property type to indicate the property you want to read or modify.
The method pfcPart.Material.GetPropertyValue returns the value
and the units of the material property.
Use the method pfcPart.Material.SetPropertyValue to set the value
and units of the material property. If the property type does not exist for the
material, then this method creates it.
Use the method pfcPart.Material.SetPropertyUnits to set the units
of the material property.
Use the method pfcPart.Material.RemoveProperty to remove the
material property.
Material properties that are non-numeric can be accessed via property-specific get
and set methods.
The methods pfcPart.Material.GetDescription and
pfcPart.Material.SetDescription return and setthe description string
for the material respectively.

Solid 191

The methods pfcPart.Material.GetFatigueType and
pfcPart.Material.SetFatigueType return and set the valid fatigue type
for the material respectively.
Use the method pfcPart.Material.GetPermittedFatigueTypes to
get a list of the permitted string values for the fatigue type.
The methods pfcPart.Material.GetFatigueMaterialType and
pfcPart.Material.SetFatigueMaterialType return and set the class
of material when determining the effect of the fatigue respectively.
Use the method
pfcPart.Material.GetPermittedFatigueMaterialTypes to
retrieve a list of the permitted string values for the fatigue material type.
The methods pfcPart.Material.GetFatigueMaterialFinish and
pfcPart.Material.SetFatigueMaterialFinish return and set the
type of surface finish for the fatigue material respectively.
Use the method
pfcPart.Material.GetPermittedFatigueMaterialFinishes to
retrieve a list of permitted string values for the fatigue material finish.
The method pfcPart.Material.GetFailureCriterion returnsthe
reduction factor for the failure strength of the material. This factor is used to
reduce the endurance limit of the material to account for unmodeled stress
concentrations, such as those found in welds. Use the method
pfcPart.Material.SetFailureCriterion to set the reduction factor
for the failure strength of the material.
Use the method pfcPart.Material.GetPermittedFailureCriteria
to retrieve a list of permitted string values for the material failure criterion.
The methods pfcPart.Material.GetHardness and
pfcPart.Material.SetHardness return and set the hardness for the
specified material respectively.
The methods pfcPart.Material.GetHardnessType and
pfcPart.Material.SetHardnessType return and set the hardness type
for the specified material respectively.
The methods pfcPart.Material.GetCondition and
pfcPart.Material.GetCondition return and set the condition for the
specified material respectively.
The methods pfcPart.Material.GetBendTable and
pfcPart.Material.SetBendTable return and set the bend table for the
specified material respectively.
The methods pfcPart.Material.GetCrossHatchFile and
pfcPart.Material.SetCrossHatchFile return and set the file
containing the crosshatch pattern for the specified material respectively.

192 PTC Creo® Parametric 3.0 J-Link User’s Guide

The methods pfcPart.Material.GetMaterialModel and
pfcPart.Material.SetMaterialModel return and set the type of
hyperelastic isotropic material model respectively.
Use the method pfcPart.Material.GetPermittedMaterialModels
to retrieve a list of the permitted string values for the material model.
The methods pfcPart.Material.GetModelDefByTests determines
whether the hyperelastic isotropic material model has been defined using
experimental data for stress and strain.
Use the method pfcPart.Material.SetModelDefByTests to define the
hyperelastic isotropic material model using experimental data for stress and strain.

Accessing User-defined Material Properties
Materials permit assignment of user-defined parameters. These parameters allow
you to place non-standard properties on a given material. Therefore
pfcPart.Material is a child of pfcModelItem.ParameterOwner,
which provides access to user-defined parameters and properties of materials
through the methods in that interface.

Solid 193

13
Windows and Views

Windows... 196
Embedded Browser ... 198
Views ... 199
Coordinate Systems and Transformations ... 200

J-Link provides access to PTC Creo Parametric windows and saved views. This
chapter describes the methods that provide this access.

195

Windows
This section describes the J-Link methods that access Window objects. The topics
are as follows:

• Getting a Window Object on page 196
• Window Operations on page 197

Getting a Window Object
Methods Introduced:

• pfcSession.BaseSession.GetCurrentWindow
• pfcSession.BaseSession.CreateModelWindow
• pfcModel.Model.Display
• pfcSession.BaseSession.ListWindows
• pfcSession.BaseSession.GetWindow
• pfcSession.BaseSession.OpenFile
• pfcSession.BaseSession.GetModelWindow
The method pfcSession.BaseSession.GetCurrentWindow provides
access to the current active window in PTC Creo Parametric.
The method pfcSession.BaseSession.CreateModelWindow creates a
new window that contains the model that was passed as an argument.

Note
You must call the method pfcModel.Model.Display for the model
geometry to be displayed in the window.

Use the method pfcSession.BaseSession.ListWindows to get a list of
all the current windows in session.
The method pfcSession.BaseSession.GetWindow gets the handle to a
window given its integer identifier.
The method pfcSession.BaseSession.OpenFile returns the handle to a
newly created window that contains the opened model.

196 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
If a model is already open in a window the method returns a handle to the
window.

The method pfcSession.BaseSession.GetModelWindow returns the
handle to the window that contains the opened model, if it is displayed.

Window Operations
Methods Introduced:

• pfcWindow.Window.GetHeight
• pfcWindow.Window.GetWidth
• pfcWindow.Window.GetXPos
• pfcWindow.Window.GetYPos
• pfcWindow.Window.GetGraphicsAreaHeight
• pfcWindow.Window.GetGraphicsAreaWidth
• pfcWindow.Window.Clear
• pfcWindow.Window.Repaint
• pfcWindow.Window.Refresh
• pfcWindow.Window.Close
• pfcWindow.Window.Activate
• pfcWindow.Window.GetId
• pfcSession.BaseSession.FlushCurrentWindow
The methods pfcWindow.Window.GetHeight,
pfcWindow.Window.GetWidth, pfcWindow.Window.GetXPos, and
pfcWindow.Window.GetYPos retrieve the height, width, x-position, and y-
position of the window respectively. The values of these parameters are
normalized from 0 to 1.
The methods pfcWindow.Window.GetGraphicsAreaHeight and
pfcWindow.Window.GetGraphicsAreaWidth retrieve the height and
width of the PTC Creo Parametric graphics area window without the border
respectively. The values of these parameters are normalized from 0 to 1. For both
the window and graphics area sizes, if the object occupies the whole screen, the
window size returned is 1. For example, if the screen is 1024 pixels wide and
the graphics area is 512 pixels, then the width of the graphics area window is
returned as 0.5.

Windows and Views 197

The method pfcWindow.Window.Clear removes geometry from the
window.
Both pfcWindow.Window.Repaint and pfcWindow.Window.Refresh
repaint solid geometry. However, the Refresh method does not remove
highlights from the screen and is used primarily to remove temporary geometry
entities from the screen.
Use the method pfcWindow.Window.Close to close the window. If the
current window is the original window created when PTC Creo Parametric started,
this method clears the window. Otherwise, it removes the window from the screen.
The method pfcWindow.Window.Activate activates a window. This
function is available only in the asynchronous mode.
The method pfcWindow.Window.GetId retrieves the ID of the PTC Creo
Parametric window.
The method pfcSession.BaseSession.FlushCurrentWindow flushes
the pending display commands on the current window.

Note
It is recommended to call this method only after completing all the display
operations. Excessive use of this method will cause major slow down of
systems running on Windows Vista and Windows 7.

Embedded Browser
Methods Introduced:

• pfcWindow.Window.GetURL
• pfcWindow.Window.SetURL
• pfcWindow.Window.GetBrowserSize
• pfcWindow.Window.SetBrowserSize
The methods pfcWindow.Window.GetURL and
pfcWindow.Window.SetURL enables you to find and change the URL
displayed in the embedded browser in the PTC Creo Parametric window.

198 PTC Creo® Parametric 3.0 J-Link User’s Guide

The methods pfcWindow.Window.GetBrowserSize and
pfcWindow.Window.SetBrowserSize enables you to find and change the
size of the embedded browser in the PTC Creo Parametric window.

Note
The methods pfcWindow.Window.GetBrowserSize and
pfcWindow.Window.SetBrowserSize are not supported if the browser
is open in a separate window.

Views
This section describes the J-Link methods that access View objects. The topics
are as follows:

• Getting a View Object on page 199
• View Operations on page 200

Getting a View Object
Methods Introduced:

• pfcView.ViewOwner.RetrieveView
• pfcView.ViewOwner.GetView
• pfcView.ViewOwner.ListViews
• pfcView.ViewOwner.GetCurrentView
Any solid model inherits from the interface ViewOwner. This will enable you to
use these methods on any solid object.
The method pfcView.ViewOwner.RetrieveView sets the current view to
the orientation previously saved with a specified name.
Use the method pfcView.ViewOwner.GetView to get a handle to a named
view without making any modifications.
The method pfcView.ViewOwner.ListViews returns a list of all the views
previously saved in the model.
From Creo Parametric 2.0 M120 onward, the method,
pfcView.ViewOwner.GetCurrentView has been deprecated. The method
returns a view handle that represents the current orientation. Although this view
does not have a name, you can use this view to find or modify the current
orientation.

Windows and Views 199

View Operations
Methods Introduced:

• pfcView.View.GetName
• pfcView.View.GetIsCurrent
• pfcView.View.Reset
• pfcView.ViewOwner.SaveView
To get the name of a view given its identifier, use the method
pfcView.View.GetName.
The method pfcView.View.GetIsCurrent determines if the View object
represents the current view.
The pfcView.View.Reset method restores the current view to the default
view.
To store the current view under the specified name, call the method
pfcView.ViewOwner.SaveView.

Coordinate Systems and Transformations
his section describes the various coordinate systems used by PTC Creo Parametric
and accessible from J-Link and how to transform from one coordinate system to
another.

Coordinate Systems
PTC Creo Parametric and J-Link use the following coordinate systems:

• Solid Coordinate System on page 201
• Screen Coordinate System on page 201
• Window Coordinate System on page 201
• Drawing Coordinate System on page 202
• Drawing View Coordinate System on page 202
• Assembly Coordinate System on page 202
• Datum Coordinate System on page 202
• Section Coordinate System on page 202
The following sections describe each of these coordinate systems.

200 PTC Creo® Parametric 3.0 J-Link User’s Guide

Solid Coordinate System
The solid coordinate system is the three-dimensional, Cartesian coordinate system
used to describe the geometry of a PTC Creo Parametric solid model. In a part, the
solid coordinate system describes the geometry of the surfaces and edges. In an
assembly, the solid coordinate system also describes the locations and orientations
of the assembly members.
You can visualize the solid coordinate system in PTC Creo Parametric by creating
a coordinate system datum with the option Default. Distances measured in solid
coordinates correspond to the values of dimensions as seen by the PTC Creo
Parametric user.
Solid coordinates are used by J-Link for all the methods that look at geometry and
most of the methods that draw three-dimensional graphics.

Screen Coordinate System
The screen coordinate system is two-dimensional coordinate system that describes
locations in a PTC Creo Parametric window. This is an intermediate coordinate
system after which the screen points are transformed to screen pixels. All the
models are first mapped to the screen coordinate system. When the user zooms or
pans the view, the screen coordinate system follows the display of the solid, so a
particular point on the solid always maps to the same screen coordinate. The
mapping changes only when the view orientation is changed.
Screen coordinates are used by some of the graphics methods, the mouse input
methods, and all methods that draw graphics or manipulate items on a drawing.

Window Coordinate System
The window coordinate system is similar to the screen coordinate system. After
mapping the models to the screen coordinate system, they are mapped to the
window coordinate before being drawn to screen pixels based on screen
resolution. When pan or zoom values are applied to the coordinates in the screen
coordinate system, they result in window coordinates. When an object is first
displayed in a window, or the option View ▶▶ Refit is used, the screen and window
coordinates are the same.
Window coordinates are needed only if you need to take account of zoom and pan
—for example, to find out whether a point on the solid is visible in the window, or
to draw two-dimensional text in a particular window location, regardless of pan
and zoom.

Windows and Views 201

Drawing Coordinate System
The drawing coordinate system is a two-dimensional system that describes the
location on a drawing relative to the bottom, left corner, and measured in drawing
units. For example, on a U.S. letter-sized, landscape-format drawing sheet that
uses inches, the top, right-corner is (11, 8.5) in drawing coordinates.
The J-Link methods and properties that manipulate drawings generally use screen
coordinates.

Drawing View Coordinate System
The drawing view coordinate system is used to describe the locations of entities in
a drawing view.

Assembly Coordinate System
An assembly has its own coordinate system that describes the positions and
orientations of the member parts, subassemblies, and the geometry of datum
features created in the assembly.
When an assembly is retrieved into memory each member is also loaded and
continues to use its own solid coordinate system to describe its geometry.
This is important when you are analyzing the geometry of a subassembly and
want to extract or display the results relative to the coordinate system of the parent
assembly.

Datum Coordinate System
A coordinate system datum can be created anywhere in any part or assembly, and
represents a user-defined coordinate system. It is often a requirement in a J-Link
application to describe geometry relative to such a datum.

Section Coordinate System
Every sketch has a coordinate system used to locate entities in that sketch.
Sketches used in features will use a coordinate system different from that of the
solid model.

Transformations
Methods Introduced:

• pfcBase.Transform3D.Invert
• pfcBase.Transform3D.TransformPoint
• pfcBase.Transform3D.TransformVector

202 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcBase.Transform3D.GetMatrix
• pfcBase.Transform3D.SetMatrix
• pfcBase.Transform3D.GetOrigin
• pfcBase.Transform3D.GetXAxis
• pfcBase.Transform3D.GetYAxis
• pfcBase.Transform3D.GetZAxis
All coordinate systems are treated in J-Link as if they were three-dimensional.
Therefore, a point in any of the coordinate systems is always represented by the
pfcBase.Point3D class:
Vectors store the same data but are represented for clarity by the
pfcBase.Vector3D class.
Screen coordinates contain a z-value whose positive direction is outwards from
the screen. The value of z is not generally important when specifying a screen
location as an input to a method, but it is useful in other situations. For example, if
you select a datum plane, you can find the direction of the plane by calculating the
normal to the plane, transforming to screen coordinates, then looking at the sign of
the z-coordinate.
A transformation between two coordinate systems is represented by the
IpfcBase.Transform3D class. This class contains a 4x4 matrix that
combines the conventional 3x3 matrix that describes the relative orientation of the
two systems, and the vector that describes the shift between them.
The 4x4 matrix used for transformations is as follows:

The utility method ptcBase.Transform3D.Invert inverts a transformation
matrix so that it can be used to transform points in the opposite direction.
J-Link provides two utilities for performing coordinate transformations. The
method ptcBase.Transform3D.TransformPoint transforms a three-
dimensional point and ptcBase.Transform3D.TransformVector
transforms a three-dimensional vector.
The following diagram summarizes the coordinate transformations needed when
using J-Link and specifies the J-Link methods that provide the transformation
matrix.

Windows and Views 203

Transforming to Screen Coordinates
Methods Introduced:

• pfcView.View.GetTransform
• pfcView.View.SetTransform
• pfcView.View.Rotate
The view matrix describes the transformation from solid to screen coordinates.
The method pfcView.View.GetTransform provides the view matrix for
the specified view. The method pfcView.View.SetTransform allows you
to specify a matrix for the view.
The method pfcView.View.Rotate rotates a view, relative to the X, Y, or Z
axis, in the amount that you specifiy.
To transform from screen to solid coordinates, invert the transformation matrix
using the method pfcBase.Transform3D.Invert.

Transforming to Coordinate System Datum Coordinates
Method Introduced:

204 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcGeometry.CoordSystem.GetCoordSys
The method pfcGeometry.CoordSystem.GetCoordSys provides the
location and orientation of the coordinate system datum in the coordinate system
of the solid that contains it. The location is in terms of the directions of the three
axes and the position of the origin.

Transforming Window Coordinates
MethodsIntroduced

• pfcWindow.Window.GetScreenTransform
• pfcWindow.Window.SetScreenTransform
• pfcBase.ScreenTransform.SetPanX
• pfcBase.ScreenTransform.SetPanY
• pfcBase.ScreenTransform.SetZoom
You can alter the pan and zoom of a window by using a Screen Transform object.
This object contains three attributes. PanX and PanY represent the horizontal and
vertical movement. Every increment of 1.0 moves the view point one screen width
or height. Zoom represents a scaling factor for the view. This number must be
greater than zero.

Transforming Coordinates of an Assembly Member
Method Introduced:

• pfcAssembly.ComponentPath.GetTransform
The method pfcAssembly.ComponentPath.GetTransform provides the
matrix for transforming from the solid coordinate system of the assembly member
to the solid coordinates of the parent assembly, or the reverse.

The method viewTransfer accepts two views and transfers the matrix from
the first to the second. This matrix is normalized using the second method,
matrixNormalize.
Views can be changed to a normalized matrix only. The example method
UtilMatrixNormalize takes a Matrix3D object and normalizes it.

Note
Both of these methods are declared to throw the exception jxthrowable.
You need to put your error-handling code in the methods that call the utility
methods.

Windows and Views 205

14
ModelItem

Solid Geometry Traversal... 208
Getting ModelItem Objects... 208
ModelItem Information ... 209
Duplicating ModelItems.. 210
Layer Objects.. 210

This chapter describes the J-Link methods that enable you to access and
manipulate ModelItems.

207

Solid Geometry Traversal
Solid models are made up of 11 distinct types of ModelItem, as follows:

• pfcFeature.Feature

• pfcGeometry.Surface

• pfcGeometry.Edge

• pfcGeometry.Curve (datum curve)
• pfcGeometry.Axis (datum axis)
• pfcGeometry.Point (datum point)
• pfcGeometry.Quilt (datum quilt)
• pfcLayer.Layer

• pfcNote.Note

• pfcDimension.Dimension

• pfcDimension.RefDimension

Each model item is assigned a unique identification number that will never
change. In addition, each model item can be assigned a string name. Layers,
points, axes, dimensions, and reference dimensions are automatically assigned a
name that can be changed.

Getting ModelItem Objects
Methods Introduced:

• pfcModelItem.ModelItemOwner.ListItems
• pfcFeature.Feature.ListSubItems
• pfcLayer.Layer.ListItems
• pfcModelItem.ModelItemOwner.GetItemById
• pfcModelItem.ModelItemOwner.GetItemByName
• pfcFamily.FamColModelItem.GetRefItem
• pfcSelect.Selection.GetSelItem
All models inherit from the ModelItemOwner. The method
pfcModelItem.ModelItemOwner.ListItems returns a sequence of
ModelItems contained in the model. You can specify which type of
ModelItem to collect by passing in one of the enumerated ModelItemType
objects, or you can collect all ModelItems by passing null as the model item
type.

208 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
The part modeling features introduced in Creo Parametric 1.0 will be excluded
from the list of features returned by the method
pfcModelItem.ModelItemOwner.ListItems if the model item type
is specified asITEM_FEATURE. For example edit round features, flexible
modeling features, and so on will be excluded from the list.

The methods pfcFeature.Feature.ListSubItems and
pfcLayer.Layer.ListItems produce similar results for specific features
and layers. These methods return a list of subitems in the feature or items in the
layer.
To access specific model items, call the method
pfcModelItem.ModelItemOwner.GetItemById. This methods enables
you to access the model item by identifier.
To access specific model items, call the method
pfcModelItem.ModelItemOwner.GetItemByName. This methods
enables you to access the model item by name.
The method pfcFamily.FamColModelItem.GetRefItem returns the
dimension or feature used as a header for a family table.
The method pfcSelect.Selection.GetSelItem returns the item selected
interactively by the user.

ModelItem Information
Methods Introduced:

• pfcModelItem.ModelItem.GetName
• pfcModelItem.ModelItem.SetName
• pfcModelItem.ModelItem.GetId
• pfcModelItem.ModelItem.GetType
Certain ModelItems also have a string name that can be changed at any time.
The methods GetName and SetName access this name.
The method Id returns the unique integer identifier for the ModelItem.
The Type method returns an enumeration object that indicates the model item
type of the specified ModelItem. See the section Solid Geometry Traversal on
page 208 for the list of possible model item types.

ModelItem 209

Duplicating ModelItems
Methods Introduced:

• pfcSession.BaseSession.AllowDuplicateModelItems
You can control the creation of ModelItems more than twice for the same PTC
Creo Parametric item. The method
pfcSession.BaseSession.AllowDuplicateModelItems allows you
to turn ON or OFF the option to duplicate model items. By default, this option is
OFF. To turn the option ON, set the boolean value to FALSE.

Note
If this option is not handled properly on the application side, it can cause
memory corruption. Thus, althought you can turn ON and OFF this option as
many times as you want, PTC recommends turning ON and OFF this option
only once, right after the session is obtained.

Layer Objects
In J-Link, layers are instances of ModelItem. The following sections describe
how to get layer objects and the operations you can perform on them.

Getting Layer Objects
Method Introduced:

• pfcModel.Model.CreateLayer
The method pfcModel.Model.CreateLayer returns a new layer with the
name you specify.
See the section Getting ModelItem Objects on page 208 for other methods that
can return layer objects.

Layer Operations
Methods Introduced:

• pfcLayer.Layer.GetStatus
• pfcLayer.Layer.SetStatus
• pfcLayer.Layer.ListItems
• pfcLayer.Layer.AddItem

210 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcLayer.Layer.RemoveItem
• pfcLayer.Layer.Delete
• pfcLayer.Layer.CountUnsupportedItems
Superseded Method:

• pfcLayer.Layer.HasUnsupportedItems
The methods pfcLayer.Layer.GetStatus and
pfcLayer.Layer.SetStatus enables you to access the display status of a
layer. The corresponding enumeration class is DisplayStatus and the possible
values are Normal, Displayed, Blank, or Hidden.
Use the methods pfcLayer.Layer.ListItems,
pfcLayer.Layer.AddItem, and pfcLayer.Layer.RemoveItem to
control the contents of a layer.

Note
You cannot add the following items to a layer:

• ITEM_SURFACE,
• ITEM_EDGE,
• ITEM_COORD_SYS,
• ITEM_AXIS,
• ITEM_SIMPREP,
• ITEM_DTL_SYM_DEFINITION,
• ITEM_DTL_OLE_OBJECT,
• ITEM_EXPLODED_STATE.

For these items the method will throw the exception
pfcExceptions.XToolkitInvalidType.

The method pfcLayer.Layer.Delete removes the layer (but not the items it
contains) from the model.
The method pfcLayer.Layer.CountUnsupportedItems returns the
number of item types not supported as a pfcModelItem object in the specified
layer. This method deprecates the method
pfcLayer::HasUnsupportedItems.

ModelItem 211

15
Features

Access to Features.. 214
Feature Information ... 214
Feature Operations ... 215
Feature Groups and Patterns ... 218
User Defined Features... 220
Creating Features from UDFs... 222

All PTC Creo Parametric solid models are made up of features. This chapter
describes how to program on the feature level using J-Link.

213

Access to Features
Methods Introduced:

• pfcFeature.Feature.ListChildren
• pfcFeature.Feature.ListParents
• pfcFeature.FeatureGroup.GetGroupLeader
• pfcFeature.FeaturePattern.GetPatternLeader
• pfcFeature.FeaturePattern.ListMembers
• pfcSolid.Solid.ListFailedFeatures
• pfcSolid.Solid.ListFeaturesByType
• pfcSolid.Solid.GetFeatureById
The methods pfcFeature.Feature.ListChildren and
pfcFeature.Feature.ListParents return a sequence of features that
contain all the children or parents of the specified feature.
To get the first feature in the specified group access the method
pfcFeature.FeatureGroup.GetGroupLeader.
The methods pfcFeature.FeaturePattern.GetPatternLeader and
the method pfcFeature.FeaturePattern.ListMembers return features
that make up the specified feature pattern. See the section Feature Groups and
Patterns on page 218 for more information on feature patterns.
The method pfcSolid.Solid.ListFailedFeatures returns a sequence
that contains all the features that failed regeneration.
The method pfcSolid.Solid.ListFeaturesByType returns a sequence
of features contained in the model. You can specify which type of feature to
collect by passing in one of the FeatureType enumeration objects, or you can
collect all features by passing void null as the type. If you list all features, the
resulting sequence will include invisible features that PTC Creo Parametric
creates internally. Internal features are invisible features used internally for
construction purposes. Use the method’s VisibleOnly argument to exclude them. If
the argument VisibleOnly is True, the function lists the public features only. If the
argument is False, the function lists both public and internal features.
The method pfcSolid.Solid.GetFeatureById returns the feature object
with the corresponding integer identifier.

Feature Information
Methods Introduced:

• pfcFeature.Feature.GetFeatType
• pfcFeature.Feature.GetStatus

214 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcFeature.Feature.GetIsVisible
• pfcFeature.Feature.GetIsReadonly
• pfcFeature.Feature.GetIsEmbedded
• pfcFeature.Feature.GetNumber
• pfcFeature.Feature.GetFeatTypeName
• pfcFeature.Feature.GetFeatSubType
• pfcRoundFeat.RoundFeat.GetIsAutoRoundMember
The enumeration classes FeatureType and FeatureStatus provide
information for a specified feature. The following methods specify this
information:

• pfcFeature.Feature.GetFeatType—Returns the type of a feature.
• pfcFeature.Feature.GetStatus—Returns whether the feature is

suppressed, active, or failed regeneration.
The other methods that gather feature information include the following:

• pfcFeature.Feature.GetIsVisible—Identifies whether the
specified feature will be visible on the screen. The method distinguishes
visible features from internal features. Internal features are invisible features
used for construction purposes.

• pfcFeature.Feature.GetIsReadonly—Identifies whether the
specified feature can be modified.

• pfcFeature.Feature.GetIsEmbedded—Specifies whether the
specified feature is an embedded datum.

• pfcFeature.Feature.GetNumber—Returns the feature regeneration
number. This method returns void null if the feature is suppressed.

The method pfcFeature.Feature.GetFeatTypeName returns a string
representation of the feature type.
The method pfcFeature.Feature.GetFeatSubType returns a string
representation of the feature subtype, for example, "Extrude" for a protrusion
feature.
The method pfcRoundFeat.RoundFeat.GetIsAutoRoundMember
determines whether the specified round feature is a member of an Auto Round
feature.

Feature Operations
Methods Introduced:

Features 215

• pfcSolid.Solid.ExecuteFeatureOps
• pfcFeature.Feature.CreateSuppressOp
• pfcFeature.SuppressOperation.SetClip
• pfcFeature.SuppressOperation.SetAllowGroupMembers
• pfcFeature.SuppressOperation.SetAllowChildGroupMembers
• pfcFeature.Feature.CreateDeleteOp
• pfcFeature.DeleteOperation.SetClip
• pfcFeature.DeleteOperation.SetAllowGroupMembers
• pfcFeature.DeleteOperation.SetAllowChildGroupMembers
• pfcFeature.DeleteOperation.SetKeepEmbeddedDatums
• pfcFeature.Feature.CreateResumeOp
• pfcFeature.ResumeOperation.SetWithParents
• pfcFeature.Feature.CreateReorderBeforeOp
• pfcFeature.ReorderBeforeOperation.SetBeforeFeat
• pfcFeature.Feature.CreateReorderAfterOp
• pfcFeature.ReorderAfterOperation.SetAfterFeat
• pfcFeature.FeatureOperations.create
The method pfcSolid.Solid.ExecuteFeatureOps causes a sequence of
feature operations to run in order. Feature operations include suppressing,
resuming, reordering, and deleting features. The optional
RegenInstructions argument specifies whether the user will be allowed to
fix the model if a regeneration failure occurs.

Note
The method pfcSolid.Solid.ExecuteFeatureOps is not supported
in the No-Resolve mode, introduced in Pro/ENGINEERWildfire 5.0. It throws
an exception pfcExceptions.XToolkitBadContext. To continue
with the Pro/ENGINEERWildfire 4.0 behavior in the Resolve mode, set the
configuration option regen_failure_handling to resolve_mode in
the PTC Creo Parametric session. Refer to the Solid Operations on page 177
section in the Solid on page 175 chapter for more information on the No-
Resolve mode.

You can create an operation that will delete, suppress, reorder, or resume certain
features using the methods in the interface pfcFeature.Feature. Each
created operation must be passed as a member of the FeatureOperations

216 PTC Creo® Parametric 3.0 J-Link User’s Guide

object to the method pfcSolid.Solid.ExecuteFeatureOps. You can
create a sequence of the FeatureOperations object using the method
pfcFeature.FeatureOperations.create.
Some of the operations have specific options that you can modify to control the
behavior of the operation:

• Clip—Specifies whether to delete or suppress all features after the selected
feature. By default, this option is false.

Use the methods pfcFeature.DeleteOperation.SetClip and
pfcFeature.SuppressOperation.SetClip to modify this option.

• AllowGroupMembers—If this option is set to true and if the feature to be
deleted or suppressed is a member of a group, then the feature will be deleted
or suppressed out of the group. If this option is set to false, then the entire
group containing the feature is deleted or suppressed. By default, this option is
false. It can be set to true only if the option Clip is set to true.

Use the methods
pfcFeature.SuppressOperation.SetAllowGroupMembers and
pfcFeature.DeleteOperation.SetAllowGroupMembers to
modify this option.

• AllowChildGroupMembers—If this option is set to true and if the
children of the feature to be deleted or suppressed are members of a group,
then the children of the feature will be individually deleted or suppressed out
of the group. If this option is set to false, then the entire group containing the
feature and its children is deleted or suppressed. By default, this option is
false. It can be set to true only if the options Clip and
AllowGroupMembers are set to true.

Use the methods
pfcFeature.SuppressOperation.SetAllowChildGroupMem
bers and
pfcFeature.DeleteOperation.SetAllowChildGroupMembers
to modify this option.

• KeepEmbeddedDatums—Specifies whether to retain the embedded datums
stored in a feature while deleting the feature. By default, this option is false.

Use the method
pfcFeature.DeleteOperation.SetKeepEmbeddedDatums to
modify this option.

• WithParents—Specifies whether to resume the parents of the selected
feature.

Use the method pfcFeature.ResumeOperation.SetWithParents
to modify this option.

Features 217

• BeforeFeat—Specifies the feature before which you want to reorder the
features.

Use the method
pfcFeature.ReorderBeforeOperation.SetBeforeFeat to
modify this option.

• AfterFeat—Specifies the feature after which you want to reorder the
features.

Use the method
pfcFeature.ReorderAfterOperation.SetAfterFeat to modify
this option.

Feature Groups and Patterns
Patterns are treated as features in PTC Creo Parametric. A feature type,
FEATTYPE_PATTERN_HEAD, is used for the pattern header feature.
The result of the pattern header feature for users of previous versions of J-Link is
as follows:

• Models that contain patterns get one extra feature of type FEATTYPE_
PATTERN_HEAD in the regeneration list. This changes the feature numbers of
all subsequent features, including those in the pattern.

Note
The pattern header feature is not treated as a leader or a member of the pattern
by the methods described in the following section.

Methods Introduced:

• pfcFeature.Feature.GetGroup
• pfcFeature.Feature.GetPattern
• pfcSolid.Solid.CreateLocalGroup
• pfcFeature.FeatureGroup.GetPattern
• pfcFeature.FeatureGroup.GetGroupLeader
• pfcFeature.FeaturePattern.GetPatternLeader
• pfcFeature.FeaturePattern.ListMembers
• pfcFeature.FeaturePattern.Delete
The method pfcFeature.Feature.GetGroup returns a handle to the local
group that contains the specified feature.

218 PTC Creo® Parametric 3.0 J-Link User’s Guide

To get the first feature in the specified group call the method
pfcFeature.FeatureGroup.GetGroupLeader.
The methods pfcFeature.FeaturePattern.GetPatternLeader and
pfcFeature.FeaturePattern.ListMembers return features that make
up the specified feature pattern.
A pattern is composed of a pattern header feature and a number of member
features. You can pattern only a single feature. To pattern several features, create a
local group and pattern this group.
You can also create a pattern of pattern. This creates a multiple level pattern. From
Creo Parametric 2.0 M170 onward, for a pattern of pattern, the method
pfcFeature.FeaturePattern.ListMembers returns all the pattern
header features created at the first level.
For example, consider a model where a pattern of pattern has been created. The
model tree is as shown below:

Features 219

The method pfcFeature.FeaturePattern.ListMembers returns the
pattern header features with following IDs for a pattern of pattern:
• 119
• 177
• 221
• 265
The methods pfcFeature.Feature.GetPattern and
pfcFeature.FeatureGroup.GetPattern return the
FeaturePattern object that contains the corresponding Feature or
FeatureGroup. Use the method pfcSolid.Solid.CreateLocalGroup
to take a sequence of features and create a local group with the specified name. To
delete a FeaturePattern object, call the method
pfcFeature.FeaturePattern.Delete.

Changes To Feature Groups
Beginning in Revision 2000i2, the structure of feature groups is different than in
previous releases. Feature groups now have a group header feature, which shows
up in the model information and feature list for the model. This feature will be
inserted in the regeneration list to a position just before the first feature in the
group. Existing models, when retrieved into Revision 2000i2, will have their
groups automatically updated to this structure upon retrieval.
The results of these changes are as follows:

• Models that contain groups will get one extra feature in the regeneration list,
of type FeatureType.FEATTYPE_GROUP_HEAD. This will change the
feature numbers of all subsequent features, including those in the group.

• Each group automatically contains one new feature in the list of features
returned from pfcFeature.FeatureGroup.ListMembers.

• Each group automatically gets a different leader feature (the group head
feature is the leader). This is returned from
pfcFeature.FeatureGroup.GetGroupLeader.

• Each group pattern contains a series of groups, and each group in the pattern
will be similarly altered.

User Defined Features
Groups in PTC Creo Parametric represent sets of contiguous features that act as a
single feature for specific operations. Individual features are affected by most
operations while some operations apply to an entire group:

220 PTC Creo® Parametric 3.0 J-Link User’s Guide

• Suppress
• Delete
• Layers
• Patterning
User defined Features (UDFs) are groups of features that are stored in a file. When
a UDF is placed in a new model the created features are automatically assigned to
a group. A local group is a set of features that have been specifically assigned to a
group to make modifications and patterning easier.

Note
All methods in this section can be used for UDFs and local groups.

Read Access to Groups and User Defined Features
Methods Introduced:

• pfcFeature.FeatureGroup.GetUDFName
• pfcFeature.FeatureGroup.GetUDFInstanceName
• pfcFeature.FeatureGroup.ListUDFDimensions
• pfcUDFGroup.UDFDimension.GetUDFDimensionName
User defined features (UDF’s) are groups of features that can be stored in a file
and added to a new model. A local group is similar to a UDF except it is available
only in the model in which is was created.
The method pfcFeature.FeatureGroup.GetUDFName provides the name
of the group for the specified group instance. A particular group definition can be
used more than once in a particular model.
If the group is a family table instance, the method
pfcFeature.FeatureGroup.GetUDFInstanceName supplies the
instance name.
The method pfcFeature.FeatureGroup.ListUDFDimensions
traverses the dimensions that belong to the UDF. These dimensions correspond to
the dimensions specified as variables when the UDF was created. Dimensions of
the original features that were not variables in the UDF are not included unless the
UDF was placed using the Independent option.

Features 221

The method pfcUDFGroup.UDFDimension.GetUDFDimensionName
provides access to the dimension name specified when the UDF was created, and
not the name of the dimension in the current model. This name is required to place
the UDF programmatically using the method
pfcSolid.Solid.CreateUDFGroup.

Creating Features from UDFs
Method Introduced:

• pfcSolid.Solid.CreateUDFGroup
The method pfcSolid.Solid.CreateUDFGroup is used to create new
features by retrieving and applying the contents of an existing UDF file. It is
equivalent to the PTC Creo Parametric command Feature, Create, User
Defined.
To understand the following explanation of this method, you must have a good
knowledge and understanding of the use of UDF’s in PTC Creo Parametric. PTC
recommends that you read about UDF’s in the PTC Creo Parametric help, and
practice defining and using UDF’s in PTC Creo Parametric before you attempt to
use this method.
When you create a UDF interactively, PTC Creo Parametric prompts you for the
information it needs to fix the properties of the resulting features. When you
create a UDF from J-Link, you can provide some or all of this information
programmatically by filling several compact data classes that are inputs to the
method pfcSolid.Solid.CreateUDFGroup.
During the call to pfcSolid.Solid.CreateUDFGroup, PTC Creo
Parametric prompts you for the following:

• Information required by the UDF that was not provided in the input data
structures.

• Correct information to replace erroneous information
Such prompts are a useful way of diagnosing errors when you develop your
application. This also means that, in addition to creating UDF’s programmatically
to provide automatic synthesis of model geometry, you can also use
pfcSolid.Solid.CreateUDFGroup to create UDF’s semi-interactively.
This can simplify the interactions needed to place a complex UDF making it
easier for the user and less prone to error.

Creating UDFs
Creating a UDF requires the following information:

222 PTC Creo® Parametric 3.0 J-Link User’s Guide

• Name—The name of the UDF you are creating and the instance name if
applicable.

• Dependency—Specify if the UDF is independent of the UDF definition or is
modified by the changers made to it.

• Scale—How to scale the UDF relative to the placement model.
• Variable Dimension—The new values of the variables dimensions and pattern

parameters, those whose values can be modified each time the UDF is created.
• Dimension Display—Whether to show or blank non-variable dimensions

created within the UDF group.
• References—The geometrical elements that the UDF needs in order to relate

the features it contains to the existing models features. The elements
correspond to the picks that PTC Creo Parametric prompts you for when you
create a UDF interactively using the prompts defined when the UDF was
created. You cannot select an embedded datum as the UDF reference.

• Parts Intersection—When a UDF that is being created in an assembly contains
features that modify the existing geometry you must define which parts are
affected or intersected. You also need to know at what level in an assembly
each intersection is going to be visible.

• Orientations—When a UDF contains a feature with a direction that is defined
in respect to a datum plane PTC Creo Parametric must know what direction
the new feature will point to. When you create such a UDF interactively PTC
Creo Parametric prompt you for this information with a flip arrow.

• Quadrants—When a UDF contains a linearly placed feature that references
two datum planes to define it’s location in the new model PTC Creo
Parametric prompts you to pick the location of the new feature. This is
determined by which side of each datum plane the feature must lie. This
selection is referred to as the quadrant because the are four possible
combinations for each linearly place feature.

To pass all the above values to PTC Creo Parametric, J-Link uses a special class
that prepares and sets all the options and passes them to PTC Creo Parametric.

Creating Interactively Defined UDFs
Method Introduced:

• pfcUDFGroup.pfcUDFGroup.UDFPromptCreateInstructions_Create
This static method is used to create an instructions object that can be used to
prompt a user for the required values that will create a UDF interactively.

Features 223

Creating a Custom UDF
Method Introduced:

• pfcUDFCreate.pfcUDFCreate.UDFCustomCreateInstructions_Create
This method creates a UDFCustomCreateInstructions object with a
specified name. To set the UDF creation parameters programmatically you must
modify this object as described below. The members of this class relate closely to
the prompts PTC Creo Parametric gives you when you create a UDF interactively.
PTC recommends that you experiment with creating the UDF interactively using
PTC Creo Parametric before you write the J-Link code to fill the structure.

Setting the Family Table Instance Name
Methods Introduced:

• pfcUDFCreate.UDFCustomCreateInstructions.SetInstanceName
• pfcUDFCreate.UDFCustomCreateInstructions.GetInstanceName
If the UDF contains a family table, this field can be used to select the instance in
the table. If the UDF does not contain a family table, or if the generic instance is
to be selected, the do not set the string.

Setting Dependency Type
Methods Introduced:

• pfcUDFCreate.UDFCustomCreateInstructions.SetDependencyType
• pfcUDFCreate.UDFCustomCreateInstructions.GetDependencyType
The UDFDependencyType object represents the dependency type of the UDF.
The choices correspond to the choices available when you create a UDF
interactively. This enumerated type takes the following values:

• UDFDEP_INDEPENDENT

• UDFDEP_DRIVEN

Note
UDFDEP_INDEPENDENT is the default value, if this option is not set.

Setting Scale and Scale Type
Methods Introduced:

224 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcUDFCreate.UDFCustomCreateInstructions.SetScaleType
• pfcUDFCreate.UDFCustomCreateInstructions.GetScaleType
• pfcUDFCreate.UDFCustomCreateInstructions.SetScale
• pfcUDFCreate.UDFCustomCreateInstructions.GetScale
ScaleType specifies the length units of the UDF in the form of the
UDFScaleType object. This enumerated type takes the following values:

• UDFSCALE_SAME_SIZE

• UDFSCALE_SAME_DIMS

• UDFSCALE_CUSTOM

• UDFSCALE_nil

Note
The default value is UDFSCALE_SAME_SIZE if this option is not set.

Scale specifies the scale factor. If the ScaleType is set to UDFSCALE_CUSTOM,
SetScale assigns the user defined scale factor. Otherwise, this attribute is
ignored.

Setting the Appearance of the Non UDF Dimensions
Methods Introduced:

• pfcUDFCreate.UDFCustomCreateInstructions.SetDimDisplayType
• pfcUDFCreate.UDFCustomCreateInstructions.GetDimDisplayType
The pfcUDFCreate.UDFDimensionDisplayType object sets the options
in PTC Creo Parametric for determining the appearance in the model of UDF
dimensions and pattern parameters that were not variable in the UDF, and
therefore cannot be modified in the model. This enumerated type takes the
following values:

• UDFDISPLAY_NORMAL

• UDFDISPLAY_READ_ONLY

• UDFDISPLAY_BLANK

Note
The default value is UDFDISPLAY_NORMAL if this option is not set.

Features 225

Setting the Variable Dimensions and Parameters
Methods Introduced:

• pfcUDFCreate.UDFCustomCreateInstructions.SetVariantValues
• pfcUDFCreate.UDFVariantValues.create
• pfcUDFCreate.UDFVariantValues.insert
• pfcUDFCreate.pfcUDFCreate.UDFVariantDimension_Create
• pfcUDFCreate.pfcUDFCreate.UDFVariantPatternParam_Create
pfcUDFVariantValues class represents an array of variable dimensions and
pattern parameters.
Use pfcUDFCreate.UDFVariantValues.create to create an empty
object and then use pfcUDFCreate.UDFVariantValues.insert to add
pfcUDFCreate.UDFVariantPatternParam or
pfcUDFCreate.UDFVariantDimension objects one by one.
pfcUDFCreate.pfcUDFCreate.UDFVariantDimension_Create is a
static method creating a pfcUDFCreate.UDFVariantDimension. It
accepts the following parameters:

• Name—The symbol that the dimension had when the UDF was originally
defined not the prompt that the UDF uses when it is created interactively. To
make this name easy to remember, before you define the UDF that you plan to
create with the J-Link, you should modify the symbols of all the dimensions
that you want to select to be variable. If you get the name wrong,
pfcSolid.Solid.CreateUDFGroup will not recognize the dimension
and prompts the user for the value in the usual way does not modify the value.

• DimensionValue—The new value.
If you do not remember the name, you can find it by creating the UDF
interactively in a test model, then using the
pfcFeature.FeatureGroup.ListUDFDimensions and
pfcUDFGroup.UDFDimension.GetUDFDimensionName to find out the
name.
pfcUDFCreate.pfcUDFCreate.UDFVariantPatternParam_Create
is a static method which creates a
pfcUDFCreate.UDFVariantPatternParam. It accepts the following
parameters:

• name—The string name that the pattern parameter had when the UDF was
originally defined

• —The new value.

226 PTC Creo® Parametric 3.0 J-Link User’s Guide

After the pfcUDFCreate.UDFVariantValues object has been compiled,
use
pfcUDFCreate.UDFCustomCreateInstructions.SetVariantVal
ues to add the variable dimensions and parameters to the instructions.

Setting the User Defined References
Methods Introduced:

• pfcUDFCreate.UDFReferences.create
• pfcUDFCreate.UDFReferences.insert
• pfcUDFCreate.pfcUDFCreate.UDFReference_Create
• pfcUDFCreate.UDFReference.SetIsExternal
• pfcUDFCreate.UDFReference.SetReferenceItem
• pfcUDFCreate.UDFCustomCreateInstructions.SetReferences
UDFReferences class represents an array of element references. Use
pfcUDFCreate.UDFReferences.create to create an empty object and
then use pfcUDFCreate.UDFReferences.insert to add
UDFReference objects one by one.
The method pfcUDFCreate.pfcUDFCreate.UDFReference_Create is
a static method creating a UDFReference object. It accepts the following
parameters:

• PromptForReference—The prompt defined for this reference when the UDF
was originally set up. It indicates which reference this structure is providing. If
you get the prompt wrong, pfcSolid.Solid.CreateUDFGroup will not
recognize it and prompts the user for the reference in the usual way.

• ReferenceItem—Specifies the pfcSelect.Selection object representing
the referenced element. You can set Selection programmatically or prompt
the user for a selection separately. You cannot set an embedded datum as the
UDF refereence.

There are two types of reference:

○ Internal—The referenced element belongs directly to the model that will
contain the UDF. For an assembly, this means that the element belongs to
the top level.

○ External—The referenced element belongs to an assembly member other
than the placement member.

To set the reference type, use the method
pfcUDFCreate.UDFReference.SetIsExternal.
To set the item to be used for reference, use the method
pfcUDFCreate.UDFReference.SetReferenceItem.

Features 227

After the UDFReferences object has been set, use
pfcUDFCreate.UDFCustomCreateInstructions.SetReferences
to add the program-defined references.

Setting the Assembly Intersections
Methods Introduced:

• pfcUDFCreate.UDFAssemblyIntersections.create()
• pfcUDFCreate.UDFAssemblyIntersections.insert()
• pfcUDFCreate.pfcUDFCreate.UDFAssemblyIntersection_Create
• pfcUDFCreate.UDFAssemblyIntersection.SetInstanceNames
• pfcUDFCreate.UDFCustomCreateInstructions.SetIntersections
The pfcUDFCreate.UDFAssemblyIntersections class represents an
array of element references.
Use
pfcUDFCreate.pfcUDFCreate.UDFAssemblyIntersection
s.create to create an empty object and then use
pfcUDFCreate.UDFAssemblyIntersections.insert to add
pfcUDFCreate.UDFAssemblyIntersection objects one by one.
pfcUDFCreate.pfcUDFCreate.UDFAssemblyIntersection_
Create is a static method creating a pfcUDFCreate.UDFReference
object. It accepts the following parameters:

• ComponentPath—Is an com.ptc.cipjava.intseq type object
representing the component path of the part to be intersected.

• Visibility level—The number that corresponds to the visibility level of the
intersected part in the assembly. If the number is equal to the length of the
component path the feature is visible in the part that it intersects. If Visibility
level is 0, the feature is visible at the level of the assembly containing the
UDF.

pfcUDFCreate.UDFAssemblyIntersection.SetInstanceNames
sets an array of names for the new instances of parts created to represent the
intersection geometry. This method accepts the following parameters:

• instance names—is a com.ptc.cipjava.stringseq type object
representing the array of new instance names.

After the pfcUDFCreate.UDFAssemblyIntersections object has been
set, use
pfcUDFCreate.UDFCustomCreateInstructions.SetIntersec
tions to add the assembly intersections.

228 PTC Creo® Parametric 3.0 J-Link User’s Guide

Setting Orientations
Methods Introduced:

• pfcUDFCreate.UDFCustomCreateInstructions.SetOrientations
• pfcUDFCreate.UDFOrientations.create
• pfcUDFCreate.UDFOrientations.insert
pfcUDFCreate.UDFOrientations class represents an array of orientations
that provide the answers to PTC Creo Parametric prompts that use a flip arrow.
Each term is a pfcUDFCreate.UDFOrientation object that takes the
following values:

• UDFORIENT_INTERACTIVE—Prompt for the orientation using a flip arrow.
• UDFORIENT_NO_FLIP—Accept the default flip orientation.
• UDFORIENT_FLIP—Invert the orientation from the default orientation.
Use pfcUDFCreate.UDFOrientations.create to create an empty object
and then use pfcUDFCreate.UDFOrientations.insert to add
pfcUDFCreate.UDFOrientation objects one by one.
The order of orientations should correspond to the order in which PTC Creo
Parametric prompts for them when the UDF is created interactively. If you do not
provide an orientation that PTC Creo Parametric needs, it uses the default value
NO_FLIP.
After the pfcUDFCreate.UDFOrientations object has been set use
pfcUDFCreate.UDFCustomCreateInstructions.SetOrienta
tions to add the orientations.

Setting Quadrants
Methods Introduced:

• pfcUDFCreate.UDFCustomCreateInstructions.SetQuadrants
The method
pfcUDFCreate.UDFCustomCreateInstructions.SetQuadrants
sets an array of points, which provide the X, Y, and Z coordinates that correspond
to the picks answering the PTC Creo Parametric prompts for the feature positions.
The order of quadrants should correspond to the order in which PTC Creo
Parametric prompts for them when the UDF is created interactively.

Setting the External References
Methods Introduced:

Features 229

• pfcUDFCreate.UDFCustomCreateInstructions.SetExtReferences
The method
pfcUDFCreate.UDFCustomCreateInstructions.SetExtReferenc
es sets an external reference assembly to be used when placing the UDF. This
will be required when placing the UDF in the component using references outside
of that component. References could be to the top level assembly of another
component.

Example Code 1
The sample code in the file pfcUDFCreateExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples copies of
a node UDF at a particular coordinate system location in a part. The node UDF is
a spherical cut centered at the coordinate system whose diameter is driven by the
'diam' argument to the method. The method returns the FeatureGroup object
created, or null if an error occurred..

230 PTC Creo® Parametric 3.0 J-Link User’s Guide

16
Datum Features

Datum Plane Features ... 232
Datum Axis Features ... 234
General Datum Point Features ... 235
Datum Coordinate System Features ... 237

This chapter describes the J-Link methods that provide read access to the
properties of datum features.

231

Datum Plane Features
The properties of the Datum Plane feature are defined in the
pfcDatumPlaneFeat.DatumPlaneFeatdata object.
Methods Introduced:

• pfcDatumPlaneFeat.DatumPlaneFeat.GetFlip
• pfcDatumPlaneFeat.DatumPlaneFeat.GetConstraints
• pfcDatumPlaneFeat.DatumPlaneConstraint.GetConstraintType
• pfcDatumPlaneFeat.DatumPlaneThroughConstraint.GetThroughRef
• pfcDatumPlaneFeat.DatumPlaneNormalConstraint.GetNormalRef
• pfcDatumPlaneFeat.DatumPlaneParallelConstraint.GetParallelRef
• pfcDatumPlaneFeat.DatumPlaneTangentConstraint.GetTangentRef
• pfcDatumPlaneFeat.DatumPlaneOffsetConstraint.GetOffsetRef
• pfcDatumPlaneFeat.DatumPlaneOffsetConstraint.GetOffsetValue
• pfcDatumPlaneFeat.DatumPlaneOffsetCoordSysConstraint.GetCsysAxis
• pfcDatumPlaneFeat.DatumPlaneAngleConstraint.GetAngleRef
• pfcDatumPlaneFeat.DatumPlaneAngleConstraint.GetAngleValue
• pfcDatumPlaneFeat.DatumPlaneSectionConstraint.GetSectionRef
• pfcDatumPlaneFeat.DatumPlaneSectionConstraint.GetSectionIndex
The properties of the pfcDatumPlaneFeat.DatumPlaneFeat object are
described as follows:

• Flip—Specifies whether the datum plane was flipped during creation. Use
the method pfcDatumPlaneFeat.DatumPlaneFeat.GetFlip to
determine if the datum plane was flipped during creation.

• Constraints—Specifies a collection of constraints given by the
pfcDatumPlaneFeat.DatumPlaneConstraint object. The method
pfcDatumPlaneFeat.DatumPlaneFeat.GetConstraints obtains
the collection of constraints defined for the datum plane.

Use the method
pfcDatumPlaneFeat.DatumPlaneConstraint.GetConstraint
Type to obtain the type of constraint. The type of constraint is given by the
pfcDatumPlaneFeat.DatumPlaneConstraintType enumerated type.
The available types are as follows:

• DTMPLN_THRU—Specifies the Through constraint. The
pfcDatumPlaneFeat DatumPlaneThroughConstraint object
specifies this constraint. Use the method
pfcDatumPlaneFeat.DatumPlaneThroughConstraint.

232 PTC Creo® Parametric 3.0 J-Link User’s Guide

GetThroughRef to get the reference selection handle for the Through
constraint.

• DTMPLN_NORM—Specifies the Normal constraint. The
pfcDatumPlaneFeat

DatumPlaneNormalConstraint object specifies this constraint. Use the
method
pfcDatumPlaneFeat.DatumPlaneNormalConstraint
.GetNormalRef to get the reference selection handle for the Normal
constraint.

• DTMPLN_PRL—Specifies the Parallel constraint.
The DatumPlaneFeatDatumPlaneParallelConstraint object
specifies this constraint. Use the method
pfcDatumPlaneFeat.DatumPlaneParallelConstraint
.GetParallelRef to get the reference selection handle for the Parallel
constraint.

• DTMPLN_TANG—Specifies the Tangent constraint. The
pfcDatumPlaneFeat
.DatumPlaneTangentConstraint object specifies this constraint. Use
the method
pfcDatumPlaneFeat.DatumPlaneTangentConstraint
.GetTangentRef to get the reference selection handle for the Tangent
constraint.

• DTMPLN_OFFS—Specifies the Offset constraint. The
pfcDatumPlaneFeat
.DatumPlaneOffsetConstraint object specifies this constraint. Use
the method
pfcDatumPlaneFeat.DatumPlaneOffsetConstraint
.GetOffsetRef to get the reference selection handle for the Offset
constraint. Use the method
pfcDatumPlaneFeat.DatumPlaneOffsetConstraint.GetOff
setValue to get the offset value.

An Offset constraint where the offset reference is a coordinate system is given
by the
pfcDatumPlaneFeat.DatumPlaneOffsetCoordSysConstraint
object. Use the method
pfcDatumPlaneFeat.DatumPlaneOffsetCoordSysConstraint
.GetCsysAxis to get the reference coordinate axis.

• DTMPLN_ANG—Specifies the Angle constraint. The pfcDatumPlaneFeat
.DatumPlaneAngleConstraint object specifies this constraint. Use the
method
pfcDatumPlaneFeat.DatumPlaneAngleConstraint

Datum Features 233

.GetAngleRef to get the reference selection handle for the Angle
constraint. Use the method
pfcDatumPlaneFeat.DatumPlaneAngleConstraint
.GetAngleValue to get the angle value.

• DTMPLN_SEC—Specifies the Section constraint. The
pfcDatumPlaneFeat
DatumPlaneSectionConstraint object specifies this constraint. Use
the method
pfcDatumPlaneFeat.DatumPlaneSectionConstraint.
GetSectionRef to get the reference selection for the Section constraint.
Use the method
pfcDatumPlaneFeat.DatumPlaneSectionConstraint
.GetSectionIndex to get the section index.

Datum Axis Features
The properties of the Datum Axis feature are defined in the
pfcDatumAxisFeat.DatumAxisFeat data object.
Methods Introduced:

• pfcDatumAxisFeat.DatumAxisFeat.GetConstraints
• pfcDatumAxisFeat.DatumAxisConstraint.GetConstraintType
• pfcDatumAxisFeat.DatumAxisConstraint.GetConstraintRef
• pfcDatumAxisFeat.DatumAxisFeat.GetDimConstraints
• pfcDatumAxisFeat.DatumAxisDimensionConstraint.GetDimOffset
• pfcDatumAxisFeat.DatumAxisDimensionConstraint.GetDimRef
The properties of the pfcDatumAxisFeat.DatumAxisFeat object are
described as follows:

• Constraints—Specifies a collection of constraints given by the
pfcDatumAxisFeat.DatumAxisConstraint object. The method
pfcDatumAxisFeat.DatumAxisFeat.GetConstraints obtains the
collection of constraints applied to the Datum Axis feature.

This object contains the following attributes:

○ ConstraintType—Specifies the type of constraint in terms of the
pfcDatumAxisFeat.DatumAxisConstraintType enumerated
type. The constraint type determines the type of datum axis. The constraint
types are:

◆ DTMAXIS_NORMAL—Specifies the Normal datum constraint.

234 PTC Creo® Parametric 3.0 J-Link User’s Guide

◆ DTMAXIS_THRU—Specifies the Through datum constraint.
◆ DTMAXIS_TANGENT—Specifies the Tangent datum constraint.
◆ DTMAXIS_CENTER—Specifies the Center datum constraint.

Use the method
pfcDatumAxisFeat.DatumAxisConstraint.GetConstraint
Type to get the constraint type.

○ ConstraintRef—Specifies the reference selection for the constraint.
Use the method
pfcDatumAxisFeat.DatumAxisConstraint.GetConstrain
tRef to get the reference selection handle.

• DimConstraints—Specifies a collection of dimension constraints given
by the pfcDatumAxisFeat.DatumAxisDimensionConstraint
object. The method
pfcDatumAxisFeat.DatumAxisFeat.GetDimConstraints
obtains the collection of dimension constraints applied to the Datum Axis
feature.

This pfcDatumAxisFeat.DatumAxisDimensionConstraint
object contains the following attributes:

○ DimOffset—Specifies the offset value for the dimension constraint. Use
the method
pfcDatumAxisFeat.DatumAxisDimensionConstraint.
GetDimOffset to get the offset value.

○ DimRef—Specifies the reference selection for the dimension constraint.
Use the method
pfcDatumAxisFeat.DatumAxisDimensionConstraint.Get
DimRef to get the reference selection handle.

General Datum Point Features
The properties of the General Datum Point feature are defined in the
pfcDatumPointFeat.DatumPointFeat. data object.
Methods Introduced:

• pfcDatumPointFeat.DatumPointFeat.GetFeatName
• pfcDatumPointFeat.DatumPointFeat.GetPoints
• pfcDatumPointFeat.GeneralDatumPoint.GetName
• pfcDatumPointFeat.GeneralDatumPoint.GetPlaceConstraints
• pfcDatumPointFeat.GeneralDatumPoint.GetDimConstraints

Datum Features 235

• pfcDatumPointFeat.DatumPointConstraint.GetConstraintRef
• pfcDatumPointFeat.DatumPointConstraint.GetConstraintType
• pfcDatumPointFeat.DatumPointConstraint.GetValue
The properties of the pfcDatumPointFeat.DatumPointFeat object are
described as follows:

• FeatName—Specifies the name of the General Datum Point feature. Use the
method pfcDatumPointFeat.DatumPointFeat.GetFeatName to
get the name.

• GeneralDatumPoints—Specifies a collection of general datum points
given by the pfcDatumPointFeat.GeneralDatumPoint object. Use
the method pfcDatumPointFeat.DatumPointFeat.GetPoints to
obtain the collection of general datum points. The
pfcDatumPointFeat.GeneralDatumPoint object consists of the
following attributes:

○ Name—Specifies the name of the general datum point. Use the method
pfcDatumPointFeat.GeneralDatumPoint.GetName to get the
name.

○ PlaceConstraints—Specifies a collection of placement constraints
given by the
pfcDatumPointFeat.DatumPointPlacementConstraint
object. Use the method
pfcDatumPointFeat.GeneralDatumPoint.
GetPlaceConstraints to obtain the collection of placement
constraints.

○ DimConstraints—Specifies a collection of dimension constraints
given by the
pfcDatumPointFeat.DatumPointDimensionConstraint
object. Use the method
pfcDatumPointFeat.GeneralDatumPoint.
GetDimConstraints to obtain the collection of dimension constraints.

The constraints for a datum point are given by the
pfcDatumPointFeat.DatumPoint
Constraint object. This object contains the following attributes:

• ConstraintRef—Specifies the reference selection for the datum point
constraint. Use the method
pfcDatumPointFeat.DatumPointConstraint.GetConstrain
tRef to get the reference selection handle.

• ConstraintType—Specifies the type of datum point constraint. in terms
of the pfcDatumPointFeat.DatumPointConstraintType

236 PTC Creo® Parametric 3.0 J-Link User’s Guide

enumerated type. Use the method
pfcDatumPointFeat.DatumPointConstraint.GetConstraint
Type to get the constraint type.

• Value—Specifies the constraint reference value with respect to the datum
point. Use the method
pfcDatumPointFeat.DatumPointConstraint.GetValue to get
the value of the constraint reference with respect to the datum point.

The pfcDatumPointFeat.DatumPointPlacementConstraint and
pfcDatumPointFeat.DatumPointDimensionConstraint objects
inherit from the pfcDatumPointFeat.DatumPointConstraint object.
Use the methods of the pfcDatumPointFeat.DatumPointConstraint
object for the inherited objects.

Datum Coordinate System Features
The properties of the Datum Coordinate System feature are defined in the
pfcCoordSysFeat.CoordSysFeat object.
Methods Introduced:

• pfcCoordSysFeat.CoordSysFeat.GetOriginConstraints
• pfcCoordSysFeat.DatumCsysOriginConstraint.GetOriginRef
• pfcCoordSysFeat.CoordSysFeat.GetDimensionConstraints
• pfcCoordSysFeat.DatumCsysDimensionConstraint.GetDimRef
• pfcCoordSysFeat.DatumCsysDimensionConstraint.GetDimValue
• pfcCoordSysFeat.DatumCsysDimensionConstraint.

GetDimConstraintType
• pfcCoordSysFeat.CoordSysFeat.GetOrientationConstraints
• pfcCoordSysFeat.DatumCsysOrientMoveConstraint.

GetOrientMoveConstraintType
• pfcCoordSysFeat.DatumCsysOrientMoveConstraint.

GetOrientMoveValue
• pfcCoordSysFeat.CoordSysFeat.GetIsNormalToScreen
• pfcCoordSysFeat.CoordSysFeat.GetOffsetType
• pfcCoordSysFeat.CoordSysFeat.GetOnSurfaceType
• pfcCoordSysFeat.CoordSysFeat.GetOrientByMethod
The properties of the pfcCoordSysFeat.CoordSysFeat object are
described as follows:

Datum Features 237

• OriginConstraints—Specifies a collection of origin constraints given
by the pfcCoordSysFeat.DatumCsysOriginConstraint object.
Use the method
pfcCoordSysFeat.CoordSysFeat.GetOriginConstraints to
obtain the collection of origin constraints for the coordinate system. This
object contains the following attribute:

○ OriginRef—Specifies the selection reference for the origin. Use the
method
pfcCoordSysFeat.DatumCsysOriginConstraint.GetOri
ginRef to get the selection reference handle.

• DimensionConstraints—Specifies a collection of dimension
constraints given by the
pfcCoordSysFeat.DatumCsysDimensionConstraint object. Use
the method
pfcCoordSysFeat.CoordSysFeat.GetDimensionConstraints
to obtain the collection of dimension constraints for the coordinate system.
This object contains the following attributes:

○ DimRef—Specifies the reference selection for the dimension constraint.
Use the method
pfcCoordSysFeat.DatumCsysDimensionConstraint.Get
DimRef to get the reference selection handle.

○ DimValue—Specifies the value of the reference. Use the method
pfcCoordSysFeat.DatumCsysDimensionConstraint.Get
DimValue to get the value.

○ DimConstraintType—Specifies the type of dimension constraint in
terms of the
pfcCoordSysFeat.DatumCsysDimConstraintType enumerated
type. Use the method
pfcCoordSysFeat.DatumCsysDimensionConstraint.
GetDimConstraintType to get the constraint type. The constraint
types are:

◆ DTMCSYS_DIM_OFFSET—Specifies the offset type constraint.
◆ DTMCSYS_DIM_ALIGN—Specifies the align type constraint.

• OrientationConstraints—Specifies a collection of orientation
constraints given by the
CoordSysFeat.DatumCsysOrientMoveConstraint object. Use the
method
pfcCoordSysFeat.CoordSysFeat.GetOrientationCon

238 PTC Creo® Parametric 3.0 J-Link User’s Guide

straints to obtain the collection of orientation constraints for the
coordinate system. This object contains the following attributes:

○ OrientMoveConstraintType—Specifies the type of orientation for
the constraint. The orientation type is given by the
pfcCoordSysFeat.DatumCsysOrientMoveConstraintType
enumerated type. Use the method
pfcCoordSysFeat.DatumCsysOrientMoveConstraint.
GetOrientMoveConstraintType to get the orientation type.

○ OrientMoveValue—Specifies the reference value for the constraint.
Use the method
pfcCoordSysFeat.DatumCsysOrientMoveConstraint.
GetOrientMoveValue to get the reference value.

• IsNormalToScreen—Specifies if the coordinate system is normal to
screen. Use the method
pfcCoordSysFeat.CoordSysFeat.GetIsNormalToScreen to
determine if the coordinate system is normal to screen.

• OffsetType—Specifies the offset type of the coordinate system in terms of
the pfcCoordSysFeat.DatumCsysOffsetType enumerated type. Use
the method pfcCoordSysFeat.CoordSysFeat.GetOffsetType to
get the offset type. The offset types are:

○ DTMCSYS_OFFSET_CARTESIAN—Specifies a cartesian coordinate
system that has been defined by setting the values for the DTMCSYS_
MOVE_TRAN_X, DTMCSYS_MOVE_TRAN_Y, and DTMCSYS_MOVE_
TRAN_Z or DTMCSYS_MOVE_ROT_X, DTMCSYS_MOVE_ROT_Y, and
DTMCSYS_MOVE_ROT_Z orientation constants.

○ DTMCSYS_OFFSET_CYLINDRICAL—Specifies a cylindrical coordinate
system that has been defined by setting the values for the DTMCSYS_
MOVE_RAD, DTMCSYS_MOVE_THETA, and DTMCSYS_MOVE_TRAN_
ZI orientation constants.

○ DTMCSYS_OFFSET_SPHERICAL—Specifies a spherical coordinate
system that has been defined by setting the values for the DTMCSYS_
MOVE_RAD, DTMCSYS_MOVE_THETA, and DTMCSYS_MOVE_TRAN_
PHI orientation constants.

• OnSurfaceType—Specifies the on surface type for the coordinate system
in terms of the pfcCoordSysFeat.DatumCsysOffsetType
enumerated type. Use the method

Datum Features 239

pfcCoordSysFeat.CoordSysFeat.GetOnSurfaceType to get the
on surface type property of the coordinate system. The on surface types are:

○ DTMCSYS_ONSURF_LINEAR—Specifies a coordinate system placed on
the selected surface by using two linear dimensions.

○ DTMCSYS_ONSURF_RADIAL—Specifies a coordinate system placed on
the selected surface by using a linear dimension and an angular dimension.
The radius value is used to specify the linear dimension.

○ DTMCSYS_ONSURF_DIAMETER—This type is similar to the DTMCSYS_
ONSURF_RADIAL type, except that the diameter value is used to specify
the linear dimension. It is available only when planar surfaces are used as
the reference.

• OrientByMethod—Specifies the orientation method in terms of the
pfcCoordSysFeat.DatumCsysOrientByMethod enumerated type.
Use the method
pfcCoordSysFeat.CoordSysFeat.GetOrientByMethod to get the
orientation method. The available orientation types are:

○ DTMCSYS_ORIENT_BY_SEL_REFS—Specifies the orientation by
selected references.

○ DTMCSYS_ORIENT_BY_SEL_CSYS_AXES—Specifies the orientation
by corordinate system axes.

Example: Reading Properties of Datum Features
The sample code in the file
pfcReadBasicFeatPropertiesExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples demonstrates how
to read the basic properties of datum features.

240 PTC Creo® Parametric 3.0 J-Link User’s Guide

17
Geometry Evaluation

Geometry Traversal... 242
Curves and Edges... 243
Contours... 246
Surfaces ... 247
Axes, Coordinate Systems, and Points.. 250
Interference .. 251

This chapter describes geometry representation and discusses how to evaluate
geometry using J-Link.

241

Geometry Traversal
• A simple rectangular face has one contour and four edges.
• A contour will traverse a boundary so that the part face is always on the right-

hand side (RHS). For an external contour the direction of traversal is
clockwise. For an internal contour the direction of traversal is
counterclockwise.

• If a part is extruded from a sketch that has a U-shaped cross section there will
be separate surfaces at each leg of the U-channel.

• If a part is extruded from a sketch that has a square-shaped cross section, and a
slot feature is then cut into the part to make it look like a U-channel, there will
be one surface across the legs of the U-channel. The original surface of the
part is represented as one surface with a cut through it.

Geometry Terms
Following are definitions for some geometric terms:

• Surface—An ideal geometric representation, that is, an infinite plane.
• Face—A trimmed surface. A face has one or more contours.
• Contour—A closed loop on a face. A contour consists of multiple edges. A

contour can belong to one face only.
• Edge—The boundary of a trimmed surface.
An edge of a solid is the intersection of two surfaces. The edge belongs to those
two surfaces and to two contours. An edge of a datum surface can be either the
intersection of two datum surfaces or the external boundary of the surface.
If the edge is the intersection of two datum surfaces it will belong to those two
surfaces and to two contours. If the edge is the external boundary of the datum
surface it will belong to that surface alone and to a single contour.

Traversing the Geometry of a Solid Block
Methods Introduced:

• pfcModelItem.ModelItemOwner.ListItems
• pfcGeometry.Surface.ListContours
• pfcGeometry.Contour.ListElements
To traverse the geometry, follow these steps:

242 PTC Creo® Parametric 3.0 J-Link User’s Guide

1. Starting at the top-level model, use
pfcModelItem.ModelItemOwner.ListItems with an argument of
ModelItemType.ITEM_SURFACE.

2. Use pfcGeometry.Surface.ListContours to list the contours
contained in a specified surface.

3. Use pfcGeometry.Contour.ListElements to list the edges
contained in the contour.

Curves and Edges
Datum curves, surface edges, and solid edges are represented in the same way in
J-Link. You can get edges through geometry traversal or get a list of edges using
the methods presented in the chapter ModelItem on page 207.

The t Parameter
The geometry of each edge or curve is represented as a set of three parametric
equations that represent the values of x, y, and z as functions of an independent
parameter, t. The t parameter varies from 0.0 at the start of the curve to 1.0 at the
end of it.
The following figure illustrates curve and edge parameterization.

Curve and Edge Types
Solid edges and datum curves can be any of the following types:

Geometry Evaluation 243

• LINE—A straight line represented by the class pfcGeometry.Line.
• ARC—A circular curve represented by the class pfcGeometry.Arc.
• SPLINE—A nonuniform cubic spline, represented by the class

pfcGeometry.Spline.
• B-SPLINE—A nonuniform rational B-spline curve or edge, represented by the

class pfcGeometry.BSpline.
• COMPOSITE CURVE—A combination of two or more curves, represented

by the class pfcGeometry.CompositeCurve. This is used for datum
curves only.

See the appendix Geometry Representations on page 429 for the parameterization
of each curve type. To determine what type of curve a pfcGeometry.Edge or
pfcGeometry.Curve object represents, use the Java instanceof operator.
Because each curve class inherits from pfcGeometry.GeomCurve, you can
use all the evaluation methods in GeomCurve on any edge or curve.
The following curve types are not used in solid geometry and are reserved for
future expansion:

• CIRCLE (pfcGeometry.Circle)
• ELLIPSE (pfcGeometry.Ellipse)
• POLYGON (pfcGeometry.Polygon)
• ARROW (pfcGeometry.Arrow)
• TEXT (pfcGeometry.Text)

Evaluation of Curves and Edges
Methods Introduced:

• pfcGeometry.GeomCurve.Eval3DData
• pfcGeometry.GeomCurve.EvalFromLength
• pfcGeometry.GeomCurve.EvalParameter
• pfcGeometry.GeomCurve.EvalLength
• pfcGeometry.GeomCurve.EvalLengthBetween
The methods in GeomCurve provide information about any curve or edge.
The method pfcGeometry.GeomCurve.Eval3DData returns a
CurveXYZData object with information on the point represented by the input
parameter t. The method pfcGeometry.GeomCurve.EvalFromLength
returns a similar object with information on the point that is a specified distance
from the starting point.

244 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcGeometry.GeomCurve.EvalParameter returns the t
parameter that represents the input Point3D object.
Both pfcGeometry.GeomCurve.EvalLength and
pfcGeometry.GeomCurve.EvalLengthBetween return numerical values
for the length of the curve or edge.

Solid Edge Geometry
Methods Introduced:

• pfcGeometry.Edge.GetSurface1
• pfcGeometry.Edge.GetSurface2
• pfcGeometry.Edge.GetEdge1
• pfcGeometry.Edge.GetEdge2
• pfcGeometry.Edge.EvalUV
• pfcGeometry.Edge.GetDirection

Note
The methods in the interface Edge provide information only for solid or
surface edges.

The methods pfcGeometry.Edge.GetSurface1 and
pfcGeometry.Edge.GetSurface2 return the surfaces bounded by this
edge. The methods pfcGeometry.Edge.GetEdge1 and
pfcGeometry.Edge.GetEdge2 return the next edges in the two contours
that contain this edge.
The method pfcGeometry.Edge.EvalUV evaluates geometry information
based on the UV parameters of one of the bounding surfaces.
The method pfcGeometry.Edge.GetDirection returns a positive 1 if the
edge is parameterized in the same direction as the containing contour, and –1 if
the edge is parameterized opposite to the containing contour.

Curve Descriptors
A curve descriptor is a data object that describes the geometry of a curve or edge.
A curve descriptor describes the geometry of a curve without being a part of a
specific model.
Methods Introduced:

Geometry Evaluation 245

• pfcGeometry.GeomCurve.GetCurveDescriptor
• pfcGeometry.GeomCurve.GetNURBSRepresentation

Note
To get geometric information for an edge, access the
CurveDescriptor object for one edge using
pfcGeometry.GeomCurve.GetCurveDescriptor.

The method pfcGeometry.GeomCurve.GetCurveDescriptor returns a
curve’s geometry as a data object.
The method pfcGeometry.GeomCurve.GetNURBSRepresentation
returns a Non-Uniform Rational B-Spline Representation of a curve.

Contours
Methods Introduced:

• pfcGeometry.Surface.ListContours
• pfcGeometry.Contour.GetInternalTraversal
• pfcGeometry.Contour.FindContainingContour
• pfcGeometry.Contour.EvalArea
• pfcGeometry.Contour.EvalOutline
• pfcGeometry.Contour.VerifyUV
Contours are a series of edges that completely bound a surface. A contour is not a
ModelItem. You cannot get contours using the methods that get different types
of ModelItem. Use the method pfcGeometry.Surface.ListContours
to get contours from their containing surfaces.
The method pfcGeometry.Contour.GetInternalTraversal returns a
ContourTraversal enumerated type that identifies whether a given contour is
on the outside or inside of a containing surface.
Use the method pfcGeometry.Contour.FindContainingContour to
find the contour that entirely encloses the specified contour.
The method pfcGeometry.Contour.EvalArea provides the area enclosed
by the contour.
The method pfcGeometry.Contour.EvalOutline returns the points that
make up the bounding rectangle of the contour.

246 PTC Creo® Parametric 3.0 J-Link User’s Guide

Use the method pfcGeometry.Contour.VerifyUV to determine whether
the given UVParams argument lies inside the contour, on the boundary, or
outside the contour.

Surfaces
Using J-Link you access datum and solid surfaces in the same way.

UV Parameterization
A surface in PTC Creo Parametric is described as a series of parametric equations
where two parameters, u and v, determine the x, y, and z coordinates. Unlike the
edge parameter, t, these parameters need not start at 0.0, nor are they limited to
1.0.
The figure on the following page illustrates surface parameterization.

Surface Types
Surfaces within PTC Creo Parametric can be any of the following types:

Geometry Evaluation 247

• PLANE—A planar surface represented by the class pfcGeometry.Plane.
• CYLINDER—A cylindrical surface represented by the class

IGeometry.Cylinder.
• CONE—A conic surface region represented by the class

pfcGeometry.Cone.
• TORUS—A toroidal surface region represented by the class

pfcGeometry.Torus.
• REVOLVED SURFACE—Generated by revolving a curve about an axis. This

is represented by the class pfcGeometry.RevSurface.
• RULED SURFACE—Generated by interpolating linearly between two curve

entities. This is represented by the class pfcGeometry.RuledSurface.
• TABULATED CYLINDER—Generated by extruding a curve linearly. This is

represented by the class pfcGeometry.TabulatedCylinder.
• QUILT—A combination of two or more surfaces. This is represented by the

class pfcGeometry.Quilt.

Note
This is used only for datum surfaces.

• COONS PATCH—A coons patch is used to blend surfaces together. It is
represented by the class pfcGeometry.CoonsPatch.

• FILLET SURFACE—A filleted surface is found where a round or fillet is
placed on a curved edge or an edge with a non-consistant arc radii. On a
straight edge a cylinder is used to represent a fillet. This is represented by the
class pfcGeometry.FilletedSurface.

• SPLINE SURFACE— A nonuniform bicubic spline surface that passes
through a grid with tangent vectors given at each point. This is represented by
the class pfcGeometry.SplineSurface.

• NURBS SURFACE—A NURBS surface is defined by basic functions (in u
and v), expandable arrays of knots, weights, and control points. This is
represented by the class pfcGeometry.NURBSSurface.

• CYLINDRICAL SPLINE SURFACE— A cylindrical spline surface is a
nonuniform bicubic spline surface that passes through a grid with tangent
vectors given at each point. This is represented by the class
pfcGeometry.CylindricalSplineSurface.

248 PTC Creo® Parametric 3.0 J-Link User’s Guide

To determine which type of surface a pfcGeometry.Surface object
represents, access the surface type using
pfcGeometry.Geometry.GetSurfaceType.

Surface Information
Methods Introduced:

• pfcGeometry.Surface.GetSurfaceType
• pfcGeometry.Surface.GetXYZExtents
• pfcGeometry.Surface.GetUVExtents
• pfcGeometry.Surface.GetOrientation

Evaluation of Surfaces
Surface methods allow you to use multiple surface information to calculate,
evaluate, determine, and examine surface functions and problems.
Methods Introduced:

• pfcGeometry.Surface.GetOwnerQuilt
• pfcGeometry.Surface.EvalClosestPoint
• pfcGeometry.Surface.EvalClosestPointOnSurface
• pfcGeometry.Surface.Eval3DData
• pfcGeometry.Surface.EvalParameters
• pfcGeometry.Surface.EvalArea
• pfcGeometry.Surface.EvalDiameter
• pfcGeometry.Surface.EvalPrincipalCurv
• pfcGeometry.Surface.VerifyUV
• pfcGeometry.Surface.EvalMaximum
• pfcGeometry.Surface.EvalMinimum
• pfcGeometry.Surface.ListSameSurfaces
The method pfcGeometry.Surface.GetOwnerQuilt returns the Quilt
object that contains the datum surface.
The method pfcGeometry.Surface.EvalClosestPoint projects a
three-dimensional point onto the surface. Use the method
pfcGeometry.Surface.EvalClosestPointOnSurface to determine
whether the specified three-dimensional point is on the surface, within the
accuracy of the part. If it is, the method returns the point that is exactly on the
surface. Otherwise the method returns null.

Geometry Evaluation 249

The method pfcGeometry.Surface.Eval3DData returns a
SurfXYZData object that contains information about the surface at the specified
u and v parameters. The method
pfcGeometry.Surface.EvalParameters returns the u and v parameters
that correspond to the specified three-dimensional point.
The method pfcGeometry.Surface.EvalArea returns the area of the
surface, whereas pfcGeometry.Surface.EvalDiameter returns the
diameter of the surface. If the diameter varies the optional UVParams argument
identifies where the diameter should be evaluated.
The method pfcGeometry.Surface.EvalPrincipalCurv returns a
CurvatureData object with information regarding the curvature of the surface
at the specified u and v parameters.
Use the method pfcGeometry.Surface.VerifyUV to determine whether
the UVParams are actually within the boundary of the surface.
The methods pfcGeometry.Surface.EvalMaximum and
pfcGeometry.Surface.EvalMinimum return the three-dimensional point
on the surface that is the furthest in the direction of (or away from) the specified
vector.
The method pfcGeometry.Surface.ListSameSurfaces identifies other
surfaces that are tangent and connect to the given surface.

Surface Descriptors
A surface descriptor is a data object that describes the shape and geometry of a
specified surface. A surface descriptor allows you to describe a surface in 3D
without an owner ID.
Methods Introduced:

• pfcGeometry.Surface.GetSurfaceDescriptor
• pfcGeometry.Surface.GetNURBSRepresentation
The method pfcGeometry.Surface.GetSurfaceDescriptor returns a
surfaces geometry as a data object.
The method pfcGeometry.Surface.GetNURBSRepresentation
returns a Non-Uniform Rational B-Spline Representation of a surface.

Axes, Coordinate Systems, and Points
Coordinate axes, datum points, and coordinate systems are all model items. Use
the methods that return ModelItems to get one of these geometry objects. Refer
to the chapter ModelItem on page 207 for additional information.

250 PTC Creo® Parametric 3.0 J-Link User’s Guide

Evaluation of ModelItems
MethodsIntroduced:

• pfcGeometry.Axis.GetSurf
• pfcGeometry.CoordSystem.GetCoordSys
• pfcGeometry.Point.GetPoint
The method pfcGeometry.Axis.GetSurf returns the revolved surface that
uses the axis.
The method pfcGeometry.CoordSystem.GetCoordSys returns the
Transform3D object (which includes the origin and x-, y-, and z- axes) that
defines the coordinate system.
The method pfcGeometry.Point.GetPoint returns the xyz coordinates of
the datum point.

Interference
PTC Creo Parametric assemblies can contain interferences between components
when constraint by certain rules defined by the user. The
com.ptc.pfc.pfcInterference packageallows the user to detect and
analyze any interferences within the assembly. The analysis of this functionality
should be looked at from two standpoints: global and selection based analysis.
Methods Introduced:

• pfcInterference.pfcInterference.CreateGlobalEvaluator
• pfcInterference.GlobalEvaluator.ComputeGlobalInterference
• pfcInterference.GlobalEvaluator.GetAssem
• pfcInterference.GlobalEvaluator.SetAssem
• pfcInterference.GlobalInterference.GetVolume
• pfcInterference.GlobalInterference.GetSelParts
To compute all the interferences within an Assembly one has to call
pfcInterference.pfcInterference.CreateGlobalEvaluator
with a Assembly.Assembly object as an argument. This call returns
apfcGlobalEvaluator object. The GlobalEvaluator can be used to
extract an assembly object or to set an assembly object for the interference
computation.
The methods pfcInterference.GlobalEvaluator.GetAssem and
pfcInterference.GlobalEvaluator.SetAssem with
pfcAssembly.Assembly as an argument allow you to do exactly that.

Geometry Evaluation 251

The method
pfcInterference.GlobalEvaluator.ComputeGlobalInterfer
ence determines the set of all the interferences within the assembly.
This method will return a sequence of
pfcInterference.GlobalInterference objects or null if there are no
interfering parts. Each object contains a pair of intersecting parts and an object
representing the interference volume, which can be extracted by using
pfcInterference.GlobalInterference.GetSelParts and
pfcInterference.GlobalInterference.GetVolume respectively.

Analyzing Interference Information
Methods Introduced:

• pfcSelect.pfcSelect.SelectionPair_Create
• pfcInterference.pfcInterference.CreateSelectionEvaluator
• pfcInterference.SelectionEvaluator.GetSelections
• pfcInterference.SelectionEvaluator.SetSelections
• pfcInterference.SelectionEvaluator.ComputeInterference
• pfcInterference.SelectionEvaluator.ComputeClearance
• pfcInterference.SelectionEvaluator.ComputeNearestCriticalDistance
The method pfcSelect.pfcSelect.SelectionPair_Create creates a
pfcSelect.SelectionPair object using two pfcSelect.Selection
objects as arguments.
A return from this method will serve as an argument to
pfcInterference.pfcInterference.CreateSelectionEvalua
tor, which will provide a way to determine the interference data between the two
selections.
pfcInterference.SelectionEvaluator.GetSelections and
pfcInterference.SelectionEvaluator.SetSelections will
extract and set the object to be evaluated respectively.
pfcInterference.SelectionEvaluator.ComputeInterference
determines the interfering information about the provided selections. This method
will return the pfcInterference.InterferenceVolume object or null if
the selections do no interfere.
pfcInterference.SelectionEvaluator.ComputeClearance
computes the clearance data for the two selection. This method returns a
pfcInterference.ClearanceData object, which can be used to obtain
and set clearance distance, nearest points between selections, and a boolean
IsInterferening variable.
pfcInterference.SelectionEvaluator.

252 PTC Creo® Parametric 3.0 J-Link User’s Guide

ComputeNearestCriticalDistance finds a critical point of the distance
function between two selections.
This method returns a pfcInterference.CriticalDistanceData
object, which is used to determine and set critical points, surface parameters, and
critical distance between points.

Analyzing Interference Volume
Methods Introduced:

• pfcInterference.InterferenceVolume.ComputeVolume
• pfcInterference.InterferenceVolume.Highlight
• pfcInterference.InterferenceVolume.GetBoundaries
The method
pfcInterference.InterferenceVolume.ComputeVolume will
calculate a value for interfering volume.
The method pfcInterference.InterferenceVolume.Highlight
will highlight the interfering volume with the color provided in the argument to
the function.
The method
pfcInterference.InterferenceVolume.GetBoundaries will
return a set of boundary surface descriptors for the interference volume.

Example Code
The sample code in the file UsrInterference.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples finds the
interference in an assembly, highlights the interfering surfaces, and highlights
calculates the interference volume.
This application finds the interference in an assembly, highlights the interfering
surfaces, and highlights calculates the interference volume.

Geometry Evaluation 253

18
Dimensions and Parameters

Overview .. 256
The ParamValue Object ... 256
Parameter Objects .. 257
Dimension Objects .. 264

This chapter describes the J-Link methods and classes that affect dimensions and
parameters.

255

Overview
Dimensions and parameters in PTC Creo Parametric have similar characteristics
but also have significant differences. In J-Link, the similarities between
dimensions and parameters are contained in the ModelItem.BaseParameter
interface. This interface allows access to the parameter or dimension value and to
information regarding a parameter's designation and modification. The differences
between parameters and dimensions are recognizable because Dimension
inherits from the interface ModelItem, and can be assigned tolerances, whereas
parameters are not ModelItems and cannot have tolerances.

The ParamValue Object
Both parameters and dimension objects contain an object of type
ModelItem.ParamValue. This object contains the integer, real, string, or
Boolean value of the parameter or dimension. Because of the different possible
value types that can be associated with a ParamValue object there are different
methods used to access each value type and some methods will not be applicable
for some ParamValue objects. If you try to use an incorrect method an
exception will be thrown.

Accessing a ParamValue Object
Methods Introduced:

• pfcModelItem.pfcModelItem.CreateIntParamValue
• pfcModelItem.pfcModelItem.CreateDoubleParamValue
• pfcModelItem.pfcModelItem.CreateStringParamValue
• pfcModelItem.pfcModelItem.CreateBoolParamValue
• pfcModelItem.pfcModelItem.CreateNoteParamValue
• pfcModelItem.BaseParameter.GetValue
The pfcModelItem utility class contains methods for creating each type of
ParamValue object. Once you have established the value type in the object, you
can change it. The method pfcModelItem.BaseParameter.GetValue
returns the ParamValue associated with a particular parameter or dimension.
A NoteParamValue is an integer value that refers to the ID of a specified note.
To create a parameter of this type the identified note must already exist in the
model.

Accessing the ParamValue Value
Methods Introduced:

256 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcModelItem.ParamValue.Getdiscr
• pfcModelItem.ParamValue.GetIntValue
• pfcModelItem.ParamValue.SetIntValue
• pfcModelItem.ParamValue.GetDoubleValue
• pfcModelItem.ParamValue.SetDoubleValue
• pfcModelItem.ParamValue.GetStringValue
• pfcModelItem.ParamValue.SetStringValue
• pfcModelItem.ParamValue.GetBoolValue
• pfcModelItem.ParamValue.SetBoolValue
• pfcModelItem.ParamValue.GetNoteId
The method pfcModelItem.ParamValue.Getdiscr returns a
enumeration object that identifies the type of value contained in the ParamValue
object. Use this information with the Get andSet methods to access the value. If
you use an incorrect Get or Set method an exception of type
Exceptions.XBadGetParamValue will be thrown.

Parameter Objects
The following sections describe the J-Link methods that access parameters. The
topics are as follows:

• Creating and Accessing Parameters on page 257
• Parameter Selection Options on page 258
• Parameter Information on page 260
• Parameter Restrictions on page 262

Creating and Accessing Parameters
Methods Introduced:

• pfcModelItem.ParameterOwner.CreateParam
• pfcModelItem.ParameterOwner.CreateParamWithUnits
• pfcModelItem.ParameterOwner.GetParam
• pfcModelItem.ParameterOwner.ListParams
• pfcModelItem.ParameterOwner.SelectParam
• pfcModelItem.ParameterOwner.SelectParameters
• pfcFamily.FamColParam.GetRefParam

Dimensions and Parameters 257

In J-Link, models, features, surfaces, and edges inherit from the
ModelItem.ParameterOwner , because each of the objects can be assigned
parameters in PTC Creo Parametric.
The method pfcModelItem.ParameterOwner.GetParam gets a
parameter given its name.
The method pfcModelItem.ParameterOwner.ListParams returns a
sequence of all parameters assigned to the object.
To create a new parameter with a name and a specific value, call the method
pfcModelItem.ParameterOwner.CreateParam.
To create a new parameter with a name, a specific value, and units, call the
method pfcModelItem.ParameterOwner.CreateParamWithUnits.
The method pfcModelItem.ParameterOwner.SelectParam allows you
to select a parameter from the PTC Creo Parametric user interface. The top model
from which the parameters are selected must be displayed in the current window.
The method pfcModelItem.ParameterOwner.SelectParameters
allows you to interactively select parameters from the PTC Creo Parametric
Parameter dialog box based on the parameter selection options specified by the
ModelItem.ParameterSelectionOptions object. The top model from
which the parameters are selected must be displayed in the current window. Refer
to the section Parameter Selection Options on page 258 for more information.
The method pfcFamily.FamColParam.GetRefParam returns the
reference parameter from the parameter column in a family table.

Parameter Selection Options
Parameter selection options in J-Link are represented by the
ModelItem.ParameterSelectionOptions .
Methods Introduced:

• pfcModelItem.pfcModelItem.ParameterSelectionOptions_Create
• pfcModelItem.ParameterSelectionOptions.SetAllowContextSelection
• pfcModelItem.ParameterSelectionOptions.SetContexts
• pfcModelItem.ParameterSelectionOptions.SetAllowMultipleSelections
• pfcModelItem.ParameterSelectionOptions.SetSelectButtonLabel
The method
pfcModelItem.pfcModelItem.ParameterSelectionOptions_
Create creates a new instance of the ParameterSelectionOptions
object that is used by the method
pfcModelItem.ParameterOwner.SelectParameters().
The parameter selection options are as follows:

258 PTC Creo® Parametric 3.0 J-Link User’s Guide

• AllowContextSelection—This boolean attribute indicates whether to
allow parameter selection from multiple contexts, or from the invoking
parameter owner. By default, it is false and allows selection only from the
invoking parameter owner. If it is true and if specific selection contexts are not
yet assigned, then you can select the parameters from any context.

Use the method
pfcModelItem.ParameteSelectionOptions.SetAllow
ContextSelection to modify the value of this attribute.

• Contexts—The permitted parameter selection contexts in the form of the
ModelItem.ParameterSelectionContexts object. Use the method
pfcModelItem.ParameterSelectionOptions.SetContexts to
assign the parameter selection context. By default, you can select parameters
from any context.

• The types of parameter selection contexts are as follows:

○ PARAMSELECT_MODEL—Specifies that the top level model parameters
can be selected.

○ PARAMSELECT_PART—Specifies that any part’s parameters (at any level
of the top model) can be selected.

○ PARAMSELECT_ASM—Specifies that any assembly’s parameters (at any
level of the top model) can be selected.

○ PARAMSELECT_FEATURE—Specifies that any feature’s parameters can
be selected.

○ PARAMSELECT_EDGE—Specifies that any edge’s parameters can be
selected.

○ PARAMSELECT_SURFACE—Specifies that any surface’s parameters can
be selected.

○ PARAMSELECT_QUILT—Specifies that any quilt’s parameters can be
selected.

○ PARAMSELECT_CURVE—Specifies that any curve’s parameters can be
selected.

○ PARAMSELECT_COMPOSITE_CURVE—Specifies that any composite
curve’s parameters can be selected.

○ PARAMSELECT_INHERITED—Specifies that any inheritance feature’s
parameters can be selected.

○ PARAMSELECT_SKELETON—Specifies that any skeleton’s parameters
can be selected.

○ PARAMSELECT_COMPONENT—Specifies that any component’s
parameters can be selected.

Dimensions and Parameters 259

• AllowMultipleSelections—This boolean attribute indicates whether
or not to allow multiple parameters to be selected from the dialog box, or only
a single parameter. By default, it is true and allows selection of multiple
parameters.

Use the method
pfcModelItem.ParameterSelectionOptions.SetAllow
MultipleSelections to modify this attribute.

• SelectButtonLabel—The visible label for the select button in the dialog
box.

Use the method
pfcModelItem.ParameterSelectionOptions.SetSelectBut
tonLabel to set the label. If not set, the default label in the language of the
active PTC Creo Parametric session is displayed.

Parameter Information
Methods Introduced:

• pfcModelItem.BaseParameter.GetValue
• pfcModelItem.BaseParameter.SetValue
• pfcModelItem.Parameter.GetScaledValue
• pfcModelItem.Parameter.SetScaledValue
• pfcModelItem.Parameter.GetUnits
• pfcModelItem.BaseParameter.GetIsDesignated
• pfcModelItem.BaseParameter.SetIsDesignated
• pfcModelItem.BaseParameter.GetIsModified
• pfcModelItem.BaseParameter.ResetFromBackup
• pfcModelItem.Parameter.GetDescription
• pfcModelItem.Parameter.SetDescription
• pfcModelItem.Parameter.GetRestriction
• pfcModelItem.Parameter.GetDriverType
• pfcModelItem.Parameter.Reorder
• pfcModelItem.Parameter.Delete
• pfcModelItem.NamedModelItem.GetName
Parameters inherit methods from the BaseParameter, Parameter and
NamedModelItem .

260 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcModelItem.BaseParameter.GetValue returns the value
of the parameter or dimension.
The method pfcModelItem.BaseParameter.SetValue assigns a
particular value to a parameter or dimension.
The method pfcModelItem.Parameter.GetScaledValue returns the
parameter value in the units of the parameter, instead of the units of the owner
model as returned by pfcModelItem.BaseParameter.GetValue.
The method pfcModelItem.Parameter.SetScaledValue assigns the
parameter value in the units provided, instead of using the units of the owner
model as assumed by pfcModelItem.BaseParameter.GetValue.
The method pfcModelItem.Parameter.GetUnits returns the units
assigned to the parameter.
You can access the designation status of the parameter using the methods
pfcModelItem.BaseParameter.GetIsDesignated and
pfcModelItem.BaseParameter.SetIsDesignated.
The methods pfcModelItem.BaseParameter.GetIsModified and
pfcModelItem.BaseParameter.ResetFromBackup enable you to
identify a modified parameter or dimension, and reset it to the last stored value. A
parameter is said to be "modified" when the value has been changed but the
parameter's owner has not yet been regenerated.
The method pfcModelItem.Parameter.GetDescription returns the
parameter description, or null, if no description is assigned.
The method pfcModelItem.Parameter.SetDescription assigns the
parameter description.
The method pfcModelItem.Parameter.GetRestriction identifies if
the parameter’s value is restricted to a certain range or enumeration. It returns the
ModelItem.ParameterRestriction object. Refer to the section
Parameter Restrictions on page 262 for more information.
The methodpfcModelItem.Parameter.GetDriverType returns the
driver type for a material parameter. The driver types are as follows:

• PARAMDRIVER_PARAM—Specifies that the parameter value is driven by
another parameter.

• PARAMDRIVER_FUNCTION—Specifies that the parameter value is driven by
a function.

• PARAMDRIVER_RELATION—Specifies that the parameter value is driven by
a relation. This is equivalent to the value obtained using
pfcModelItem.BaseParameter.GetIsRelationDriven for a
parameter object type.

Dimensions and Parameters 261

The method pfcModelItem.Parameter.Reorder reorders the given
parameter to come immediately after the indicated parameter in the Parameter
dialog box and information files generated by PTC Creo Parametric.
The method pfcModelItem.Parameter.Delete permanently removes a
specified parameter.
The method pfcModelItem.NamedModelItem.GetName accesses the
name of the specified parameter.

Parameter Restrictions
PTC Creo Parametric allows users to assign specified limitations to the value
allowed for a given parameter (wherever the parameter appears in the model). You
can only read the details of the permitted restrictions from J-Link, but not modify
the permitted values or range of values. Parameter restrictions in J-Link are
represented by the interface ModelItem.ParameterRestriction.
Method Introduced:

• pfcModelItem.ParameterRestriction.GetType
The method pfcModelItem.ParameterRestriction.GetType returns
the ModelItem.RestrictionType object containing the types of parameter
restrictions. The parameter restrictions are of the following types:

• PARAMSELECT_ENUMERATION—Specifies that the parameter is restricted
to a list of permitted values.

• PARAMSELECT_RANGE—Specifies that the parameter is limited to a
specified range of numeric values.

Enumeration Restriction
The PARAMSELECT_ENUMERATION type of parameter restriction is represented
by the ModelItem.ParameterEnumeration. It is a child of the
ModelItem.ParameterRestriction .
Method Introduced:

• pfcModelItem.ParameterEnumeration.GetPermittedValues
The method
pfcModelItem.ParameterEnumeration.GetPermittedValues
returns a list of permitted parameter values allowed by this restriction in the form
of a sequence of the ModelItem.ParamValue objects.

262 PTC Creo® Parametric 3.0 J-Link User’s Guide

Range Restriction
The PARAMSELECT_RANGE type of parameter restriction is represented by the
interface ModelItem.ParameterRange. It is a child of the
ModelItem.ParameterRestriction interface.
Methods Introduced:

• pfcModelItem.ParameterRange.GetMaximum
• pfcModelItem.ParameterRange.GetMinimum
• pfcModelItem.ParameterLimit.GetType
• pfcModelItem.ParameterLimit.GetValue
The method pfcModelItem.ParameterRange.GetMaximum returns the
maximum value limit for the parameter in the form of the
ModelItem.ParameterLimit object.
The method pfcModelItem.ParameterRange.GetMinimum returns the
minimum value limit for the parameter in the form of the
ModelItem.ParameterLimit object.
The method pfcModelItem.ParameterLimit.GetType returns the
ModelItem.ParameterLimitType containing the types of parameter
limits. The parameter limits are of the following types:

• PARAMLIMIT_LESS_THAN—Specifies that the parameter must be less than
the indicated value.

• PARAMLIMIT_LESS_THAN_OR_EQUAL—Specifies that the parameter
must be less than or equal to the indicated value.

• PARAMLIMIT_GREATER_THAN—Specifies that the parameter must be
greater than the indicated value.

• PARAMLIMIT_GREATER_THAN_OR_EQUAL—Specifies that the parameter
must be greater than or equal to the indicated value.

The method pfcModelItem.ParameterLimit.GetValue returns the
boundary value of the parameter limit in the form of the
ModelItem.ParamValue object.

Example Code: Updating Model Parameters
The sample code in the file pfcParameterExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples contains a
single static utility method. This method reads a Java "properties" file and creates
or updates model parameters for each property which exists in the file. Since each
property value is returned as a String, a utility method parses the String into int,
double, or boolean values if possible.

Dimensions and Parameters 263

Dimension Objects
Dimension objects include standard PTC Creo Parametric dimensions as well as
reference dimensions. Dimension objects enable you to access dimension
tolerances and enable you to set the value for the dimension. Reference
dimensions allow neither of these actions.

Getting Dimensions
Dimensions and reference dimensions are PTC Creo Parametric model items. See
the section Getting ModelItem Objects on page 208 for methods that can return
Dimension and RefDimension objects.

Dimension Information
Methods Introduced:

• pfcModelItem.BaseParameter.GetValue
• pfcModelItem.BaseParameter.SetValue
• pfcModelItem.BaseDimension.GetDimValue
• pfcModelItem.BaseDimension.SetDimValue
• pfcModelItem.BaseParameter.GetIsDesignated
• pfcModelItem.BaseParameter.SetIsDesignated
• pfcModelItem.BaseParameter.GetIsModified
• pfcModelItem.BaseParameter.ResetFromBackup
• pfcModelItem.BaseParameter.GetIsRelationDriven
• pfcDimension.BaseDimension.GetDimType
• pfcDimension.BaseDimension.GetSymbol
• pfcDimension.BaseDimension.GetTexts
• pfcDimension.BaseDimension.SetTexts
All the BaseParameter methods are accessible to Dimensions as well as
Parameters. See the section Parameter Objects on page 257 for brief descriptions.

Note
You cannot set the value or designation status of reference dimension objects.

264 PTC Creo® Parametric 3.0 J-Link User’s Guide

The methods pfcModelItem.BaseDimension.GetDimValue and
pfcModelItem.BaseDimension.SetDimValue access the dimension
value as a double. These methods provide a shortcut for accessing the dimensions'
values without using a ParamValue object.
The pfcModelItem.BaseParameter.GetIsRelationDriven method
identifies whether the part or assembly relations control a dimension.
The method pfcDimension.BaseDimension.GetDimType returns an
enumeration object that identifies whether a dimension is linear, radial, angular, or
diametrical.
The method pfcDimension.BaseDimension.GetSymbol returns the
dimension or reference dimension symbol (that is, “d#” or “rd#”).
The pfcDimension.BaseDimension.GetTexts and
pfcDimension.BaseDimension.SetTexts methods allows access to the
text strings that precede or follow the dimension value.

Dimension Tolerances
Methods Introduced:

• pfcDimension.Dimension.GetTolerance
• pfcDimension.Dimension.SetTolerance
• pfcDimension.pfcDimension.DimTolPlusMinus_Create
• pfcDimension.pfcDimension.DimTolSymmetric_Create
• pfcDimension.pfcDimension.DimTolLimits_Create
• pfcDimension.pfcDimension.DimTolSymSuperscript_Create
• pfcDimension.pfcDimension.DimTolISODIN_Create
Only true dimension objects can have geometric tolerances.
The methods pfcDimension.Dimension.GetTolerance and
pfcDimension.Dimension.SetTolerance enable you to access the
dimension tolerance. The object types for the dimension tolerance are:

• DimTolLimits—Displays dimension tolerances as upper and lower limits.

Note
This format is not available when only the tolerance value for a dimension
is displayed.

• DimTolPlusMinus—Displays dimensions as nominal with plus-minus
tolerances. The positive and negative values are independent.

Dimensions and Parameters 265

• DimTolSymmetric—Displays dimensions as nominal with a single value
for both the positive and the negative tolerance.

• DimTolSymSuperscript—Displays dimensions as nominal with a single
value for positive and negative tolerance. The text of the tolerance is displayed
in a superscript format with respect to the dimension text.

• DimTolISODIN—Displays the tolerance table type, table column, and table
name, if the dimension tolerance is set to a hole or shaft table (DIN/ISO
standard).

A null value is similar to the nominal option in PTC Creo Parametric.
To determine whether a given tolerance is plus/minus, symmetric, limits, or
superscript use instanceof.

Example Code: Setting Tolerances to a Specified Range
The sample code in the file pfcDimensionExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples shows a
utility method that sets angular tolerances to a specified range.
The example code shows a utility method that sets angular tolerances to a
specified range. First, the program determines whether the dimension passed to it
is angular. If it is, the method gets the dimension value and adds or subtracts the
range to it to get the upper and lower limits.The program then initializes a
DimTolLimits tolerance object and assigns it to the dimension.
Because the BaseParameter used in the example is a dimension, you know
that its ParamValue object must contain a double value. Therefore, you do not
have to check the ParamValueType using the method
pfcModelItem.pfcParamValue.Getdiscr.

266 PTC Creo® Parametric 3.0 J-Link User’s Guide

19
Relations

Accessing Relations .. 268
Accessing Post Regeneration Relations.. 268

This chapter describes how to access relations on all models and model items in
PTC Creo Parametric using the methods provided in J-Link.

267

Accessing Relations
In J-Link, the set of relations on any model or model item is represented by the
pfcModelItem.RelationOwner . Models, features, surfaces, and edges
inherit from this interface, because each object can be assigned relations in PTC
Creo Parametric.
Methods Introduced:

• pfcModelItem.RelationOwner.RegenerateRelations
• pfcModelItem.RelationOwner.DeleteRelations
• pfcModelItem.RelationOwner.GetRelations
• pfcModelItem.RelationOwner.SetRelations
• pfcModelItem.RelationOwner.EvaluateExpression
The method pfcModelItem.RelationOwner.RegenerateRelations
regenerates the relations assigned to the owner item. It also determines whether
the specified relation set is valid.
The method pfcModelItem.RelationOwner.DeleteRelations
deletes all the relations assigned to the owner item.
The method pfcModelItem.RelationOwner.GetRelations returns the
list of initial relations assigned to the owner item as a sequence of strings.
The method pfcModelItem.RelationOwner.SetRelations assigns the
sequence of strings as the new relations to the owner item.
The method pfcModelItem.RelationOwner.EvaluateExpression
evaluates the given relations-based expression, and returns the resulting value in
the form of the pfcModelItem.ParamValue object. Refer to the section The
ParamValue Object on page 256 in the chapter Dimensions and Parameters on
page 255 for more information on this object.

Example 1: Adding Relations between Parameters in
a Solid Model
The sample code in the file pfcRelationExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples
demonstrates how to add relations between parameters in a solid model.

Accessing Post Regeneration Relations
Method Introduced:

268 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcModel.Model.GetPostRegenerationRelations
• pfcModel.Model.RegeneratePostRegenerationRelations
• pfcModel.Model.DeletePostRegenerationRelations
The method pfcModel.Model.GetPostRegenerationRelations lists
the post-regeneration relations assigned to the model. It can be NULL, if not set.

Note
To work with post-regeneration relations, use the post-regeneration relations
attribute in the methods
pfcModelItem.RelationOwner.SetRelations,
pfcModelItem.RelationOwner.RegenerateRelations and
pfcModelItem.RelationOwner.DeleteRelations.

You can regenerate the relation sets post-regeneration in a model using the method
fcModel.Model.RegeneratePostRegenerationRelations.
To delete all the post-regeneration relations in the specified model, call the method
pfcModel.Model.DeletePostRegenerationRelations.

Relations 269

20
Assemblies and Components

Structure of Assemblies and Assembly Objects ... 272
Assembling Components ... 277
Redefining and Rerouting Assembly Components ... 281
Exploded Assemblies .. 282
Skeleton Models.. 283

This chapter describes the J-Link functions that access the functions of a PTC
Creo Parametric assembly. You must be familiar with the following before you
read this section:

• The Selection Object
• Coordinate Systems
• The Geometry section

271

Structure of Assemblies and Assembly
Objects
The object Assembly is an instance of Solid. The Assembly object can
therefore be used as input to any of the Solid and Model methods applicable to
assemblies. However assemblies do not contain solid geometry items. The only
geometry in the assembly is datums (points, planes, axes, coordinate systems,
curves, and surfaces). Therefore solid assembly features such as holes and slots
will not contain active surfaces or edges in the assembly model.
The solid geometry of an assembly is contained in its components. A component
is a feature of type pfcComponentFeat.ComponentFeat, which is a
reference to a part or another assembly, and a set of parametric constraints for
determining its geometrical location within the parent assembly.
Assembly features that are solid, such as holes and slots, and therefore affect the
solid geometry of parts in the assembly hierarchy, do not themselves contain the
geometry items that describe those modifications. These items are always
contained in the parts whose geometry is modified, within local features created
for that purpose.
The important J-Link functions for assemblies are those that operate on the
components of an assembly. The object ComponentFeat, which is an instance
of Feature is defined for that purpose. Each assembly component is treated as a
variety of feature, and the integer identifier of the component is also the feature
identifier.
An assembly can contain a hierarchy of assemblies and parts at many levels, in
which some assemblies and parts may appear more than once. To identify the role
of any database item in the context of the root assembly, it is not sufficient to have
the integer identifier of the item and the handle to its owning part or assembly, as
would be provided by its Feature description.
It is also necessary to give the full path of the assembly-component references
down from the root assembly to the part or assembly that owns the database item.
This is the purpose of the object ComponentPath, which is used as the input to
J-Link assembly functions.
The following figure shows an assembly hierarchy with two examples of the
contents of a ComponentPath object.

272 PTC Creo® Parametric 3.0 J-Link User’s Guide

In the assembly shown in the figure, subassembly C is component identifier 11
within assembly A, Part B is component identifier 3 within assembly AB, and so
on. The subassembly AB occurs twice. To refer to the two occurrences of part B,
use the following:
(?)Component B’ Component B"
ComponentIds.get(0) = 2 ComponentIds.get(1) = 11
ComponentIds.get(1) = 2 ComponentIds.get(2) = 6
ComponentIds.get(2) = 5 ComponentIds.get(3) = 12
ComponentIds.get(3) = 2 ComponentIds.get(4) = 3
ComponentIds.get(4) = 3

The object ComponentPath is one of the main portions of the Selection
object.

Assembly Components
Methods Introduced:

• pfcComponentFeat.ComponentFeat.GetIsBulkitem
• pfcComponentFeat.ComponentFeat.GetIsSubstitute
• pfcComponentFeat.ComponentFeat.GetCompType
• pfcComponentFeat.ComponentFeat.SetCompType

Assemblies and Components 273

• pfcComponentFeat.ComponentFeat.GetModelDescr
• pfcComponentFeat.ComponentFeat.GetIsPlaced
• pfcComponentFeat.ComponentFeat.SetIsPlaced
• pfcComponentFeat.ComponentFeat.GetIsPackaged
• pfcComponentFeat.ComponentFeat.GetIsUnderconstrained
• pfcComponentFeat.ComponentFeat.GetIsFrozen
• pfcComponentFeat.ComponentFeat.GetPosition
• pfcComponentFeat.ComponentFeat.CopyTemplateContents
• pfcComponentFeat.ComponentFeat.CreateReplaceOp
The method pfcComponentFeat.ComponentFeat.GetIsBulkitem
identifies whether an assembly component is a bulk item. A bulk item is a non-
geometric assembly feature that should appear in an assembly bill of materials.
The method pfcComponentFeat.ComponentFeat.GetIsSubstitute
returns a true value if the component is substituted, else it returns a false. When
you substitute a component in a simplified representation, you temporarily
exclude the substituted component and superimpose the substituting component in
its place.
The method pfcComponentFeat.ComponentFeat.GetCompType
returns the type of the assembly component.
The method pfcComponentFeat.ComponentFeat.SetCompType
enables you to set the type of the assembly component. The component type
identifies the purpose of the component in a manufacturing assembly.
The method pfcComponentFeat.ComponentFeat.GetModelDescr
returns the model descriptor of the component part or subassembly.

Note
From Pro/ENGINEERWildfire 4.0 onwards, the method
pfcComponentFeat.ComponentFeat.GetModelDescr throws an
exception pfcExceptions.XtoolkitCantOpen if called on an
assembly component whose immediate generic is not in session. Handle this
exception and typecast the assembly component as pfcSolid.Solid,
which in turn can be typecast as pfcFamily.FamilyMember, and use the
method pfcFamily.FamilyMember.GetImmediateGenericInfo
to get the model descriptor of the immediate generic model. If you wish to
switch off this behavior and continue to run legacy applications in the pre-
Wildfire 4.0 mode, set the configuration option retrieve_instance_
dependencies to instance_and_generic_deps.

274 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcCompontentFeat.ComponentFeat.GetIsPlaced
determines whether the component is placed.
The method pfcCompontentFeat.ComponentFeat.SetIsPlaced
forces the component to be considered placed. The value of this parameter is
important in assembly Bill of Materials.

Note
Once a component is constrained or packaged, it cannot be made unplaced
again.

A component of an assembly that is either partially constrained or unconstrained
is known as a packaged component. Use the method
pfcCompontentFeat.ComponentFeat.GetIsPackaged to determine
if the specified component is packaged.
The method
pfcCompontentFeat.ComponentFeat.GetIsUnderconstrained
determines if the specified component is underconstrained, that is, it possesses
some constraints but is not fully constrained.
The method pfcCompontentFeat.ComponentFeat.GetIsFrozen
determines if the specified component is frozen. The frozen component behaves
similar to the packaged component and does not follow the constraints that you
specify.
The method pfcCompontentFeat.ComponentFeat.GetPosition
retrieves the component’s initial position before constraints and movements have
been applied. If the component is packaged this position is the same as the
constraint’s actual position. This method modifies the assembly component data
but does not regenerate the assembly component. To regenerate the component,
use the method pfcComponentFeat.ComponentFeat.Regenerate.
The method
pfcComponentFeat.ComponentFeat.CopyTemplateContents
copies the template model into the model of the specified component.
The method
pfcCompontentFeat.ComponentFeat.CreateReplaceOp creates a
replacement operation used to swap a component automatically with a related
component. The replacement operation can be used as an argument to
pfcSolid.Solid.ExecuteFeatureOps.

Assemblies and Components 275

Example Code: Replacing Instances
The sample code in the file pfcComponentFeatExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples contains a
single static utility method. This method takes an assembly for an argument. It
searches through the assembly for all components that are instances of the model
"bolt". It then replaces all such occurrences with a different instance of bolt.

Regenerating an Assembly Component
Method Introduced:

• pfcComponentFeat.ComponentFeat.Regenerate
The method pfcComponentFeat.ComponentFeat.Regenerate
regenerates an assembly component. The method regenerates the assembly
component just as in an interactive PTC Creo Parametric session.

Creating a Component Path
Methods Introduced

• pfcAssembly.pfcAssembly.CreateComponentPath
The method pfcAssembly.pfcAssembly.CreateComponentPath
returns a component path object, given the Assembly model and the integer id
path to the desired component.

Component Path Information
Methods Introduced:

• pfcAssembly.ComponentPath.GetRoot
• pfcAssembly.ComponentPath.SetRoot
• pfcAssembly.ComponentPath.GetComponentIds
• pfcAssembly.ComponentPath.SetComponentIds
• pfcAssembly.ComponentPath.GetLeaf
• pfcAssembly.ComponentPath.GetTransform
• pfcAssembly.ComponentPath.SetTransform
• pfcAssembly.ComponentPath.GetIsVisible
The method pfcAssembly.ComponentPath.GetRoot returns the
assembly at the head of the component path object.
The method pfcAssembly.ComponentPath.SetRoot setsthe assembly at
the head of the component path object as the root assembly.

276 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcAssembly.ComponentPath.GetComponentIds returns
the sequence of ids which is the path to the particular component.
The method pfcAssembly.ComponentPath.SetComponentIds sets the
path from the root assembly to the component through various subassemblies
containing this component.
The method pfcAssembly.ComponentPath.GetLeaf returns the solid
model at the end of the component path.
The method pfcAssembly.ComponentPath.GetTransform returns the
coordinate system transformation between the assembly and the particular
component. It has an option to provide the transformation from bottom to top, or
from top to bottom. This method describes the current position and the orientation
of the assembly component in the root assembly.
The method pfcAssembly.ComponentPath.SetTransform applies a
temporary transformation to the assembly component, similar to the
transformation that takes place in an exploded state. The transformation will only
be applied if the assembly is using DynamicPositioning.
The method pfcAssembly.ComponentPath.GetIsVisible identifies if
a particular component is visible in any simplified representation.

Assembling Components
Methods Introduced:

• pfcAssembly.Assembly.AssembleComponent
• pfcAssembly.Assembly.AssembleByCopy
• pfcComponentFeat.ComponentFeat.GetConstraints
• pfcComponentFeat.ComponentFeat.SetConstraints
The method pfcAssembly.Assembly.AssembleComponent adds a
specified component model to the assembly at the specified initial position. The
position is specified in the format defined by the
interfacepfcBase.Transform3D. Specify the orientation of the three axes and
the position of the origin of the component coordinate system, with respect to the
target assembly coordinate system.
The method pfcAssembly.Assembly.AssembleByCopy creates a new
component in the specified assembly by copying from the specified component. If
no model is specified, then the new component is created empty. The input
parameters for this method are:

• LeaveUnplaced—If true the component is unplaced. If false the component is
placed at a default location in the assembly. Unplaced components belong to
an assembly without being assembled or packaged. These components appear
in the model tree, but not in the graphic window. Unplaced components can be

Assemblies and Components 277

constrained or packaged by selecting them from the model tree for
redefinition. When its parent assembly is retrieved into memory, an unplaced
component is also retrieved.

• ModelToCopy—Specify the model to be copied into the assembly
• NewModelName—Specify a name for the copied model
The method pfcComponentFeat.ComponentFeat.GetConstraints
retrieves the constraints for a given assembly component.
The method pfcComponentFeat.ComponentFeat.SetConstraints
allows you to set the constraints for a specified assembly component. The input
parameters for this method are:

• Constraints—Constraints for the assembly component. These constraints are
explained in detail in the later sections.

• ReferenceAssembly—The path to the owner assembly, if the constraints have
external references to other members of the top level assembly. If the
constraints are applied only to the assembly component then the value of this
parameter should be null.

This method modifies the component feature data but does not regenerate the
assembly component. To regenerate the assembly use the method
pfcSolid.Solid.Regenerate.

Constraint Attributes
Methods Introduced:

• pfcComponentFeat.pfcComponentFeat.ConstraintAttributes_Create
• pfcComponentFeat.ConstraintAttributes.GetForce
• pfcComponentFeat.ConstraintAttributes.SetForce
• pfcComponentFeat.ConstraintAttributes.GetIgnore
• pfcComponentFeat.ConstraintAttributes.SetIgnore
The method
pfcComponentFeat.pfcComponentFeat.ConstraintAttributes_
Create returns the constraint attributes object based on the values of the
following input parameters:

• Ignore—Constraint is ignored during regeneration. Use this capability to store
extra constraints on the component, which allows you to quickly toggle
between different constraints.

• Force—Constraint has to be forced for line and point alignment.
• None—No constraint attributes. This is the default value.

278 PTC Creo® Parametric 3.0 J-Link User’s Guide

Use the Get methods to retrieve the values of the input parameters specified
above and the Set methods to modify the values of these input parameters.

Assembling a Component Parametrically
You can position a component relative to its neighbors (components or assembly
features) so that its position is updated as its neighbors move or change. This is
called parametric assembly. PTC Creo Parametric allows you to specify
constraints to determine how and where the component relates to the assembly.
You can add as many constraints as you need to make sure that the assembly
meets the design intent.
Methods Introduced:

• pfcComponentFeat.pfcComponentFeat.ComponentConstraint_Create
• pfcComponentFeat.ComponentConstraint.GetType
• pfcComponentFeat.ComponentConstraint.SetType
• pfcComponentFeat.ComponentConstraint.SetAssemblyReference
• pfcComponentFeat.ComponentConstraint.GetAssemblyReference
• pfcComponentFeat.ComponentConstraint.SetAssemblyDatumSide
• pfcComponentFeat.ComponentConstraint.GetAssemblyDatumSide
• pfcComponentFeat.ComponentConstraint.SetComponentReference
• pfcComponentFeat.ComponentConstraint.GetComponentReference
• pfcComponentFeat.ComponentConstraint.SetComponentDatumSide
• pfcComponentFeat.ComponentConstraint.GetComponentDatumSide
• pfcComponentFeat.ComponentConstraint.SetOffset
• pfcComponentFeat.ComponentConstraint.GetOffset
• pfcComponentFeat.ComponentConstraint.SetAttributes
• pfcComponentFeat.ComponentConstraint.GetAttributes
• pfcComponentFeat.ComponentConstraint.SetUserDefinedData
• pfcComponentFeat.ComponentConstraint.GetUserDefinedData
The method
pfcComponentFeat.pfcComponentFeat.ComponentConstraint_
Create returns the component constraint object having the following
parameters:

• ComponentConstraintType—Using the TYPE options, you can specify the
placement constraint types. They are as follows:

○ ASM_CONSTRAINT_MATE—Use this option to make two surfaces touch
one another, that is coincident and facing each other.

Assemblies and Components 279

○ ASM_CONSTRAINT_MATE_OFF—Use this option to make two planar
surfaces parallel and facing each other.

○ ASM_CONSTRAINT_ALIGN—Use this option to make two planes
coplanar, two axes coaxial and two points coincident. You can also align
revolved surfaces or edges.

○ ASM_CONSTRAINT_ALIGN_OFF—Use this option to align two planar
surfaces at an offset.

○ ASM_CONSTRAINT_INSERT—Use this option to insert a "male"
revolved surface into a ``female'' revolved surface, making their respective
axes coaxial.

○ ASM_CONSTRAINT_ORIENT—Use this option to make two planar
surfaces to be parallel in the same direction.

○ ASM_CONSTRAINT_CSYS—Use this option to place a component in an
assembly by aligning the coordinate system of the component with the
coordinate system of the assembly.

○ ASM_CONSTRAINT_TANGENT—Use this option to control the contact of
two surfaces at their tangents.

○ ASM_CONSTRAINT_PNT_ON_SRF—Use this option to control the
contact of a surface with a point.

○ ASM_CONSTRAINT_EDGE_ON_SRF—Use this option to control the
contact of a surface with a straight edge.

○ ASM_CONSTRAINT_DEF_PLACEMENT—Use this option to align the
default coordinate system of the component to the default coordinate
system of the assembly.

○ ASM_CONSTRAINT_SUBSTITUTE—Use this option in simplified
representations when a component has been substituted with some other
model

○ ASM_CONSTRAINT_PNT_ON_LINE—Use this option to control the
contact of a line with a point.

○ ASM_CONSTRAINT_FIX—Use this option to force the component to
remain in its current packaged position.

○ ASM_CONSTRAINT_AUTO—Use this option in the user interface to allow
an automatic choice of constraint type based upon the references.

• AssemblyReference—A reference in the assembly.
• AssemblyDatumSide—Orientation of the assembly. This can have the

following values:

○ Yellow—The primary side of the datum plane which is the default
direction of the arrow.

280 PTC Creo® Parametric 3.0 J-Link User’s Guide

○ Red—The secondary side of the datum plane which is the direction
opposite to that of the arrow.

• ComponentReference—A reference on the placed component.
• ComponentDatumSide—Orientation of the assembly component. This can

have the following values:

○ Yellow—The primary side of the datum plane which is the default
direction of the arrow.

○ Red—The secondary side of the datum plane which is the direction
opposite to that of the arrow.

• Offset—The mate or align offset value from the reference.
• Attributes—Constraint attributes for a given constraint
• UserDefinedData—A string that specifies user data for the given constraint.
Use the Get methods to retrieve the values of the input parameters specified
above and the Set methods to modify the values of these input parameters.

Redefining and Rerouting Assembly
Components
These functions enable you to reroute previously assembled components, just as in
an interactive PTC Creo Parametric session.
Methods Introduced:

• pfcComponentFeat.ComponentFeat.RedefineThroughUI
• pfcComponentFeat.ComponentFeat.MoveThroughUI
The method
pfcComponentFeat.ComponentFeat.RedefineThroughUI must be
used in interactive J-Link applications. This method displays the PTC Creo
Parametric Constraint dialog box. This enables the end user to redefine the
constraints interactively. The control returns to J-Link application when the user
selects OK or Cancel and the dialog box is closed.
The method pfcComponentFeat.ComponentFeat.MoveThroughUI
invokes a dialog box that prompts the user to interactively reposition the
components. This interface enables the user to specify the translation and rotation
values. The control returns to J-Link application when the user selects OK or
Cancel and the dialog box is closed.

Assemblies and Components 281

Example: Component Constraints
The sample code in the file pfcComponentFeatExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples displays
each constraint of the component visually on the screen, and includes a text
explanation for each constraint.

Example: Assembling Components
The sample code in the file pfcComponentFeatExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples
demonstrates how to assemble a component into an assembly, and how to
constrain the component by aligning datum planes. If the complete set of datum
planes is not found, the function will show the component constraint dialog to the
user to allow them to adjust the placement.

Exploded Assemblies
These methods enable you to determine and change the explode status of the
assembly object.
Methods Introduced:

• pfcAssembly.Assembly.GetIsExploded
• pfcAssembly.Assembly.Explode
• pfcAssembly.Assembly.UnExplode
• pfcAssembly.Assembly.GetActiveExplodedState
• pfcAssembly.Assembly.GetDefaultExplodedState
• pfcAssembly.ExplodedState.Activate
The methods pfcAssembly.Assembly.Explode and
pfcAssembly.Assembly.UnExplode enable you to determine and change
the explode status of the assembly object.
The method pfcAssembly.Assembly.GetIsExploded reports whether
the specified assembly is currently exploded. Use this method in the assembly
mode only. The exploded status of an assembly depends on the mode. If an
assembly is opened in the drawing mode, the state of the assembly in the drawing
view is displayed. The drawing view does not represent the actual exploded state
of the assembly.
The method pfcAssembly.Assembly.GetActiveExplodedState
returns the current active explode state.
The method pfcAssembly.Assembly.GetDefaultExplodedState
returns the default explode state.

282 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcAssembly.ExplodedState.Activate activates the
specified explode state representation.

Skeleton Models
Skeleton models are a 3-dimensional layout of the assembly. These models are
holders or distributors of critical design information, and can represent space
requirements, important mounting locations, and motion.
Methods Introduced:

• pfcAssembly.Assembly.AssembleSkeleton
• pfcAssembly.Assembly.AssembleSkeletonByCopy
• pfcAssembly.Assembly.GetSkeleton
• pfcAssembly.Assembly.DeleteSkeleton
• pfcSolid.Solid.GetIsSkeleton
The method pfcAssembly.Assembly.AssembleSkeleton adds an
existing skeleton model to the specified assembly.
The method pfcAssembly.Assembly.GetSkeleton returns the skeleton
model of the specified assembly.
The method pfcAssembly.Assembly.DeleteSkeleton deletes a
skeleton model component from the specified assembly.
The method pfcAssembly.Assembly.AssembleSkeletonByCopy adds
a specified skeleton model to the assembly. The input parameters for this method
are:

• SkeletonToCopy—Specify the skeleton model to be copied into the assembly
• NewSkeletonName—Specify a name for the copied skeleton model
The method pfcSolid.Solid.GetIsSkeleton determines if the specified
part model is a skeleton model or a concept model. It returns a true if the model is
a skeleton else it returns a false.

Assemblies and Components 283

21
Family Tables

Working with Family Tables .. 286
Creating Family Table Instances... 288
Creating Family Table Columns .. 289

This chapter describes how to use J-Link classes and methods to access and
manipulate family table information.

285

Working with Family Tables
J-Link provides several methods for accessing family table information. Because
every model inherits from the pfcFamily.FamilyMember, every model can
have a family table associated with it.

Accessing Instances
Methods Introduced:

• pfcFamily.FamilyMember.GetParent
• pfcFamily.FamilyMember.GetImmediateGenericInfo
• pfcFamily.FamilyMember.GetTopGenericInfo
• pfcFamily.FamilyTableRow.CreateInstance
• pfcFamily.FamilyMember.ListRows
• pfcFamily.FamilyMember.GetRow
• pfcFamily.FamilyMember.RemoveRow
• pfcFamily.FamilyTableRow.GetInstanceName
• pfcFamily.FamilyTableRow.GetIsLocked
• pfcFamily.FamilyTableRow.SetIsLocked
To get the generic model for an instance, call the method
pfcFamily.FamilyMember.GetParent.
From Pro/ENGINEERWildfire 4.0 onwards, the behavior of the method
pfcFamily.FamilyMember.GetParent has changed as a result of
performance improvement in family table retrieval mechanism. When you now
call the method pfcFamily.FamilyMember.GetParent, it throws an
exception pfcExceptions.XToolkitCantOpen, if the immediate generic
of a model instance in a nested family table is currently not in session. Handle this
exception and use the method
pfcFamily.FamilyMember.GetImmediateGenericInfo to get the
model descriptor of the immediate generic model. This information can be used to
retrieve the immediate generic model.
If you wish to switch off the above behavior and continue to run legacy
applications in the pre-Wildfire 4.0 mode, set the configuration option
retrieve_instance_dependencies to instance_and_generic_
deps.
To get the model descriptor of the top generic model, call the method
pfcFamily.FamilyMember.GetTopGenericInfo.
Similarly, the method pfcFamily.FamilyTableRow.CreateInstance
returns an instance model created from the information stored in the
FamilyTableRow object.

286 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcFamily.FamilyMember.ListRows returns a sequence of
all rows in the family table, whereas pfcFamily.FamilyMember.GetRow
gets the row object with the name you specify.
Use the method pfcFamily.FamilyMember.RemoveRow to permanently
delete the row from the family table.
The method pfcFamily.FamilyTableRow.GetInstanceName returns
the name that corresponds to the invoking row object.
To control whether the instance can be changed or removed, call the methods
pfcFamily.FamilyTableRow.GetIsLocked and
pfcFamily.FamilyTableRow.SetIsLocked.

Accessing Columns
Methods Introduced:

• pfcFamily.FamilyMember.ListColumns
• pfcFamily.FamilyMember.GetColumn
• pfcFamily.FamilyMember.RemoveColumn
• pfcFamily.FamilyTableColumn.GetSymbol
• pfcFamily.FamilyTableColumn.GetType
• pfcFamily.FamColModelItem.GetRefItem
• pfcFamily.FamColParam.GetRefParam
The method pfcFamily.FamilyMember.ListColumns returns a sequence
of all columns in the family table.
The method pfcFamily.FamilyMember.GetColumn returns a family table
column, given its symbolic name.
To permanently delete the column from the family table and all changed values in
all instances, call the method pfcFamily.FamilyMember.RemoveColumn.
The method pfcFamily.FamilyTableColumn.GetSymbol returns the
string symbol at the top of the column, such as D4 or F5.
The method pfcFamily.FamilyTableColumn.GetType returns an
enumerated value indicating the type of parameter governed by the column in the
family table.
The method pfcFamily.FamColModelItem.GetRefItem returns the
ModelItem (Feature or Dimension) controlled by the column, whereas
pfcFamily.FamColParam.GetRefParam returns the Parameter
controlled by the column.

Family Tables 287

Accessing Cell Information
Methods Introduced:

• pfcFamily.FamilyMember.GetCell
• pfcFamily.FamilyMember.GetCellIsDefault
• pfcFamily.FamilyMember.SetCell
• pfcModelItem.ParamValue.GetStringValue
• pfcModelItem.ParamValue.GetIntValue
• pfcModelItem.ParamValue.GetDoubleValue
• pfcModelItem.ParamValue.GetBoolValue
The method pfcFamily.FamilyMember.GetCell returns a string
ParamValue that corresponds to the cell at the intersection of the row and
column arguments. Use the method
pfcFamily.FamilyMember.GetCellIsDefault to check if the value of
the specified cell is the default value, which is the value of the specified cell in the
generic model.
The method pfcFamily.FamilyMember.SetCell assigns a value to a
column in a particular family table instance.
The pfcModelItem.ParamValue.GetStringValue,
pfcModelItem.ParamValue.GetIntValue,
pfcModelItem.ParamValue.GetDoubleValue, and
pfcModelItem.ParamValue.GetBoolValue methods are used to get the
different types of parameter values.

Creating Family Table Instances
Methods Introduced:

• pfcFamily.FamilyMember.AddRow
• pfcModelItem.pfcModelItem.CreateStringParamValue
• pfcModelItem.pfcModelItem.CreateIntParamValue
• pfcModelItem.pfcModelItem.CreateDoubleParamValue
• pfcModelItem.pfcModelItem.CreateBoolParamValue
Use the method pfcFamily.FamilyMember.AddRow to create a new
instance with the specified name, and, optionally, the specified values for each
column. If you do not pass in a set of values, the value * will be assigned to each
column. This value indicates that the instance uses the generic value.

288 PTC Creo® Parametric 3.0 J-Link User’s Guide

Creating Family Table Columns
Methods Introduced:

• pfcFamily.FamilyMember.CreateDimensionColumn
• pfcFamily.FamilyMember.CreateParamColumn
• pfcFamily.FamilyMember.CreateFeatureColumn
• pfcFamily.FamilyMember.CreateComponentColumn
• pfcFamily.FamilyMember.CreateCompModelColumn
• pfcFamily.FamilyMember.CreateGroupColumn
• pfcFamily.FamilyMember.CreateMergePartColumn
• pfcFamily.FamilyMember.CreateColumn
• pfcFamily.FamilyMember.AddColumn
• pfcModelItem.pfcModelItem.CreateStringParamValue
• pfcModelItem.ParamValues.create
The above methods initialize a column based on the input argument. These
methods assign the proper symbol to the column header.
The method pfcFamily.FamilyMember.CreateColumn creates a new
column given a properly defined symbol and column type. The results of this call
should be passed to the method pfcFamily.FamilyMember.AddColumn to
add the column to the model's family table.
The method pfcFamily.FamilyMember.AddColumn adds the column to
the family table. You can specify the values; if you pass nothing for the values, the
method assigns the value * to each instance to accept the column’s default value.

Example Code: Adding Dimensions to a Family
Table
The sample code in the file pfcFamilyMemberExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples shows a
utility method that adds all the dimensions to a family table. The program lists the
dependencies of the assembly and loops through each dependency, assigning the
model to a new FamColDimension column object. All the dimensions,
parameters, features, and components could be added to the family table using a
similar method.

Family Tables 289

22
Action Listeners

J-Link Action Listeners... 292
Creating an ActionListener Implementation ... 292
Action Sources.. 293
Types of Action Listeners ... 294
Cancelling an ActionListener Operation... 299

This chapter describes the J-Link methods that enable you to use action listeners.

291

J-Link Action Listeners
An ActionListener in Java is a class that is assigned to respond to certain
events. In J-Link, you can assign action listeners to respond to events involving
the following tasks:

• Changing windows
• Changing working directories
• Model operations
• Regenerating
• Creating, deleting, and redefining features
• Checking for regeneration failures
All action listeners in J-Link are defined by these classes:

• Interface—Named <Object>ActionListener. This interface defines the
methods that can respond to various events.

• Default class—Named Default<Object>ActionListener. This class has every
available method overridden by an empty implementation. You create your
own action listeners by extending the default class and overriding the methods
for events that interest you.

Note
When notifications are set in J-Link applications, every time an event is
triggered, notification messages are added to the trail files. From Creo
Parametric 2.0 M210 onward, a new environment variable PROTK_LOG_
DISABLE enables you to disable this behavior. When set to true, the
notifications messages are not added to the trail files.

Creating an ActionListener
Implementation
You can create a proper ActionListener class using either of the following
methods:
Define a separate class within the java file.
Example:

public class MyApp {
session.AddActionListener (new SolidAL1());

}

class SolidAL1 extends DefaultSolidActionListener {

292 PTC Creo® Parametric 3.0 J-Link User’s Guide

// Include overridden methods here
}

To use your action listener in different Java applications, define it in a separate
file.
Example:

MyApp.java:
import solidAL1;

public class MyApp {
session.AddActionListener (new SolidAL1());

}

SolidAL1.java:
public class SolidAL1 extends DefaultSolidActionListener {

// Include overridden methods here.
}

Action Sources
Methods introduced:

• pfcBase.ActionSource.AddActionListener
• pfcBase.ActionSource.RemoveActionListener
Many J-Link classes inherit the ActionSource interface, but only the
following classes currently make calls to the methods of registered
ActionListeners:

• pfcSession.Session

○ Session Action Listener
○ Model Action Listener
○ Solid Action Listener
○ Model Event Action Listener
○ Feature Action Listener

• pfcCommand.UICommand

○ UI Action Listener
• pfcModel.Model (and it’s subclasses)

○ Model Action Listener
○ Parameter Action Listener

• pfcSolid.Solid (and it’s subclasses)

○ Solid Action Listener

Action Listeners 293

○ Feature Action Listener
• pfcFeature.Feature (and it’s subclasses)

○ Feature Action Listener

Note
Assigning an action listener to a source not related to it will not cause an
error but the listener method will never be called.

Types of Action Listeners
The following sections describe the different kinds of action listeners: session, UI
command, solid, and feature.

Session Level Action Listeners
Methods introduced:

• pfcSession.SessionActionListener.OnAfterDirectoryChange
• pfcSession.SessionActionListener.OnAfterWindowChange
• pfcSession.SessionActionListener.OnAfterModelDisplay
• pfcSession.SessionActionListener.OnBeforeModelErase
• pfcSession.SessionActionListener.OnBeforeModelDelete
• pfcSession.SessionActionListener.OnBeforeModelRename
• pfcSession.SessionActionListener.OnBeforeModelSave
• pfcSession.SessionActionListener.OnBeforeModelPurge
• pfcSession.SessionActionListener.OnBeforeModelCopy
• pfcSession.SessionActionListener.OnAfterModelPurge
The
pfcSession.SessionActionListener.OnAfterDirectoryChange
method activates after the user changes the working directory. This method takes
the new directory path as an argument.
The pfcSession.SessionActionListener.OnAfterWindowChange
method activates when the user activates a window other than the current one.
Pass the new window to the method as an argument.
The pfcSession.SessionActionListener.OnAfterModelDisplay
method activates every time a model is displayed in a window.

294 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
Model display events happen when windows are moved, opened and closed,
repainted, or the model is regenerated. The event can occur more than once in
succession.

The methods
pfcSession.SessionActionListener.OnBeforeModelErase,
pfcSession.SessionActionListener.OnBeforeModelRename,
pfcSession.SessionActionListener.OnBeforeModelSave, and
pfcSession.SessionActionListener.OnBeforeModelCopy take
special arguments. They are designed to allow you to fill in the arguments and
pass this data back to PTC Creo Parametric. The model names placed in the
descriptors will be used by PTC Creo Parametric as the default names in the user
interface.

UI Command Action Listeners
Methods introduced:

• pfcSession.Session.UICreateCommand
• pfcCommand.UICommandActionListener.OnCommand
The pfcSession.Session.UICreateCommand method takes a
UICommandActionListener argument and returns a UICommand action
source with that action listener already registered. This UICommand object is
subsequently passed as an argument to the Session.AddUIButton method
that adds a command button to a PTC Creo Parametric menu. The
pfcCommand.UICommandActionListener.OnCommand method of the
registered IpfcUICommandActionListener is called whenever the
command button is clicked.

Model Level Action listeners
Methods introduced:

• pfcModel.ModelActionListener.OnAfterModelSave
• pfcModel.ModelEventActionListener.OnAfterModelCopy
• pfcModel.ModelEventActionListener.OnAfterModelRename
• pfcModel.ModelEventActionListener.OnAfterModelErase
• pfcModel.ModelEventActionListener.OnAfterModelDelete
• pfcModel.ModelActionListener.OnAfterModelRetrieve

Action Listeners 295

• pfcModel.ModelActionListener.OnBeforeModelDisplay
• pfcModel.ModelActionListener.OnAfterModelCreate
• pfcModel.ModelActionListener.OnAfterModelSaveAll
• pfcModel.ModelEventActionListener.OnAfterModelCopyAll
• pfcModel.ModelActionListener.OnAfterModelEraseAll
• pfcModel.ModelActionListener.OnAfterModelDeleteAll
• pfcModel.ModelActionListener.OnAfterModelRetrieveAll
Methods ending in All are called after any event of the specified type. The call is
made even if the user did not explicitly request that the action take place. Methods
that do not end in All are only called when the user specifically requests that the
event occurs.
The method pfcModel.ModelActionListener.OnAfterModelSave is
called after successfully saving a model.
The method
pfcModel.ModelEventActionListener.OnAfterModelCopy is
called after successfully copying a model.
The method
pfcModel.ModelEventActionListener.OnAfterModelRename is
called after successfully renaming a model.
The method
pfcModel.ModelEventActionListener.OnAfterModelErase is
called after successfully erasing a model.
The method
pfcModel.ModelEventActionListener.OnAfterModelDelete is
called after successfully deleting a model.
The method
pfcModel.ModelActionListener.OnAfterModelRetrieve is called
after successfully retrieving a model.
The method
pfcModel.ModelActionListener.OnBeforeModelDisplay is called
before displaying a model.

Note
The method
pfcModel.ModelActionListener.OnBeforeModelDisplay is
not supported in asynchronous mode.

296 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method
pfcModel.ModelActionListener.OnAfterModelCreate is called
after the successful creation of a model.

Solid Level Action Listeners
Methods introduced:

• pfcSolid.SolidActionListener.OnBeforeRegen
• pfcSolid.SolidActionListener.OnAfterRegen
• pfcSolid.SolidActionListener.OnBeforeUnitConvert
• pfcSolid.SolidActionListener.OnAfterUnitConvert
• pfcSolid.SolidActionListener.OnBeforeFeatureCreate
• pfcSolid.SolidActionListener.OnAfterFeatureCreate
• pfcSolid.SolidActionListener.OnAfterFeatureDelete
The pfcSolid.SolidActionListener.OnBeforeRegen and
pfcSolid.SolidActionListener.OnAfterRegen methods occur
when the user regenerates a solid object within the ActionSource to which the
listener is assigned. These methods take the first feature to be regenerated and a
handle to the Solid object as arguments. In addition, the method
pfcSolid.SolidActionListener.OnAfterRegenerate includes a
Boolean argument that indicates whether regeneration was successful.

Note
• It is not recommended to modify geometry or dimensions using the

pfcSolid.SolidActionListener.OnBeforeRegenerate method
call.

• A regeneration that did not take place because nothing was modified is
identified as a regeneration failure.

The pfcSolid.SolidActionListener.OnBeforeUnitConvert and
pfcSolid.SolidActionListener.OnAfterUnitConvert methods
activate when a user modifies the unit scheme (by selecting the PTC Creo
Parametric command Set Up, Units). The methods receive the Solid object to be
converted and a Boolean flag that identifies whether the conversion changed the
dimension values to keep the object the same size.

Action Listeners 297

Note
SolidActionListeners can be registered with the session object so that
its methods are called when these events occur for any solid model that is in
session.

The pfcSolid.SolidActionListener.OnBeforeFeatureCreate
method activates when the user starts to create a feature that requires the Feature
Creation dialog box. Because this event occurs only after the dialog box is
displayed, it will not occur at all for datums and other features that do not use this
dialog box. This method takes two arguments: the solid model that will contain
the feature and the ModelItem identifier.
The pfcSolid.SolidActionListener.OnAfterFeatureCreate
method activates after any feature, including datums, has been created. This
method takes the new Feature object as an argument.
The pfcSolid.SolidActionListener.OnAfterFeatureDelete
method activates after any feature has been deleted. The method receives the solid
that contained the feature and the (now defunct) ModelItem identifier.

Feature Level Action Listeners
Methods introduced:

• pfcFeature.FeatureActionListener.OnBeforeDelete
• pfcFeature.FeatureActionListener.OnBeforeSuppress
• pfcFeature.FeatureActionListener.OnAfterSuppress
• pfcFeature.FeatureActionListener.OnBeforeRegen
• pfcFeature.FeatureActionListener.OnAfterRegen
• pfcFeature.FeatureActionListener.OnRegenFailure
• pfcFeature.FeatureActionListener.OnBeforeRedefine
• pfcFeature.FeatureActionListener.OnAfterCopy
• pfcFeature.FeatureActionListener.OnBeforeParameterDelete
Each method in FeatureActionListener takes as an argument the feature
that triggered the event.
FeatureActionListeners can be registered with the object so that the
action listener’s methods are called whenever these events occur for any feature
that is in session or with a solid model to react to changes only in that model.

298 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method
pfcFeature.FeatureActionListener.OnBeforeDelete is called
before a feature is deleted.
The method
pfcFeature.FeatureActionListener.OnBeforeSuppress is called
before a feature is suppressed.
The method
pfcFeature.FeatureActionListener.OnAfterSuppress is called
after a successful feature suppression.
The method pfcFeature.FeatureActionListener.OnBeforeRegen
is called before a feature is regenerated.
The method pfcFeature.FeatureActionListener.OnAfterRegen is
called after a successful feature regeneration.
The method
pfcFeature.FeatureActionListener.OnRegenFailure is called
when a feature fails regeneration.
The method
pfcFeature.FeatureActionListener.OnBeforeRedefine is called
before a feature is redefined.
The method pfcFeature.FeatureActionListener.OnAfterCopy is
called after a feature has been successfully copied.
The method
pfcFeature.FeatureActionListener.OnBeforeParameterDe
lete is called before a feature parameter is deleted.

Cancelling an ActionListener Operation
J-Link allows you to cancel certain notification events, registered by the action
listeners.
Methods Introduced:

• pfcExceptions.XCancelProEAction.Throw
The static method pfcExceptions.XCancelProEAction.Throw must be
called from the body of an action listener to cancel the impending PTC Creo
Parametric operation. This method will throw a J-Link exception signalling to
PTC Creo Parametric to cancel the listener event.
Note: Your application should not catch the J-Link exception, or should rethrow it
if caught, so that PTC Creo Parametric is forced to handle it.
The following events can be cancelled using this technique:

Action Listeners 299

• pfcSession.SessionActionListener.OnBeforeModelErase

• pfcSession.SessionActionListener.OnBeforeModelDelete

• pfcSession.SessionActionListener.OnBeforeModelRename

• pfcSession.SessionActionListener.OnBeforeModelSave

• pfcSession.SessionActionListener.OnBeforeModelPurge

• pfcSession.SessionActionListener.OnBeforeModelCopy

• pfcModel.ModelActionListener.OnBeforeParameterCreate

• pfcModel.ModelActionListener.OnBeforeParameterDelete

• pfcModel.ModelActionListener.OnBeforeParameterModify

• pfcFeature.FeatureActionListener.OnBeforeDelete

• pfcFeature.FeatureActionListener.OnBeforeSuppress

• pfcFeature.FeatureActionListener.OnBeforeParameterDe
lete

• pfcFeature.FeatureActionListener.OnBeforeParameter
Create

• pfcFeature.FeatureActionListener.OnBeforeRedefine

300 PTC Creo® Parametric 3.0 J-Link User’s Guide

23
Interface

Exporting Files and 2D Models ... 302
Exporting to PDF and U3D... 310
Exporting 3D Geometry ... 317
Shrinkwrap Export ... 321
Importing Files .. 328
Importing 3D Geometry.. 330
Plotting Files ... 333
Printing Files ... 334
Solid Operations.. 342
Window Operations ... 343

This chapter describes various methods of importing and exporting files in J-Link.

301

Exporting Files and 2D Models
Method Introduced:

• pfcModel.Model.Export
The method pfcModel.Model.Export exports model data to a file. The
exported files are placed in the current PTC Creo Parametric working directory.
The input parameters are:

• filename—Output file name including extensions
• exportdata—The pfcModel.ExportInstructions object that controls

the export operation. The type of data that is exported is given by the
pfcModel.ExportType object.

There are four general categories of files to which you can export models:

• File types whose instructions inherit from
pfcModel.GeomExportInstructions.

These instructions export files that contain precise geometric information used
by other CAD systems.

• File types whose instructions inherit from
pfcModel.CoordSysExportInstructions.

These instructions export files that contain coordinate information describing
faceted, solid models (without datums and surfaces).

• File types whose instructions inherit from
pfcModel.FeatIdExportInstructions.

These instructions export information about a specific feature.
• General file types that inherit only from

pfcModel.ExportInstructions.

These instructions provide conversions to file types such as BOM (bill of
materials).

For information on exporting to a specific format, see the J-Link APIWizard and
online help for the PTC Creo Parametric interface.

Export Instructions
Methods Introduced:

• pfcModel.pfcModel.RelationExportInstructions_Create
• pfcModel.pfcModel.ModelInfoExportInstructions_Create
• pfcModel.pfcModel.ProgramExportInstructions_Create
• pfcModel.pfcModel.IGESFileExportInstructions_Create

302 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcModel.pfcModel.DXFExportInstructions_Create
• pfcModel.pfcModel.RenderExportInstructions_Create
• pfcModel.pfcModel.STLASCIIExportInstructions_Create
• pfcModel.pfcModel.STLBinaryExportInstructions_Create
• pfcModel.pfcModel.BOMExportInstructions_Create
• pfcModel.pfcModel.DWGSetupExportInstructions_Create
• pfcModel.pfcModel.FeatInfoExportInstructions_Create
• pfcModel.pfcModel.MFGFeatCLExportInstructions_Create
• pfcModel.pfcModel.MFGOperCLExportInstructions_Create
• pfcModel.pfcModel.MaterialExportInstructions_Create
• pfcModel.pfcModel.CGMFILEExportInstructions_Create
• pfcModel.pfcModel.InventorExportInstructions_Create
• pfcModel.pfcModel.FIATExportInstructions_Create
• pfcModel.pfcModel.ConnectorParamExportInstructions_Create
• pfcModel.pfcModel.CableParamsFileInstructions_Create
• pfcModel.pfcModel.CATIAFacetsExportInstructions_Create
• pfcModel.pfcModel.VRMLModelExportInstructions_Create
• pfcModel.pfcModel.STEP2DExportInstructions_Create
• pfcModel.pfcModel.MedusaExportInstructions_Create
• pfcExport.pfcExport.CADDSExportInstructions_Create
• pfcModel.pfcModel.SliceExportData_Create
• pfcExport.pfcExport.NEUTRALFileExportInstructions_Create
• pfcExport.pfcExport.ProductViewExportInstructions_Create
• pfcSession.BaseSession.ExportDirectVRML

Export Instructions Table
Used to Export

RelationExportInstructions A list of the relations and parameters in a part or
assembly

ModelInfoExportInstructions Information about a model, including units
information, features, and children

ProgramExportInstructions A program file for a part or assembly that can be
edited to change the model

IGESExportInstructions A drawing in IGES format
DXFExportInstructions A drawing in DXF format
RenderExportInstructions A part or assembly in RENDER format

Interface 303

Used to Export
STLASCIIExportInstructions A part or assembly to an ASCII STL file
STLBinaryExportInstructions A part or assembly in a binary STL file
BOMExportInstructions A BOM for an assembly
DWGSetupExportInstructions A drawing setup file
FeatInfoExportInstructions Information about one feature in a part or assembly
MfgFeatCLExportInstructions A cutter location (CL) file for one NC sequence in a

manufacturing assembly
MfgOperClExportInstructions A cutter location (CL) file for all the NC sequences

in a manufacturing assembly
MaterialExportInstructions A material from a part
CGMFILEExportInstructions A drawing in CGM format
InventorExportInstructions A part or assembly in Inventor format
FIATExportInstructions A part or assembly in FIAT format
ConnectorParamExportInstructions The parameters of a connector to a text file
CableParamsFileInstructions Cable parameters from an assembly
CATIAFacetsExportInstructions A part or assembly in CATIA format (as a faceted

model)
VRMLModelExportInstructions A part or assembly in VRML format
STEP2DExportInstructions A two-dimensional STEP format file
MedusaExportInstructions A drawing in MEDUSA file
CADDSExportInstructions A CADDS5 solid model
NEUTRALFileExportInstructions A PTC Creo Parametric part to neutral format
ProductViewExportInstructions A part, assembly, or drawing in PTC Creo View

format
Export.SliceExportData A slice export format

Note
The New Instruction Classes replace the following Deprecated Classes:

Deprecated Classes New Instruction Classes
STEPExportInstructions STEP3DExportInstructions

VDAExportInstructions VDA3DExportInstructions

IGES3DExportInstructions IGES3DNewExportInstructions

Exporting Drawing Sheets
The options required to export multiple sheets of a drawing are given by the
pfcModel.Export2DOption object.
Methods Introduced:

304 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcModel.pfcModel.Export2DOption_Create
• pfcModel.Export2DOption.SetExportSheetOption
• pfcModel.Export2DOption.SetModelSpaceSheet
• pfcModel.Export2DOption.SetSheets
The method pfcModel.pfcModel.Export2DOptions_Create creates a
new instance of the pfcModel.Export2DOption object. This object contains
the following options:

• ExportSheetOption—Specifies the option for exporting multiple drawing
sheets. Use the method
pfcModel.Export2DOption.SetExportSheetOption to set the
option for exporting multiple drawing sheets. The options are given by the
pfcModel.Export2DSheetOption class and can be of the following
types:

○ EXPORT_CURRENT_TO_MODEL_SPACE—Exports only the drawing’s
current sheet as model space to a single file. This is the default type.

○ EXPORT_CURRENT_TO_PAPER_SPACE—Exports only the drawing’s
current sheet as paper space to a single file. This type is the same as
EXPORT_CURRENT_TO_MODEL_SPACE for formats that do not support
the concept of model space and paper space.

○ EXPORT_ALL—Exports all the sheets in a drawing to a single file as
paper space, if applicable for the format type.

○ EXPORT_SELECTED—Exports selected sheets in a drawing as paper
space and one sheet as model space.

• ModelSpaceSheet—Specifies the sheet number that needs be exported as
model space. This option is applicable only if the export formats support the
concept of model space and paper space and if ExportSheetOption is set to
EXPORT_SELECTED. Use the method
pfcModel.Export2DOption.SetModelSpaceSheet to set this
option.

• Sheets—Specifies the sheet numbers that need to be exported as paper space.
This option is applicable only if ExportSheetOption is set to EXPORT_
SELECTED. Use the method
pfcModel.Export2DOption.SetSheets to set this option.

Exporting to Faceted Formats
The methods described in this section support the export of PTC Creo Parametric
drawings and solid models to faceted formats like CATIA CGR.
Methods Introduced:

Interface 305

• pfcExport.TriangulationInstructions.GetAngleControl
• pfcExport.TriangulationInstructions.SetAngleControl
• pfcExport.TriangulationInstructions.GetChordHeight
• pfcExport.TriangulationInstructions.SetChordHeight
• pfcExport.TriangulationInstructions.GetStepSize
• pfcExport.TriangulationInstructions.SetStepSize
• pfcExport.TriangulationInstructions.GetFacetControlOptions
• pfcExport.TriangulationInstructions.SetFacetControlOptions
The methods
pfcExport.TriangulationInstructions.GetAngleControl and
pfcExport.TriangulationInstructions.SetAngleControl gets
and sets the angle control for the exported facet drawings and models. You can set
the value between 0.0 to 1.0.
Use the methods
pfcExport.TriangulationInstructions.GetChordHeight and
pfcExport.TriangulationInstructions.SetChordHeight to get
and set the chord height for the exported facet drawings and models.
The methods
pfcExport.TriangulationInstructions.GetStepSize and
pfcExport.TriangulationInstructions.SetStepSize allow you
to control the step size for the exported files. The default value is 0.0.

Note
You must pass the value of Step Size value as NULL, if you specify the
Quality value.

The methods
pfcModel.CoordSysExportInstructions.GetStepSize and
pfcModel.CoordSysExportInstructions.SetStepSize control the
step size for the exported files. The default value is 0.0.

Note
You must pass the value of Step Size value as NULL, if you specify the
Quality value.

The methods
pfcExport.TriangulationInstructions.GetFacetControlOp
tions and

306 PTC Creo® Parametric 3.0 J-Link User’s Guide

pfcExport.TriangulationInstructions.SetFacetControlOp
tions control the facet export options using bit flags. You can set the bit flags
using the pfcModel.FacetControlFlag object. It has the following values:
• FACET_STEP_SIZE_ADJUST—Adjusts the step size according to the

component size.
• FACET_CHORD_HEIGHT_ADJUST—Adjusts the chord height according to

the component size.
• FACET_USE_CONFIG—If this flag is set, values of the flags FACET_

STEP_SIZE_OFF, FACET_STEP_SIZE_ADJUST, and FACET_CHORD_
HEIGHT_ADJUST are ignored and the configuration settings from the PTC
Creo Parametric user interface are used during the export operation.

• FACET_CHORD_HEIGHT_DEFAULT—Uses the default value set in the PTC
Creo Parametric user interface for the chord height.

• FACET_ANGLE_CONTROL_DEFAULT—Uses the default value set in the
PTC Creo Parametric user interface for the angle control.

• FACET_STEP_SIZE_DEFAULT—Uses the default value set in the PTC
Creo Parametric user interface for the step size.

• FACET_STEP_SIZE_OFF—Switches off the step size control.
• FACET_FORCE_INTO_RANGE—Forces the out-of-range parameters into

range. If any of the FACET_*_DEFAULT option is set, then the option
pfcFACET_FORCE_INTO_RANGE is not applied on that parameter.

• FACET_STEP_SIZE_FACET_INCLUDE_QUILTS—Includes quilts in the
export of PTC Creo Parametric model to the specified format.

• EXPORT_INCLUDE_ANNOTATIONS—Includes annotations in the export of
PTC Creo Parametric model to the specified format.

Note
To include annotations, during the export of PTC Creo Parametric model,
you must call the method pfcModel.Model.Display before calling
pfcModel.Model.Export.

Exporting Using Coordinate System
The methods described in this section support the export of files with information
about the faceted solid models (without datums and surfaces). The files are
exported in reference to the coordinate-system feature in the model being
exported.
Methods Introduced:

Interface 307

• pfcModel.CoordSysExportInstructions.GetCsysName
• pfcModel.CoordSysExportInstructions.SetCsysName
• pfcModel.CoordSysExportInstructions.GetQuality
• pfcModel.CoordSysExportInstructions.SetQuality
• pfcModel.CoordSysExportInstructions.GetMaxChordHeight
• pfcModel.CoordSysExportInstructions.SetMaxChordHeight
• pfcModel.CoordSysExportInstructions.GetAngleControl
• pfcModel.CoordSysExportInstructions.SetAngleControl
• pfcModel.CoordSysExportInstructions.GetSliceExportData
• pfcModel.CoordSysExportInstructions.SetSliceExportData
• pfcModel.CoordSysExportInstructions.GetStepSize
• pfcModel.CoordSysExportInstructions.SetStepSize
• pfcModel.CoordSysExportInstructions.GetFacetControlOptions
• pfcModel.CoordSysExportInstructions.SetFacetControlOptions
The method
pfcModel.CoordSysExportInstructions.GetCsysName returns the
name of the the name of a coordinate system feature in the model being exported.
It is recommended to use the coordinate system that places the part or assembly in
its upper-right quadrant, so that all position and distance values of the exported
assembly or part are positive. The method
pfcModel.CoordSysExportInstructions.SetCsysName allows you
to set the coordinate system feature name.
The methods pfcModel.CoordSysExportInstructions.GetQuality
and pfcModel.CoordSysExportInstructions.SetQuality can be
used instead of
pfcModel.CoordSysExportInstructions.GetMaxChordHeight
and
pfcModel.CoordSysExportInstructions.GetMaxChordHeight
and pfcModel.CoordSysExportInstructions.GetAngleControl
and pfcModel.CoordSysExportInstructions.SetAngleControl.

308 PTC Creo® Parametric 3.0 J-Link User’s Guide

You can set the value between 1 and 10. The higher the value you pass, the lower
is the Maximum Chord Height setting and higher is the Angle Control setting the
method uses. The default Quality value is 1.0.

Note
You must pass the value of Quality as NULL, if you use Maximum Chord
Height and Angle Control values. If Quality, Maximum Chord Height, and
Angle Control are all NULL, then the Quality setting of 3 is used.

Use the methods
pfcModel.CoordSysExportInstructions.GetMaxChordHeight
and
pfcModel.CoordSysExportInstructions.SetMaxChordHeight to
work with the maximum chord height for the exported files. The default value is
0.1.

Note
You must pass the value of Maximum Chord Height as NULL, if you specify
the Quality value.

The methods
pfcModel.CoordSysExportInstructions.GetAngleControl and
pfcModel.CoordSysExportInstructions.SetAngleControl allow
you to work with the angle control setting for the exported files. The default value
is 0.1.

Note
You must pass the value of Angle Control value as NULL, if you specify the
Quality value.

The methods
pfcModel.CoordSysExportInstructions.GetSliceExportData
and
pfcModel.CoordSysExportInstructions.SetSliceExportData
get and set the pfcModel.SliceExportData data object that specifies data
for the slice export. The options in this object are described as follows:
• CompIds—Specifies the sequence of integers that identify the components that

form the path from the root assembly down to the component part or assembly
being referred to. Use the methods

Interface 309

pfcModel.SliceExportData.GetCompIds and
pfcModel.SliceExportData.SetCompIds to work with the
component IDs.

The methods
pfcModel.CoordSysExportInstructions.GetStepSize and
pfcModel.CoordSysExportInstructions.SetStepSize control the
step size for the exported files. The default value is 0.0.

Note
You must pass the value of Step Size value as NULL, if you specify the
Quality value.

The methods
pfcModel.CoordSysExportInstructions.GetFacetControlOp
tions and
pfcModel.CoordSysExportInstructions.SetFacetControlOp
tions control the facet export options using bit flags. You can set the bit flags
using the pfcModel.FacetControlFlag object. For more information on the
bit flag values, please refer to the section Exporting to Faceted Formats on page
305.

Exporting to PDF and U3D
The methods described in this section support the export of PTC Creo Parametric
drawings and solid models to Portable Document Format (PDF) and U3D
format. You can export a drawing or a 2D model as a 2D raster image embedded
in a PDF file. You can export PTC Creo Parametric solid models in the following
ways:

• As a U3D model embedded in a one-page PDF file
• As 2D raster images embedded in the pages of a PDF file representing saved

views
• As a standalone U3D file
While exporting multiple sheets of a PTC Creo Parametric drawing to a PDF file,
you can choose to export all sheets, the current sheet, or selected sheets.
These methods also allow you to insert a variety of non-geometric information to
improve document content, navigation, and search.
Methods Introduced:

• pfcExport.pfcExport.PDFExportInstructions_Create
• pfcExport.PDFExportInstructions.GetFilePath

310 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcExport.PDFExportInstructions.SetFilePath
• pfcExport.PDFExportInstructions.GetOptions
• pfcExport.PDFExportInstructions.SetOptions
• pfcExport.PDFExportInstructions.GetProfilePath
• pfcExport.PDFExportInstructions.SetProfilePath
• pfcExport.pfcExport.PDFOption_Create
• pfcExport.PDFOption.SetOptionType
• pfcExport.PDFOption.SetOptionValue
The method pfcExport.pfcExport.PDFExportInstructions_
Create creates a new instance of the
pfcExport.PDFExportInstructions data object that describes how to
export PTC Creo Parametric drawings or solid models to the PDF and U3D
formats. The options in this object are described as follows:

• FilePath—Specifies the name of the output file. Use the method
pfcExport.PDFExportInstructions.SetFilePath to set the
name of the output file.

• Options—Specifies a collection of PDF export options of the type
pfcExport.PDFOption. Create a new instance of this object using the
method pfcExport.pfcExport.PDFOption_Create. This object
contains the following attributes:

○ OptionType—Specifies the type of option in terms of the
pfcExport.PDFOptionType class. Set this option using the method
pfcExport.PDFOption.SetOptionType.

○ OptionValue—Specifies the value of the option in terms of the
pfcArgument.ArgValue object. Set this option using the method
pfcExport.PDFOption.SetOptionValue.

Use the method
pfcExport.PDFExportInstructions.SetOptions to set the
collection of PDF export options.

• ProfilePath—Specifies the export profile path. Use the method
pfcExport.PDFExportInstructions.SetProfilePath to set the
profile path. When you set the profile path, the PDF export options set in the
data object pfcExport.PDFExportInstructions data object are
ignored when the method pfcModel.Model.Export is called. You can
set the profile path as NULL.

Interface 311

Note
You can specify the profile path only for drawings.

The types of options (given by the EpfcExport.PDFOptionType class)
available for export to PDF and U3D formats are described as follows:

• PDFOPT_FONT_STROKE—Allows you to switch between using TrueType
fonts or “stroking” text in the resulting document. This option is given by the
pfcExport.PDFFontStrokeMode class and takes the following values:

○ PDF_USE_TRUE_TYPE_FONTS—Specifies TrueType fonts. This is
the default type.

○ PDF_STROKE_ALL_FONTS—Specifies the option to stroke all fonts.
• PDFOPT_COLOR_DEPTH—Allows you to choose between color, grayscale,

or monochrome output. This option is given by the
pfcExport.PDFColorDepth class and takes the following values:

○ PDF_CD_COLOR—Specifies color output. This is the default value.
○ PDF_CD_GRAY—Specifies grayscale output.
○ PDF_CD_MONO—Specifies monochrome output.

• PDFOPT_HIDDENLINE_MODE—Enables you to set the style for hidden
lines in the resulting PDF document. This option is given by the
pfcExport.PDFHiddenLineMode class and takes the following values:

○ PDF_HLM_SOLID—Specifies solid hidden lines.
○ PDF_HLM_DASHED—Specifies dashed hidden lines. This is the default

type.
• PDFOPT_SEARCHABLE_TEXT—If true, stroked text is searchable. The

default value is true.
• PDFOPT_RASTER_DPI—Allows you to set the resolution for the output of

any shaded views in DPI. It can take a value between 100 and 600. The
default value is 300.

• PDFOPT_LAUNCH_VIEWER—If true, launches the Adobe Acrobat Reader.
The default value is true.

• PDFOPT_LAYER_MODE—Enables you to set the availability of layers in the
document. It is given by the pfcExport.PDFLayerMode class and takes
the following values:

○ PDF_LAYERS_ALL—Exports the visible layers and entities. This is the
default.

312 PTC Creo® Parametric 3.0 J-Link User’s Guide

○ PDF_LAYERS_VISIBLE—Exports only visible layers in a drawing.
○ PDF_LAYERS_NONE—Exports only the visible entities in the drawing,

but not the layers on which they are placed.
• PDFOPT_PARAM_MODE—Enables you to set the availability of model

parameters as searchable metadata in the PDF document. It is given by the
pfcExport.PDFParameterMode class and takes the following values:

○ PDF_PARAMS_ALL—Exports the drawing and the model parameters to
PDF. This is the default.

○ PDF_PARAMS_DESIGNATED—Exports only the specified model
parameters in the PDF metadata.

○ PDF_PARAMS_NONE—Exports the drawing to PDF without the model
parameters.

• PDFOPT_HYPERLINKS—Sets hyperlinks to be exported as label text only or
sets the underlying hyperlink URLs as active. The default value is true,
specifying that the hyperlinks are active.

• PDFOPT_BOOKMARK_ZONES—If true, adds bookmarks to the PDF
showing zoomed in regions or zones in the drawing sheet. The zone on an A4-
size drawing sheet is ignored.

• PDFOPT_BOOKMARK_VIEWS—If true, adds bookmarks to the PDF
document showing zoomed in views on the drawing.

• PDFOPT_BOOKMARK_SHEETS—If true, adds bookmarks to the PDF
document showing each of the drawing sheets.

• PDFOPT_BOOKMARK_FLAG_NOTES—If true, adds bookmarks to the PDF
document showing the text of the flag note.

• PDFOPT_TITLE—Specifies a title for the PDF document.
• PDFOPT_AUTHOR—Specifies the name of the person generating the PDF

document.
• PDFOPT_SUBJECT—Specifies the subject of the PDF document.
• PDFOPT_KEYWORDS—Specifies relevant keywords in the PDF document.
• PDFOPT_PASSWORD_TO_OPEN—Sets a password to open the PDF

document. By default, this option is NULL, which means anyone can open the
PDF document without a password.

• PDFOPT_MASTER_PASSWORD—Sets a password to restrict or limit the
operations that the viewer can perform on the opened PDF document. By
default, this option is NULL, which means you can make any changes to the
PDF document regardless of the settings of the modification flags PDFOPT_
ALLOW_*.

Interface 313

• PDFOPT_RESTRICT_OPERATIONS—If true, enables you to restrict or limit
operations on the PDF document. By default, is is false.

• PDFOPT_ALLOW_MODE—Enables you to set the security settings for the
PDF document. This option must be set if PDFOPT_RESTRICT_
OPERATIONS is set to true. It is given by the
pfcExport.PDFRestrictOperationsMode class and takes the
following values:

○ PDF_RESTRICT_NONE—Specifies that the user can perform any of the
permitted viewer operations on the PDF document. This is the default
value.

○ PDF_RESTRICT_FORMS_SIGNING—Restricts the user from adding
digital signatures to the PDF document.

○ PDF_RESTRICT_INSERT_DELETE_ROTATE—Restricts the user from
inserting, deleting, or rotating the pages in the PDF document.

○ PDF_RESTRICT_COMMENT_FORM_SIGNING—Restricts the user from
adding or editing comments in the PDF document.

○ PDF_RESTRICT_EXTRACTING—Restricts the user from extracting
pages from the PDF document.

• PDFOPT_ALLOW_PRINTING—If true, allows you to print the PDF
document. By default, it is true.

• PDFOPT_ALLOW_PRINTING_MODE—Enables you to set the print
resolution. It is given by the pfcExport.PDFPrintingMode class and
takes the following values:

○ PDF_PRINTING_LOW_RES—Specifies low resolution for printing.
○ PDF_PRINTING_HIGH_RES—Specifies high resolution for printing.

This is the default value.
• PDFOPT_ALLOW_COPYING—If true, allows you to copy content from the

PDF document. By default, it is true.
• PDFOPT_ALLOW_ACCESSIBILITY—If true, enables visually-impaired

screen reader devices to extract data independent of the value given by the
pfcExport.PDFRestrictOperationsMode class. The default value is
true.

• PDFOPT_PENTABLE—If true, uses the standard PTC Creo Parametric
pentable to control the line weight, line style, and line color of the exported
geometry. The default value is false.

• PDFOPT_LINECAP—Enables you to control the treatment of the ends of the
geometry lines exported to PDF. It is given by the
pfcExport.PDFLinecap class and takes the following values:

314 PTC Creo® Parametric 3.0 J-Link User’s Guide

○ PDF_LINECAP_BUTT—Specifies the butt cap square end. This is the
default value.

○ PDF_LINECAP_ROUND—Specifies the round cap end.
○ PDF_LINECAP_PROJECTING_SQUARE—Specifies the projecting

square cap end.
• PDFOPT_LINEJOIN—Enables you to control the treatment of the joined

corners of connected lines exported to PDF. It is given by the
pfcExport.PDFLinejoin class and takes the following values:

○ PDF_LINEJOIN_MITER—Specifies the miter join. This is the default.
○ PDF_LINEJOIN_ROUND—Specifies the round join.
○ PDF_LINEJOIN_BEVEL—Specifies the bevel join.

• PDFOPT_SHEETS—Allows you to specify the sheets from a PTC Creo
Parametric drawing that are to be exported to PDF. It is given by the
pfcExport.PrintSheets enumerated class and takes the following
values:

○ PRINT_CURRENT_SHEET—Only the current sheet is exported to PDF
○ PRINT_ALL_SHEETS—All the sheets are exported to PDF. This is the

default value.
○ PRINT_SELECTED_SHEETS—Sheets of a specified range are exported

to PDF. If this value is assigned, then the value of the option PDFOPT_
SHEET_RANGE must also be known.

• PDFOPT_SHEET_RANGE—Specifies the range of sheets in a drawing that
are to be exported to PDF. If this option is set, then the option PDFOPT_
SHEETS must be set to the value PRINT_SELECTED_SHEETS.

• PDFOPT_EXPORT_MODE—Enables you to select the object to be exported to
PDF and the export format. It is given by the
pfcExport.PDFExportMode class and takes the following values:

○ PDF_2D_DRAWING—Only drawings are exported to PDF. This is the
default value.

○ PDF_3D_AS_NAMED_VIEWS—3D models are exported as 2D raster
images embedded in PDF files.

○ PDF_3D_AS_U3D_PDF—3D models are exported as U3D models
embedded in one-page PDF files.

○ PDF_3D_AS_U3D—A 3D model is exported as a U3D (.u3d) file. This
value ignores the options set for the pfcExport.PDFOptionType
class.

Interface 315

• PDFOPT_LIGHT_DEFAULT—Enables you to set the default lighting style
used while exporting 3D models in the U3D format to a one-page PDF file,
that is when the option PDFOPT_EXPORT_MODE is set to PDF_3D_AS_
U3D. The values for this option are given by the
pfcExport.PDFU3DLightingMode class.

• PDFOPT_RENDER_STYLE_DEFAULT—Enables you to set the default
rendering style used while exporting PTC Creo Parametric models in the U3D
format to a one-page PDF file, that is when the option PDFOPT_EXPORT_
MODE is set to PDF_3D_AS_U3D. The values for this option are given by the
pfcModel.PDFU3DRenderMode class.

• PDFOPT_SIZE—Allows you to specify the page size of the exported PDF
file. The values for this option are given by the
pfcExport.PlotPaperSize class. If the value is set to
VARIABLESIZEPLOT, you also need to set the options PDFOPT_HEIGHT
and PDFOPT_WIDTH.

• PDFOPT_HEIGHT—Enables you to set the height for a user-defined page size
of the exported PDF file. The default value is 0.0.

• PDFOPT_WIDTH—Enables you to set the width for a user-defined page size
of the exported PDF file. The default value is 0.0.

• PDFOPT_ORIENTATION—Enables you to specify the orientation of the
pages in the exported PDF file. It is given by the
pfcSheet.SheetOrientation class.

○ ORIENT_PORTRAIT—Exports the pages in portrait orientation. This is
the default value.

○ ORIENT_LANDSCAPE—Exports the pages in landscape orientation.
• PDFOPT_TOP_MARGIN—Allows you to specify the top margin of the view

port. The default value is 0.0.
• PDFOPT_LEFT_MARGIN—Allows you to specify the left margin of the view

port. The default value is 0.0.
• PDFOPT_BACKGROUND_COLOR_RED—Specifies the default red

background color that appears behind the U3D model. You can set any value
within the range of 0.0 to 1.0. The default value is 1.0.

• PDFOPT_BACKGROUND_COLOR_GREEN—Specifies the default green
background color that appears behind the U3D model. You can set any value
within the range of 0.0 to 1.0. The default value is 1.0.

• PDFOPT_BACKGROUND_COLOR_BLUE—Specifies the default blue
background color that appears behind the U3D model. You can set any value
within the range of 0.0 to 1.0. The default value is 1.0.

316 PTC Creo® Parametric 3.0 J-Link User’s Guide

• PDFOPT_ADD_VIEWS—If true, allows you to add view definitions to the
U3D model from a file. By default, it is true.

• PDFOPT_VIEW_TO_EXPORT—Specifies the view or views to be exported to
the PDF file. It is given by the pfcExport.PDFSelectedViewMode
class and takes the following values:

○ PDF_VIEW_SELECT_CURRENT—Exports the current graphical area to a
one-page PDF file.

○ PDF_VIEW_SELECT_ALL—Exports all the views to a multi-page PDF
file. Each page contains one view with the view name displayed at the
bottom center of the view port.

○ PDF_VIEW_SELECT_BY_NAME—Exports the selected view to a one-
page PDF file with the view name printed at the bottom center of the view
port. If this value is assigned, then the option PDFOPT_SELECTED_
VIEW must also be set.

• PDFOPT_SELECTED_VIEW—Sets the option PDFOPT_VIEW_TO_
EXPORT to the value PDF_VIEW_SELECT_BY_NAME, if the corresponding
view is successfully found.

• PDFOPT_PDF_SAVE—Specifies the PDF save options. It is given by the
pfcExport.PDFSaveMode class and takes the following values:

○ PDF_ARCHIVE_1—Applicable only for the value PDF_2D_DRAWING.
Saves the drawings as PDF with the following conditions:

◆ The value of pfcExport.PDFLayerMode is set to PDF_
LAYERS_NONE.

◆ The value of PDFOPT_HYPERLINKS is set to FALSE.
◆ The shaded views in the drawings will not have transparency and may

overlap other data in the PDF.
◆ The value of PDFOPT_PASSWORD_TO_OPEN is set to NULL.
◆ The value of PDFOPT_MASTER_PASSWORD is set to NULL.

○ PDF_FULL—Saves the PDF with the values set by you. This is the default
value.

Exporting 3D Geometry
J-Link allows you to export three dimensional geometry to various formats. Pass
the instructions object containing information about the desired export file to the
method pfcModel.Model.Export.

Interface 317

Export Instructions
Methods Introduced:

• pfcExport.Export3DInstructions.GetConfiguration
• pfcExport.Export3DInstructions.SetConfiguration
• pfcExport.Export3DInstructions.GetReferenceSystem
• pfcExport.Export3DInstructions.SetReferenceSystem
• pfcExport.Export3DInstructions.GetGeometry
• pfcExport.Export3DInstructions.SetGeometry
• pfcExport.Export3DInstructions.GetIncludedEntities
• pfcExport.Export3DInstructions.SetIncludedEntities
• pfcExport.Export3DInstructions.GetLayerOptions
• pfcExport.Export3DInstructions.SetLayerOptions
• pfcExport.pfcExport.GeometryFlags_Create
• pfcExport.pfcExport.InclusionFlags_Create
• pfcExport.pfcExport.LayerExportOptions_Create
• pfcExport.pfcExport.STEP3DExportInstructions_Create
• pfcExport.pfcExport.VDA3DExportInstructions_Create
• pfcExport.pfcExport.IGES3DNewExportInstructions_Create
• pfcExport.pfcExport.CATIAModel3DExportInstructions_Create
• pfcExport.pfcExport.ACIS3DExportInstructions_Create
• pfcExport.pfcExport.CatiaPart3DExportInstructions_Create
• pfcExport.pfcExport.CatiaProduct3DExportInstructions_Create
• pfcExport.pfcExport.CatiaCGR3DExportInstructions_Create
• pfcExport.pfcExport.DXF3DExportInstructions_Create
• pfcExport.pfcExport.DWG3DExportInstructions_Create
• pfcExport.pfcExport.JT3DExportInstructions_Create
• pfcExport.pfcExport.ParaSolid3DExportInstructions_Create
• pfcExport.pfcExport.UG3DExportInstructions_Create
• pfcExport.pfcExport.TriangulationInstructions_Create
The pfcExport.Export3DInstructions contains data to export a part or
an assembly to a specifed 3D format. The fields of this are:

• AssemblyConfiguration—While exporting an assembly you can
specify the structure and contents of the output files. The options are:

318 PTC Creo® Parametric 3.0 J-Link User’s Guide

○ EXPORT_ASM_FLAT_FILE—Exports all the geometry of the assembly
to a single file as if it were a part.

○ EXPORT_ASM_SINGLE_FILE—Exports an assembly structure to a file
with external references to component files. This file contains only top-
level geometry.

○ EXPORT_ASM_MULTI_FILE—Exports an assembly structure to a single
file and the components to component files. It creates component parts and
subassemblies with their respective geometry and external references. This
option supports all levels of hierarchy.

○ EXPORT_ASM_ASSEMBLY_FILE—Exports an assembly as multiple
files containing geometry information of its components and assembly
features.

• CoordSystem—The reference coordinate system used for export. If this
value is null, the system uses the default coordinate system.

• GeometryFlags—The object describing the type of geometry to export.
The pfcExport.pfcExport.GeometryFlags_Create returns this
instruction object. The types of geometry supported by the export operation
are:

○ Wireframe—Export edges only.
○ Solid—Export surfaces along with topology.
○ Surfaces—Export all model surfaces.
○ Quilts—Export as quilt.

• InclusionFlags—The object returned by the method
pfcExport.pfcExport.InclusionFlags_Create that determines
whether to include certain entities. The entities are:

○ Datums—Determines whether datum curves are included when exporting
files. If true the datum curve information is included during export. The
default value is false.

○ Blanked—Determines whether entities on blanked layers are exported. If
true entities on blanked layers are exported. The default value is false.

• LayerExportOptions—The instructions object returned by the method
pfcExport.pfcExport.LayerExportOptions_Create that
describes how to export layers. To export layers you can specify the following:

○ UseAutoId—Enables you to set or remove an interface layer ID. A layer is
recognized with this ID when exporting the file to a specified output
format. If true, automatically assigns interface IDs to layers not assigned
IDs and exports them. The default value is false.

Interface 319

○ LayerSetupFile—Specifies the name and complete path of the layer setup
file. This file contains the layer assignment information which includes the
name of the layer, its display status, the interface ID and number of sub
layers.

The method pfcExport.pfcExport.TriangulationInstructions_
Create creates a object that will be used to define the parameters for faceted
exports.

Export 3D Instructions Table
Used to Export

STEP3DExportInstructions A part or assembly in STEP format
VDA3DExportInstructions A part or assembly in VDA format
IGES3DNewExportInstructions A part or assembly in IGES format
CATIAModel3DExportInstructions A part or assembly in CATIA MODEL format
ACIS3DExportInstructions A part or assembly in ACIS format
CatiaPart3DExportInstructions A part or assembly in CATIA PART format
CatiaProduct3DExportInstructions A part or assembly in CATIA PRODUCT format
CatiaCGR3DExportInstructions A part or assembly in CATIA CGR format
JT3DExportInstructions A part or assembly in JT format
ParaSolid3DExportInstructions A part or assembly in PARASOLID format
UG3DExportInstructions A part or assembly in UG format
DWG3DExportInstructions A part or assembly in DWG format
DXF3DExportInstructions A part or assembly in DXF format
TriangulationInstructions A part or assembly in faceted format

Export Utilities
Methods Introduced:

• pfcSession.BaseSession.IsConfigurationSupported
• pfcSession.BaseSession.IsGeometryRepSupported
The method
pfcSession.BaseSession.IsConfigurationSupported checks
whether the specified assembly configuration is valid for a particular model and
the specified export format. The input parameters for this method are:

• Configuration—Specifies the structure and content of the output files.
• Type—Specifies the output file type to create.
The method returns a true value if the configuration is supported for the specified
export type.

320 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSession.BaseSession.IsGeometryRepSupported
checks whether the specified geometric representation is valid for a particular
export format. The input parameters are :

• Flags—The type of geometry supported by the export operation.
• Type—The output file type to create.
The method returns a true value if the geometry combination is valid for the
specified model and export type.
The methods
pfcSession.BaseSession.IsConfigurationSupported and
pfcSession.BaseSession.IsGeometryRepSupported must be called
before exporting an assembly to the specified export formats except for the
CADDS and STEP2D formats. The return values of both the methods must be true
for the export operation to be successful.
Use the method Model.Model.Export to export the assembly to the specified
output format.

Shrinkwrap Export
To improve performance in a large assembly design, you can export lightweight
representations of models called shrinkwrap models. A shrinkwrap model is based
on the external surfaces of the source part or asssembly model and captures the
outer shape of the source model.
You can create the following types of nonassociative exported shrinkwrap models:

• Surface Subset—This type consists of a subset of the original model’s
surfaces.

• Faceted Solid—This type is a faceted solid representing the original solid.
• Merged Solid—The external components from the reference assembly model

are merged into a single part representing the solid geometry in all collected
components.

Methods Introduced:

• pfcSolid.Solid.ExportShrinkwrap
You can export the specified solid model as a shrinkwrap model using the method
pfcSolid.Solid.ExportShrinkwrap. This method takes the
ShrinkwrapExportInstructions object as an argument.
Use the appropriate given in the following table to create the required type of
shrinkwrap. All the have their own static method to create an object of the
specified type. The object created by these interfaces can be used as an object of
type ShrinkwrapExportInstructions or
ShrinkwrapModelExportInstructions.

Interface 321

Type of Shrinkwrap Model to Use
Surface Subset ShrinkwrapSurfaceSubset

Instructions
Faceted Part ShrinkwrapFacetedPart

Instructions
Faceted VRML ShrinkwrapFacetedVRML

Instructions
Faceted STL ShrinkwrapFacetedSTLInstructions

Merged Solid ShrinkwrapMergedSolidInstructions

Setting Shrinkwrap Options
The ShrinkwrapModelExportInstructions contains the general
methods available for all the types of shrinkwrap models. The object created by
any of the interfaces specified in the preceeding table can be used with these
methods.
MethodsIntroduced:

• pfcShrinkwrap.ShrinkwrapModelExportInstructions.GetMethod
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.GetQuality
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.SetQuality
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.GetAutoHoleFilling
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.SetAutoHoleFilling
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.GetIgnoreSkeleton
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.SetIgnoreSkeleton
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.GetIgnoreQuilts
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.SetIgnoreQuilts
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.

GetAssignMassProperties
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.

SetAssignMassProperties
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.

GetIgnoreSmallSurfaces
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.

SetIgnoreSmallSurfaces
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.

GetSmallSurfPercentage
• pfcShrinkwrap.ShrinkwrapModelExportInstructions.

SetSmallSurfPercentage

322 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcShrinkwrap.ShrinkwrapModelExportInstructions.
GetDatumReferences

• pfcShrinkwrap.ShrinkwrapModelExportInstructions.
SetDatumReferences

The method
pfcShrinkwrap.ShrinkwrapModelExportInstructions.GetMe
thod returns the method used to create the shrinkwrap. The types of shrinkwrap
methods are:

• SWCREATE_SURF_SUBSET—Surface Subset
• SWCREATE_FACETED_SOLID—Faceted Solid
• SWCREATE_MERGED_SOLID—Merged Solid
The method
pfcShrinkwrap.ShrinkwrapModelExportInstructions.GetQual
ity specifies the quality level for the system to use when identifying surfaces or
components that contribute to the shrinkwrap model. Quality ranges from 1 which
produces the coarsest representation of the model in the fastest time, to 10 which
produces the most exact representation. Use the method
pfcShrinkwrap.ShrinkwrapModelExportInstructions.SetQual
ity to set the quality level for the system during the shrinkwrap export. The
default value is 1.
The method
pfcShrinkwrap.ShrinkwrapModelExportInstructions.
GetAutoHoleFilling returns true if auto hole filling is enabled during
Shrinkwrap export. The method
pfcShrinkwrap.ShrinkwrapModelExportInstructions.SetAuto
HoleFilling sets a flag that forces PTC Creo Parametric to identify all holes
and surfaces that intersect a single surface and fills those holes during shrinkwrap.
The default value is true.
The methods
pfcShrinkwrap.ShrinkwrapModelExportInstructions.Get
IgnoreSkeleton and
pfcShrinkwrap.ShrinkwrapModelExportInstructions.Se
tIgnoreSkeleton determine whether the skeleton model geometry must be
included in the shrinkwrap model.
The methods
pfcShrinkwrap.ShrinkwrapModelExportInstructions.Get
IgnoreQuilts and
pfcShrinkwrap.ShrinkwrapModelExportInstructions.Set
IgnoreQuilts determine whether external quilts must be included in the
shrinkwrap model.

Interface 323

The method
pfcShrinkwrap.ShrinkwrapModelExportInstructions.
GetAssign
MassProperties determines the mass property of the model. The method
pfcShrinkwrap.ShrinkwrapModelExportInstructions.SetAs
sign
MassProperties assign mass properties to the shrinkwrap model. The default
value is false and the mass properties of the original model is assigned to the
shrinkwrap model. If the value is set to true, the user must assign a value for the
mass properties.
The method pfcShrinkwrap.ShrinkwrapModelExport
Instructions.GetIgnoreSmallSurfaces specifies whether small
surfaces are ignored during the creation of a shrinkwrap model. The method
pfcShrinkwrap.ShrinkwrapModelExportInstructions
.SetIgnore
SmallSurfaces sets a flag that forces PTC Creo Parametric to skip surfaces
smaller than a certain size. The default value is false. The size of the surface is
specified as a percentage of the model’s size. This size can be modified using the
methods pfcShrinkwrap.ShrinkwrapModelExportInstructions
.GetSmall
SurfPercentage and
pfcShrinkwrap.ShrinkwrapModelExportInstructions.Set
SmallSurfPercentage.
The methodproperty
pfcShrinkwrap.ShrinkwrapModelExportInstructions.Get
DatumReferences and
pfcShrinkwrap.ShrinkwrapModelExportInstructions.SetDa
tum
References specify and select the datum planes, points, curves, axes, and
coordinate system references to be included in the shrinkwrap model.

Surface Subset Options
Methods Introduced:

• pfcShrinkwrap.pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions_
Create

• pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions.
GetAdditionalSurfaces

• pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions.
SetAdditionalSurfaces

• pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions.GetOutputModel
• pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions.SetOutputModel

324 PTC Creo® Parametric 3.0 J-Link User’s Guide

The static method
pfcShrinkwrap.Shrinkwrap.ShrinkwrapSurfaceSubsetInstruc
tions
_Create returns an object used to create a shrinkwrap model of surface subset
type. Specify the name of the output model in which the shrinkwrap is to be
created as an input to this method.
The method
pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions.
GetAdditionalSurfaces specifies the surfaces included in the shrinkwrap
model while the method
pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions.
SetAdditionalSurfaces selects individual surfaces to be included in the
shrinkwrap model.
The method
pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions.
GetOutputModel returns the template model where the shrinkwrap geometry
is to be created while the method
pfcShrinkwrap.ShrinkwrapSurfaceSubsetInstructions.
SetOutputModel sets the template model.

Faceted Solid Options
The ShrinkwrapFacetedFormatInstructions consists of the
following types:

• SWFACETED_PART—PTC Creo Parametric part with normal geometry. This
is the default format type.

• SWFACETED_STL—An STL file.
• SWFACETED_VRML—A VRML file.
Use the Create method to create the object of the specified type. Upcast the
object to use the general methods available in this .
Methods Intoduced:

• pfcShrinkwrap.ShrinkwrapFacetedFormatInstructions.GetFormat
• pfcShrinkwrap.ShrinkwrapFacetedFormatInstructions.GetFramesFile
• pfcShrinkwrap.ShrinkwrapFacetedFormatInstructions.SetFramesFile
The method
pfcShrinkwrap.ShrinkwrapFacetedFormatInstructions.Get
Format returns the the output file format of the shrinkwrap model.
The methods
pfcShrinkwrap.ShrinkwrapFacetedFormatInstructions.Get
FramesFile and

Interface 325

pfcShrinkwrap.ShrinkwrapFacetedFormatInstructions.Set
FramesFile enable you to select a frame file to create a faceted solid motion
envelope model that represents the full motion of the mechanism captured in the
frame file. Specify the name and complete path of the frame file.

Faceted Part Options
Methods Introduced:

• pfcShrinkwrap.pfcShrinkwrap.ShrinkwrapFacetedPartInstructions_
Create

• pfcShrinkwrap.ShrinkwrapFacetedPartInstructions.GetLightweight
• pfcShrinkwrap.ShrinkwrapFacetedPartInstructions.SetLightweight
The static method
pfcShrinkwrap.Shrinkwrap.ShrinkwrapFacetedPartInstruc
tions_Create returns an object used to create a shrinkwrap model of
shrinkwrap faceted type. The input parameters of this method are:

• OutputModel—Specify the output model where the shrinkwrap must be
created.

• Lightweight—Specify this value as True if the shrinkwrap model is a
Lightweight PTC Creo Parametric part.

The method
pfcShrinkwrap.ShrinkwrapFacetedPartInstructions.
GetLightweight returns a true value if the output file format of the
shrinkwrap model is a Lightweight PTC Creo Parametric part. The method
pfcShrinkwrap.ShrinkwrapFacetedPartInstructions.
SetLight
weight specifies if the PTC Creo Parametric part is exported as a light weight
faceted geometry.

VRML Export Options
Methods Introduced:

• pfcShrinkwrap.pfcShrinkwrap.ShrinkwrapVRMLInstructions_Create
• pfcShrinkwrap.ShrinkwrapVRMLInstructions.GetOutputFile
• pfcShrinkwrap.ShrinkwrapVRMLInstructions.SetOutputFile
The static method
pfcShrinkwrap.Shrinkwrap.ShrinkwrapVRMLInstructions_
Create returns an object used to create a shrinkwrap model of shrinkwrap VRML
format. Specify the name of the output model as an input to this method.

326 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method
pfcShrinkwrap.ShrinkwrapVRMLInstructions.GetOutputFile
returns the name of the output file to be created and the method
pfcShrinkwrap.ShrinkwrapVRMLInstructions.SetOutputFile
specifies the name of the output file to be created.

STL Export Options
Methods Introduced:

• pfcShrinkwrap.pfcShrinkwrap.ShrinkwrapVRMLInstructions_Create
• pfcShrinkwrap.ShrinkwrapVRMLInstructions.GetOutputFile
• pfcShrinkwrap.ShrinkwrapVRMLInstructions.SetOutputFile
The static method
pfcShrinkwrap.Shrinkwrap.ShrinkwrapVRMLInstructions_
Create returns an object used to create a shrinkwrap model of shrinkwrap STL
format. Specify the name of the output model as an input to this method.
The method
pfcShrinkwrap.ShrinkwrapSTLInstructions.GetOutputFile
returns the name of the output file to be created and the method
pfcShrinkwrap.ShrinkwrapSTLInstructions.SetOutputFile
specifies the name of the output file to be created.

Merged Solid Options
Methods Introduced:

• pfcShrinkwrap.pfcShrinkwrap.ShrinkwrapMergedSolidInstructions_
Create

• pfcShrinkwrap.ShrinkwrapMergedSolidInstructions.
GetAdditionalComponents

• pfcShrinkwrap.ShrinkwrapMergedSolidInstructions.
SetAdditionalComponents

The static method
pfcShrinkwrap.Shrinkwrap.ShrinkwrapMergedSolidInstruc
tions_Create returns an object used to create a shrinkwrap model of merged
solids format. Specify the name of the output model as an input to this method.
The methods
pfcShrinkwrap.ShrinkwrapMergedSolidInstructions.GetAddi
tional

Interface 327

Components specifies individual components of the assembly to be merged into
the shrinkwrap model. Use the method
pfcShrinkwrap.ShrinkwrapMergedSolidInstructions.SetAddi
tional
Components to select individual components of the assembly to be merged into
the shrinkwrap model.

Importing Files
Method Introduced:

• pfcModel.Model.Import
The method pfcModel.Model.Import reads a file into PTC Creo
Parametric. The format must be the same as it would be if these files were created
by PTC Creo Parametric. The parameters are:

• FilePath—Absolute path of the file to be imported along with its extension.
• ImportData—The ImportInstructions object that controls the import

operation.

Import Instructions
Methods Introduced:

• pfcModel.pfcModel.RelationImportInstructions_Create
• pfcModel.pfcModel.IGESSectionImportInstructions_Create
• pfcModel.pfcModel.ProgramImportInstructions_Create
• pfcModel.pfcModel.ConfigImportInstructions_Create
• pfcModel.pfcModel.DWGSetupImportInstructions_Create
• pfcModel.pfcModel.SpoolImportInstructions_Create
• pfcModel.pfcModel.ConnectorParamsImportInstructions_Create
• pfcModel.pfcModel.ASSEMTreeCFGImportInstructions_Create
• pfcModel.pfcModel.WireListImportInstructions_Create
• pfcModel.pfcModel.CableParamsImportInstructions_Create
• pfcModel.pfcModel.STEPImport2DInstructions_Create
• pfcModel.pfcModel.IGESImport2DInstructions_Create
• pfcModel.pfcModel.DXFImport2DInstructions_Create
• pfcModel.pfcModel.DWGImport2DInstructions_Create

328 PTC Creo® Parametric 3.0 J-Link User’s Guide

The methods described in this section create an instructions data object to import a
file of a specified type into PTC Creo Parametric. The details are as shown in the
table below:

Used to Import
RelationImportInstructions A list of relations and parameters in a part or

assembly.
IGESSectionImportInstructions A section model in IGES format.
ProgramImportInstructions A program file for a part or assembly that can be

edited to change the model.
ConfigImportInstructions Configuration instructions.
DWGSetupImportInstructions A drawing s/u file.
SpoolImportInstructions Spool instructions.
ConnectorParamsImportInstructions Connector parameter instructions.
ASSEMTreeCFGImportInstructions Assembly tree CFG instructions.
WireListImportInstructions Wirelist instructions.
CableParamsImportInstructions Cable parameters from an assembly.
STEPImport2DInstructions A part or assembly in STEP format.
IGESImport2DInstructions A part or assembly in IGES format.
DXFImport2DInstructions A drawing in DXF format.
DWGImport2DInstructions A drawing in DWG format.

Note
• The method pfcModel.Model.Import does not support importing of

CADAM type of files.
• If a model or the file type STEP, IGES, DWX, or SET already exists, the

imported model is appended to the current model. For more information on
methods that return models of the types STEP, IGES, DWX, and SET, refer to
Getting a Model Object on page 110.

Importing 2D Models
Method Introduced:

• pfcSession.BaseSession.Import2DModel
The method pfcSession.BaseSession.Import2DModel imports a two
dimensional model based on the following parameters:

• NewModelName—Specifies the name of the new model.
• Type—Specifies the type of the model. The type can be one of the following:

○ STEP

Interface 329

○ IGES

○ DXF

○ DWG

○ SET

• FilePath—Specifies the location of the file to be imported along with the file
extension

• Instructions—Specifies the pfcModel.Import2DInstructions object
that controls the import operation.

The pfcModel.Import2DInstructions contains the following
attributes:

○ Import2DViews—Defines whether to import 2D drawing views.
○ ScaleToFit—If the current model has a different sheet size than that

specified by the imported file, set the parameter to true to retain the current
sheet size. Set the parameter to false to retain the sheet size of the imported
file.

○ FitToLeftCorner—If this parameter is set to true, the bottom left corner of
the imported file is adjusted to the bottom left corner of the current model.
If it is set to false, the size of imported file is retained.

Note
The method pfcSession.BaseSession.Import2DModel does
not support importing of CADAM type of files.

Importing 3D Geometry
Methods Introduced:

• pfcSession.BaseSession.GetImportSourceType
• pfcSession.BaseSession.ImportNewModel
• pfcImport.LayerImportFilter.OnLayerImport
For some input formats, the method
pfcSession.BaseSession.GetImportSourceType returns the type of
model that can be imported using a designated file. The input parameters of this
method are:

330 PTC Creo® Parametric 3.0 J-Link User’s Guide

• FileToImport—Specifies the path of the file along with its name and
extension.

• NewModelImportType—Specifies the type of model to be imported.
The method pfcSession.BaseSession.ImportNewModel is used to
import an external 3D format file and creates a new model or set of models of type
pfcModel.Model. The input parameters of this method are:

• FileToImport—Specifies the path to the file along with its name and extension
• pfcNewModelImportType—Specifies the type of model to be imported.

The types of models that can be imported are as follows:

○ IMPORT_NEW_IGES

○ IMPORT_NEW_VDA

○ IMPORT_NEW_NEUTRAL

○ IMPORT_NEW_CADDS

○ IMPORT_NEW_STEP

○ IMPORT_NEW_STL

○ IMPORT_NEW_VRML

○ IMPORT_NEW_POLTXT

○ IMPORT_NEW_CATIA_SESSION

○ IMPORT_NEW_CATIA_MODEL

○ IMPORT_NEW_DXF

○ IMPORT_NEW_ACIS

○ IMPORT_NEW_PARASOLID

○ IMPORT_NEW_ICEM

○ IMPORT_NEW_DESKTOP

○ IMPORT_NEW_CATIA_PART

○ IMPORT_NEW_CATIA_PRODUCT

○ IMPORT_NEW_UG

○ IMPORT_NEW_PRODUCTVIEW

○ IMPORT_NEW_CATIA_CGR

○ IMPORT_NEW_JT

○ IMPORT_NEW_SW_PART

○ IMPORT_NEW_SW_ASSEM

○ pfcIMPORT_NEW_INVENTOR_PART

○ pfcIMPORT_NEW_INVENTOR_ASSEM

Interface 331

• ModelType—Specifies the type of the model. It can be a part, assembly or
drawing.

• NewModelName—Specifies a name for the imported model.
• LayerImportFilter—Specifies the layer filter. This parameter is

optional.
The interface pfcImport.LayerImportFilter has a call back function
pfcImport.LayerImportFilter.OnLayerImport. PTC Creo
Parametric passes the object pfcImport.ImportedLayer describing each
imported layer to the layer filter to allow you to perform changes on each layer as
it is imported.
The method pfcExceptions.XCancelProEAction.Throw can be called
from the body of the method
pfcImport.LayerImportFilter.OnLayerImport to end the filtering
of the layers.

Modifying the Imported Layers
Layers help you organize model items so that you can perform operations on those
items collectively. These operations primarily include ways of showing the items
in the model, such as displaying or blanking, selecting, and suppressing. The
methods described in this section modify the attributes of the imported layers.
Methods Introduced:

• pfcImport.ImportedLayer.GetName
• pfcImport.ImportedLayer.SetNewName
• pfcImport.ImportedLayer.GetSurfaceCount
• pfcImport.ImportedLayer.GetCurveCount
• pfcImport.ImportedLayer.GetTrimmedSurfaceCount
• pfcImport.ImportedLayer.SetAction
Layers are identified by their names. The method
pfcImport.ImportedLayer.GetName returns the name of the layer while
the method pfcImport.ImportedLayer.SetNewName can be used to set
the name of the layer. The name can be numeric or alphanumeric.
The method pfcImport.ImportedLayer.GetSurfaceCount returns the
number of curves on the layer.
The method pfcImport.ImportedLayer.GetTrimmedSurfaceCount
returns the number of trimmed surfaces on the layer and the method
pfcImport.ImportedLayer.GetCurveCount returns the number of
curves on the layer.

332 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcImport.ImportedLayer.SetAction sets the display of
the imported layers. The input parameter for this method is ImportAction. The
types of actions that can be performed on the imported layers are:

• IMPORT_LAYER_DISPLAY—Displays the imported layer.
• IMPORT_LAYER_SKIP—Does not import entities on this layer.
• IMPORT_LAYER_BLANK—Blanks the selected layer.
• IMPORT_LAYER_IGNORE—Imports only entities on this layer but not the

layer.
The default action type is IMPORT_LAYER_DISPLAY.

Plotting Files
From Pro/ENGINEERWildfire 5.0 onwards, the
pfcModel.PlotInstructions object containing the instructions for
plotting files has been deprecated. All the methods listed below for creating and
accessing the instruction attributes in pfcModel.PlotInstructions have
also been deprecated. Use the new interface type
pfcExport.PrinterInstructions and its methods described in the next
section.
Methods Deprecated:

• pfcModel.pfcModel.PlotInstructions_Create
• pfcModel.PlotInstructions.GetPlotterName
• pfcModel.PlotInstructions.SetPlotterName
• pfcModel.PlotInstructions.GetOutputQuality
• pfcModel.PlotInstructions.SetOutputQuality
• pfcModel.PlotInstructions.GetUserScale
• pfcModel.PlotInstructions.SetUserScale
• pfcModel.PlotInstructions.GetPenSlew
• pfcModel.PlotInstructions.SetPenSlew
• pfcModel.PlotInstructions.GetPenVelocityX
• pfcModel.PlotInstructions.SetPenVelocityX
• pfcModel.PlotInstructions.GetPenVelocityY
• pfcModel.PlotInstructions.SetPenVelocityY
• pfcModel.PlotInstructions.GetSegmentedOutput
• pfcModel.PlotInstructions.SetSegmentedOutput
• pfcModel.PlotInstructions.GetLabelPlot

Interface 333

• pfcModel.PlotInstructions.SetLabelPlot
• pfcModel.PlotInstructions.GetSeparatePlotFiles
• pfcModel.PlotInstructions.SetSeparatePlotFiles
• pfcModel.PlotInstructions.GetPaperSize
• pfcModel.PlotInstructions.SetPaperSize
• pfcModel.PlotInstructions.GetPageRangeChoice
• pfcModel.PlotInstructions.SetPageRangeChoice
• pfcModel.PlotInstructions.GetPaperSizeX
• pfcModel.PlotInstructions.SetPaperSizeY
• pfcModel.PlotInstructions.GetFirstPage
• pfcModel.PlotInstructions.SetFirstPage
• pfcModel.PlotInstructions.GetLastPage
• pfcModel.PlotInstructions.SetLastPage

Printing Files
The printer instructions for printing a file are defined in
pfcExport.PrinterInstructions data object.
Methods Introduced:

• pfcExport.pfcExport.PrinterInstructions_Create
• pfcExport.PrinterInstructions.SetPrinterOption
• pfcExport.PrinterInstructions.SetPlacementOption
• pfcExport.PrinterInstructions.SetModelOption
• pfcExport.PrinterInstructions.SetWindowId
The method pfcExport.pfcExport.PrinterInstructions_Create
creates a new instance of the pfcExport.PrinterInstructions object.
The object contains the following instruction attributes:

• PrinterOption—Specifies the printer settings for printing a file in terms of the
pfcExport.PrintPrinterOption object. Set this attribute using the
method pfcExport.PrinterInstructions.SetPrinterOption.

• PlacementOption—Specifies the placement options for printing purpose in
terms of the pfcExport.PrintMdlOption object. Set this attribute using
the method
pfcExport.PrinterInstructions.SetPlacementOption.

• ModelOption—Specifies the model options for printing purpose in terms of
the pfcExport.PrintPlacementOption object. Set this attribute

334 PTC Creo® Parametric 3.0 J-Link User’s Guide

using the method
pfcExport.PrinterInstructions.SetModelOption.

• WindowId—Specifies the current window identifier. Set this attribute using the
method pfcExport.PrinterInstructions.SetWindowId.

Printer Options
The printer settings for printing a file are defined in the
pfcExport.PrintPrinterOption object.
Methods Introduced:

• pfcExport.pfcExport.PrintPrinterOption_Create
• pfcSession.BaseSession.GetPrintPrinterOptions
• pfcExport.PrintPrinterOption.SetDeleteAfter
• pfcExport.PrintPrinterOption.SetFileName
• pfcExport.PrintPrinterOption.SetPaperSize
• pfcExport.pfcExport.PrintSize_Create
• pfcExport.PrintSize.SetHeight
• pfcExport.PrintSize.SetWidth
• pfcExport.PrintSize.SetPaperSize
• pfcExport.PrintPrinterOption.SetPenTable
• pfcExport.PrintPrinterOption.SetPrintCommand
• pfcExport.PrintPrinterOption.SetPrinterType
• pfcExport.PrintPrinterOption.SetQuantity
• pfcExport.PrintPrinterOption.SetRollMedia
• pfcExport.PrintPrinterOption.SetRotatePlot
• pfcExport.PrintPrinterOption.SetSaveMethod
• pfcExport.PrintPrinterOption.SetSaveToFile
• pfcExport.PrintPrinterOption.SetSendToPrinter
• pfcExport.PrintPrinterOption.SetSlew
• pfcExport.PrintPrinterOption.SetSwHandshake
• pfcExport.PrintPrinterOption.SetUseTtf
The method pfcExport.pfcExport.PrintPrinterOption_Create
creates a new instance of the pfcExport.PrintPrinterOption object.
The method pfcSession.BaseSession.GetPrintPrinterOptions
retrieves the printer settings.

Interface 335

The pfcExport.PrintPrinterOption object contains the following
options:

• DeleteAfter—Determines if the file is deleted after printing. Set it to true to
delete the file after printing. Use the method
pfcExport.PrintPrinterOption.SetDeleteAfter to assign this
option.

• FileName—Specifies the name of the file to be printed. Use the method
pfcExport.PrintPrinterOption.SetFileName to set the name.

Note
If the method pfcModel.Model.Export is called for
pfcModel.ExportType object, then the argument FileName is
ignored, and can be passed as NULL. You must use the method
pfcModel.Model.Export to set the FileName.

• PaperSize—Specifies the parameters of the paper to be printed in terms of the
pfcExport.PrintSize object. The method
pfcExport.PrintPrinterOption.SetPaperSize assigns the
PaperSize option. Use the method pfcExport.Export.PrintSize_
Create to create a new instance of the pfcExport.PrintSize object.
This object contains the following options:

○ Height—Specifies the height of paper. Use the method
pfcExport.PrintSize.SetHeight to set the paper height.

○ Width—Specifies the width of paper. Use the method
pfcExport.PrintSize.SetWidth to set the paper width.

○ PaperSize—Specifies the size of the paper used for the plot in terms of the
pfcModel.PlotPaperSize object. Use the method
pfcExport.PrintSize.SetPaperSize to set the paper size.

• PenTable—Specifies the file containing the pen table. Use the method
pfcExport.PrintPrinterOption.SetPenTable to set this option.

• PrintCommand—Specifies the command to be used for printing. Use the
method pfcExport.PrintPrinterOption.SetPrintCommand to
set the command.

• PrinterType—Specifies the printer type. Use the method
pfcExport.PrintPrinterOption.SetPrinterType to assign the
type.

336 PTC Creo® Parametric 3.0 J-Link User’s Guide

• Quantity—Specifies the number of copies to be printed. Use the method
pfcExport.PrintPrinterOption.SetQuantity to assign the
quantity.

• RollMedia—Determines if roll media is to be used for printing. Set it to true to
use roll media. Use the method
pfcExport.PrintPrinterOption.SetRollMedia to assign this
option.

• RotatePlot—Determines if the plot is rotated by 90 degrees. Set it to true to
rotate the plot. Use the method
pfcExport.PrintPrinterOption.SetRotatePlot to set this
option.

• SaveMethod—Specifies the save method in terms of the
pfcExport.PrintSaveMethod class. Use the method
pfcExport.PrintPrinterOption.SetSaveMethod to specify the
save method. The available methods are as follows:

○ PRINT_SAVE_SINGLE_FILE—Plot is saved to a single file.
○ PRINT_SAVE_MULTIPLE_FILE—Plot is saved to multiple files.
○ PRINT_SAVE_APPEND_TO_FILE—Plot is appended to a file.

• SaveToFile—Determines if the file is saved after printing. Set it to true to save
the file after printing. Use the method
pfcExport.PrintPrinterOption.SetSaveToFile to assign this
option.

• SendToPrinter—Determines if the plot is directly sent to the printer. Set it to
true to send the plot to the printer. Use the method
pfcExport.PrintPrinterOption.SetSendToPrinter to set this
option.

• Slew—Specifies the speed of the pen in centimeters per second in X and Y
direction. Use the method
pfcExport.PrintPrinterOption.SetSlew to set this option.

• SwHandshake—Determines if the software handshake method is to be used
for printing. Set it to true to use the software handshake method. Use the
method pfcExport.PrintPrinterOption.SetSwHandshake to set
this option.

• UseTtf—Specifies whether TrueType fonts or stroked text is used for
printing. Set this option to true to use TrueType fonts and to false to stroke
all text. Use the method
pfcExport.PrintPrinterOption.SetUseTtf to set this option.

Interface 337

Placement Options
The placement options for printing purpose are defined in the
pfcExport.PrintPlacementOption object.
Methods Introduced:

• pfcExport.pfcExport.PrintPlacementOption_Create
• pfcSession.BaseSession.GetPrintPlacementOptions
• pfcExport.PrintPlacementOption.SetBottomOffset
• pfcExport.PrintPlacementOption.SetClipPlot
• pfcExport.PrintPlacementOption.SetKeepPanzoom
• pfcExport.PrintPlacementOption.SetLabelHeight
• pfcExport.PrintPlacementOption.SetPlaceLabel
• pfcExport.PrintPlacementOption.SetScale
• pfcExport.PrintPlacementOption.SetShiftAllCorner
• pfcExport.PrintPlacementOption.SetSideOffset
• pfcExport.PrintPlacementOption.SetX1ClipPosition
• pfcExport.PrintPlacementOption.SetX2ClipPosition
• pfcExport.PrintPlacementOption.SetY1ClipPosition
• pfcExport.PrintPlacementOption.SetY2ClipPosition
The method pfcExport.pfcExport.PrintPlacementOption_
Create creates a new instance of the
pfcExport.PrintPlacementOption object.
The method
pfcSession.BaseSession.GetPrintPlacementOptions retrieves
the placement options.
The pfcExport.PrintPlacementOption object contains the following
options:

• BottomOffset—Specifies the offset from the lower-left corner of the plot. Use
the method
pfcExport.PrintPlacementOption.SetBottomOffset to set
this option.

• ClipPlot—Specifies whether the plot is clipped. Set this option to true to clip
the plot or to false to avoid clipping of plot. Use the method
pfcExport.PrintPlacementOption.SetClipPlot to set this
option.

• KeepPanzoom—Determines whether pan and zoom values of the window are
used. Set this option to true use pan and zoom and false to skip them. Use the

338 PTC Creo® Parametric 3.0 J-Link User’s Guide

method pfcExport.PrintPlacementOption.SetKeepPanzoom to
set this option.

• LabelHeight—Specifies the height of the label in inches. Use the method
pfcExport.PrintPlacementOption.SetLabelHeight to set this
option.

• PlaceLabel—Specifies whether you want to place the label on the plot. Use
the method pfcExport.PrintPlacementOption.SetPlaceLabel
to set this option.

• Scale—Specifies the scale used for the plot. Use the method
pfcExport.PrintPlacementOption.SetScale to set this option.

• ShiftAllCorner—Determines whether all corners are shifted.Set this option to
true to shift all corners or to false to skip shifting of corners. Use the method
pfcExport.PrintPlacementOption.SetShiftAllCorner to set
this option.

• SideOffset—Specifies the offset from the sides. Use the method
pfcExport.PrintPlacementOption.SetSideOffset to set this
option.

• X1ClipPosition—Specifies the first X parameter for defining the clip position.
Use the method
pfcExport.PrintPlacementOption.SetX1ClipPosition to set
this option.

• X2ClipPosition—Specifies the second X parameter for defining the clip
position. Use the method
pfcExport.PrintPlacementOption.SetX2ClipPosition to set
this option.

• Y1ClipPosition—Specifies the first Y parameter for defining the clip position.
Use the method
pfcExport.PrintPlacementOption.SetY1ClipPosition to set
this option.

• Y2ClipPosition—Specifies the second Yparameter for defining the clip
position. Use the method
pfcExport.PrintPlacementOption.SetY2ClipPosition to set
this option.

Model Options
The model options for printing purpose are defined in the
pfcExport.PrintMdlOption object.
Methods Introduced:

Interface 339

• pfcExport.pfcExport.PrintMdlOption_Create
• pfcSession.BaseSession.GetPrintMdlOptions
• pfcExport.PrintMdlOption.SetDrawFormat
• pfcExport.PrintMdlOption.SetFirstPage
• pfcExport.PrintMdlOption.SetLastPage
• pfcExport.PrintMdlOption.SetLayerName
• pfcExport.PrintMdlOption.SetLayerOnly
• pfcExport.PrintMdlOption.SetMdl
• pfcExport.PrintMdlOption.SetQuality
• pfcExport.PrintMdlOption.SetSegmented
• pfcExport.PrintMdlOption.SetSheets
• pfcExport.PrintMdlOption.SetUseDrawingSize
• pfcExport.PrintMdlOption.SetUseSolidScale
The method pfcExport.pfcExport.PrintMdlOption_Create creates
a new instance of the pfcExport.PrintMdlOption object.
The method pfcSession.BaseSession.GetPrintMdlOptions
retrieves the model options.
The pfcExport.PrintMdlOption object contains the following options:

• DrawFormat—Displays the drawing format used for printing. Use the method
pfcExport.PrintMdlOption.SetDrawFormat to set this option.

• FirstPage—Specifies the first page number. Use the method
pfcExport.PrintMdlOption.SetFirstPage to set this option.

• LastPage—Specifies the last page number. Use the method
pfcExport.PrintMdlOption.SetLastPage to set this option.

• LayerName—Specifies the name of the layer. Use the method
pfcExport.PrintMdlOption.SetLayerName to set the name.

• LayerOnly—Prints the specified layer only. Set this option to true to print
the specified layer. Use the method
pfcExport.PrintMdlOption.SetLayerOnly to set this option.

• Mdl—Specifies the model to be printed. Use the method
pfcExport.PrintMdlOption.SetMdl to set this option.

• Quality—Determines the quality of the model to be printed. It checks for no
line, no overlap, simple overlap, and complex overlap. Use the method
pfcExport.PrintMdlOption.SetQuality to set this option.

• Segmented—If set to true, the printer prints the drawing in full size, but in
segments that are compatible with the selected paper size. This option is

340 PTC Creo® Parametric 3.0 J-Link User’s Guide

available only if you are plotting a single page. Use the method
pfcExport.PrintMdlOption.SetSegmented to set this option.

• Sheets—Specifies the sheets that need to be printed in terms of the
pfcExport.PrintSheets class. Use the method
pfcExport.PrintMdlOption.SetSheets to specify the sheets. The
sheets can be of the following types:

○ PRINT_CURRENT_SHEET—Only the current sheet is printed.
○ PRINT_ALL_SHEETS—All the sheets are printed.
○ PRINT_SELECTED_SHEETS—Sheets of a specified range are printed.

• UseDrawingSize—Overrides the paper size specified in the printer options
with the drawing size. Set this option to true to use the drawing size. Use the
method pfcExport.PrintMdlOption.SetUseDrawingSize to set
this option.

• UseSolidScale—Prints with the scale used in the solid model. Set this option
to true to use solid scale. Use the method
pfcExport.PrintMdlOption.SetUseSolidScale to set this
option.

Plotter Configuration File (PCF) Options
The printing options for PCF file are defined in the
Export.PrinterPCFOptions object.
Methods Introduced:

• pfcExport.pfcExport.PrinterPCFOptions_Create
• pfcExport.PrinterPCFOptions.SetPrinterOption
• pfcExport.PrinterPCFOptions.SetPlacementOption
• pfcExport.PrinterPCFOptions.SetModelOption
The method pfcExport.pfcExport.PrinterPCFOptions_Create
creates a new instance of the pfcExport.PrinterPCFOptions object.
The pfcExport.PrinterPCFOptions object contains the following
options:

• PrinterOption—Specifies the printer settings for printing a file in terms of the
pfcExport.PrintPrinterOption object. Set this attribute using the
method pfcExport.PrinterPCFOptions.SetPrinterOption.

• PlacementOption—Specifies the placement options for printing purpose in
terms of the pfcExport.PrintMdlOption object. Set this attribute using

Interface 341

the method
pfcExport.PrinterPCFOptions.SetPlacementOption.

• ModelOption—Specifies the model options for printing purpose in terms of
the pfcExport.PrintPlacementOption object. Set this attribute
using the method
pfcExport.PrinterPCFOptions.SetModelOption.

Solid Operations
Method Introduced:

• pfcSolid.Solid.CreateImportFeat
The method pfcSolid.Solid.CreateImportFeat creates a new import
feature in the solid and takes the following input arguments:

• IntfData—The source of data from which to create the import feature. It is
given by the pfcModel.IntfDataSource object. The type of source data
that can be imported is given by the pfcModel.IntfType class and can be
of the following types:

○ INTF_NEUTRAL

○ INTF_NEUTRAL_FILE

○ INTF_IGES

○ INTF_STEP

○ INTF_VDA

○ INTF_ICEM

○ INTF_ACIS

○ INTF_DXF

○ INTF_CDRS

○ INTF_STL

○ INTF_VRML

○ INTF_PARASOLID

○ INTF_AI

○ INTF_CATIA_PART

○ INTF_UG

○ INTF_PRODUCTVIEW

○ INTF_CATIA_CGR

342 PTC Creo® Parametric 3.0 J-Link User’s Guide

○ INTF_JT

• CoordSys—The pointer to a reference coordinate system. If this is NULL, the
function uses the default coordinate system.

• FeatAttr—The attributes for creation of the new import feature given by the
pfcModel.ImportFeatAttr object. If this pointer is NULL, the function
uses the default attributes.

Example Code: Returning a Feature Object
The sample code in the file pfcImportFeatureExample.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples return a
feature object when provided with a solid coordinate system name and an import
feature's file name. The method will find the coordinate system in the model, set
the Import Feature Attributes, and create an import feature. The feature is then
returned.

Window Operations
Method Introduced:

• pfcWindow.Window.ExportRasterImage
The method pfcWindow.Window.ExportRasterImage outputs a standard
PTC Creo Parametric raster output file.

Interface 343

24
Simplified Representations

Overview .. 346
Retrieving Simplified Representations... 347
Creating and Deleting Simplified Representations.. 348
Extracting Information About Simplified Representations.. 348
Modifying Simplified Representations ... 349
Simplified Representation Utilities... 350

J-Link gives programmatic access to all the simplified representation functionality
of PTC Creo Parametric. Create simplified representations either permanently or
on the fly and save, retrieve, or modify them by adding or deleting items.

345

Overview
Using J-Link, you can create and manipulate assembly simplified representations
just as you can using PTC Creo Parametric interactively.

Note
J-Link supports simplified representation of assemblies only, not parts.

Simplified representations are identified by the pfcSimpRep.SimRep class.
This class is a child of pfcModelItem.ModelItem, so you can use the
methods dealing with pfcModelItems to collect, inspect, and modify
simplified representations.
The information required to create and modify a simplified representation is
stored in a class called pfcSimpRep.SimpRepInstructions which
contains several data objects and fields, including:

• String—The name of the simplified representation
• pfcSimpRep.SimpRepAction—The rule that controls the default

treatment of items in the simplified representation.
• pfcSimpRep.SimpRepItem—An array of assembly components and the

actions applied to them in the simplified representation.
A pfcSimpRep.SimpRepItem is identified by the assembly component path
to that item. Each pfcSimpRep.SimpRepItem has it’s own
pfcSimpRep.SimpRepAction assigned to it.
pfcSimpRep.SimpRepAction is a visible data object that includes a field of
type pfcSimpRep.SimpRepActionType. You can use the method
pfcSimpRep.SimpRepAction.Action() to set the actions. To delete an
existing item, you must set the action as NULL.
pfcSimpRep.SimpActionType is an enumerated type that specifies the
possible treatment of items in a simplified representation. The possible values are
as follows
Values Action
SIMPREP_NONE No action is specified.
SIMPREP_REVERSE Reverse the default rule for this component (for

example, include it if the default rule is exclude).
SIMPREP_INCLUDE Include this component in the simplified

representation.
SIMPREP_EXCLUDE Exclude this component from the simplified

representation.
SIMPREP_SUBSTITUTE Substitute the component in the simplified

representation.
SIMPREP_GEOM Use only the geometrical representation of the

346 PTC Creo® Parametric 3.0 J-Link User’s Guide

Values Action
component.

SIMPREP_GRAPHICS Use only the graphics representation of the
component.

SIMPREP_SYMB Use the symbolic representation of the component.

Retrieving Simplified Representations
Methods Introduced:

• pfcSession.BaseSession.RetrieveAssemSimpRep
• pfcSession.BaseSession.RetrieveGeomSimpRep
• pfcSession.BaseSession.RetrieveGraphicsSimpRep
• pfcSession.BaseSession.RetrieveSymbolicSimpRep
• pfcSimpRep.pfcSimpRep.RetrieveExistingSimpRepInstructions_Create
You can retrieve a named simplified representation from a model using the
method pfcSession.BaseSession.RetrieveAssemSimpRep, which is
analogous to the Assembly mode option Retrieve Rep in the SIMPLFD REP menu.
This method retrieves the object of an existing simplified representation from an
assembly without fetching the generic representation into memory. The method
takes two arguments, the name of the assembly and the simplified representation
data.
To retrieve an existing simplified representation, pass an instance of
pfcSimpRep.pfcSimpRep.RetrieveExistingSimpRepInstruc
tions_Create and specify its name as the second argument to this method.
PTC Creo Parametric retrieves that representation and any active submodels and
returns the object to the simplified representation as a
pfcAssembly.Assembly object.
You can retrieve geometry, graphics, and symbolic simplified representations into
session using the methods
pfcSession.BaseSession.RetrieveGeomSimpRep,
pfcSession.BaseSession.RetrieveGraphicsSimpRep, and
pfcSession.BaseSession.RetrieveSymbolicSimpRep respectively.
Like pfcSession.BaseSession.RetrieveAssemSimpRep, these
methods retrieve the simplified representation without bringing the master
representation into memory. Supply the name of the assembly whose simplified
representation is to be retrieved as the input parameter for these methods. The
methods output the assembly. They do not display the simplified representation.

Simplified Representations 347

Creating and Deleting Simplified
Representations
Methods Introduced:

• pfcSimpRep.pfcSimpRep.CreateNewSimpRepInstructions_Create
• pfcSolid.Solid.CreateSimpRep
• pfcSolid.Solid.DeleteSimpRep
To create a simplified representation, you must allocate and fill a
pfcSimpRep.SimpRepInstructions object by calling the method
pfcSimpRep.pfcSimpRep.CreateNewSimpRepInstructions_
Create. Specify the name of the new simplified representation as an input to this
method. You should also set the default action type and add SimpRepItems to
the object.
To generate the new simplified representation, call
pfcSolid.Solid.CreateSimpRep. This method returns the
pfcSimpRep.SimpRep object for the new representation.
The method pfcSolid.Solid.DeleteSimpRep deletes a simplified
representation from its model owner. The method requires only the
pfcSimpRep.SimpRep object as input.

Extracting Information About Simplified
Representations
Methods Introduced:

• pfcSimpRep.SimpRep.GetInstructions
• pfcSimpRep.SimpRepInstructions.GetDefaultAction
• pfcSimpRep.CreateNewSimpRepInstructions.GetNewSimpName
• pfcSimpRep.SimpRepInstructions.GetIsTemporary
• pfcSimpRep.SimpRepInstructions.GetItems
Given the object to a simplified representation,
pfcSimpRep.SimpRep.GetInstructions fills out the
pfcSimpRep.SimpRepInstructions object.
The pfcSimpRep.SimpRepInstructions.GetDefaultAction,
pfcSimpRep.CreateNewSimpRepInstructions.GetNewSimpName,
and pfcSimpRep.SimpRepInstructions.GetIsTemporary methods
return the associated values contained in the
pfcSimpRep.SimpRepInstructionsobject.

348 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcSimpRep.SimpRepInstructions.GetItems returns all
the items that make up the simplified representation.

Modifying Simplified Representations
Methods Introduced:

• pfcSimpRep.SimpRep.GetInstructions
• pfcSimpRep.SimpRep.SetInstructions
• pfcSimpRep.SimpRepInstructions.SetDefaultAction
• pfcSimpRep.CreateNewSimpRepInstructions.SetNewSimpName
• pfcSimpRep.SimpRepInstructions.SetIsTemporary
Using J-Link, you can modify the attributes of existing simplified representations.
After you create or retrieve a simplified representation, you can make calls to the
methods listed in this section to designate new values for the fields in the
pfcSimpRep.SimpRepInstructions object.
To modify an existing simplified representation retrieve it and then get the
pfcSimpRep.SimpRepInstructions object by calling
pfcSimpRep.SimpRep.GetInstructions. If you created the
representation programmatically within the same application, the
pfcSimpRep.SimpRepInstructions object is already available. Once you
have modified the data object, reassign it to the corresponding simplified
representation by calling the method
pfcSimpRep.SimpRep.SetInstructions.

Adding Items to and Deleting Items from a
Simplified Representation
Methods Introduced:

• pfcSimpRep.SimpRepInstructions.SetItems
• pfcSimpRep.pfcSimpRep.SimpRepItem_Create
• pfcSimpRep.SimpRep.SetInstructions
• pfcSimpRep.pfcSimpRep.SimpRepReverse_Create
• pfcSimpRep.pfcSimpRep.SimpRepInclude_Create
• pfcSimpRep.pfcSimpRep.SimpRepExclude_Create
• pfcSimpRep.pfcSimpRep.SimpRepSubstitute_Create
• pfcSimpRep.pfcSimpRep.SimpRepGeom_Create
• pfcSimpRep.pfcSimpRep.SimpRepGraphics_Create

Simplified Representations 349

You can add and delete items from the list of components in a simplified
representation using J-Link. If you created a simplified representation using the
option Exclude as the default rule, you would generate a list containing the items
you want to include. Similarly, if the default rule for a simplified representation is
Include, you can add the items that you want to be excluded from the simplified
representation to the list, setting the value of the
pfcSimpRep.SimpRepActionType to SIMPREP_EXCLUDE.

How to Add Items
1. Get the pfcSimpRep.SimpRepInstructions object, as described in

the previous section.
2. Specify the action to be applied to the item with a call to one of following

methods.
3. Initialize a pfcSimpRep.SimpRepItem object for the item by calling the

method pfcSimpRep.pfcSimpRep.SimpRepItem_Create.
4. Add the item to the pfcSimpRep.SimpRepItem sequence. Put the new

pfcSimpRep.SimpRepInstructions using
pfcSimpRep.SimpRepInstructions.SetItems.

5. Reassign the pfcSimpRep.SimpRepInstructions object to the
corresponding pfcSimpRep.SimpRep object by calling
pfcSimpRep.SimpRep.SetInstructions

How to Remove Items
Follow the procedure above, except remove the unwanted
pfcSimpRep.SimpRepItem from the sequence.

Simplified Representation Utilities
Methods Introduced:

• pfcModelItem.ModelItemOwner.ListItems
• pfcModelItem.ModelItemOwner.GetItemById
• pfcSolid.Solid.GetSimpRep
• pfcSolid.Solid.SelectSimpRep
• pfcSolid.Solid.ActivateSimpRep
• pfcSolid.Solid.GetActiveSimpRep
This section describes the utility methods that relate to simplified representations.
The method pfcModelItem.ModelItemOwner.ListItems can list all of
the simplified representations in a Solid.

350 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcModelItem.ModelItemOwner.GetItemById initializes
a pfcSimpRep.SimpRep object. It takes an integer id.

Note
J-Link supports simplified representation of Assemblies only, not Parts.

The method pfcSolid.Solid.GetSimpRep initializes a
pfcSimpRep.SimpRep object. The method takes the following arguments:

• SimpRepname The name of the simplified representation in the solid. If you
specify this argument, the method ignores the rep_id.

The method pfcSolid.Solid.SelectSimpRep creates a PTC Creo
Parametric menu to enable interactive selection. The method takes the owning
solid as input, and outputs the object to the selected simplified representation. If
you choose the Quit menu button, the method throws an exception
XToolkitUserAbort

The methods pfcSolid.Solid.GetActiveSimpRep and
pfcSolid.Solid.ActivateSimpRep enable you to find and get the
currently active simplified representation, respectively. Given an assembly object,
pfcSolid.Solid.GetActiveSimpRep returns the object to the currently
active simplified representation. If the current representation is the master
representation, the return is null.
The method pfcSolid.Solid.ActivateSimpRep activates the requested
simplified representation.
To set a simplified representation to be the currently displayed model, you must
also call pfcModel.ModelDisplay.

Simplified Representations 351

25
Asynchronous Mode

Overview .. 354
Simple Asynchronous Mode... 355
Starting and Stopping PTC Creo Parametric.. 356
Connecting to a PTC Creo Parametric Process.. 357
Full Asynchronous Mode.. 359
Troubleshooting Asynchronous J-Link... 361

This chapter explains how to use J-Link in Asynchronous Mode.

353

Overview
Asynchronous mode is a multiprocess mode in which the J-Link application and
PTC Creo Parametric can perform concurrent operations. Unlike the synchronous
modes, asynchronous mode uses JNI (Java Native Interface) and RPC (remote
procedure calls) as the means of communication between the application and PTC
Creo Parametric.
Another important difference between synchronous and asynchronous modes is in
the startup of the J-Link application. In synchronous mode, the application is
started by PTC Creo Parametric, based on information contained in the registry
file. In asynchronous mode, the application (containing its own main() method) is
started independently of PTC Creo Parametric and subsequently either starts or
connects to a PTC Creo Parametric process.

Note
An asynchronous application that starts PTC Creo Parametric will not appear
in the Auxiliary Applications dialog box.

The use of RPC causes asynchronous mode to perform more slowly than
synchronous mode. For this reason, apply asynchronous mode only when it is
needed.
An asynchronous mode is not the only mode in which your application has
explicit control over PTC Creo Parametric. Because PTC Creo Parametric calls a
Java start method when an application starts, your synchronous application can
take control by initiating all operations in Java start method (thus interrupting any
user interaction). This technique is important when you want to run PTC Creo
Parametric in batch mode.
Depending on how your asynchronous application handles messages from PTC
Creo Parametric, your application can be classified as either simple or full.
The following sections describe simple and full asynchronous mode.

Setting up an Asynchronous J-Link Application
For your asynchronous application to communicate with PTC Creo Parametric,
you must set the environment variable PRO_COMM_MSG_EXE to the full path of
the executable pro_comm_msg.
On Windows systems, set PRO_COMM_MSG_EXE in the Environment section of
the System window that you access from the Control Panel.

354 PTC Creo® Parametric 3.0 J-Link User’s Guide

To support the asynchronous mode, use the jar file pfcasync.jar in your
CLASSPATH. This file is available at <creo_loadpoint>\<datecode>\
Common Files\text\java. This file contains all required classes for running
with asynchronous J-Link.

Note
Asynchronous applications are incompatible with the classes in the
synchronous .jar files. You must build and run your application classes
specifically to run in asynchronous mode.

You must add the asynchronous library, pfcasyncmt, to your environment that
launches the J-Link application. This library is stored in <creo_loadpoint>\
<datecode>\Common Files\<machine type>\<lib>.

Note
The library has prefix and extension specifiers for a dynamically loaded
library for the platform being used.

System Library Path
i486_nt, x86e_win64 pfcasyncmt.dll set PATH=<creo_

loadpoint>
\<datecode>\Common
Files\<machine Type>\
lib;%PATH%

Asynchronous J-Link applications must load the library prior to calls made to the
asynchronous methods. This can be accomplished by adding the following line to
your application.
System.loadLibrary (“pfcasyncmt”)

Simple Asynchronous Mode
A simple asynchronous application does not implement a way to handle
requests from PTC Creo Parametric. Therefore, J-Link cannot plant listeners to be
notified when events happen in PTC Creo Parametric. Consequently, PTC Creo
Parametric cannot invoke the methods that must be supplied when you add, for
example, menu buttons to PTC Creo Parametric.
Despite this limitation, a simple asynchronous mode application can be used to
automate processes in PTC Creo Parametric. The application may either start or
connect to an existing PTC Creo Parametric session, and may access PTC Creo

Asynchronous Mode 355

Parametric in interactive or in a non graphical, non interactive mode. When PTC
Creo Parametric is running with graphics, it is an interactive process available to
the user.
When you design a J-Link application to run in simple asynchronous mode, keep
the following points in mind:

• The PTC Creo Parametric process and the application perform operations
concurrently.

• None of the application’s listener methods can be invoked by PTC Creo
Parametric.

Simple asynchronous mode supports normal J-Link methods but does not support
ActionListeners. These considerations imply that the J-Link application does not
know the state (the current mode, for example) of the PTC Creo Parametric
process at any moment.

Starting and Stopping PTC Creo
Parametric
The following methods are used to start and stop PTC Creo Parametric when
using J-Link applications.
Methods Introduced:

• pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_Start
• pfcAsyncConnection.AsyncConnection.End
A simple asynchronous application can spawn and connect to a PTC Creo
Parametric process with the method
pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_
Start. The PTC Creo Parametric process listens for requests from the
application and acts on the requests at suitable breakpoints, usually between
commands.
Unlike applications running in synchronous mode, asynchronous applications are
not terminated when PTC Creo Parametric terminates. This is useful when the
application needs to perform PTC Creo Parametric operations intermittently, and
therefore, must start and stop PTC Creo Parametric more than once during a
session.
The application can connect to or start only one PTC Creo Parametric session at
any time. If the J-Link application spawns a second session, connection to the first
session is lost.
To end any PTC Creo Parametric process that the application is connected to, call
the method pfcAsyncConnection.AsyncConnection.End.

356 PTC Creo® Parametric 3.0 J-Link User’s Guide

Setting Up a Noninteractive Session
You can spawn a PTC Creo Parametric session that is both noninteractive and
nongraphical. In asynchronous mode, include the following strings in the PTC
Creo Parametric start or connect call to
pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_
Start:

• -g:no_graphics—Turn off the graphics display.
• -i:rpc_input—Causes PTC Creo Parametric to expect input from your

asynchronous application only.

Note
Both of these arguments are required, but the order is not important.

The syntax of the call for a noninteractive, nongraphical session is as follows:
pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_Start
("pro -g:no_graphics -i:rpc_input",<text_dir>);

where pro is the command to start PTC Creo Parametric.

Example Code
The sample code in the file pfcAsyncStartExample.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkasyncexamples
demonstrates how to use J-Link in asynchronous mode. The method starts PTC
Creo Parametric asynchronously, retrieves a Session, and opens a model in PTC
Creo Parametric.

Connecting to a PTC Creo Parametric
Process
Methods Introduced:

• pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_Connect
• pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_

GetActiveConnection
• pfcAsyncConnection.AsyncConnection.Disconnect
A simple asynchronous application can also connect to a PTC Creo Parametric
process that is already running on a local computer. The method
pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_
Connect performs this connection. This method fails to connect if multiple PTC

Asynchronous Mode 357

Creo Parametric sessions are running. If several versions of PTC Creo Parametric
are running on the same computer, try to connect by specifying user and display
parameters. However, if several versions of PTC Creo Parametric are running in
the same user and display parameters, the connection may not be possible.
pfcAsyncConnection.pfcAsyncConnection.AsyncConnection
_GetActiveConnection returns the current connection to a PTC Creo
Parametric session.
To disconnect from a PTC Creo Parametric process, call the method
pfcAsyncConnection.AsyncConnection.Disconnect. This method
can be called only if you used the method
pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_
Connect to get the connection.
The connection to a PTC Creo Parametric process uses information provided by
the name service daemon. The name service daemon accepts and supplies
information about the processes running on the specified hosts. The application
manager, for example, uses the name service when it starts up PTC Creo
Parametric and other processes. The name service daemon is set up as part of the
PTC Creo Parametric installation.

Connecting Via Connection ID
Methods Introduced:

• pfcAsyncConnection.AsyncConnection.GetConnectionId
• pfcAsyncConnection.ConnectionId.GetExternalRep
• pfcSession.BaseSession.GetConnectionId
• pfcAsyncConnection.pfcAsyncConnection.ConnectionId_Create
• pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_

ConnectById
Each PTC Creo Parametric process maintains a unique identity for
communications purposes. Use this ID to reconnect to a PTC Creo Parametric
process.
The method
pfcAsyncConnection.AsyncConnection.GetConnectionId returns
a data structure containing the connection ID.
If the connection id must be passed to some other application the method
pfcAsyncConnection.ConnectionId.GetExternalRep provides the
string external representation for the connection ID.
The method pfcSession.BaseSession.GetConnectionId provides
access to the asynchronous connection ID for the current PTC Creo Parametric
session. This ID can be passed to any asynchronous mode application that needs
to connect to the current session of PTC Creo Parametric.

358 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method
pfcAsyncConnection.pfcAsyncConnection.ConnectionId_
Create takes a string representation and creates a ConnectionId data object.
The method pfcAsyncConnection.pfcAsyncConnection.
AsyncConnection_ConnectById connects to PTC Creo Parametric at the
specified connection ID.

Note
Connection IDs are unique for each PTC Creo Parametric process and are not
maintained after you quit PTC Creo Parametric.

Status of a PTC Creo Parametric Process
Method Introduced:

• pfcAsyncConnection.AsyncConnection.IsRunning
To find out whether a PTC Creo Parametric process is running, use the method
pfcAsyncConnectionAsyncConnection.IsRunning.

Getting the Session Object
Method Introduced:

• pfcAsyncConnection.AsyncConnection.GetSession
The method pfcAsyncConnection.AsyncConnection.GetSession
returns the session object representing the PTC Creo Parametric session. Use this
object to access the contents of the PTC Creo Parametric session. See the Session
Objects on page 65 chapter for additional information.

Full Asynchronous Mode
Full asynchronous mode is identical to the simple asynchronous mode except in
the way the J-Link application handles requests from PTC Creo Parametric. In
simple asynchronous mode, it is not possible to process these requests. In full
asynchronous mode, the application implements a control loop that ‘‘listens’’ for
messages from PTC Creo Parametric. As a result, PTC Creo Parametric can call
functions in the application, including callback functions for menu buttons and
notifications.

Asynchronous Mode 359

Note
Using full asynchronous mode requires starting or connecting to PTC Creo
Parametric using the methods described in the previous sections. The
difference is that the application must provide an event loop to process calls
from menu buttons and listeners.

Methods Introduced:

• pfcAsyncConnection.AsyncConnection.EventProcess
• pfcAsyncConnection.AsyncConnection.WaitForEvents
• pfcAsyncConnection.AsyncConnection.InterruptEventProcessing
• pfcAsyncConnection.AsyncActionListener.OnTerminate
The control loop of an application running in full asynchronous mode must
contain a call to the method
pfcAsyncConnection.AsyncConnection.EventProcess, which
takes no arguments. This method allows the application to respond to messages
sent from PTC Creo Parametric. For example, if the user selects a menu button
that is added by your application,
pfcAsyncConnection.AsyncConnection.EventProcess processes
the call to your listener and returns when the call completes. For more information
on listeners and adding menu buttons, see the Session Objects on page 65 chapter.
The method
pfcAsyncConnection.AsyncConnection.WaitForEvents provides
an alternative to the development of an event processing loop in a full
asynchronous mode application. Call this function to have the application wait in
a loop for events to be passed from PTC Creo Parametric. No other processing
takes place while the application is waiting. The loop continues until
pfcAsyncConnection.AsyncConnection.InterruptEventPro
cessing is called from a J-Link callback action, or until the application detects
the termination of PTC Creo Parametric.
It is often necessary for your full asynchronous application to be notified of the
termination of the PTC Creo Parametric process. In particular, your control loop
need not continue to listen for PTC Creo Parametric messages if PTC Creo
Parametric is no longer running.
An AsyncConnection object can be assigned an Action Listener to bind a
termination action that is executed upon the termination of PTC Creo Parametric.
The method
pfcAsyncConnection.AsyncActionListener.OnTerminate

360 PTC Creo® Parametric 3.0 J-Link User’s Guide

handles the termination that you must override. It sends a member of the class
pfcAsyncConnection.TerminationStatus, which is one of the
following:

• TERM_EXIT—Normal exit (the user clicks Exit on the menu).
• TERM_ABNORMAL—Quit with error status.
• TERM_SIGNAL—Fatal signal raised.
Your application can interpret the termination type and take appropriate action.
For more information on Action Listeners, see the Action Listeners on page 291
chapter.

Example Code
The sample code in the file pfcAsyncFullExample.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkasyncexamples is
a fully asynchronous application. It follows the procedure for a full asynchronous
application:

1. The application establishes listeners for PTC Creo Parametric events, in this
case, the menu button and the termination listener.

2. The application goes into a control loop calling EventProcess which allows
the application to respond to the PTC Creo Parametric events.

Message and Menu File
J-Link
J-Link
#
#
AsyncApp
Hit me!
#
#
AsyncAppHelp
Launch async application callback
#
#

Troubleshooting Asynchronous J-Link

General Problems
UnsatisfiedLinkError in System.loadLibrary ("pfcasyncmt")
Add $PRO_DIRECTORY/$PRO_MACHINE_TYPE/lib to your library path:

Asynchronous Mode 361

Windows and Windows XP 64bit:$PATH (separated with semicolon)
Java gives this exception when it has any trouble loading the library, not just when
the library is not in the library path. If you are working in a non-standard
configuration make sure that all of these libraries are in your library path (subject
to your OS naming, for example cipstdmtz.dll on Windows):

• pfcasyncmt

• jnicipjavamtz

• jniadaptsmtz

• cipstdmtz

• ctoolsmtz

• baselibmtz

• i18nmtz

Look at what is printed on stdout/stderr. There can be unresolved symbols.
Windows usually reports unresolved symbols in a pop-up dialog so you will see it
immediately. If that does not help, then enable the debug output from the
operating system's dynamic loader, start with reading the main page.

UnsatisfiedLinkError on first call to a JLink method
Ensure that you executed the System.loadLibrary ("pfcasyncmt"). Put
a debug printout right after it to ensure it gets loaded.
In most cases the J-Link jar files (pfcasync.jar) are loaded using a non-
system class loader. Java lets you load native libraries from classes loaded with
either the system class loader (pfcasync.jarmust be in the default
CLASSPATH), or a signed class loader. Java will not throw an exception on
System.loadLibrary. For this reason everything will appear to be fine until
the first call to a native method. At this point you will get an
UnsatisfiedLinkError. Add J-Link jar files to the default CLASSPATH,
usually to the CLASSPATH environment or an appropriate place in your servlet
engine's configuration.

NullPointerException from a JLink method early in program execution
Make sure that you have jar files from only one version of J-Link in your
CLASSPATH. If you have both async and sync jar files, the VM will pick up
incorrect classes.

• Sync J-Link jars:
• Async J-Link jars:

362 PTC Creo® Parametric 3.0 J-Link User’s Guide

pfcExceptions.XToolkitNotFound exception on the first call to
pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_Start
on Windows
Make sure your PTC Creo Parametric command is correct. If it's not a full path to
a script/executable, make sure $PATH is set correctly. Try full path in the
command: if it works, then your $PATHis incorrect.

pfcExceptions.XToolkitGeneralError or pfcExceptions.CommError on
the first call to pfcAsyncConnection.pfcAsyncConnection.
AsyncConnection_Start or pfcAsyncConnection.
pfcAsyncConnection.AsyncConnection_Connect
• Make sure the environment variable PRO_COMM_MSG_EXE is set to full path

to pro_comm_msg, including file name, including .exe on Windows.
• Make sure the environment variable PRO_DIRECTORY is set to PTC Creo

Parametric installation directory.
• Make sure name service () is running.

pfcAsyncConnection.pfcAsyncConnection.AsyncConnection_Start
hangs, even though PTC Creo Parametric already started
Make sure name service () is also started with PTC Creo Parametric. Open Task
Manager and look for nmsd.exe in the process listing.

Problems Specific to Servlets and JSP
pfcExceptions.XToolkitGeneralError or pfcExceptions.CommError on
the first call to pfcAsyncConnection.pfcAsyncConnection.
AsyncConnection_Start or pfcAsyncConnection.
pfcAsyncConnection.AsyncConnection_Connect
• Make sure you have PRO_COMM_MSG_EXE and PRO_DIRECTORY set

correctly.
• On Windows, servlet engine deployments typically belong to the SYSTEM

account and not a local user account. So, you must set PRO_COMM_MSG_EXE
and PRO_DIRECTORY in your system environment and restart Windows to
cause this change to take effect.

Asynchronous Mode 363

26
Task Based Application Libraries

Managing Application Arguments ... 366
Launching a PTC Creo Parametric TOOLKIT DLL ... 367
Creating J-Link Task Libraries .. 370
Launching Tasks from J-Link Task Libraries... 371

Applications created using different PTC Creo Parametric API products are
interoperable. These products use PTC Creo Parametric as the medium of
interaction, eliminating the task of writing native-platform specific interactions
between different programming languages.
Application interoperability allows J-Link applications to call into PTC Creo
Parametric TOOLKIT from areas not covered in the native interface. It allows you
to put a Java front end on legacy PTC Creo Parametric TOOLKIT applications,
and also allows you to use J-Link applications and listeners in conjunction with a
or asynchronous J-Link application.
J-Link can call PTC Creo Parametric web pages belonging to Web.Link, and
functions in PTC Creo Parametric TOOLKIT DLLs. J-Link synchronous
applications can also register tasks for use by other applications.

365

Managing Application Arguments
J-Link passes application data to and from tasks in other applications as members
of a sequence of pfcArgument.Argument objects. Application arguments
consist of a label and a value. The value may be of any one of the following types:

• Integer
• Double
• Boolean
• ASCII string (a non-encoded string, provided for compatibility with arguments

provided from C applications)
• String (a fully encoded string)
• pfcSelect.Selection (a selection of an item in a PTC Creo Parametric

session)
• pfcBase.Transform3D (a coordinate system transformation matrix)
Methods Introduced:

• pfcArgument.pfcArgument.CreateIntArgValue
• pfcArgument.pfcArgument.CreateDoubleArgValue
• pfcArgument.pfcArgument.CreateBoolArgValue
• pfcArgument.pfcArgument.CreateASCIIStringArgValue
• pfcArgument.pfcArgument.CreateStringArgValue
• pfcArgument.pfcArgument.CreateSelectionArgValue
• pfcArgument.pfcArgument.CreateTransformArgValue
• pfcArgument.ArgValue.Getdiscr
• pfcArgument.ArgValue.GetIntValue
• pfcArgument.ArgValue.SetIntValue
• pfcArgument.ArgValue.GetDoubleValue
• pfcArgument.ArgValue.SetDoubleValue
• pfcArgument.ArgValue.GetBoolValue
• pfcArgument.ArgValue.SetBoolValue
• pfcArgument.ArgValue.GetASCIIStringValue
• pfcArgument.ArgValue.SetASCIIStringValue
• pfcArgument.ArgValue.GetStringValue
• pfcArgument.ArgValue.SetStringValue
• pfcArgument.ArgValue.GetSelectionValue
• pfcArgument.ArgValue.SetSelectionValue

366 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcArgument.ArgValue.GetTransformValue
• pfcArgument.ArgValue.SetTransformValue
The class pfcArgument ArgValue contains one of the seven types of values.
J-Link provides different methods to create each of the seven types of argument
values.
The method pfcArgument.ArgValue.Getdiscr returns the type of value
contained in the argument value object.
Use the methods listed above to access and modify the argument values.

Modifying Arguments
Methods Introduced:

• pfcArgument.pfcArgument.Argument_Create
• pfcArgument.Arguments.create
• pfcArgument.Argument.GetLabel
• pfcArgument.Argument.SetLabel
• pfcArgument.Argument.GetValue
• pfcArgument.Argument.SetValue
The method pfcArgument.pfcArgument.Argument_Create creates a
new argument. Provide a name and value as the input arguments of this method.
The method pfcArgument.Arguments.create creates a new empty
sequence of task arguments.
The method pfcArgument.Argument.GetLabel returns the label of the
argument. The method pfcArgument.Argument.SetLabel sets the label
of the argument.
The method pfcArgument.Argument.GetValue returns the value of the
argument. The method pfcArgument.Argument.SetValue sets the value
of the argument.

Launching a PTC Creo Parametric
TOOLKIT DLL
The methods described in this section enable J-Link user to register and launch a
PTC Creo Parametric TOOLKIT DLL from a J-Link application. The ability to
launch and control a PTC Creo Parametric TOOLKIT application enables the
following:

Task Based Application Libraries 367

• Reuse of existing PTC Creo Parametric TOOLKIT code with J-Link
applications.

• ATB operations.
Methods Introduced:

• pfcSession.BaseSession.LoadProToolkitDll
• pfcSession.BaseSession.LoadProToolkitLegacyDll
• pfcSession.BaseSession.GetProToolkitDll
• pfcProToolkit.Dll.ExecuteFunction
• pfcProToolkit.Dll.GetId
• pfcProToolkit.Dll.IsActive
• pfcProToolkit.Dll.Unload
Use the method pfcSession.BaseSession.LoadProToolkitDll to
register and start a PTC Creo Parametric TOOLKIT DLL. The input parameters of
this method are similar to the fields of a registry file and are as follows:

• ApplicationName—The name of the application to initialize.
• DllPath—The full path to the DLL binary file.
• TextPath—The path to the application’s message and user interface text files.
• UserDisplay—Set this parameter to true to register the application in the

PTC Creo Parametric user interface and to see error messages if the
application fails. If this parameter is false, the application will be invisible
to the user.

The application's user_initialize() function is called when the application
is started. The method returns a handle to the loaded PTC Creo Parametric
TOOLKIT DLL.
In order to register and start a legacy Pro/TOOLKIT DLL that is not Unicode-
compliant, use the method
pfcSession.BaseSession.LoadProToolkitLegacyDll. This
method conveys to PTC Creo Parametric that the loaded DLL application is not
Unicode-compliant and built in the pre-Wildfire 4.0 environment. It takes the
same input parameters as the earlier method
pfcSession.BaseSession.LoadProToolkitDll.

368 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
The method
pfcSession.BaseSession.LoadProToolkitLegacyDll must be
used only by a pre-Wildfire 4.0 J-Link application to load a pre-Wildfire 4.0
Pro/TOOLKIT DLL.

Use the method pfcSession.BaseSession.GetProToolkitDll to
obtain a PTC Creo Parametric TOOLKIT DLL handle. Specify the Application_
Id, that is, the DLL’s identifier string as the input parameter of this method. The
method returns the DLL object or null if the DLL was not in session. The
Application_Id can be determined as follows:

• Use the function ProToolkitDllIdGet() within the DLL application to
get a string representation of the DLL application. Pass NULL to the first
argument of ProToolkitDllIdGet() to get the string identifier for the
calling application.

• Use the Get method for the Id attribute in the DLL interface. The method
pfcProToolkit.Dll.GetId() returns the DLL identifier string.

Use the method pfcProToolkit.Dll.ExecuteFunction to call a
properly designated function in the PTC Creo Parametric TOOLKIT DLL library.
The input parameters of this method are:

• FunctionName—Name of the function in the PTC Creo Parametric TOOLKIT
DLL application.

• InputArguments—Input arguments to be passed to the library function.
The method returns an object of interface
com.ptc.pfc.pfcProToolkit.FunctionReturn. This interface
contains data returned by a PTC Creo Parametric TOOLKIT function call. The
object contains the return value, as integer, of the executed function and the output
arguments passed back from the function call.
The method pfcProToolkit.Dll.IsActive determines whether a PTC
Creo Parametric TOOLKIT DLL previously loaded by the method
pfcSession.BaseSession.LoadProToolkitDll is still active.
The method pfcProToolkit.Dll.Unload is used to shutdown a PTC Creo
Parametric TOOLKIT DLL previously loaded by the method
pfcSession.BaseSession.LoadProToolkitDll and the application's
user_terminate() function is called.

Task Based Application Libraries 369

Creating J-Link Task Libraries
The methods described in this section allow you to setup J-Link libraries to be
used and called from other custom PTC Creo Parametric applications in PTC Creo
Parametric TOOLKIT or J-Link.
J-Link task libraries must be compiled using the synchronous J-Link library called
pfc.jar. Each task must be registered within the application for it to be called from
external applications. Provide the following information to the application to use
your J-Link application as a task library:

1. The required CLASSPATH settings.
2. The name of the invocation class containing the static start and stop methods.
3. The name of static Start() and Stop() methods
4. The path to the text files, if the application deals with messages or menus.
5. The registration name of the task.
6. The input argument names and types.
7. The output argument names and types.
Methods Introduced:

• pfcSession.BaseSession.RegisterTask
• pfcJLink.JLinkTaskListener.OnExecute
• pfcSession.BaseSession.UnregisterTask
Use the method pfcSession.BaseSession.RegisterTask to register
the task or tasks to be executed. This method has two input parameters:

• The name of the task. This name must be provided by calling applications.
• Object implementing the interface JLinkTaskListener that has the

pfcJLinkTaskListener.OnExecute callback method overridden. The
class pfcLink.DefaultJLinkTaskListener makes extending the
interface easier.

The method pfcJLinkTaskListener.OnExecute is called when the
calling application tries to invoke a registered task. This method must contain the
body of the J-Link task. The method signature includes a sequence of input
arguments and allows you to return a sequence of output arguments to the caller.
Use the method pfcSession.BaseSession.UnregisterTask to delete a
task that is no longer needed. This method must be called when you exit the
application using the application's stop method.

370 PTC Creo® Parametric 3.0 J-Link User’s Guide

Launching Tasks from J-Link Task
Libraries
The methods described in this section allow you to launch tasks from a predefined
J-Link task library.
Methods Introduced:

• pfcSession.BaseSession.StartJLinkApplication
• pfcJLink.JLinkApplication.ExecuteTask
• pfcJLink.JLinkApplication.IsActive
• pfcJLink.JLinkApplication.Stop
Use the method pfcSession.BaseSession.StartJLinkApplication
to start a J-Link application. The input parameters of this method are similar to the
fields of a registry file and are as follows:

• ApplicationName—Assigns a unique name to this J-Link application.
• ClassName—Specifies the name of the Java class that contains the J-Link

application’s start and stop method. This should be a fully qualified Java
package and class name.

• StartMethod—Specifies the start method of the J-Link application.
• StopMethod—Specifies the stop method of the J-Link application.
• AdditionalClassPath—Specifies the locations of packages and classes that

must be loaded when starting this J-Link application. If this parameter is
specified as null, the default classpath locations are used.

• TextPath—Specifies the application text path for menus and messages. If this
parameter is specified as null, the default text locations are used.

• UserDisplay—Specifies whether to display the application in the Auxiliary
Applications dialog box in PTC Creo Parametric.

Upon starting the application, the static start() method is invoked. The method
returns a JLink.JLinkApplication referring to the J-Link application.
The method pfcJLink.JLinkApplication.ExecuteTask calls a
registered task method in a J-Link application. The input parameters of this
method are:

• Name of the task to be executed.
• A sequence of name value pair arguments contained by the interface

pfcArguments.Arguments.
The method outputs an array of output arguments.These arguments are returned
by the task’s implementation of the pfcJLinkTaskListener.OnExecute
call back method.

Task Based Application Libraries 371

The method pfcJLink.JLinkApplication.IsActive returns a True
value if the application specified by the pfcJLink.JLinkApplication
object is active.
The method pfcJLink.JLinkApplication.Stop stops the application
specified by the pfcJLink.JLinkApplication object. This method
activates the application’s static Stop() method.

372 PTC Creo® Parametric 3.0 J-Link User’s Guide

27
Graphics

Overview .. 374
Getting Mouse Input .. 374
Displaying Graphics... 375

This chapter covers J-Link Graphics including displaying lists, displaying text and
using the mouse.

373

Overview
The methods described in this section allow you to draw temporary graphics in a
display window. Methods that are identified as 2D are used to draw entities (arcs,
polygons, and text) in screen coordinates. Other entities may be drawn using the
current model’s coordinate system or the screen coordinate system’s lines, circles,
and polylines. Methods are also included for manipulating text properties and
accessing mouse inputs.

Getting Mouse Input
The following methods are used to read the mouse position in screen coordinates
with the mouse button depressed. Each method outputs the position and an
enumerated type description of which mouse button was pressed when the mouse
was at that position. These values are contained in the
pfcSession.MouseStatus.
The enumerated values are defined in pfcSession.MouseButton and are as
follows:

• MOUSE_BTN_LEFT

• MOUSE_BTN_RIGHT

• MOUSE_BTN_MIDDLE

• MOUSE_BTN_LEFT_DOUBLECLICK

Methods Introduced:

• pfcSession.Session.UIGetNextMousePick
• pfcSession.Session.UIGetCurrentMouseStatus
The method pfcSession.Session.UIGetNextMousePick returns the
mouse position when you press a mouse button. The input argument is the mouse
button that you expect the user to select.
The method pfcSession.Session.UIGetCurrentMouseStatus
returns a value whenever the mouse is moved or a button is pressed. With this
method a button does not have to be pressed for a value to be returned. You can
use an input argument to flag whether or not the returned positions are snapped to
the window grid.

Drawing a Mouse Box
This method allows you to draw a mouse box.
Method Introduced:

374 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcSession.Session.UIPickMouseBox
The method pfcSession.Session.UIPickMouseBox draws a dynamic
rectangle from a specified point in screen coordinates to the current mouse
position until the user presses the left mouse button. The return value for this
method is of the type pfcBase.Outline3D.
You can supply the first corner location programmatically or you can allow the
user to select both corners of the box.

Displaying Graphics
All the methods in this section draw graphics in the PTC Creo Parametric current
window and use the color and linestyle set by calls to
pfcSession.BaseSession.SetStdColorFromRGB and
pfcSession.BaseSession.SetLineStyle. The methods draw the
graphics in the PTC Creo Parametric graphics color. The default graphics color is
white.
The methods in this section are called using the pfcDisplay.Display. This
is extended by the pfcSession.BaseSession . This architecture allows you
to call all these methods on any Session object.
By default graphic elements are not stored in the PTC Creo Parametric display
list. Thus, they do not get redrawn by PTC Creo Parametric when the user selects
View, Repaint or View, Orientation. However, if you store graphic elements in
either 2-D or 3-D display lists, PTC Creo Parametric will redraw them when
appropriate. See the section on Display Lists and Graphics on page for more
information.
Methods Introduced:

• pfcDisplay.Display.SetPenPosition
• pfcDisplay.Display.DrawLine
• pfcDisplay.Display.DrawPolyline
• pfcDisplay.Display.DrawCircle
• pfcDisplay.Display.DrawArc2D
• pfcDisplay.Display.DrawPolygon2D
The method pfcDisplay.Display.SetPenPosition sets the point at
which you want to start drawing a line. The function
pfcDisplay.Display.DrawLine draws a line to the given point from the
position given in the last call to either of the two functions. Call
pfcDisplay.Display.SetPenPosition for the start of the polyline, and
pfcDisplay.Display.DrawLine for each vertex. If you use these methods
in two-dimensional modes, use screen coordinates instead of solid coordinates.

Graphics 375

The method pfcDisplay.Display.DrawCircle uses solid coordinates for
the center of the circle and the radius value. The circle will be placed to the XY
plane of the model.
The method pfcDisplay.Display.DrawPolyline also draws polylines,
using an array to define the polyline.
In two-dimensional models the Display Graphics methods draw graphics at the
specified screen coordinates.
The method pfcDisplay.Display.DrawPolygon2D draws a polygon in
screen coordinates. The method pfcDisplay.Display.DrawArc2D draws
an arc in screen coordinates.

Controlling Graphics Display
MethodsIntroduced:

• pfcDisplay.Display.GetCurrentGraphicsColor
• pfcDisplay.Display.SetCurrentGraphicsColor
• pfcDisplay.Display.GetCurrentGraphicsMode
• pfcDisplay.Display.SetCurrentGraphicsMode
The method pfcDisplay.Display.GetCurrentGraphicsColor
returns the PTC Creo Parametric standard color used to display graphics. The PTC
Creo Parametric default is COLOR_DRAWING (white). The method
pfcDisplay.Display.SetCurrentGraphicsColor allows you to
change the color used to draw subsequent graphics.
The method pfcDisplay.Display.GetCurrentGraphicsMode returns
the mode used to draw graphics:

• DRAW_GRAPHICS_NORMAL— PTC Creo Parametric draws graphics in the
required color in each invocation.

• DRAW_GRAPHICS_COMPLEMENT—PTC Creo Parametric draws graphics
normally, but will erase graphics drawn a second time in the same location.
This allows you to create rubber band lines.

The method pfcDisplay.Display.GetCurrentGraphicsMode allows
you to set the current graphics mode.

Example Code: Creating Graphics On Screen
The sample code in the file pfcDisplayExamples.java located at <creo_
jlink_loadpoint>/jlink_appls/jlinkexamples demonstrates the
use of mouse-tracking methods to draw graphics on the screen. The static method

376 PTC Creo® Parametric 3.0 J-Link User’s Guide

DrawRubberbandLine prompts the user to pick a screen point. The example
uses the ‘complement mode’ to cause the line to display and erase as the user
moves the mouse around the window.

Note
This example uses the method transformPosition to convert the
coordinates into the 3D coordinate system of a solid model, if one is
displayed.

Display example text
%C PUSER Pick first location for rubberband line
Pick first location for rubberband line
#
#

Displaying Text in the Graphics Window
Method Introduced:

• pfcDisplay.Display.DrawText2D
The method pfcDisplay.Display.DrawText2D places text at a position
specified in screen coordinates. If you want to add text to a particular position on
the solid, you must transform the solid coordinates into screen coordinates by
using the view matrix.
PTC Creo Parametric and therefore are not redrawn when you select View,
Repaint. To notify thePTC Creo Parametric of these objects, create them inside the
OnDisplay() method of the Display Listener.

Controlling Text Attributes
MethodsIntroduced:

• pfcDisplay.Display.GetTextHeight
• pfcDisplay.Display.SetTextHeight
• pfcDisplay.Display.GetWidthFactor
• pfcDisplay.Display.SetWidthFactor
• pfcDisplay.Display.GetRotationAngle
• pfcDisplay.Display.SetRotationAngle

Graphics 377

• pfcDisplay.Display.GetSlantAngle
• pfcDisplay.Display.SetSlantAngle
These methods control the attributes of text added by calls to
pfcDisplay.Display.DrawText2D.
You can get and set the following information:

• Text height (in screen coordinates)
• Width ratio of each character, including the gap, as a proportion of the height
• Rotation angle of the whole text, in counterclockwise degrees
• Slant angle of the text, in clockwise degrees

Controlling Text Fonts
Methods Introduced:

• pfcDisplay.Display.GetDefaultFont
• pfcDisplay.Display.GetCurrentFont
• pfcDisplay.Display.SetCurrentFont
• pfcDisplay.Display.GetFontById
• pfcDisplay.Display.GetFontByName
The method pfcDisplay.Display.GetDefaultFont returns the default
PTC Creo Parametric text font. The text fonts are identified in PTC Creo
Parametric by names and by integer identifiers. To find a specific font, use the
methods pfcDisplay.Display.GetFontById or
pfcDisplay.Display.GetFontByName.

378 PTC Creo® Parametric 3.0 J-Link User’s Guide

28
External Data

External Data .. 380
Exceptions.. 383

This chapter explains using External Data in J-Link.

379

External Data
This chapter describes how to store and retrieve external data. External data
enables a J-Link application to store its own data in a PTC Creo Parametric
database in such a way that it is invisible to the PTC Creo Parametric user. This
method is different from other means of storage accessible through the PTC Creo
Parametric user interface.

Introduction to External Data
External data provides a way for the PTC Creo Parametric application to store its
own private information about a PTC Creo Parametric model within the model
file. The data is built and interrogated by the application as a workspace data
structure. It is saved to the model file when the model is saved, and retrieved
when the model is retrieved. The external data is otherwise ignored by PTC Creo
Parametric; the application has complete control over form and content.
The external data for a specific PTC Creo Parametric model is broken down into
classes and slots. A class is a named ‘‘bin’’ for your data, and identifies it as yours
so no other PTC Creo Parametric API application (or other classes in your own
application) will use it by mistake. An application usually needs only one class.
The class name should be unique for each application and describe the role of the
data in your application.
Each class contains a set of data slots. Each slot is identified by an identifier and
optionally, a name. A slot contains a single data item of one of the following
types:
J-Link Type Data
com.ptc.pfc.pfcExternal.EXTDATA_INTEGER integer
com.ptc.pfc.pfcExternal.EXTDATA_DOUBLE double
com.ptc.pfc.pfcExternal.EXTDATA_STRING string

The J-Link interfaces used to access external data in PTC Creo Parametric are:
J-Link Type Data Type
pfcExternal.ExternalDataAccess This is the top level object and is

created when attempting to access
external data.

pfcExternal.ExternalDataClass This is a class of external data and is
identified by a unique name.

pfcExternal.ExternalDataSlot This is a container for one item of
data. Each slot is stored in a class.

pfcExternal.ExternalData This is a compact data structure that
contains either an integer, double or
string value.

380 PTC Creo® Parametric 3.0 J-Link User’s Guide

Compatibility with PTC Creo Parametric TOOLKIT
J-Link and PTC Creo Parametric TOOLKIT share external data in the same
manner. J-Link external data is accessible by PTC Creo Parametric TOOLKIT and
the reverse is also true. However, an error will result if J-Link attempts to access
external data previously stored by PTC Creo Parametric TOOLKIT as a stream.

Accessing External Data
Methods Introduced:

• pfcModel.Model.AccessExternalData
• pfcModel.Model.TerminateExternalData
• pfcExternal.ExternalDataAccess.IsValid
The method pfcModel.Model.AccessExternalData prepares PTC Creo
Parametric to read external data from the model file. It returns the
pfcExternal.ExternalDataAccess object that is used to read and write
data. This method should be called only once for any given model in session.
The method pfcModel.Model.TerminateExternalData stops PTC
Creo Parametric from accessing external data in a model. When you use this
method all external data in the model will be removed. Permanent removal will
occur when the model is saved.

Note
If you need to preserve the external data created in session, you must save the
model before calling this function. Otherwise, your data will be lost.

The method pfcExternal.ExternalDataAccess.IsValid determines
if the ExternalDataAccess object can be used to read and write data.

Storing External Data
Methods Introduced:

• pfcExternal.ExternalDataAccess.CreateClass
• pfcExternal.ExternalDataClass.CreateSlot
• pfcExternal.ExternalDataSlot.SetValue
The first step in storing external data in a new class and slot is to set up a class
using the method pfcExternal.ExternalDataAccess.CreateClass,
which provides the class name. The method outputs
pfcExternal.ExternalDataClass, used by the application to reference
the class.

External Data 381

The next step is to use
pfcExternal.ExternalDataClass.CreateSlot to create an empty
data slot and input a slot name. The method outputs a
pfcExternal.ExternalDataSlot object to identify the new slot.

Note
Slot names cannot begin with a number.

The method pfcExternal.ExternalDataSlot.SetValue specifies the
data type of a slot and writes an item of that type to the slot. The input is a
pfcExternal.ExternalData object that you can create by calling any one
of the methods in the next section.

Initializing Data Objects
Methods Introduced:

• pfcExternal.pfcExternal.CreateIntExternalData
• pfcExternal.pfcExternal.CreateDoubleExternalData
• pfcExternal.pfcExternal.CreateStringExternalData
These methods initialize a pfcExternal.ExternalData object with the
appropriate data inputs.

Retrieving External Data
Methods Introduced:

• pfcExternal.ExternalDataAccess.LoadAll
• pfcExternal.ExternalDataAccess.ListClasses
• pfcExternal.ExternalDataClass.ListSlots
• pfcExternal.ExternalDataSlot.GetValue
• pfcExternal.ExternalData.Getdiscr
• pfcExternal.ExternalData.GetIntegerValue
• pfcExternal.ExternalData.GetDoubleValue
• pfcExternal.ExternalData.GetStringValue
For improved performance, external data is not loaded automatically into memory
with the model. When the model is in session, call the method
pfcExternal.ExternalDataAccess.LoadAll to retrieve all the

382 PTC Creo® Parametric 3.0 J-Link User’s Guide

external data for the specified model from the PTC Creo Parametric model file
and put it in the workspace. The method needs to be called only once to retrieve
all the data.
The method pfcExternal.ExternalDataAccess.ListClasses
returns a sequence of ExternalDataClasses registered in the model. The
method pfcExternal.ExternalDataClass.ListSlots provide a
sequence of ExternalDataSlots existing for each class.
The method pfcExternal.ExternalDataSlot.GetValue reads the
pfcExternal.ExternalData from a specified slot.
To find out a data type of a pfcExternal.ExternalData, call
pfcExternal.ExternalData.Getdiscr and then call one of these
methodsto get the data, depending on the data type:

• pfcExternal.ExternalData.GetIntegerValue

• pfcExternal.ExternalData.GetDoubleValue

• pfcExternal.ExternalData.GetStringValue

Example Code
The sample code in the file pfcExternalDataExamples.java located at
<creo_jlink_loadpoint>/jlink_appls/jlinkexamples
demonstrates the usage of external data in J-Link. It provides utility methods to
convert a Java hashtable (java.util.Hashtable) to a model's external data,
and to convert external data to a hashtable.
The conversion process makes some assumptions about the type of data to store in
each data slot:
+ Short, Byte, Integer = integer external data
+ Float, Double = double external data
+ Any other Java object = String external data using the object's toString()
method.

Exceptions
Most exceptions thrown by external data methods in J-Link extend
pfcExceptions.XExternalDataError, which is a subclass of
pfcExceptions.XToolkitError.
An additional exception thrown by external data methods is
pfcExceptions.XBadExternalData. This exception signals an error
accessing data. For example, external data access might have been terminated or
the model might contain stream data from PTC Creo Parametric TOOLKIT.
The following table lists these exceptions.

External Data 383

Exception Cause
XExternalDataInvalidObject Generated when a model or class is

invalid.
XExternalDataClassOrSlotExists Generated when creating a class or slot

and the proposed class or slot already
exists.

XExternalDataNamesTooLong Generated when a class or slot name is
too long.

XExternalDataSlotNotFound Generated when a specified class or
slot does not exist.

XExternalDataEmptySlot Generated when the slot you are
attempting to read is empty.

XExternalDataInvalidSlotName Generated when a specified slot name
is invalid.

XBadGetExternalData Generated when you try to access an
incorrect data type in a
External.ExternalData object.

384 PTC Creo® Parametric 3.0 J-Link User’s Guide

29
PTCWindchill Connectivity APIs

Introduction... 386
Accessing a PTC Windchill Server from a PTC Creo Parametric Session 386
Accessing Workspaces.. 389
Workflow to Register a Server .. 391
Aliased URL.. 392
Server Operations ... 393
Utility APIs .. 403

PTC Creo Parametric has the capability to be directly connected to PTC Windchill
solutions, including PTC WindchillProjectLink and PDMLink servers. This access
allows users to manage and control the product data seamlessly from within PTC
Creo Parametric.
This chapter lists J-Link APIs that support PTC Windchill servers and server
operations in a connected PTC Creo Parametric session.

385

Introduction
The methods introduced in this chapter provide support for the basic PTC
Windchill server operations from within PTC Creo Parametric. With these
methods, operations such as registering a PTC Windchill server, managing
workspaces, and check in or check out of objects will be possible via J-Link. The
capabilities of these APIs are similar to the operations available from within the
PTC Creo Parametric client, with some restrictions.
Some of these APIs are supported from a non-interactive, that is, batch mode
application or asynchronous application.

Accessing a PTC Windchill Server from a
PTC Creo Parametric Session
PTC Creo Parametric allows you to register PTC Windchill servers as a
connection between the PTC Windchill database and PTC Creo Parametric.
Although the represented PTC Windchill database can be from PTC
WindchillProjectLink or PTC Windchill PDMLink all types of databases are
represented in the same way.
You can use the following identifiers when referring to PTC Windchill servers in
J-Link:

• Codebase URL—This is the root portion of the URL that is used to connect to
a PTC Windchill server. For example http://
wcserver.company.com/Windchill.

• Server Alias—A server alias is used to refer to the server after it has been
registered. The alias is also used to construct paths to files in the server
workspaces and commonspaces. The server alias is chosen by the user or
application and it need not have any direct relationship to the codebase URL.
An alias can be any normal name, such as my_alias.

Accessing Information Before Registering a Server
To start working with a PTC Windchill server, you must establish a connection by
registering the server in PTC Creo Parametric. The methods described in this
section allow you to connect to a PTC Windchill server and access information
related to the server.
Methods Introduced:

• pfcSession.BaseSession.AuthenticateBrowser
• pfcSession.BaseSession.GetServerLocation
• pfcServer.ServerLocation.GetClass

386 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcServer.ServerLocation.GetLocation
• pfcServer.ServerLocation.GetVersion
• pfcServer.ServerLocation.ListContexts
• pfcServer.ServerLocation.CollectWorkspaces
Use the method pfcSession.BaseSession.AuthenticateBrowser to
set the authentication context using a valid username and password. A successful
call to this method allows the PTC Creo Parametric session to register with any
server that accepts the username and password combination. A successful call to
this method also ensures that an authentication dialog box does not appear during
the registration process. You can call this method any number of times to set the
authentication context for any number of PTC Windchill servers, provided that
you register the appropriate servers or servers immediately after setting the
context.
The method pfcServer.ServerLocation.GetLocation returns a
pfcServer.ServerLocation object representing the codebase URL for a
possible server. The server may not have been registered yet, but you can use this
object and the methods it contains to gather information about the server prior to
registration.
The method pfcServer.ServerLocation.GetClass returns the class of
the server or server location. The values are:

• Windchill—Denotes a PTC Windchill PDMLink server.
• ProjectLink—Denotes PTC Windchill ProjectLink type of servers.
The method pfcServer.ServerLocation.GetVersion returns the
version of PTC Windchill that is configured on the server or server location, for
example, 9.0 or 10.0. This method accepts the server codebase URL as the
input.

Note
pfcServer.ServerLocation.GetVersion works only for PTC
Windchill servers and throws the
pfcExceptions.XToolkitUnsupported exception, if the server is
not a PTC Windchill server.

The method pfcServer.ServerLocation.ListContexts gives a list of
all the available contexts for a specified server. A context is used to associate a
workspace with a product, project, or library.
The method pfcServer.ServerLocation.CollectWorkspaces
returns the list of available workspaces for the specified server. The workspace
objects returned contain the name of each workspace and its context.

PTC Windchill Connectivity APIs 387

Registering and Activating a Server
From Creo Parametric 2.0 onward, the J-Link methods call the same underlying
API as PTC Creo Parametric to register and unregister servers. Hence, registering
the servers using J-Link methods is similar to registering the servers using the
PTC Creo Parametric user interface. Therefore, the servers registered by J-Link
are available in the PTC Creo Parametric Server Registry. The servers are also
available in other locations in the PTC Creo Parametric user interface such as, the
Folder Navigator and the embedded browser.
Methods Introduced:

• pfcSession.BaseSession.RegisterServer
• pfcServer.Server.Activate
• pfcServer.Server.Unregister
The method pfcSession.BaseSession.RegisterServer registers the
specified server with the codebase URL. You can automate the registration of
servers in interactive mode. To preregister the servers use the standard
config.fld setup. If you do not want the servers to be preregistered in batch
mode, set the environment variable PTC_WF_ROOT to an empty directory before
starting PTC Creo Parametric.
A successful call to
pfcSession.BaseSession.AuthenticateBrowser with a valid
username and password is essential for
pfcSession.BaseSession.RegisterServer to register the server
without launching the authentication dialog box. Registration of the server
establishes the server alias. You must designate an existing workspace to use when
registering the server. After the server has been registered, you may create a new
workspace.
The method pfcServer.Server.Activate sets the specified server as the
active server in the PTC Creo Parametric session.
The method pfcServer.Server.Unregister unregisters the specified
server. This is similar to Server Registry ▶▶ Delete through the user interface.

Accessing Information From a Registered Server
Methods Introduced:

• pfcServer.Server.GetIsActive
• pfcServer.Server.GetAlias
• pfcServer.Server.GetContext
The method pfcServer.Server.GetIsActive specifies if the server is
active.

388 PTC Creo® Parametric 3.0 J-Link User’s Guide

The method pfcServer.Server.GetAlias returns the alias of a server if
you specify the codebase URL.
The method pfcServer.Server.GetContext returns the active context of
the active server.

Information on Servers in Session
Methods Introduced:

• pfcSession.BaseSession.GetActiveServer
• pfcSession.BaseSession.GetServerByAlias
• pfcSession.BaseSession.GetServerByUrl
• pfcSession.BaseSession.ListServers
The method pfcSession.BaseSession.GetActiveServer returns
returns the active server handle.
The method pfcSession.BaseSession.GetServerByAlias returns the
handle to the server matching the given server alias, if it exists in session.
The method pfcSession.BaseSession.GetServerByUrl returns the
handle to the server matching the given server URL and workspace name, if it
exists in session.
The method pfcSession.BaseSession.ListServers returns a list of
servers registered in this session.

Accessing Workspaces
For every workspace, a new distinct storage location is maintained in the user’s
personal folder on the server (server-side workspace) and on the client (client-side
workspace cache). Together, the server-side workspace and the client-side
workspace cache make up the workspace.
Methods Introduced:

• pfcServer.pfcServer.WorkspaceDefinition_Create
• pfcServer.WorkspaceDefinition.GetWorkspaceName
• pfcServer.WorkspaceDefinition.GetWorkspaceContext
• pfcServer.WorkspaceDefinition.SetWorkspaceName
• pfcServer.WorkspaceDefinition.SetWorkspaceContext
The interface pfcServer.WorkspaceDefinition contains the name and
context of the workspace. The method
pfcServer.ServerLocation.CollectWorkspaces returns an array of

PTC Windchill Connectivity APIs 389

workspace data. Workspace data is also required for the method
pfcServer.Server.CreateWorkspace to create a workspace with a
given name and a specific context.
The method pfcServer.pfcServer.WorkspaceDefinition_Create
creates a new workspace definition object suitable for use when creating a new
workspace on the server.
The method pfcServer.WorkspaceDefinition.GetWorkspaceName
retrieves the name of the workspace.
The method
pfcServer.WorkspaceDefinition.GetWorkspaceContext retrieves
the context of the workspace.
The method pfcServer.WorkspaceDefinition.SetWorkspaceName
sets the name of the workspace.
The method
pfcServer.WorkspaceDefinition.SetWorkspaceContext sets the
context of the workspace.

Creating and Modifying the Workspace
Methods Introduced:

• pfcServer.Server.CreateWorkspace
• pfcServer.Server.GetActiveWorkspace
• pfcServer.Server.SetActiveWorkspace
• pfcServer.ServerLocation.DeleteWorkspace
The method pfcServer.Server.CreateWorkspace creates and activates
a new workspace.
The method pfcServer.Server.GetActiveWorkspace retrieves the
name of the active workspace.
The method pfcServer.Server.SetActiveWorkspace sets a specified
workspace as an active workspace.
The method pfcServer.ServerLocation.DeleteWorkspace deletes
the specified workspace. This function is available only in the non-interactive
mode, that is, in batch mode. The method deletes the workspace only if the
following conditions are met:

• The workspace is not the active workspace.
• The workspace does not contain any checked out objects.
Use one of the following techniques to delete an active workspace:

390 PTC Creo® Parametric 3.0 J-Link User’s Guide

• Make the required workspace inactive using
pfcServer.Server.SetActiveWorkspace with the name of some
other workspace and then call
pfcServer.ServerLocation.DeleteWorkspace.

• Unregister the server using pfcServer.Server.Unregister and delete
the workspace.

Workflow to Register a Server

To Register a Server with an Existing Workspace
Perform the following steps to register a PTC Windchill server with an existing
workspace:

1. Set the appropriate authentication context using the method
pfcSession.BaseSession.AuthenticateBrowser with a valid
username and password.

2. Look up the list of workspaces using the method
pfcServer.ServerLocation.CollectWorkspaces. If you already
know the name of the workspace on the server, then ignore this step.

3. Register the workspace using the method
pfcSession.BaseSession.RegisterServer with an existing
workspace name on the server.

4. Activate the server using the method pfcServer.Server.Activate.

To Register a Server with a New Workspace
Perform the following steps to register a PTC Windchill server with a new
workspace:

1. Perform steps 1 to 4 in the preceding section to register the PTC Windchill
server with an existing workspace.

2. Use the method pfcServer.ServerLocation.ListContexts to
choose the required context for the server.

3. Create a new workspace with the required context using the method
pfcServer.Server.CreateWorkspace. This method automatically
makes the created workspace active.

PTC Windchill Connectivity APIs 391

Note
You can create a workspace only after the server is registered.

Aliased URL
An aliased URL serves as a handle to the server objects. You can access the server
objects in the commonspace (shared folders) and the workspace using an aliased
URL. An aliased URL is a unique identifier for the server object and its format is
as follows:

• Object in workspace has a prefix wtws
wtws://<server_alias>/<workspace_name>/<object_server_name>

where <object_server_name> includes <object_
name>.<object_extension>

For example,
wtws://my_server/my_workspace/abcd.prt,
wtws://my_server/my_workspace/intf_file.igs

where

<server_alias> is my_server

<workspace_name> is my_workspace
• Object in commonspace has a prefix wtpub

wtpub://<server_alias>/<folder_location>/<object_server_name>

For example,
wtpub://my_server/path/to/cs_folder/abcd.prt

where

<server_alias> is my_server

<folder_location> is path/to/cs_folder

Note
○ object_server_name must be in lowercase.
○ The APIs are case-sensitive to the aliased URL.
○ <object_extension> should not contain PTC Creo Parametric

versions, for example, .1 or .2, and so on.

392 PTC Creo® Parametric 3.0 J-Link User’s Guide

Server Operations
After registering the PTC Windchill server with PTC Creo Parametric, you can
start accessing the data on the PTC Windchill servers. The PTC Creo Parametric
interaction with PTC Windchill servers leverages the following locations:

• Commonspace (Shared folders)
• Workspace (Server-side workspace)
• Workspace local cache (Client-side workspace)
• PTC Creo Parametric session
• Local disk
The methods described in this section enable you to perform the basic server
operations. The following illustration shows how data is transferred among these
locations.

Save
Methods Introduced:

PTC Windchill Connectivity APIs 393

• pfcModel.Model.Save
The method pfcModel.Model.Save stores the object from the session in the
local workspace cache, when a server is active.

Upload
An upload transfers PTC Creo Parametric files and any other dependencies from
the local workspace cache to the server-side workspace.
Methods Introduced:

• pfcServer.Server.UploadObjects
• pfcServer.Server.UploadObjectsWithOptions
• pfcServer.pfcServer.UploadOptions_Create
The method pfcServer.Server.UploadObjects uploads the object to the
workspace. The object to be uploaded must be present in the current PTC Creo
Parametric session. You must save the object to the workspace using
pfcModel.Model.SavepfcSession.BaseSession.ImportToCur
rentWS before attempting to upload it.
The method pfcServer.Server.UploadObjectsWithOptions uploads
objects to the workspace using the options specified in the
pfcServer.UploadOptions . These options allow you to upload the entire
workspace, auto-resolve missing references, and indicate the target folder location
for the new content during the upload. You must save the object to the workspace
using pfcModel.Model.Save, or import it to the workspace using
pfcSession.BaseSession.ImportToCurrentWS before attempting to
upload it.
Create the pfcServer.UploadOptions object using the method
pfcServer.pfcServer.UploadOptions_Create.
The methods available for setting the upload options are described in the
following section.

CheckIn
After you have finished working on objects in your workspace, you can share the
design changes with other users. The checkin operation copies the information and
files associated with all changed objects from the workspace to the PTC Windchill
database.
Methods Introduced:

• pfcServer.Server.CheckinObjects
• pfcServer.pfcServer.CheckinOptions_Create
• pfcServer.UploadBaseOptions.SetDefaultFolder

394 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcServer.UploadBaseOptions.SetNonDefaultFolderAssignments
• pfcServer.UploadBaseOptions.SetAutoresolveOption
• pfcServer.CheckinOptions.SetBaselineName
• pfcServer.CheckinOptions.SetBaselineNumber
• pfcServer.CheckinOptions.SetBaselineLocation
• pfcServer.CheckinOptions.GetBaselineLifecycle
• pfcServer.CheckinOptions.SetKeepCheckedout
The method pfcServer.Server.CheckinObjects checks in an object
into the database. The object to be checked in must be present in the current PTC
Creo Parametric session. Changes made to the object are not included unless you
save the object to the workspace using the method pfcModel.Model.Save
before you check it in.
If you pass NULL as the value of the options parameter, the checkin operation is
similar to the Auto Check-In option in PTC Creo Parametric. For more details on
Auto Check-In, refer to the online help for PTC Creo Parametric.
Use the method pfcServer.pfcServer.CheckinOptions_Create to
create a new CheckinOptions object.
By using an appropriately constructed options argument, you can control the
checkin operation. Use the APIs listed above to access and modify the checkin
options. The checkin options are as follows:

• DefaultFolder—Specifies the default folder location on the server for the
automatic checkin operation.

• NonDefaultFolderAssignment—Specifies the folder location on the server to
which the objects will be checked in.

• AutoresolveOption—Specifies the option used for auto-resolving missing
references. These options are defined in the ServerAutoresolveOption
class, and are as follows:

○ SERVER_DONT_AUTORESOLVE—Model references missing from the
workspace are not automatically resolved. This may result in a conflict
upon checkin. This option is used by default.

○ SERVER_AUTORESOLVE_IGNORE—Missing references are
automatically resolved by ignoring them.

○ SERVER_AUTORESOLVE_UPDATE_IGNORE—Missing references are
automatically resolved by updating them in the database and ignoring them
if not found.

• Baseline—Specifies the baseline information for the objects upon checkin.
The baseline information for a checkin operation is as follows:

PTC Windchill Connectivity APIs 395

○ BaselineName—Specifies the name of the baseline.
○ BaselineNumber—Specifies the number of the baseline.

The default format for the baseline name and baseline number is Username
+ time (GMT) in milliseconds.

○ BaselineLocation—Specifies the location of the baseline.
○ BaselineLifecycle—Specifies the name of the lifecycle.

• KeepCheckedout—If the value specified is true, then the contents of the
selected object are checked into the PTC Windchill server and automatically
checked out again for further modification.

Retrieval
Standard J-Link provides several methods that are capable of retrieving models.
When using these methods with PTC Windchill servers, remember that these
methods do not check out the object to allow modifications.
Methods Introduced:

• pfcSession.BaseSession.RetrieveModel
• pfcSession.BaseSession.RetrieveModelWithOpts
• pfcSession.BaseSession.OpenFile
The methods pfcSession.BaseSession.RetrieveModel,
pfcSession.BaseSession.RetrieveModelWithOpts, and
pfcSession.BaseSession.OpenFile load an object into a session given
its name and type. The methods search for the object in the active workspace, the
local directory, and any other paths specified by the search_path configuration
option.

Checkout and Download
To modify an object from the commonspace, you must check out the object. The
process of checking out communicates your intention to modify a design to the
PTC Windchill server. The object in the database is locked, so that other users can
obtain read-only copies of the object, and are prevented from modifying the object
while you have checked it out.
Checkout is often accompanied by a download action, where the objects are
brought from the server-side workspace to the local workspace cache. In J-Link,
both operations are covered by the same set of methods.
Methods Introduced:

• pfcServer.Server.CheckoutObjects
• pfcServer.Server.CheckoutMultipleObjects

396 PTC Creo® Parametric 3.0 J-Link User’s Guide

• pfcServer.pfcServer.CheckoutOptions_Create
• pfcServer.CheckoutOptions.SetDependency
• pfcServer.CheckoutOptions.SetSelectedIncludes
• pfcServer.CheckoutOptions.SetIncludeInstances
• pfcServer.CheckoutOptions.SetVersion
• pfcServer.CheckoutOptions.SetDownload
• pfcServer.CheckoutOptions.SetReadonly
The method pfcServer.Server.CheckoutObjects checks out and
optionally downloads the object to the workspace based on the configuration
specifications of the workspace. The input arguments of this method are as
follows:

• Mdl—Specifies the object to be checked out. This is applicable if the model
has already been retrieved without checking it out.

• File—Specifies the top-level object to be checked out.
• Checkout—The checkout flag. If you specify the value of this argument as

true, the selected object is checked out. Otherwise, the object is downloaded
without being checked out. The download action enables you to bring read-
only copies of objects into your workspace. This allows you to examine the
object without locking it.

• Options—Specifies the checkout options object. If you pass NULL as the value
of this argument,, then the default PTC Creo Parametric checkout rules apply.
Use the method pfcServer.pfcServer.CheckoutOptions_
Create to create a new CheckoutOptions object.

Use the method pfcServer.Server.CheckoutMultipleObjects to
check out and download multiple objects to the workspace based on the
configuration specifications of the workspace. This method takes the same input
arguments as listed above, except for Mdl and File. Instead it takes the argument
Files that specifies the sequence of the objects to check out or download.
By using an appropriately constructed options argument in the above functions,
you can control the checkout operation. Use the APIs listed above to modify the
checkout options. The checkout options are as follows:

• Dependency—Specifies the dependency rule used while checking out
dependents of the object selected for checkout. The types of dependencies
given by the ServerDependency class are as follows:

○ SERVER_DEPENDENCY_ALL—All the objects that are dependent on the
selected object are downloaded, that is, they are added to the workspace.

PTC Windchill Connectivity APIs 397

○ SERVER_DEPENDENCY_REQUIRED—All the objects that are required
to successfully retrieve the selected object in the CAD application are
downloaded, that is, they are added to workspace.

○ SERVER_DEPENDENCY_NONE—None of the dependent objects from the
selected object are downloaded, that is, they are not added to workspace.

• IncludeInstances—Specifies the rule for including instances from the family
table during checkout. The type of instances given by the
ServerIncludeInstances class are as follows:

○ SERVER_INCLUDE_ALL—All the instances of the selected object are
checked out.

○ SERVER_INCLUDE_SELECTED—The application can select the family
table instance members to be included during checkout.

○ SERVER_INCLUDE_NONE—No additional instances from the family
table are added to the object list.

• SelectedIncludes—Specifies the sequence of URLs to the selected instances, if
IncludeInstances is of type SERVER_INCLUDE_SELECTED.

• Version—Specifies the version of the checked out object. If this value is set to
NULL, the object is checked out according to the current workspace
configuration.

• Download—Specifies the checkout type as download or link. The value
download specifies that the object content is downloaded and checked out,
while link specifies that only the metadata is downloaded and checked out.

• Readonly—Specifies the checkout type as a read-only checkout. This option is
applicable only if the checkout type is link.

The following truth table explains the dependencies of the different control factors
in the method pfcServer.Server.CheckoutObjects and the effect of
different combinations on the end result.
Argument checkout
in pfcServer.
Server.Checkout
Objects

pfcServer.Checkou
tOptions.SetDown
load

pfcServer.Checkou
tOptions.SetRea
donly

Result

true true NA Object is checked out and
its content is
downloaded.

true false NA Object is checked out but
content is not
downloaded.

false NA true Object is downloaded
without checkout and as
read-only.

false NA false Not supported

398 PTC Creo® Parametric 3.0 J-Link User’s Guide

Undo Checkout
Method Introduced:

• pfcServer.Server.UndoCheckout
Use the method pfcServer.Server.UndoCheckout to undo a checkout of
the specified object. When you undo a checkout, the changes that you have made
to the content and metadata of the object are discarded and the content, as stored
in the server, is downloaded to the workspace. This method is applicable only for
the model in the active PTC Creo Parametric session.

Import and Export
J-Link provides you with the capability of transferring specified objects to and
from a workspace. Import and export operations must take place in a session with
no models. An import operation transfers a file from the local disk to the
workspace.
Methods Introduced:

• pfcSession.BaseSession.ExportFromCurrentWS
• pfcSession.BaseSession.ImportToCurrentWS
• pfcSession.WSImportExportMessage.GetDescription
• pfcSession.WSImportExportMessage.GetFileName
• pfcSession.WSImportExportMessage.GetMessageType
• pfcSession.WSImportExportMessage.GetResolution
• pfcSession.WSImportExportMessage.GetSucceeded
• pfcSession.BaseSession.SetWSExportOptions
• pfcSession.pfcSession.WSExportOptions_Create
• pfcSession.WSExportOptions.SetIncludeSecondaryContent
The method pfcSession.BaseSession.ExportFromCurrentWS
exports the specified objects from the current workspace to a disk in a linked
session of PTC Creo Parametric.
The method pfcSession.BaseSession.ImportToCurrentWS imports
the specified objects from a disk to the current workspace in a linked session of
PTC Creo Parametric.
Both pfcSession.BaseSession.ExportFromCurrentWS and
pfcSession.BaseSession.ImportToCurrentWS allow you to specify a
dependency criterion to process the following items:

PTC Windchill Connectivity APIs 399

• All external dependencies
• Only required dependencies
• No external dependencies
Both pfcSession.BaseSession.ExportFromCurrentWS and
pfcSession.BaseSession.ImportToCurrentWS return the messages
generated during the export or import operation in the form of the
pfcSession.WSImportExportMessages object. Use the APIs listed
above to access the contents of a message. The message specified by the
pfcSession.WSImportExportMessage object contains the following
items:

• Description—Specifies the description of the problem or the message
information.

• FileName—Specifies the object name or the name of the object path.
• MessageType—Specifies the severity of the message in the form of the

WSImportExportMessageType class. The severity is one of the
following types:

○ WSIMPEX_MSG_INFO—Specifies an informational type of message.
○ WSIMPEX_MSG_WARNING—Specifies a low severity problem that can be

resolved according to the configured rules.
○ WSIMPEX_MSG_CONFLICT—Specifies a conflict that can be overridden.
○ WSIMPEX_MSG_ERROR—Specifies a conflict that cannot be overridden

or a serious problem that prevents processing of an object.
• Resolution—Specifies the resolution applied to resolve a conflict that can

be overridden. This is applicable when the message is of the type WSIMPEX_
MSG_CONFLICT.

• Succeeded—Determines whether the resolution succeeded or not. This is
applicable when the message is of the type WSIMPEX_MSG_CONFLICT.

The method pfcSession.BaseSession.SetWSExportOptions sets the
export options used while exporting the objects from a workspace in the form of
the pfcSession.WSExportOptions object. Create this object using the
method pfcSession.pfcSession.WSExportOptions_Create. The
export options are as follows:

• Include Secondary Content—Indicates whether or not to include secondary
content while exporting the primary PTC Creo Parametric model files. Use the
method

400 PTC Creo® Parametric 3.0 J-Link User’s Guide

pfcSession.WSExportOptions.SetIncludeSecondaryCon
tent to set this option.

File Copy
J-Link provides you with the capability of copying a file from the workspace or
target folder to a location on the disk and vice-versa.
Methods Introduced:

• pfcSession.BaseSession.CopyFileToWS
• pfcSession.BaseSession.CopyFileFromWS
Use the method pfcSession.BaseSession.CopyFileToWS to copy a file
from the disk to the workspace. The file can optionally be added as secondary
content to a given workspace file. If the viewable file is added as secondary
content, a dependency is created between the PTC Creo Parametric model and the
viewable file.
Use the method pfcSession.BaseSession.CopyFileFromWS to copy a
file from the workspace to a location on disk.
When importing or exporting PTC Creo Parametric models, PTC recommends
that you use methods pfcSession.BaseSession.ImportToCurrentWS
and pfcSession.BaseSession.ExportFromCurrentWS, respectively,
to perform the import or export operation. Methods that copy individual files do
not traverse PTC Creo Parametric model dependencies, and therefore do not copy
a fully retrievable set of models at the same time.
Additionally, only the methods
pfcSession.BaseSession.ImportToCurrentWS and
pfcSession.BaseSession.ExportFromCurrentWS provide full
metadata exchange and support. That means
pfcSession.BaseSession.ImportToCurrentWS can communicate all
the PTC Creo Parametric designated parameters, dependencies, and family table
information to a PDM system while
pfcSession.BaseSession.ExportFromCurrentWS can update
exported PTC Creo Parametric data with PDM system changes to designated and
system parameters, dependencies, and family table information. Hence PTC
recommends the use of pfcSession.BaseSession.CopyFileToWS and
pfcSession.BaseSession.CopyFileFromWS to process only non-PTC
Creo Parametric files.

Server Object Status
Methods Introduced:

PTC Windchill Connectivity APIs 401

• pfcServer.Server.IsObjectCheckedOut
• pfcServer.Server.IsObjectModified
The methods described in this section verify the current status of the object in the
workspace. The method pfcServer.Server.IsObjectCheckedOut
specifies whether the object is checked out for modification. The value true
indicates that the specified object is checked out to the active workspace.
The value false indicates one of the following statuses:
• The specified object is not checked out
• The specified object is only uploaded to the workspace, but was never checked

in
• The specified object is only saved to the local workspace cache, but was never

uploaded
The method pfcServer.Server.IsObjectModified specifies whether
the object has been modified in the workspace. This method returns true if the
object was modified locally.

Delete Objects
Method Introduced:

• pfcServer.Server.RemoveObjects
The method pfcServer.Server.RemoveObjects deletes the array of
objects from the workspace. When passed with the ModelNames array as NULL,
this method removes all the objects in the active workspace.

Conflicts During Server Operations
Method Introduced:

• pfcExceptions.XToolkitCheckoutConflict.GetConflictDescription
An exception is provided to capture the error condition while performing the
following server operations using the specified APIs:
Operation API
Checkin an object or workspace pfcServer.Server.CheckinObjects

Checkout an object pfcServer.Server.CheckoutObjects

Undo checkout of an object pfcServer.Server.UndoCheckout

Upload object pfcServer.Server.UploadObjects

Download object pfcServer.Server.CheckoutObjects
(with download as true)

Delete workspace pfcServer.ServerLocation.Delete
Workspace

Remove object pfcServer.Server.RemoveObjects

402 PTC Creo® Parametric 3.0 J-Link User’s Guide

These APIs throw a common exception XToolkitCheckoutConflict if an
error is encountered during server operations. Use the method
pfcExceptions.XToolkitCheckoutConflict.GetConflictDe
scription to extract details of the error condition. This description is similar to
the description displayed by the PTC Creo Parametric HTML user interface in the
conflict report.

Utility APIs
The methods specified in this section enable you to obtain the handle to the server
objects to access them. The handle may be the aliased URL or the model name of
the http URL. These utilities enable the conversion of one type of handle to
another.
Methods Introduced:

• pfcServer.Server.GetAliasedUrl
• pfcSession.BaseSession.GetModelNameFromAliasedUrl
• pfcSession.BaseSession.GetAliasFromAliasedUrl
• pfcSession.BaseSession.GetUrlFromAliasedUrl
The method pfcServer.Server.GetAliasedUrl enables you to search
for a server object by its name. Specify the complete filename of the object as the
input, for example, test_part.prt. The method returns the aliased URL for a
model on the server. For more information regarding the aliased URL, refer to the
section Aliased URL on page 392. During the search operation, the workspace
takes precedence over the shared space.
You can also use this method to search for files that are not in the PTC Creo
Parametric format. For example, my_text.txt, intf_file.stp, and so on.
The method
pfcSession.BaseSession.GetModelNameFromAliasedUrl returns
the name of the object from the given aliased URL on the server.
The method pfcSession.BaseSession.GetUrlFromAliasedUrl
converts an aliased URL to a standard URL for the objects on the server.
For example, wtws://my_alias/Creo Parametric/abcd.prt is
converted to an appropriate URL on the server as http://
server.mycompany.com/Windchill.
The method pfcSession.BaseSession.GetAliasFromAliasedUrl
returns the server alias from aliased URL.

PTC Windchill Connectivity APIs 403

A
Summary of Technical Changes

Critical Technical Changes ... 406
Accessing Member Information in a Pattern of Pattern ... 406
APIWizard Available on PTC.com... 406
File Name of Applet Based APIWizard .. 406
No Support for Applet Based APIWizard ... 406
Non-Applet Based Version of the APIWizard ... 406
Change in Behavior of pfcServer.Server.IsObjectModified .. 407
Change in Behavior of pfcTable.Table.CheckIfIsFromFormat 407
Change in Directory Structure for PTC Creo Installation ... 407
Change in Integer Values for Enumerated Data Type ComponentType 407
Digital Rights Management Retired... 408
Disable Notification Messages in Trail Files ... 408
Documentation Updated for pfcServer.Server.IsObjectModified 408
Layout Model Type .. 408
No Support for Boundary Box Type of Simplified Representation 408
Retrieving Solids in a PTC Creo Parametric Session Linked to PTC Windchill 409
Support for Constraint Creation Methods... 409
Support for Feature Subclasses ... 410
Support for Multi-CAD Assemblies.. 410
New Functions .. 410
Drawings .. 410
Miscellaneous Technical Changes .. 411
Configuration Flag to Include Annotations During Export of PTC Creo Parametric

Models .. 411
Display Style for Views .. 411

This chapter describes the critical and miscellaneous technical changes in PTC
Creo Parametric 3.0 and J-Link. It also lists the new and superseded functions for
this release.

405

Critical Technical Changes
This section describes the changes in PTC Creo Parametric 3.0 and J-Link that
might require alteration of existing J-Link applications.

Accessing Member Information in a Pattern of
Pattern
From Creo Parametric 2.0 M170, the method
pfcFeature.FeaturePattern.ListMembers returns all the pattern
header features created at the first level for a pattern of pattern. It does not return
the pattern members under each pattern header.

APIWizard Available on PTC.com
The latest version of J-Link APIWizard is available at www.ptc.com/support/
apiwizard.htm.

File Name of Applet Based APIWizard
From J-Link 3.0 M060 onward, the file name of applet based J-Link APIWizard is
changed from index.html to index_jlink.html. To open the applet based
APIWizard point your browser to:
<creo_jlink_loadpoint>\jlinkdoc\index_jlink.html

No Support for Applet Based APIWizard
The applet based APIWizard for J-Link will not be available in future releases.
PTC recommends using the non-applet based version of the APIWizard.

Non-Applet Based Version of the APIWizard
To open the non-applet based version of the J-Link APIWizard, point your
browser to:
<creo_jlink_loadpoint>\jlinkdoc\manual0\loadToolkitDoc.html

The non-applet based version of the J-Link APIWizard has enhanced search
capabilities. The new search options enable you to search for only global methods
and exceptions, in addition to searching for all classes and methods.

406 PTC Creo® Parametric 3.0 J-Link User’s Guide

http://www.ptc.com/support/apiwizard.htm
http://www.ptc.com/support/apiwizard.htm

Change in Behavior of pfcServer.Server.
IsObjectModified
From Creo Parametric 2.0 M040 onward, the behavior of the method
pfcServer.Server.IsObjectModified has been fixed. The method now
returns the value false to indicate one of the following statuses for the specified
object:
• the object was only saved, but never uploaded
• the object was only uploaded, but never checked in

Change in Behavior of pfcTable.Table.
CheckIfIsFromFormat
The method pfcTable.Table.CheckIfIsFromFormat did not correctly
check if the drawing table was created using the drawing format. The method
would return FALSE, if the first segment of the table was not on the current sheet
in the Creo Parametric user interface, even though the table was created using the
drawing format. This behavior has been fixed in Creo Parametric 2.0 M120. The
method now checks and returns the correct boolean value.
As in the previous releases, the method
pfcTable.Table.CheckIfIsFromFormat ignores the value provided in
the input argument SheetNumber.

Change in Directory Structure for PTC Creo
Installation
From PTC Creo 3.0 onward, the directory structure for PTC Creo installation has
changed from:
• <creo_loadpoint>\Parametric to <creo_loadpoint>\

<datecode>\Parametric.
• <creo_loadpoint>\Common Files\<datecode> to <creo_

loadpoint>\<datecode>\Common Files

Change in Integer Values for Enumerated Data Type
ComponentType
The integer values for enumerated data type ComponentType were shifted by 1
and did not reflect the actual values. From Creo Parametric 2.0 2.0, M120 onward,
this behavior has been fixed. If your application code uses these values, you must
rebuild your application.

Summary of Technical Changes 407

Digital Rights Management Retired
From PTC Creo Parametric 3.0 onward, Digital Rights Management (DRM) is no
longer supported. J-Link applications that check the DRM permissions will have
to be updated.

Disable Notification Messages in Trail Files
When notifications are set in J-Link applications, every time an event is triggered,
notification messages are added to the trail files.
From Creo Parametric 2.0 M210 onward, a new environment variable PROTK_
LOG_DISABLE allows you to disable this behavior. When set to true, the
notifications messages are not added to the trail files.

Documentation Updated for pfcServer.Server.
IsObjectModified
The documentation for the method
pfcServer.Server.IsObjectModified has been updated in PTC Creo
3.0 M010. This method returns true if the object was modified locally.

Layout Model Type
From PTC Creo 3.0 M010 onward, the object pfcModel.ModelType contains
an additional value MDL_CE_SOLID that represents models of type Layout. J-
Link methods will only be able to read models of type Layout, but will not be able
to pass Layout models as input to other methods. To work with Layout models,
you must rebuild your existing J-Link applications.

No Support for Boundary Box Type of Simplified
Representation
From PTC Creo Parametric 3.0 onward, the boundary box type of representation
specified by the following values are no longer supported:
• SIMPREP_BOUNDBOX_REP in the enumerated data type SimpRepType
• SIMPREP_BOUNDBOX in the enumerated data type SimpRepActionType

408 PTC Creo® Parametric 3.0 J-Link User’s Guide

Retrieving Solids in a PTC Creo Parametric Session
Linked to PTC Windchill
You must retrieve solid models in a PTC Creo Parametric session, which is linked
to PTC Windchill, only after you create a new workspace. If you retrieve the
models before creating the workspace, the models would be erased from the PTC
Creo Parametric session.

Support for Constraint Creation Methods
You cannot create constraints using the J-Link applications. The following
methods are not supported. These methods will be supported in a future release:
• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneTh

roughConstraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneNormal
Constraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneParal
lelConstraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneTan
gentConstraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneOffset
Constraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneOffset
CoordSysConstraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneAngle
Constraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneSec
tionConstraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneDe
faultXConstraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneDefaul
tYConstraint_Create

• pfcDatumPlaneFeat.pfcDatumPlaneFeat.DatumPlaneDe
faultZConstraint_Create

• pfcDatumAxisFeat.pfcDatumAxisFeat.DatumAxisCon
straint_Create

• pfcDatumAxisFeat.pfcDatumAxisFeat.DatumAxisDimension
Constraint_Create

• pfcDatumPointFeat.pfcDatumPointFeat.DatumPointPlace
mentConstraint_Create

Summary of Technical Changes 409

• pfcDatumPointFeat.pfcDatumPointFeat.DatumPointDimen
sionConstraint_Create

• pfcCoordSysFeat.pfcCoordSysFeat.DatumCsysOriginCon
straint_Create

• pfcCoordSysFeat.pfcCoordSysFeat.DatumCsysDimension
Constraint_Create

• pfcCoordSysFeat.pfcCoordSysFeat.DatumCsysOrientMove
Constraint_Create

Support for Feature Subclasses
From PTC Creo Parametric 3.0 onward, only the following subclasses of the class
pfcFeature are supported:
• pfcComponentFeat

• pfcCoordSysFeat

• pfcCurveFeat

• pfcDatumAxisFeat

• pfcDatumPlaneFeat

• pfcDatumPointFeat

• pfcRoundFeat

If your applications check the type of feature using the type of class, then you
must update your existing code to use the method
pfcFeature.Feature.GetFeatType. The method
pfcFeature.Feature.GetFeatType returns the type of feature.

Support for Multi-CAD Assemblies
Multi-CAD assemblies are not supported in J-Link. The methods provided in PTC
Creo Object TOOLKIT Java support multi-CAD assemblies. Refer to PTC Creo
Object TOOLKIT Java User's Guide for information on multi-CAD assemblies.

New Functions
This section describes new functions for J-Link for PTC Creo Parametric 3.0.

Drawings
New Function Description
pfcTableOwner.RetrieveTa
bleByOrigin

Retrieves and places a drawing table in
the drawing at the specified point. The
origin of the table is positioned at the
specified point.

410 PTC Creo® Parametric 3.0 J-Link User’s Guide

Miscellaneous Technical Changes
The following changes in PTC Creo Parametric 3.0 can affect the functional
behavior of J-Link. PTC does not anticipate that these changes cause critical
issues with existing J-Link applications.

Configuration Flag to Include Annotations During
Export of PTC Creo Parametric Models
From PTC Creo Parametric 3.0 onward, a new configuration flag EXPORT_
INCLUDE_ANNOTATIONS has been added. The flag includes annotations during
the export of PTC Creo Parametric model to the specified format.

Display Style for Views
From PTC Creo Parametric 3.0 M010 onward, a new display type DISPSTYLE_
SHADED_WITH_EDGES has been added to the enumerated data type
DisplayStyle. This option allows you to display the model as a shaded solid
along with its edges.

Summary of Technical Changes 411

B
Sample Applications

Installing J-Link ... 414
Sample Applications .. 414
InstallTest ... 414
InstallTest ... 416
jlinkexamples .. 417
jlinkasyncexamples ... 417
Parameter Editor ... 418
Round Checker Utility .. 419
Save Check Utility ... 419

This appendix lists the sample applications provided with J-Link.

413

Installing J-Link
J-Link is available on the same CD as PTC Creo Parametric. When PTC Creo
Parametric is installed using PTC.SetUp, one of the optional components is API
Toolkits. This includes PTC Creo Parametric TOOLKIT, J-Link, Web.Link,
and VB API.
If you select J-Link, a directory called jlink is created under the PTC Creo
Parametric loadpoint and J-Link is automatically installed in this directory. This
directory contains all the libraries, example applications, and documentation
specific to J-Link.

Sample Applications
The J-Link sample applications are available in the location <creo_jlink_
loadpoint>/jlink_appls.

Note
You must set the configuration option regen_failure_handling to
resolve_mode in the PTC Creo Parametric session before running the
sample application install_test. From Creo Parametric 2.0 M060
onward, a configuration file (config.pro) has been provided for the
install_test application. The config.pro contains the regen_
failure_handling option.

InstallTest
Location Main Class
<creo_jlink_loadpoint>/jlink_appls/
install_test

StartInstallTest

The application StartInstallTest is used to check the J-Link synchronous
installation. It verifies the following:

• Application start and stop functions.
• Menubar functions.
• Custom UI functions.
• Sequences, arrays, exceptions, and action listener functions.

Testing the J-Link Synchronous Installation
After the system administrator has installed J-Link, compile, link, and run a
simple J-Link application on the machine you intend to use for development. Test
if the installation of J-Link is present, complete, and visible from your machine.

414 PTC Creo® Parametric 3.0 J-Link User’s Guide

To test the synchronous J-Link installation:

1. Set the path and CLASSPATH variables to include the Java
Development Kit as described in Java Options and Debugging on page
421.

2. Set the CLASSPATH to include the J-Link synchronous archive and the
current directory.

On Windows set the CLASSPATH as:
set CLASSPATH=<creo_loadpoint>\<datecode>\Common Files
\text\java\pfc.jar;%CLASSPATH%

3. Compile the java files in the directory using the command javac *.java.

Note
The java file AsyncInstallTest.java is not compiled because it
is used in the asynchronous mode only. Before compiling, rename this file
to a non-Java file, that is, AsyncInstallTest.bak.

4. Create a config.pro file if you are using Java 1.1. Add the following
line to this file:
jlink_java2 off

Note
For more information on the supported JDK versions for synchronous J-
Link refer to http://www.ptc.com/partners/hardware/
current/jlink.htm.

5. Run PTC Creo Parametric.

The PTC Creo Parametric File menu has a new button, added by the J-Link
application, called J-Link Install Test. When you choose this button,
the J-Link application displays a custom dialog indicating whether the
installation test has succeeded:

Sample Applications 415

Note
On Windows the results dialog may appear behind the PTC Creo
Parametric window. Use Atl-Tab to switch to the Java dialog.

InstallTest
Location Main Class
<creo_jlink_loadpoint>/jlink_appls/
install_test

AsyncInstallTest

The application AsyncInstallTest is used to check the J-Link asynchronous
installation. It verifies the following:

• Asynchronous J-Link setup
• PTC Creo Parametric start and stop methods
• Menubar functions
• Custom UI functions
• Sequences, arrays, exceptions, and action listener functions

Testing the J-Link Asynchronous Installation
To test the asynchronous J-Link application:

1. Set the path and CLASSPATH variables to include the Java
Development Kit as described in Java Options and Debugging on page
421.

2. Set the CLASSPATH to include the J-Link asynchronous archive and the
current directory.

On Windows set the CLASSPATH as:
set CLASSPATH=<creo_loadpoint>\<datecode>\Common Files
\text\java\pfcasync.jar;%CLASSPATH%

3. Set the library path to include the asynchronous library and make sure that
PRO_COMM_MSG_EXE is set.

On Windows set the library path as:
set path=<creo_loadpoint>\<datecode>\Common Files\<machine type>\lib;%PATH%
set PRO_COMM_MSG_EXE=<creo_loadpoint>\<datecode>\Common Files
\<machine type>\obj\pro_comm_msg.exe

4. Compile the java files in the directory using the command javac *.java.

416 PTC Creo® Parametric 3.0 J-Link User’s Guide

Note
• The java file StartInstallTest.java does not get compiled as it

is used in the synchronous mode only. Before compiling, rename this file
to a non java file, that is, StartInstallTest.bak.

• Remove any .class files compiled previously using synchronous J-
Link.

• Rename or remove the registry file (creotk.dat, protk.dat, or
prodev.dat) from the location from where you are running the J-Link
asynchronous test.

5. Run the application java [asynchronous flags]
AsyncInstallTest <command to run Creo Parametric>.

Note
For more information on the supported JDK versions for asynchronous J-
Link and the value of the asynchronous flags refer to http://
www.ptc.com/partners/hardware/current/jlink.htm

jlinkexamples
Location Main Class
<creo_jlink_loadpoint>/jlink_appls/
jlinkexamples

pfcExamplesMenu.java, however note that
not all examples may be tied to this class.

The application jlinkexamples is a collection of the J-Link User’s Guide
example source files . It covers most of the areas of J-Link.

jlinkasyncexamples
Location Main Class
<creo_jlink_loadpoint>/jlink_appls/
jlinkasyncexamples

Many independent examples

The application jlinkasyncexamples is a collection of the asynchronous J-
Link User's Guide example source files.

Sample Applications 417

Parameter Editor
Location Main Class
<creo_jlink_loadpoint>/jlink_appls/
jlink_param

com.ptc.jlinkdemo.parameditor.Para
mEditor

The parameter editor example demonstrates a synchronous J-Link user interface
that governs parameters and parameter values in the model. Setup and run the J-
Link Parameter Editor example using the following:

1. Set the path and CLASSPATH variables to include the Java Development
Kit as described in (link) as described in Java Options and Debugging on
page 421.

2. Set the CLASSPATH to include the jlink_param directory and the J-Link
synchronous Jar file (pfc.jar). Refer to the section Testing the J-Link
Synchronous Installation on page 414 for more information on setting the
CLASSPATH.

3. Compile the code.

On Windows, execute the batch file compile.bat.
4. Start PTC Creo Parametric from a directory containing the protk.dat file.

Create or retrieve any model that contains parameters.
5. Select J-Link Parameter Editor from the ApplicationsMenu. The system will

display a graphical interface that contains a list of parameters for the selected
model as shown in the following figure.

The parameter editor also supports the following customized types of parameters:

• Using the editor to create parameters with descriptive names (user interface
names) of up to 80 character. The value of the assigned user interface name
will be displayed as the parameter name in the J-Link user interface.

• Creating parameters that obey specific rules:

○ Enumerated lists

418 PTC Creo® Parametric 3.0 J-Link User’s Guide

○ Specified ranges
○ Specified ranges, with values limited to a certain increments (for example,

any multiple of 5 between 0 and 100).
When you open the J-Link user interface, the parameter value is governed by the
rules assigned to it. If the parameter value is changed to fall outside the permitted
values it will be highlighted in red.

Round Checker Utility
Location Main Class
<creo_jlink_loadpoint>/jlink_appls/
jlink_elev

com.ptc.jlinkdemo.round.RoundCheck
er

The round checker example demonstrates a synchronous J-Link utility that
monitors the values assigned to round dimensions. If the value of any modified or
newly created round is reduced below a programmed limit, a J-Link user interface
will appear with information about the violation.
Use the following steps to setup and run the example:

1. Set the path and CLASSPATH variables to include the Java Development
Kit as described in (link).

2. Set the CLASSPATH to include the jlink_elev directory and the J-Link
synchronous Jar file (pfc.jar).

3. Compile the code.

On Windows, execute the batch file compile.bat.
4. Load any PTC Creo Parametric model with rounds. Modify the round to less

than 0.5. A J-Link dialog that identifies the problem will be displayed. The
same dialog will appear if a new round that does not adhere to the specified
dimensions is created.

Save Check Utility
Location Main Class
<creo_jlink_loadpoint>/jlink_appls
/jlink_elev

com.ptc.jlinkdemo.savecheck.
SaveChecker

The save check example demonstrates a synchronous J-Link utility that presents a
user interface that identifies if any problems exist in the model you are about to
save. If any problems exist in the assigned parameter values or if a material has
not been assigned to a part, the user interface will appear with information about
the problems.

Sample Applications 419

The instructions to setup and run the save check example are similar to the
instructions for the round checker utility. To access the interface, choose Tools,
Perform Release Checks.

420 PTC Creo® Parametric 3.0 J-Link User’s Guide

C
Java Options and Debugging

Supported Java Virtual Machine Versions.. 422
Overriding the Java command used by Synchronous J-Link 422
Debugging a Synchronous Mode Application... 422
CLASSPATH Variables .. 423
Synchronous Mode ... 423
JAVA Options for Asynchronous Mode .. 423

This appendix describes how to control the procedure used by PTC Creo
Parametric to invoke synchronous J-Link applications to enable you to use a non-
default JVM or to debug your applications.

421

Supported Java Virtual Machine Versions
The machine information for the JVM versions supported by J-Link is available
at:
http://www.ptc.com/partners/hardware/current/jlink.htm
The PTC Creo Parametric installation includes a default JVM shipped as a part of
its CD image. For synchronous J-Link applications, PTC Creo Parametric uses the
PTC Creo Parametric-supplied JVM by default.
PTC Creo Parametric includes the ability to override the default JVM command
used to invoke J-Link applications. This allows you to:

• Use a non-standard JVM in your deployment, if that JVM has a feature or a fix
that is necessary for your application to work correctly.

• Apply command line flags to the Java invocation, thus allowing it to be used
for debugging or other customized purposes.

Overriding the Java command used by
Synchronous J-Link
The JVM that is used can be overridden using one of the following mechanisms:

• The configuration option jlink_java_command, if set to the path to the
java executable, will determine the JVM be used to start synchronous J-Link
applications.

• The environment variable PRO_JAVA_COMMAND serves the same purpose as
the configuration option. The environment variable takes precedence over the
configuration option.

Note
The appropriate flags for synchronous J-Link as well as the flags for the user-
supplied JRE must be used. The synchronous J-Link flags are listed on the J-
Link platform page. It is recommended that you update the version of the JVM
on your machine to the minimum supported version for the platform.

Debugging a Synchronous Mode
Application
As PTC Creo Parametric has control over the start and stop of Java processes
used by J-Link, you must use special controls to be able to debug an application.
The most typical deployment should do the following:

422 PTC Creo® Parametric 3.0 J-Link User’s Guide

http://www.ptc.com/partners/hardware/current/jlink.htm

1. Use the appropriate javac compiler flags to build the application
debuggable.

2. Use the technique described in the section Overriding the Java command used
by Synchronous J-Link on page 422 to set the Java command to the
appropriate debug command line, for example, [JDK_HOME]/bin/
java.exe -Xdebug

3. Start PTC Creo Parametric and let it invoke the Java application.
4. Attach your Java debugger to the process that was started by PTC Creo

Parametric.
If you need to debug within the application start method, you can make the first
invocation within that method a UI popup dialog box
(javax.swing.JOptionPane) which will allow time to attach the debugger
to the process.

CLASSPATH Variables

Synchronous Mode
If you are using the default JVM and are running J-Link applications on your
machine, you need to add only your application classes to the classpath. The
mechanisms to accomplish this are:

• Setting the environment variable CLASSPATH.
• Using the java_app_classpath field in the registry file. This field has a

character limit of 2047 wide characters (wchar_t).
• Loading a user-specified Jar file through the user interface (only available for

a model program).
PTC Creo Parametric will automatically add the J-Link archive pfc.jar to the
CLASSPATH.
To compile J-Link applications, the environment variable CLASSPATH must
include the path to the locations of classes and archives that you intend to use.
Also, you must add J-Link archive pfc.jar to the CLASSPATH. This archive is
located at <creo_loadpoint>\<datecode>\Common Files\text\
java\pfc.jar.

JAVA Options for Asynchronous Mode
Asynchronous mode applications are started by an external Java process. Thus
PTC Creo Parametric does not have any control over them, and you may use any
JVM and command line to invoke them.

Java Options and Debugging 423

Note
Regardless of how the Java process is invoked, it must use the Java
command line flags specified for asynchronous mode under

http://www.ptc.com/partners/hardware/current/
jlink.htm

For both running and compiling, the environment variable CLASSPATH must
point to the locations of the application classes and archives.
The CLASSPATH should also include the path to the J-Link asynchronous mode
archive file pfcasync.jar. This archive is located at <creo_loadpoint>\
<datecode>\Common Files\text\java\pfcasync.jar.

424 PTC Creo® Parametric 3.0 J-Link User’s Guide

D
Geometry Traversal

Example 1 .. 426
Example 2 .. 426
Example 3 .. 427
Example 4 .. 427
Example 5 .. 428

This appendix illustrates the relationships between faces, contours, and edges.
Examples E-1 through E-5 show some sample parts and list the information about
their surfaces, faces, contours, and edges.

425

Example 1

This part has 6 faces.

• Face A has 1 contour and 4 edges.
• Edge E2 is the intersection of faces A and B.
• Edge E2 is a component of contours C1 and C2.

Example 2

Face A has 2 contours and 6 edges.

426 PTC Creo® Parametric 3.0 J-Link User’s Guide

Example 3

This part was extruded from a rectangular cross section. The feature on the top
was added later as an extruded protrusion in the shape of a semicircle.

• Face A has 1 contour and 6 edges.
• Face B has 2 contours and 8 edges.
• Face C has 1 contour and 4 edges.

Example 4

This part was extruded from a cross section identical to Face A. In the Sketcher,
the top boundary was sketched with two lines and an arc. The sketch was then
extruded to form the base part, as shown.

Geometry Traversal 427

• Face A has 1 contour and 6 edges.
• Face B has 1 contour and 4 edges.
• Face C has 1 contour and 4 edges.
• Face D has 1 contour and 4 edges.

Example 5

This part was extruded from a rectangular cross section. The slot and hole features
were added later.

• Face A has 1 contour and 8 edges.
• Face B has 3 contours and 10 edges.

428 PTC Creo® Parametric 3.0 J-Link User’s Guide

E
Geometry Representations

Surface Parameterization... 430
Plane.. 430
Cylinder.. 431
Cone .. 432
Torus.. 432
General Surface of Revolution.. 433
Ruled Surface ... 434
Tabulated Cylinder... 434
Coons Patch ... 435
Fillet Surface... 435
Spline Surface .. 436
NURBS Surface .. 437
Cylindrical Spline Surface .. 438
Edge and Curve Parameterization .. 439
Line.. 440
Arc ... 440
Spline... 440
NURBS .. 441

This appendix describes the geometry representations of the data used by J-Link.

429

Surface Parameterization
A surface in PTC Creo Parametric contains data that describes the boundary of the
surface, and a pointer to the primitive surface on which it lies. The primitive
surface is a three-dimensional geometric surface parameterized by two variables
(u and v). The surface boundary consists of closed loops (contours) of edges. Each
edge is attached to two surfaces, and each edge contains the u and v values of the
portion of the boundary that it forms for both surfaces. Surface boundaries are
traversed clockwise around the outside of a surface, so an edge has a direction in
each surface with respect to the direction of traversal.
This section describes the surface parameterization. The surfaces are listed in
order of complexity. For ease of use, the alphabetical listing of the data structures
is as follows:

• Cone on page 432
• Coons Patch on page 435
• Cylinder on page 431
• Cylindrical Spline Surface on page 438
• Fillet Surface on page 435
• General Surface of Revolution on page 433
• NURBS on page 441
• Plane on page 430
• Ruled Surface on page 434
• Spline Surface on page 436
• Tabulated Cylinder on page 434
• Torus on page 432

Plane

The plane entity consists of two perpendicular unit vectors (e1 and e2), the
normal to the plane (e3), and the origin of the plane.
Data Format:

430 PTC Creo® Parametric 3.0 J-Link User’s Guide

e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the plane

Parameterization:
(x, y, z) = u * e1 + v * e2 + origin

Cylinder

The generating curve of a cylinder is a line, parallel to the axis, at a distance R
from the axis. The radial distance of a point is constant, and the height of the point
is v.
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the cylinder
radius Radius of the cylinder

Parameterization:
(x, y, z) = radius * [cos(u) * e1 + sin(u) * e2] +

v * e3 + origin

Engineering Notes:
For the cylinder, cone, torus, and general surface of revolution, a local coordinate
system is used that consists of three orthogonal unit vectors (e1, e2, and e3) and
an origin. The curve lies in the plane of e1 and e3, and is rotated in the direction
from e1 to e2. The u surface parameter determines the angle of rotation, and the
v parameter determines the position of the point on the generating curve.

Geometry Representations 431

Cone

The generating curve of a cone is a line at an angle alpha to the axis of revolution
that intersects the axis at the origin. The v parameter is the height of the point
along the axis, and the radial distance of the point is v * tan(alpha).
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the cone
alpha Angle between the axis of the cone

and the generating line

Parameterization:
(x, y, z) = v * tan(alpha) * [cos(u) * e1 +

sin(u) * e2] + v * e3 + origin

Torus

The generating curve of a torus is an arc of radius R2 with its center at a distance
R1 from the origin. The starting point of the generating arc is located at a distance
R1 + R2 from the origin, in the direction of the first vector of the local coordinate
system. The radial distance of a point on the torus is R1 + R2 * cos(v), and the
height of the point along the axis of revolution is R2 * sin(v).
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the torus
radius1 Distance from the center of the

432 PTC Creo® Parametric 3.0 J-Link User’s Guide

generating arc to the axis of
revolution

radius2 Radius of the generating arc

Parameterization:
(x, y, z) = (R1 + R2 * cos(v)) * [cos(u) * e1 +

sin(u) * e2] + R2 * sin(v) * e3 +
origin

General Surface of Revolution

A general surface of revolution is created by rotating a curve entity, usually a
spline, around an axis. The curve is evaluated at the normalized parameter v, and
the resulting point is rotated around the axis through an angle u. The surface of
revolution data structure consists of a local coordinate system and a curve
structure.
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the surface of revolution
curve Generating curve

Parameterization:
curve(v) = (c1, c2, c3) is a point on the curve.

(x, y, z) = [c1 * cos(u) - c2 * sin(u)] * e1 +
[c1 * sin(u) + c2 * cos(u)] * e2 +
c3 * e3 + origin

Geometry Representations 433

Ruled Surface

A ruled surface is the surface generated by interpolating linearly between
corresponding points of two curve entities. The u coordinate is the normalized
parameter at which both curves are evaluated, and the v coordinate is the linear
parameter between the two points. The curves are not defined in the local
coordinate system of the part, so the resulting point must be transformed by the
local coordinate system of the surface.
Data Format:
e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the ruled surface
curve_1 First generating curve
curve_2 Second generating curve

Parameterization:
(x', y', z') is the point in local coordinates.
(x', y', z') = (1 - v) * C1(u) + v * C2(u)
(x, y, z) = x' * e1 + y' * e2 + z' * e3 + origin

Tabulated Cylinder

A tabulated cylinder is calculated by projecting a curve linearly through space.
The curve is evaluated at the u parameter, and the z coordinate is offset by the v
parameter. The resulting point is expressed in local coordinates and must be
transformed by the local coordinate system to be expressed in part coordinates.
Data Format:
e1[3] Unit vector, in the u direction

434 PTC Creo® Parametric 3.0 J-Link User’s Guide

e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the tabulated cylinder
curve Generating curve

Parameterization:
(x', y', z') is the point in local coordinates.
(x', y', z') = C(u) + (0, 0, v)
(x, y, z) = x' * e1 + y' * e2 + z' * e3 + origin

Coons Patch

A Coons patch is used to blend surfaces together. For example, you would use a
Coons patch at a corner where three fillets (each of a different radius) meet.
Data Format:
le_curve u = 0 boundary
ri_curve u = 1 boundary
dn_curve v = 0 boundary
up_curve v = 1 boundary
point_matrix[2][2] Corner points
uvder_matrix[2][2] Corner mixed derivatives

Fillet Surface

Geometry Representations 435

A fillet surface is found where a round or a fillet is placed on a curved edge, or on
an edge with non-constant arc radii. On a straight edge, a cylinder would be used
to represent the fillet.
Data Format:
pnt_spline P(v) spline running along the u = 0 boundary
ctr_spline C(v) spline along the centers of the

fillet arcs
tan_spline T(v) spline of unit tangents to the

axis of the fillet arcs

Parameterization:
R(v) = P(v) - C(v)
(x,y,z) = C(v) + R(v) * cos(u) + T(v) X R(v) *

sin(u)

Spline Surface

The parametric spline surface is a nonuniform bicubic spline surface that passes
through a grid with tangent vectors given at each point. The grid is curvilinear in
uv space. Use this for bicubic blending between corner points.
Data Format:
u_par_arr[] Point parameters, in the u

direction, of size Nu
v_par_arr[] Point parameters, in the v

direction, of size Nv
point_arr[][3] Array of interpolant points, of

size Nu x Nv
u_tan_arr[][3] Array of u tangent vectors

at interpolant points, of size
Nu x Nv

v_tan_arr[][3] Array of v tangent vectors at
interpolant points, of size
Nu x Nv

uvder_arr[][3] Array of mixed derivatives at
interpolant points, of size

436 PTC Creo® Parametric 3.0 J-Link User’s Guide

Nu x Nv

Engineering Notes:

• Allows for a unique 3x3 polynomial around every patch.
• There is second order continuity across patch boundaries.
• The point and tangent vectors represent the ordering of an array of [i][j],

where u varies with , and v varies with j. In walking through the point_
arr[][3], you will find that the innermost variable representing v(j)
varies first.

NURBS Surface
The NURBS surface is defined by basis functions (in u and v), expandable arrays
of knots, weights, and control points.

Data Format:
deg[2] Degree of the basis

functions (in u and v)
u_par_arr[] Array of knots on the

parameter line u
v_par_arr[] Array of knots on the

parameter line v
wghts[] Array of weights for

rational NURBS, otherwise
NULL

c_point_arr[][3] Array of control points

Definition:

Geometry Representations 437

k = degree in u
l = degree in v
N1 = (number of knots in u) - (degree in u) - 2
N2 = (number of knots in v) - (degree in v) - 2
Bi,k = basis function in u
Bj, l = basis function in v
wij = weights
Ci, j = control points (x,y,z) * wi,j

Engineering Notes:
The weights and c_points_arr arrays represent matrices of size
wghts[N1+1] [N2+1] and c_points_arr [N1+1] [N2+1]. Elements of
the matrices are packed into arrays in row-major order.

Cylindrical Spline Surface
The cylindrical spline surface is a nonuniform bicubic spline surface that passes
through a grid with tangent vectors given at each point. The grid is curvilinear in
modeling space.

Data Format:
e1[3] x' vector of the local coordinate

system
e2[3] y' vector of the local coordinate

system
e3[3] z' vector of the local coordinate

system, which corresponds to the
axis of revolution of the surface

438 PTC Creo® Parametric 3.0 J-Link User’s Guide

origin[3] Origin of the local coordinate
system

splsrf Spline surface data structure

The spline surface data structure contains the following fields:
u_par_arr[] Point parameters, in the

u direction, of size Nu
v_par_arr[] Point parameters, in the

v direction, of size Nv
point_arr[][3] Array of points, in

cylindrical coordinates,
of size Nu x Nv. The array
components are as follows:

point_arr[i][0] - Radius
point_arr[i][1] - Theta
point_arr[i][2] - Z

u_tan_arr[][3] Array of u tangent vectors.
in cylindrical coordinates,
of size Nu x Nv

v_tan_arr[][3] Array of v tangent vectors,
in cylindrical coordinates,
of size Nu x Nv

uvder_arr[][3] Array of mixed derivatives,
in cylindrical coordinates,
of size Nu x Nv

Engineering Notes:
If the surface is represented in cylindrical coordinates (r, theta, z), the local
coordinate system values (x', y', z') are interpreted as follows:
x' = r cos (theta)
y' = r sin (theta)
z' = z

A cylindrical spline surface can be obtained, for example, by creating a smooth
rotational blend (shown in the figure on the previous page).
In some cases, you can replace a cylindrical spline surface with a surface such as a
plane, cylinder, or cone. For example, in the figure, the cylindrical spline surface
S1 was replaced with a cone (r1 = r2, r3 = r4, and r1 ¼ r3).
If a replacement cannot be done (such as for the surface S0 in the figure (ra ¼ rb
or rc ¼ rd)), leave it as a cylindrical spline surface representation.

Edge and Curve Parameterization
This parameterization represents edges (line, arc, and spline) as well as the curves
(line, arc, spline, and NURBS) within the surfaces.
This section describes edges and curves, arranged in order of complexity. For ease
of use, the alphabetical listing is as follows:

Geometry Representations 439

• Arc on page 440
• Line on page 440
• NURBS on page 441
• Spline on page 440

Line
Data Format:
end1[3] Starting point of the line
end2[3] Ending point of the line

Parameterization:
(x, y, z) = (1 - t) * end1 + t * end2

Arc
The arc entity is defined by a plane in which the arc lies. The arc is centered at the
origin, and is parameterized by the angle of rotation from the first plane unit
vector in the direction of the second plane vector. The start and end angle
parameters of the arc and the radius are also given. The direction of the arc is
counterclockwise if the start angle is less than the end angle, otherwise it is
clockwise.
Data Format:
vector1[3] First vector that defines the

plane of the arc
vector2[3] Second vector that defines the

plane of the arc
origin[3] Origin that defines the plane

of the arc
start_angle Angular parameter of the starting

point
end_angle Angular parameter of the ending

point
radius Radius of the arc.

Parameterization:
t' (the unnormalized parameter) is

(1 - t) * start_angle + t * end_angle
(x, y, z) = radius * [cos(t') * vector1 +

sin(t') * vector2] + origin

Spline
The spline curve entity is a nonuniform cubic spline, defined by a series of three-
dimensional points, tangent vectors at each point, and an array of unnormalized
spline parameters at each point.

440 PTC Creo® Parametric 3.0 J-Link User’s Guide

Data Format:
par_arr[] Array of spline parameters

(t) at each point.
pnt_arr[][3] Array of spline interpolant points
tan_arr[][3] Array of tangent vectors at

each point

Parameterization:
x, y, and z are a series of unique cubic functions, one per segment, fully
determined by the starting and ending points, and tangents of each segment.
Let p_max be the parameter of the last spline point. Then, t, the unnormalized
parameter, is t * p_max.
Locate the th spline segment such that:
par_arr[i] < t' < par_arr[i+1]

(If t < 0 or t > +1, use the first or last segment.)
t0 = (t' - par_arr[i]) / (par_arr[i+1] - par_arr[i])
t1 = (par_arr[i+1] - t') / (par_arr[i+1] - par_arr[i])

NURBS
The NURBS (nonuniform rational B-spline) curve is defined by expandable arrays
of knots, weights, and control points.

Data Format:
degree Degree of the basis function
params[] Array of knots
weights[] Array of weights for rational

NURBS, otherwise NULL.
c_pnts[][3] Array of control points

Definition:

Geometry Representations 441

k = degree of basis function
N = (number of knots) - (degree) - 2
wi = weights
Ci = control points (x, y, z) * wi
Bi,k = basis functions

By this equation, the number of control points equals N+1.
References:
Faux, I.D., M.J. Pratt. Computational Geometry for Design and Manufacture. Ellis
Harwood Publishers, 1983.
Mortenson, M.E. Geometric Modeling. John Wiley & Sons, 1985.

442 PTC Creo® Parametric 3.0 J-Link User’s Guide

F
J-Link Classes

List of J-Link Classes... 444

This appendix lists and briefly describes the classes that make up the J-Link
interface.

443

List of J-Link Classes
The following table briefly describes the classes in the J-Link interface.
Class Package Returned by
ActionListener pfcBase Base class; not returned.
This class defines an action listener.
ActionListeners pfcBase ActionListeners.create()
This data type is used to specify a list of action listeners.
ActionSource pfcBase Base class; not returned.
This class specifies an action source.
ActionSources pfcBase ActionSources.create()
This type describes an array of action sources.
AnalysisFeat pfcAnalysisFeat Downcast of

pfcFeature.Feature.
This feature type specifies an analysis feature.
Arc pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines an arc.
AreaNibbleFeat pfcAreaNibbleFeat Downcast of

pfcFeature.Feature.
This feature type specifies a nibble area. This feature type is used in sheetmetal applications.
Arrow pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines an arrow.
Assembly pfcAssembly Session.CreateAssem

bly()
,
ComponentPath.GetRoot()

This class describes an assembly.
AssemblyCutCopyFeat pfcAssemblyCutCopyFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cut and copied feature, which is used in the Assembly Design module.
AssemblyCutFeat pfcAssemblyCutFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cutout feature, which is used in the Assembly Design module.
AttachFeat pfcAttachFeat Downcast of

pfcFeature.Feature.
This feature type specifies an attached feature.
AttachVolumeFeat pfcAttachVolumeFeat Downcast of

pfcFeature.Feature.
This feature type specifies an attached volume.
AuxiliaryFeat pfcAuxiliaryFeat Downcast of

pfcFeature.Feature.
This feature type specifies an auxiliary feature.
Axis pfcGeometry Downcast of

pfcModelItem.ModelItem.
This class defines an axis.

444 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
BaseDimension pfcDimension Base class; not returned.
This class defines the base dimension.
BaseParameter pfcModelItem Base class; not returned.
Describes the base parameter.
BeamSectionFeat pfcBeamSectionFeat Downcast of

pfcFeature.Feature.
This feature type specifies a beam section.
BendBackFeat pfcBendBackFeat Downcast of

pfcFeature.Feature.
This feature type specifies a bend back feature, which is used in the PTC Creo NC Sheetmetal module.
BendFeat pfcBendFeat Downcast of

pfcFeature.Feature.
This feature type specifies a bend feature.
BldOperationFeat pfcBldOperationFeat Downcast of

pfcFeature.Feature.
This feature type specifies a build
operation.
BOMExportInstructions pfcModel pfcModel.BOMExport

Instructions_Create()

Used to export a BOM for an assembly.
BSpline pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines a B-spline curve.
BSplinePoint pfcGeometry BSplinePoints.get()

This class defines a B-spline point.
BSplinePoints pfcGeometry BSplinePoints.create(),

BSpline.GetPoints()

This data type is used to specify an array of B-spline points.
BulkObjectFeat pfcBulkObjectFeat Downcast of

pfcFeature.Feature.
This feature type specifies a bulk
object.
CableCosmeticFeat pfcCableCosmeticFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cosmetic feature used with the cabling.
CableFeat pfcCableFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cabling feature.
CableLocationFeat pfcCableLocationFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cable location.
CableParamsFileInstruc
tions

pfcModel pfcModel.CableParams
FileInstructions_
Create()

Used to export cable parameters from an assembly.
CableSegmentFeat pfcCableSegmentFeat Downcast of

J-Link Classes 445

Class Package Returned by
pfcFeature.Feature.

This feature type specifies a cable segment.
CATIAExportInstructions pfcModel pfcModel.CATIAExport

Instructions_Create()

Used to export a part or assembly in CATIA format (as precise geometry)
CATIAFacetsExport
Instructions

pfcModel pfcModel.CATIAFacets
ExportInstructions
_Create()

Used to export a part or assembly in CATIA format (as a faceted model).
CavDeviationFeat pfcCavDeviationFeat Downcast of

pfcFeature.Feature.
This feature type specifies a deviation feature, which is used in the Verify module.
CavFitFeat pfcCavFitFeat Downcast of

pfcFeature.Feature.
This feature type specifies a fit feature, which is used in the Verify module.
CavScanSetFeat pfcCavScanSetFeat Downcast of

pfcFeature.Feature.
This feature type specifies a scanset feature, which is used in the Verify module.
CGMExportType pfcModel CGMExportType.FromInt()

or by using one of the static
instances (e.g., EXPORT_CGM_
CLEAR_TEXT)

Indicates whether a CGM export file should be ASCII (clear text) or binary (mil spec)
CGMFILEExportInstruc
tions

pfcModel pfcModel.CGMFILEExport
Instructions_Create()

Used to export a drawing in CGM format.
CGMScaleType pfcModel CGMScaleType.FromInt()

or by using any of the static
instances (e.g., EXPORT_CGM_
ABSTRACT)

Indicates whether a CGM export file should include abstract or metric units
ChamferFeat pfcChamferFeat Downcast of

pfcFeature.Feature.
This feature type specifies a chamfer.
ChannelFeat pfcChannelFeat Downcast of

pfcFeature.Feature.
This feature type specifies a channel.
Child pfcObject Parent.GetChild()

Describes a child feature.
Circle pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines a circle.
CMMConstrFeat pfcCMMConstrFeat Downcast of

pfcFeature.Feature.
This feature type specifies a construction feature used in the CMM module.
CMMMeasureStepFeat pfcCMMMeasureStepFeat Downcast of

pfcFeature.Feature.

446 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
This feature type specifies a measured step feature, which is used in the CMM module.
CMMVerifyFeat pfcCMMVerifyFeat Downcast of

pfcFeature.Feature.
This feature type specifies a verify feature, which is used in the CMM module.
ColorRGB pfcBase pfcBase.ColorRGB

_Create(),
Session.GetRGBFrom
StdColor()

Specifies the red, green, and blue (RGB) values of a color.
CompModelReplace pfcComponentFeat ComponentFeat.Create

ReplaceOp()

Used to replace one model in a component with another.
ComponentFeat pfcComponentFeat Downcast of

pfcFeature.Feature.
Specifies a component feature.
ComponentPath pfcAssembly Selection.GetPath()

This class describes a component path.
ComponentType pfcComponentFeat ComponentType.FromInt()

or by using any of the static
instances (e.g., COMP_
WORKPIECE)

This enumerated type lists the possible component types.
CompositeCurve pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines a composite curve.
Cone pfcGeometry Downcast of

pfcGeometry.Surface.
This class defines a cone.
ConnectorParamExportIn
structions

pfcModel pfcModel.ConnectorParam
ExportInstructions_
Create()

Used to write the parameters of a connector to a file.
ContMapFeat pfcContMapFeat Downcast of

pfcFeature.Feature.
This feature type specifies a contour map.
Contour pfcGeometry Contours.get(),

Contour.FindContaining
Contour()

This class describes a contour.
Contours pfcGeometry Contours.create(),

Surface.ListContours()

This data type is used to describe an array of contours.
ContourTraversal pfcGeometry ContourTraversal.

FromInt() or by using any of
the static instances (e.g.,
CONTOUR_TRAV_INTERNAL)

This enumerated type lists the possible values for traversing the contour.
CoordAxis pfcBase CoordAxis.

J-Link Classes 447

Class Package Returned by
FromInt() or by using any of
the static instances (e.g., COORD_
AXIS_X)

This enumerated type specifies the axes of a coordinate system.
CoordSysExportInstruc
tions

pfcModel Base class; not returned.

Base class of classes that export files with information that describes faceted, solid models
CoordSysFeat pfcCoordSysFeat Downcast of

pfcFeature.Feature.
Describes a coordinate system feature, including constraint and translation information.
CoordSystem pfcGeometry Downcast of

pfcModelItem.ModelItem.
This class describes a coordinate system.
CoreFeat pfcCoreFeat Downcast of

pfcFeature.Feature.
This feature type specifies a core feature.
CornerChamferFeat pfcCornerChamferFeat Downcast of

pfcFeature.Feature.
This feature type specifies a corner chamfer.
CosmeticFeat pfcCosmeticFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cosmetic feature.
CrossSectionFeat pfcCrossSectionFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cross section.
CurvatureData pfcGeometry Surface.EvalPrincipal

Curv()

This class specifies the curvature data.
Curve pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines a curve.
CurveFeat pfcCurveFeat Downcast of

pfcFeature.Feature.
Specifies a curve feature.
Curves pfcGeometry Curves.create(),

CompositeCurve.List
Elements()

This data type is used to specify an array of curves.
CurveStartPoint pfcCurveFeat CurveStartPoint.From

Int() or by using any of the
static instances (e.g., CURVE_
START)

This enumerated type lists the possible starting points of the datum curve offset.
CurveXYZData pfcGeometry GeomCurve.Eval3DData(),

GeomCurve.EvalFrom
Length()

448 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
Stores the results of an edge evaluation.
CustomizeFeat pfcCustomizeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a customized feature.
CutFeat pfcCutFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cut feature.
CutMotionFeat pfcCutMotionFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cut motion feature, which is used in the PTC Creo NC module.
Cylinder pfcGeometry Downcast of

pfcGeometry.Surface.
This class defines a cylinder.
DatumAxisFeat pfcDatumAxisFeat Downcast of

pfcFeature.Feature.
This feature type specifies a datum
axis feature.
DatumPlaneFeat pfcDatumPlaneFeat Downcast of

pfcFeature.Feature.
This feature type specifies a datum plane.
DatumPointFeat pfcDatumPointFeat Downcast of

pfcFeature.Feature.
This feature type specifies a datum point.
DatumQuiltFeat pfcDatumQuiltFeat Downcast of

pfcFeature.Feature.
This feature type specifies a datum quilt.
DatumSurfaceFeat pfcDatumSurfaceFeat Downcast of

pfcFeature.Feature.
This feature type specifies a datum surface.
DeclareFeat pfcDeclareFeat Downcast of

pfcFeature.Feature.
This feature type specifies a declared feature.
DeformAreaFeat pfcDeformAreaFeat Downcast of

pfcFeature.Feature.
This feature type specifies a deformed area.
DeleteOperation pfcFeature Feature.CreateDele

teOp()

This class defines a delete operation.
Dependencies pfcModel Dependencies.create(),

Model.ListDependen
cies()

This data type is used to specify the first-level dependencies for an object.
Dependency pfcModel Dependencies.get()

Describes the first-level dependency for an object.
Dimension pfcDimension Downcast of

pfcModelItem.ModelItem.
This class describes a dimension.

J-Link Classes 449

Class Package Returned by
DimensionType pfcDimension DimensionType.FromInt()

or by using any of the static
instances (e.g., DIM_LINEAR)

This enumerated type lists the possible dimension types.
DimTolerance pfcDimension Dimension.GetToler

ance()

This class defines the dimension tolerance.
DimTolLimits pfcDimension DimTolLimits.Create()

This class displays the limits for the dimension tolerance.
DimTolPlusMinus pfcDimension DimTolPlusMinus.Create

This class displays the dimension tolerance in the form +/-x, where x is the plus tolerance. The value of
the minus tolerance is unused.
DimTolSymmetric pfcDimension DimTolSymmetric.

Create()

This class displays the dimension tolerance in symmetrical form.
DisplayStatus pfcLayer DisplayStatus.FromInt()

or by using any of the static
instances (e.g., LAYER_NORMAL).

This enumerated type lists the possible values for the display status of a layer.
Dome2Feat pfcDome2Feat Downcast of

pfcFeature.Feature.
This feature type specifies a section dome.
DomeFeat pfcDomeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a radius dome.
DraftFeat pfcDraftFeat Downcast of

pfcFeature.Feature.
This feature type specifies a draft.
DraftLineFeat pfcDraftLineFeat Downcast of

pfcFeature.Feature.
This feature type specifies a line draft, which is used with the Legacy module.
Drawing pfcDrawing Session.CreateDrawing

This class describes a drawing.
DrillFeat pfcDrillFeat Downcast of

pfcFeature.Feature.
This feature type specifies a drill, which is used with the PTC Creo NC module.
DrillGroupFeat pfcDrillGroupFeat Downcast of

pfcFeature.Feature.
This feature type specifies a drill group, which is used in the PTC Creo NC module.
DrvToolCurveFeat pfcDrvToolCurveFeat Downcast of

pfcFeature.Feature.
This feature type specifies a driven-tool curve, which is used in the PTC Creo NC module.
DrvToolEdgeFeat pfcDrvToolEdgeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a driven-tool edge, which is used in the PTC Creo NC module.
DrvToolProfileFeat pfcDrvToolProfileFeat Downcast of

pfcFeature.Feature.

450 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
This feature type specifies a driven-tool profile.
DrvToolSketchFeat pfcDrvToolSketchFeat Downcast of

pfcFeature.Feature.
This feature type specifies a driven-tool sketch.
DrvToolSurfFeat pfcDrvToolSurfFeat Downcast of

pfcFeature.Feature.
This feature type specifies a driven-tool surface.
DrvToolTwoCntrFeat pfcDrvToolTwoCntrFeat Downcast of

pfcFeature.Feature.
This feature type specifies a tool with two centers.
DWGSetupExportInstruc
tions

pfcModel pfcModel.DWGSetupExport
Instructions_Create()

Used to export a drawing setup file.
DXFExportInstructions pfcModel pfcModel.DXFExport

Instructions_Create()

Used to export a drawing in DXF format.
EarFeat pfcEarFeat Downcast of

pfcFeature.Feature.
This feature type specifies an ear feature.
Edge pfcGeometry Edges.get(),

Edge.GetEdge1(),
Edge.GetEdge2()

Describes the edge, including the next and previous edge, and the two surfaces.
EdgeBendFeat pfcEdgeBendFeat Downcast of

pfcFeature.Feature.
This feature type specifies an edge bend.
EdgeEvalData pfcGeometry Edge.EvalUV()

This class provides edge evaluation data.
Edges pfcGeometry Edges.create(),

Contour.ListElements()

This data type is used to specify an array of edges.
Ellipse pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines an ellipse.
EtchFeat pfcEtchFeat Downcast of

pfcFeature.Feature.
This feature type specifies an etched feature.
ExplodeLineFeat pfcExplodeLineFeat Downcast of

pfcFeature.Feature.
This feature type specifies an explode line.
ExportInstructions pfcModel Base class; not returned.
Base class to all the export-instructions classes.
ExportType pfcModel ExportType.FromInt() or

by using any of the static instances
(e.g., EXPORT_IGES_SECTION)

Enumeration of the available export options.

J-Link Classes 451

Class Package Returned by
ExpRatioFeat pfcExpRatioFeat Downcast of

pfcFeature.Feature.
This feature type specifies an exponential-ratio feature.
ExtendFeat pfcExtendFeat Downcast of

pfcFeature.Feature.
This feature type specifies an extend feature.
ExtractFeat pfcExtractFeat Downcast of

pfcFeature.Feature.
This feature type specifies an extraction.
FamColComp pfcFamily FamilyMember.Create

ComponentColumn()

This class describes a component column in a family table.
FamColCompModel pfcFamily FamilyMember.Create

CompModelColumn()

This class describes a component model column in a family table.
FamColDimension pfcFamily FamilyMember.Create

DimensionColumn()

This class specifies a dimension column in a family table.
FamColExternalRef pfcFamily Not returned.
This class describes an external reference column in a family table.
FamColFeature pfcFamily FamilyMember.Create

FeatureColumn()

This class specifies a family column feature.
FamColGroup pfcFamily FamilyMember.Create

GroupColumn()

This class describes a group column in a family table.
FamColGTol pfcFamily Not returned.
This class describes a geometric tolerance (gtol) column in a family table.
FamColMergePart pfcFamily FamilyMember.Create

MergePartColumn()

This class describes a merged part column in a family table.
FamColModelItem pfcFamily Base class; not returned.
This class specifies a column in the family table.
FamColParam pfcFamily FamilyMember.Create

ParamColumn()

This class specifies a parameter column in a family table.
FamColSystemParam pfcFamily Not returned.
This class describes a system parameter column in a family table.
FamColUDF pfcFamily Not returned.
This class describes a UDF column in a family table.
FamilyMember pfcFamily FamilyMember.GetPar

ent()

This class describes a member in a family table.
FamilyTableColumn pfcFamily FamilyMember.AddCol

umn()
,

452 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
FamilyTableColumns.
get()

This class specifies a column in a family table.
FamilyTableColumns pfcFamily FamilyTableColumns.

create(),
FamilyMember.List
Columns()

This data type is used to specify a list of columns in a family table.
FamilyTableRow pfcFamily FamilyMember.AddRow(),

FamilyMember.GetRow(),
FamilyTableRows.get()

This class specifies a row in a family table.
FamilyTableRows pfcFamily FamilyTableRow

s.create()
,
FamilyMember.ListRows()

This data type is used to specify a list of rows in a family table.
FeatIdExportInstruc
tions

pfcModel Base class; not returned.

Base class of instructions classes that export data for a single feature.
FeatInfoExportInstruc
tions

pfcModel pfcModel.FeatInfoExport
Instructions_Create()

Used to export information about one feature in a part or assembly.
Feature pfcFeature Solid.GetFeatureBy

Name()
, FeatureOperation.GetOp
Feature(). Also, by
downcasting
pfcModelItem.ModelItem.

This class defines the feature information.
FeatureActionListener_u pfcFeature Base class; not returned.
Abstract base class that all user-defined FeatureActionListener classes must extend.
FeatureActionListener pfcFeature Base class; not returned.
Interface that must be implemented by user-defined classes that respond to Feature events.
FeatureGroup pfcFeature Feature.GetGroup()

This class describes a feature group.
FeatureOperation pfcFeature FeatureOperations.get()

This class defines a feature operation.
FeatureOperations pfcFeature FeatureOperations.

create()

This class specifies a list of feature operations.
FeaturePattern pfcFeature Feature.GetPattern(),

FeatureGroup.GetPattern
()

This class specifies a feature pattern.
FeaturePlacement pfcFeature Feature.GetPlacement()

Specifies the placement of a feature.
Features pfcFeature Features.create(),

J-Link Classes 453

Class Package Returned by
Feature.ListChildren(),
Feature.ListParents(),
FeaturePattern.
ListMembers()

This data type specifies an array of features.
FeatureStatus pfcFeature FeatureStatus.FromInt()

or by using any of the static
instances (e.g., FEAT_ACTIVE)

This enumerated type specifies the feature status.
FeatureType pfcFeature FeatureType.FromInt() or

by using any of the static instances
(e.g., FEATTYPE_PROTRUSION)

This enumerated type lists the possible feature types.
FIATExportInstructions pfcModel pfcModel.FIATExport

Instructions_Create()

Used to export a part or assembly in FIAT format.
FirstFeat pfcFirstFeat Downcast of

pfcFeature.Feature.
This feature type specifies the first feature in a model.
FixtureSetupFeat pfcFixtureSetupFeat Downcast of

pfcFeature.Feature.
This feature type specifies a fixture setup.
FlangeFeat pfcFlangeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a flange.
FlatPatFeat pfcFlatPatFeat Downcast of

pfcFeature.Feature.
This feature type specifies a flat pattern.
FlatRibbonSegmentFeat pfcFlatRibbonSegment

Feat
Downcast of
pfcFeature.Feature.

This feature type is for flat ribbon segments.
FlattenFeat pfcFlattenFeat Downcast of

pfcFeature.Feature.
This feature type specifies a flattened-harness feature.
FormFeat pfcFormFeat Downcast of

pfcFeature.Feature.
This feature type specifies a form feature.
FreeFormFeat pfcFreeFormFeat Downcast of

pfcFeature.Feature.
This feature type specifies a free-form feature.
GeomCopyFeat pfcGeomCopyFeat Downcast of

pfcFeature.Feature.
This feature type specifies a geometric copy feature.
GeomCurve pfcGeometry RevolvedSurface.

GetProfile(),
RuledSurface.Get
Profile1(),

454 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
RuledSurface.Get
Profile2(),
TabulatedCylinder.Get
Profile()

This class provides information for a geometry curve.
GeomExportFlags pfcModel pfcModel.GeomExport

Flags
_Create()

Stores extend-surface and Bezier options for use when exporting geometric information from a model.
GeomExportInstructions pfcModel Base class; not returned.
Base class to classes used to export precise geometric information from a model.
GraphFeat pfcGraphFeat Downcast of

pfcFeature.Feature.
This feature type specifies a graph.
GrooveFeat pfcGrooveFeat Downcast of

pfcFeature.Feature.
This feature type specifies a groove.
HoleFeat pfcHoleFeat Downcast of

pfcFeature.Feature.
This feature type specifies a hole feature.
IGES3DExport
Instructions

pfcModel pfcModel.IGES3DExport
Instructions_Create()

Used to export a part or assembly in IGES format.
IGESFileExport
Instructions

pfcModel pfcModel.IGESFileExport
Instructions_Create()

Used to export a drawing in IGES format
ImportFeat pfcImportFeat Downcast of

pfcFeature.Feature.
This feature type specifies an import feature.
IntegerOId pfcObject Base class; not returned.
This class specifies an integer identifier. For internal use only.
InternalUDFFeat pfcInternalUDFFeat Downcast of

pfcFeature.Feature.
This feature type is for internal use only.
IntersectFeat pfcIntersectFeat Downcast of

pfcFeature.Feature.
This feature type specifies an intersection.
InventorExportInstruc
tions

pfcModel pfcModel.Inventor
ExportInstructions
_Create()

Used to export a part or assembly in Inventor format.
IPMQuiltFeat pfcIPMQuiltFeat Downcast of

pfcFeature.Feature.
Specifies an IPM Quilt feature.
ISegmentFeat pfcISegmentFeat Downcast of

pfcFeature.Feature.

J-Link Classes 455

Class Package Returned by
This feature type specifies an ideal segment.
Layer pfcLayer Model.CreateLayer(). Also,

by downcasting
pfcModelItem.ModelItem.

This class describes a layer.
Line pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines a line.
LineStockFeat pfcLineStockFeat Downcast of

pfcFeature.Feature.
This feature type specifies a line stock, which is used in the piping.
LipFeat pfcLipFeat Downcast of

pfcFeature.Feature.
This feature type specifies a lip feature.
LocPushFeat pfcLocPushFeat Downcast of

pfcFeature.Feature.
This feature type specifies a local push feature.
ManualMillFeat pfcManualMillFeat Downcast of

pfcFeature.Feature.
This feature type specifies a manual-mill feature.
Material pfcPart Materials.get(),

Part.GetCurrent
Material(),
Part.CreateMaterial(),
Part.RetrieveMaterial()

This class provides information about a material.
MaterialExport
Instructions

pfcModel pfcModel.MaterialExport
Instructions_Create()

Used to export a material from a part.
MaterialOId pfcPart

This class specifies the identifier of a Material. For internal use only.
MaterialRemovalFeat pfcMaterialRemovalFeat Downcast of

pfcFeature.Feature.
This feature type specifies a material removal feature.
Materials pfcPart Materials.create(),

PartListMaterials()

This data type is used to specify a list of materials.
Matrix3D pfcBase Matrix3D.create(),

Transform3D.GetMatrix()

This data type is used to describe a three-dimensional matrix.
MeasureFeat pfcMeasureFeat Downcast of

pfcFeature.Feature.
This feature type specifies a measure feature.
MergeFeat pfcMergeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a merge feature.
MFG pfcMFG Session.CreateMFG(). Also,

456 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
by downcasting
pfcModel.Model.

This class describes a manufacturing object.
MFGCLExportInstructions pfcModel Base class; not returned.
Base class to classes that export cutter-location files.
MFGFeatCLExport
Instructions

pfcModel pfcModel.MFGFeatCL
ExportInstructions
_Create()

Used to export a cutter location (CL) file for one NC sequence in a manufacturing assembly.
MFGGatherFeat pfcMFGGatherFeat Downcast of

pfcFeature.Feature.
This feature type specifies a gather feature.
MFGMergeFeat pfcMFGMergeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a manufacturing merge feature.
MFGOperCLExportInstruc
tions

pfcModel pfcModel.MFGOperCL
ExportInstructions
_Create
()

Used to export a cutter location (CL) file for all the NC sequences in an operation.
MFGRefineFeat pfcMFGRefineFeat Downcast of

pfcFeature.Feature.
This feature type specifies a manufacturing refine feature.
MFGTrimFeat pfcMFGTrimFeat Downcast of

pfcFeature.Feature.
This feature type specifies a manufacturing trim feature.
MFGUseVolumeFeat pfcMFGUseVolumeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a manufacturing use volumes feature.
MillFeat pfcMillFeat Downcast of

pfcFeature.Feature.
This feature type specifies a milling feature.
Model pfcModel Selection.GetSelModel(),

Window.GetModel(),
CompModelReplace.
GetNewModel(),Cable
Params
FileInstructions
.GetMdl()

This class specifies the information about a model.
ModelDescriptor pfcModel pfcModelDescriptor.

ModelDescriptor
_Create(),
Model.GetDescr()

This class describes the descriptor for a model.
ModelDescriptors pfcModel ModelDescriptors

.create(),
Model.ListDeclared

J-Link Classes 457

Class Package Returned by
Models()

This data type is used to specify an array of model descriptors.
ModelInfoExport
Instructions

pfcModel pfcModel.ModelInfo
ExportInstructions
_Create()

Used to export information about a model, including units information, features, and children.
ModelItem pfcModelItem ModelItemOwner.GetItem

ById(),
ModelItemOwner.Get
ItemByName(),
Selection.GetSelItem(),
FamColModelItem.Get
RefItem()

This class defines a model item.
ModelItemOId pfcModelItem pfcModel.ModelItemOId

_Create()

This class specifies the owner of a model item. For internal use only.
ModelItemOwner pfcModelItem Base class; not returned.
This class specifies the owner of a model item.
ModelItems pfcModelItem ModelItems.create(),

Feature.ListSubItems(),
ModelItemOwner.List
Items(),
Layer.ListItems()

Specifies a list of model items.
ModelItemType pfcModelItem ModelItemType.FromInt()

or by using any of the static
instances (e.g., ITEM_SURFACE)

This enumerated type lists the different kinds of model item.
ModelItemTypes pfcModelItem ModelItemTypes.create(),

Solid.ExcludeTypes()

Specifies a list of model item types.
ModelOId pfcModel pfcModelOId.ModelOId

_Create(),
Model.GetOId()

This class describes a model owner. For internal use only.
Models pfcModel Models.create(),

Session.ListModels()

This data type is used to specify a list of models.
ModelType pfcModel ModelType.FromInt() or by

using any of the static instances (e.
g., MDL_ASSEMBLY)

This enumerated type lists the supported model types.
MoldFeat pfcMoldFeat Downcast of

pfcFeature.Feature.
This feature type specifies a mold feature.
NamedModelItem pfcModelItem Base class; not returned.
This class specifies the name of a model item.

458 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
NeckFeat pfcNeckFeat Downcast of

pfcFeature.Feature.
This feature type specifies a neck feature.
Note pfcNote pfcSolid.CreateNote()

Specifies the information for a note.
Object pfcObject Base class; not returned.
Base classes to classes that represent PTC Creo Parametric objects.
OffsetCurveDirection pfcCurveFeat OffsetCurveDirection

.FromInt() or by using any of
the static instances (e.g.,
OFFSET_SIDE_ONE)

This enumerated type specifies the direction of an offset.
OffsetFeat pfcOffsetFeat Downcast of

pfcFeature.Feature.
This feature type specifies an offset feature.
OId pfcObject Child.GetOId()

This class defines the owner identifier object. For internal use only.
OperationComponentFeat pfcOperationComponent

Feat
Downcast of
pfcFeature.Feature.

This feature type specifies an operation component feature.
OperationFeat pfcOperationFeat Downcast of

pfcFeature.Feature.
This feature type specifies an operation feature.
OptegraVisExport
Instructions

pfcModel pfcModel.OptegraVis
ExportInstructions
_Create()

Used to export a part or assembly in Optegra Vis format.
Outline2D pfcBase Outline2D.create(),

Contour.EvalOutline()

This data type is used to specify a two-dimensional outline.
Outline3D pfcBase Outline3D.create(),

Solid.GetGeomOutline(),
Solid.EvalOutline()

This data type is used to specify a three-dimensional outline.
Parameter pfcModelItem ParameterOwner.Create

Param(),
ParameterOwner.Get
Param(),
ParameterOwner.Select
Param(),
FamColParam.GetRef
Param(),
Parameters.get(),
pfcModelItem.Create
*ParamValue()

This class defines a parameter object.
ParameterOwner pfcModelItem Base class; not returned.
This class defines a parameter owner object.

J-Link Classes 459

Class Package Returned by
Parameters pfcModelItem Parameters.create()
Specifies a list of parameters.
ParamOId pfcModelItem pfcModel.ParamOId

_Create(),
ParameterOwner
.ListParams()

This class specifies the owner of a parameter. For internal use only.
ParamType pfcSession ParamType.FromInt() or by

using any of the static instances (e.
g., DIMTOL_PARAM)

Enumeration of parameters types that is used to specify which parameters to display.
ParamValue pfcModelItem BaseParameter.GetVal

ue()
, FamilyMember.GetCell(),
ParamValues.get()

This class describes the value of the parameter.
ParamValues pfcModelItem ParamValues.create()

This data type is used to specify an array of parameters.
ParamValueType pfcModelItem ParamValueType.Fro

mInt() or by using any of the
static instances (e.g., PARAM_
STRING)

This enumerated type lists the possible kinds of parameter value.
Parent pfcObject Child.GetDBParent()

This class specifies a parent object.
Part pfcPart Session.CreatePart()

This class defines the material data for a part.
PatchFeat pfcPatchFeat Downcast of

pfcFeature.Feature.
This feature type specifies a patch.
PipeBranchFeat pfcPipeBranchFeat Downcast of

pfcFeature.Feature.
This feature type specifies a pipe branch.
PipeExtendFeat pfcPipeExtendFeat Downcast of

pfcFeature.Feature.
This feature type specifies a pipe extension.
PipeFeat pfcPipeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a pipe feature.
PipeFollowFeat pfcPipeFollowFeat Downcast of

pfcFeature.Feature.
This feature type specifies a follow feature, which is used in pipe routing.
PipeJoinFeat pfcPipeJoinFeat Downcast of

pfcFeature.Feature.
This feature type specifies a pipe join feature.
PipeJointFeat pfcPipeJointFeat Downcast of

pfcFeature.Feature.

460 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
This feature type specifies a pipe joint.
PipeLineFeat pfcPipeLineFeat Downcast of

pfcFeature.Feature.
This feature type specifies a pipeline feature.
PipePointToPointFeat pfcPipePointToPointFeat Downcast of

pfcFeature.Feature.
This feature type specifies a point-to-point pipe feature.
PipeSetStartFeat pfcPipeSetStartFeat Downcast of

pfcFeature.Feature.
This feature type specifies a start feature, which is used in piping.
PipeTrimFeat pfcPipeTrimFeat Downcast of

pfcFeature.Feature.
This feature type specifies a trim feature, which is used in piping.
Placement pfcBase Placement.FromInt() or by

using any of the static instances (e.
g., PLACE_INSIDE)

This enumerated type lists the possible placement types for points on contours.
Plane pfcGeometry Downcast of

pfcGeometry.Surface.
This class defines a plane.
PlotInstructions pfcModel pfcModel.Plot

Instructions_Create()

Used with to plot a part, drawing, or assembly.
PlotPageRange pfcModel PlotPageRange.FromInt()

or by using any of the static
instances (e.g., PLOT_RANGE_
CURRENT)

This enumerated type specifies which pages to plot.
PlotPaperSize pfcModel PlotPaperSize.FromInt()

or by using any of the static
instances (e.g., BSIZEPLOT)

This enumerated type specifies the size of the paper used for the plot.
PlyFeat pfcPlyFeat Downcast of

pfcFeature.Feature.
This feature type specifies a ply feature.
Point pfcGeometry Downcast of

pfcModelItem.ModelItem.
This class defines a point.
Point2D pfcBase Point2D.create(),

Outline2D.get()

This data type is used to specify a two-dimensional point.
Point3D pfcBase Point3D.create(),

Outline3D.get(), and
additional methods that return
multiple points

This data type is used to specify a three-dimensional point.
Point3Ds pfcBase Point3Ds.create(),

J-Link Classes 461

Class Package Returned by
Polygon.GetVertices()

Defines a list of three-dimensional points.
Polygon pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines a polygon.
PositionFoldFeat pfcPositionFoldFeat Downcast of

pfcFeature.Feature.
This feature type specifies a position fold feature.
ProcessStepFeat pfcProcessStepFeat Downcast of

pfcFeature.Feature.
This feature type specifies a process step feature, which is used in the Manufacturing Process Planning for
ASSEMBLIES module.
ProgramExport
Instructions

pfcModel pfcModel.Program
ExportInstructions
_Create()

Used to export a program file for a part or assembly, which can be edited to change the model.
ProtrusionFeat pfcProtrusionFeat Downcast of

pfcFeature.Feature.
This feature type specifies a protrusion.
Quilt pfcGeometry Surface.GetOwnerQuilt().

Also, by downcasting
pfcModelItem.ModelItem.

This class defines a quilt.
RefDimension pfcDimension Downcast of

pfcModelItem.ModelItem.
This class describes a reference dimension.
RegenInstructions pfcSolid pfcSolid.Regen

Instructions_Create()

This class describes the regeneration instructions of a feature.
RelationExport
Instructions

pfcModel pfcModel.Relation
ExportInstructions
_Create()

Used to export a list of the relations and parameters in a part or assembly.
RemoveSurfacesFeat pfcRemoveSurfacesFeat Downcast of

pfcFeature.Feature.
This feature type specifies a removed-surface feature.
RenderExport
Instructions

pfcModel pfcModel.Render
ExportInstructions
_Create()

Used to export a part or assembly in RENDER format.
ReorderAfterOperation pfcFeature Feature.CreateReorder

AfterOp()

This class defines how to reorder the features in the regeneration order list.
ReorderBeforeOperation pfcFeature Feature.CreateReorder

BeforeOp()

This class determines how to move the features backward in the regeneration order list.
ReplaceSurfaceFeat pfcReplaceSurfaceFeat Downcast of

462 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
pfcFeature.Feature.

This feature type specifies a replaced surface feature.
ResumeOperation pfcFeature Feature.CreateResu

meOp()

Specifies a resume operation for a feature.
RetrieveModelOptions pfcSession pfcSession.Retrieve

ModelOptions_Create()

This class determines what information about the simplified representations in a model to retrieve.
RevolvedSurface pfcGeometry Downcast of

pfcGeometry.Surface.
This class defines a revolved surface.
RibbonCableFeat pfcRibbonCableFeat Downcast of

pfcFeature.Feature.
This feature type specifies a ribbon cable.
RibbonExtendFeat pfcRibbonExtendFeat Downcast of

pfcFeature.Feature.
This feature type specifies a ribbon extension.
RibbonPathFeat pfcRibbonPathFeat Downcast of

pfcFeature.Feature.
This feature type specifies a ribbon path feature.
RibbonSolidFeat pfcRibbonSolidFeat Downcast of

pfcFeature.Feature.
This feature type specifies a solid ribbon.
RibFeat pfcRibFeat Downcast of

pfcFeature.Feature.
This feature type specifies a rib feature.
RipFeat pfcRipFeat Downcast of

pfcFeature.Feature.
This feature type specifies a rip feature, which is used in the PTC Creo NC Sheetmetal module.
RoundFeat pfcRoundFeat Downcast of

pfcFeature.Feature.
This feature type specifies a round feature.
RuledSurface pfcGeometry Downcast of

pfcGeometry.Surface.
This class defines a ruled surface.
SawFeat pfcSawFeat Downcast of

pfcFeature.Feature.
This feature type specifies a saw feature.
Selection pfcSelect Selections.get(),
This class contains the selection information.
SelectionOptions pfcSelect pfcSelect.Selection

Options_Create()

This class describes the selection options.
Selections pfcSelect Selections.create(),

Session.Select()

This data type is used to specify an array of selections.

J-Link Classes 463

Class Package Returned by
Session pfcSession pfcGloba.GetProE

Session()

This class defines the information about a session object.
SessionActionListener_u pfcSession Base class; not returned.
Abstract base class that all user-defined SessionActionListener classes must extend.
SessionActionListener pfcSession Base class; not returned.
Interface to be implemented by user-defined classes that respond to session events.
SETExportInstructions pfcModel pfcModel.SETExport

Instructions_Create()

This class defines a ruled surface.
SETFeat pfcSETFeat Downcast of

pfcFeature.Feature.
This feature type specifies a SET file.
ShaftFeat pfcShaftFeat Downcast of

pfcFeature.Feature.
This feature type specifies a shaft.
SheetmetalClampFeat pfcSheetmetalClampFeat Downcast of

pfcFeature.Feature.
This feature type specifies a sheetmetal clamp.
SheetmetalConversion
Feat

pfcSheetmetalConversion
Feat

Downcast of
pfcFeature.Feature.

This feature type specifies a conversion feature, which is used in the PTC Creo NC Sheetmetal module.
SheetmetalCutFeat pfcSheetmetal

CutFeat
Downcast of
pfcFeature.Feature.

This feature type specifies a sheetmetal cut feature.
SheetmetalOptimizeFeat pfcSheetmetalOptimize

Feat
Downcast of
pfcFeature.Feature.

This feature type specifies an optimize feature, used in the PTC Creo NC Sheetmetal module.
SheetmetalPopulateFeat pfcSheetmetalPopulate

Feat
Downcast of
pfcFeature.Feature.

This feature type specifies a populate feature, which is used in the PTC Creo NC Sheetmetal module.
SheetmetalPunchPoint
Feat

pfcSheetmetalPunch
PointFeat

Downcast of
pfcFeature.Feature.

This feature type specifies a punch point, which is used in the PTC Creo NC Sheetmetal module.
SheetmetalShearFeat pfcSheetmetalShearFeat Downcast of

pfcFeature.Feature.
This feature type specifies a sheetmetal shear feature.
SheetmetalZoneFeat pfcSheetmetalZone

Feat
Downcast of
pfcFeature.Feature.

This feature type specifies a sheetmetal zone.
ShellFeat pfcShellFeat Downcast of

pfcFeature.Feature.
This feature type specifies a shell.
ShrinkageFeat pfcShrinkageFeat Downcast of

464 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
pfcFeature.Feature.

This feature type specifies a shrinkage feature, which is used in the Mold Design and Casting modules.
ShrinkDimFeat pfcShrinkDimFeat Downcast of

pfcFeature.Feature.
This feature type specifies a shrink dimension feature, which is used in the Mold Design and Casting
modules.
SilhouetteTrimFeat pfcSilhouetteTrimFeat Downcast of

pfcFeature.Feature.
This feature type specifies a silhouette trim feature.
STLASCIIExport
Instructions

pfcModel pfcModel.SLAASCIIExport
Instructions_Create()

Used to export a part or assembly
to an ASCII STL file.
STLBinaryExport
Instructions

pfcModel pfcModel.SLABinaryEx
port
Instructions_Create()

Used to export a part or assembly in a binary STL file.
SlotFeat pfcSlotFeat Downcast of

pfcFeature.Feature.
This feature type specifies a slot.
SMMFGApproachFeat pfcSMMFGApproachFeat Downcast of

pfcFeature.Feature.
This feature type specifies an
approach feature, which is used in
sheetmetal manufacturing.
SMMFGCosmeticFeat pfcSMMFGCosmeticFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cosmetic feature used in sheetmetal manufacturing.
SMMFGCutFeat pfcSMMFGCutFeat Downcast of

pfcFeature.Feature.
This feature type specifies a cut feature for sheetmetal manufacturing.
SMMFGFormFeat pfcSMMFGFormFeat Downcast of

pfcFeature.Feature.
This feature type specifies a form feature used in sheetmetal manufacturing.
SMMFGMaterial
RemoveFeat

pfcSMMFGMaterial
RemoveFeat

Downcast of
pfcFeature.Feature.

This feature type specifies a
material removal feature, which is
used in sheetmetal manufacturing.
SMMFGOffsetFeat pfcSMMFGOffsetFeat Downcast of

pfcFeature.Feature.
This feature type specifies a sheetmetal offset feature.
SMMFGPunchFeat pfcSMMFGPunchFeat Downcast of

pfcFeature.Feature.
This feature type specifies a sheetmetal punch feature.
SMMFGShapeFeat pfcSMMFGShapeFeat Downcast of

pfcFeature.Feature.

J-Link Classes 465

Class Package Returned by
This feature type specifies a sheetmetal shape feature.
SMMFGSlotFeat pfcSMMFGSlotFeat Downcast of

pfcFeature.Feature.
This feature type specifies a sheetmetal slot.
Solid pfcSolid ComponentPath.GetLeaf()

This class defines a solid.
SolidActionListener _u pfcSolid Base class; not returned.
Abstract base class that all user-defined SolidActionListener classes must extend.
SolidActionListener pfcSolid Base class; not returned.
Interface to be implemented by user-defined classes that respond to solid events.
SolidifyFeat pfcSolidifyFeat Downcast of

pfcFeature.Feature.
This feature type specifies a solidify feature.
SolidPipeFeat pfcSolidPipeFeat Downcast of

pfcFeature.Feature.
This feature type specifies a solid pipe feature.
SpinalBendFeat pfcSpinalBendFeat Downcast of

pfcFeature.Feature.
This feature type specifies a spinal bend.
Spline pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines a spline.
SplinePoint pfcGeometry SplinePoints.get()

This class defines a spline point.
SplinePoints pfcGeometry SplinePoints.create(),

Spline.GetPoints()

This data type is used to specify an array of spline points.
SplitFeat pfcSplitFeat Downcast of

pfcFeature.Feature.
This feature type specifies a split feature.
SplitSurfaceFeat pfcSplitSurfaceFeat Downcast of

pfcFeature.Feature.
This feature type specifies a split-surface feature.
SpoolFeat pfcSpoolFeat Downcast of

pfcFeature.Feature.
This feature type specifies a spool.
SpringBackFeat pfcSpringBackFeat Downcast of

pfcFeature.Feature.
This feature type specifies a spring-back feature.
StdColor pfcBase Session.SetTextColor(),

GetRGBFromStdColor(),
StdColor.FromInt(), or by
using any of the static instances (e.
g., COLOR_SHEETMETAL)

This enumerated type lists the supported color types.
StdLineStyle pfcBase Session.SetLineStyle(),

466 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
StdLineStyle.FromInt(),
or by using any of the static
instances (e.g., LINE_SOLID)

This enumerated type lists the possible line styles.
STEPExportInstructions pfcModel pfcModel.STEPExport

Instructions_Create()

Used to export a part or assembly in STEP format.
StringOId pfcObject Base class; not returned.
This class specifies a string identifier. For internal use only.
SubHarnessFeat pfcSubHarnessFeat Downcast of

pfcFeature.Feature.
This feature type specifies a subharness.
SuppressOperation pfcFeature Feature.CreateSuppress

Op()

This class defines a suppress
operation.
Surface pfcGeometry Surfaces.get(),

Edge.GetSurface1(),
GetSurface2(). Also, by
downcasting
pfcModelItem.ModelItem.

This class defines a surface.
SurfaceModelFeat pfcSurfaceModelFeat Downcast of

pfcFeature.Feature.
This feature type specifies a surface model.
Surfaces pfcGeometry Surfaces.create(),

Quilt.ListElements(),
Surface.ListSameSurfa
ces().

This data type is used to describe an array of surfaces.
SurfXYZData pfcGeometry Surface.Eval3DData()

Stores the results of a surface evaluation.
TabulatedCylinder pfcGeometry Downcast of

pfcGeometry.Surface.
This class defines a tabulated cylinder.
Text pfcGeometry Downcast of

pfcGeometry.Curve.
This class defines the text information.
TextStyle pfcBase pfcBase.TextStyle

_Create(),
Text.GetStyle().
Note.GetStyle()

This class specifies the text attributes.
ThickenFeat pfcThickenFeat Downcast of

pfcFeature.Feature.
This feature type specifies a thicken feature, which is used in the PTC Creo NC Sheetmetal module.
ThreadFeat pfcThreadFeat Downcast of

pfcFeature.Feature.

J-Link Classes 467

Class Package Returned by
This feature type specifies a thread.
Torus pfcGeometry Downcast of

pfcGeometry.Surface.
This class defines a torus.
TorusFeat pfcTorusFeat Downcast of

pfcFeature.Feature.
This feature type is used for a torus.
Transform3D pfcBase pfcBase.Transform3D

_Create(),
ComponentPath.Get
Transform(),
CoordSystem.Get
CoordSys(),
TransformedSurface.
GetCoordSys(),
View.GetTransform(),
Window.GetTransform()

This class provides information about the transformation.
TransformedSurface pfcGeometry Downcast of

pfcGeometry.Surface.
This class defines a transformed surface.
TurnFeat pfcTurnFeat Downcast of

pfcFeature.Feature.
This feature type specifies a turn feature, which is used in the manufacturing module.
TwistFeat pfcTwistFeat Downcast of

pfcFeature.Feature.
This feature type specifies a twist feature.
UDFClampFeat pfcUDFClampFeat Downcast of

pfcFeature.Feature.
This feature type specifies a UDF clamp.
UDFFeat pfcUDFFeat Downcast of

pfcFeature.Feature.
This feature type specifies a UDF feature.
UDFNotchFeat pfcUDFNotchFeat Downcast of

pfcFeature.Feature.
This feature type specifies a UDF notch feature.
UDFPunchFeat pfcUDFPunchFeat Downcast of

pfcFeature.Feature.
This feature type specifies a UDF punch feature.
UDFRmdtFeat pfcUDFRmdtFeat Downcast of

pfcFeature.Feature.
This feature type specifies a UDF for rapid mold design.
UDFThreadFeat pfcUDFThreadFeat Downcast of

pfcFeature.Feature.
This feature type specifies a UDF thread feature.
UDFWorkRegionFeat pfcUDFWorkRegionFeat Downcast of

pfcFeature.Feature.
This feature type specifies a UDF work region feature.

468 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
UDFZoneFeat pfcUDFZoneFeat Downcast of

pfcFeature.Feature.
This feature type specifies a UDF zone feature.
UICommand pfcCommand Session.UICreate

Command()

An action-listener object for menu commands.
UICommandAction
Listener_u

pfcCommand Base class; not returned.

Abstract base class that all user-defined UICommandActionListener classes must extend.
UICommandActionListener pfcCommand Base class; not returned.
Interface to be implemented by user-defined classes that respond to UI command events.
UnbendFeat pfcUnbendFeat Downcast of

pfcFeature.Feature.
This feature type specifies an unbend feature, which is used in the PTC Creo NC Sheetmetal module.
UserFeat pfcUserFeat Downcast of

pfcFeature.Feature.
This feature type specifies a user feature.
UVParams pfcBase UVParams.create(),

EdgeEvalData.Get
Point*()
, Selection.GetParams(),
SurfXYZData.GetParams()

This data type is used to specify UV parameters.
UVVector pfcBase UVVector.create(),

EdgeEvalData.
GetDerivative*()

This data type is used to specify a UV-vector.
VDAExportInstructions pfcModel pfcModel.CATIAExport

Instructions_Create(),
VDAExportInstructions
_Create()

Used to export a part or assembly in VDA format.
VDAFeat pfcVDAFeat Downcast of

pfcFeature.Feature.
This feature type specifies a VDA file.
Vector2D pfcBase Vector2D.create()

This data type is used to specify a two-dimensional vector.
Vector3D pfcBase Vector3D.create(),

Vectors3D.get() and
additional methods that return
information about geometric
curves.

This data type is used to specify a three-dimensional vector.
Vector3Ds pfcBase Vector3Ds.create()

This data type is used to specify a list of three-dimensional vectors.
View pfcView ViewOwner.GetView()

ViewOwner.SaveView()
ViewOwner.Retrieve

J-Link Classes 469

Class Package Returned by
View()
Views.get()

This class specifies information about a view.
ViewOId pfcView pfcView.ViewOId_

Create()

This class specifies the owner of a view. For internal use only.
ViewOwner pfcView Base class; not returned.
This class describes the owner of the view.
Views pfcView Views.create(),

ViewOwner.ListViews()

This data type is used to specify an array of views.
VolSplitFeat pfcVolSplitFeat Downcast of

pfcFeature.Feature.
This feature type specifies a split-volume feature.
WallFeat pfcWallFeat Downcast of

pfcFeature.Feature.
This feature type specifies a wall, which is used in the PTC Creo NC Sheetmetal module.
WaterLineFeat pfcWaterLineFeat Downcast of

pfcFeature.Feature.
This feature type specifies a waterline feature.
WeldEdgePrepFeat pfcWeldEdgePrepFeat Downcast of

pfcFeature.Feature.
This feature type specifies a preparation edge, which is used in the Welding Design module.
WeldFilletFeat pfcWeldFilletFeat Downcast of

pfcFeature.Feature.
This feature type specifies a welding fillet.
WeldGrooveFeat pfcWeldGrooveFeat Downcast of

pfcFeature.Feature.
This feature type specifies a weld groove.
WeldingRodFeat pfcWeldingRodFeat Downcast of

pfcFeature.Feature.
This feature type specifies a welding rod.
WeldPlugSlotFeat pfcWeldPlugSlotFeat Downcast of

pfcFeature.Feature.
This feature type specifies a plug-slot feature, which is used in the Welding Design module.
WeldSpotFeat pfcWeldSpotFeat Downcast of

pfcFeature.Feature.
This feature type specifies a welding spot.
Window pfcWindow Session.GetCurrent

Window(),
Session.CreateModel
Window(),
Session.OpenFile(),
Session.GetWindow(),
Windows.get()

This class describes the attributes of a window.
WindowOId pfcWindow pfcWindow.WindowOId

470 PTC Creo® Parametric 3.0 J-Link User’s Guide

Class Package Returned by
_Create()

This class specifies a window identifier. For internal use only.
Windows pfcWindow Session.ListWindows(),

Windows.create()

This data type is used to specify an array of windows.
WorkcellFeat pfcWorkcellFeat Downcast of

pfcFeature.Feature.
This feature type specifies a workcell.
XBadArgument pfcExceptions Created, thrown in J-Link code.
This exception is thrown when you specify an invalid argument.
XBadGetParamValue pfcExceptions Created, thrown in J-Link code.
This exception is thrown when you specify an invalid parameter type.
XBadOutlineExcludeType pfcExceptions Created, thrown in J-Link code.
This exception is thrown when you specify an invalid outline exclusion type.
XInAMethod pfcExceptions Base class of most J-Link

exceptions.
This exception is thrown when you specify an invalid method name.
XInvalidEnumValue pfcExceptions Created, thrown in J-Link code.
This exception is thrown when you specified an invalid enumerated value.
XPFC pfcExceptions Base class of most J-Link

exceptions.
This exception is thrown when a general usage error occurs.
XSequenceTooLong pfcExceptions Created, thrown in J-Link code.
This exception is thrown when the sequence length exceeds the maximum allowable size.
XStringTooLong pfcExceptions Created, thrown in J-Link code.
This exception is thrown when the specified string exceeds the maximum allowable length.
XToolkitError pfcExceptions Created, thrown in J-Link code.
This exception is thrown when there is a toolkit error.
XUnimplemented pfcExceptions Created, thrown in J-Link code.
This exception is thrown when there is a call to a function that is unimplemented.
XUnknownModelExtension pfcExceptions Created, thrown in J-Link code.
This exception is thrown when you specify an invalid model extension.
ZoneFeat pfcZoneFeature Downcast of

pfcFeature.Feature

This feature type specifies a zone feature.

J-Link Classes 471

Index

A
abstract keyword, 27
Accuracy
getting and setting, 176

ActionListener
creating, 292
definition, 27
description of the class, 40
events, 292
feature-level, 298
session-level, 294
solid-level, 297
types, 292
UI command, 295

ActionSource interface, 293
definition, 40

Activate
window, 197

Adapters, 27
Add
items to a layer, 210

Allocate
simplified representations, 348

allow_stop field, 16
APIWizard
browsing
objects, 60
user’s guide, 61

defined, 56
display frame, 60
find (search mechanism), 61
interface defined, 59
Internet Explorer
troubleshooting, 57

navigating the tree, 60
searching for a string, 61

topic/object selection frame, 59
tree updating, 58

Applications
creating, 43
hierarchy, 43
registering, 18
running, 19
setting up, 16
standalone, 16

Arcs
description, 243
representation, 440

Area
surface, 249

Arguments, optional, 52
Arrays, 37
sample class, 38

Arrows, 243
Assemblies
coordinate systems, 202
creating, 176
hierarchy, 272
structure of, 272

Axes, 250
evaluating, 250

B
B-splines
description, 243

Browsing
J-Link user’s guide with APIWizard,
61
objects with APIWizard, 60

473

C
catch keyword, 27
Cells
accessing, 288

Children, 214
cipjava, 43
Circles, 243
Classes
list of, 444
types, 32

Clear
window, 197

Close
window, 197

Colors, 68
Commands
designating, 102

Comments, 28
Composite curves
description, 243

Cones
class representation, 247
geometry representation, 432

Configuration file
protkdat option, 18
toolkit_registry_file option, 18

Configuration options, 67
Contours
evaluating, 246
traversing, 242

Contours, locating in a model, 246
Coons patches
geometry representation, 435

Coordinate systems, 250
assemblies, 202
datum, 202
drawing, 202
Drawing View, 202
evaluating, 250
screen, 201
section, 202
solid, 201

window, 201
Coordinate transformations, 200
Copy
models, 116

Create
action listeners, 292
applications, 43
assembly, 176
buttons, 98
family table columns, 289
family table instance, 286
layer, 210
local group, 218
material, 187
menus, 98
parameters, 257
part, 176
simplified representations, 348
UDFs, 222
window, 196

Create Interactively Defined UDFs,
223
Creating UDFs, 222
Curves, 243
data structures, 439
determining the type, 243
t parameter, 243
types, 243
reserved, 243

Cylinders, 247
geometry representation, 431
spline surfaces, 438
tabulated, 247
geometry representation, 434

D
Data types, 27
enums, 38

delay_start field, 16
Delete
feature pattern, 218

474 PTC Creo® Parametric 3.0 J-Link User’s Guide

models, 116
simplified representations, 348

Depth
selection, 81

Descriptors
model, 110

Designating
command, 103
commands, 102
icon, 102

Designating commands, 102
Detail.DetailEntityInstructions
interface
description, 151

Dictionaries, 38
Dimension2D.Dimension2D interface
description, 135

Dimensions, 264
information, 264
tolerances, 265

Display
model in window, 196
models, 116
selection, 82

Display status
of layers, 210

Documentation
see APIWizard, 56

Drawing
models
code example, 132

sheets
example, 129

transformations, 205
views
code example, 132

E
Edges, 243
determining the type, 243
evaluating, 244

t parameter, 243
traversing, 242
types, 243
reserved, 243

Ellipses, 243
end field, 16
Enumerated types, 38
sample class, 39

Erase
models, 116

Evaluation
axes, 250
contour, 246
coordinate system, 250
edge, 244
point, 250
surface, 249

Event handling
try blocks, 27
try-catch-finally blocks, 44

Examples
creating drawing views, 132
listing views, 134
normalizing a coordinate
transformation matrix, 205
of ActionListeners, 41
of arrays, 38
of dictionaries, 39
of sequences, 36
of utilities, 42
setting angular tolerances, 266
using drawing sheets, 129

Exceptions
ActionListener, 41
array, 38
enumerated type, 39
handling in code, 44
PTC Creo Parametric-related object,
34-35
sequence, 36
utility, 42

Export

Index 475

files, 302

F
Faces
traversing, 242

Family tables, 286
cells, 288
columns
accessing, 287

instances
accessing, 286

symbols, 287
Features
accessing, 214
creating, 215
failed, 214
groups, 214, 218
identifiers, 214
information, 214
operations, 215
parents, 214
patterns, 218
read-only, 214
resuming, 215
suppressing, 215
user-defined, 221

Fields
of ActionListeners, 40
of arrays, 37
of enumerated types, 39
of PTC Creo Parametric-related
objects, 34
of sequences, 36
of utilities, 42

Files
exporting, 302
JAR, 20
message, 69
contents, 70

naming restrictions, 69
plotting, 333

Fillet surfaces

geometry representation, 435
final keyword, 26
finally keyword, 27
Find
APIWizard search mechanism, 61

FocusListener, 27
Frames
display frame in APIWizard, 60
topic/object selection, 59

G
Garbage collection, 24
General surface of revolution, 433
Generic model
getting, 286

Geometry
solid edge, 245
terms, 242
traversal, 242

Groups, 218, 221

H
Hierarchy
application, 43

Highlight
selections, 82

I
Implementation
and inheritance, 24

Import
packages, 43

Information
Drawing, 125

Inheritance
of ActionListeners, 41
of arrays, 38
of enumerated types, 39
of PTC Creo Parametric-related
objects, 33, 35

476 PTC Creo® Parametric 3.0 J-Link User’s Guide

of sequences, 36
of utilities, 42
overview, 24

Initialize
ActionListeners, 40
arrays, 37
dictionaries, 38
PTC Creo Parametric-related
objects, 32, 34
sequences, 36
utilities, 42

Install
See J-Link Installing, 414

Installation
See J-Link Installing, 414

instanceof operator, 26
Interactive selection, 80
Interactively Defined UDFs
create, 223

ItemListener, 27

J
J-Link
class types, 32
installing
test of, 414

menu option, 20
programs, 16

JAR files, 20
Java
comments, 28
data types, 27
enumerated types, 38
event handling, 27
implementation, 24
inheritance, 24
javadoc, 28
JDBC, 24
JDK
functionality, 24

JVM, 24

keywords, 26
overview, 24
platform independence, 24
polymorphism, 24

Java Virtual Machine, 24
java_app_class field, 16
java_app_classpath field, 16
java_app_start field, 16
java_app_stop field, 16
java.applet API, 24
java.awt API, 24
java.io API, 24
java.lang API, 24
javadoc tool, 28

K
Keywords
abstract, 27
catch, 27
final, 26
finally, 27
instanceof, 26
using, 243

native, 27
new, 26
package, 26
private, 26
protected, 26
public, 26
static, 26
throw, 27
try, 27

L
Layers, 210
operations, 210

Lines
description, 243
representation, 440
styles, 68

Lists

Index 477

of children, 214
of current windows, 196
of layer items, 210
of materials, 187
of ModelItems, 208
of pattern members, 214, 218
of rows in a family table, 286
of subitems, 208
of views, 199
of windows, 196

Local groups
creating, 218

Locks, 286

M
Machines
setting up, 16

Macros, 67
Mass properties, 185
Materials, 187
Matrix
code example, 205

Matrix3D object, 205
Message files, 69
contents, 70
restrictions, 69

Message window
reading from, 71
writing to, 71

Methods
of ActionListeners, 41
of arrays, 37
of dictionaries, 39
of PTC Creo Parametric-related
objects, 33-34
of sequences, 36
of utilities, 42
overloading and overriding, 24
starting and stopping, 21

Model programs, 19
definition, 19

running, 20
ModelItems
duplicating, 210
evaluating, 250
getting, 208
information, 209
types, 208

Models
descriptors, 110
Drawing
Obtaining, 124

exporting, 302
getting, 110
operations, 116
retrieving, 112

Modify
simplified representations, 349

N
name field, 16
native keyword, 27
new keyword, 26
Normalize
matrix, 205

Notification of events, 27
NURBS
representation, 441
surface, 437

O
Objects
browsing with APIWizard, 60

Open
file, 112

Operations
Drawing, 125
feature, 215
layer, 210
model, 116
solid, 177, 342
view, 200

478 PTC Creo® Parametric 3.0 J-Link User’s Guide

window, 197, 343
Optional arguments, 52
Outlines
contour, 246

Overload
methods, 24

Override
methods, 24

P
package keyword, 26
Packages
importing, 43

Parameters, 257
information, 260

ParamValue objects, 256
Parents, 214
Parts, 187
creating, 176

Pattern leaders, 214, 218
Patterns, 218
pfcExceptions.
XToolkitDrawingCreateErrors
description, 123

pfcModel.Models
information, 112

pfcSelect.Selection.GetSelItem method
getting a ModelItem, 208

pfcSelect.SelectionOptions argument
table of strings, 80

Planes, 247
geometry representation, 430

Plot, 333
Pointers, 24
Points, 250
evaluating, 250

Polygons, 243
Polymorphism, 24
Popup Menu
Adding to the Graphics Window,
105

Using Trail files to determine
names, 105

Popup menus
Adding, 106

Popup Menus, 104
Accessing, 105

Preprocessors, 24
Principal curve, 249
private keyword, 26
protected keyword, 26
PTC Creo Parametric
accessing, 69

public keyword, 26

R
Refresh
window, 197, 343

Regenerate
events, 294
solids, 177, 342

Register
applications, 18

Registry file, 16
Remove
items from a layer, 210

Rename
models, 116

Repaint
events, 294
window, 197, 343

Reset
view, 200

Restrictions
on text message files, 69
on threads, 52

Retrieve
geometry of a simplified
representation, 347
graphics of a simplified
representation, 347
material, 187

Index 479

simplified representations, 347
view, 199

Revolved surfaces, 247
Rotate
view, 200

Ruled surfaces, 247
geometry representation, 434

Run
applications, 19
model program, 20

S
Save
models, 116
view, 200

Screen coordinate system, 201
Search
APIWizard search mechanism, 61
using the APIWizard, 61

Selection, 80
accessing data, 81
controlling display, 82

Sequences, 35
sample class, 36

Set up
applications, 16
machine, 16
model programs, 19

Sheets
Drawing, 127

Simplified representations
adding items, 349
creating, 348
deleting, 348
items, 349

extracting information from, 348
modifying, 349
retrieving
geometry, 347
graphics, 347

utilities, 350
Solids

accuracy, 176
coordinate system, 201
geometry traversal, 208
getting a solid object, 176
information, 176
mass properties, 185
operations, 177, 342

Splines
cylindrical spline surface, 438
description, 243
representation, 440
surface, 436

Standalone applications, 16
Start method, 21
startup field, 16
static keyword, 26
Status
feature, 214
layer, 210

Stop method, 21
Strings, 27
Surfaces, 247
cylindrical spline, 438
data structures, 430
evaluating, 249
area, 249

evaluating parameters, 249
fillet
geometry representation, 435

general surface of revolution, 433
NURBS
geometry representation, 437

revolved, 247
ruled, 247, 434
spline, 436
traversing, 242
types, 247
UV parameterization, 247

T
t parameter

480 PTC Creo® Parametric 3.0 J-Link User’s Guide

description, 243
Table
creating, 142-143
drawing cells, 142
retrieving, 143
selecting, 142

Table.Table interface
description, 142

Tabulated cylinders, 247
geometry representation, 434

Text, 243
message files, 69

text_dir field, 16
Threads
restrictions, 52

throw keyword, 27
Tolerance, 265
Tolerances
setting
example, 266

Torii, 247
Torus, 432
Transformations, 200, 202
solid to coordinate system datum
coordinates, 204
solid to screen coordinates, 204
in a drawing, 205

Traversal
of a solid block, 242
of geometry, 242

try keyword, 27
try-catch-finally block
description, 50

U
UDFs, 221
creating, 222

User’s Guide
browsing with APIWizard, 61
documentation
online, 56

Utilities, 42
sample class, 42
simplified representations, 350

V
Values
ParamValue, 256

View2D.View2D interface
description, 130

Views
Drawing, 130
getting a view object, 199
list of, 199
listing
example, 134

operations, 200
retrieving, 199
saving, 200

Visibility, 214
Visit
simplified representations, 348

W
Window coordinate system, 201
Windows, 196
activating, 197
clearing, 197
closing, 197
creating, 196
flush, 197
operations, 197, 343
repainting, 197

Write
to the message window, 71

Index 481

	About This Guide
	Setting Up J-Link
	Setting Up Your Machine
	Setting Up a Synchronous J-Link Program
	Standalone Applications
	Registry File

	Registering a J-Link Application
	Starting and Stopping a Standalone Application

	Setting Up a Model Program
	Associating and Running a J-Link Application with a Model
	JAR File Needed for Model-Program Dependency

	Start and Stop Methods

	Java Programming Considerations
	Use of the JDK in J-Link Applications
	Java Overview
	Java Keywords
	Java Data Types
	Event Handling
	Comments

	Overview of J-Link
	Class Types
	PTC Creo Parametric-Related Interfaces
	Initialization
	Attributes
	Methods
	Inheritance
	Exceptions

	Compact Data Classes
	Initialization
	Attributes
	Methods
	Inheritance
	Exceptions

	Unions
	Sequences
	Initialization
	Attributes
	Methods
	Inheritance
	Exceptions
	Example Code: Sequence Class

	Arrays
	Initialization
	Attributes
	Methods
	Inheritance
	Exceptions
	Example Code - Array Class

	Enumeration Classes
	Initialization
	Attributes
	Methods
	Inheritance
	Exceptions
	Example Code: Enumeration Class

	Action Listeners
	Initialization
	Attributes
	Methods
	Inheritance
	Exceptions
	Example Code: Listener Class

	Utilities
	Initialization
	Attributes
	Methods
	Inheritance
	Exceptions
	Sample Utility Class

	Creating Applications
	Importing Packages
	Application Hierarchy

	Exception Handling
	cipjava Exceptions
	PFC Exceptions
	PTC Creo Parametric TOOLKIT Errors
	Approaches to J-Link Exception Handling

	J-Link Programming Considerations
	J-Link Thread Restrictions
	Optional Arguments to J-Link Methods
	Optional Returns for J-Link Methods

	Parent-Child Relationships Between J-Link Objects
	Run-Time Type Identification in J-Link

	The J-Link Online Browser
	Online Documentation J-Link APIWizard
	Accessing the APIWizard
	Installing the APIWizard
	Applet Based APIWizard
	Troubleshooting
	Automatic Index Tree Updating

	Non-Applet Based Version of the APIWizard
	Non-Applet APIWizard Top Page
	User’s Guide

	APIWizard Available on PTC.com
	The Applet Based APIWizard Interface
	Package/Class/Interface/Exception/Topic Selection Frame
	Display Frame
	Navigating the Package/Class/Interface/Exception/Topic Selection Tree
	Browsing the J-Link Packages
	Browsing the J-Link User’s Guide
	The Applet Based APIWizard Search Feature (Find)
	Supported Search Types

	Performing an APIWizard Search

	Session Objects
	Overview of Session Objects
	Directories
	File Handling
	Configuration Options
	Macros
	Colors and Line Styles

	Accessing the PTC Creo Parametric Interface
	The Text Message File
	Restrictions on the Text Message File
	Contents of the Message File

	Writing a Message Using a Message Pop-up Dialog Box
	Accessing the Message Window
	Writing Messages to the Message Window
	Writing Messages to an Internal Buffer

	Message Classification
	Example Code: Writing a Message
	Reading Data from the Message Window

	Displaying Feature Parameters
	File Dialogs
	Customizing the PTC Creo Parametric Navigation Area
	Adding Custom Web Pages

	Selection
	Interactive Selection
	Accessing Selection Data
	Controlling Selection Display
	Example Code: Using Interactive Selection

	Programmatic Selection
	Selection Buffer
	Introduction to Selection Buffers
	Reading the Contents of the Selection Buffer
	Removing the Items of the Selection Buffer
	Adding Items to the Selection Buffer

	Ribbon Tabs, Groups, and Menu Items
	Creating Ribbon Tabs, Groups, and Menu Items
	Workflow to Add Menu Items to the Ribbon User Interface

	About the Ribbon Definition File
	To Specify the Path for the Ribbon Definition File
	Loading Multiple Applications Using the Ribbon Definition File

	Localizing the Ribbon User Interface Created by the J-Link Applications
	Support for Legacy J-Link Applications
	Migration of Legacy J-Link Applications

	Menus, Commands, and Pop-up Menus
	Introduction
	Menu Bar Definitions
	Menus Buttons and Menus
	Finding PTC Creo Parametric Commands
	Access Listeners for Commands
	Example 1: Command Access Listeners

	Bracket Listeners for Commands
	Example 2: Bracket Listeners

	Designating Commands
	Command Icons
	Designating the Command
	Placing the Button

	Pop-up Menus
	Adding a Pop-up Menu to the Graphics Window
	Using the Trail File to Determine Existing Pop-up Menu Names
	Listening for Pop-up Menu Initialization
	Accessing the Pop-up Menus
	Adding Content to the Pop-up Menus
	Example 3: Creating a Pop-up Menu

	Models
	Overview of Model Objects
	Getting a Model Object
	Model Descriptors
	Retrieving Models
	Model Information
	Model Operations
	Running PTC Creo ModelCHECK

	Drawings
	Overview of Drawings in J-Link
	Creating Drawings from Templates
	Drawing Creation Errors
	Example: Drawing Creation from a Template

	Obtaining Drawing Models
	Drawing Information
	Drawing Operations
	Example: Replace Drawing Model Solid with its Generic

	Drawing Sheets
	Drawing Sheet Information
	Drawing Sheet Operations
	Example: Listing Drawing Sheets

	Drawing Views
	Creating Drawing Views
	General Drawing Views
	Projected Drawing Views
	Example: Creating Drawing Views

	Obtaining Drawing Views
	Drawing View Information
	Example: Listing the Views in a Drawing

	Drawing Views Operations

	Drawing Dimensions
	Obtaining Drawing Dimensions
	Creating Drawing Dimensions
	Drawing Dimensions Information
	Drawing Dimensions Operations
	Example: Command Creation of Dimensions from Model Datum Points

	Drawing Tables
	Creating Drawing Cells
	Selecting Drawing Tables and Cells
	Creating Drawing Tables
	Retrieving Drawing Tables
	Drawing Tables Information
	Drawing Tables Operations
	Example: Creation of a Table Listing Datum Points

	Drawing Table Segments
	Repeat Regions

	Detail Items
	Listing Detail Items
	Creating a Detail Item

	Detail Entities
	Instructions
	Example: Create a Draft Line with Predefined Color

	Detail Entities Information
	Detail Entities Operations

	OLE Objects
	Detail Notes
	Instructions
	Example: Create Drawing Note at Specified Location with Leader to Surface and Surface Name

	Detail Notes Information
	Details Notes Operations

	Detail Groups
	Instructions
	Detail Groups Information
	Detail Groups Operations
	Example: Create New Group of Items

	Detail Symbols
	Detail Symbol Definitions
	Instructions
	Detail Symbol Definitions Information
	Detail Symbol Definitions Operations
	Retrieving Symbol Definitions

	Detail Symbol Instances
	Instructions
	Detail Symbol Instances Information
	Detail Symbol Instances Operations
	Example: Create a Free Instance of Symbol Definition
	Example: Create a Free Instance of a Symbol Definition with drawing unit heights, variable text and groups

	Detail Symbol Groups
	Instructions
	Detail Symbol Group Information
	Detail Symbol Group Operations

	Detail Attachments
	Free Attachment
	Parametric Attachment
	Offset Attachment
	Unsupported Attachment

	Solid
	Getting a Solid Object
	Solid Information
	Solid Operations
	Solid Units
	Types of Unit Systems
	Accessing Individual Units
	Modifying Individual Units
	Creating a New Unit
	Accessing Systems of Units
	Modifying Systems of Units
	Creating a New System of Units
	Conversion to a New Unit System

	Mass Properties
	Example Code: Retrieving a Mass Property Object

	Annotations
	Cross Sections
	Materials
	Accessing Material Types
	Accessing Material Properties
	Accessing User-defined Material Properties

	Windows and Views
	Windows
	Getting a Window Object
	Window Operations

	Embedded Browser
	Views
	Getting a View Object
	View Operations

	Coordinate Systems and Transformations
	Coordinate Systems
	Solid Coordinate System
	Screen Coordinate System
	Window Coordinate System
	Drawing Coordinate System
	Drawing View Coordinate System
	Assembly Coordinate System
	Datum Coordinate System
	Section Coordinate System

	Transformations
	Transforming to Screen Coordinates
	Transforming to Coordinate System Datum Coordinates
	Transforming Window Coordinates
	Transforming Coordinates of an Assembly Member

	ModelItem
	Solid Geometry Traversal
	Getting ModelItem Objects
	ModelItem Information
	Duplicating ModelItems
	Layer Objects
	Getting Layer Objects
	Layer Operations

	Features
	Access to Features
	Feature Information
	Feature Operations
	Feature Groups and Patterns
	Changes To Feature Groups

	User Defined Features
	Read Access to Groups and User Defined Features

	Creating Features from UDFs
	Creating UDFs
	Creating Interactively Defined UDFs
	Creating a Custom UDF
	Setting the Family Table Instance Name
	Setting Dependency Type
	Setting Scale and Scale Type
	Setting the Appearance of the Non UDF Dimensions
	Setting the Variable Dimensions and Parameters
	Setting the User Defined References
	Setting the Assembly Intersections
	Setting Orientations
	Setting Quadrants
	Setting the External References
	Example Code 1

	Datum Features
	Datum Plane Features
	Datum Axis Features
	General Datum Point Features
	Datum Coordinate System Features
	Example: Reading Properties of Datum Features

	Geometry Evaluation
	Geometry Traversal
	Geometry Terms
	Traversing the Geometry of a Solid Block

	Curves and Edges
	The t Parameter
	Curve and Edge Types
	Evaluation of Curves and Edges
	Solid Edge Geometry
	Curve Descriptors

	Contours
	Surfaces
	UV Parameterization
	Surface Types
	Surface Information
	Evaluation of Surfaces
	Surface Descriptors

	Axes, Coordinate Systems, and Points
	Evaluation of ModelItems

	Interference
	Analyzing Interference Information
	Analyzing Interference Volume
	Example Code

	Dimensions and Parameters
	Overview
	The ParamValue Object
	Accessing a ParamValue Object
	Accessing the ParamValue Value

	Parameter Objects
	Creating and Accessing Parameters
	Parameter Selection Options
	Parameter Information
	Parameter Restrictions
	Enumeration Restriction
	Range Restriction
	Example Code: Updating Model Parameters

	Dimension Objects
	Getting Dimensions
	Dimension Information
	Dimension Tolerances
	Example Code: Setting Tolerances to a Specified Range

	Relations
	Accessing Relations
	Example 1: Adding Relations between Parameters in a Solid Model

	Accessing Post Regeneration Relations

	Assemblies and Components
	Structure of Assemblies and Assembly Objects
	Assembly Components
	Example Code: Replacing Instances

	Regenerating an Assembly Component
	Creating a Component Path
	Component Path Information

	Assembling Components
	Constraint Attributes
	Assembling a Component Parametrically

	Redefining and Rerouting Assembly Components
	Example: Component Constraints
	Example: Assembling Components

	Exploded Assemblies
	Skeleton Models

	Family Tables
	Working with Family Tables
	Accessing Instances
	Accessing Columns
	Accessing Cell Information

	Creating Family Table Instances
	Creating Family Table Columns
	Example Code: Adding Dimensions to a Family Table

	Action Listeners
	J-Link Action Listeners
	Creating an ActionListener Implementation
	Action Sources
	Types of Action Listeners
	Session Level Action Listeners
	UI Command Action Listeners
	Model Level Action listeners
	Solid Level Action Listeners
	Feature Level Action Listeners

	Cancelling an ActionListener Operation

	Interface
	Exporting Files and 2D Models
	Export Instructions
	Export Instructions Table

	Exporting Drawing Sheets
	Exporting to Faceted Formats
	Exporting Using Coordinate System

	Exporting to PDF and U3D
	Exporting 3D Geometry
	Export Instructions
	Export 3D Instructions Table

	Export Utilities

	Shrinkwrap Export
	Setting Shrinkwrap Options
	Surface Subset Options
	Faceted Solid Options
	Faceted Part Options
	VRML Export Options
	STL Export Options

	Merged Solid Options

	Importing Files
	Import Instructions
	Importing 2D Models

	Importing 3D Geometry
	Modifying the Imported Layers

	Plotting Files
	Printing Files
	Printer Options
	Placement Options
	Model Options
	Plotter Configuration File (PCF) Options

	Solid Operations
	Example Code: Returning a Feature Object

	Window Operations

	Simplified Representations
	Overview
	Retrieving Simplified Representations
	Creating and Deleting Simplified Representations
	Extracting Information About Simplified Representations
	Modifying Simplified Representations
	Adding Items to and Deleting Items from a Simplified Representation
	How to Add Items
	How to Remove Items

	Simplified Representation Utilities

	Asynchronous Mode
	Overview
	Setting up an Asynchronous J-Link Application

	Simple Asynchronous Mode
	Starting and Stopping PTC Creo Parametric
	Setting Up a Noninteractive Session
	Example Code

	Connecting to a PTC Creo Parametric Process
	Connecting Via Connection ID
	Status of a PTC Creo Parametric Process
	Getting the Session Object

	Full Asynchronous Mode
	Example Code

	Troubleshooting Asynchronous J-Link
	General Problems
	Problems Specific to Servlets and JSP

	Task Based Application Libraries
	Managing Application Arguments
	Modifying Arguments

	Launching a PTC Creo Parametric TOOLKIT DLL
	Creating J-Link Task Libraries
	Launching Tasks from J-Link Task Libraries

	Graphics
	Overview
	Getting Mouse Input
	Drawing a Mouse Box

	Displaying Graphics
	Controlling Graphics Display
	Example Code: Creating Graphics On Screen
	Displaying Text in the Graphics Window
	Controlling Text Attributes

	Controlling Text Fonts

	External Data
	External Data
	Introduction to External Data
	Compatibility with PTC Creo Parametric TOOLKIT
	Accessing External Data
	Storing External Data
	Initializing Data Objects
	Retrieving External Data
	Example Code

	Exceptions

	PTC Windchill Connectivity APIs
	Introduction
	Accessing a PTC Windchill Server from a PTC Creo Parametric Session
	Accessing Information Before Registering a Server
	Registering and Activating a Server
	Accessing Information From a Registered Server
	Information on Servers in Session

	Accessing Workspaces
	Creating and Modifying the Workspace

	Workflow to Register a Server
	To Register a Server with an Existing Workspace
	To Register a Server with a New Workspace

	Aliased URL
	Server Operations
	Save
	Upload
	CheckIn
	Retrieval
	Checkout and Download
	Undo Checkout
	Import and Export
	File Copy
	Server Object Status
	Delete Objects
	Conflicts During Server Operations

	Utility APIs

	Summary of Technical Changes
	Sample Applications
	Java Options and Debugging
	Geometry Traversal
	Geometry Representations
	J-Link Classes
	Index

