Integrating AngularJS with ThingWorx

[image: PTC Logo]
										Văleanu Andrei Gabriel
ThingWorx 7.2
21st of November 2016

Contents
1. About this guide
2. Introduction
3. Part One – Extending ThingWorx to add AngularJS and adjacent 3rd party libraries
4. Part Two – Creating custom ThingWorx widgets using AngularJS
a. General Aspects
b. AngularButtonWidget
c. AngularListWidget
5. Part Three – Using 3rd party AngularJS libraries to create custom ThingWorx widgets
6. Part Four – Integrating a full AngularJS application with ThingWorx
7. Appendix

About this guide

This guide is intended to provide a starting point for developers looking to integrate AngularJS and adjacent libraries with the ThingWorx platform. Being a more advance topic it is worth to note that the present guide is addressed to experimented experienced AngularJS developers, that are familiar with the ThingWorx model. It is better to have a good understanding of the ThingWorx vocabulary because most of the examples present here use terms that are specific to ThingWorx.

Within this guide we explore two different approaches to developing with AngularJS within the ThingWorx environment. W
1. Creating ThingWorx widgets from scratch using AngularJS.
2. Creating ThingWorx widgets based on AngularJS and 3rd party libraries (Angular Material)

From the points covered within this document, it is assumed that you are familiar with the following technologies at least at a medium level:

· JavaScript
· AngularJS 1
· ThingWorx platform
· Extensions for the ThingWorx platform
· ThingWorx widgets.

Information regarding the ThingWorx platform in general, targeted to developers can be found in the ThingWorx Fundamentals Course
More information regarding ThingWorx Extensions and Widgets can be found in the Extension Development Guide.
JavaScript and AngularJS 1 documentation is available online at the specific vendors.

Introduction

The recommended approach when developing with ThingWorx is using the Composer to model and build your application. This approach enables you to use all the features available within ThingWorx without having to worry about compatibility and optimization. We know that some use-cases have particularities that need to be addressed and to accommodate that ThingWorx is highly extensible.
Being a guide structured around AngularJS and how this library interacts with ThingWorx, you should be aware that the AngularJS library does not come pre-included with ThingWorx. In order to use AngularJS inside ThingWorx it is necessary to extend the platform.
The content will have 4 parts. The first part describes how to create an extension that contains AngularJS and additional third party libraries that we will use later in this guide. The next 3 parts address each individual approach to develop using AngularJS within ThingWorx.

Part One – Extending ThingWorx to add AngularJS and adjacent 3rd party libraries
Extensions are an important part of the ThingWorx platform. They allow you to incorporate different functionalities on top of the ones already available. The only thing you need to be careful about is not importing the same libraries multiple times, as this creates issues at runtime.
Next, we’ll take a look at how an extension containing AngularJS is structured. (Note: you should be familiar with what a ThingWorx extension is – here is some documentation on the subject).
Download the AngularJS 1 library (link here) – We will be using AngularJS 1.5.8 for this guide.
Constructing the Extension archive
A ThingWorx extension is basically a .zip archive that contains the necessary files structured in a predefined way and a metadata.xml file that specifies which files are included and what purpose they have.
In this case the .zip file should have the following elements
[image:]

Because we are trying to import multiple libraries at the same time we can actually package more than one extension into a master .zip archive so it’s easier to track and store.
[image:]
Here, each one of those archive is an extension for the ThingWorx platform, and they are contained within a master .zip.

Build the extension:
Taking a closer look at the metadata.xml of each individual extension we can see the following contents<?xml version="1.0" encoding="UTF-8"?>
<Entities>
	<ExtensionPackages>
		<ExtensionPackage name="angular_1_5_8_extension"
							description="Angular framework extension"
							vendor="ThingWorx"
							packageVersion="0.1"
							minimumThingWorxVersion="5.4.0">
		</ExtensionPackage>
	</ExtensionPackages>
	<StyleDefinitions/>
	<Widgets>
		<Widget name="angularjs">
			<UIResources>
<FileResource type="JS" file="angular.min.js" description="Angular" isDevelopment="true" isRuntime="true" />
			</UIResources>
		</Widget>
	</Widgets>
</Entities>

More information about this topic is available in the Extension Development Guide.

In this case we are defining a new ExtensionPackage, give it a name, a description, and a package version. We also require that the user of this extension has at least ThingWorx version 5.4.0.
The extension contains a widget called angularjs, the same name as the folder inside the ui folder.
For this widget we define a dependency as a FileResource that is the actual AngularJS library minified.

The same process is used for creating the other extensions, AngularMaterial and dependencies, and after that they are packaged in a .zip archive.

Note: You should include only the libraries you actually use, to avoid conflicts in your ThingWorx Platform. For example, ThingWorx comes with JQuery so it’s recommended to not add another extension for JQuery.

Importing the Extension is done from the ThingWorx Composer

After the import is complete the Extensions should be visible in the [image:]management dashboard of ThingWorx. [image:]

Part Two - Creating custom ThingWorx widgets using AngularJS

General aspects

Being able to adapt and incorporate different functionalities based on particular use cases is a core part of the ThingWorx Platform, and in the context of widgets this holds true. You can develop widgets using JavaScript and JQuery, this being the way the standard widgets are made, and a guide for developing in this way is addressed in the Extension Development Guide.

The most important aspects in developing widgets is understanding how they function within the ThingWorx universe, what is their lifecycle and what to keep an eye on in the development process. Understanding these fundamental aspects will allow you to move away from the standard JavaScript way, into AngularJS.

Widgets are added to ThingWorx as Extensions and as such the follow the same structure as any other extension.

AngularButtonWidget

The following example illustrates how a Button widget is created using AngularJS.
The specification of the button is the following
· Trigger an event using the ng-click directive. The event should be bound to a service in ThingWorx
· Increment a counter every time the mouse hovers over the button
· Display the counter using 2-way databinding as the button label.

1. Create a new folder (name is not important), that contains an empty metadata.xml file and a folder called ui.
This will provide the base structure for your widget extension.
2. Inside the ui folder, create a folder named “AngularButtonWidget” (your widget name) that contains the following files:
· AngularButtonWidget.ide.css
· AngularButtonWidget.runtime.css
· AngularButtonWidget.ide.js
· AngularButtonWidget.runtime.css
· AngularButtonWidget.ide.png
This files contain the JavaScript implementation of the widgets, the CSS Styles specific to this widget and an icon in PNG format, that will be displayed inside the Mashup builder.
3. Add the files to the metadata.xml file<?xml version="1.0" encoding="UTF-8"?><Entities>
 <ExtensionPackages>
 <ExtensionPackage name="AngularButtonWidget_ExtensionPackage" description="Angular Button Widget" vendor="TPG Romania - A PTC Division" packageVersion="0.0.1" minimumThingWorxVersion="7.2.0"/>
 </ExtensionPackages>
 <Widgets>
 <Widget name="AngularButtonWidget">
 <UIResources>
 <FileResource file="AngularButtonWidget.ide.js" isDevelopment="true" isRuntime="false" type="JS"/>
 <FileResource file="AngularButtonWidget.ide.css" isDevelopment="true" isRuntime="false" type="CSS"/>
 <FileResource file="AngularButtonWidget.runtime.js" isDevelopment="false" isRuntime="true" type="JS"/>
 <FileResource file="AngularButtonWidget.runtime.css" isDevelopment="false" isRuntime="true" type="CSS"/>
 </UIResources>
 </Widget>
 </Widgets>
</Entities>

In order for ThingWorx to know which files are associated with this particular widget we define it in xml using <Widget></Widget>. The name attributed to the widget should match the name of the folder inside the ui folder.

Next we add the <FileResources> that can be found in that folder, specifying if they should be used inside the Composer, isDevelopment=true, or at runtime, and the type of the file JavaScript or CSS.

4. Implementing the Button. (AngularButtonWidget.ide.js) – The IDE behavior of the widget
We add a new widget to the TW.IDE.Widgets Object using the following code:

Setting the Icon that will be displayed in the Composer is done by setting the widgetIconUrl property to a function that returns the absolute path inside the ThingWorx instance. (optional)

The most important parts of the widget from the Composer perspective are the widgets properties and events. Properties are set by defining the widgetProperties of the widget object as a function that returns a JSON formatted string.

Events are defined in a similar fashion by defining the widgetEvents property of the widget object. In this case we are defining 3 separate events, that can be triggered at runtime.

How the widget is displayed in the Composer is determined by how you implement the renderHtml function that returns a html formatted string. In this case we display just a <div>

This is the basic implementation that will enable you to add a new AngularButtonWidget for which you will have 3 properties, width, height, hoverCount and 3 triggerable events. As you may have noticed there is no AngularJS code here. This example is really simple and is meant to show you the basic structure of the IDE implementation of the widget.
You can use AngularJS for the IDE implementation, the Runtime implementation or both, it is all up to you based on your use cases.

5. Styling the Button (AngularButtonWidget.ide.css)

We define the style for the class that is applied to the button.
6. Implementing the Button. (AngularButtonWidget.runtime.js) – The runtime behavior of the button. You can see an example in the attached Angular Widget examples(?)
The implementation of the runtime for the widget is wrapped in an IIFE (Immediately invoked function expression) to address some of the privacy issues, and in term creating a context fot that specific widget.

All the snippets that come next should be added inside the function presented above. To see how to structure the code if you are unsure you can check the examples provided with this documentation.
We define an Angular controller for the button

We define a count property on the scope of the controller, that will be incremented when the
mouse moves over the button.
We also define 3 functions that will be triggered when the specific events from Angular are raised, such as click, hover, double click.

Defining how the widget will look at runtime is done by implementing the renderHtml property of the widget object. In this case we just render a html div that will be our container which we will populate. It is critical that the <div> has the class of widget-content assigned to it. This will let the ThingWorx engine know how to interpret the html element.

After we render the container we can populate it with the actual button. In the afterRender function we define a div that will serve as our Angular controller.
After we set the content of the html element it is necessary that we bootstrap the module we defined to that particular html element. Being a very dynamic environment you CANNOT auto-boostrap the angular code using the ng-app directive, because the code for the widget is added after the bootstrapping process is finished.

7. Styling the button (AngularButton.runtime.css)

What we have ended up is a basic implementation of a button that uses AngularJS code to interact with both the user and ThingWorx platform. The full JS files are available in the archive provided with this document.

AngularListWidget

The following example illustrates how a List widget is created using AngularJS that has the following specification:
	In the ThingWorx Composer
· When the list widget is added to the mashup it should populate with a set of data
· When data is bound to the list the set of data should change to display that data has been bound
· Resizable
· The input of the data should be of type INFOTABLE
· The list should be filtered by a DisplayField.
In the ThingWorx Runtime
· Each row of the list should be selectable.
· On row selection an event containing the row id should be raised.
· Styled according to the CSS file
· Use AngularJS directives for handling clicks and item states

Start by creating a basic extension structure with an ui folder and a metadata.xml file. Inside the ui folder define the 4 necessary files, in this case named AngularListWidget.ide.css, AngularListWidget.ide.js, AngularListWidget.runtime.css, AngularListWidget.runtime.js. This section walks through how an AngularJS list widget can be created, and what parts of the environment to be aware of.

Starting with the Composer (IDE) implementation file – AngularListWidget.ide.js we define the widget in a similar way with the one applied for the button. A new property is added to the TW.IDE.Widgets Object that acts as a container for the widget implementation. Next we define the widgetProperties, in the form of an JSON object being returned by a function attributed to this.widgetProperties. Taking a look at how this function is structured, we can see that there is the ability to set a name that will be displayed in the composer, a description, a category, and different properties.

 The properties can have baseTypes that represent the ThingWorx platform data types, such as, INFOTABLES, NUMBER, STRING, BOOLEAN, LOCATION, etc. It is very important to understand how the data is being fed into your widgets in order to be able to process that data and implement your bussines logic.
More information on what properties are available for you to use please consult the Extension Development Guide
In this example because we are dealing with a list, a multiple data set, we want to be able to choose what information we visualise, and we achieve that with the DisplayField property, which isEditable, so the user can select what he needs to visualise. It has a baseType of FieldName, which means that we refer to the tags atached to the data being fed into the widget, and a sourcePropertyName which says what is the source of the data. In this case it’s another property named Data. this.widgetProperties = function(){
 return {
 'name': 'AngularListWidget',
 'description': 'An angular implementation of a basic list',
 'category': ['Common'],
 'defaultBindingTargetProperty': 'Data',
 'properties':{
 'Width':{
 'defaultValue': 140,
 'isEditable': true
 },
 'Height':{
 'defaultValue': 240,
 'isEditable': true
 },
 'Data':{
 'isBindingTarget':true,
 'isEditable': false,
 'baseType': 'INFOTABLE',
 'warnIfNotBoundAsTarget': true
 },
 'RowHeight':{
 'defaultValue':30,
 'baseType':'NUMBER'
 },
 'DisplayField':{
 'isEditable': true,
 'isVisible':true,
 'baseType': 'FIELDNAME',
 'sourcePropertyName': 'Data'
 },
 'SelectedItems': {
 'isBindingTarget': true,
 'isBindingSource': false,
 'isEditable': false,
 'baseType': 'INFOTABLE'
 },
 'SelectedRow': {
 'isBindingSource': true,
 'isEditable': false,
 'baseType': 'NUMBER'
 },
 'Style': {
 'baseType': 'STYLEDEFINITION',
 'defaultValue': 'DefaultButtonStyle'
 }
 }
 };
};

We also need data to populate the widget so we define a bindable property called Data. In this case we model the data as an INFOTABLE, in order to process different types of data, arrays, multi-dimensional arrays or other more complex datashapes.

Next we implement the function that is responsible for rendering the html element on the Composer view. In this case it’s just a container for the list element. The function this.renderHtml is called every time a new widget is dragged from the widgets panel into the workspace. It is not adviced to define behavior at this level because of the lifecycle of the ThingWorx Composer that can cause unexpected behavior.

In order to define the html element in it’s entirety we use the this.afterRender function. We do this because this function is executed when we are certain that we have an html element that we can manipulate. Just for demonstration in this case we define an AngularJS list using the ng-repeat directive.

We define a controller named listCtrl inside the module named after the jQuery element that the ThingWorx platform generated for us, thisWidget.jqElementId. Every jqElementId is unique.
[image:]We modify the inneHtml of the jQuery element at runtime using jqElement.html(<your html here>), creating a list that iterates through the $scope.items. After that the last step, and a critical one, is to boostrap AngularJS to that html element.
This is how the widget should look after this.renderHtml and this.afterRender functions are executed. The styling is done in the AngularListWidget.ide.css file.

To make the example a little more visual we have added some AngularJS behavior when we bind data to the widget. The this.afterAddBindingSource function is called every time a binding is changed on the widget. In this example we are just using the two-way databinding that AngularJS provides to update the items in $scope.items.

[image:]After we set the data binding, the list content should change to display the following items. This is just a visual way to know the data binding worked properly.
Notice that we use scope.$apply(function(){<your code here>}). This is done in order to start a new $digest cycle within AngularJS. Without doing this the $scope of the Angular controller would not be updated.

Moving on to the runtime implementation of the AngularListWidget, inside the AngularListWidget.runtime.js we follow a similar approach of defining an IIFE (Immediately-invoked function expression).
You can also define your own AngularJS directive, the approach used when developing this part of the widget. Templating is a powerfull feature of AngularJS and you can take full advantage of it.

As you can see here you can take full advantage of the AngularJS specific syntax, using diferrent directives, ng-class, ng-repeat, ng-click, etc. The template presented here will become obvious when we discuss the behavior of the list at runtime.
Next, we implement the this.renderHtml function. It will just return an html <div class=”widget-content”>. Please note that this particular class, widget-content, is essential for the ThingWorx runtime, in order to execute properly.
Next we add the AngularJS behavior to the widget. In this case we are doing this after the container div has been rendered and is ready to use, in the this.afterRender function and every time a property is updated from the ThingWorx Runtime, in the this.updateProperty function.

Here we define the AngularJS controller inside the afterRender function, but you can implement the controller at a top level inside your IIFE, so it is more visible, aiding in the maintenance process. Inside the scope of the controller we define properties that store the index of the selectedRow, an array for items, a method to update the items, and one method that is called when an item is selected.
Next, outside the controller, we get the jQuery element and change it’s innerHtml to include the ng-controller and our custom directive <angular-list> . After everything is in place, we bootstrap Angular to the jQuery element.
After that the scope is available to us to manipulate. In this case we initialize the $scope.items to be undefined using the $scope.updateItems(undefined) method, previously defined in the controller.

Everytime data comes from the ThingWorx platform, and that particular data is bound to our widget, the this.updateProperty function is executed. Taking a closer look at the implementation

We observe that the function receives a parameter updatePropertyInfo. In many cases it is structured as an INFOTABLE. In this particular case we get all the data rows and filter them based on the displayField, and if a particular row has a property with the name we are filtering by, a new entry will be added in the array of items to be displayed.

Lastly, everytime a row is clicked, the ng-click directive calls the $scope.onItemSelected method, which implements the selecting logic, and calls the ThingWorx provided method thisWidget.updateSelection(‘Data’,[index]); By doing so we pass the data of the selected row to the ThingWorx platform so we are able to manipulate individual entries. Please note that in order to select rows you have to define the following function, even if you don’t provide any implementation.

All of the extension files are available in the archive provided with this document.

Part Three - Using 3rd party AngularJS libraries to create custom ThingWorx widgets – MaterialButtonWidget

Angular Material - https://material.angularjs.org/latest/
For developers using AngularJS, Angular Material is both a UI Component framework and a reference implementation of Google's Material Design Specification. This project provides a set of reusable, well-tested, and accessible UI components based on Material Design.
The following section describes how you can incorporate 3rd party AngularJS libraries, in this case Angular Material provided by Google. The main advantage here is that there are a lot of existing components that you can incorporate into your custom ThingWorx widget and modify some parts in order to suit your needs.
The process is similar to developing standalone widgets. The only differences come from the fact that the Angular modules you define depend on other libraries that you need to import into the ThingWorx platform.
In order to be able to use Angular Material within ThingWorx you need to create extensions for Angular Material and all of the dependencies of this library. The number of additional dependencies vary based on what features of the Angular Material framework you are using. The base extensions are available with the files provided with this document and they should be
· Angular Material – angular_material_extension.zip
· Angular Aria – angular_aria_extension.zip
· Angular Animate – angular_animate_extension.zip
To create additional extensions please follow the Extension Development Guide or look at how the provided extensions are structured.
The widget developed in this section is a button that uses the Angular Material libraries for animation and interactions. All the files for this widget are available in the archive provided with this document.

Taking a look at what is different from the other examples, you will notice that the only notable change is inside the MaterialButtonWidget.runtime.js file. We define a controller for the button inside the IIFE.

We get values from properties that are defined at the Composer level, and store them in the controller scope. In this case they are mainly use to identify states but you can think of any use case.

Next we have three handlers for the ng-click, ng-mousemove directives. They have no purpose here but this is how they would need to be implemented to trigger events defined on the Composer level.

The integration of AngularJS code is done after the html is rendered, so in the this.afterRender function.

As you can see, after we get the rendered html element we define a new AngularJS controller, called MaterialButtonCtrl, that we implemented earlier, as part of the thisWidget.jqElementId module. So far nothing new, we have an AngularJS module that is named after the id of the jQuery element, to which we have added an AngularJS controller. This module depends on external libraries, ngMaterial, ngAnimate, ngAria, material.svgAssetsCache. These libraries are responsible for the styling, interactions, animations and behaviors of the button. As you can see the whole logic of the button is done with AngularJS.
The final result should be something similar with this, using all combinations of ng-classes.
[image:]

[bookmark: _GoBack]
[image: PTC Logo]
image2.png

image3.png

image4.png

image5.png

image6.emf
TW.IDE.Widgets.AngularButtonWidget = function(){

 // Your widget implementation goes here.

};

oleObject1.bin

image7.emf
this.widgetIconUrl = function(){

 return '../Common/extensions/AngularButtonWidget_ExtensionPackage/ui/AngularButtonWidget/AngularButtonWidget.ide.p ng';

}

oleObject2.bin

image8.emf
this.widgetProperties = function(){

 return {

 'name': 'AngularButtonWidget',

 'description': 'An angular implementation of a basic button',

 'category': ['Common'],

 'properties':{

 'Width':{

 'defaultValue': 80,

 'isEditable': true

 },

 'Height':{

 'isEditable': true

 },

 'hoverCount':{

 'defaultValue': 0,

 'isBindingSource': true,

 'isEditable': true,

 'baseType': 'NUMBER',

 }

 }

 };

 };

oleObject3.bin

image9.emf
this.widgetEvents = function(){

 return {

 'DoubleClicked':{},

 'Clicked':{ 'warnIfNotBoundAsTarget':true },

 'Hover':{}

 };

 };

oleObject4.bin

image10.emf
this.renderHtml = function(){

 var html = '';

 html+='<div class="widget-content widget-angular-button">A button';

 html+='</div>';

 return html;

};

oleObject5.bin

image11.emf
.widget-angular-button{

 background-color: #EEEEEE;

 border: 1px solid #DCDCDC;

 position: absolute;

}

oleObject6.bin

image12.emf
(function (){

 ‘use strict’;

 TW.Runtime.Widgets.AngularButtonWidget = function(){

 //implementation code goes here.

};

})();

oleObject7.bin

image13.emf
var AngularButtonCtrl =function($scope){

 $scope.count = thisWidget.getProperty('hoverCount');

 if($scope.count===undefined) $scope.count=999;

 $scope.doActionOnHover = function(){

 $scope.count++;

 thisWidget.setProperty('hoverCount', $scope.count);

 thisWidget.jqElement.triggerHandler('Hover');

 };

 $scope.doActionOnClick = function(){

 thisWidget.jqElement.triggerHandler('Clicked');

 };

 $scope.doActionOnDoubleClick = function(){

 thisWidget.jqElement.triggerHandler('DoubleClicked');

 };

};

oleObject8.bin

image14.emf
this.renderHtml = function(){

 return '<div class="widget-content widget-angular-button" style="border-radius: 2px;" ></div>';

};

this.afterRender = function(){

 angular.module(thisWidget.jqElementId, []).controller('AngularButtonCtrl' , AngularButtonCtrl);

 var jqElement = thisWidget.jqElement;

 var html = '<div ng-controller="AngularButtonCtrl" >'+

 '<span style="line-height:'+thisWidget.getProperty("Height")+'px" ng -mousemove="doActionOnHover()" ng-

click="doActionOnClick()">{{count}}'+

 '</div>';

 jqElement.html(html);

 angular.bootstrap(jqElement[0], [thisWidget.jqElementId]);

};

oleObject9.bin

image15.emf
.widget-angular-button{

 background-color: #cccccc;

 position: absolute;

 transition: all 0.1s ease-in-out;

}

.widget-angular-button:hover {

 background-color: #eeeeee;

}

.widget-angular-button:active {

 background-color: #dddddd;

}

.widget-angular-button > .ng-scope {

 display: inline-block;

 height: 100%;

 width: 100%;

}

.widget-angular-button > .ng-scope > span.ng-binding {

 text-align: center;

 vertical-align: middle;

 display: block;

}

oleObject10.bin

image16.emf
this.renderHtml = function(){

 var html = '';

 html+='<div class="widget-content widget-angular-list">';

 html+='</div>';

 return html;

};

oleObject11.bin

image17.emf
this.afterRender = function(){

 angular.module(thisWidget.jqElementId , []).controller('listCtrl', function($scope){

 $scope.items = ['item1','item2','item3'];

 });

 var jqElement = this.jqElement;

 jqElement.html(

 '<div ng-controller="listCtrl">'+

 '<ul style="border: 1px solid #ccc;"><li class="list -item" ng-repeat="i in items">{{i}}' +

 '</div>');

 angular.bootstrap(jqElement[0], [thisWidget.jqElementId]);

};

oleObject12.bin

image18.png

image19.emf
this.afterAddBindingSource = function (bindingInfo){

 if (bindingInfo['targetProperty'] === 'Data') {

 this.setProperty('DisplayField', undefined);

 }

 var scope = angular.element(this.jqElement.find('div[ng-controller]')[0]).scope();

 if(bindingInfo['targetProperty']==='Data'){

 scope.$apply(

 function(){

 scope.items = ['boundData1','boundData2','boundData3','dataIsBoundToWidget'];

 }

);

 }

};

oleObject13.bin

image20.png

image21.emf
angular.module('AngularListWidget', []).directive('angularList',angularList);

function angularList() {

 return{

 restrict: 'EA',

 template: '<li class="list-item" ng-class="{\'active\' : $index == $parent.selectedRow, \'list-item-selected\' : $index ==

$parent.selectedRow }" ng-repeat="i in items" ng-click="onItemSelected($index)">{{i}}'

 };

}

oleObject14.bin

image22.emf
this.afterRender = function(){

 angular.module(thisWidget.jqElementId , ['AngularListWidget']);

 angular.module(thisWidget.jqElementId).controller('angularListCtrl', function($scope){

 $scope.selectedRow = -1;

 $scope.items = ['Item1','Item2','Item3','Item4'];

 $scope.updateItems = function (items){

 $scope.$apply(

 function(){

 $scope.items = items;

 });

 };

 $scope.onItemSelected = function(index){

 $scope.selectedRow = index;

 thisWidget.setProperty('SelectedRow', $scope.selectedRow);

 thisWidget.updateSelection('Data', [index]);

 }

 });

 var jqElement = this.jqElement;

 jqElement.html('<div class="widget-angular-list" ng-controller="angularListCtrl"><angular -list></angular-list></div>');

 angular.bootstrap(jqElement[0], [thisWidget.jqElementId]);

 var scope = angular.element(jqElement.find('div[ng-controller]')[0]).scope();

 scope.updateItems(undefined);

};

oleObject15.bin

image23.emf
this.updateProperty = function(updatePropertyInfo){

 this.setProperty('Data', updatePropertyInfo.ActualDataRows) ;

 var myDataShape = updatePropertyInfo.ActualDataRows ;

 var jqElement = this.jqElement;

 var scope = angular.element(jqElement.find('div[ng-controller]')[0]).scope();

 var rowsToDisplay = new Array();

 var displayField = this.getProperty('DisplayField')

 if(this.getProperty('DisplayField')!==undefined){

 myDataShape.forEach(function(entry){

 if (entry.hasOwnProperty(displayField)) {

 rowsToDisplay.push(entry[displayField]);

 }

 });

 }

 scope.updateItems(rowsToDisplay);

};

oleObject16.bin

image24.emf
this.handleSelectionUpdate = function (propertyName, selectedRows, selectedRowIndices){

}

oleObject17.bin

image25.emf
var MaterialButtonCtrl = function($scope){

 //thisWidget refers to the scope of MaterialButtonWidget

 $scope.count = thisWidget.getProperty('hoverCount');

 $scope.text = thisWidget.getProperty('Text');

 $scope.isWarn = thisWidget.getProperty('isWarn');

 $scope.isDisabled = thisWidget.getProperty('isDisabled');

 $scope.isPrimary = thisWidget.getProperty('isPrimary');

 $scope.isRaised = thisWidget.getProperty('isRaised');

 if($scope.count===undefined) $scope.count=999;

 $scope.doActionOnHover = function(){

 $scope.count++;

 thisWidget.setProperty('hoverCount', $scope.count);

 thisWidget.jqElement.triggerHandler('Hover');

 };

 $scope.doActionOnClick = function(){

 thisWidget.jqElement.triggerHandler('Clicked');

 };

 $scope.doActionOnDoubleClick = function(){

 thisWidget.jqElement.triggerHandler('DoubleClicked');

 };

};

oleObject18.bin

image26.emf
this.afterRender = function(){

 angular.module(thisWidget.jqElementId , ['ngMaterial','ngAnimate','ngAria','material.svgAssetsCache']).controller('MaterialButtonCtrl',

MaterialButtonCtrl);

 var jqElement = thisWidget.jqElement;

 var html = '<div ng-controller="MaterialButtonCtrl" >'+

 '<md-button class="btn1" ng-disabled="{{isDisabled}}" ng-class="{\'md-primary\' : (isPrimary === true), \'md-warn\' : (isWarn === true),

\'md-raised\' : (isRaised === true)}" >{{text}}</md-button>'+

 '</div>'

 jqElement.html(html);

 angular.bootstrap(jqElement[0], [thisWidget.jqElementId]);

};

oleObject19.bin

image27.png

image1.png

