

 Page 1 of 35

Remote Monitoring

Application Starter -

Documentation

Author: Pai Chung

IoT Solutions Architect

Customer Success IoT

 Page 2 of 35

 Page 3 of 35

Remote Monitoring Application Starter - Manual

Description
The Remote Monitoring Starter is a Starter Application created using Best Practices as well as many

useful techniques.

Purpose
This Starter Application can literally get you started, but can also be a useful teaching tool

Application Runtime Walkthrough

Main screen / Asset Summary

 This mashup has a Master assigned in the Title property of the master we put “Asset Remote

Monitoring” which now shows in the tab at the top.

 Logo is inserted in a left side bar with scaling to Height

 A menu is assigned which is secured with different Groups so that depending on who logs in,

different options show up.

 A tree widget provides Navigation through all Asset levels.

o Tree data includes a Status field to drive state based definitions

o Tree data includes a Mashup name field to drive the actual mashup shown next to the

tree

o Selected Node data is passed in from Data Source Selected row to both the Mashup

name of the contained mashup and to “Entity” which is a Mashup parameter

 Small Grid shows aggregate roll up of the assets that are assets under the selected node. Map

shows assets under the selected node. Detail grid shows individual line items for all assets under

the selected node. (ie. If client 1 is selected only two nodes will show and be aggregated)

 Page 4 of 35

 Map and Grid information come from the same service and a double click will navigate to the

detail mashup using the ‘double clicked’ event, data source selected row and a Nav Widget.

Again Mashup Name and Entity are passed in.

Asset Detail

 Asset details are shown generically using a Property Display

 Asset avatar is showing

 Asset Remote Access is available

 Use File transfer to go to File Transfer for this Asset or any other asset

 An Asset Type Customizable Dashboard is available to bring in Specific Properties

o Each asset can have their own specific Dashboard (all dashboards will still show in tabs)

Configure this in Asset Management

o Dashboards will dynamically know which Asset’s information needs to be loaded in

Gadgets

 Page 5 of 35

Gadget Library

 Gadget Library allows a User to pick Property BaseType and then a Property of that BaseType for

selected Asset

 If the Property BaseType is a number, they can specify a min and max which is applied where

applicable.

 After adding the Gadget it will be available on the Asset Dashboard for all assets that use that

dashboard.

 Page 6 of 35

Additional Gadget Library screenshots

 Page 7 of 35

Asset Detail History

 History Tab shows all Numerical properties that are LOGGED

 You can Multi select the Properties and they will be displayed on the TimeSeries Chart

 Page 8 of 35

Alternate Main View

 List is just a different way to display the assets

File Transfer screen

 File transfer is a ‘generic’ file transfer mashup

 Allows you to pick a File Repository on the platform

 Allows you to create subfolders

 Page 9 of 35

 Allows you to upload files

 Allows you to browse the folder structure and see files

 Allows you to pick an Agent that supports file transfer

 Allows you to browse the folder structure defined for the Agent

 Allows you to transfer files back and forth

File Transfer History screen

 File Transfer History is populated through the FileTransfer event into a Stream

 Grid allows sorting based on Column clicks

 Data Filter allows for filtering entries

 Export will export resulting data to csv client side

 Page 10 of 35

Tunnel History Screen

 Tunnel History is populated through the Tunnel events into a Stream

 Grid allows sorting based on Column clicks

 Data Filter allows for filtering entries

 Export will export resulting data to csv client side

Asset Management screen

 Page 11 of 35

 Asset management is for Creating/Deleting and Configuring Assets

 Asset can be chosen

 Chosen Asset can be added/removed to Network

 Chosen Asset can be deleted

Universal Property Edit

 Any Property of any BaseType on the chosen Asset can be edited

 Page 12 of 35

Asset Creation

 New Asset can be created

Application Security Walkthrough
Security has been set up according to best practices.

There are user groups for Visibility, user roles and Application Permissions. Users will be assigned to

Role Groups, all role groups are their Visibility group and as needed, Role Groups are in Application

Permission Groups. Also all OOTB services are secured with the System User.

Visibility
Visibility is what secures what a User can see and therefor interact with in the Model. This is split into:

 General Visibility – Everyone, every user see these. These are generally support application

items etc.

 Specific Visibility – This client owns these assets and only this client can see them.

Following is the organization that is setup and note the Visibility Group assigned to Client A and Client B

 Page 13 of 35

Client A has RemoteMonitoringClientA.All assigned

Client B has RemoteMonitoringClientB.All assigned

Visibility Group
The Visibility Group contains all the User Role Groups

 Page 14 of 35

Client A’s Role Groups in the aggregate visibility group (RemoteMonitoring.ClientA.All)

Client B’s Role Groups in the aggregate visibility group (RemoteMonitoring.ClientB.All)

NOTE: Role Groups can be named according to the Client’s needs/standards.

Application Group
The Application Group contains the appropriate User Role Groups

 Page 15 of 35

NOTE: Role groups assigned across clients because these groups define what users can DO. Visibility

permissions will define which entities they can apply these permissions on.

Users
Users are then in their Role Groups

 Page 16 of 35

Visibility and Permissions are then assigned for the Visiblity Group and Application Groups in the actual

model. In Addition the System user receives Runtime Service Execute, to allow wrapped services to

execute.

Visibility assignment

Specific Asset Visibility

 Page 17 of 35

All Users in the Organization have Visibility to all Mashups

All Users in the Organization have Visibility to this Thing which has Application Supporting Services

Permission Assignments

 Page 18 of 35

Permissions are assigned to the Application Groups,which will contain the specific Client Role Groups, so

all Clients can leverage these groups.

For Properties Read/Write an all Read Write is given, although you could do specific properties, you can

also override deny specific properties.

For Services each individual Service is specifically permitted.

NOTE: Permissions stack, so in this case File/Tunnel and Management are also IN Default and receive

Property Read through that.

System User Assignment

System user is assigned over Entity Types to have Service Execute for all services.

This for example allows a Service like CreateEntity (seen in

PTC.RemoteMonitoring.AssetManagement.Services) to utilize the service CreateThing found in

Resources/EntityServices

 Page 19 of 35

Everyone Organization

NOTE: For visibility to be Enabled, remove Users from the Everyone Organization.

Administrator View

 Page 20 of 35

General User View

Technician View

 Page 21 of 35

Asset Manager View

 Page 22 of 35

Client B View

Application Model Design Walkthrough
The Model will not be explained in full, but certain parts will be highlighted

ThingShapes
Two ThingShapes are in use

 Page 23 of 35

 PTC.RemoteMonitoring.Default.TS

This is a default shape that must be included in all entities that are in the Network of the

application.

 PTC.RemoteMonitoring.Session.TS

This is a ThingShape that is incorporated in the UserManagement Configuration as a Session

ThingShape and provides several Properties that become Session Parameters to be used Client

Side and Server Side

ThingTemplates
There is one main ThingTemplate for Assets from which all actual Asset Templates should be derived

from which is PTC.RemoteMonitoring.Default.TT. Base permissions are set in this ThingTemplate. Any

Thing that implements this or a deriveved ThingTemplate will be considered an actual Asset vs. Corp or

Client.

There is also PTC.RemoteMonitoring.FileRepo.TT which was created so as to help with permissioning.

Things
There are several categories of Things (including ValueStreams and Streams)

 Corp

o PTC.RemoteMonitoring.GenericTopNode

Generic entity to take up the top node in the hierarchical network.

 Clients

o PTC.RemoteMonitoring.ExampleClient1

o PTC.RemoteMonitoring.ExampleClient2

Clients of the Corp who own assets, also created to be placed in the hierarchical network.

 Assets

o PTC.RemoteMonitoring.Asset1

o PTC.RemoteMonitoring.Asset2

o PTC.RemoteMonitoring.Asset3

o PTC.RemoteMonitoring.Asset4

o PTC.RemoteMonitoring.ExampleAsset15

Actual assets of interest, these are Remote type Things that receive their information from an

Agent on a physical asset. They support File Transfer and Tunneling as well.

 Support

o PTC.RemoteMonitoring.GeneralServices

o PTC.RemoteMonitoring.DashboardServices

o PTC.RemoteMonitoring.AssetManagement.Services

 Page 24 of 35

These Things hold general services that are used in the Application. They are split according to

function so they can be secured for specific Application Groups if necessary. See

AssetManagementServices as an example.

 FileRepository

o PTC.RemoteMonitoring.DefaultRepository

Generic starting repository

 ValueStream

o PTC.RemoteMonitoring.Default.VS

ValueStream has been assigned to the PTC.RemoteMonitoring.Default.TT ThingTemplate and

logs all the Properties that are set to Logged and drives the Asset Detail History screen.

 Stream

o PTC.RemoteMonitoring.TunnelHistory.Stream

o PTC.RemoteMonitoring.FileTransferHistory.Stream

These hold the Tunnel and FileTransfer historical events respectively and drive the History

screens.

Networks
There is one network in the model PTC.RemoteMonitoring.Network which represents the

Corp/Asset hierarchy and is used to drive the retrieval of the information for the Asset Tree and

Asset Status payloads.

Model Tags
Full application is tagged with Applications:RemoteMonitoring

Menus
There are two menus

 PTC.RemoteMonitoring.Application.Menu

This is the main application menu that is seen in the Master. It has specific User Groups assigned to

each Menu Entry to show/hide the item for the appropriate Users

 PTC.RemoteMonitoring.GadgetLib.Menu

The Gadget Library menu is used in the Gadget Library mashup when adding gadgets.

NOTE: For both of these you will see a permission to execute GetEffectiveMenu which is needed for

the Menu widget to properly render the menu.

Visualizations
Visualizations are described later, please note that several styles and state definitions were

created to support the visualizations.

 Page 25 of 35

Notable Modeling Techniques

Inhertitance
Model is set up to leverage ThingShapes and ThingTemplates

Leveraging a Network to easily associate Entities and Assets

Using HomeMashup of Things

Using a Property to indicate associated Dashboard for Assets

Modeling Choices
Using both a ThingTemplate and ThingShape requirement for inclusion in the application to

allow for Remote type and non-Remote type things/assets to appear in the application. Corp vs.

Asset1 for example.

Using both a Number and String for Status to help with Sorting as well as friendly label display

No localization was used, just to save time. Better would’ve been to have all labels as tokens.

Naming Conventions
As much as possible consistent naming conventions are used.

Scripting Techniques

GetNetworkConnections vs. GetSubNetworkConnections

In PTC.RemoteMonitoring.GeneralServices it is used in GetAssetsForNavigation and

GetAssetsByStatus, the first service is used to populate the Navigation Tree and retrieves ALL

Nodes. The second service is used to populate the Map and Grids and receives a Selected Node

input filter to only retrieve Selected Node and its Children.

GetAssetAggregatedByStatus

This service actually just retrieves the Aggregated values from a Session Parameter that was

filled in by GetAssetsByStatus. Since this service already has all the information to do the

aggregation, it would have been a waste to have to run that service once more to do the

aggregation. As such the retrieval of the information is done first and returned as a result to the

mashup, but also the aggregation is done and placed in Session, this way the same user can be

logged in from many machines and see the relevant aggregation information based on their

choices in that mashup.

DeriveFields

Thingworx provides a library of InfoTable functions, one of the most powerful ones being

DeriveFields. DeriveFields can generate additional columns to your InfoTable and fill that with

values that can be derived from ... nearly anything! Hard coded, based on a Service you call,

based on a Property Value, based on other values within the InfoTable you are adding the

column to.

Just remember for this Service (as well as Aggregate), no spaces between different column

definitions and use a , (comma) as separator.

 Page 26 of 35

Here are some extracts from GetAssetByStatus in PTC.RemoteMonitoring.GeneralServices:

 //Calling another function using DeriveFields

//Note that the value thingTemplate is the actual value in the row of column thingTemplate!

var params = {

 types: "STRING" /* STRING */,

 t: AllItems /* INFOTABLE */,

 columns: "BaseTemplate" /* STRING */,

 expressions:

"Things['PTC.RemoteMonitoring.GeneralServices'].RetrieveBaseTemplate({ThingTemplateName:

thingTemplate})" /* STRING */

};

// result: INFOTABLE

var AllItemsWithBase = Resources["InfoTableFunctions"].DeriveFields(params);

//Getting values from other Properties

//to in this case is the value of the row in the column to

//Note the use of , and no spaces

//NOTE: You can make this even more generic with something like Things[to][propName]

var params = {

 types: "NUMBER,STRING,STRING,LOCATION" /* STRING */,

 t: AllAssets /* INFOTABLE */,

 columns: "Status,StatusLabel,Description,AssetLocation" /* STRING */,

 expressions:

"Things[to].Status,Things[to].StatusLabel,Things[to].description,Things[to].AssetLocation" /*

STRING */

};

// result: INFOTABLE

 Page 27 of 35

var AllAssetsWithStatus = Resources["InfoTableFunctions"].DeriveFields(params);

Generic Property Value Retrieval

Used in PTC.RemoteMonitoring.DashboardServices each of the ….Value services like

GetAssetBooleanPropertyValue helps retrieve values based on the input of the Asset name and

Property name. There had to be this many services to properly return values of each proper

BaseType.

Code is the same for all of them: result = Things[AssetName][PropertyName]

This is used for the Gadgets so we can use them as generic as possible.

Generically Setting Property Values

Similar to being able to retrieve Property Values generically, you can set them as well.

This is used for Asset Configuration and the services can be found in: with the services each

being called Set …. Value. Again all it needs is the Asset and Property name, now the difference

is not the ouput, but the input BaseType.

Code is same for all of them: result = Things[AssetName][PropertyName] = Value;

Recursive Functions

Full fledged JavaScript is allowed and so you can define Functions inside Services and use them

recursively. See the example in: PTC.RemoteMonitoring.GeneralServices in a service called

RetrieveBaseTemplate.

Creating new Assets

Thingworx comes with EntityServices which will allow you to create any Entities as required. To

create Things some special steps are required. After a CreateThing call, you must Enable and

Restart the Thing

Service can be found in: PTC.RemoteMonitoring.AssetManagement.Services in the CreateAsset

Service.

Use of CurrentUser and retrieving User Groups

In PTC.RemoteMonitoring.GeneralServices there is a Service FileTransferAndTunnelPermission

that is used to determine if the User is in a particular User Group. This drives visibility on a

Mashup.

 Page 28 of 35

As a best practice when you need to determine something based on the context of the User

who is logged in, always use: GetCurrentUser server side, vs. an Input parameter which can be

abused.

Also you can see the use of the GetGroups service.

Managing the Corporate Entity/Asset network

In PTC.RemoteMonitoring.AssetManagement.Services there are also services that show how

you can easily manage a Network using Services. As a general rule almost anything that you do

in Composer (outside of Mashup building) can be done with Services, or if you think beyond that

picture, REST API calls.

NOTE: At the very beginning I entertained the thought of having a Dynamic Network

assignment, but felt that there wasn’t a real use case for that, it is simple enough though to take

any services that use a Network (currently hardcoded name) and make that ‘dynamic’ using

Input parameters or even Session Parameters.

Application Mashup Design Walkthrough

Master
PTC.RemoteMonitoring.Master provides the frame around the application and holds the Logo

and Menu.

Providing a Browser tab Title

Within the Master the Title property is set and that overrides the default title on the

browser tab so now it reads: Asset Remote Monitoring

Asset Tree
In using a network it is very easy to get that information into the Tree widget in

PTC.RemoteMonitoring.Main.MU. With DeriveFields we’ve added some extra information so

that we can drive the State Based Definition with a Status field, but we also drive the Contained

Mashup to show a Summary mashup or Detail mashup based on the Tree Entity selection.

Dynamic Asset History in TimeSeries Chart
Thingworx TimeSeries chart are great because they can AutoConfigure also Grids can handle

varying InfoTable returns when you use ‘Show All Columns’.

In this screen we provide the Selected Row that indicates the Asset and from there we pull the

Numerical Properties that are Logged into a List. Then based on the List selection we pull the

History of those Properties and display them in the TimeSeries Chart. In addition the Data Filter

and Data Export were added, see: PTC.RemoteMonitoring.AssetDetailHistory.MU

 Page 29 of 35

Contained Mashups
All over the Application there is the use of Contained Mashups, this makes Mashups reusable in

other places, it also makes the Contained Mashup space dynamically configurable as an example

see the PTC.RemoteMonitoring.Main.MU, but also the PTC.RemoteMonitoring.AssetDetail.MU

where we dynamically set the Dashboard to show based on the Asset’s Dashboard ID property.

PTC.RemoteMonitoring.AssetDetail.MU itself is a slightly ‘bad’ or inconsistent example where

there is a mix and match of actual Mashup and Contained Mashup for the Property History. To

be consistent, there would’ve been a main Asset Container Mashup and then two contained

Mashups one of the Asset Detail and the other with the Asset History.

User Context
Where necessary there is User Context in the UI, like the Menu which has its Menu Items

defined with User Groups. Also in the Asset Detail it determines if you have FileTransfer/Tunnel

permissions and together with a Validation Widget it show/hides those options.

Selection Context
Selection context is used everywhere in the Application and always starts from ‘Selected Row’ of

a Data Source. This is then passed either through Mashup parameters, Service Input parameters

or Session Parameters. Actions are then invoked through ‘Selected Row Changed’ of the Data

Source or ‘Double Click’ of the Widget and sometimes pass into a Navigation Widget to create a

Navigation or into another Data Service to retrieve contextual information. Sometimes Refresh

request are being passed to force a Service to run in a different Mashup.

Here is an example where the Tunnel is assigned to the Remote Access widget dynamically in

PTC.RemoteMonitoring.AssetDetail.MU:

 Page 30 of 35

Combining Dynamic Contained Mashups and Mashup Parameters
One very powerful technique that combines Contained dynamic mashups and the ability to pass

Mashup Parameters is also used.

A tutorial entry can be found here on the Thingworx Community.

Here is a place where it is used in PTC.RemoteMonitoring.Main.MU:

https://community.thingworx.com/community/developers/blog/2016/07/22/passing-values-to-contained-mashups-that-dynamically-change

 Page 31 of 35

Application Dashboard Design Walkthrough
Dashboards were added to the Asset Detail to provide the User to add specific Properties to monitor on

their Assets. Dashboards allow a User not only to re-arrange the elements they’ve chose, but indeed

allow users to pick and remove visualizations.

A very dynamic setup was created to allow Users to pick a variety of Visualizations based upon BaseType

and tie them to any Property Value of choice.

Once a Gadget (visualization) is added it will use a Session Parameter to dynamically set the Asset

context, but it will be locked into the Property context.

Dashboard
Dashboards are actually widgets and so the bottom section of

PTC.RemoteMonitoring.AssetDetail.MU has been dedicated to the Dashboard Widget.

A parameter is passed in from the Asset Property to set the Default selected Dashboard.

A Gadget Library must be defined to allow the Addition of Gadgets.

Gadget Library
One of the biggest challenges with Gadgets is that they have to be pre-defined. So a User is

limited to use the visualizations you provide. Gadgets are easily added though.

PTC.RemoteMonitoring.GadgetLibrary.MU is the Gadget Library Mashup.

Remember that your Gadget library is a full fledge mashup and all common techniques apply.

 Menu to drive Gadget grouping (vs mashups)

The Menu is hardcoded for the base types, but the menu widget is used in Data Driven

mode to drive a value in the Contained Mashup. Mashups were named slightly

differently to be easily distinguished and do not follow Best Practice naming convention.

The BaseType also drives into a Service that retrieves the appropriate Properties

 Page 32 of 35

Mashup parameters and Refresh Request to Drive Gadget content

Mashup parameters are used to drive the Gadget content as well as Events driving the

Refresh request.

Note: A Validation Widget makes two Numeric Entries Visible to provide a Min and Max

value for Numeric Gadgets. You can bind additional Unused Mashup parameters (Used

in the Numeric Gadget Mashup but not in the Text Gadget Mashup) and this will not

break the Mashup.

 Page 33 of 35

Multiple Gadgets in a Contained Mashup in a Contained Mashup

Gadgets can be added from any level of a Mashup. In this case the Gadgets are ‘two

levels’ deep in a Contained Mashup on the Gadget Library Mashup. That also means

Parameters are passed from Parent mashup into Child mashup into GrandChild mashup,

into a Gadget.

See: PTC.RemoteMonitoring.NumberGadget.MU as an example.

 Page 34 of 35

Gadgets
All the Gadgets work the same, a Service that takes an input from the Session which is the Asset

and then through Mashup Parameters the Property Name and for Numbers the Min and Max.

Additionally there is a Refresh request being passed in to show up to date values when viewing

the gadget library before adding it to the Dashboard.

Each Gadget has an AutoRefresh widget to show updated values while displaying in the

Dashboard.

See PTC.RemoteMonitoring.Gauge.Gadget as an example.

 Page 35 of 35

Visiblity and Permissions for Dashboards
Dashboards require specific Visibility and Permissions settings. You can find those here in the

documentation.

http://support.ptc.com/cs/help/thingworx_hc/thingworx_7.0_hc/index.jspx?id=Dashboards&action=show

