

Pro/ENGINEER
®

Wildfire™ 2.0

Pro/PROGRAMTM

Help Topic Collection

Parametric Technology Corporation

Copyright © 2004 Parametric Technology Corporation. All Rights Reserved.

User and training documentation from Parametric Technology Corporation (PTC) is subject to the
copyright laws of the United States and other countries and is provided under a license agreement that
restricts copying, disclosure, and use of such documentation. PTC hereby grants to the licensed user the
right to make copies in printed form of this documentation if provided on software media, but only for
internal/personal use and in accordance with the license agreement under which the applicable
software is licensed. Any copy made shall include the PTC copyright notice and any other proprietary
notice provided by PTC. This documentation may not be disclosed, transferred, modified, or reduced to
any form, including electronic media, or transmitted or made publicly available by any means without
the prior written consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without
notice, and should not be construed as a warranty or commitment by PTC. PTC assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains
valuable trade secrets and proprietary information, and is protected by the copyright laws of the United
States and other countries. It may not be copied or distributed in any form or medium, disclosed to
third parties, or used in any manner not provided for in the software licenses agreement except with
written prior approval from PTC. UNAUTHORIZED USE OF SOFTWARE OR ITS
DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

Registered Trademarks of Parametric Technology Corporation or a Subsidiary
Advanced Surface Design, Behavioral Modeling, CADDS, Computervision, CounterPart, EPD,
EPD.Connect, Expert Machinist, Flexible Engineering, HARNESSDESIGN, Info*Engine, InPart,
MECHANICA, Optegra, Parametric Technology, Parametric Technology Corporation, PartSpeak,
PHOTORENDER, Pro/DESKTOP, Pro/E, Pro/ENGINEER, Pro/HELP, Pro/INTRALINK,
Pro/MECHANICA, Pro/TOOLKIT, Product First, PTC, PT/Products, Shaping Innovation, and
Windchill.

Trademarks of Parametric Technology Corporation or a Subsidiary
3DPAINT, Associative Topology Bus, AutobuildZ, CDRS, Create � Collaborate � Control, CV, CVact,
CVaec, CVdesign, CV-DORS, CVMAC, CVNC, CVToolmaker, DataDoctor, DesignSuite,
DIMENSION III, DIVISION, e/ENGINEER, eNC Explorer, Expert MoldBase, Expert Toolmaker,
GRANITE, ISSM, KDiP, Knowledge Discipline in Practice, Knowledge System Driver, ModelCHECK,
MoldShop, NC Builder, Pro/ANIMATE, Pro/ASSEMBLY, Pro/CABLING, Pro/CASTING, Pro/CDT,
Pro/CMM, Pro/COLLABORATE, Pro/COMPOSITE, Pro/CONCEPT, Pro/CONVERT,
Pro/DATA for PDGS, Pro/DESIGNER, Pro/DETAIL, Pro/DIAGRAM, Pro/DIEFACE, Pro/DRAW,
Pro/ECAD, Pro/ENGINE, Pro/FEATURE, Pro/FEM-POST, Pro/FICIENCY, Pro/FLY-THROUGH,
Pro/HARNESS, Pro/INTERFACE, Pro/LANGUAGE, Pro/LEGACY, Pro/LIBRARYACCESS, Pro/MESH,
Pro/Model.View, Pro/MOLDESIGN, Pro/NC-ADVANCED, Pro/NC-CHECK, Pro/NC-MILL,
Pro/NCPOST, Pro/NC-SHEETMETAL, Pro/NC-TURN, Pro/NC-WEDM, Pro/NC-Wire EDM,
Pro/NETWORK ANIMATOR, Pro/NOTEBOOK, Pro/PDM, Pro/PHOTORENDER, Pro/PIPING,
Pro/PLASTIC ADVISOR, Pro/PLOT, Pro/POWER DESIGN, Pro/PROCESS, Pro/REPORT,
Pro/REVIEW, Pro/SCAN-TOOLS, Pro/SHEETMETAL, Pro/SURFACE, Pro/VERIFY, Pro/Web.Link,
Pro/Web.Publish, Pro/WELDING, Product Development Means Business, ProductView, PTC Precision,
Shrinkwrap, Simple � Powerful � Connected, The Product Development Company,
The Way to Product First, Wildfire, Windchill DynamicDesignLink, Windchill PartsLink,
Windchill PDMLink, Windchill ProjectLink, and Windchill SupplyLink.

Patents of Parametric Technology Corporation or a Subsidiary
Registration numbers and issue dates follow. Additionally, equivalent patents may be issued or pending
outside of the United States. Contact PTC for further information.
6,665,569 B1 16-December-2003
6,625,607 B1 23-September-2003
6,580,428 B1 17-June-2003
GB2354684B 02-July-2003
GB2384125 15-October-2003
GB2354096 12-November-2003
6,608,623 B1 19 August 2003
GB2353376 05-November-2003
GB2354686 15-October-2003

6,608,623 B1 19 August 2003
6,473,673 B1 29-October-2002
GB2354683B 04-June-2003
6,447,223 B1 10-Sept-2002
6,308,144 23-October-2001
5,680,523 21-October-1997
5,838,331 17-November-1998
4,956,771 11-September-1990
5,058,000 15-October-1991

4,310,615 21-December-1998
4,310,614 30-April-1996
4,310,614 22-April-1999
5,297,053 22-March-1994
5,513,316 30-April-1996
5,689,711 18-November-1997
5,506,950 09-April-1996
5,428,772 27-June-1995
5,850,535 15-December-1998

6,545,671 B1 08-April-2003
GB2354685B 18-June-2003

5,140,321 18-August-1992
5,423,023 05-June-1990

5,557,176 09-November-1996
5,561,747 01-October-1996

Third-Party Trademarks
Adobe is a registered trademark of Adobe Systems. Advanced ClusterProven, ClusterProven, and the
ClusterProven design are trademarks or registered trademarks of International Business Machines
Corporation in the United States and other countries and are used under license. IBM Corporation does
not warrant and is not responsible for the operation of this software product. AIX is a registered
trademark of IBM Corporation. Allegro, Cadence, and Concept are registered trademarks of Cadence
Design Systems, Inc. Apple, Mac, Mac OS, and Panther are trademarks or registered trademarks of
Apple Computer, Inc. AutoCAD and Autodesk Inventor are registered trademarks of Autodesk, Inc.
Baan is a registered trademark of Baan Company. CADAM and CATIA are registered trademarks of
Dassault Systemes. COACH is a trademark of CADTRAIN, Inc. DOORS is a registered trademark of
Telelogic AB. FLEXlm is a trademark of Macrovision Corporation. Geomagic is a registered trademark
of Raindrop Geomagic, Inc. EVERSYNC, GROOVE, GROOVEFEST, GROOVE.NET,
GROOVE NETWORKS, iGROOVE, PEERWARE, and the interlocking circles logo are trademarks of
Groove Networks, Inc. Helix is a trademark of Microcadam, Inc. HOOPS is a trademark of Tech Soft
America, Inc. HP-UX is a registered trademark and Tru64 is a trademark of the Hewlett-Packard
Company. I-DEAS, Metaphase, Parasolid, SHERPA, Solid Edge, and Unigraphics are trademarks or
registered trademarks of Electronic Data Systems Corporation (EDS). InstallShield is a registered
trademark and service mark of InstallShield Software Corporation in the United States and/or other
countries. Intel is a registered trademark of Intel Corporation. IRIX is a registered trademark of Silicon
Graphics, Inc. LINUX is a registered trademark of Linus Torvalds. MatrixOne is a trademark of
MatrixOne, Inc. Mentor Graphics and Board Station are registered trademarks and 3D Design,
AMPLE, and Design Manager are trademarks of Mentor Graphics Corporation. MEDUSA and
STHENO are trademarks of CAD Schroer GmbH. Microsoft, Microsoft Project, Windows, the Windows
logo, Windows NT, Visual Basic, and the Visual Basic logo are registered trademarks of
Microsoft Corporation in the United States and/or other countries. Netscape and the Netscape N and
Ship's Wheel logos are registered trademarks of Netscape Communications Corporation in the U.S. and
other countries. Oracle is a registered trademark of Oracle Corporation. OrbixWeb is a registered
trademark of IONA Technologies PLC. PDGS is a registered trademark of Ford Motor Company. RAND
is a trademark of RAND Worldwide. Rational Rose is a registered trademark of Rational Software
Corporation. RetrievalWare is a registered trademark of Convera Corporation. RosettaNet is a
trademark and Partner Interface Process and PIP are registered trademarks of “RosettaNet,” a
nonprofit organization. SAP and R/3 are registered trademarks of SAP AG Germany. SolidWorks is a
registered trademark of SolidWorks Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. in the United States and in
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. Sun, Sun Microsystems, the Sun logo, Solaris, UltraSPARC, Java and all Java
based marks, and “The Network is the Computer” are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and in other countries. TIBCO, TIBCO Software, TIBCO
ActiveEnterprise, TIBCO Designer, TIBCO Enterprise for JMS, TIBCO Rendezvous, TIBCO Turbo
XML, TIBCO Business Works are the trademarks or registered trademarks of TIBCO Software Inc. in
the United States and other countries. WebEx is a trademark of WebEx Communications, Inc.
Third-Party Technology Information
Certain PTC software products contain licensed third-party technology: Rational Rose 2000E is
copyrighted software of Rational Software Corporation. RetrievalWare is copyrighted software of
Convera Corporation. VisTools library is copyrighted software of Visual Kinematics, Inc. (VKI)
containing confidential trade secret information belonging to VKI. HOOPS graphics system is a
proprietary software product of, and is copyrighted by, Tech Soft America, Inc. G-POST is copyrighted
software and a registered trademark of Intercim. VERICUT is copyrighted software and a registered
trademark of CGTech. Pro/PLASTIC ADVISOR is powered by Moldflow technology. Moldflow is a
registered trademark of Moldflow Corporation. The JPEG image output in the Pro/Web.Publish module
is based in part on the work of the independent JPEG Group. DFORMD.DLL is copyrighted software
from Compaq Computer Corporation and may not be distributed. METIS, developed by George Karypis
and Vipin Kumar at the University of Minnesota, can be researched at
http://www.cs.umn.edu/~karypis/metis. METIS is © 1997 Regents of the University of Minnesota.
LightWork Libraries are copyrighted by LightWork Design 1990–2001. Visual Basic for Applications
and Internet Explorer is copyrighted software of Microsoft Corporation. Parasolid © Electronic Data

Systems (EDS). Windchill Info*Engine Server contains IBM XML Parser for Java Edition and the
IBM Lotus XSL Edition. Pop-up calendar components Copyright © 1998 Netscape Communications
Corporation. All Rights Reserved. TECHNOMATIX is copyrighted software and contains proprietary
information of Technomatix Technologies Ltd. Technology "Powered by Groove" is provided by Groove
Networks, Inc. Technology "Powered by WebEx" is provided by WebEx Communications, Inc. Oracle 8i
run-time and Oracle 9i run-time, Copyright © 2002–2003 Oracle Corporation. Oracle programs
provided herein are subject to a restricted use license and can only be used in conjunction with the PTC
software they are provided with. Apache Server, Tomcat, Xalan, and Xerces are technologies developed
by, and are copyrighted software of, the Apache Software Foundation (http://www.apache.org) – their
use is subject to the terms and limitations at: http://www.apache.org/LICENSE.txt. Acrobat Reader is
copyrighted software of Adobe Systems Inc. and is subject to the Adobe End-User License Agreement as
provided by Adobe with those products. UnZip (© 1990-2001 Info-ZIP, All Rights Reserved) is provided
“AS IS” and WITHOUT WARRANTY OF ANY KIND. For the complete Info-ZIP license see
ftp://ftp.info-zip.org/pub/infozip/license.html. Gecko and Mozilla components are subject to the Mozilla
Public License Version 1.1 at http://www.mozilla.org/MPL. Software distributed under the MPL is
distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either expressed or implied.
See the MPL for the specific language governing rights and limitations. The Java™ Telnet Applet
(StatusPeer.java, TelnetIO.java, TelnetWrapper.java, TimedOutException.java), Copyright © 1996, 97
Mattias L. Jugel, Marcus Meißner, is redistributed under the GNU General Public License. This license
is from the original copyright holder and the Applet is provided WITHOUT WARRANTY OF ANY
KIND. You may obtain a copy of the source code for the Applet at http://www.mud.de/se/jta (for a
charge of no more than the cost of physically performing the source distribution), by sending e-mail to
leo@mud.de or marcus@mud.de—you are allowed to choose either distribution method. The source code
is likewise provided under the GNU General Public License. GTK+The GIMP Toolkit are licensed
under the GNU LGPL. You may obtain a copy of the source code at http://www.gtk.org, which is
likewise provided under the GNU LGPL. zlib software Copyright © 1995-2002 Jean-loup Gailly and
Mark Adler. OmniORB is distributed under the terms and conditions of the GNU General Public
License and GNU Library General Public License. The Java Getopt.jar, copyright 1987-1997 Free
Software Foundation, Inc.; Java Port copyright 1998 by Aaron M. Renn (arenn@urbanophile.com), is
redistributed under the GNU LGPL. You may obtain a copy of the source code at
http://www.urbanophile.com/arenn/hacking/download.html. The source code is likewise provided under
the GNU LGPL. Mozilla Japanese localization components are subject to the Netscape Public License
Version 1.1 (at http://www.mozilla.org/NPL). Software distributed under NPL is distributed on an "AS
IS" basis, WITHOUT WARRANTY OF ANY KIND, either expressed or implied (see the NPL for the
specific language governing rights and limitations). The Original Code is Mozilla Communicator client
code, released March 31, 1998 and the Initial Developer of the Original Code is Netscape
Communications Corporation. Portions created by Netscape are Copyright © 1998 Netscape
Communications Corporation. All Rights Reserved. Contributors: Kazu Yamamoto
(kazu@mozilla.gr.jp), Ryoichi Furukawa (furu@mozilla.gr.jp), Tsukasa Maruyama (mal@mozilla.gr.jp),
Teiji Matsuba (matsuba@dream.com).

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND
This document and the software described herein are Commercial Computer Documentation and
Software, pursuant to FAR 12.212(a)-(b) (OCT’95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN’95),
is provided to the US Government under a limited commercial license only. For procurements
predating the above clauses, use, duplication, or disclosure by the Government is subject to the
restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
Clause at DFARS 252.227-7013 (OCT’88) or Commercial Computer Software-Restricted Rights at
FAR 52.227-19(c)(1)-(2) (JUN’87), as applicable. 012304

Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA

v

Table Of Contents
Pro/PROGRAM Basics .. 1

About Pro/PROGRAM .. 1

The WHICH DESIGN Menu .. 1

To View the Model Design ... 1

Example: A Model Design.. 2

Incorporating Changes .. 3

To Incorporate Changes in the Model.. 3

Entering Input Variables ... 3

To Select or Modify Input Parameters ... 3

Input from a File ... 4

Execution Errors ... 5

About Execution Errors ... 5

Feature Errors ... 5

Geometry Errors .. 5

Creating Instances.. 7

To Create a Part or Assembly Instance Programmatically 7

Example: Creating an Assembly Instance.. 8

An Example of Parametric Design ... 9

Example: A Parametric Design for a Blender Cover... 9

Creating a Parametric Design.. 9

Design for Assembly BLENDER...10

Design for Part COVER..11

Design for Part CAP ..12

Editing a Design ..13

About Editing the Model Design ..13

Relations ...13

Using Comments to Annotate Relations and Features.......................................14

Input Parameters and Prompts ...14

About Input Parameters and Prompts ...14

 Table Of Contents

vi

Customizing Prompts for Input Variables ...14

Conditional Input Statements ..15

IF-ELSE Statements ..16

About Design Branches ...16

Other Variable Types in IF Statements ..17

Replacing Components in Assembly Designs ...17

About Replacing Components in Assembly Designs17

To Interchange Components Programmatically...17

To Interchange Components Using Relations..18

To Replace Family Table–Driven Components...19

Example: Replacing Family Table-Driven Components...................................19

To Replace User-Defined Features ..20

Example: Replacing User-Defined Features..20

EXECUTE Statements ..21

Using EXECUTE Statements in Assembly Listings..21

Transferring Input Values from the Upper-level Assembly..............................21

Specifying a Part to Execute in an Assembly Program23

Using EXECUTE Statements inside IF-ENDIF Statements23

Mass Properties and INTERACT Statements ..24

Updating Mass Properties When Geometry Changes......................................24

Using INTERACT Statements as Place Holders ..24

Feature Operations ...25

To Suppress Part or Assembly Features...25

To Suppress and Resume Individual Group Members25

To Change Feature Dimensions ..26

Editor Errors ..27

Editing a Design to Correct an Error..27

Index...29

1

Pro/PROGRAM Basics

About Pro/PROGRAM

Each model in Pro/ENGINEER contains a listing of major design steps and parameters

that can be edited to work as a program. By running the program, you change the

model according to new design specifications.

To enter the Pro/PROGRAM environment, click Tools > Program from the PART or

ASSEMBLY menu.

The WHICH DESIGN Menu

Initially, you can gain access to only a design listing that exists in the model.

However, whenever you edit a listing, a file is created that contains the latest design

specifications. At this point, two design listings exist for the same model, From

Model and From File. After you successfully incorporate design changes in the

model, From File is deleted, and only From Model is available.

In those cases where a From File design listing exists, the WHICH DESIGN menu

displays two commands:

• From Model—Retrieves a design listing built in the model.

• From File—Retrieves a design for a model from an existing file named

assemblyname.als or partname.pls.

Note: From Model reflects the current state of the model, while From File

includes all new instructions that you have added during the last editing session.

To View the Model Design

1. From the PART or ASSEMBLY menu, click Program.

2. Click Show Design or Edit Design from the PROGRAM menu to view the model

design.

o If you choose Show Design, the program appears in an information window.

o If you choose Edit Design, the program appears under the system editor—

usually in the startup window.

Note: In the header of every design listing, a REVNUM indicates the last model

revision. The system uses this to detect if the design is outdated.

A typical design listing may contain any of the following:

• Input variables with their current values

• Relations

• IF-ELSE clauses

Pro/PROGRAM – Help Topic Collection

2

• Lists of all the features, parts, or assemblies in the design, which, when enclosed

within "IF condition... ELSE... END IF" statements, create alternate design

branches

• EXECUTE statements (Assembly mode only)

• INTERACT statements

• Feature suppression and order

• MASSPROP statement

Example: A Model Design

A listing for part CLAMP may look like this:

VERSION D-02-03
REVNUM 182
LISTING FOR PART CLAMP
INPUT
END INPUT
RELATIONS
d0 = d6 * 2
END RELATIONS
ADD FEATURE (initial number 1)
INTERNAL ID 1
TYPE = FIRST FEATURE
FORM = EXTRUDED
SECTION NAME = S2DOO2
DEPTH = BLIND
FEATURE’S DIMENSIONS:
D0 = 1.0
D1 = 2.4
....
D5 = 45.0
END ADD

3

Incorporating Changes

To Incorporate Changes in the Model

After you finish editing a Pro/PROGRAM listing, the system asks you if you want to

incorporate the changes. To proceed, enter Y. If you enter N, the program is not

executed.

If you want to run the program at any point, open a listing using the Edit Design

command. Exiting the editor (no changes need to be made) starts the program. You

are prompted to specify whether you want to incorporate the changes in the model.

In order to incorporate the changes in the model, the system may prompt you to

enter variables.

Note: After changes are incorporated in the model, a design file is deleted; only

From Model is available for viewing, editing, or executing.

Entering Input Variables

When a model design has input variables, the system prompts you to enter their

values whenever you regenerate the model or incorporate new instructions in the

model. You can enter data using the following commands on the GET INPUT menu:

• Current Vals—When you run the program, it uses the current values without

requesting your input.

Note: If you want to check the current parameter values, choose Show Design

> From Model. The information window displays the listing with the input

variables and values assigned to them in the current model design.

• Enter—Enter new input values as prompted. Check boxes in the INPUT SEL

menu control parameter selection. Pro/PROGRAM only prompts you to enter a

new value for the checked parameters.

• Read File—When running a program, the system uses input from a file. Type a

file name (including the extension, if any).

To Select or Modify Input Parameters

1. Click PART > Program, and then click PROGRAM > Edit Design. The system

editor displays the current program for the model.

2. Edit the program input list.

3. Incorporate your changes into the model.

4. Click GET INPUT > Enter.

5. In the INPUT SEL menu, click the check boxes next to the input parameters for

which you want to enter values, and then click Done Sel.

Pro/PROGRAM – Help Topic Collection

4

6. Enter the values as prompted in the message area.

7. Click PROGRAM > Done/Return.

Input from a File

Instead of entering variables manually, you can enter them from a file located in the

current directory using Read File. The input file must have one input per line,

formatted as follows:

param_name = value or expression

For example:

THICKNESS = 2.5
INCLUDE_VALVE = YES
MATERIAL = "STEEL"

If you enter parameters from a file that contains fewer parameters than are called

for in the INPUT statement, the system assumes current values for the missing

parameter.

If, on the contrary, the output file contains more variables than are needed for the

execution, those parameters not pertaining to the program are disregarded.

Because the program ignores those parameters that do not pertain to this particular

program, you can create an input file that acts as a global source for a number of

models.

Note: The system is case-sensitive when parameters and their values are read in

from a file. Be consistent in specifying variables.

5

Execution Errors

About Execution Errors

When execution errors are encountered, the system reacts as follows:

In Part mode and Assembly mode:

• If the failure is due to a feature error (for example, if a dimension violates a

Relations constraint), the information window opens with the description of the

error, which is also written to the file errors.lst.n. You can then edit the design

From File (to correct the error) or From Model (to start afresh).

• If the failure is due to a geometry error, Pro/ENGINEER enters a special error

resolution environment called the Resolve environment, which has various

functions to help you diagnose and resolve the error.

In Assembly mode:

If the failure occurs during assembly (for example, because a substituted

member does not fit), the system informs you that it failed to replace the

particular member and asks you if you want to reedit the program.

Feature Errors

Many errors are not detected during editing, but they still make the design unusable.

They can be defined generally as invalid feature-list errors. Such errors usually result

from reordering or deleting features that depend on each other, or from imposing

condition values on features such that a feature that must be created is missing its

parent.

Feature list errors are caught during execution, after the input values have been

requested, but before the model geometry reconstruction has begun.

Geometry Errors

Some errors cannot be detected until the geometry reconstruction process has

begun. For example, you could take the following design:

ADD FEATURE PROTRUSION
ADD FEATURE SHELL
OF THICKNESS d10 (to make a cup)
ADD FEATURE PROTRUSION (handle for cup)

and reorder the last two features, which are not dependent on each other. If the

geometry of the handle is too thin to be shelled with thickness d10, this creates a

geometry error. Pro/ENGINEER fails to regenerate the shell. The failed feature (the

shell) is highlighted in red on the model. The RESOLVE FEAT menu appears, and

the Failure Diagnostics window opens with information on the failed item.

If you choose Undo Changes, the system undoes the changes in this regeneration

and returns to the previous state. In the preceding example, this means that the

feature order would be restored.

7

Creating Instances

To Create a Part or Assembly Instance Programmatically

Parts and assemblies created programmatically with input parameters can be turned

into instances of the generic model.

Whenever a design has been executed, either after regenerating the model or after

editing the design, you can create a family instance of that specific configuration

using the Instantiate command on the PROGRAM menu.

1. Click PART > Program or ASSEMBLY > Program.

2. On the PROGRAM menu, click Instantiate. Pro/TABLE appears with the name of

the generic model or models (part in Part mode, assemblies and parts in

Assembly mode) in column 1, and the default instance name or names in column

2.

3. Edit the default instance name or names for assembly and parts if desired, and

then exit Pro/TABLE.

After you create an instance assembly, you can view the family table. It now includes

the instance assembly name, part names that were executed, and variables that

were entered during input.

Note: The parameters that appear in the family table control the model design.

Instantiating a model revises your design program slightly. For example, if an

assembly program had an EXECUTE statement, an IF statement is created about the
EXECUTE statement. This validates execution only for a generic assembly.

Pro/PROGRAM – Help Topic Collection

8

Example: Creating an Assembly Instance

An example of the typical workflow involved in creating an assembly instance

follows:

9

An Example of Parametric Design

Example: A Parametric Design for a Blender Cover

This example illustrates the logic of the design and the usage of INPUT, EXECUTE, and
IF-ELSE statements. The format of the ADD FEATURE statements in the part design

has been simplified. The explanations in square brackets are for information only and

do not appear in a normal listing.

Creating a Parametric Design

1. Assembly 1

2. Assembly 2

3. Assembly 3

4. COVER_TYPE=NO

5. CYL_DIAM

Pro/PROGRAM – Help Topic Collection

10

6. CAP: MODEL_A

7. COVER_TYPE=YES

8. COVER_SIZE

9. CAP: MODEL_B

Design for Assembly BLENDER

The parametric design for the assembly BLENDER follows:

INPUT
COVER_TYPE YES_NO
"Does the cover have a cap?:"
MATERIAL STRING
"Enter material (ABS or Poly):"
CAP_TYPE STRING
"Enter cap type (MODEL_A or MODEL_B):"
COVER_SIZE
"Enter the top plate dimension:"
END INPUT
RELATIONS
END RELATIONS

EXECUTE PART COVER [a.]
COVER_TYPE = COVER_TYPE
COVER_SIZE = COVER_SIZE
MATERIAL = MATERIAL
END EXECUTE

ADD PART COVER [b.]
INTERNAL MEMBER ID 2
...
END ADD

IF COVER_TYPE == YES [c.]
ADD PART (CAP_TYPE)
INTERNAL MEMBER ID 3
...
END ADD
END IF

Note:

a. Pass value for COVER_TYPE down to part "Cover." If value is YES, cover has

a hole added. Also, pass values for material and size of the cover (size of

the top plate).

b. Add a cover.

c. If COVER_TYPE=YES, add the cap to the assembly

An Example of Parametric Design

11

Design for Part COVER

The parametric design file for the part COVER follows:

INPUT
COVER_TYPE YES_NO
COVER_SIZE
MATERIAL STRING
END INPUT

RELATIONS
DIAM = COVER_SIZE / 2 [a.]
IF MATERIAL == "Poly"
d0=.10
ELSE
d0=.2
ENDIF
END RELATIONS

ADD FEATURE 1
INTERNAL FEATURE ID 33 [b.]
TYPE=FIRST FEATURE
...
COVER_SIZE = 2.4 [c.]

ADD
END

ADD FEATURE 2 [d.]
INTERNAL FEATURE ID 169
TYPE=PROTRUSION
...
END ADD

IF COVER_TYPE == YES [e.]
ADD FEATURE 3
INTERNAL FEATURE ID 270
TYPE=SLOT
...
END ADD
END IF

Note:

a. Relations include a relation for the hole diameter and a conditional

statement for material type. ("Poly" and "ABS" require double quotation

marks.)

b. Add the base feature.

c. Parameter name has been renamed to "COVER_SIZE".

Pro/PROGRAM – Help Topic Collection

12

d. Add walls.

e. If COVER_TYPE=YES, add a hole. (No quotation marks around YES.)

Design for Part CAP

The part CAP is table driven with instances MODEL_A and MODEL_B. The parametric

design file for the part CAP follows:

INPUT
END INPUT

RELATIONS
END RELATIONS

ADD FEATURE 1 [Add the base feature of the cap.]
INTERNAL FEATURE ID 33
TYPE=FIRST FEATURE
...
END ADD

ADD FEATURE 2 [Add a datum plane.]
INTERNAL FEATURE ID 106
TYPE=DATUM PLANE
...
END ADD

ADD FEATURE 3 [Add a protrusion.]
INTERNAL FEATURE ID 108
TYPE=PROTRUSION
...
END ADD

ADD FEATURE 4 [Add a hole.]
INTERNAL FEATURE ID 179
TYPE=HOLE
...
END ADD

ADD FEATURE 5 [Add a top plate.]
INTERNAL FEATURE ID 198
TYPE=PROTRUSION
END ADD

13

Editing a Design

About Editing the Model Design

By editing a design, you make changes to a model.

Although the editor permits you to make other changes (changes not discussed in

the following topic) in the design, it ignores these changes upon execution. Only

those discussed in the following topic are actually changed in the design.

For example, if a feature attribute was changed from THRU ALL to THRU NEXT, the

attribute that appears in the model after execution is THRU ALL.

To edit a design, click PROGRAM > Edit Design. If two designs exist for the model,

you must choose From Model or From File from the WHICH DESIGN menu.

Note: When you edit your design for the first time, or after you have successfully

incorporated changes in the model, the WHICH DESIGN menu does not appear.

In these cases, the design is edited only From Model.

A warning appears when you attempt to edit From Model while a file with a

Pro/PROGRAM listing exists in the working directory. This warning reminds you that

when you exit from the editor the file will be overwritten with the new contents. If

you still want to proceed with editing (this replaces an old design file), enter Y. To
abort editing, enter N.

If you are working with an assembly that has components belonging to a family

table, listings for instances may be viewed, but they cannot be edited, because the

program always resides in the generic part.

Note: To gain access to the listing in a generic assembly, assembly instances

must be cleared from workstation memory.

Relations

All relations valid in a Pro/ENGINEER model can be entered in a Pro/PROGRAM

design.

If an expression you want to include in the RELATIONS statement contains more

than 80 characters, use a backslash (\) to interrupt the current line and continue the

expression on the next line.

The format can be as follows:

RELATIONS
PARAMETER = COVER_SIZE/2 + LENGTH*0.75 -\
0.75*d3*d3 + THICKNESS*2
END RELATIONS

Pro/PROGRAM – Help Topic Collection

14

Changing the material density in a part causes the system to update the mp_density

value in relations and vice versa.

Note:

o When using negative dimensions, a dollar sign ($) must precede the

dimension symbol in both the input statement and the external input files.

For example, use $d20 instead of d20. The dimensions will not be updated if

a dollar sign does not precede the symbols.

o If the program assigns a value to a dimension variable that is already driven

by a part or subassembly relation, two error messages appear. Edit or

remove the program relation and regenerate.

Using Comments to Annotate Relations and Features

You can use comments in the program to annotate relations and features. To insert

comments, use the following format:

/* < your comment

Note that the slash and asterisk precede the comment. Also, the comment on a

feature must immediately follow its ADD FEATURE line. The comment is then attached

to the feature being added and appears in the information window.

Input Parameters and Prompts

About Input Parameters and Prompts

INPUT variables may be specified at the beginning of the listing. A typical use of an

INPUT variable is to supply a value for a dimension. This is a parameter later used in

a relation or as input for model names used in assemblies.

Input Parameter Types

The INPUT statement must indicate the name and type of the variable. Variable

names must always begin with a character.

The following variable types are supported:

• Number—Enter a number for this variable type.

• String—Enter a string of characters for this variable type. This enables you to

enter parameters or model names, but not user attributes.

• YES_NO—Enter either Y or N for this variable type.

Note: If no type is specified for the variable, the system default is Number.

Customizing Prompts for Input Variables

Whenever input is required, the system prompts you to enter the value of the input

variable. Instead of using the system prompts, you can customize prompts for

Editing a Design

15

particular input variables. Then, during design execution, the prompts appear when

the associated variable requires input.

The rules for including prompts follow:

• A prompt must be enclosed in quotation marks.

• A prompt must immediately follow the corresponding input variable.

For example:

INPUT
THICKNESS NUMBER
"Enter wall thickness for the cylinder"
INCLUDE_VALVE YES_NO
"Is valve to be included for analysis"
STOCK_ID STRING
"Enter the part’s stock ID"
...
END INPUT

Deleting Input Lines

If an input variable is deleted from the design or its name is changed, the relations

and conditions that use it do not become invalid automatically. The old variable

name remains in the list of parameters of the model and needs to be deleted

explicitly using the Del Param command.

Conditional Input Statements

The input list in Pro/PROGRAM can include IF - ELSE - ENDIF statements. When an
IF condition evaluates to FALSE, you are not prompted to enter the input values.

For example:

INPUT
INCLUDE_HOLE YES_NO
"Should the hole be included?:"
IF INCLUDE_HOLE == YES
HOLE_DIA NUMBER
"Enter diameter for hole"
ELSE
...
ENDIF
...
END INPUT

When executing this program, you are prompted to enter the diameter of a hole only

if a hole feature is included.

Pro/PROGRAM – Help Topic Collection

16

IF-ELSE Statements

About Design Branches

Conditional statements can be used to create a design branch, enabling you to

control whether a feature or component is included in the design.

For example, if the original Part design was:

ADD PROTRUSION.....
ADD HOLE.....
ADD CUT.....

The modified design might look like this:

ADD PROTRUSION.....
IF d1 > d2
ADD HOLE
...
END ADD
ENDIF
ADD CUT.....
END ADD

Conditional statements are also valid for assemblies. They control whether a

particular part or subassembly is added to the assembly or executed. In the following

example, PART_B is not used unless the parameter DIA has a value less than or equal
to 1.25.

ADD PART BASE_1
....
IF DIA > 1.25
ADD PART PART_A
.....
END ADD
ELSE
ADD PART PART_B
.....
END ADD
ENDIF

Pro/ENGINEER reevaluates any Pro/PROGRAM feature conditional statements (for

example, IF statements) before regenerating each feature. As a result, only a single

Regenerate command is needed for a design in which Pro/PROGRAM feature

conditional statements are changed by Evaluate features and reference dimensions.

However, if you add to a design a Pro/PROGRAM feature conditional statement that

is changed by a later feature, the system provides an error message that the design

is now inconsistent.

Editing a Design

17

Other Variable Types in IF Statements

All variable types may be included in IF statements. Notice that string values must

be enclosed in quotation marks.

For strings:

IF MATERIAL == "STEEL"
d2=10
ENDIF

For YES_NO:

IF DRAFT==YES
d25=5
ENDIF

Replacing Components in Assembly Designs

About Replacing Components in Assembly Designs

You can set up a program to replace assembly components with interchangeable

components. Interchangeability is established using interchange groups, members of

the same family table, or assembly layout declarations. The member named when

executing the design must be interchangeable or else the execution quits and

previous values are kept.

You can set up a program that interchanges components through an INPUT
statement structure or through a RELATION statement. When the feature of a
parameter belongs to an assembly or to another component, an ADD COMPONENT

statement or relation must include the component ID.

The format for assembly relation is:

XYZ = <parameter_name>:fid_<feature_name>:<comp_id>

OR

XYZ = <parameter_name>:fid_<N>:<comp_id>

where <comp_id> is the component ID in the assembly of the referenced part. To
determine the component ID (<comp_id>) in Assembly mode, choose Component

Id from the RELATIONS menu and use Pick From File to select the proper

component.

To Interchange Components Programmatically

1. Include a string variable in the INPUT statement in an Assembly design.

For example:

INPUT
fastener_name STRING
"Enter name of fastener to be used in cam:"
END INPUT

Pro/PROGRAM – Help Topic Collection

18

2. In the associated ADD statement, put the name of the string variable in

parentheses.

For example, to add a part specifically to the assembly:

ADD PART (fastener_name)
...
END ADD

3. To interchange a part named washer for a subassembly or vice versa, use an
ADD COMPONENT statement, using this format:

ADD COMPONENT (name with an extension, or variable)
COMPONENT ID <component Id>

For example:

ADD COMPONENT washer.prt
COMPONENT ID 4
...
END ADD

To Interchange Components Using Relations

1. In the INPUT statement, include a YES_NO variable.

For example:

INCL_CRANK YES_NO

2. Add an IF_ELSE clause in the RELATIONS.

For example:

RELATIONS
IF (INCL_CRANK == YES)
PART_NAME = "CRANK"
ELSE
PART_NAME = "SHAFT"
ENDIF
END RELATIONS

The ADD statement includes the variable defined in the ADD statement (it is enclosed

in brackets).

For example:

ADD PART (PART_NAME)
...
END ADD

Editing a Design

19

To Replace Family Table–Driven Components

You can automatically replace family table–driven components according to design

criteria by using the lookup_inst function. With this function, you can search a

component family table to find an instance that fits the values of the search

parameters. If the lookup function does not find a match, it returns the name of the

generic.

The format for lookup_inst is:

lookup_inst ("generic_name", match_mode, Òparam_name_1Ó, match_value_1,
Òparam_name_2Ó, match_value_2,...)

where

• generic name—Name of the generic model with a .prt or .asm extension

• match_mode—One of the following values:

o –1 (find closest instance with param values less than or equal to supplied

values)

o 0 (find instance with param values that match supplied values exactly)

o 1 (find closest instance with param values greater than or equal to supplied

values)

• param_name_1—Family table parameter name

• match_value_1—Value to match against

Example: Replacing Family Table-Driven Components

Given an assembly that consists of a block and a peg, assemble the instance that

matches the diameter of the hole in the block.

inst_name = declared string parameter initialized to generic part name

generic_name = peg.prt. This part contains a number of instances based on

diameter dimension (d) and length dimension (d1).

Family instance names of peg.prt include:

2 x 4 - d0 = 2, d1 = 4
2 x 5 - d0 = 2, d1 = 5
2 x 6 - d0 = 2, d1 = 6
3 x 4 - d0 = 3, d1 = 4
3 x 5
3 x 6

Add a relation to the control in which peg.prt is added to an assembly controlled by
dimensions of a feature in block.prt. The relation is:

inst_name = lookup_inst ("peg.prt", 0 , "d2", d6:0, "d1", d5:0 +1)

In this way, the instance of peg.prt being assembled to blockpeg.asm is controlled,
based on the dimensions of the hole in block.prt.

Pro/PROGRAM – Help Topic Collection

20

The Pro/PROGRAM listing would look like this:

INPUT
END INPUT
RELATIONS
INST_NAME = LOOKUP_INST ("PEG.PRT", 0, "D2", D6:0, "D1", D5:0 + 1)
END RELATIONS
ADD PART BLOCK
INTERNAL COMPONENT ID 1
END ADD
ADD PART (INST_NAME)
INTERNAL COMPONENT ID 2
PARENTS = 1 (#1)
END ADD
MASSPROP
END MASSPROP

To Replace User-Defined Features

You can programmatically interchange user-defined features using a CHOOSE

statement:

CHOOSE (<variable name>)

where <variable name> is the name of a string variable that contains the ID of the
group to be placed. All the available IDs can be found in the ADD statement of the

leader of the currently active group in the Pro/PROGRAM listing.

Example: Replacing User-Defined Features

INPUT
GROUP STRING
"ENTER GROUP TO PLACE 300/352/409"
END INPUT
CHOOSE (GROUP)

Note:

o To use a CHOOSE statement, you must first manually replace a family table

instance of the group or replace the group with another group.

o CHOOSE statements cannot be included in conditional statements.

The group leader’s ADD statement could look like this:

ADD FEATURE (initial number 4)
INTERNAL FEATURE ID 300
PARENTS = 33(#1)
TYPE = PROTRUSION
FORM = EXTRUDED
SECTION NAME = S2D0002
DEPTH = FROM SKETCH TO BLIND
FEATURE’S DIMENSIONS:

Editing a Design

21

d44 (d23) = 2.00
d45 (d24) = 1.00
d46 (d25) = 1.00
d47 (d26) = 2.00
d48 (d27) = 1.00
MEMBER OF A GROUP, NAME = RECT
LEADING FEATURE OF THE GROUP: ID = 303
LAST FEATURE OF THE GROUP: ID = 303
GROUP IS REPLACEABLE BY FEATURES ID (NAME):
409(round) and 352 (circular)
END ADD

EXECUTE Statements

Using EXECUTE Statements in Assembly Listings

EXECUTE statements are valid for assembly listings only. They provide a link between

input variables in an assembly and input variables for programs in parts and in the

subassemblies that make up the assembly. EXECUTE statements follow this

sequence:

EXECUTE {PART} name or variable
 {ASSY }

input variable of design at next lower level = expression

input variable.....

END EXECUTE

Similar to an ADD statement, an EXECUTE statement can be used in the format
EXECUTE COMPONENT to interchange parts and assemblies. When specifying the
component, make sure to use its extension (.prt or .asm).

Note: When you are running a program, each part can be executed (that is, each

part can receive variable values through an EXECUTE statement) only once. Avoid

including conflicting instructions.

Hierarchy of Assembly Execution

Assemblies can execute subassemblies, which in turn can execute other

subassemblies. The parts that compose a subassembly are not executed by the main

assembly but are instead executed by the subassembly. Only the next level down in

an assembly is executed by the assembly design.

Transferring Input Values from the Upper-level Assembly

The input variables are used to transfer input data from the upper-level assembly to

the appropriate parts and subassemblies to drive the creation of the model.

Pro/PROGRAM – Help Topic Collection

22

For example, for the part block_base, the listing looks like this:

INPUT
key_size
ansi_thread
...
END INPUT
RELATIONS
d5 = key_size
d3 = depth * 1.25
END RELATIONS
....

Then the design listing for the assembly looks like this:

INPUT
hole_diameter NUMBER
thread_type STRING
depth
...
END INPUT
RELATIONS
END RELATIONS
EXECUTE PART block_base
key_size = hole_diameter/2 + 0.025
ansi_thread = thread_type
depth = DEPTH
...
END EXECUTE

And the design for the part block_base looks like this:

INPUT
ADD FEATURE.....

Note:

o The parameter key_size appears in the EXECUTE statement for the assembly
and the INPUT statement for the part. This is necessary for the parameter

value to be passed down from the assembly to the part. If the parameter

does not appear in both places, or no EXECUTE statement is in the assembly

design for the part, then those values that are currently in memory are

used for the part.

o The parameter thread_type is set equal to ansi_thread in the EXECUTE
statement, which is then passed to the part through the INPUT statement.

o The parameter depth is set equal to DEPTH in the EXECUTE statement and
passed to the part using the same name in the INPUT statement. This

technique is often preferable to step 2 because it is easier to keep track of

the parameters.

Editing a Design

23

o The relation d5 = key_size is not necessary. The parameter symbol d5 can
instead be renamed key_size using the Symbol command in the DIM

COSMETIC menu.

Specifying a Part to Execute in an Assembly Program

When you are using an assembly program to replace a part in the assembly using

interchangeability records, you can make sure that the appropriate part program is

executed by entering the part name as a variable in the EXECUTE statement. This
operation is similar to using a variable in an ADD PART statement.

For example, an assembly program could look like this:

INPUT
COMPONENT STRING
"Enter part name"
DIAMETER NUMBER
END INPUT
....
EXECUTE PART (COMPONENT)
d1=DIAMETER
END EXECUTE

If an EXECUTE statement passes values to variables A and B, and an INPUT statement
declares only the variable A, the following occurs:

• A warning message informs you that the variable B has not been defined. You can

then edit your design to correct the error.

• If you incorporate changes in the model after ignoring the warning, the value of A

is passed to a parameter with the same name in the part being executed.

Using EXECUTE Statements inside IF-ENDIF Statements

EXECUTE statements can be used inside IF-ENDIF statements as a way to avoid

execution of the lower-level model, unless necessary. If not executed, the current

values of the model are used.

For example:

INPUT
key YES_NO
"Does the assembly have a key (Y/N):"
IF key == YES
key_name STRING
"Enter key name:"
ENDIF
END INPUT
RELATIONS
END RELATIONS
IF key == YES
EXECUTE PART (key_name)

Pro/PROGRAM – Help Topic Collection

24

END EXECUTE
ENDIF

The part keyname is executed only if it is included in the assembly.

Mass Properties and INTERACT Statements

Updating Mass Properties When Geometry Changes

Use the MASSPROP statement to update mass properties each time geometry

changes. After you have specified parts or assemblies for which mass properties are

to be updated, you can request the current value of a required parameter through

the relations mechanism.

To update mass properties, use the following format:

MASSPROP
PART NAME
ASSEMBLY NAME
END MASSPROP

Note: When specifying the model for which mass properties are to be calculated,

enter the model name without an extension.

The MASSPROP statement can contain the IF... ELSE clause. If you add a condition
to the MASSPROP statement, the mass properties of an object will be calculated only if

that condition is met.

For example:

MASSPROP
IF THICKNESS > 1
PART PLATE
ELSE
ASSEMBLY BLOCK
ENDIF
END MASSPROP

In the preceding example, if the parameter THICKNESS is more than 1, mass

properties is recalculated for the part PLATE; otherwise, mass properties for the

assembly BLOCK is calculated.

Using INTERACT Statements as Place Holders

INTERACT statements provide a placeholder for creating interactive part and
assembly features. They can be inserted anywhere within the FEATURE ADD - END
ADD or PART ADD - END ADD statement.

For example, the ELSE statement in the previous example could have been

constructed as follows:

ADD PROTRUSION.....
IF d1 > d2
ADD HOLE.....

Editing a Design

25

ELSE
INTERACT
END IF
ADD CUT.....

In this example, an alternate set of features is to be created if d1 is not greater than
d2.

Interact mode works similarly to Insert mode accessed from Pro/ENGINEER.

Executing an INTERACT Statement

When the system encounters an INTERACT statement in the program, the execution

of the program is interrupted. At this point, you can add new features. Also at this

point, the system displays an incomplete model built up according to the last

instruction before the INTERACT statement. In Interact mode, the model is frozen

and cannot be modified.

After you are in Interact mode, select any feature you want to add from the FEAT

CLASS menus and proceed to specify all required parameters. After you have

created a new feature, the system asks whether you want to continue adding

features. If you answer N, program execution resumes. After execution is completed,
any new features added within the INTERACT statement replace the INTERACT

statement in the model design.

Note: You can quit interacting immediately after the program moves into the

INTERACT phase (before you start to create features). Choose Done/Return from
the FEAT CLASS menu and answer N to the system prompt asking if you want to

continue. The program resumes execution and proceeds to the end.

Feature Operations

To Suppress Part or Assembly Features

1. To suppress a part or assembly feature or components, add the word

SUPPRESSED immediately following the word ADD:

ADD SUPPRESSED PROTRUSION

2. To resume a suppressed feature, delete the word SUPPRESSED from the ADD
FEATURE clause.

Note: Suppression through the use of Pro/PROGRAM works the same way as in

regular Pro/ENGINEER (suppressed models are not retrieved when an assembly is

retrieved). Therefore, suppressed models are not stored when you save an assembly

with the Save As command.

To Suppress and Resume Individual Group Members

In Pro/PROGRAM, to suppress a single feature that is not part of a group, add the

word SUPPRESSED after the word ADD, as shown in the following example. Then you
would add a line to the end of the feature that reads END ADD.

Pro/PROGRAM – Help Topic Collection

26

To suppress an entire group programmatically, include the statement IF <value =
NO for a yes/no parameter> before the GROUP HEADER line, and the syntax ENDIF

after the last line in the group. All members of the group are suppressed.

Note: In Pro/PROGRAM, all groups contain a group header, which is identical to the

group name.

Suppressing Single Features That Are Members of a Group

You can suppress and resume individual features that are members of a group,

provided you have set the configuration option del_grp_memb_ind to yes. To

suppress group members in Pro/PROGRAM, use the same syntax that you use to

suppress an entire group, as shown in the preceding paragraph. However, the

placement of the syntax is different. Instead of placing the lines before and after the

entire group, you place them before and after the single feature within the group, as

though you were suppressing any other single feature that is not a group member.

To resume the individual feature, delete the lines IF <value = no> and ENDIF from

the beginning and end of the feature.

Note: In order to suppress individual members of a group, you must set the

configuration option del_grp_memb_ind to yes.

To Change Feature Dimensions

You can change the dimensions of features in the program by replacing a DIMENSION

statement with:

MODIFY d# = value

You can also assign a new dimension value through the RELATIONS statement.

Editing a Design

27

Editor Errors

Editing a Design to Correct an Error

Editor errors that prevent Pro/PROGRAM from reading the design are caught as soon

as you exit the editor. Some ways that errors can occur are:

• Having an IF statement without an END IF statement or vice versa.

• Typing a variable name incorrectly in a relation or a condition.

• Reordering a child before the parent.

• Deleting a parent feature.

If the file contains errors, the PROG ERROR menu appears with the following active

commands:

• Abort—Cancel changes that you have made to the design and keep it as it was

prior to editing.

• Edit—Edit the design to correct errors. Error messages indicate the location and

type of error. These messages are ignored during subsequent design processing;

they are deleted if new errors are found and inserted into the design, or if you

exit from the model.

29

Index

C

CHOOSE statement

In Program 20

CHOOSE statement 20

components

interchanging in Program 17

replacing in assemblies 17

components 17

conditional statements 16

D

design branches

about 15

and conditional statements 15, 16

creating 15

design branches 15, 16

E

Edit Design command

PROGRAM menu 1

Edit Design command 1

errors

correcting programmatically 27

execution errors 5

feature 5

geometry 5

in Program 27

invalid feature list errors 5

errors 5, 27

EXECUTE statements

in Program 21

Pro/PROGRAM – Help Topic Collection

30

EXECUTE statements 21

F

features

changing dimensions 26

features 26

G

geometry

errors 5

reconstruction 5

geometry 5

groups

resuming members programmatically 25

suppressing members programmatically 25

groups 25

I

IF statements 16

input parameter types

selecting or modifying 3

input parameter types 3, 14

input variables

entering 3

GET INPUT menu 3

in model design 3

input variables 3, 14

instances

creating 7

creating programmatically 7

instances 7

INTERACT statements

in Program 24

INTERACT statements 24

Index

31

L

lookup_inst function

in Program 18

lookup_inst function 18

M

MASSPROP statement

in Program 23

MASSPROP statement 23

P

Pro/PROGRAM

about 1

comment format 14

conditional statements 15

creating a model instance in 7

design branches 15

editing the design 27

editing the model 13

errors 5, 27

example model design 2

including prompts 14

incorporating model changes 3

interchanging components 17

interchanging components with relations 18

parametric design example 9

relations 13

replacing components in assemblies 17

replacing family table-driven components 18

specifying a part to execute 22

suppressing assembly features 25

suppressing part features 25

transferring input values 21

Pro/PROGRAM – Help Topic Collection

32

using EXECUTE statements 21, 23

using INTERACT statements 24

viewing the design 1

WHICH DESIGN menu 1

Pro/PROGRAM 1, 2, 3, 5, 7, 9, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 27

prompts

about input parameters and 14

about INPUT variables and 14

prompts 14

R

relations

in Program 13

relations 13

resume

group members programmatically 25

resume 25

S

Show Design command

PROGRAM menu 1

Show Design command 1

suppress

group members programmatically 25

suppress 25

V

variables 14, 16

	Pro/PROGRAM Basics
	About Pro/PROGRAM

	Incorporating Changes
	To Incorporate Changes in the Model
	Input from a File

	Execution Errors
	About Execution Errors

	Creating Instances
	To Create a Part or Assembly Instance Programmatically

	An Example of Parametric Design
	Example: A Parametric Design for a Blender Cover
	Creating a Parametric Design

	Editing a Design
	About Editing the Model Design
	About Input Parameters and Prompts

	Index

