IoT and Touch-Based Home Automation

Ianos Stefan-Cristian, Grupa 6304

We have seen various applications of 10T but what about adding the touch to it. In

this project, we will add simple touch buttons to the ESP-32 Wi-Fi module. ESP-32 is a
great module to design 10T applications and adding touch to it will make it further smart.
Talking about ESP-32, it is a micro-controller designed by Espressif mainly for loT
applications. It is so handy that even a novice can use it. ESP-32 contains Wi-Fi,
Bluetooth, Inbuilt Touch sensing input pins, temperature and hall sensors on board which
makes it fit for 10T and Smart home.

Let’s get more to Touch. In ESP-32, there are total 10 Touch Sensing general
purpose Input Output (GPIO) pins. A touch-sensor system is built on a substrate
which carries electrodes and relevant connections under a protective flat surface.
When a user touches the surface, the capacitance variation is triggered, and a
binary signal is generated to indicate whether the touch is valid.

ESP32 can provide up to 10 capacitive touch pads / GPIOs. The sensing pads can
be arranged in different combinations (e.g. matrix, slider) so that a larger area or
more points can be detected. The touchpad sensing process is under the control of a
hardware-implemented finite-state machine (FSM) which is initiated by software
or a dedicated hardware timer. We will learn how to handle these touch pins and
try to make an 10T application around it. We will also integrate Wi-Fi control to it.

P er EEE ESP32-S Development Board
SupplieSsas

GND

P1023 |—{vPsImos1)
cro2z | [12zesa |
GP103]—{Rxe)
cp1021 |—12cspa |

GND

P1019 —{Vspiursol

VIN3.3V

(v]
inputOnly [aDC1-0]—{cpm35
inputonly (ADC1-3 |—{6P1039
inputOnly [apc1-6 —{ cP103a
Input Only [ADC1-7 }_{Gp1035
[rouchs J—{apci-a —{ ep1032
(roucs —Apc1-5 }—{ ep1o33

T..
)

s

_..,.,
Fallfalis
2

CERRE

"

£

ru] al s al e Sy e

)
-~ .
-
3
WS
]
.
L -
]
T~
-
».
U e
“»
P
%
1
L
L B

P e

CRERERE

-—-{Aocz-s]—{epmzs 4 GPI018]_{VSPI scx)
-—{Aocz-s }—{ ep1026 L

—~CSLECCOGGTTEE

(rouck7 }—{anc2-7 |—{ ep1027
(Toucre }—{apc2-6 }— cprois
(toucks }—{anc2-5 }—{ epro12
GND
(toucha }—{apc2-a GPIO013
Don'tuse [FEASH D2— cp1os
Don'tUse [FLask p3)

DontUse |FLASHEMD GPIO11

GP1017 }—-{TXZ]
GP1016]-—{RXZ]
GPIO4]—{ADCZ-O]—{roucne]
PI08 |—ADC2-1 }—[Tourm]
ep102 —Apc2-2 —rouck2 |
ADC2-3]_{roucna]

FLASH D1 Don't Use

; P P e
s nowd bjge Fo8e Nl Kaa
vy i

.
-
»

.
LR -l;v vk'» L -‘h)ll 2w

GPIO15

GPI08

GP107 FLASH D@ Don't Use

VIN SV

GP106 FLASHSCK Don't Use

Material to get started with 10T and Touch Based Home
Automation

The following is the list of components used for Touch based home automation
system:

1. ESP32 NodeMCU (Check the datasheet from the Internet, if you are using a
different version.)

2. USB Type C cable to program ESP32 from a laptop or PC—most Android phones
use this type of cable.

3. LED with Resistor(1K) — To test the touch

4. Breadboard — To place the components

5. Any metal plate to sense touch. You can even use aluminium foil by
connecting a wire to it.

Steps for the software setup:

20 e A A 1 43
P ———

&

Here is the code for the ESP32: we need an Integrated Development
Environment and we will use Arduino IDE software. Arduino IDE is a
cross-platform application. It is written in Java and coded in C/C++ with
some special rules. To download the latest Arduino IDE from here.

Arduino IDE does not contain support of ESP32 family so to install the
ESP-32 Board in Arduino IDE, you can refer here.

The Code for Touch Based Home Automation System

m —
#include <WiFi.h>

const char* said = "Hxxx"; /¢ Beplace with your network credentiazls within the double quotes
const char* password = "xxxx";

WiFiSerwver serwver(20); f/Web server port is set to 80

String header:; f/ WVariable to store the HTITP request

bool state=true;

String outputSState = "off"; S/ RBuxiliar wariables to store the current ocutput state

conat int outputS = 57 // RAs3sign an Cutput wvariable to declare GPIO pins

int 51=0:|

wvold setup()
{
Serial.begin(115200);

The library contains all the Wi-Fi functions used in the code.
You must replace your Wi-Fi credentials here within the double quotes.

const char® ssid = “xxxx”’;
const char* password = “xxxx’’;

and make global declarations here.

In the \/oid Setup() here

wold setup()

{
Serial.begin(115200);
pinMode {output5, COUTPUT); // Initialize the gutput wariables as cutput
alWrite {(outputS, LOW): // Set output pin to LOW

nt ("Connecting to "); // Connect to Wi-Fi network with S5ID and password
Serial.println{ssid);
WiFi.begin({ssid, password);
while (WiFi.status() != WL_CONNECTED)
{
delay (500);
Serial.print("."):

}

Serial.println{""): // Print local IF address and start webk server to Serial Moniter
Seria 1In{"WiFi connected.™):

Serial.p In{"IP address: "):

Serial.;__“.;:(Iifi.;:ca;ZE(J?:
server.begin():

}

We will set the Baud Rate at 115200(default speed), set outputs and
initialize the Wi-Fi to connect it only one. All the code we are placing in
Void Setup() runs only once after every reset.

In the void loop(), we place our main code that needs to run repeatedly.

_vc:i:l loop ()

{
WiFiClient client = gerver.availakle();: ff Listen for any incoming client
3l=touchRead (I0) ; // BRead the touch GPI0 state and save it to wariable sl
if {s1<30) //{ then check the LED state to toggle LED
{
state=!3state; /{ Toggle LED state
Serial.print{™State: ");

Serial.println(state);
delay (500);

digitalWrite {(outputs, state) // Write the state to the LED
1
if (client)
{ /f If a new client connects,
Serial.println({"New Client.™); // print the message in the serial port
String currentline = ""; // make a String to hold incoming data from the client
while {client.connected(}) /f loop while the client's connected
{
if {client.available()) // 1f there's bytes to read from the client,
{
char ¢ = client.read(); // read a byte, then
Serial.write({c); // print it out the serial monitor
header += c;
if {e = "\n') S/ if the byte i3 a newline character
{
if {currentlLine.length{} == 0} // 1f the current line is blank, you got two newline characters in a row.
{ /f that's the end of the client HITP request, sc send a response:
client.println{"HITE/1.1 200 OK"): f/ HITP headers always start with a response code (e.g. HTTBE/1l.1 200 OK)

client.println{"Content-type:text/html™); // and a content-type sc the client knows what's coming, then a blank line:

We can directly read the touch GPIOs using touchRead() function. We can
save it to any variable and here we have saved it in the s1 variable.

Our aim is to control LED with both Touch and Wi-Fi and hence we will
merge the functions in the Void loop(). An HTML page is made using the
HTML script in the code here.

digitalWrite (output5, state);
if(state==true)
{
Serial.println{"GPIO 5 on™);
ocutputsState = "on";

}
else if (state==false)
{

Serial.println{"GPIO 5 off™);
ocutputsState = "off";

t.println{"<'DOCTYPE html><html>"}); // Display the HTML web page
println{"<head><meta name=\"viewport\"™ content=\"width=device-width, initial-scale=1\">");

rintln{"<link rel=\"icon\" href=\"data:, \">"};

rintln{"<style>html { font-family: Helwetica; display: inline-block; margin: Opx auto; text-align: center;}™); // CS55 to style the on/off buttons
.println{".button { background-color: #195B6A; border: none; color: white; padding: 16px 40px;");

.println({"text-decoration: none; font-size: 30px; margin: 2px; cursor: pointer;}");

.println{”.button? {background-color: #T7878A;}</style></head>");

.println{"<body><hl1>ESP32 with Touch</hl1>"); ff Web Page Heading
client.println{"<p>Light is ™ + output5State + "</p>"): ff Display current state, and ON/OFF buttons for GPIO 5
if (outputS5State=="off") ff If the output55tate is off, it displays the ON button

client.println{"<p><button class=\"button\">0N</button><{/p>");

1se

[-

client.println{"<p><button class=\"button button2\">0FF</buttoni</p>");
1

You may even change this as per your application. You will see something
like this in your web browser.

ESP32 with Touch

Light is On

oM

Upload this code to the ESP-32 and do remember to select ESP-32 DEV
Module and COM Port from Tools menu before uploading the code to the
board.

&® bigledl | Arduino 1.8.5

File Edit Sketch | Tools Help

Auto Format Ctrl+T
Archive Sketch
bigLed Fix Encoding & Reload
T Serial Monitor Ctrl+5hift-+HM 0w What'
-1 Serial Plotter Ctrl+5hift+L
cl 1"):
", WiFi101Firmware Updater Fit
2l Board: "ESP32 Dev Module™]
Flash Made: "QIO" 3
£ Flash Frequency: "80MHz" 3
cl =" r
Flash Size: "4VB (32Mb)" y [
cl iewport\™ ©
Partition Scheme: "Default”™ 3 - m
cl ref=\"data:
17 Upload Speed: "115200 »
/7 Core Debug Level: "None” FlH-color and

- I -

cl Get Board Info px; 1</atyvl

cl f/aljax.goog
Programmer: "AVRISP mkII® 3

Iy Burn Bootoader
client.println{"</head><bodv><hl1>ESP32 LED S51id

Connections:
There are only one Input (Touch plate) and one Output (LED) in the circuit.
ESP-32 Pin 5 -> Resistor
ESP-32 Pin 4 -> Touch Plate(any aluminium foil or metal piece would
work)

Resistor -> LED +ve

LED -ve -> Ground

ESP-32
DEVKIT
[via. v
(v]
(cer036] LED
—— I
.
(w103) }
ADCS 6P1033 15 . : Resistor

(a0c19 }—{oprozs]
(roucs }—{aoczz }—{ 1027
(voucws }—{ aocie }—{eerona)

TOUCHS ADC1S GPIO12

GND

TOUCHA ADC14 GPI013

(ELAsH 02— Ge100]

[rash o) 503 o1 08 ;
. 06 : Touch Plate

Now, power up ESP-32 with USB or a 5Volts supply and let the magic
happen.

Connecting the Web server

After uploading the code, go to Open Tools>Serial Monitor. ESP32 will try
to connect to Wi-Fi and display its IP address on Arduino serial monitor.

@0 PWHMledfade | Arduino 1.8.5

Fle Edt Sketch Toos Help

PWMIzdfade

foru™;

o
=
= 0;
void ledchnalegWrite (uinté_t channel, uinti2_t
{
uint3?_t duty = (8191 / valueMax) * min{valu
ledcWrite(channel, duty):

int brightness

1d setup()

tatus{) != WL_CONNECTED)

192.168.43.74

¥ Autoscroll

BothML&crR = | [115200bavd = Clear out

tput

delay(500) :

Make sure that the Wi-Fi router to be connected is already open. Hit this IP
address in the browser of the device connected to the same Wi-Fi.

Aﬁgdﬂjr\b ﬂ.':HU—ZDlE.

Url: http://192.168.xx.xx (your IP displayed in Arduino serial monitor)

You will be able to see the HTML Web page mentioned in the code. Now,

you can connect and test everything.

192168 43 744

& i
ESP32 with Touch

Light ix off

Led Demo 1

182,168 43 744

ESP32 with Touch

Light is o

Led Demo 2

Further, you can also connect a relay instead of an LED. Try this out and have the
touch fun.

Demo 1

Demo 2

	The Code for Touch Based Home Automation System
	Connecting the Web server

