
Parametric Technology Corporation

Pro/ENGINEER® Wildfire® 5.0
VB API User’s Guide

July 2010

Copyright © 2010 Parametric Technology Corporation and/or Its Subsidiary Companies. All Rights
Reserved.
User and training guides and related documentation from Parametric Technology Corporation and its
subsidiary companies (collectively "PTC") are subject to the copyright laws of the United States and other
countries and are provided under a license agreement that restricts copying, disclosure, and use of such
documentation. PTC hereby grants to the licensed software user the right to make copies in printed form of
this documentation if provided on software media, but only for internal/personal use and in accordance with
the license agreement under which the applicable software is licensed. Any copy made shall include the PTC
copyright notice and any other proprietary notice provided by PTC. Training materials may not be copied
without the express written consent of PTC. This documentation may not be disclosed, transferred, modified,
or reduced to any form, including electronic media, or transmitted or made publicly available by any means
without the prior written consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,
and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable
trade secrets and proprietary information, and is protected by the copyright laws of the United States and
other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used
in any manner not provided for in the software licenses agreement except with written prior approval from
PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES
AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders
accordingly. We do not tolerate the piracy of PTC software products, and we pursue (both civilly and
criminally) those who do so using all legal means available, including public and private surveillance
resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and
transmit data on users of illegal copies of our software. This data collection is not performed on users of
legally licensed software from PTC and its authorized distributors. If you are using an illegal copy of our
software and do not consent to the collection and transmission of such data (including to the United States),
cease using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, Licensing, and Data Collection Information:
• For Windchill products, select About Windchill at the bottom of the product page.
• For CADDS 5, click the "i" button on the main menu.
• For InterComm products, on the Help main page, click the link for Copyright.
• For other products, click Help > About on the main menu of the product.
• For products with an Application button, click the button and then navigate to the product information.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND
This document and the software described herein are Commercial Computer Documentation and Software,
pursuant to FAR 12.212(a)-(b) (OCT’95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN’95), and are
provided to the US Government under a limited commercial license only. For procurements predating the
above clauses, use, duplication, or disclosure by the Government is subject to the restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 (OCT’88) or Commercial Computer Software-Restricted Rights at FAR 52.227-19(c)(1)-(2)
(JUN’87), as applicable. 04012010

Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA

About This Guide

This section contains information about the contents and conventions of this user
guide.

Topic

Purpose
Audience
Contents
Prerequisites
Documentation
Software Product Concerns and Documentation Comments

Purpose

This manual describes how to use the VB API, a Visual Basic toolkit for Pro/
ENGINEER. The VB API makes possible the development of Visual Basic
programs that access the internal components of a Pro/ENGINEER session, to
customize Pro/ENGINEER models.

Audience

This manual is intended for experienced Pro/ENGINEER users who are familiar
with Visual Basic or another object-oriented language.

Contents

This manual contains the chapters that describe how to work with different
functions provided by Visual Basic APIs.

Prerequisites

This manual assumes you have the following knowledge:

�❍ Pro/ENGINEER
�❍ Visual Basic for Applications (Office macros)
�❍ Visual Basic .NET 2005
�❍ Other languages with the built-in capability to use COM servers:

- JavaScript
- VB.Script
- C++
- C#

Documentation

The documentation for Visual Basics APIs includes the following:

�❍ The VB API User's Guide.
�❍ An online browser that describes the syntax of the Visual Basic functions and

provides a link to the online version of this manual. The online version of the
documentation is updated more frequently than the printed version. If there are any
discrepancies, the online version is the correct one.

Conventions

The following table lists conventions and terms used throughout this book.

Convention Description

The pound sign (#) is the convention used for a UNIX
prompt.

UPPERCASE Pro/ENGINEER-type menu name (for example, PART).

Boldface

Windows-type menu name or menu or dialog box option
(for example, View), or utility. Boldface font is also used
for keywords, VB API methods, names of dialog box
buttons, and Pro/ENGINEER commands.

Monospace

(Courier)

Code samples appear in courier font like this. Java aspects
(methods, classes, data types, object names, and so on) also
appear in Courier font.

Emphasis
Important information appears in italics like this. Italic font
is also used for file names and uniform resource locators
(URLs).

Mode
An environment in Pro/ENGINEER in which you can
perform a group of closely related functions (Drawing, for
example).

Model An assembly, part, drawing, format, layout, case study,
sketch, and so on.

Solid A part or an assembly.

Notes:

● Important information that should not be overlooked appears in notes
like this.

● All references to mouse clicks assume the use of a right-handed
mouse.

Software Product Concerns and Documentation
Comments

For resources and services to help you with PTC software products, see the PTC
Customer Service Guide. It includes instructions for using the World Wide Web or
fax transmissions for customer support.

In regard to documentation, PTC welcomes your suggestions and comments. You
can send feedback in the following ways:

�❍ Send comments electronically to doc-webhelp@ptc.com.
�❍ Fill out and mail the PTC Documentation Survey in the customer service guide.

Overview of the VB API

This section provides an overview of the VB APIs.

Topic

Introduction
Getting Started
Object Types
Programming Considerations

Introduction

The VB API for Pro/ENGINEER Wildfire 4.0 is an asynchronous application that can be used from any COM-enabled
application including Visual Basic.NET (VB.NET), Visual Basic for Applications (VBA), and external Internet Explorer
instances using scripting.

Visual Basic.NET Applications

You can use the VB API for Pro/ENGINEER Wildfire 4.0 to:

�❍ Create a VB.NET form capable of starting or connecting to Pro/ENGINEER non-graphically, accepting user inputs and driving
model modifications or deliverables.

�❍ Create a VB.NET application that may or may not have its own User Interface (UI). The application should be able to establish
one or more Pro/ENGINEER UI or event listeners in session, and process those events using VB.NET code.

Visual Basic for Applications

The VB APIs provide support for accessing Pro/ENGINEER from Visual Basic-enabled products such as Microsoft Excel,
Microsoft Word, or Microsoft Access. The COM interface is provided to control Pro/ENGINEER asynchronously and use the
PFC API's to access its properties.

You can also access data from OLE objects embedded in Pro/ENGINEER. The OLE objects can include VB code that can be
used to drive the model from which the object is contained.

Limitations of the VB API

The asynchronous COM server has the following limitations:

�❍ API calls to Pro/ENGINEER should be made only from a single thread. Other threads can process non Pro/ENGINEER data
and set data to be seen by the Pro/ENGINEER thread, but only one thread can communicate with Pro/ENGINEER.

�❍ Only one active connection can be made to a single Pro/ENGINEER session at one time.

Getting Started

Setting Up a VB Application

For your application to communicate with Pro/ENGINEER, you must set the PRO_COMM_MSG_EXE environment variable to the
full path of the executable, pro_comm_msg.exe. Typically, the path to the executable is [Pro/E loadpoint]/[machine
type]/obj/pro_comm_msg.exe, where machine type is i486_nt for 32-bit Windows and x86e_win64 for 64-bit
Windows installations.

Set PRO_COMM_MSG_EXE as:

1. Click Start > Settings > Control Panel

2. Click System. The System Properties windows opens.

3. In the Advanced tab, click the Environment Variables button.

4. Add PRO_COMM_MSG_EXE to System variables.

Registering the COM Server

To register the COM server, run the vb_api_register.bat file located at [proe_loadpoint]/bin.

To unregister the COM server, run the vb_api_unregister.bat file located at [proe_loadpoint]/bin.

After the COM server is registered with the system, whenever an application tries to access the types contained in this server
the server starts automatically. By default, Windows starts services such as pfclscom.exe in the Windows system directory
(c:\winnt\system_32). Because the server will also start new sessions of Pro/ENGINEER from the process working
directory, you may want to control the server run directory. You can configure the server to start in a specific directory by
setting the system environment variable PFCLS_START_DIR to any existing directory on your computer.

Setting Project References for the VB API

Set the reference to Pro/E VB API Type Library for Pro/E Wildfire 4.0 through your project. In the VBA
environment set this reference as follows:

1. Click Tools>References

2. Check the box for Pro/E VB API Type Library for Pro/E Wildfire 4.0 as shown in the following figure.

In the VB.NET environment, set this reference as follows:

1. Click Project>Properties>Add Reference>COM

2. Check the box for Pro/E VB API Type Library for Pro/E Wildfire 4.0 as shown in the following figure.

Object Types

The VB API is made up of a number of classes in many modules. The following are the main class types:

�❍ Pro/ENGINEER-Related Classes--Contain unique methods and properties that are directly related to the functions in Pro/
ENGINEER. See the section "Pro/ENGINEER-Related Classes" for more information.

�❍ Compact Data Classes--Classes containing data needed as arguments to some VB methods. See the section, "Compact Data
Classes", for additional information.

�❍ Union Classes--Classes with a potential to contain multiple types of values. See the section "Unions" for additional information.
�❍ Sequence Classes--Expandable arrays of objects or primitive data types. See the section "Sequences" for more information.

�❍ Array Classes--Arrays that are limited to a certain size. See the section "Arrays" for more information.
�❍ Enumeration Classes--Enumerated types, which list a restricted and valid set of options for the property. See the section

"Enumeration Classes" for more information.
�❍ Module-Level Classes--Contain static methods used to initialize certain VB objects. See the "Module-Level Classes" section

for more information.
�❍ ActionListener Classes--Enable you to specify code that will run only if certain events in Pro/ENGINEER take place. See the

Action Listeners sectionfor more information.

Each class shares specific rules regarding initialization, attributes, methods, inheritance, or exceptions. The following sections
describe these classes in detail.

Pro/ENGINEER-Related Classes

The Pro/ENGINEER-Related Classes contain methods that directly manipulate objects in Pro/ENGINEER. Examples of
these objects include models, features, and parameters.

Initialization

You cannot construct one of these objects using the keyword New. Instead, you should obtain the handle to a Pro/ENGINEER-
related object by creating or listing that object with a method on the parent object in the hierarchy.

For example, IpfcBaseSession.CurrentModel returns a IpfcModel object set to the current model and IpfcParameterOwner.
CreateParam returns a newly created parameter object for manipulation.

Properties

Properties within Pro/ENGINEER-related objects are directly accessible. Some attributes that have been designated as
read-only can be accessed but not modified by the VB API.

Methods

You must invoke methods from the object in question and first initialize that object. For example, the following calls are
illegal:

Dim window as pfcls.IpfcWindow;
window.Activate(); ` The window has not yet
 ` been initialized.
Repaint(); ` There is no invoking object.

The following calls are legal:

Dim window As Pfcls.IpfcWindow
Dim session as pfcls.IpfcSession
Dim asyncConnection as pfcls.IpfcAsyncConnection
Dim Casync as New pfcls.CCpfcAsyncConnection

asyncConnection = Casync.Connect (DBNull.Value, DBNull.Value, DBNull.Value, DBNull.Value)
session = asyncConnection.Session;
window = session.CurrentWindow; ' You have initialized
 ' the window object.
window.Activate()
window.Repaint()

Inheritance

Many Pro/ENGINEER-related objects inherit methods from other interfaces. In VB.NET and VBA, you must have an object of
the correct type for the compiler and IDE to resolve the methods you wish to call. For example, an IpfcComponentFeat
object could use the methods and properties as follows:

�❍ IpfcObject
�❍ IpfcChild
�❍ IpfcActionSource
�❍ IpfcModelItem
�❍ IpfcFeature
�❍ IpfcComponentFeat

The following are the approaches to using an object's inherited methods:

1. You can code the method call directly even though it is not available in Intellisense.

Dim componentFeat as pfcls.IpfcComponentFeat
MsgBox ("Feature number: " & componentFeat.Number);

Note:
This works in VB.NET but is likely to result in a compilation error in VBA.

2. You can create another object of the appropriate type and assign it the object handle, and then call the required method.

Dim componentFeat as pfcls.IpfcComponentFeat
Dim feat as pfcls.IpfcFeature

feat = componentFeat
MsgBox ("Feature number: " & feat.Number);

Compact Data Classes

Compact data classes are data-only classes. They are used for arguments and return values for some VB API methods. They do
not represent actual objects in Pro/ENGINEER. Other than a difference in how they are initialized, compact data classes have
similar requirements to Pro/ENGINEER-related classes.

Initialization

You can create these compact data objects using a designated Create method which resides on the CC version of the compact
class. You instantiate the CC class object with the keyword New.

For example,

'Class object, owns Create()
Dim tableCellCreate As New pfcls.CCpfcTableCell
Dim tableCell As pfcls.IpfcTableCell
Set tableCell = tableCellCreate.Create(1, 1)

Unions

Unions are classes containing potentially several different value types. Every union has a discriminator property with the
predefined name, discr. This property returns a value identifying the type of data that the union object holds. For each union
member, a separate property is used to access the different data types. It is illegal to attempt to read any property except the one
that matches the value returned from the discriminator. However, any property that switches the discriminator to the new value
type can be modified.

The following is an example of a VB API union:

 Interface IpfcParamValue
--

 Description
 This class describes the value of the parameter.
--
 Union Discriminant
 Property discr as IpfcParamValueType [readonly]
 Returns the union discriminant value.
--
 Property Summary
 Property BoolValue as Boolean
 If the parameter type is PARAM_BOOLEAN, this is a Boolean value.
 Property DoubleValue as Double
 If the parameter type is PARAM_DOUBLE, this is a double value.
 Property IntValue as Long
 If the parameter type is PARAM_INTEGER, this is an integer value.
 Property NoteId as Long
 If the parameter type is PARAM_NOTE, this is a note identifier.
 Property StringValue as String
 If the parameter type is PARAM_STRING, this is a string value.

Sequences

Sequences are expandable arrays of primitive data types or objects in the VB API. All sequence classes have the same methods
for adding to and accessing the array. Sequence classes are typically identified by a plural name, or the suffix seq.

Initialization

You can create instances of these classes directly by instantiating the appropriate class object:

Properties

The read-only Count attribute identifies how many members are currently in the sequence. You may also access members of
the sequence using the Item property or directly:

Dim model as IpfcModel
model = models (0)

Methods

Sequence objects always contain the same methods. Use the following methods to access the contents of the sequence:

�❍ Append()--Adds a new item to the end of the array
�❍ Clear()--Removes all items from the array
�❍ Insert()--Inserts a new item at any location of the array
�❍ InsertSeq()--Inserts the contents of a sequence of items at any location of the array
�❍ Set()--Assigns one item in the array to the input item
�❍ Remove()--Removes a range of items from the array

Inheritance

Sequence classes do not inherit from any other VB API classes. Therefore, you cannot use sequence objects as arguments
where any other type of VB API object is expected, including other types of sequences. For example, if you have a list
of IpfcModelItems that happen to be features, you cannot use the sequence as if it were a sequence of IpfcFeatures.

To construct the array of features, you must insert each member of the IpfcModelItems list into the new IpfcFeatures list.

Arrays

Arrays are groups of primitive types or objects of a specified size. An array can be one- or two- dimensional. The online

reference documentation indicates the exact size of each array class.

Initialization

You can create instances of these classes directly by instantiating the appropriate class object:

Properties

You may read members of the sequence using the Item property or directly as an array:

Dim point as IpfcPoint3D
Dim matrix as IpfcMatrix3D
MsgBox ("Y value of point: " & point.Item (1))
MsgBox ("(2, 2) value of matrix: " & matrix (2, 2))

Methods

Array objects contain only the Set method, which assigns one item in the array to the input item.

Enumeration Classes

In the VB API, an enumeration class defines a limited number of values that correspond to the members of the
enumeration. Each value represents an appropriate type and may be accessed by name. In the EpfcFeatureType enumeration
class, the value EpfcFEATTYPE_HOLE represents a Hole feature in Pro/ENGINEER. Enumeration classes in the VB API
generally have names of the form EpfcXYZType or EpfcXYZStatus.

Initialization

You can directly refer to instance of this class:

Dim type as EpfcFeatureType
type = EpfcFeatureType.EpfcFEATTYPE_HOLE

Attributes

An enumeration class is made up of constant integer properties. The names of these properties are all uppercase and describe
what the attribute represents. For example:

�❍ EpfcPARAM_INTEGER--A value in the EpfcParamValueType enumeration class that is used to indicate that a parameter
stores an integer value.

�❍ EpfcITEM_FEATURE--An value in the EpfcModelItemType enumeration class that is used to indicate that a model item is a
feature.

An enumeration class always has an integer value named <type>_nil, which is one more than the highest acceptable
numerical value for that enumeration class.

Module-Level Classes

Some modules in the VB API have one class that contains special functions used to create and access some of the other classes
in the package. These module classes have the naming convention, CM+ the name of the module, for example CMpfcSelect.

Initialization

You can create instances of these classes directly by instantiating the appropriate class object:

Dim mSelect as New CMpfcSelect

Methods

Module-level classes contain only static methods used for initializing certain VB API objects.

Action Listeners

Action Listeners notify you of events in Pro/ENGINEER. They are also the basis for customization of the Pro/ENGINEER
User Interface. ActionListeners are not supported from VBA.

Initialization

In VB.NET, you can create and assign an ActionListener class as follows.

Create a class implementing the listener in question. It should define all the inherited methods, even if you want to only execute
code for a few of the listener methods. Those other methods should be implemented with an empty body.

The class should also implement the interface IpfcActionListener, which has no methods.

The class should also implement ICIPClientObject. This method defines the object type to the CIP code in the server. This
method returns a String which is the name of the listener type interface, for example, IpfcSessionActionListener.

Private Class ModelEventListener
 Implements IpfcModelEventActionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Public Function GetClientInterfaceName() As String _
 Implements ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcModelEventActionListener"
 End Function
'==
'Function : OnAfterModelCopy
'Purpose : This method is executed after successfully
' copying a model.
'==
 Public Sub OnAfterModelCopy(ByVal _FromMdl As
 pfcls.IpfcModelDescriptor, ByVal _ToMdl As
 pfcls.IpfcModelDescriptor) Implements
 pfcls.IpfcModelEventActionListener.OnAfterModelCopy
 'Method Body
 End Sub
'==
'Function : OnAfterModelRename
'Purpose : This method is executed after successfully
' renaming a model.
'==
 Public Sub OnAfterModelRename(ByVal _FromMdl As
 pfcls.IpfcModelDescriptor, ByVal _ToMdl As
 pfcls.IpfcModelDescriptor) Implements
 pfcls.IpfcModelEventActionListener.OnAfterModelRename

 'Method Body

 End Sub

 Public Sub OnAfterModelCopyAll(ByVal _FromMdl As
 pfcls.IpfcModelDescriptor, ByVal _ToMdl As
 pfcls.IpfcModelDescriptor) Implements

 pfcls.IpfcModelEventActionListener.OnAfterModelCopyAll

 End Sub

 Public Sub OnAfterModelDelete(ByVal _Descr As
 pfcls.IpfcModelDescriptor) Implements
 pfcls.IpfcModelEventActionListener.OnAfterModelDelete

 End Sub

 Public Sub OnAfterModelErase(ByVal _Descr As
 pfcls.IpfcModelDescriptor) Implements
 pfcls.IpfcModelEventActionListener.OnAfterModelErase

 End Sub

 End Class

Exceptions

Action listeners cause methods to be called outside of your application start and stop methods. Therefore, you must include
exception-handling code inside the ActionListener implementation if you want to respond to exceptions. In some methods
called before an event, propagating a IpfcXCancelProEAction exception out of your method will cancel the impending
event.

Programming Considerations

The items in this section introduce programming tips and techniques used for programming with the VB API .

Application Hierarchy

The rules of object orientation require a certain hierarchy of object creation when you start a VB application. The application
must iterate down to the level of the object you want to access. For example, to list all the datum axes contained in the hole
features in all models in session, do the following:

1. Use the method CCpfcAsyncConnection.Connect to connect to an existing session of Pro/ENGINEER.

Dim connection As IpfcAsyncConnection
Dim classAsyncConnection As New CCpfcAsyncConnection
connection = classAsyncConnection.Connect (DBNull.Value, DBNull.Value, DBNull.Value,
DBNull.Value)

2. Get a handle to the session of Pro/ENGINEER for the current active connection:

Dim session As IpfcBaseSession

session = connection.Session

3. Get the models that are loaded in the session:

Dim models As IpfcModels

models = session.ListModels()

4. Get the handle to the first model in the list:

Dim model As IpfcModel

model = models[0]

5. Get the feature model items in each model:

Dim items As IpfcModelItems

items = model.ListItems (EpfcModelItemType.EpfcITEM_FEATURE)

6. Filter out the features of type hole:

if (feature.FeatType = EpfcFeatureType.EpfcFEATTYPE_HOLE) then

7. Get the subitems in each feature that are axes:

Dim axes As IpfcModelItems

axes = feature.ListSubItems (EpfcModelItemType.EpfcITEM_AXIS)

Optional Arguments and Tags

Many methods in the VB API are shown in the online documentation as having optional arguments.

For example, the IpfcModelItemOwner.ListItems() method takes an optional Type argument.

IpfcModelItems ListItems (Type as IpfcModelItemType [optional]);

In VB.Net, you can pass the keyword Nothing in place of any such optional argument. In VBA, use Null in place of any such
optional argument. The VB API methods that take optional arguments provide default handling for Nothing parameters
which is described in the online documentation.

Note:
You can only pass Nothing in place of arguments that are shown in the documentation to be optional.

Optional Returns for the VB API Methods

Some methods in the VB API have an optional return. Usually these correspond to lookup methods that may or may not find an
object to return. For example, the pfcBaseSession.GetModel method returns an optional model:

Function GetModel (Name as String, Type as IpfcModelType) as IpfcModel [optional]

The VB API might return Nothing in certain cases where these methods are called. You must use appropriate value checks in
your application code to handle these situations.

Parent-Child Relationships between the VB API Objects

Some VB API objects inherit from either the interface IpfcObject.Parent or IpfcObject.Child. These interfaces are
used to maintain a relationship between the two objects. This has nothing to do with object-oriented inheritance, but rather,
refers to the relationship between the items in Pro/ENGINEER. In the VB API, the Child is owned by the Parent.

Property Introduced:

● IpfcChild.DBParent

The IpfcChild.DBParent property returns the owner of the child object. The application developer must know the expected
type of the parent in order to use it in later calls. The following table lists parent/child relationships in the VB API.

Parent Child

IpfcSession IpfcModel

IpfcSession IpfcWindow

IpfcModel IpfcModelItem

IpfcSolid IpfcFeature

IpfcModel IpfcParameter

IpfcModel IpfcExternalDataAccess

IpfcPart IpfcMaterial

IpfcModel IpfcView

IpfcModel2D IpfcView2D

IpfcSolid IpfcXSection

IpfcSession IpfcDll (Pro/TOOLKIT)

IpfcSession IpfcJLinkApplication (J-
Link)

Run-Time Type Identification in the VB API

The VB API and Visual Basic provide several methods to identify the type of an object.

Many VB API classes provide read access to a type enumerated class. For example, the IpfcFeature class has a IpfcFeature.
FeatType property, returning a pfcFeatureType enumeration value representing the type of the feature. Based upon the type,
a user can recognize that the IpfcFeature object is actually a particular subtype, such as IpfcComponentFeat, which is an
assembly component.

Support for Embedded OLE Objects

OLE objects, when activated by the user, can include VB code that can be used to drive the model from which the object is
contained. The VB API provides a special property in embedded Microsoft Word, Microsoft Excel and Microsoft PowerPoint
documents that can directly return the connection ID of the Pro/ENGINEER session that launched the process containing the
OLE object. For information about getting the connection ID from the container, refer to the "VB API Fundamentals:
Controlling Pro/ENGINEER" section.

The user application code embedded in the OLE object passes the connection ID string to CCpfcConnectionId.Create() and
CCpfcAsyncConnection.ConnectById() to establish the connection. The code may then obtain the owner model of the OLE
object by retrieving the current model from the session using standard PFC APIs.

For example,

Dim ls As New pfcls.CCpfcAsyncConnection
Dim aC As pfcls.IpfcAsyncConnection
Dim cId As New pfcls.CCpfcConnectionId
Dim id As pfcls.IpfcConnectionId
Dim session As pfcls.IpfcBaseSession
Dim model As pfcls.IpfcModel

Set id = cId.Create(connectionId)
Set aC = ls.ConnectById(id, DBNull.Value, DBNull.Value)

Set session = aC.Session
Set model = session.CurrentModel

Exceptions

All PFC methods that fail may throw exceptions as System.Runtime.InteropServices.COMException.

The type of the exception can be obtained from the Message property of this exception.

Try
 session.SetConfigOption("no_way", "no_how")
Catch ex As Exception
 MsgBox(ex.Message) 'Will show pfcExceptions::IpfcXToolkitNotFound
End Try

The description property returns the full exception description as [Exception type]; [additional details].
The exception type is the module and exception name, for example, pfcExceptions::IpfcXToolkitCheckoutConflict.

The additional details include information that was contained in the exception when it was thrown by the PFC layer, such as
conflict descriptions for exceptions caused by server operations and error details for exceptions generated during drawing
creation.

PFC Exceptions

The PFC exceptions are thrown by the classes that make up the VB API's public interface. The following table describes these
exceptions.

Exception Purpose

pfcExceptions::IpfcXBadExternalData An attempt to read contents of an external data object that has been
terminated.

pfcExceptions::IpfcXBadGetArgValue Indicates attempt to read the wrong type of data from the
IpfcArgValue union.

pfcExceptions::IpfcXBadGetExternalData Indicates attempt to read the wrong type of data from the
IpfcExternalData union.

pfcExceptions::IpfcXBadGetParamValue Indicates attempt to read the wrong type of data from the
IpfcParamValue union.

pfcExceptions::IpfcXBadOutlineExcludeType Indicates an invalid type of item was passed to the outline
calculation method.

pfcExceptions::IpfcXCancelProEAction
This exception type will not be thrown by VB API methods, but you
may instantiate and throw this from certain ActionListener methods
to cancel the corresponding action in Pro/ENGINEER.

pfcExceptions::IpfcXCannotAccess The contents of a VB API object cannot be accessed in this situation.

pfcExceptions::IpfcXEmptyString An empty string was passed to a method that does not accept this
type of input.

pfcExceptions::IpfcXInvalidEnumValue Indicates an invalid value for a specified enumeration class.

pfcExceptions::IpfcXInvalidFileName Indicates a file name passed to a method was incorrectly structured.

pfcExceptions::IpfcXInvalidFileType Indicates a model descriptor contained an invalid file type for a
requested operation.

pfcExceptions::IpfcXInvalidModelItem Indicates that the item requested to be used is no longer usable (for
example, it may have been deleted).

pfcExceptions::IpfcXInvalidSelection
Indicates that the IpfcSelection passed is invalid or is missing a
needed piece of information. For example, its component path,
drawing view, or parameters.

pfcExceptions::

IpfcXJLinkApplicationException
Contains the details when an attempt to call code in an external J-
Link application failed due to an exception.

pfcExceptions::IpfcXJLinkApplicationInactive Unable to operate on the requested IpfcJLinkApplication object
because it has been shut down.

pfcExceptions::IpfcXJLinkTaskNotFound Indicates that the J-Link task with the given name could not be found
and run.

pfcExceptions::IpfcXModelNotInSession Indicates that the model is no longer in session; it may have been
erased or deleted.

pfcExceptions::IpfcXNegativeNumber Numeric argument was negative.

pfcExceptions::IpfcXNumberTooLarge Numeric argument was too large.

pfcExceptions::IpfcXProEWasNotConnected The Pro/ENGINEER session is not available so the operation failed.

pfcExceptions::IpfcXSequenceTooLong Sequence argument was too long.

pfcExceptions::IpfcXStringTooLong String argument was too long.

pfcExceptions::IpfcXUnimplemented Indicates unimplemented method.

pfcExceptions::IpfcXUnknownModelExtension Indicates that a file extension does not match a known Pro/
ENGINEER model type.

Pro/TOOLKIT Errors

The IpfcXToolkitError exception types provide access to error codes from Pro/TOOLKIT functions that the VB API uses
internally and to the names of the functions returning such errors. IpfcXToolkitError is the exception you are most likely to
encounter because the VB API is built on top of Pro/TOOLKIT. The following table lists the IpfcXToolkitError types
method and shows the corresponding Pro/TOOLKIT constant that indicates the cause of the error.

IpfcXToolkitError Child Class Pro/TOOLKIT Error #

pfcExceptions::IpfcXToolkitGeneralError PRO_TK_GENERAL_ERROR -1

pfcExceptions::IpfcXToolkitBadInputs PRO_TK_BAD_INPUTS -2

pfcExceptions::IpfcXToolkitUserAbort PRO_TK_USER_ABORT -3

pfcExceptions::IpfcXToolkitNotFound PRO_TK_E_NOT_FOUND -4

pfcExceptions::IpfcXToolkitFound PRO_TK_E_FOUND -5

pfcExceptions::IpfcXToolkitLineTooLong PRO_TK_LINE_TOO_LONG -6

pfcExceptions::IpfcXToolkitContinue PRO_TK_CONTINUE -7

pfcExceptions::IpfcXToolkitBadContext PRO_TK_BAD_CONTEXT -8

pfcExceptions::IpfcXToolkitNotImplemented PRO_TK_NOT_IMPLEMENTED -9

pfcExceptions::IpfcXToolkitOutOfMemory PRO_TK_OUT_OF_MEMORY -
10

pfcExceptions::IpfcXToolkitCommError PRO_TK_COMM_ERROR -
11

pfcExceptions::IpfcXToolkitNoChange PRO_TK_NO_CHANGE -
12

pfcExceptions::IpfcXToolkitSuppressedParents PRO_TK_SUPP_PARENTS -
13

pfcExceptions::IpfcXToolkitPickAbove PRO_TK_PICK_ABOVE -
14

pfcExceptions::IpfcXToolkitInvalidDir PRO_TK_INVALID_DIR -
15

pfcExceptions::IpfcXToolkitInvalidFile PRO_TK_INVALID_FILE -
16

pfcExceptions::IpfcXToolkitCantWrite PRO_TK_CANT_WRITE -
17

pfcExceptions::IpfcXToolkitInvalidType PRO_TK_INVALID_TYPE -
18

pfcExceptions::IpfcXToolkitInvalidPtr PRO_TK_INVALID_PTR -
19

pfcExceptions::IpfcXToolkitUnavailableSection PRO_TK_UNAV_SEC -
20

pfcExceptions::IpfcXToolkitInvalidMatrix PRO_TK_INVALID_MATRIX -
21

pfcExceptions::IpfcXToolkitInvalidName PRO_TK_INVALID_NAME -
22

pfcExceptions::IpfcXToolkitNotExist PRO_TK_NOT_EXIST -
23

pfcExceptions::IpfcXToolkitCantOpen PRO_TK_CANT_OPEN -
24

pfcExceptions::IpfcXToolkitAbort PRO_TK_ABORT -
25

pfcExceptions::IpfcXToolkitNotValid PRO_TK_NOT_VALID -
26

pfcExceptions::IpfcXToolkitInvalidItem PRO_TK_INVALID_ITEM -
27

pfcExceptions::IpfcXToolkitMsgNotFound PRO_TK_MSG_NOT_FOUND -
28

pfcExceptions::IpfcXToolkitMsgNoTrans PRO_TK_MSG_NO_TRANS -
29

pfcExceptions::IpfcXToolkitMsgFmtError PRO_TK_MSG_FMT_ERROR -
30

pfcExceptions::IpfcXToolkitMsgUserQuit PRO_TK_MSG_USER_QUIT -
31

pfcExceptions::IpfcXToolkitMsgTooLong PRO_TK_MSG_TOO_LONG -
32

pfcExceptions::IpfcXToolkitCantAccess PRO_TK_CANT_ACCESS -
33

pfcExceptions::IpfcXToolkitObsoleteFunc PRO_TK_OBSOLETE_FUNC -
34

pfcExceptions::IpfcXToolkitNoCoordSystem PRO_TK_NO_COORD_SYSTEM -
35

pfcExceptions::IpfcXToolkitAmbiguous PRO_TK_E_AMBIGUOUS -
36

pfcExceptions::IpfcXToolkitDeadLock PRO_TK_E_DEADLOCK -
37

pfcExceptions::IpfcXToolkitBusy PRO_TK_E_BUSY -
38

pfcExceptions::IpfcXToolkitInUse PRO_TK_E_IN_USE -
39

pfcExceptions::IpfcXToolkitNoLicense PRO_TK_NO_LICENSE -
40

pfcExceptions::IpfcXToolkitBsplUnsuitableDegree
PRO_TK_BSPL_UNSUITABLE_

DEGREE
-
41

pfcExceptions::IpfcXToolkitBsplNonStdEndKnots
PRO_TK_BSPL_NON_STD_END_

KNOTS
-
42

pfcExceptions::IpfcXToolkitBsplMultiInnerKnots
PRO_TK_BSPL_MULTI_INNER_

KNOTS
-
43

pfcExceptions::IpfcXToolkitBadSrfCrv PRO_TK_BAD_SRF_CRV -
44

pfcExceptions::IpfcXToolkitEmpty PRO_TK_EMPTY -
45

pfcExceptions::IpfcXToolkitBadDimAttach PRO_TK_BAD_DIM_ATTACH -
46

pfcExceptions::IpfcXToolkitNotDisplayed PRO_TK_NOT_DISPLAYED -
47

pfcExceptions::IpfcXToolkitCantModify PRO_TK_CANT_MODIFY -
48

pfcExceptions::IpfcXToolkitCheckoutConflict PRO_TK_CHECKOUT_CONFLICT -
49

pfcExceptions::IpfcXToolkitCreateViewBadSheet PRO_TK_CRE_VIEW_BAD_SHEET -
50

pfcExceptions::IpfcXToolkitCreateViewBadModel PRO_TK_CRE_VIEW_BAD_MODEL -
51

pfcExceptions::IpfcXToolkitCreateViewBadParent PRO_TK_CRE_VIEW_BAD_PARENT -
52

pfcExceptions::IpfcXToolkitCreateViewBadType PRO_TK_CRE_VIEW_BAD_TYPE -
53

pfcExceptions::IpfcXToolkitCreateViewBadExplode PRO_TK_CRE_VIEW_BAD_EXPLODE -
54

pfcExceptions::IpfcXToolkitUnattachedFeats PRO_TK_UNATTACHED_FEATS -
55

pfcExceptions::IpfcXToolkitRegenerateAgain PRO_TK_REGEN_AGAIN -
56

pfcExceptions::IpfcXToolkitDrawingCreateErrors PRO_TK_DWGCREATE_ERRORS -
57

pfcExceptions::IpfcXToolkitUnsupported PRO_TK_UNSUPPORTED -
58

pfcExceptions::IpfcXToolkitNoPermission PRO_TK_NO_PERMISSION -
59

pfcExceptions::IpfcXToolkitAuthenticationFailure PRO_TK_AUTHENTICATION_FAILURE -
60

pfcExceptions::IpfcXToolkitAppNoLicense PRO_TK_APP_NO_LICENSE -
92

pfcExceptions::IpfcXToolkitAppExcessCallbacks PRO_TK_APP_XS_CALLBACKS -
93

pfcExceptions::IpfcXToolkitAppStartupFailed PRO_TK_APP_STARTUP_FAIL -
94

pfcExceptions::

IpfcXToolkitAppInitializationFailed PRO_TK_APP_INIT_FAIL -
95

pfcExceptions::IpfcXToolkitAppVersionMismatch PRO_TK_APP_VERSION_MISMATCH -
96

pfcExceptions::

IpfcXToolkitAppCommunicationFailure PRO_TK_APP_COMM_FAILURE -
97

pfcExceptions::IpfcXToolkitAppNewVersion PRO_TK_APP_NEW_VERSION -
98

The exception pfcExceptions::IpfcXProdevError represents a general error that occurred while executing a Pro/
DEVELOP function and is equivalent to an pfcExceptions::IpfcXToolkitGeneralError exception.

The pfcExceptions::IpfcXExternalDataError exception types and its children are thrown from External Data
methods. See the section on External Data for more information.

VB API Fundamentals:Controlling Pro/ENGINEER

This section explains how to use the VB API to establish a connection to Pro/ENGINEER.

Topic

Overview
Simple Asynchronous Mode
Starting and Stopping Pro/ENGINEER
Connecting to a Pro/ENGINEER Process
Full Asynchronous Mode
Troubleshooting VB API Applications

Overview

Asynchronous mode is a multiprocess mode in which theVB API application and Pro/ENGINEER can
perform concurrent operations. The VB API application (containing its own main() method) is started
independently of Pro/ENGINEER and subsequently either starts or connects to a Pro/ENGINEER process.
Depending on how your asynchronous application handles messages from Pro/ENGINEER, your application
can be classified as either simple or full. The following sections describe simple and full asynchronous
mode.

Simple Asynchronous Mode

A simple asynchronous application does not implement a way to handle requests from Pro/ENGINEER.
Therefore, the VB API cannot plant listeners to be notified when events happen in Pro/ENGINEER.
Consequently, Pro/ENGINEER cannot invoke the methods that must be supplied when you add, for
example, menu buttons to Pro/ENGINEER.

Despite this limitation, a simple asynchronous mode application can be used to automate processes in Pro/
ENGINEER. The application may either start or connect to an existing Pro/ENGINEER session, and may
access Pro/ENGINEER in interactive or in a non graphical, non interactive mode. When Pro/ENGINEER is
running with graphics, it is an interactive process available to the user.

When you design a VB API application to run in simple asynchronous mode, keep the following points in
mind:

�❍ The Pro/ENGINEER process and the application perform operations concurrently.
�❍ None of the application's listener methods can be invoked by Pro/ENGINEER.

Starting and Stopping Pro/ENGINEER

The following methods are used to start and stop Pro/ENGINEER when using the VB API applications.

Methods Introduced:

● CCpfcAsyncConnection.Start()

● IpfcAsyncConnection.End()

A VB application can spawn and connect to a Pro/ENGINEER process with the method
CCpfcAsyncConnection.Start(). After this method returns the asynchronous connection object, the VB
API application can call the Pro/ENGINEER process using the appropriate APIs. In the interactive mode,
you can also access the Pro/ENGINEER session when it is running.

The asynchronous application is not terminated when Pro/ENGINEER terminates. This is useful when the
application needs to perform Pro/ENGINEER operations intermittently, and therefore, must start and stop
Pro/ENGINEER more than once during a session.

The application can connect to or start only one Pro/ENGINEER session at any time. If the VB API
application spawns a second session, connection to the first session is lost.

To end any Pro/ENGINEER process that the application is connected to, call the method
IpfcAsyncConnection.End().

Setting Up a Noninteractive Session

You can spawn a Pro/ENGINEER session that is both noninteractive and nongraphical. In asynchronous
mode, include the following strings in the Pro/ENGINEER start or connect call to CCpfcAsyncConnection.
Start():

�❍ -g:no_graphics--Turn off the graphics display.
�❍ -i:rpc_input--Causes Pro/ENGINEER to expect input from your asynchronous application only.

Note:
Both of these arguments are required, but the order is not important.

The syntax of the call for a noninteractive, nongraphical session is as follows:

Dim aC as IpfcAsyncConnection
Dim ccAC as New CcpfcAsyncConnection
aC = ccAC.Start ("pro -g:no_graphics -i:rpc_input",<text_dir>);

where pro is the command to start Pro/ENGINEER.

Example Code for Visual Basic.NET

This example demonstrates how to use the VB API to start Pro/ENGINEER asynchronously, retrieve a
Session and to open a model in Pro/ENGINEER.

Imports pfcls
Public Class pfcAsynchronousModeExamples

 Public Sub runProE(ByVal exePath As String, ByVal workDir As String)

 Dim asyncConnection As IpfcAsyncConnection = Nothing
 Dim cAC As CCpfcAsyncConnection
 Dim session As IpfcBaseSession

 Try
'==
'First Argument : The path to the Pro/E executable along with command
'line options. -i and -g flags make Pro/ENGINEER run in non-graphic,
'non-interactive mode
'Second Argument: String path to menu and message files.
'==
 cAC = New CCpfcAsyncConnection
 asyncConnection = cAC.Start(exePath + " -g:no_graphics
 -i:rpc_input", ".")
 session = asyncConnection.Session
'==
'Set working directory
'==
 asyncConnection.Session.ChangeDirectory(workDir)
'==
'VB api process calls and other processing to be done
'==
 Dim descModel As IpfcModelDescriptor
 Dim model As IpfcModel

 descModel = (New CCpfcModelDescriptor).Create
 (EpfcModelType.EpfcMDL_PART, _"partModel.prt", Nothing)
 model = session.RetrieveModel(descModel)
 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Finally
'==
'End the Pro/ENGINEER session when done
'==

 If Not asyncConnection Is Nothing AndAlso
 asyncConnection.IsRunning Then
 asyncConnection.End()
 End If
 End Try
 End Sub

End Class

Example Code for Visual Basic for Applications

This example demonstrates the VB API syntax in a macro written in Visual Basic for Applications, for
example, as would be run by a button in a Microsoft Word document or Microsoft Excel spreadsheet. This
example is identical to the previous example, except for the syntax.

Private Sub btnRun_Click()
 Dim asyncConnection As IpfcAsyncConnection
 Dim cAC As CCpfcAsyncConnection
 Dim session As IpfcBaseSession
 Dim descModel As IpfcModelDescriptor
 Dim descModelCreate As CCpfcModelDescriptor
 Dim model As IpfcModel
 Dim workDir As String
 Dim position As Integer
 On Error GoTo RunError
'==
'First Argument : The path to the Pro/E executable along with command
'line options. -i and -g flags make Pro/ENGINEER run in non-graphic,
'non-interactive mode
'Second Argument: String path to menu and message files.
'==
 Set cAC = New CCpfcAsyncConnection
 Set asyncConnection = cAC.Start(txtExePath.Text + " -g:no_graphics
 -i:rpc_input", ".")
 Set session = asyncConnection.session
'==
'Get current directory
'Set it as working directory
'==
 workDir = ActiveWorkbook.FullName
 position = InStrRev(workDir, "\")
 workDir = Left(workDir, position)

 session.ChangeDirectory (workDir)
'==
'VB api process calls and other processing to be done
'==
 Set descModelCreate = New CCpfcModelDescriptor
 Set descModel = descModelCreate.Create(EpfcModelType.EpfcMDL_PART,
 "partModel.prt", dbnull)
 Set model = session.RetrieveModel(descModel)
'==
'End the Pro/E session when done
'==
 If Not asyncConnection Is Nothing Then
 If asyncConnection.IsRunning Then
 asyncConnection.End
 End If
 End If

RunError:
If Err.Number <> 0 Then
 MsgBox "Process Failed : Unknown error occured." + Chr(13) + _
 "Error No: " + CStr(Err.Number) + Chr(13) + _
 "Error: " + Err.Description, vbCritical, "Error"

 If Not asyncConnection Is Nothing Then

 If asyncConnection.IsRunning Then
 asyncConnection.End
 End If
 End If
End If

End Sub

The following figure displays the button in Microsoft Excel designed for the above application.

Connecting to a Pro/ENGINEER Process

Methods Introduced:

● CCpfcAsyncConnection.Connect()

● CCpfcAsyncConnection.ConnectWS()

● CCpfcAsyncConnection.GetActiveConnection()

● IpfcAsyncConnection.Disconnect()

A simple asynchronous application can also connect to a Pro/ENGINEER process that is already running on
a local computer. The method CCpfcAsyncConnection.Connect() performs this connection. This method
fails to connect if multiple Pro/ENGINEER sessions are running. If several versions of Pro/ENGINEER are
running on the same computer, try to connect by specifying user and display parameters. However, if several
versions of Pro/ENGINEER are running in the same user and display parameters, the connection may not be
possible.

CCpfcAsyncConnection.ConnectWS() connects to both Pro/ENGINEER and Pro/INTRALINK 3.x
workspaces simultaneously.

pfcAsyncConnection.IpfcAsyncConnection _GetActiveConnection returns the current connection to a
Pro/ENGINEER session.

To disconnect from a Pro/ENGINEER process, call the method IpfcAsyncConnection.Disconnect().

Connecting Via Connection ID

Methods Introduced:

● IpfcAsyncConnection.GetConnectionId()

● IpfcConnectionId.ExternalRep

● CCpfcConnectionId.Create()

● CCpfcAsyncConnection.ConnectById()

Each Pro/ENGINEER process maintains a unique identity for communications purposes. Use this ID to
reconnect to a Pro/ENGINEER process.

The method IpfcAsyncConnection.GetConnectionId() returns a data structure containing the connection
ID.

If the connection id must be passed to some other application the method IpfcConnectionId.ExternalRep
provides the string external representation for the connection ID.

The method CCpfcConnectionId.Create() takes a string representation and creates a ConnectionId data
object. The method CCpfcAsyncConnection.ConnectById() connects to Pro/ENGINEER at the specified
connection ID.

Note:
Connection IDs are unique for each Pro/ENGINEER process and are not maintained after you quit
Pro/ENGINEER.

Status of a Pro/ENGINEER Process

Method Introduced:

● IpfcAsyncConnection.IsRunning()

To find out whether a Pro/ENGINEER process is running, use the method
pfcAsyncConnectionAsyncConnection.IsRunning.

Getting the Session Object

Method Introduced:

● IpfcAsyncConnection.Session

The method IpfcAsyncConnection.Session returns the session object representing the Pro/ENGINEER
session. Use this object to access the contents of the Pro/ENGINEER session. See the Session Objects
section for additional information.

Full Asynchronous Mode

Full asynchronous mode is identical to the simple asynchronous mode except in the way the VB API
application handles requests from Pro/ENGINEER. In simple asynchronous mode, it is not possible to

process these requests. In full asynchronous mode, the application implements a control loop that ``listens''
for messages from Pro/ENGINEER. As a result, Pro/ENGINEER can call functions in the application,
including callback functions for menu buttons and notifications.

Note:
Using full asynchronous mode requires starting or connecting to Pro/ENGINEER using the methods
described in the previous sections. The difference is that the application must provide an event loop
to process calls from menu buttons and listeners.

Methods Introduced:

● IpfcAsyncConnection.EventProcess()

● IpfcAsyncConnection.WaitForEvents()

● IpfcAsyncConnection.InterruptEventProcessing()

● IpfcAsyncActionListener.OnTerminate()

The control loop of an application running in full asynchronous mode must contain a call to the method
IpfcAsyncConnection.EventProcess(), which takes no arguments. This method allows the application to
respond to messages sent from Pro/ENGINEER. For example, if the user selects a menu button that is added
by your application, pfcAsyncConnection.AsyncConnection.EventProcess processes the call to your
listener and returns when the call completes. For more information on listeners and adding menu buttons, see
the Session Objects chapter.

The method IpfcAsyncConnection.WaitForEvents() provides an alternative to the development of an
event processing loop in a full asynchronous mode application. Call this function to have the application
wait in a loop for events to be passed from Pro/ENGINEER. No other processing takes place while the
application is waiting. The loop continues until IpfcAsyncConnection.InterruptEventProcessing() is
called from a VB callback action, or until the application detects the termination of Pro/ENGINEER.

It is often necessary for your full asynchronous application to be notified of the termination of the Pro/
ENGINEER process. In particular, your control loop need not continue to listen for Pro/ENGINEER
messages if Pro/ENGINEER is no longer running.

An AsyncConnection object can be assigned an Action Listener to bind a termination action that is
executed upon the termination of Pro/ENGINEER. The method IpfcAsyncActionListener.OnTerminate()
handles the termination that you must override. It sends a member of the class IpfcTerminationStatus,
which is one of the following:

�❍ EpfcTERM_EXIT--Normal exit (the user clicks Exit on the menu).
�❍ EpfcTERM_ABNORMAL--Quit with error status.
�❍ EpfcTERM_SIGNAL--Fatal signal raised.

Your application can interpret the termination type and take appropriate action. For more information on
Action Listeners, see the Action Listeners section.

Example Code

The following asynchronous class is a fully asynchronous application. It follows the procedure for a full

asynchronous application:

1. The application establishes listeners for Pro/ENGINEER events, in this case, the menu button and
the termination listener.

2. The application goes into a control loop calling EventProcess which allows the application to
respond to the Pro/ENGINEER events.

Public Class pfcFullAsyncExample

 Private asyncConnection As pfcls.IpfcAsyncConnection

 Public Sub New(ByVal exePath As String, byVal workDir as String)
 Try
 startProE(exePath, workDir)
 addTerminationListener()
 addMenuAndButton()
 asyncConnection.WaitForEvents()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Finally
 If Not asyncConnection Is Nothing AndAlso asyncConnection.IsRunning Then
 asyncConnection.End()
 End If

 End Try

 End Sub
'==
'Function : startProE
'Purpose : Start new Pro/ENGINEER session and change to current
' directory.
'==
 Private Sub startProE(ByVal exePath As String, ByVal workDir As
 String)
 asyncConnection = (New CCpfcAsyncConnection).Start(exePath, ".")
 asyncConnection.Session.ChangeDirectory
 (System.Environment.CurrentDirectory)

 End Sub
'==
'Function : addTerminationListener
'Purpose : This function adds termination listener to the
' Pro/ENGINEER session.
'==
 Private Sub addTerminationListener()
 Dim terminationListener As New ProEExitListener()
 Try
 asyncConnection.AddActionListener(terminationListener)
 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub
'==
'Class : ProEExitListener
'Purpose : This class must implement the listner interface along
' with the correct client interface name. The OnTerminate
' function is called when the Pro/ENGINEER session is ended
' by the user.
'==
 Private Class ProEExitListener
 Implements IpfcAsyncActionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcAsyncActionListener"
 End Function

 Public Sub OnTerminate(ByVal _Status As Integer) Implements
 pfcls.IpfcAsyncActionListener.OnTerminate
 Dim aC As pfcls.IpfcAsyncConnection

 aC = (New CCpfcAsyncConnection).GetActiveConnection
 aC.InterruptEventProcessing()

 MsgBox("ProE Exited")
 End Sub

 End Class
'==
'Function : addMenuAndButton
'Purpose : This function demonstrates the usage of UI functions to
' add a new menu and button to Pro/ENGINEER.
'==
 Private Sub addMenuAndButton()
 Dim session As pfcls.IpfcSession
 Dim inputCommand As IpfcUICommand
 Dim buttonListener As IpfcUICommandActionListener
 Dim exitCommand As IpfcUICommand
 Dim eListener As IpfcUICommandActionListener

 Try
 session = asyncConnection.Session
 buttonListener = New ButtonListener()
 eListener = New ExitListener()
'==
'Command is created which will be associated with the button. The class
'implementing the actionlistener must be given as input.
'==
 inputCommand = session.UICreateCommand("INPUT",
 buttonListener)
 exitCommand = session.UICreateCommand("EXIT", eListener)
'==

'Menu is created and buttons are created in the menu
'==
 session.UIAddMenu("VB-Async", "Windows",
 "pfcAsynchronousModeExamples.txt", Nothing)

 session.UIAddButton(exitCommand, "VB-Async", Nothing, _
 "USER Exit Listener", "USER Exit Help",
 "pfcAsynchronousModeExamples.txt")

 session.UIAddButton(inputCommand, "VB-Async", Nothing, _
 "USER Async App", "USER Async Help",
 "pfcAsynchronousModeExamples.txt")

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub
'==
'Class : ButtonListener
'Purpose : This class must implement the listner interface along
' with the correct client interface name. The OnCommand
' function is called when the user button is pressed.
'==
 Private Class ButtonListener
 Implements pfcls.IpfcUICommandActionListener
 Implements ICIPClientObject

 Public Function GetClientInterfaceName() As String _
 Implements ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcUICommandActionListener"
 End Function

 Public Sub OnCommand() Implements
 pfcls.IpfcUICommandActionListener.OnCommand
 Me.UserFunction()
 End Sub

 Public Sub UserFunction()
 MsgBox("User Button Pressed")
 End Sub

 End Class
'==
'Class : ExitListener
'Purpose : This class must implement the listner interface along
' with the correct client interface name. The OnCommand
' function is called when the user button is pressed to
' exit the session listener.
'==
 Private Class ExitListener
 Implements pfcls.IpfcUICommandActionListener
 Implements ICIPClientObject

 Public Function GetClientInterfaceName() As String _
 Implements ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcUICommandActionListener"
 End Function

 Public Sub OnCommand() Implements
 pfcls.IpfcUICommandActionListener.OnCommand
 Me.UserFunction()
 End Sub

 Public Sub UserFunction()

 Dim aC As pfcls.IpfcAsyncConnection

 aC = (New CCpfcAsyncConnection).GetActiveConnection
 aC.InterruptEventProcessing()

 MsgBox("Listener Exited")
 End Sub

 End Class

End Class

 Message and Menu File

#
#
VB-Async
VB-Async
#
#
USER#Async#App
Async Button
#
#
USER#Async#Help
Button added via Async Application
#
#

Troubleshooting VB API Applications

General Problems

pfcExceptions.XToolkitNotFound exception on the first call to CCpfcAsyncConnection.Start()
on Windows.

Make sure your command is correct. If it is not a full path to a script or executable, make sure $PATH is set
correctly. Try full path in the command: if it works, then your $PATH is incorrect.

pfcExceptions.XToolkitGeneralError or pfcExceptions.XToolkitCommError on the first call to
CCpfcAsyncConnection.Start() or CCpfcAsyncConnection.Connect()

�❍ Make sure the environment variable PRO_COMM_MSG_EXE is set to the full path to pro_comm_msg,
including <filename.exe>.

�❍ Make sure the environment variable PRO_DIRECTORY is set to the Pro/ENGINEER installation directory.
�❍ Make sure name service (nmsd) is running.

CCpfcAsyncConnection.Start() hangs, even though Pro/ENGINEER already started

Make sure name service (nmsd) is also started along with Pro/ENGINEER. Open Task Manager and look
for nmsd.exe in the process listing.

The VB API Online Browser

This section describes how to use the online browser provided with the VB APIWizard.

Topic

Online Documentation -- VB APIWizard

Online Documentation -- VB APIWizard

The VB API provides an online browser called the VB APIWizard that displays detailed documentation. This browser
displays information from the VB API User's Guide and API specifications derived from the VB API header file data.

The VB APIWizard contains the following items:

�❍ Definitions of the VB API modules
�❍ Definitions of the VB API classes and interfaces and their hierarchical relationships
�❍ Descriptions of the VB API methods
�❍ Declarations of data types used by the VB API methods
�❍ The VB API User's Guide that you can browse by topic or by class
�❍ Code examples for the VB API methods (taken from sample applications provided as part of the the VB API installation)

Read the Release Notes and README file for the most up-to-date information on documentation changes.

Note:
The VB API User's Guide is also available in PDF format at the following location:

<Pro/ENGINEER loadpoint>/vbapi/vbug.pdf

Installing the APIWizard

The Pro/ENGINEER installation procedure automatically installs the VB APIWizard. The files reside in a directory under the
Pro/ENGINEER load point. The location for the VB APIWizard files is:

<Pro/ENGINEER loadpoint>/vbapi/vbdoc

Starting the APIWizard

Start the VB APIWizard by pointing your browser to:

<Pro/ENGINEER loadpoint>/vbapi/vbdoc/index.html

Your web browser will display the VB APIWizard data in a new window.

Web Browser Environments

The APIWizard supports Netscape Navigator version 4 and later, and Internet Explorer version 5 and later.

For APIWizard use Internet Explorer, the recommended browser environment requires installation of the Java2 plug-in.

For Netscape Navigator, the recommended browser environment requires installation of the Java Swing foundation class. If
this class is not loaded on your computer, the APIWizard can load it for you. This takes several minutes, and is not persistant

between sessions. See Loading the Swing Class Library for the procedure on loading Swing permanently.

Loading the Swing Class Library

If you access the APIWizard with Internet Explorer, download and install Internet Explorer's Java2 plug-in. This is preferred
over installing the Swing archive, as Swing degrades access time for the APIWizard Search function.

If you access the APIWizard with Netscape Navigator, follow these instructions to download and install the Java Foundation
Class (Swing) archive:

Download the Java Foundation Class (Swing) Archive

Modifying the Java Class Path on UNIX Platforms

Modifying the Java Class Path on NT Platforms

Download the Java Foundation Class (Swing) Archive

1. Go to the Java Foundation Class Download Page.

2. Go to the heading Downloading the JFC/Swing X.X.X Release, where X.X.X is the latest JFC version.

3. Click on the standard TAR or ZIP file link to go to the heading Download the Standard Version.

4. Do not download the "installer" version.

5. Select a file format, click Continue, and follow the download instructions on the subsequent pages.

6. Uncompress the downloaded bundle.

After downloading the swing-X.X.Xfcs directory (where X.X.X is the version of the downloaded JFC) created when
uncompressing the bundle, locate the swingall.jar archive. Add this archive to the Java Class Path as shown in the next
sections.

Modifying the Java Class Path on UNIX Platforms

Follow these steps to make the Java Foundation Class (Swing) available in UNIX shell environments:

1. If the CLASSPATH environment variable exists, then add the following line to the end of file ~/.cshrc

setenv CLASSPATH "${CLASSPATH}:[path_to_swingall.jar]"

Otherwise, add the following line to ~/.cshrc

setenv CLASSPATH ".:[path_to_swingall.jar]"

2. Save and close ~/.cshrc.

3. Enter the following command:

source ~/.cshrc

This sets the CLASSPATH environment variable in the current shell. All new shells will be also be affected.

4. Close and restart your internet browser from shell that uses the new class path data.

Modifying the Java Class Path on NT Platforms

Follow these steps to make the Java Foundation Class (Swing) available on Windows NT Platforms:

1. Click on Start -- Settings -- Control Panel.

2. In the System Properties window, select the Environment tab.

3. Check in the User Variables display area for the ClassPath variable as shown in the following figure.

If the ClassPath variable exists, then follow these steps:

1. Click on ClassPath in the Variable column. The value of ClassPath will appear in the Value text field.

2. Append the path to the swingall.jar archive to the current value of ClassPath:

...;[path_to_swingall_archive];.

Use the semicolon as the path delimiter before and after the path to the archive, and the period (.) at the end of the variable
definition. There must be only one semicolon-period ";." entry in the ClassPath variable, and it should appear at the end of the
class path.

If the ClassPath variable does not exist, then follow these steps:

1. In the Variable text field, enter ClassPath.

2. In the Value text field, enter:

[path_to_swingall_archive];.

There must be a semicolon-period ";." entry at the end of the ClassPath variable.

3. Click the Set button.

4. Click the Apply button.

5. Click the OK button.

6. Close and restart your internet browser. You do not need to reboot your machine.

Automatic Index Tree Updating

With your browser environment configured correctly, following a link in an APIWizard HTML file causes the tree in the
Selection frame to update and scroll the tree reference that corresponds to the newly displayed page. This is automatic tree
scrolling.

If you access the APIWizard through Netscape's Java2 plug-in, this feature is not available. You must install the Java
foundation class called Swing for this method to work. See Loading the Swing Class Library for the procedure on loading
Swing.

If you access the APIWizard with Internet Explorer, download and install the Internet Explorer Java2 plug-in to make
automatic tree scrolling available.

APIWizard Interface

The APIWizard interface consists of two frames. The next sections describe how to display and use these frames in your Web
browser.

Modules/Classes/Interfaces/Topic Selection Frame

This frame, located on the left of the screen, controls what is presented in the Display frame. Specify what data you want to
view by choosing either the VB API Modules, Classes, Interfaces, Exceptions, Enumerated Types, or The VB API User's
Guide.

In Modules mode, this frame displays an alphabetical list of the VB API modules. A module is a logical subdivision of
functionality within the VB API; for example, the pfcFamily module contains classes, enumerated types, and collections
related to family table operations. The frame can also display VB API classes, interfaces, enumerated types, and methods as
subnodes of the modules.

In Classes mode, this frame displays an alphabetical list of the VB API classes. It can also display the VB API methods as
subnodes of the classes.

In Interfaces mode, this frame displays an alphabetical list of the VB API interfaces.

In Exceptions mode, this frame displays an alphabetical list of named exceptions in the VB API library.

In Enumerated Types mode, this frame displays an alphabetical list of the VB API enumerated type classes.

In The VB API User's Guide mode, this frame displays the VB API User's Guide table of contents in a tree structure. All
chapters are displayed as subnodes of the main The VB API User's Guide node.

The Modules/Classes/Interfaces/Topic Selection frame includes a Find button for data searches of the VB API User's Guide or
of API specifications taken from header files. See the section APIWizard Search Feature (Find) for more information on the
Find feature.

Display Frame

This frame, located on the right of the screen, displays:

�❍ The VB API module defintions

�❍ The VB API class or interface defintions and their hierarchial relationships
�❍ The VB API method descriptions
�❍ User's Guide content
�❍ Code examples for the VB API methods

The following figure displays the APIWizard interface layout.

Navigating the Modules/Classes/Interfaces/Topic Selection Tree

Access all VB APIWizard online documentation for modules, classes, interfaces, enumerated types, methods, or the VB API
User's Guide from the Modules/Classes/Interfaces/Topic Selection frame. This frame displays a tree structure of the data.
Expand and collapse the tree as described below to navigate this data.

To expand the tree structure, first select the Modules, Classes, Interfaces, Exceptions, Enumerated Types, or the VB API
User's Guide at the top of the Modules/Classes/Interfaces/Topic Selection frame. The APIWizard displays the tree structure in
a collapsed form. The switch icon to the far left of a node (i.e. a module, a class, an interface, or chapter name) signifies that
this node contains subnodes. If a node has no switch icon, it has no subnodes. Clicking the switch icon (or double-clicking on
the node text) toggles the switch to the down position. The APIWizard then expands the tree to display the subnodes. Select a
node or subnode, and the APIWizard displays the online data in the Display frame.

Browsing the VB API Modules

View the VB API modules by choosing Modules at the top of the Modules/Classes/Interfaces/Topic Selection frame. In this
mode, all the VB API Modules and Classes are displayed in alphabetical order. The following tree displays the layout of the
VB API modules in the alphabetical order.

The Display frame for each VB API module displays the information about the classes, enumerated types, and collections that
belong to the module. Click the switch icon next to the desired module name, or double-click the module name text to view
the clasess, interfaces, or enumerated types. You can also view the methods for each class or interface in the expanded tree by
clicking the switch icon next to the class or interface name, or by double-clicking the name.

The following figure shows the collapased tree layout for the VB API modules.

Browsing the VB API User's Guide

View the VB API User's Guide by choosing VB API User's Guide at the top of the Modules/Classes/Interfaces/Topic
Selection frame. In this mode, the APIWizard displays the User's Guide section headings.

View a section by clicking the switch icon next to the desired section name or by double-clicking the section name. The
APIWizard then displays a tree of subsections under the selected section. The text for the selected section and its subsections
appear in the Display frame. Click the switch icon again (or double-click the node text) to collapse the subnodes listed and
display only the main nodes.

The following figure shows the collapsed tree layout for the table of contents of the VB API User's Guide.

APIWizard Search Feature (Find)

The APIWizard supports searches for specified strings against both the VB API User's Guide and API definition files. Click
the Find button on the Modules/Classes/Interfaces/Topic Selection frame to display the APIWizard Search dialog.

Note:
The APIWizard Search Mechanism is slow when accessed through Internet Explorer's Default Virtual Machine. For
better performance, access the APIWizard through Internet Explorer's Java2 plug-in.

The following figure shows the APIWizard search dialog box with the results for the Exception search string.

The Search dialog box contains the following fields, buttons, and frames:

�❍ Enter Search String(s)

Enter the specific search string or strings in this field. By default, the browser performs a non-case-sensitive search.
�❍ Search/Stop

Select the Search button to begin a search. During a search, this button name changes to Stop. Select the Stop button to stop a
search.

�❍ Search API References

Select this button to search for data on API methods. Select the API Names button to search for method names only. Select
the Definitions button to search the API method names and definitions for specific strings.

�❍ Search Manuals

Select this button to search the VB API User's Guide data. Select the Table of Contents button to search on TOC entries only.
Select the Index button to search only the Index. Select the Contents button to search on all text in the VB API User's Guide.

�❍ Case Sensitive

Select this button to specify a case-sensitive search.
�❍ Name

This frame displays a list of strings found by the APIWizard search.
�❍ Found Under

This frame displays the location in the online help data where the APIWizard found the string.
�❍ Help

Select this button for help about the APIWizard search feature. The APIWizard presents this help data in the Display frame.

Supported Search Types

The APIWizard Search supports the following:

�❍ Case sensitive searches
�❍ Search of API names and definitions, VB API User's Guide data, or both
�❍ Search of API data by API names only or by API names and definitions

�❍ Search of VB API User's Guide by Table of Contents only, by Index, or on the User's Guide contents (the entire text).
�❍ Wildcard searches--valid characters are:

- * (asterisk) matches zero or more non-whitespace characters
- ? (question mark) matches one and only one non-whitespace character

To search for any string containing the characters Get, any number of other characters, and
the characters Name

Get*Name

To search for any string containing the characters Get, one other character, and the
characters Name

 Get?Name

To search for any string containing the characters Get, one or more other characters, and the
characters Name

Get?*Name

To search on the string Feature, followed by an *

Feature*

To search on the string Feature, followed by a ?

Feature\?

To search on the string Feature, followed by a \

Feature\\

�❍ Search string containing white space-- Search on strings that contain space characters (white space) by placing double- or
single-quote characters around the string.

"family table"
'Model* methods'

�❍ Search on multiple strings--Separate multiple search strings with white space (tabs or spaces). Note that the default logical
relationship between multiple search strings is OR.

To return all strings matching GetName OR GetId, enter:

 Get*Name Get*Id

Note:
This search specification also returns strings that match both specified search targets.

For example:

FullName

returns Model.GetName and ModelDescriptor.GetFullName

If a string matches two or more search strings, the APIWizard displays only one result in the search table, for example:

Full* *Name

returns only one entry for each FullName property found.

Mix quoted and non-quoted strings as follows:

Get*Name "family table"

returns all instances of strings continaing Get and Name, or strings containing family table.

Performing an APIWizard Search

Follow these steps to search for information in the APIWizard online help data:

�❍ Select the Find icon at the top of the Modules/Classes/Interfaces/Topic Selection frame.
�❍ Specify the string or strings to be searched for in the Enter Search String field.
�❍ Select Case Sensitive to specify a case-sensitive search. Note that the default search is non-case-sensitive.
�❍ Select either or both of the Search API References and Search User's Guide buttons. Select the options under these buttons as

desired.
�❍ Select the Search button. The APIWizard turns this button red and is renames it Stop for the duration of the search.
�❍ If the APIWizard finds the search string in the specified search area(s), it displays the string in the Name frame. In the Where

Found frame, the APIWizard displays links to the online help data that contains the found string.
�❍ During the search, or after the search ends, select an entry in the Name or Where Found frames to display the online help data

for that string. The APIWizard first updates the Modules/Classes/Interfaces/Topic Selection frame tree, and then presents in
the Display frame the online help data for the selected string.

Session Objects

This section describes how to program on the session level using the VB API.

Topic

Overview of Session Objects
Directories
Accessing the Pro/ENGINEER Interface

Overview of Session Objects

The Pro/ENGINEER Session object (contained in the class IpfcSession) is the highest level object in the VB API.
Any program that accesses data from Pro/ENGINEER must first get a handle to the Session object before accessing
more specific data.

The Session object contains methods to perform the following operations:

�❍ Accessing models and windows (described in the Models and Windows chapters).
�❍ Working with the Pro/ENGINEER user interface.
�❍ Allowing interactive selection of items within the session.
�❍ Accessing global settings such as line styles, colors, and configuration options.

The following sections describe these operations in detail. Refer to the chapter Controlling Pro/ENGINEER for more
information on how to connect to a Pro/ENGINEER session.

Directories

Methods Introduced:

● IpfcBaseSession.GetCurrentDirectory()

● IpfcBaseSession.ChangeDirectory()

The method IpfcBaseSession.GetCurrentDirectory() returns the absolute path name for the current working
directory of Pro/ENGINEER.

The method IpfcBaseSession.ChangeDirectory()changes Pro/ENGINEER to another working directory.

File Handling

Methods Introduced:

● IpfcBaseSession.ListFiles()

● IpfcBaseSession.ListSubdirectories()

The method IpfcBaseSession.ListFiles() returns a list of files in a directory, given the directory path. You can filter
the list to include only files of a particular type, as specified by the file extension. Use the EpfcFILE_LIST_ALL

option to include all versions of a file in the list; use EpfcFILE_LIST_LATEST to include only the latest version.

Starting with Pro/ENGINEER Wildfire 5.0 M040, the method IpfcBaseSession.ListFiles() can also list instance
objects when accessing Windchill workspaces or folders. A PDM location (for workspace or commonspace) must be
passed as the directory path. The following options have been added in the EpfcFileListOpt enumerated type:

�❍ EpfcFILE_LIST_ALL_INST--Same as the EpfcFILE_LIST_ALL option. It returns instances only for PDM locations.
�❍ EpfcFILE_LIST_LATEST_INST--Same as the EpfcFILE_LIST_LATEST option. It returns instances only for PDM

locations.

The method IpfcBaseSession.ListSubdirectories() returns the subdirectories in a given directory location.

Configuration Options

Methods Introduced:

● IpfcBaseSession.GetConfigOptionValues()

● IpfcBaseSession.SetConfigOption()

● IpfcBaseSession.LoadConfigFile()

You can access configuration options programmatically using the methods described in this section.

Use the method IpfcBaseSession.GetConfigOptionValues() to retrieve the value of a specified configuration file
option. Pass the Name of the configuration file option as the input to this method. The method returns an array of
values that the configuration file option is set to. It returns a single value if the configuration file option is not a multi-
valued option. The method returns a null if the specified configuration file option does not exist.

The method IpfcBaseSession.SetConfigOption() is used to set the value of a specified configuration file option. If the
option is a multi-value option, it adds a new value to the array of values that already exist.

The method IpfcBaseSession.LoadConfigFile() loads an entire configuration file into Pro/ENGINEER.

Macros

Method Introduced:

● IpfcBaseSession.RunMacro()

The method IpfcBaseSession.RunMacro() runs a macro string. A VB API macro string is equivalent to a Pro/
ENGINEER mapkey minus the key sequence and the mapkey name. To generate a macro string, create a mapkey in
Pro/ENGINEER. Refer to the Pro/ENGINEER online help for more information about creating a mapkey.

Copy the Value of the generated mapkey Option from the Tools>Options dialog box. An example Value is as follows:

$F2 @MAPKEY_LABELtest;
~ Activate `main_dlg_cur` `ProCmdModelNew.file`;
~ Activate `new` `OK`;

The key sequence is $F2. The mapkey name is @MAPKEY_LABELtest. The remainder of the string following the first
semicolon is the macro string that should be passed to the method IpfcBaseSession.RunMacro().

In this case, it is as follows:

~ Activate `main_dlg_cur` `ProCmdModelNew.file`;
~ Activate `new` `OK`;

Note:
Creating or editing the macro string manually is not supported as the mapkeys are not a supported scripting
language. The syntax is not defined for users and is not guaranteed to remain constant across different
datecodes of Pro/ENGINEER.

Macros are executed from synchronous mode only when control returns to Pro/ENGINEER from the VB API program.
Macros are stored in reverse order (last in, first out).

Macros are executed as soon as they are registered. Macrosare run in the same order that they are saved.

Colors and Line Styles

Methods Introduced:

● IpfcBaseSession.SetStdColorFromRGB()

● IpfcBaseSession.GetRGBFromStdColor()

● IpfcBaseSession.SetTextColor()

● IpfcBaseSession.SetLineStyle()

These methods control the general display of a Pro/ENGINEER session.

Use the method IpfcBaseSession.SetStdColorFromRGB() to customize any of the Pro/ENGINEER standard colors.

To change the color of any text in the window, use the method IpfcBaseSession.SetTextColor().

To change the appearance of nonsolid lines (for example, datums) use the method IpfcBaseSession.SetLineStyle().

Accessing the Pro/ENGINEER Interface

The Session object has methods that work with the Pro/ENGINEER interface. These methods provide access to the
message window.section

The Text Message File

A text message file is where you define strings that are displayed in the Pro/ENGINEER user interface. This includes
the strings on the command buttons that you add to the Pro/ENGINEER number, the help string that displays when the
user's cursor is positioned over such a command button, and text strings that you display in the Message Window. You
have the option of including a translation for each string in the text message file.

Restrictions on the Text Message File

You must observe the following restrictions when you name your message file:

�❍ The name of the file must be 30 characters or less, including the extension.

�❍ The name of the file must contain lower case characters only.
�❍ The file extension must be three characters.
�❍ The version number must be in the range 1 to 9999.
�❍ All message file names must be unique, and all message key strings must be unique across all applications that run

with Pro/ENGINEER. Duplicate message file names or message key strings can cause Pro/ENGINEER to exhibit
unexpected behavior. To avoid conflicts with the names of Pro/ENGINEER or foreign application message files or
message key strings, PTC recommends that you choose a prefix unique to your application, and prepend that prefix to
each message file name and each message key string corresponding to that application

Note:
Message files are loaded into Pro/ENGINEER only once during a session. If you make a change to the message
file while Pro/ENGINEER is running you must exit and restart Pro/ENGINEER before the change will take
effect.

Contents of the Message File

The message file consists of groups of four lines, one group for each message you want to write. The four lines are as
follows:

1. A string that acts as the identifier for the message. This keyword must be unique for all Pro/ENGINEER
messages.

2. The string that will be substituted for the identifier.

This string can include placeholders for run-time information stored in a stringseq object (shown in Writing
Messages to the Message Window).

3. The translation of the message into another language (can be blank).

4. An intentionally blank line reserved for future extensions.

Writing a Message Using a Message Pop-up Dialog Box

Method Introduced:

● IpfcSession.UIShowMessageDialog()

The method IpfcSession.UIShowMessageDialog() displays the UI message dialog. The input arguments to the
method are:

�❍ Message--The message text to be displayed in the dialog.
�❍ Options--An instance of the IpfcMessageDialogOptions containing other options for the resulting displayed message.

If this is not supplied, the dialog will show a default message dialog with an Info classification and an OK button. If
this is not to be null, create an instance of this options type with pfcUI.pfcUI.MessageDialogOptions_Create(). You
can set the following options:

- Buttons--Specifies an array of buttons to include in the dialog. If not supplied, the dialog will include only the
OK button. Use the method IpfcMessageDialogOptions.Buttons to set this option.
- DefaultButton--Specifies the identifier of the default button for the dialog box. This must match one of the
available buttons. Use the method IpfcMessageDialogOptions.DefaultButton to set this option.
- DialogLabel--The text to display as the title of the dialog box. If not supplied, the label will be the english
string "Info". Use the method IpfcMessageDialogOptions.DialogLabel to set this option.
- MessageDialogType--The type of icon to be displayed with the dialog box (Info, Prompt, Warning, or Error).
If not supplied, an Info icon is used. Use the method IpfcMessageDialogOptions.MessageDialogType to set
this option.

Accessing the Message Window

The following sections describe how to access the message window using the VB API. The topics are as follows:

�❍ Writing Messages to the Message Window
�❍ Writing Messages to an Internal Buffer

Writing Messages to the Message Window

Methods Introduced:

● IpfcSession.UIDisplayMessage()

● IpfcSession.UIDisplayLocalizedMessage()

● IpfcSession.UIClearMessage()

These methods enable you to display program information on the screen.

The input arguments to the methods IpfcSession.UIDisplayMessage() and IpfcSession.UIDisplayLocalizedMessage
() include the names of the message file, a message identifier, and (optionally) a stringseq object that contains upto
10 pieces of run-time information. For pfcSession.Session.UIDisplayMessage, the strings in the stringseq are
identified as %0s, %1s, ... %9s based on their location in the sequence. For pfcSession.Session.
UIDisplayLocalizedMessage, the strings in the stringseq are identified as %0w, %1w, ... %9w based on their location
in the sequence. To include other types of run-time data (such as integers or reals) you must first convert the data to
strings and store it in the string sequence.

Writing Messages to an Internal Buffer

Methods Introduced:

● IpfcBaseSession.GetMessageContents()

● IpfcBaseSession.GetLocalizedMessageContents()

The methods IpfcBaseSession.GetMessageContents() and IpfcBaseSession.GetLocalizedMessageContents()
enable you to write a message to an internal buffer instead of the Pro/ENGINEER message area.

These methods take the same input arguments and perform exactly the same argument substitution and translation as
the IpfcSession.UIDisplayMessage() and IpfcSession.UIDisplayLocalizedMessage() methods described in the
previous section.

Message Classification

Messages displayed in the VB API include a symbol that identifies the message type. Every message type is identified
by a classification that begins with the characters %C. A message classification requires that the message key line (line
one in the message file) must be preceded by the classification code.

Note:
Any message key string used in the code should not contain the classification.

The VB API applications can now display any or all of the following message symbols:

�❍ Prompt--This VB API message is preceded by a green arrow. The user must respond to this message type. Responding
includes, specifying input information, accepting the default value offered, or canceling the application. If no action is
taken, the progress of the application is halted. A response may either be textual or a selection. The classification for

Prompt messages is %CP.
�❍ Info--This VB API message is preceded by a blue dot. Info message types contain information such as user requests or

feedback from the VB API or Pro/ENGINEER. The classification for Info messages is %CI.

Note:
Do not classify messages that display information regarding problems with an operation or process as Info.
These types of messages must be classified as Warnings.

�❍ Warning--This VB API message is preceded by a triangle containing an exclamation point. Warning message types
contain information to alert users to situations that could potentially lead to an error during a later stage of the process.
Examples of warnings could be a process restriction or a suspected data problem. A Warning will not prevent or
interrupt a process. Also, a Warning should not be used to indicate a failed operation. Warnings must only caution a
user that the completed operation may not have been performed in a completely desirable way. The classification for
Warning messages is %CW.

�❍ Error--This VB API message is preceded by a a broken square. An Error message informs the user that a required task
was not completed successfully. Depending on the application, a failed task may or may not require intervention or
correction before work can continue. Whenever possible redress this situation by providing a path. The classification
for Error messages is %CE.

�❍ Critical--This VB API message is preceded by a red X. A Critical message type informs the user of an extremely
serious situation that is usually preceeded by loss of user data. Options redressing this situation, if available, should be
provided within the message. The classification for a Critical messages is %CC.

Example Code: Writing a Message

The following example code demonstrates how to write a message to the message window. The program uses the
message file mymessages.txt, which contains the following lines:

USER Error: %0s of code %1s at %2s
Error: %0s of code %1s at %2s
#
#

 Public Sub printError(ByVal session As pfcls.IpfcSession, ByVal location As String,
_ByVal err As String, ByVal errorCode As Integer)
 Dim message As Istringseq

 Try
 message = New Cstringseq
 message.Set(0, err)
 message.Set(1, errorCode.ToString)
 message.Set(2, location)

 session.UIDisplayMessage("pfcSessionObjectsExamples.txt",
 _"USER Error: %0s of code %1s at %2s",
 _message)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try
 End Sub

Reading Data from the Message Window

Methods Introduced:

● IpfcSession.UIReadIntMessage()

● IpfcSession.UIReadRealMessage()

● IpfcSession.UIReadStringMessage()

These methods enable a program to get data from the user.

The IpfcSession.UIReadIntMessage() and IpfcSession.UIReadRealMessage() methods contain optional arguments
that can be used to limit the value of the data to a certain range.

The method IpfcSession.UIReadStringMessage() includes an optional Boolean argument that specifies whether to
echo characters entered onto the screen. You would use this argument when prompting a user to enter a password.

Displaying Feature Parameters

Method Introduced:

● IpfcSession.UIDisplayFeatureParams()

The method IpfcSession.UIDisplayFeatureParams() forces Pro/ENGINEER to show dimensions or other parameters
stored on a specific feature. The displayed dimensions may then be interactively selected by the user.

File Dialogs

Methods and Properties Introduced:

● IpfcSession.UIOpenFile()

● CCpfcFileOpenOptions.Create()

● IpfcFileOpenOptions.FilterString

● IpfcFileOpenOptions.PreselectedItem

● IpfcFileUIOptions.DefaultPath

● IpfcFileUIOptions.DialogLabel

● IpfcFileUIOptions.Shortcuts

● CCpfcFileOpenShortcut.Create()

● IpfcFileOpenShortcut.ShortcutName

● IpfcFileOpenShortcut.ShortcutPath

● IpfcSession.UISaveFile()

● CCpfcFileSaveOptions.Create()

● IpfcSession.UISelectDirectory()

● CCpfcDirectorySelectionOptions.Create()

● IpfcBaseSession.UIRegisterFileOpen()

● CCpfcFileOpenRegisterOptions.Create()

● IpfcFileOpenRegisterOptions.FileDescription

● IpfcFileOpenRegisterOptions.FileType

● IpfcFileOpenRegisterListener.FileOpenAccess()

● IpfcFileOpenRegisterListener.OnFileOpenRegister()

● IpfcBaseSession.UIRegisterFileSave()

● CCpfcFileSaveRegisterOptions.Create()

● IpfcFileSaveRegisterOptions.FileDescription

● IpfcFileSaveRegisterOptions.FileType

● IpfcFileSaveRegisterListener.FileSaveAccess()

● IpfcFileSaveRegisterListener.OnFileSaveRegister()

The method IpfcSession.UIOpenFile() opens the relevant Pro/ENGINEER dialog box for opening files and browsing
directories. The method lets you specify several options through the input arguments IpfcFileOpenOptions and
IpfcFileUIOptions.

Use the method CCpfcFileOpenOptions.Create() to create a new instance of the IpfcFileOpenOptions object.
This object contains the the following options:

�❍ FilterString--Specifies the filter string for the type of file accepted by the dialog box. Multiple file types should be
listed with wildcards and separated by commas, for example, "*.prt, *.asm". Use the property IpfcFileOpenOptions.
FilterString to set this option.

�❍ PreselectedItem--Specifies the name of an item to preselect in the dialog box. Use the property IpfcFileOpenOptions.
PreselectedItem to set this option.

The IpfcFileUIOptions object contains the the following options:

�❍ DefaultPath--Specifies the name of the path to be opened by default in the dialog box. Use the property
IpfcFileUIOptions.DefaultPath to set this option.

�❍ DialogLabel--Specifies the title of the dialog box. Use the property IpfcFileUIOptions.DialogLabel to set this option.
�❍ Shortcuts--Specifies an array of file shortcuts of the type IpfcFileOpenShortcut. Create this object using the method

pfcUI.FileOpenShortcut_Create. This object contains the following attributes:
- ShortcutName--Specifies the name of shortcut path to be made available in the dialog box.
- ShortcutPath--Specifies the string for the shortcut path.

Use the property IpfcFileUIOptions.Shortcuts to set the array of file shortcuts.

The method IpfcSession.UIOpenFile() returns the file selected by you. The application must use other methods or
techniques to perform the desired action on the file.

The method IpfcSession.UISaveFile() opens the Pro/ENGINEER dialog box for saving a file. The method accepts
options similar to IpfcSession.UIOpenFile() through the IpfcFileSaveOptions and IpfcFileUIOptions objects.
Use the method CCpfcFileSaveOptions.Create() to create a new instance of the IpfcFileSaveOptions object.
When using the Save dialog box, you can set the name to a non-existent file. The method pfcSession.Session.
UISaveFile returns the name of the file selected by you; the application must use other methods or techniques to
perform the desired action on the file.

The method IpfcSession.UISelectDirectory() prompts the user to select a directory using the Pro/ENGINEER dialog
box for browsing directories. The method accepts options through the IpfcDirectorySelectionOptions object
which is similar to the IpfcFileUIOptions object (described for the method IpfcSession.UIOpenFile()). Specify
the default directory path, the title of the dialog box, and a set of shortcuts to other directories to start browsing. If the
default path is specified as NULL, the current directory is used. Use the method CCpfcDirectorySelectionOptions.
Create() to create a new instance of the IpfcDirectorySelectionOptions object. The method pfcSession.Session.
UISelectDirectory returns the selected directory path; the application must use other methods or techniques to perform
other relevant tasks with this selected path.

The method IpfcBaseSession.UIRegisterFileOpen() registers a new file type in the File > Open dialog box in Pro/
ENGINEER. This method takes the IpfcFileOpenRegisterOptions and IpfcFileOpenRegisterListener
objects as its input arguments. These objects are as follows:

�❍ IpfcFileOpenRegisterOptions--This object contains the options for registering an open operation. Use the method
CCpfcFileOpenRegisterOptions.Create() to create a new instance of the object. It contains the following options:

- FileDescription--Specifies the short description of the file type to be opened. This description appears for the
file type in the File > Open dialog box. Use the property IpfcFileOpenRegisterOptions.FileDescription to
modify this option.
- FileType--Specifies the file type to be opened. The file type appears as the file extension in the File > Open
dialog box. Use the property IpfcFileOpenRegisterOptions.FileType to modify this option.

�❍ IpfcFileOpenRegisterListener--This object provides the action listener methods for the new file type to be registered.
The method IpfcFileOpenRegisterListener.FileOpenAccess() is called to determine whether the new file type can be
opened using the File > Open dialog box. The method IpfcFileOpenRegisterListener.OnFileOpenRegister() is called
on clicking Open for the newly registered file type.

The method IpfcBaseSession.UIRegisterFileSave() registers a new file type in the File > Save a Copy dialog box in
Pro/ENGINEER. This method takes the IpfcFileSaveRegisterOptions and IpfcFileSaveRegisterListener
objects as its input arguments. These objects are described as follows:

�❍ IpfcFileSaveRegisterOptions--This object contains the options for registering a save operation. Use the method
CCpfcFileSaveRegisterOptions.Create() to create a new instance of the object. It contains the following options:

- FileDescription--Specifies the short description of the file type to be saved. This description appears for the
file type in the File > Save a Copy dialog box. Use the property IpfcFileSaveRegisterOptions.FileDescription to
modify this option.
- FileType--Specifies the file type to be saved. The file type appears as the file extension in the File > Save a
Copy dialog box. Use the property IpfcFileSaveRegisterOptions.FileType to modify this option.

�❍ IpfcFileSaveRegisterListener--This object provides the action listener methods for the new file type to be registered.
The method IpfcFileSaveRegisterListener.FileSaveAccess() is called to determine whether the new file type can be
saved using the File > Save a Copy dialog box. The method IpfcFileSaveRegisterListener.OnFileSaveRegister() is
called on clicking OK for the newly registered file type.

Customizing the Pro/ENGINEER Navigation Area

The Pro/ENGINEER navigation area includes the Model and Layer Tree pane, Folder browser pane, and Favorites
pane. The methods described in this section enable the VB API applications to add custom panes that contain Web
pages to the Pro/ENGINEER navigation area.

Adding Custom Web Pages

To add custom Web pages to the navigation area, the VB API application must:

1. Add a new pane to the navigation area.

2. Set an icon for this pane.

3. Set the URL of the location that will be displayed in the pane.

Methods Introduced:

● IpfcSession.NavigatorPaneBrowserAdd()

● IpfcSession.NavigatorPaneBrowserIconSet()

● IpfcSession.NavigatorPaneBrowserURLSet()

The method IpfcSession.NavigatorPaneBrowserAdd() adds a new pane that can display a Web page to the
navigation area. The input parameters are:

�❍ PaneName--Specify a unique name for the pane. Use this name in susbsequent calls to IpfcSession.
NavigatorPaneBrowserIconSet() and pfcSession.Session.NavigatorPaneBrowserURLSet.

�❍ IconFileName--Specify the name of the icon file, including the extension. A valid format for the icon file is the PTC-
proprietary format used by Pro/ENGINEER .BIF, .GIF, .JPG, or .PNG. The new pane is displayed with the icon
image. If you specify the value as NULL, the default Pro/ENGINEER icon is used.

The default search paths for finding the icons are:

- <ProENGINEER loadpoint>/text/resource
- <Application text dir>/resource
- <Application text dir>/(language)/resource
The location of the application text directory is specified in the registry file.

�❍ URL--Specify the URL of the location to be accessed from the pane.

Use the method IpfcSession.NavigatorPaneBrowserIconSet() to set or change the icon of a specified browser pane in
the navigation area.

Use the method IpfcSession.NavigatorPaneBrowserURLSet() to change the URL of the page displayed in the
browser pane in the navigation area.

Example: Customizing the Pro/ENGINEER Navigation Pane

The following sample code shows you how to customize the Pro/ENGINEER navigation pane.

Imports pfcls
Public Class pfcNavigatorPane
 '==
 'Function : addNavPane
 'Purpose : This function demonstrates how to add a navigator pane.
'==
 Public Sub addNavPane(ByVal session As IpfcSession, _
 ByVal name As String, _

 ByVal icon_path As String, ByVal url As String)
 Try
 If (icon_path = "") Then
 icon_path = Nothing
 End If
 session.NavigatorPaneBrowserAdd(name, icon_path, url)
 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub
 '==
 'Function : changeNavPaneURL
 'Purpose : This function demonstrates how to change a navigator
 ' pane url.
 '==
 Public Sub changeNavPaneURL(ByVal session As IpfcSession, _
 ByRef name As String, _
 ByRef url As String)
 Try
 session.NavigatorPaneBrowserURLSet(name, url)
 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub
'==
 'Function : changeNavPaneIcon
 'Purpose : This function demonstrates how to change a navigator
 ' pane icon.
'==
 Public Sub changeNavPaneIcon(ByVal session As IpfcSession, _
 ByRef name As String, _
 ByRef icon As String)
 Try
 session.NavigatorPaneBrowserIconSet(name, icon)
 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub

End Class

Selection

This section describes how to use Interactive Selection in the VB API.

Topic

Interactive Selection
Accessing Selection Data
Programmatic Selection
Selection Buffer

Interactive Selection

Methods and Properties Introduced:

● IpfcBaseSession.Select()

● CCpfcSelectionOptions.Create()

● IpfcSelectionOptions.MaxNumSels

● IpfcSelectionOptions.OptionKeywords

The method IpfcBaseSession.Select() activates the standard Pro/ENGINEER menu structure for
selecting objects and returns a IpfcSelections sequence that contains the objects the user
selected. Using the Options argument, you can control the type of object that can be selected and
the maximum number of selections.

In addition, you can pass in a IpfcSelectionssequence to the method. The returned
IpfcSelections sequence will contain the input sequence and any new objects.

The method CCpfcSelectionOptions.Create() and the property IpfcSelectionOptions.
OptionKeywords take a String argument made up of one or more of the identifiers listed in the
table below, separated by commas.

For example, to allow the selection of features and axes, the arguments would be "feature,
axis".

Pro/ENGINEER Database Item String Identifier ModelItemType

Datum point point EpfcITEM_POINT

Datum axis axis EpfcITEM_AXIS

Datum plane datum EpfcITEM_FEATURE

Coordinate system datum csys EpfcITEM_COORD_SYS

Feature feature EpfcITEM_FEATURE

Edge (solid or datum surface) edge EpfcITEM_EDGE

Edge (solid only) sldedge EpfcITEM_EDGE

Edge (datum surface only) qltedge EpfcITEM_EDGE

Datum curve curve EpfcITEM_CURVE

Composite curve comp_crv EpfcITEM_CURVE

Surface (solid or quilt) surface EpfcITEM_SURFACE

Surface (solid) sldface EpfcITEM_SURFACE

Surface (datum surface) qltface EpfcITEM_SURFACE

Quilt dtmqlt EpfcITEM_QUILT

Dimension dimension EpfcITEM_DIMENSION

Reference dimension ref_dim EpfcITEM_REF_DIMENSION

Integer parameter ipar EpfcITEM_DIMENSION

Part part N/A

Part or subassembly prt_or_asm N/A

Assembly component model component N/A

Component or feature membfeat EpfcITEM_FEATURE

Detail symbol dtl_symbol EpfcITEM_DTL_SYM_INSTANCE

Note any_note EpfcITEM_NOTE,
ITEM_DTL_NOTE

Draft entity draft_ent EpfcITEM_DTL_ENTITY

Table dwg_table EpfcITEM_TABLE

Table cell table_cell EpfcITEM_TABLE

Drawing view dwg_view N/A

When you specify the maximum number of selections, the argument to IpfcSelectionOptions.
MaxNumSels must be an Integer.The default value assigned when creating a
IpfcSelectionOptions object is -1, which allows any number of selections by the user.

Accessing Selection Data

Properties Introduced:

● IpfcSelection.SelModel

● IpfcSelection.SelItem

● IpfcSelection.Path

● IpfcSelection.Params

● IpfcSelection.TParam

● IpfcSelection.Point

● IpfcSelection.Depth

● IpfcSelection.SelView2D

● IpfcSelection.SelTableCell

● IpfcSelection.SelTableSegment

These properties return objects and data that make up the selection object. Using the appropriate
properties, you can access the following data:

�❍ For a selected model or model item use pfcSelection.SelModel or pfcSelection.SelItem.
�❍ For an assembly component use pfcSelection.Path.
�❍ For UV parameters of the selection point on a surface use pfcSelection.Params.
�❍ For the T parameter of the selection point on an edge or curve usepfcSelection.TParam.
�❍ For a three-dimensional point object that contains the selected point use pfcSelection.Point.
�❍ For selection depth, in screen coordinates use pfcSelection.Depth.
�❍ For the selected drawing view, if the selection was from a drawing, use pfcSelection.SelView2D.
�❍ For the selected table cell, if the selection was from a table, use pfcSelection.SelTableCell.
�❍ For the selected table segment, if the selection was from a table, use pfcSelection.

GetSelTableSegment.

Controlling Selection Display

Methods Introduced:

● IpfcSelection.Highlight()

● IpfcSelection.UnHighlight()

● IpfcSelection.Display()

These methods cause a specific selection to be highlighted or dimmed on the screen using the
color specified as an argument.

The method IpfcSelection.Highlight() highlights the selection in the current window. This
highlight is the same as the one used by Pro/ENGINEER when selecting an item--it just repaints
the wire-frame display in the new color. The highlight is removed if you use the View, Repaint
command or IpfcWindow.Repaint(); it is not removed if you use IpfcWindow.Refresh().

The methodIpfcSelection.UnHighlight() removes the highlight.

The method IpfcSelection.Display() causes a selected object to be displayed on the screen, even if
it is suppressed or hidden.

Note:
This is a one-time action and the next repaint will erase this display.

Example Code: Using Interactive Selection

The following example code demonstrates how to usethe VB APIto allow interactive selection.

Imports pfcls

Public Class pfcSelectionExamples
 Public Function selectFeatures(ByVal session As IpfcBaseSession,
 _ByVal max As Integer) As CpfcSelections
 Dim selections As CpfcSelections
 Dim selectionOptions As IpfcSelectionOptions

 Try
'==
'Selection options are set to select only features with a specified max
'number.
'==
 selectionOptions = (New CCpfcSelectionOptions).Create("feature")
 selectionOptions.MaxNumSels = max
 selections = session.Select(selectionOptions, Nothing)

 selectFeatures = selections

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try
 End Function
End Class

Programmatic Selection

The VB API provides methods whereby you can make your own Selection objects, without
prompting the user. These Selections are required as inputs to some methods and can also be used
to highlight certain objects on the screen.

Methods Introduced:

● CMpfcSelect.CreateModelItemSelection()

● CMpfcSelect.CreateComponentSelection()

The method CMpfcSelect.CreateModelItemSelection() creates a selection out of any model item
object. It takes a IpfcModelItem and optionally a IpfcComponentPath object to identify which
component in an assembly the Selection Object belongs to.

The method CMpfcSelect.CreateComponentSelection() creates a selection out of any
component in an assembly. It takes a IpfcComponentPath object. For more information about
IpfcComponentPath objects, see the section Getting a Solid Object.

Some VB API methods require more information to be set in the selection object. The VB API
methods allow you to set the following:

The selected item using the method IpfcSelection.SelItem.

The selected component path using the method IpfcSelection.Path.

The selected UV parameters using the method IpfcSelection.Params.

The selected T parameter (for a curve or edge), using the method IpfcSelection.TParam.

The selected XYZ point using the method IpfcSelection.Point.

The selected table cell using the method IpfcSelection.SelTableCell.

The selected drawing view using the method IpfcSelection.SelView2D.

Selection Buffer

Introduction to Selection Buffers

Selection is the process of choosing items on which you want to perform an operation. In Pro/
ENGINEER, before a feature tool is invoked, the user can select items to be used in a given tool's
collectors. Collectors are like storage bins of the references of selected items. The location where
preselected items are stored is called the selection buffer.

Depending on the situation, different selection buffers may be active at any one time. In Part and
Assembly mode, Pro/ENGINEER offers the default selection buffer, the Edit selection buffer, and
other more specialized buffers. Other Pro/ENGINEER modes offer different selection buffers.

In the default Part and Assembly buffer there are two levels at which selection is done:

�❍ First Level Selection

Provides access to higher-level objects such as features or components. You can make a second
level selection only after you select the higher-level object.

�❍ Second Level Selection

Provides access to geometric objects such as edges and faces.

Note:
First-level and second-level objects are usually incompatible in the selection buffer.

The VB API allows access to the contents of the currently active selection buffer. The available
functions allow your application to:

�❍ Get the contents of the active selection buffer.
�❍ Remove the contents of the active selection buffer.
�❍ Add to the contents of the active selection buffer.

Reading the Contents of the Selection Buffer

Properties Introduced:

● IpfcSession.CurrentSelectionBuffer

● IpfcSelectionBuffer.Contents

The property IpfcSession.CurrentSelectionBuffer returns the selection buffer object for the
current active model in session. The selection buffer contains the items preselected by the user to
be used by the selection tool and popup menus.

Use the property IpfcSelectionBuffer.Contents to access the contents of the current selection
buffer. The method returns independent copies of the selections in the selection buffer (if the
buffer is cleared, this array is still valid).

Removing the Items of the Selection Buffer

Methods Introduced:

● IpfcSelectionBuffer.RemoveSelection()

● IpfcSelectionBuffer.Clear()

Use the method IpfcSelectionBuffer.RemoveSelection() to remove a specific selection from the
selection buffer. The input argument is the IndexToRemove specifies the index where the item was
found in the call to the method IpfcSelectionBuffer.Contents.

Use the method IpfcSelectionBuffer.Clear() to clear the currently active selection buffer of all
contents. After the buffer is cleared, all contents are lost.

Adding Items to the Selection Buffer

Method Introduced:

● IpfcSelectionBuffer.AddSelection()

Use the method IpfcSelectionBuffer.AddSelection() to add an item to the currently active
selection buffer.

Note:
The selected item must refer to an item that is in the current model such as its owner,
component path or drawing view.

This method may fail due to any of the following reasons:

�❍ There is no current selection buffer active.
�❍ The selection does not refer to the current model.
�❍ The item is not currently displayed and so cannot be added to the buffer.
�❍ The selection cannot be added to the buffer in combination with one or more objects that are

already in the buffer. For example: geometry and features cannot be selected in the default buffer
at the same time.

Menus, Commands, and Pop-up Menus

This section describes the methods provided by the VB API to create and modify menus, menu buttons, commands,
and pop-up menus in the Pro/ENGINEER user interface.

Topic

Introduction
Menu Bar Definitions
Creating New Menus and Buttons
Designating Commands
Pop-up Menus

Introduction

The VB API menu bar classes enable you to modify existing Pro/ENGINEER menu bar menus and to create new
menu bar menus.

Menu Bar Definitions

�❍ Menu bar--The top level horizontal bar in the Pro/ENGINEER UI, containing the main menus, such as File, Edit,
and Applications.

�❍ Menu bar menu--A menu, such as the File menu, or a sub-menu, such as the Export menu under the File menu.
�❍ Menu bar button--A named item in a menu bar menu that is used to launch a set of instructions. An example is the

Exit button in the File menu.
�❍ Tool bar button--An item with a name or icon or both in a tool bar that is used to launch a set of instructions. An

example is the New File command shown on the File toolbar.
�❍ Pop-up menu--A menu invoked by selection of an item in the Pro/ENGINEER graphics window.
�❍ Command--A procedure in Pro/ENGINEER that may be activated from a menu bar, tool bar, or pop-up menu button.

Creating New Menus and Buttons

The following methods enable you to create new menu buttons in any location on the menu bar.

Methods Introduced:

● IpfcSession.UICreateCommand()

● IpfcSession.UICreateMaxPriorityCommand()

● IpfcSession.UIAddButton()

● IpfcSession.UIAddMenu()

● IpfcUICommandActionListener.OnCommand()

The method IpfcSession.UICreateCommand() creates a IpfcUICommand object that contains a IpfcCommand.
UICommandActionListener. You should override the IpfcUICommandActionListener.OnCommand() method

with the code that you want to execute when the user clicks a button.

The method IpfcSession.UICreateMaxPriorityCommand() creates a pfcCommand.UICommand object having
maximum command priority. The priority of the action refers to the level of precedence the added action takes over
other Pro/ENGINEER actions. Maximum priority actions dismiss all other actions except asynchronous actions.

Maximum command priority should be used only in commands that open and activate a new model in a window.
Create all other commands using the method IpfcSession.UICreateCommand().

The method IpfcSession.UIAddButton() enables you to add your command to a menu on the menu bar. It also
enables you to specify a help message that is displayed when the user moves the pointer over the button.

The IpfcSession.UIAddMenu() method enables you to create new, top-level menus that can contain your own
commands or to add submenus to existing menus.

Note:
The menu file required when adding a menu or a button must have the same format as the text message file
described above.

The listener method pfcCommand.UICommandListener.OnCommand is called when the command is activated
in Pro/ENGINEER by pressing a button.

Example 1: Adding a Menu Button

The following example code demonstrates the usage of UI methods to add a new button to a Pro/ENGINEER
Windows Menu. Note that this operates in a Full Asynchronous Mode

'==
'Class : pfcSessionObjectsExamples2
'Purpose : This class is used for adding button to ProE Windows
' Menu. It uses timer object to handle event callback
'==
Public Class pfcSessionObjectsExamples2
 Implements IpfcAsyncActionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Dim WithEvents eventTimer As Timers.Timer
 Dim exitFlag As Boolean = False
 Dim aC As pfcls.IpfcAsyncConnection

 Public Sub New(ByRef asyncConnection As pfcls.IpfcAsyncConnection)
 aC = asyncConnection
 End Sub

 Public Function GetClientInterfaceName() As String Implements pfcls.ICIPClientObject.
GetClientInterfaceName
 GetClientInterfaceName = "IpfcAsyncActionListener"
 End Function

 Public Sub OnTerminate(ByVal _Status As Integer) Implements pfcls.
IpfcAsyncActionListener.OnTerminate
 aC.InterruptEventProcessing()
 exitFlag = True

 End Sub

'Add menu button
'==
'Function : addInputButton
'Purpose : This function demonstrates the usage of UI functions to
' add a new button to ProE Windows Menu.
' Note that this operates in Full Asynchronous Mode
'==

 Public Sub addInputButton()

 Dim inputCommand As IpfcUICommand
 Dim buttonListener As IpfcUICommandActionListener

 Try
'==
'Start the timer to call EventProcess at regular intervals
'==
 eventTimer = New Timers.Timer(500)
 eventTimer.Enabled = True
 AddHandler eventTimer.Elapsed, AddressOf Me.timeElapsed
'==
'Command is created which will be associated with the button. The class
'implementing the actionlistener must be given as input.
'==
 buttonListener = New GatherInputListener()
 inputCommand = aC.Session.UICreateCommand("INPUT",
 buttonListener)
'==
'Button is created in the menu "Windows"
'==
 aC.Session.UIAddButton(inputCommand, "Windows", Nothing,
 _"USER Async App", "USER Async Help",
 "pfcSessionObjectsExamples.txt")
 aC.AddActionListener(Me)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub
'==
'Function : timeElapsed
'Purpose : This function handles the time elapsed event of timer
' which is fired at regular intervals
'==
 Private Sub timeElapsed(ByVal sender As Object, ByVal e As System.Timers.
ElapsedEventArgs)
 If exitFlag = False Then
 aC.EventProcess()
 Else
 eventTimer.Enabled = False
 End If
End Sub
'==
'Class : GatherInputListener
'Purpose : This class must implement the listner interface along

' with the correct client interface name. The OnCommand
' function is called when the user button is pressed.
'==
 Private Class GatherInputListener
 Implements pfcls.IpfcUICommandActionListener
 Implements ICIPClientObject

 Public Function GetClientInterfaceName() As String _
 Implements ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcUICommandActionListener"
 End Function

 Public Sub OnCommand() Implements pfcls.IpfcUICommandActionListener.OnCommand
 Me.UserFunction()
 End Sub

 Public Sub UserFunction()
 MsgBox("User Button Pressed")
 End Sub
End Class

The corresponding message file for this example code contains two text messages. The first is used as a button name,
the second as its help string.

#
#
USER#Async#App
Async Button
#
#
USER#Async#Help
Button added via Async Application
#
#

Finding Pro/ENGINEER Commands

This method enables you to find existing Pro/ENGINEER commands in order to modify their behavior.

Method Introduced:

● IpfcSession.UIGetCommand()

The method IpfcSession.UIGetCommand() returns a IpfcUICommand object representing an existing Pro/
ENGINEER command. The method allows you to find the command ID for an existing command so that you can
add an access function or bracket function to the command. You must know the name of the command in order to
find its ID.

Use the trail file to find the name of an action command (not a menu button). Click the corresponding icon on the
toolbar (not the button in the menu bar) and check the last entry in the trail file. For example, for the Save icon, the
trail file will have the corresponding entry:

~ Activate 'main_dlg_cur' 'ProCmdModelSave.file'

The action name for the Save icon is ProCmdModelSave. This string can be used as input to IpfcSession.
UIGetCommand() to get the command ID.

You can determine a command ID string for an option without an icon by searching through the resource files
located in the <Pro/ENGINEER Loadpoint>/text/resources directory. If you search for the menu button name,
the line will contain the corresponding action command for the button.

Access Listeners for Commands

These methods allow you to apply an access listener to a command. The access listener determines whether or not
the command is visible at the current time in the current session.

Methods Introduced:

● IpfcActionSource.AddActionListener()

● IpfcUICommandAccessListener.OnCommandAccess()

Use the method IpfcActionSource.AddActionListener() to register a new pfcCommand.
UICommandAccessListener on any command (created either by an application or Pro/ENGINEER). This listener
will be called when buttons based on the command might be shown.

The listener method IpfcUICommandAccessListener.OnCommandAccess() allows you to impose an access
function on a particular command. The method determines if the action or command should be available,
unavailable, or hidden.

The potential return values are listed in the enumerated type EpfcCommandAccess and are as follows:

�❍ EpfcACCESS_REMOVE--The button is not visible and if all of the menu buttons in the containing menu possess an
access function returning ACCESS_REMOVE, the containing menu will also be removed from the Pro/ENGINEER
user interface..

�❍ EpfcACCESS_INVISIBLE--The button is not visible.
�❍ EpfcACCESS_UNAVAILABLE--The button is visible, but gray and cannot be selected.
�❍ EpfcACCESS_DISALLOW--The button shows as available, but the command will not be executed when it is

chosen.
�❍ EpfcACCESS_AVAILABLE--The button is not gray and can be selected by the user. This is the default value.

Example 2: Command Access Listeners

This example code demonstrates the usage of the access listener method for a particular command. The
OnCommandAccess function returns "ACCESS_UNAVAILABLE" that disables button associated with the
command, if the model is not present or if it is not of type PART. Else, the function returns
"ACCESS_AVAILABLE" that enables button associated with the command.

'==
 'Class : CheckAccess
 'Purpose : This listener class checks if command is accessible to
 ' the user.
'==
 Private Class CheckAccess
 Implements ICIPClientObject
 Implements IpfcUICommandAccessListener

 Implements IpfcActionListener

 Dim aC As pfcls.IpfcAsyncConnection

 Public Sub New(ByRef asyncConnection As IpfcAsyncConnection)
 aC = asyncConnection
 End Sub

 Public Function GetClientInterfaceName() As String _
 Implements ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcUICommandAccessListener"
 End Function

 Public Function OnCommandAccess(ByVal _AllowErrorMessages As
 Boolean) As Integer Implements
 pfcls.IpfcUICommandAccessListener.OnCommandAccess
 Dim model As IpfcModel
 model = aC.Session.CurrentModel
 If model Is Nothing OrElse (Not model.Type =
 EpfcModelType.EpfcMDL_PART) Then
 Return EpfcCommandAccess.EpfcACCESS_UNAVAILABLE
 End If
 Return EpfcCommandAccess.EpfcACCESS_AVAILABLE

 End Function
 End Class

Bracket Listeners for Commands

These methods allow you to apply a bracket listener to a command. The bracket listener is called before and after the
command runs, which allows your application to provide custom logic to execute whenever the command is
selected.

Methods Introduced:

● IpfcActionSource.AddActionListener()

● IpfcUICommandBracketListener.OnBeforeCommand()

● IpfcUICommandBracketListener.OnAfterCommand()

Use the method IpfcActionSource.AddActionListener() to register a new pfcCommand.
UICommandBracketListener on any command (created either by an application or Pro/ENGINEER). This listener
will be called when the command is selected by the user.

The listener methods pfcCommand.UICommandBracketListener.OnBeforeComm and and pfcCommand.
UICommandBracketListener.OnAfterCommand allow the creation of functions that will be called immediately
before and after execution of a given command. These methods are used to add the business logic to the start or end
(or both) of an existing Pro/ENGINEER command.

The method pfcCommand.UICommandBracketListener.OnBeforeComm and could also be used to cancel an
upcoming command. To do this, throw a pfcExceptions.XCancelProEAction exception from the body of the
listener method using CCpfcXCancelProEAction.Throw().

Example 3: Bracket Listeners

The following example code demonstrates the usage of the bracket listener methods that are called before and after
when the user tries to rename the model. If the model contains a certain parameter, the rename attempt will be
aborted by this listener.

Public Class pfcCommandExamples1
 Implements IpfcAsyncActionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Dim WithEvents eventTimer As Timers.Timer
 Dim exitFlag As Boolean = False
 Dim aC As pfcls.IpfcAsyncConnection

 Public Sub New(ByRef asyncConnection As pfcls.IpfcAsyncConnection)
 aC = asyncConnection
 End Sub

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcAsyncActionListener"
 End Function

 Public Sub OnTerminate(ByVal _Status As Integer) Implements
 pfcls.IpfcAsyncActionListener.OnTerminate
 aC.InterruptEventProcessing()
 exitFlag = True
 End Sub

'==
 'Function : timeElapsed
 'Purpose : This function handles the time elapsed event of timer
 ' which is fired at regular intervals
'==
 Private Sub timeElapsed(ByVal sender As Object, ByVal e As
 System.Timers.ElapsedEventArgs)
 If exitFlag = False Then
 aC.EventProcess()
 Else
 eventTimer.Enabled = False
 End If
 End Sub

'==
 'Function : addRenameCheck
 'Purpose : This function checks if the given param name is present
 ' in model and prevent rename if it is present.
'==
 Public Sub addRenameCheck(ByVal paramName As String)
 Dim listenerObj As BracketListener
 Dim command As IpfcUICommand
 Try
'==
 'Start the timer to call EventProcess at regular intervals

'==
 eventTimer = New Timers.Timer(200)
 eventTimer.Enabled = True
 AddHandler eventTimer.Elapsed, AddressOf Me.timeElapsed

 command = aC.Session.UIGetCommand("ProCmdModelRename")

 If Not command Is Nothing Then
 listenerObj = New BracketListener(aC.Session, paramName)
 command.AddActionListener(listenerObj)
 Else
 Throw New Exception("Command does not exist")
 End If

 aC.AddActionListener(Me)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub

'==
 'Class : BracketListener
 'Purpose : This class implements the IpfcUICommandBracketListener
 ' Interface along with the correct client interface name.
 ' The implemented method will be called when the user
 ' tries to rename the model.
'==
 Private Class BracketListener
 Implements IpfcUICommandBracketListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Dim s As IpfcSession
 Dim name As String

 Public Sub New(ByRef session As IpfcSession, ByVal paramName As
 String)
 s = session
 name = paramName
 End Sub

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcUICommandBracketListener"
 End Function

 Public Sub OnAfterCommand() Implements
 pfcls.IpfcUICommandBracketListener.OnAfterCommand
 End Sub

 Public Sub OnBeforeCommand() Implements
 pfcls.IpfcUICommandBracketListener.OnBeforeCommand
 Dim param As IpfcParameter
 Dim model As IpfcModel
 Dim cancelAction As CCpfcXCancelProEAction

 model = s.CurrentModel
 If model Is Nothing Then
 Return
 End If

 param = CType(model, IpfcParameterOwner).GetParam(name)
 If Not param Is Nothing Then
 cancelAction = New CCpfcXCancelProEAction
 cancelAction.Throw()
 End If

 End Sub
 End Class

End Class

Designating Commands

Using the VB API you can designate Pro/ENGINEER commands to be available to be added to any Pro/ENGINER
toolbar.

To add a command to the toolbar, you must:

1. Define or add the command to be initiated on clicking the icon in the VB application.

2. Optionally designate an icon button to be used with the command.

3. Designate the command to appear in the Screen Customization dialog box of Pro/ENGINEER.

4. Finally, enter the Screen Customization dialog, and manually add the designated command to the window.
Save the configuration in Pro/ENGINEER so that changes to the toolbar appear when a new session of Pro/
ENGINEER is started.

Command Icons

Method Introduced:

● IpfcUICommand.SetIcon()

The method IpfcUICommand.SetIcon() allows you to designate an icon to be used with the command you created.
The method adds the icon to the Pro/ENGINEER command. Specify the name of the icon file, including the
extension as the input argument for this method. A valid format for the icon file is the PTC-proprietary format used
by Pro/ENGINEER.BIF or a standard .GIF. The Pro/ENGINEER toolbar button is replaced with the image of the
image.

Note:
While specifying the name of the icon file, do not specify the full path to the icon names.

The default search paths for finding the icons are:

�❍ <ProENGINEER loadpoint>/text/resource
�❍ <Application text dir>/resource
�❍ <Apppplication text dir>/(language)/resource

The location of the application text directory is specified in the registry file.

Toolbar commands that do not have an icon assigned to them display the button label.

You may also use this method to assign a small icon to a menu button on the menubar. The icon appears to the left of
the button label.

Before using the method IpfcUICommand.SetIcon(), you must place the command in a menu using the method
IpfcSession.UIAddButton().

Designating the Command

Method Introduced:

● IpfcUICommand.Designate()

This method allows you designate the command as available in the Screen Customization dialog box of Pro/
ENGINEER. After a VB API application has used the method IpfcUICommand.Designate() on a command, you
can interactively drag the toolbar button that you associate with the command, on to the Pro/ENGINEER toolbar. If
this method is not called, the toolbar button will not be visible in the Screen Customization dialog box of Pro/
ENGINEER.

The arguments to this method are:

�❍ Label--The message string that refers to the icon label. This label (stored in the message file) identifies the text seen
when the button is displayed. If the command is not assigned an icon, the button label string appears on the toolbar
button by default.

�❍ Help--The one-line Help for the icon. This label (stored in the message file) identifies the help line seen when the
mouse moves over the icon.

�❍ Description--The message appears in the Screen Customization dialog and also when "Description" is clicked in Pro/
ENGINEER.

�❍ MessageFile--The message file name. All the labels including the one-line Help labels must be present in the
message file.

Note:
This file must be in the directory <text_path>/text or <text_path>/text/<language>.

Before using the method IpfcUICommand.Designate(), you must place the command in a menu using the method
IpfcSession.UIAddButton().

Placing the Toolbar Button

Once the toolbar button has been created using the functions discussed above, place the toolbar button on the Pro/
ENGINEER toolbar. Click Tools > Customize Screen. The designated buttons will be stored under the category
"Foreign Applications". Drag the toolbar button on to the Pro/ENGINEER toolbar as shown in the following figure.
Save the window configuration settings in the config.win file so that the settings are loaded when a new session of
Pro/ENGINEER is launched. For more information, see the Pro/ENGINEER menus portion of the Pro/ENGINEER
help.

Figure 6-1: The Customize Screen With The Icons To be Designated

Figure 6-2: The Pro/ENGINEER Toolbar With The Designated Icons

Pop-up Menus

Pro/ENGINEER provides shortcut menus that contain frequently used commands appropriate to the currently
selected items. You can access a shortcut menu by right-clicking a selected item. Shortcut menus are accessible in:

�❍ Graphics window
�❍ Model Tree
�❍ Some dialog boxes
�❍ Any area where you can perform an object-action operation by selecting an item and choosing a command to

perform on the selected item.

The methods described in this section allow you to add menus to a graphics window pop-up menu.

Adding a Pop-up Menu to the Graphics Window

You can activate different pop-up menus during a given session of Pro/ENGINEER. Every time the Pro/ENGINEER
context changes when you open a different model type, enter different tools or special modes such as Edit, a

different pop-up menu is created. When Pro/ENGINEER moves to the next context, the pop-up menu may be
destroyed.

As a result of this, the VB API applications must attach a button to the pop-up menu during initialization of the pop-
up menu. The the VB API application is notified each time a particular pop-up menu is created, which then allows
the user to add to the pop-up menu.

Use the following procedure to add items to pop-up menus in the graphics window:

1. Obtain the name of the existing pop-up menus to which you want to add a new menu using the trail file.

2. Create commands for the new pop-up menu items.

3. Implement access listeners to provide visibility information for the items.

4. Add an action listener to the session to listen for pop-up menu initialization.

5. In the listener method, if the pop-up menu is the correct menu to which you wish to add the button, then add
it.

The following sections describe each of these steps in detail. You can add push buttons and cascade menus to the
pop-up menus. You can add pop-up menu items only in the active window. You cannot use this procedure to remove
items from existing menus.

Using the Trail File to Determine Existing Pop-up Menu Names

The trail file in Pro/ENGINEER contains a comment that identifies the name of the pop-up menu if the configuration
option, auxapp_popup_menu_info is set to yes.

For example, the pop-up menu, Edit Properties, has the following comment in the trail file:

~ Close `rmb_popup` `PopupMenu`
~ Activate `rmb_popup` `EditProperties`
!Command ProCmdEditPropertiesDtm was pushed from the software.
!Item was selected from popup menu 'popup_mnu_edit'

Listening for Pop-up Menu Initialization

Methods Introduced:

● IpfcActionSource.AddActionListener()

● IpfcPopupmenuListener.OnPopupmenuCreate()

Use the method IpfcActionSource.AddActionListener() to register a new pfcUI.PopupmenuListener to the session.
This listener will be called when pop-up menus are initialized.

The method IpfcPopupmenuListener.OnPopupmenuCreate() is called after the pop-up menu is created internally
in Pro/ENGINEER and may be used to assign application-owned buttons to the pop-up menu.

Accessing the Pop-up Menus

The method described in this section provides the name of the pop-up menus used to access these menus while using

other methods.

Method Introduced:

● IpfcPopupmenu.Name

The property IpfcPopupmenu.Name returns the name of the pop-up menu.

Adding Content to the Pop-up Menus

Methods Introduced:

● IpfcPopupmenu.AddButton()

● IpfcPopupmenu.AddMenu()

Use IpfcPopupmenu.AddButton() to add a new item to a pop-up menu. The input arguments are:

�❍ Command--Specifies the command associated with the pop-up menu.
�❍ Options - A pfcUI.PopupmenuOptions object containing other options for the method. The options that may be

included are:
● PositionIndex--Specifies the position in the pop-up menu at which to add the menu button. Pass null

to add the button to the bottom of the menu. Use the property IpfcPopupmenuOptions.PositionIndex
to set this option.

● Name--Specifies the name of the added button. The button name is placed in the trail file when the
user selects the menu button. Use the property IpfcPopupmenuOptions.Name to set this option.

● SetLabel--Specifies the button label. This label identifies the text displayed when the button is
displayed. Use the property IpfcPopupmenuOptions.Label to set this option.

● Helptext--Specifies the help message associated with the button. Use the property
IpfcPopupmenuOptions.Helptext to set this option.

Use the method IpfcPopupmenu.AddMenu() to add a new cascade menu to an existing pop-up menu.

The argument for this method is a pfcUI.PopupmenuOptions object, whose members have the same purpose as
described for newly added buttons. This method returns a new pfcUI.Popupmenu object to which you may add
new buttons.

Example 4: Creating a Pop-up Menu

This example code demonstrates the usage of UI functions to add a new model tree pop-up menu.

Public Class pfcPopupMenuExamples
 Implements IpfcAsyncActionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Dim WithEvents eventTimer As Timers.Timer
 Dim exitFlag As Boolean = False
 Dim aC As pfcls.IpfcAsyncConnection

 Public Sub New(ByRef asyncConnection As pfcls.IpfcAsyncConnection)
 aC = asyncConnection
 End Sub

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcAsyncActionListener"
 End Function

 Public Sub OnTerminate(ByVal _Status As Integer) Implements
 pfcls.IpfcAsyncActionListener.OnTerminate
 aC.InterruptEventProcessing()
 exitFlag = True
 End Sub

'==
 'Function : timeElapsed
 'Purpose : This function handles the time elapsed event of timer
 ' which is fired at regular intervals
'==
 Private Sub timeElapsed(ByVal sender As Object, ByVal e As
 System.Timers.ElapsedEventArgs)
 If exitFlag = False Then
 aC.EventProcess()
 Else
 eventTimer.Enabled = False
 End If
 End Sub

'==
 'Function : addMenus
 'Purpose : This function demonstrates the usage of UI functions to
 ' add a new button to ProE Graphics Window and model tree
 ' popup menu.
'==
 Public Sub addMenus()
 Dim inputCommand As IpfcUICommand
 Dim buttonListener As IpfcUICommandActionListener
 Dim popListener As IpfcPopupmenuListener
 Dim listenerObj As IpfcUICommandAccessListener

 Try

'==
 'Start the timer to call EventProcess at regular intervals
'==
 eventTimer = New Timers.Timer(200)
 eventTimer.Enabled = True
 AddHandler eventTimer.Elapsed, AddressOf Me.timeElapsed

'==
 'Command is created which will be associated with the button.
 The class implementing the actionlistener must be given as
 input.
'==
 buttonListener = New AssemblyFunction(aC.Session)
 inputCommand = aC.Session.UICreateCommand("HIGHLIGHT",
 buttonListener)

'==

 'Add action listener to restrict access.
'==
 listenerObj = New CheckAccess(aC)
 inputCommand.AddActionListener(listenerObj)

'==
 'Button is created in Graphics Window and model tree popup
 menu.
'==
 aC.Session.UIAddButton(inputCommand, "ActionMenu", Nothing, _
 "USER Highlight Constraint", "USER Highlight
 Constraint Help", "pfcPopupMenuExamples.txt")

 popListener = New CreatePopupButton(aC.Session)
 aC.Session.AddActionListener(popListener)

 aC.AddActionListener(Me)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub

'==
 'Class : AssemblyFunction
 'Purpose : Listener class to implement Highlight command.
'==
 Private Class AssemblyFunction
 Implements pfcls.IpfcUICommandActionListener
 Implements ICIPClientObject

 Dim session As IpfcBaseSession

 Public Function GetClientInterfaceName() As String _
 Implements ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcUICommandActionListener"
 End Function

 Public Sub New(ByRef currentSession As IpfcBaseSession)
 session = currentSession
 End Sub

 Public Sub OnCommand() Implements
 pfcls.IpfcUICommandActionListener.OnCommand
 highlightConstraints()
 End Sub

'==
 'Function : highlightConstraints
 'Purpose : This function displays each constraint of the
 component visually on the screen, and includes a
 text explanation for each constraint.
'==
 Public Sub highlightConstraints()

 Dim options As IpfcSelectionOptions
 Dim selections As IpfcSelections

 Dim item As IpfcModelItem
 Dim feature As IpfcFeature
 Dim asmComp As IpfcComponentFeat
 Dim compConstraints As CpfcComponentConstraints
 Dim i As Integer
 Dim compConstraint As IpfcComponentConstraint
 Dim asmReference As IpfcSelection
 Dim compReference As IpfcSelection
 Dim offset As String
 Dim constraintType As String
 Dim selectionBuffer As IpfcSelectionBuffer
 Dim modelPath As IpfcComponentPath
 Dim parentPath As IpfcComponentPath
 Dim parentIds As Cintseq
 Dim modelParent As IpfcSolid
 Dim modelId As Integer

 Try
'==
 'Get selected component
'==
 selectionBuffer = session.CurrentSelectionBuffer
 selections = selectionBuffer.Contents
 If selections Is Nothing Then
 options = (New
 CCpfcSelectionOptions).Create("membfeat")
 options.MaxNumSels = 1

 selections = session.Select(options, Nothing)
 If selections Is Nothing OrElse selections.Count = 0
 Then
 Throw New Exception("Nothing Selected")
 End If
 End If

'==
 'Get ModelItem from the selected model
 '==
 item = selections.Item(0).SelItem

 If item Is Nothing Then
 modelPath = selections.Item(0).Path

 modelId =
 modelPath.ComponentIds.Item(modelPath.ComponentIds.Count - 1)

 parentIds = modelPath.ComponentIds
 parentIds.Remove(parentIds.Count - 1, parentIds.Count)

 If Not parentIds.Count = 0 Then
 parentPath = (New
 CMpfcAssembly).CreateComponentPath(modelPath.Root, parentIds)
 modelParent = parentPath.Leaf
 Else
 modelParent = modelPath.Root
 End If

 item = CType(modelParent,
 IpfcModelItemOwner).GetItemById(EpfcModelItemType.EpfcITEM_FEATURE,
 modelId)
 If item Is Nothing Then
 Throw New Exception("Could not get model item
 handle")
 End If

 End If

 feature = CType(item, IpfcFeature)
 If Not feature.FeatType =
 EpfcFeatureType.EpfcFEATTYPE_COMPONENT Then
 Throw New Exception("Assembly Component not Selected")
 End If

'==
 'Get constraints for the component
'==
 asmComp = CType(item, IpfcComponentFeat)
 compConstraints = asmComp.GetConstraints()
 If compConstraints Is Nothing OrElse compConstraints.Count
 = 0 Then
 Throw New Exception("No Constraints to display")
 End If

'==
 'Loop through all the constraints
'==
 For i = 0 To compConstraints.Count - 1

 compConstraint = compConstraints.Item(i)

'==
 'Highlight the assembly reference geometry
'==
 asmReference = compConstraint.AssemblyReference
 If Not asmReference Is Nothing Then
 asmReference.Highlight(EpfcStdColor.EpfcCOLOR_ERROR)
 End If

'==
 'Highlight the component reference geometry
'==
 compReference = compConstraint.ComponentReference
 If Not asmReference Is Nothing Then
 compReference.Highlight(EpfcStdColor.EpfcCOLOR_WARNING)
 End If

'==
 'Prepare and display the message text
'==
 offset = ""
 If Not compConstraint.Offset Is Nothing Then
 offset = ", offset of " +
 compConstraint.Offset.ToString
 End If

 constraintType =
 constraintTypeToString(compConstraint.Type)
 MsgBox("Showing constraint " + (i + 1).ToString + " of
 " + _
 compConstraints.Count.ToString + Chr(13).ToString + _
 constraintType + offset)

'==
 'Clean up the UI for the next constraint
'==
 If Not asmReference Is Nothing Then
 asmReference.UnHighlight()
 End If

 If Not compReference Is Nothing Then
 compReference.UnHighlight()
 End If
 Next

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) +
 ex.StackTrace.ToString)
 Exit Sub
 End Try

 End Sub

'==
 'Function : constraintTypeToString
 'Purpose : This function converts constraint type to string.
'==
 Public Function constraintTypeToString(ByVal type As Integer)
 As String

 Select Case (type)
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_MATE
 Return ("(Mate)")
 Case
 EpfcComponentConstraintType.EpfcASM_CONSTRAINT_MATE_OFF
 Return ("(Mate Offset)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_ALIGN
 Return ("(Align)")
 Case
 EpfcComponentConstraintType.EpfcASM_CONSTRAINT_ALIGN_OFF
 Return ("(Align Offset)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_INSERT
 Return ("(Insert)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_ORIENT
 Return ("(Orient)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_CSYS
 Return ("(Csys)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_TANGENT
 Return ("(Tangent)")
 Case
 EpfcComponentConstraintType.EpfcASM_CONSTRAINT_PNT_ON_SRF
 Return ("(Point on Surf)")
 Case

 EpfcComponentConstraintType.EpfcASM_CONSTRAINT_EDGE_ON_SRF
 Return ("(Edge on Surf)")
 Case
 EpfcComponentConstraintType.EpfcASM_CONSTRAINT_DEF_PLACEMENT
 Return ("(Default)")
 Case
 EpfcComponentConstraintType.EpfcASM_CONSTRAINT_SUBSTITUTE
 Return ("(Substitute)")
 Case
 EpfcComponentConstraintType.EpfcASM_CONSTRAINT_PNT_ON_LINE
 Return ("(Point on Line)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_FIX
 Return ("(Fix)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_AUTO
 Return ("(Auto)")
 End Select
 Return ("Unrecognized Type")

 End Function

 End Class

'==
 'Class : CreatePopupButton
 'Purpose : Listener class to create Popup menu button when the
 ' menu is created.
'==
 Private Class CreatePopupButton
 Implements IpfcActionListener
 Implements ICIPClientObject
 Implements IpfcPopupmenuListener

 Dim session As IpfcSession

 Public Function GetClientInterfaceName() As String _
 Implements ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcPopupmenuListener"
 End Function

 Public Sub New(ByRef currentSession As IpfcSession)
 session = currentSession
 End Sub

 Public Sub OnPopupmenuCreate(ByVal _Menu As pfcls.IpfcPopupmenu)
 Implements pfcls.IpfcPopupmenuListener.OnPopupmenuCreate

 Dim command As IpfcUICommand
 Dim options As IpfcPopupmenuOptions
 Dim cmdString As String
 Dim helpString As String

 If _Menu.Name = "Sel Obj Menu" Then
 command = session.UIGetCommand("HIGHLIGHT")
 If Not command Is Nothing Then
 options = (New
 CCpfcPopupmenuOptions).Create("HIGHLIGHT_CONSTRAINTS")
 cmdString = session.GetMessageContents

 ("pfcPopupMenuExamples.txt",
 "USER Highlight Constraint", Nothing)
 helpString = session.GetMessageContents
 ("pfcPopupMenuExamples.txt", "USER Highlight
 Constraint Help", Nothing)

 options.Helptext = helpString
 options.Label = cmdString
 _Menu.AddButton(command, options)
 Else
 Throw New Exception("HIGHLIGHT command does not exist")
 End If
 End If

 End Sub
 End Class

'==
 'Class : CheckAccess
 'Purpose : This listener class checks if command is accessible to
 ' the user.
'==
 Private Class CheckAccess
 Implements ICIPClientObject
 Implements IpfcUICommandAccessListener
 Implements IpfcActionListener

 Dim aC As pfcls.IpfcAsyncConnection

 Public Sub New(ByRef asyncConnection As IpfcAsyncConnection)
 aC = asyncConnection
 End Sub

 Public Function GetClientInterfaceName() As String _
 Implements ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcUICommandAccessListener"
 End Function

 Public Function OnCommandAccess(ByVal _AllowErrorMessages As
 Boolean) As Integer Implements
 pfcls.IpfcUICommandAccessListener.OnCommandAccess
 Dim model As IpfcModel
 Dim selections As IpfcSelections
 Dim selectionBuffer As IpfcSelectionBuffer

 model = aC.Session.CurrentModel
 If model Is Nothing OrElse (Not model.Type =
 EpfcModelType.EpfcMDL_ASSEMBLY) Then
 Return EpfcCommandAccess.EpfcACCESS_UNAVAILABLE
 End If

 '==
 'Get selected component
 '==
 selectionBuffer = IpfcSession.CurrentSelectionBuffer
 selections = selectionBuffer.Contents
 If selections Is Nothing OrElse selections.Count > 1 Then

 Return EpfcCommandAccess.EpfcACCESS_UNAVAILABLE
 End If

 Return EpfcCommandAccess.EpfcACCESS_AVAILABLE

 End Function
 End Class

End Class

The corresponding message file for the example program contains two text messages. The first is used as the pop-
menu button name, the second as its help string.

USER#Highlight#Constraint
Highlight Constraint
#
#
USER#Highlight#Constraint#Help
Highlight Assembly Constraints
#
#

Models

This section describes how to program on the model level using the VB API.

Topic

Overview of Model Objects
Getting a Model Object
Model Descriptors
Retrieving Models
Model Information
Model Operations
Running ModelCHECK

Overview of Model Objects

Models can be any Pro/ENGINEER file type, including parts, assemblies, drawings, sections, and layouts.
The classes in the module pfcModel provide generic access to models, regardless of their type. The
available methods enable you to do the following:

�❍ Access information about a model.
�❍ Open, copy, rename, and save a model.

Getting a Model Object

Methods and Properties Introduced:

● IpfcFamilyTableRow.CreateInstance()

● IpfcSelection.SelModel

● IpfcBaseSession.GetModel()

● IpfcBaseSession.CurrentModel

● IpfcBaseSession.GetActiveModel()

● IpfcBaseSession.ListModels()

● IpfcBaseSession.GetByRelationId()

● IpfcWindow.Model

These methods get a model object that is already in session.

The property IpfcSelection.SelModel returns the model that was interactively selected.

The methodIpfcBaseSession.GetModel() returns a model based on its name and type, whereas
IpfcBaseSession.GetByRelationId() returns a model in an assembly that has the specified integer
identifier.

The property IpfcBaseSession.CurrentModel returns the current Pro/ENGINEER model.

The method IpfcBaseSession.GetActiveModel() returns the active Pro/ENGINEER model.

Use the method IpfcBaseSession.ListModels() to return a sequence of all the models in session.

For more methods that return solid models, refer to the section Solid.

Model Descriptors

Methods and Properties Introduced:

● CCpfcModelDescriptor.Create()

● CCpfcModelDescriptor.CreateFromFileName()

● IpfcModelDescriptor.GenericName

● IpfcModelDescriptor.InstanceName

● IpfcModelDescriptor.Type

● IpfcModelDescriptor.Host

● IpfcModelDescriptor.Device

● IpfcModelDescriptor.Path

● IpfcModelDescriptor.FileVersion

● IpfcModelDescriptor.GetFullName()

● IpfcModel.FullName

Model descriptors are data objects used to describe a model file and its location in the system. The
methods in the model descriptor enable you to set specific information that enables Pro/ENGINEER to
find the specific model you want.

The static utility method CCpfcModelDescriptor.Create() allows you to specify as data to be entered a

model type, an instance name, and a generic name. The model descriptor constructs the full name of the
model as a string, as follows:

String FullName = InstanceName+"<"+GenericName+">";
 // As long as the

 // generic name is
 // not an empty
 // string ("")

If you want to load a model that is not a family table instance, pass an empty string as the generic name
argument so that the full name of the model is constructed correctly. If the model is a family table
interface, you should specify both the instance and generic names.

Note:
You are allowed to set other fields in the model descriptor object, but they may be ignored by
some methods.

The static utility method CCpfcModelDescriptor.CreateFromFileName() allows you to create a new
model descriptor from a given a file name. The file name is a string in the form "<name>.
<extension>".

Retrieving Models

Methods Introduced:

● IpfcBaseSession.RetrieveModel()

● IpfcBaseSession.RetrieveModelWithOpts()

● IpfcBaseSession.OpenFile()

● IpfcSolid.HasRetrievalErrors()

These methods cause Pro/ENGINEER to retrieve the model that corresponds to the IpfcModelDescriptor
argument.

The method IpfcBaseSession.RetrieveModel() retrieves the specified model into the Pro/ENGINEER
session given its model descriptor from a standard directory. But this function does not create a window
for it, nor does it display the model anywhere.

The method IpfcBaseSession.RetrieveModelWithOpts() retrieves the specified model into the Pro/
ENGINER session based on the path specified by the model descriptor. The path can be a disk path, a
workspace path, or a commonspace path. The Opts argument (given by the
IpfcRetrieveModelOptions object) provides the user with the option to specify simplified
representations.

The method IpfcBaseSession.OpenFile() brings the model into memory, opens a new window for it (or

uses the base window, if it is empty), and displays the model.

Note:
IpfcBaseSession.OpenFile() actually returns a handle to the window it has created.

To get a handle to the model you need, use the property IpfcWindow.Model.

The method IpfcSolid.HasRetrievalErrors() returns a true value if the features in the solid model were
suppressed during the RetrieveModel or OpenFile operations. This method must be called immediately
after the IpfcBaseSession.RetrieveModel() method or an equivalent retrieval method.

Example Code: Retrieving a Model

The following example code demonstrates how to retrieve a model.

Imports pfcls

Public Class pfcModelsExamples

 'Retrieve a model
'==
 'Function : retrieveModelFromStdDir
 'Purpose : This function demonstrates how to retrieve a model.
'==
 Public Function retrieveModelFromStdDir(ByVal session As
 IpfcBaseSession, _
 ByVal type As EpfcModelType, _
 ByVal stdPath As String) As
 IpfcModel

 Dim descModel As IpfcModelDescriptor
 Dim options As IpfcRetrieveModelOptions
 Dim model As IpfcModel

 Try

'==
 'Model is retrieved using a model descriptor object.
 'This method loads the model identified by model type and path
 'from a standard directory location.

'==
 options = (New CCpfcRetrieveModelOptions).Create
 options.AskUserAboutReps = False

 descModel = (New CCpfcModelDescriptor).Create(type, Nothing,
 Nothing)
 descModel.Path = stdPath

 model = session.RetrieveModelWithOpts(descModel, options)

 retrieveModelFromStdDir = model

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try

 End Function

End Class

Model Information

Methods and Properties Introduced:

● IpfcModel.FileName

● IpfcModel.CommonName

● IpfcModel.IsCommonNameModifiable()

● IpfcModel.FullName

● IpfcModel.GenericName

● IpfcModel.InstanceName

● IpfcModel.Origin

● IpfcModel.RelationId

● IpfcModel.Descr

● IpfcModel.Type

● IpfcModel.IsModified

● IpfcModel.Version

● IpfcModel.Revision

● IpfcModel.Branch

● IpfcModel.ReleaseLevel

● IpfcModel.VersionStamp

● IpfcModel.ListDependencies()

● IpfcModel.ListDeclaredModels()

● IpfcModel.CheckIsModifiable()

● IpfcModel.CheckIsSaveAllowed()

The property IpfcModel.FileName retrieves the model file name in the "name"."type" format.

The property IpfcModel.CommonName retrieves the common name for the model. This name is
displayed for the model in Windchill PDMLink.

Use the method IpfcModel.IsCommonNameModifiable() to identify if the common name of the model
can be modified. You can modify the name for models that are not yet owned by Windchill PDMLink, or
in certain situations if the configuration option let_proe_rename_pdm_objects is set to yes.

The property IpfcModel.FullName retrieves the full name of the model in the instance <generic> format.

The property IpfcModel.GenericName retrieves the name of the generic model. If the model is not an
instance, this name must be NULL or an empty string.

The property IpfcModel.InstanceName retrieves the name of the model. If the model is an instance, this
method retrieves the instance name.

The property IpfcModel.Origin returns the complete path to the file from which the model was opened.
This path can be a location on disk from a Windchill workspace, or from a downloaded URL.

The property IpfcModel.RelationId retrieves the relation identifier of the specified model. It can be
NULL.

The property IpfcModel.Descr returns the descriptor for the specified model. Model descriptors can be
used to represent models not currently in session.

Note:
From Pro/ENGINEER Wildfire 4.0 onwards, the properties pfcModel.Model.GetFullName,
pfcModel.Model.GetGenericName, and IpfcModel.Descr throw an exception
IpfcXtoolkitCantOpen if called on a model instance whose immediate generic is not in session.
Handle this exception and typecast the model as IpfcSolid, which in turn can be typecast as
IpfcFamilyMember, and use the method IpfcFamilyMember.GetImmediateGenericInfo() to get
the model descriptor of the immediate generic model. The model descriptor can be used to derive
the full name or generic name of the model. If you wish to switch off this behavior and continue
to run legacy applications in the pre-Wildfire 4.0 mode, set the configuration option
retrieve_instance_dependencies to "instance_and_generic_deps".

The property IpfcModel.Type returns the type of model in the form of the IpfcModelType object. The
types of models are as follows:

�❍ EpfcMDL_ASSEMBLY--Specifies an assembly.
�❍ EpfcMDL_PART--Specifies a part.
�❍ EpfcMDL_DRAWING--Specifies a drawing.
�❍ EpfcMDL_2D_SECTION--Specifies a 2D section.
�❍ EpfcMDL_LAYOUT--Specifies a layout.
�❍ EpfcMDL_DWG_FORMAT--Specifies a drawing format.
�❍ EpfcMDL_MFG--Specifies a manufacturing model.
�❍ EpfcMDL_REPORT--Specifies a report.
�❍ EpfcMDL_MARKUP--Specifies a drawing markup.
�❍ EpfcMDL_DIAGRAM--Specifies a diagram

The property IpfcModel.IsModified identifies whether the model has been modified since it was last
saved.

The property IpfcModel.Version returns the version of the specified model from the PDM system. It can
be NULL, if not set.

The property IpfcModel.Revision returns the revision number of the specified model from the PDM
system. It can be NULL, if not set.

The property IpfcModel.Branch returns the branch of the specified model from the PDM system. It can
be NULL, if not set.

The property IpfcModel.ReleaseLevel returns the release level of the specified model from the PDM
system. It can be NULL, if not set.

The property IpfcModel.VersionStamp returns the version stamp of the specified model. The version
stamp is a Pro/ENGINEER specific identifier that changes with each change made to the model.

The method IpfcModel.ListDependencies() returns a list of the first-level dependencies for the specified
model in the Pro/ENGINEER workspace in the form of the IpfcDependencies object.

The method IpfcModel.ListDeclaredModels() returns a list of all the first-level objects declared for the
specified model.

The method IpfcModel.CheckIsModifiable() identifies if a given model can be modified without
checking for any subordinate models. This method takes a boolean argument ShowUI that determines
whether the Pro/ENGINEER conflict resolution dialog box should be displayed to resolve conflicts, if
detected. If this argument is false, then the conflict resolution dialog box is not displayed, and the model
can be modified only if there are no conflicts that cannot be overridden, or are resolved by default
resolution actions. For a generic model, if ShowUI is true, then all instances of the model are also
checked.

The method IpfcModel.CheckIsSaveAllowed() identifies if a given model can be saved along with all of
its subordinate models. The subordinate models can be saved based on their modification status and the
value of the configuration option save_objects. This method also checks the current user interface
context to identify if it is currently safe to save the model. Thus, calling this method at different times
might return different results. This method takes a boolean argument ShowUI. Refer to the previous
method for more information on this argument.

Model Operations

Methods and Property Introduced:

● IpfcModel.Backup()

● IpfcModel.Copy()

● IpfcModel.CopyAndRetrieve()

● IpfcModel.Rename()

● IpfcModel.Save()

● IpfcModel.Erase()

● IpfcModel.EraseWithDependencies()

● IpfcModel.Delete()

● IpfcModel.Display()

● IpfcModel.CommonName

These model operations duplicate most of the commands available in the Pro/ENGINEER File menu.

The method IpfcModel.Backup() makes a backup of an object in memory to a disk in a specified
directory.

The method IpfcModel.Copy() copies the specified model to another file.

The method IpfcModel.CopyAndRetrieve() copies the model to another name, and retrieves that new
model into session.

The method IpfcModel.Rename() renames a specified model.

The method IpfcModel.Save() stores the specified model to a disk.

The method IpfcModel.Erase() erases the specified model from the session. Models used by other
models cannot be erased until the models dependent upon them are erased.

The method IpfcModel.EraseWithDependencies() erases the specified model from the session and all
the models on which the specified model depends from disk, if the dependencies are not needed by other
items in session.

The method IpfcModel.Delete() removes the specified model from memory and disk.

The method IpfcModel.Display() displays the specified model. You must call this method if you create a
new window for a model because the model will not be displayed in the window until you call IpfcModel.

Display.

The property IpfcModel.CommonName modifies the common name of the specified model. You can
modify this name for models that are not yet owned by Windchill PDMLink, or in certain situations if the
configuration option let_proe_rename_pdm_objects is set to yes.

Running ModelCHECK

ModelCHECK is an integrated application that runs transparently within Pro/ENGINEER. ModelCHECK
uses a configurable list of company design standards and best modeling practices. You can configure
ModelCHECK to run interactively or automatically when you regenerate or save a model.

Methods and Properties Introduced:

● IpfcBaseSession.ExecuteModelCheck()

● CCpfcModelCheckInstructions.Create()

● IpfcModelCheckInstructions.ConfigDir

● IpfcModelCheckInstructions.Mode

● IpfcModelCheckInstructions.OutputDir

● IpfcModelCheckInstructions.ShowInBrowser

● IpfcModelCheckResults.NumberOfErrors

● IpfcModelCheckResults.NumberOfWarnings

● IpfcModelCheckResults.WasModelSaved

You can run ModelCHECK from an external application using the method IpfcBaseSession.
ExecuteModelCheck(). This method takes the model Model on which you want to run ModelCHECK
and instructions in the form of the object IpfcModelCheckInstructions as its input parameters. This
object contains the following parameters:

�❍ ConfigDir--Specifies the location of the configuration files. If this parameter is set to NULL, the default
ModelCHECK configuration files are used.

�❍ Mode--Specifies the mode in which you want to run ModelCHECK. The modes are:
- MODELCHECK_GRAPHICS--Interactive mode
- MODELCHECK_NO_GRAPHICS--Batch mode

�❍ OutputDir--Specifies the location for the reports. If you set this parameter to NULL, the default
ModelCHECK directory, as per config_init.mc, will be used.

�❍ ShowInBrowser--Specifies if the results report should be displayed in the Web browser.

The method CCpfcModelCheckInstructions.Create() creates the IpfcModelCheckInstructions object
containing the ModelCHECK instructions described above.

Use the methods and properties IpfcModelCheckInstructions.ConfigDir,
IpfcModelCheckInstructions.Mode, IpfcModelCheckInstructions.OutputDir, and
IpfcModelCheckInstructions.ShowInBrowser to modify the ModelCHECK instructions.

The method IpfcBaseSession.ExecuteModelCheck() returns the results of the ModelCHECK run in the
form of the IpfcModelCheckResults object. This object contains the following parameters:

�❍ NumberOfErrors--Specifies the number of errors detected.
�❍ NumberOfWarnings--Specifies the number of warnings found.
�❍ WasModelSaved--Specifies whether the model is saved with updates.

Use the properties IpfcModelCheckResults.NumberOfErrors, pfcModelCheck.ModelCheckResults.
GetNumberOfWarning, and IpfcModelCheckResults.WasModelSaved to access the results obtained.

Custom Checks

This section describes how to define custom checks in ModelCHECK that users can run using the
standard ModelCHECK interface in Pro/ENGINEER.

To define and register a custom check:

1. Set the CUSTMTK_CHECKS_FILE configuration option in the start configuration file to a text
file that stores the check definition. For example:

CUSTMTK_CHECKS_FILE text/custmtk_checks.txt
2. Set the contents of the CUSTMTK_CHECKS_FILE file to define the checks. Each check should list

the following items:

● DEF_<checkname>--Specifies the name of the check. The format must be
CHKTK_<checkname>_<mode>, where mode is PRT, ASM, or DRW.

● TAB_<checkname>--Specifies the tab category in the ModelCHECK report under which the
check is classified. Valid tab values are:

- INFO
- PARAMETER
- LAYER
- FEATURE
- RELATION
- DATUM
- MISC
- VDA
- VIEWS

● MSG_<checkname>--Specifies the description of the check that appears in the lower part of the
ModelCHECK report when you select the name.

● DSC_<checkname>--Specifies the name of the check as it appears in the ModelCHECK report
table.

● ERM_<checkname>--If set to INFO, the check is considered an INFO check and the report table

displays the text from the first item returned by the check, instead of a count of the items.
Otherwise, this value must be included, but is ignored by Pro/ENGINEER.

See the Example 1: Text File for Custom Checks for a sample custom checks text file.
3. Add the check and its values to the ModelCHECK configuration file.

4. Register the ModelCHECK check from the VB API application.

Note:
Other than the requirements listed above, the VB API custom checks do not have access to the
rest of the values in the ModelCHECK configuration files. All the custom settings specific to the
check, such as start parameters, constants, and so on, must be supported by the user application
and not ModelCHECK.

Registering Custom Checks

Methods and Properties Introduced:

● IpfcBaseSession.RegisterCustomModelCheck()

● CCpfcCustomCheckInstructions.Create()

● IpfcCustomCheckInstructions.CheckName

● IpfcCustomCheckInstructions.CheckLabel

● IpfcCustomCheckInstructions.Listener

● IpfcCustomCheckInstructions.ActionButtonLabel

● IpfcCustomCheckInstructions.UpdateButtonLabel

The method IpfcBaseSession.RegisterCustomModelCheck() registers a custom check that can be
included in any ModelCHECK run. This method takes the instructions in the form of the
IpfcCustomCheckInstructions object as its input argument. This object contains the following
parameters:

�❍ CheckName--Specifies the name of the custom check.
�❍ CheckLabel--Specifies the label of the custom check.
�❍ Listener--Specifies the listener object containing the custom check methods. Refer to the section Custom

Check Listeners for more information.
�❍ ActionButtonLabel--Specifies the label for the action button. If you specify NULL for this parameter,

this button is not shown.
�❍ UpdateButtonLabel--Specifies the label for the update button. If you specify NULL for this parameter,

this button is not shown.

The method CCpfcCustomCheckInstructions.Create() creates the IpfcCustomCheckInstructions
object containing the custom check instructions described above.

Use the methodsproperties IpfcCustomCheckInstructions.CheckName,
IpfcCustomCheckInstructions.CheckLabel, IpfcCustomCheckInstructions.Listener,
IpfcCustomCheckInstructions.ActionButtonLabel, and IpfcCustomCheckInstructions.
UpdateButtonLabel to modify the instructions.

The following figure illustrates how the results of some custom checks might be displayed in the
ModelCHECK report.

Custom Check Listeners

Methods and Properties Introduced:

● IpfcModelCheckCustomCheckListener.OnCustomCheck()

● CCpfcCustomCheckResults.Create()

● IpfcCustomCheckResults.ResultsCount

● IpfcCustomCheckResults.ResultsTable

● IpfcCustomCheckResults.ResultsUrl

● IpfcModelCheckCustomCheckListener.OnCustomCheckAction()

● IpfcModelCheckCustomCheckListener.OnCustomCheckUpdate()

The interface IpfcModelCheckCustomCheckListener provides the method signatures to implement a
custom ModelCheck check.

Each listener method takes the following input arguments:

�❍ CheckName--The name of the custom check as defined in the original call to the method pfcSession.
BaseSession.RegisterCustomModelCheck.

�❍ Mdl--The model being checked.

The application method that overrides IpfcModelCheckCustomCheckListener.OnCustomCheck() is
used to evaluate a custom defined check. The user application runs the check on the specified model
and returns the results in the form of the IpfcCustomCheckResults object. This object contains the
following parameters:

�❍ ResultsCount--Specifies an integer indicating the number of errors found by the check. This value is
displayed in the ModelCHECK report generated.

�❍ ResultsTable--Specifies a list of text descriptions of the problem encountered for each error or warning.
�❍ ResultsUrl--Specifies the link to an application-owned page that provides information on the results of

the custom check.

The method CCpfcCustomCheckResults.Create() creates the IpfcCustomCheckResults object
containing the custom check results described above.

Use the properties IpfcCustomCheckResults.ResultsCount, IpfcCustomCheckResults.ResultsTable,
and IpfcCustomCheckResults.ResultsUrl listed above to modify the custom checks results obtained.

The method that overrides IpfcModelCheckCustomCheckListener.OnCustomCheckAction() is called
when the custom check's Action button is pressed. The input supplied includes the text selected by the
user from the custom check results.

The function that overrides IpfcModelCheckCustomCheckListener.OnCustomCheckUpdate() is
called when the custom check's Update button is pressed. The input supplied includes the text selected by
the user from the custom check results.

Custom ModelCHECK checks can have an Action button to highlight the problem, and possibly an
Update button to fix it automatically.

The following figure displays the ModelCHECK report with an Action button that invokes the
IpfcModelCheckCustomCheckListener.OnCustomCheckAction() listener method.

Example 1: Text File for Custom Checks

The following is the text file custmtk_checks.txt for custom checks examples.

Custom TK Check File
def-name of check as registered

MDLPARAM_NAME
DEF_MDLPARAM_NAME CHKTK_MDLPARAM_NAME_PRT
TAB_MDLPARAM_NAME DATUM
MSG_MDLPARAM_NAME CUSTOM : Datum - Model Param Name
ERM_MDLPARAM_NAME CUSTOM : Datum - Invalid Parameter value.
DSC_MDLPARAM_NAME CUSTOM : Datum - Check Model Parameter Name.

MODEL_ACCURACY
DEF_MODEL_ACCURACY CHKTK_MODEL_ACCURACY_PRT

TAB_MODEL_ACCURACY DATUM
MSG_MODEL_ACCURACY CUSTOM : Datum - Report Model accuracy type
ERM_MODEL_ACCURACY CUSTOM : Datum - Report Model accuracy type
DSC_MODEL_ACCURACY CUSTOM : Datum - Report Model accuracy type

DWGVIEW_GENERIC
DEF_DWGVIEW_GENERIC CHKTK_DWGVIEW_GENERIC_DRW
TAB_DWGVIEW_GENERIC VIEWS
MSG_DWGVIEW_GENERIC CUSTOM : Drawing views containing generic models:
ERM_DWGVIEW_GENERIC N/A
DSC_DWGVIEW_GENERIC CUSTOM : Drawing Views using Generics

Example 2: Registering Custom ModelCHECK Checks

This example demonstrates how to register custom ModelCHECK checks using the VB API. The
following custom checks are registered:

�❍ CHKTK_MDLPARAM_NAME--Determines if the model has a parameter whose name is equal to the
model name.

�❍ CHKTK_MODEL_ACCURACY--Checks the type of accuracy defined for the model.
�❍ CHKTK_DWGVIEW_GENERIC--Drawing mode check that identifies the drawing views that use

generic models.

 Dim aC As pfcls.IpfcAsyncConnection

 Public Sub New(ByRef asyncConnection As pfcls.IpfcAsyncConnection)
 aC = asyncConnection
 End Sub

'==
 'Function : addCheck
 'Purpose : This function is used to register Model checks for part
 ' and drawing models.
'==
 Public Sub addCheck(ByVal bParamName As Boolean, ByVal bAccType As
 Boolean, _ByVal bDwgView As Boolean)

 Dim instructions As IpfcCustomCheckInstructions
 Dim paramCheck As ModelParamNameCheck
 Dim accCheck As ModelAccTypeCheck
 Dim drwCheck As ModelGenDrawViewCheck
 Dim checksAdded As Integer = 0

 Try
'==
 'Create check instructions for Param Name
'==
 If bParamName Then
 paramCheck = New ModelParamNameCheck(aC.Session)

 instructions = (New CCpfcCustomCheckInstructions). _

 Create("CHKTK_MDLPARAM_NAME", _
 "Model with invalid parameter : Datum", paramCheck)
 instructions.UpdateButtonLabel = "Update Model Parameter"

'==
 'If the check is aldready registered, then do nothing
'==
 Try
 aC.Session.RegisterCustomModelCheck(instructions)
 checksAdded = checksAdded + 1
 Catch ex As Exception
 If Not ex.Message.ToString = "pfcXToolkitFound" Then
 Throw ex
 End If
 End Try
 End If

'==
 'Create check instructions for Accuracy Type
'==
 If bAccType Then
 accCheck = New ModelAccTypeCheck

 instructions = (New CCpfcCustomCheckInstructions). _
 Create("CHKTK_MODEL_ACCURACY", _
 "Check Model Accuracy : Datum", accCheck)
'==
 'If the check is aldready registered, then do nothing
'==
 Try
 aC.Session.RegisterCustomModelCheck(instructions)
 checksAdded = checksAdded + 1
 Catch ex As Exception
 If Not ex.Message.ToString = "pfcXToolkitFound" Then
 Throw ex
 End If
 End Try

 End If

'==
 'Create check instructions for Drawing View display
'==
 If bDwgView Then

 drwCheck = New ModelGenDrawViewCheck(aC.Session)
 instructions = (New CCpfcCustomCheckInstructions). _
 Create("CHKTK_DWGVIEW_GENERIC", _
 "Drawing Views Generic : View", drwCheck)
 instructions.ActionButtonLabel = "Highlight View"

'==
 'If the check is aldready registered, then do nothing

'==
 Try
 aC.Session.RegisterCustomModelCheck(instructions)
 checksAdded = checksAdded + 1
 Catch ex As Exception
 If Not ex.Message.ToString = "pfcXToolkitFound" Then
 Throw ex
 End If
 End Try

 End If

Example 3: Implementing a Model Name Parameter Check

The following example defines the custom ModelCHECK check for the parameter name in a model. This
check updates the parameter name to be equal to the model name, if the parameter exists with a different
name, or creates the parameter with the model name if it does not exist.

'==
 'Class : ModelParamNameCheck
 'Purpose : This class is used for checking if correct paramter is
 ' present in model being checked and providing correction
 ' actions if that is not the case
'==
 Private Class ModelParamNameCheck
 Implements ICIPClientObject
 Implements IpfcActionListener
 Implements IpfcModelCheckCustomCheckListener

 Const ParamName As String = "MDL_NAME_PARAM"
 Dim session As IpfcSession

 Public Sub New(ByVal asyncSession As IpfcSession)
 session = asyncSession
 End Sub

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcModelCheckCustomCheckListener"
 End Function

'==
 'Function : OnCustomCheck
 'Purpose : Check function for the Parameter ModelCheck
'==
 Public Function OnCustomCheck(ByVal _CheckName As String, ByVal _Mdl
 As pfcls.IpfcModel) As pfcls.IpfcCustomCheckResults
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheck

 Dim result As IpfcCustomCheckResults = Nothing
 Dim resultCount As Integer = 0
 Dim resultTable As Cstringseq
 Dim paramCompResult As Integer

 Try
 paramCompResult = ModelParamNameCompare(_Mdl, ParamName)
 resultTable = New Cstringseq

 If paramCompResult = CORRECT_PARAM_VALUE Then
 resultTable = Nothing
 resultCount = 0
 Else
 resultCount = resultCount + 1

 Select Case paramCompResult

 Case MISSING_PARAM
 resultTable.Append("Parameter " + ParamName + _
 " not found in the model " + _Mdl.FullName)

 Case INVALID_PARAM_TYPE
 resultTable.Append("Parameter " + ParamName + " in " + _
 _Mdl.FullName + " is not a String parameter")

 Case INCORRECT_PARAM_VALUE
 resultTable.Append("Parameter " + ParamName + _
 " value does not match model name " +
 _Mdl.FullName)
 End Select
 End If

 result = (New CCpfcCustomCheckResults).Create(resultCount)
 result.ResultsTable = resultTable
 result.ResultsUrl = "http://www.ptc.com/"

 Return result

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try
 End Function
 Public Sub OnCustomCheckAction(ByVal _CheckName As String, ByVal
 _Mdl As pfcls.IpfcModel, ByVal _SelectedItem As Object)
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheckAction

 End Sub

'==
 'Function : OnCustomCheckUpdate
 'Purpose : Update function for the Parameter ModelCheck

'==
 Public Sub OnCustomCheckUpdate(ByVal _CheckName As String, ByVal
 _Mdl As pfcls.IpfcModel, ByVal _SelectedItem As Object)
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheckUpdate

 Dim paramCompResult As Integer
 Dim param As IpfcParameter
 Dim paramValue As IpfcParamValue
 Dim message As Cstringseq

 Try

 paramCompResult = ModelParamNameCompare(_Mdl, ParamName)
 If Not paramCompResult = CORRECT_PARAM_VALUE Then
 message = New Cstringseq
 message.Set(0, ParamName)

 Select Case paramCompResult

 Case MISSING_PARAM
 paramValue = (New
 CMpfcModelItem).CreateStringParamValue(_Mdl.FullName)
 CType(_Mdl, IpfcParameterOwner).CreateParam(ParamName,
 paramValue)
 session.UIDisplayMessage("pfcModelCheckExamples.txt", "UG
 CustomCheck: MDL PARAM UPDATED", message)

 Case INCORRECT_PARAM_VALUE
 paramValue = (New
 CMpfcModelItem).CreateStringParamValue(_Mdl.FullName)
 param = _Mdl.GetParam(ParamName)
 CType(param, IpfcBaseParameter).Value = paramValue
 session.UIDisplayMessage("pfcModelCheckExamples.txt", "UG
 CustomCheck: MDL PARAM UPDATED", message)

 Case INVALID_PARAM_TYPE
 session.UIDisplayMessage("pfcModelCheckExamples.txt", "UG
 CustomCheck: MDL PARAM UPDATE TYPE", message)

 End Select
 End If

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub

 Const MISSING_PARAM As Integer = 999
 Const INVALID_PARAM_TYPE As Integer = 9999
 Const CORRECT_PARAM_VALUE As Integer = 0
 Const INCORRECT_PARAM_VALUE As Integer = 1
'==

 'Function : ModelParamNameCompare
 'Purpose : Utility function to check if given param is present
 in model and its value is equal to model name
'==
 Private Function ModelParamNameCompare(ByVal model As IpfcModel, _
 ByVal paramName As String) _
 As Integer
 Dim param As IpfcParameter
 Dim paramValue As IpfcParamValue

 param = CType(model, IpfcParameterOwner).GetParam(paramName)
 If param Is Nothing Then
 Return MISSING_PARAM
 End If

 paramValue = param.Value

 If Not paramValue.discr = EpfcParamValueType.EpfcPARAM_STRING Then
 Return INVALID_PARAM_TYPE
 End If

 If paramValue.StringValue = model.FullName Then
 Return CORRECT_PARAM_VALUE
 Else
 Return INCORRECT_PARAM_VALUE
 End If

 End Function

 End Class

Example 4: Implementing a Model Accuracy Type Check

The following example defines the custom ModelCHECK check for the type of accuracy whether relative
or absolute that has been set for a model. This check has a check listener method, but no action or update
listener method since it is an info-only check.

'==
 'Class : ModelAccTypeCheck
 'Purpose : This class is used for checking which accuracy type has
 ' been set, relative or absolute
'==
 Private Class ModelAccTypeCheck
 Implements ICIPClientObject
 Implements IpfcActionListener
 Implements IpfcModelCheckCustomCheckListener

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName

 GetClientInterfaceName = "IpfcModelCheckCustomCheckListener"
 End Function

'==
 'Function : OnCustomCheck
 'Purpose : Check function for the Model Accuracy Type
'==
 Public Function OnCustomCheck(ByVal _CheckName As String, ByVal _Mdl
 As pfcls.IpfcModel) As pfcls.IpfcCustomCheckResults
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheck

 Dim result As IpfcCustomCheckResults = Nothing
 Dim resultCount As Integer = 0
 Dim resultTable As Cstringseq
 Dim accuracy As Object

 Try
 resultCount = resultCount + 1
 resultTable = New Cstringseq

 accuracy = CType(_Mdl, IpfcSolid).AbsoluteAccuracy
 If accuracy Is Nothing Then
 resultTable.Append("Relative accuracy")
 Else
 resultTable.Append("Absolute Accuracy")
 End If

 result = (New CCpfcCustomCheckResults).Create(resultCount)
 result.ResultsTable = resultTable
 Return result

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try
 End Function

 Public Sub OnCustomCheckAction(ByVal _CheckName As String, ByVal
 _Mdl As pfcls.IpfcModel, ByVal _SelectedItem As Object)
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheckAction

 End Sub

 Public Sub OnCustomCheckUpdate(ByVal _CheckName As String, ByVal
 _Mdl As pfcls.IpfcModel, ByVal _SelectedItem As Object)
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheckUpdate

 End Sub

 End Class

Example 5: Implementing a Check for Drawing Views Using Generic Models

The following example defines the custom ModelCHECK check for identifying drawing views using
generic models. This check has a check listener method and an action listener method to highlight the
views that use generic models.

'==
 'Class : ModelGenDrawViewCheck
 'Purpose : This class is used for checking generics in drawing
 ' views. Outputs a list of the view names.
'==
 Private Class ModelGenDrawViewCheck
 Implements ICIPClientObject
 Implements IpfcActionListener
 Implements IpfcModelCheckCustomCheckListener

 Dim session As IpfcSession

 Public Sub New(ByVal asyncSession As IpfcSession)
 session = asyncSession
 End Sub

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcModelCheckCustomCheckListener"
 End Function

'==
 'Function : OnCustomCheck
 'Purpose : Check function for the generic Views in drawing
'==
 Public Function OnCustomCheck(ByVal _CheckName As String, ByVal _Mdl
 As pfcls.IpfcModel) As pfcls.IpfcCustomCheckResults
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheck
 Dim result As IpfcCustomCheckResults = Nothing
 Dim resultCount As Integer = 0
 Dim resultTable As Cstringseq
 Dim drawing As IpfcDrawing
 Dim model As IpfcModel
 Dim solid As IpfcSolid
 Dim views As IpfcView2Ds
 Dim view As IpfcView2D
 Dim i As Integer

 Try
 resultTable = New Cstringseq

 drawing = CType(_Mdl, IpfcDrawing)
 views = drawing.List2DViews

 For i = 0 To views.Count - 1
 view = views(i)
 model = view.GetModel()
 solid = CType(model, IpfcSolid)
 If solid.Parent Is Nothing Then
 resultCount = resultCount + 1
 resultTable.Append(view.Name)
 End If
 Next
 result = (New CCpfcCustomCheckResults).Create(resultCount)
 result.ResultsTable = resultTable
 Return result

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try

 End Function
'==
 'Function : OnCustomCheck
 'Purpose : Check function which highlights the selected
 drawing view
'==
 Public Sub OnCustomCheckAction(ByVal _CheckName As String,
 ByVal _Mdl As pfcls.IpfcModel, ByVal _SelectedItem As Object)
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheckAction

 Const DELTA_X As Double = 10.0 'Screen coordinates
 Const DELTA_Y As Double = 10.0 'Screen coordinates
 Dim drawing As IpfcDrawing
 Dim view As IpfcView2D
 Dim outline As CpfcOutline3D
 Dim point0, point1, point2, point3, point4 As CpfcPoint3D
 Dim points As CpfcPoint3Ds

 Dim lineStyle As Integer
 Dim graphicsColour As Integer

 Try
 If Not (_SelectedItem Is Nothing) Then
 drawing = CType(_Mdl, IpfcDrawing)
 view = drawing.GetViewByName(_SelectedItem.ToString)
 outline = view.Outline

 points = New CpfcPoint3Ds

 point0 = New CpfcPoint3D
 point0.Set(0, outline.Item(0).Item(0) - DELTA_X)
 point0.Set(1, outline.Item(0).Item(1) - DELTA_Y)
 point0.Set(2, 0.0)
 points.Insert(0, point0)

 point1 = New CpfcPoint3D
 point1.Set(0, outline.Item(0).Item(0) - DELTA_X)
 point1.Set(1, outline.Item(1).Item(1) + DELTA_Y)
 point1.Set(2, 0.0)
 points.Insert(1, point1)

 point2 = New CpfcPoint3D
 point2.Set(0, outline.Item(1).Item(0) + DELTA_X)
 point2.Set(1, outline.Item(1).Item(1) + DELTA_Y)
 point2.Set(2, 0.0)
 points.Insert(2, point2)

 point3 = New CpfcPoint3D
 point3.Set(0, outline.Item(1).Item(0) + DELTA_X)
 point3.Set(1, outline.Item(0).Item(1) - DELTA_Y)
 point3.Set(2, 0.0)
 points.Insert(3, point3)

 point4 = New CpfcPoint3D
 point4.Set(0, outline.Item(0).Item(0) - DELTA_X)
 point4.Set(1, outline.Item(0).Item(1) - DELTA_Y)
 point4.Set(2, 0.0)
 points.Insert(4, point4)

 graphicsColour = session.CurrentGraphicsColor
 session.CurrentGraphicsColor = EpfcStdColor.EpfcCOLOR_HIGHLIGHT

 lineStyle =
 session.SetLineStyle(EpfcStdLineStyle.EpfcLINE_PHANTOM)

 session.DrawPolyline(points)

 lineStyle = session.SetLineStyle(lineStyle)
 session.CurrentGraphicsColor = graphicsColour

 End If

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub

 Public Sub OnCustomCheckUpdate(ByVal _CheckName As String,
 ByVal _Mdl As pfcls.IpfcModel, ByVal _SelectedItem As Object)
 Implements pfcls.IpfcModelCheckCustomCheckListener.OnCustomCheckUpdate

 End Sub

 End Class

Example 6: Changes to the ModelCHECK Configuration Files to enable Custom Checks

Lines added to the ModelCheck configuration file (default_checks.mch)
 E Check the item. If not succeed, report as an error
 W Check the item. If not succeed, report as a warning
 N Do not check the item.
 Y Check the item. If not succeed, do not report err or warn

CHKTK_MDLPARAM_NAME_PRT YNEW E E E E Y
CHKTK_MODEL_ACCURACY_PRT YNEW Y Y Y Y Y
CHKTK_DWGVIEW_GENERIC_DRW YNEW E E E E Y

Lines added to the ModelCheck start file (sample_start.mcs)
CUSTMTK_CHECKS_FILE custmtk_checks.txt

Drawings

This section describes how to program drawing functions using the VB API.

Topic

Overview of Drawings in the VB API
Creating Drawings from Templates
Obtaining Drawing Models
Drawing Information
Drawing Operations
Drawing Sheets
Drawing Views
Drawing Dimensions
Drawing Tables
Detail Items
Detail Entities
OLE Objects
Detail Notes
Detail Groups
Detail Symbols
Detail Attachments

Overview of Drawings in the VB API

This section describes the functions that deal with drawings. You can create drawings of all Pro/ENGINEER models
using the functions in the VB API. You can annotate the drawing, manipulate dimensions, and use layers to manage the
display of different items.

Unless otherwise specified, the VB API functions that operate on drawings use world units.

Creating Drawings from Templates

Drawing templates simplify the process of creating a drawing using the VB API. Pro/ENGINEER can create views, set
the view display, create snap lines, and show the model dimensions based on the template. Use templates to:

�❍ Define layout views
�❍ Set view display
�❍ Place notes
�❍ Place symbols
�❍ Define tables
�❍ Show dimensions

Method Introduced:

● IpfcBaseSession.CreateDrawingFromTemplate()

Use the method IpfcBaseSession.CreateDrawingFromTemplate() to create a drawing from the drawing template and
to return the created drawing. The attributes are:

�❍ New drawing name
�❍ Name of an existing template
�❍ Name and type of the solid model to use while populating template views
�❍ Sequence of options to create the drawing. The options are as follows:

- EpfcDRAWINGCREATE_DISPLAY_DRAWING--display the new drawing.
- EpfcDRAWINGCREATE_SHOW_ERROR_DIALOG--display the error dialog box.
- EpfcDRAWINGCREATE_WRITE_ERROR_FILE--write the errors to a file.
- EpfcDRAWINGCREATE_PROMPT_UNKNOWN_PARAMS--prompt the user on encountering unknown
parameters.

Drawing Creation Errors

The exception XToolkitDrawingCreateErrors is thrown if an error is encountered when creating a drawing from a
template. This exception contains a list of errors which occurred during drawing creation.

Note:
When this exception type is encountered, the drawing is actually created, but some of the contents failed to
generate correctly.

The exception message will list the details for each error including its type, sheet number, view name, and (if
applicable) item name, The types of errors are as follows:

- EpfcDWGCREATE_ERR_SAVED_VIEW_DOESNT_EXIST--Saved view does not exist.
- EpfcDWGCREATE_ERR_X_SEC_DOESNT_EXIST--Specified cross section does not exist.
- EpfcDWGCREATE_ERR_EXPLODE_DOESNT_EXIST--Exploded state did not exist.
- EpfcDWGCREATE_ERR_MODEL_NOT_EXPLODABLE--Model
cannot be exploded.
- EpfcDWGCREATE_ERR_SEC_NOT_PERP--Cross section view not perpendicular to the given view.
- EpfcDWGCREATE_ERR_NO_RPT_REGIONS--Repeat regions not available.
- EpfcDWGCREATE_ERR_FIRST_REGION_USED--Repeat region was unable to use the region specified.
- EpfcDWGCREATE_ERR_NOT_PROCESS_ASSEM-- Model is not a process assembly view.
- EpfcDWGCREATE_ERR_NO_STEP_NUM--The process step number does not exist.
- EpfcDWGCREATE_ERR_TEMPLATE_USED--The template does not exist.
- EpfcDWGCREATE_ERR_NO_PARENT_VIEW_FOR_PROJ--There is no possible parent view for this projected
view.
- EpfcDWGCREATE_ERR_CANT_GET_PROJ_PARENT--Could not get the projected parent for a drawing view.
- EpfcDWGCREATE_ERR_SEC_NOT_PARALLEL--The designated cross section was not parallel to the created
view.
- EpfcDWGCREATE_ERR_SIMP_REP_DOESNT_EXIST--The designated simplified representation does not exist.

Example: Drawing Creation from a Template

The following code creates a new drawing using a predefined template.

Imports System.IO
Imports pfcls

Public Class pfcDrawingExamples
 Public Sub createDrawingFromTemplate(ByRef session As IpfcBaseSession,
 ByVal drawingName As String)
 Dim predefinedTemplate As String = "c_drawing"
 Dim model As IpfcModel
 Dim drawingOptions As New CpfcDrawingCreateOptions
 Dim drawing As IpfcDrawing

 Try
'==
'Use the current model to create the drawing
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If

 drawingOptions.Insert(0, EpfcDrawingCreateOption.
EpfcDRAWINGCREATE_DISPLAY_DRAWING)
 drawingOptions.Insert(1, EpfcDrawingCreateOption.
EpfcDRAWINGCREATE_SHOW_ERROR_DIALOG)
 drawing = session.CreateDrawingFromTemplate(drawingName, predefinedTemplate,
_model.Descr, drawingOptions)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub

End Class

Obtaining Drawing Models

This section describes how to obtain drawing models.

Methods Introduced:

● IpfcBaseSession.RetrieveModel()

● IpfcBaseSession.GetModel()

● IpfcBaseSession.GetModelFromDescr()

● IpfcBaseSession.ListModels()

● IpfcBaseSession.ListModelsByType()

The method IpfcBaseSession.RetrieveModel() retrieves the drawing specified by the model descriptor. Model
descriptors are data objects used to describe a model file and its location in the system. The method returns the retrieved
drawing.

The method IpfcBaseSession.GetModel() returns a drawing based on its name and type, whereas IpfcBaseSession.
GetModelFromDescr() returns a drawing specified by the model descriptor. The model must be in session.

Use the method IpfcBaseSession.ListModels() to return a sequence of all the drawings in session.

Drawing Information

Methods and Property Introduced:

● IpfcModel2D.ListModels()

● IpfcModel2D.GetCurrentSolid()

● IpfcModel2D.ListSimplifiedReps()

● IpfcModel2D.TextHeight

The method IpfcModel2D.ListModels() returns a list of all the solid models used in the drawing.

The method IpfcModel2D.GetCurrentSolid() returns the current solid model of the drawing.

The method IpfcModel2D.ListSimplifiedReps() returns the simplified representations of a solid model that are
assigned to the drawing.

The property IpfcModel2D.TextHeight returns the text height of the drawing.

Drawing Operations

Methods Introduced:

● IpfcModel2D.AddModel()

● IpfcModel2D.DeleteModel()

● IpfcModel2D.ReplaceModel()

● IpfcModel2D.SetCurrentSolid()

● IpfcModel2D.AddSimplifiedRep()

● IpfcModel2D.DeleteSimplifiedRep()

● IpfcModel2D.Regenerate()

● IpfcModel2D.CreateDrawingDimension()

● IpfcModel2D.CreateView()

The method IpfcModel2D.AddModel() adds a new solid model to the drawing.

The method IpfcModel2D.DeleteModel() removes a model from the drawing. The model to be deleted should not
appear in any of the drawing views.

The method IpfcModel2D.ReplaceModel() replaces a model in the drawing with a related model (the relationship
should be by family table or interchange assembly). It allows you to replace models that are shown in drawing views
and regenerates the view.

The method IpfcModel2D.SetCurrentSolid() assigns the current solid model for the drawing. Before calling this
method, the solid model must be assigned to the drawing using the method IpfcModel2D.AddModel(). To see the
changes to parameters and fields reflecting the change of the current solid model, regenerate the drawing using the
method IpfcSheetOwner.RegenerateSheet().

The method IpfcModel2D.AddSimplifiedRep() associates the drawing with the simplified representation of an
assembly .

The method IpfcModel2D.DeleteSimplifiedRep() removes the association of the drawing with an assembly simplified
representation. The simplified representation to be deleted should not appear in any of the drawing views.

Use the method IpfcModel2D.Regenerate() to regenerate the drawing draft entities and appearance.

The method IpfcModel2D.CreateDrawingDimension() creates a new drawing dimension based on the data object that
contains information about the location of the dimension. This method returns the created dimension. Refer to the
section Drawing Dimensions.

The method IpfcModel2D.CreateView() creates a new drawing view based on the data object that contains information
about how to create the view. The method returns the created drawing view. Refer to the section Creating Drawing
Views.

Example: Replace Drawing Model Solid with its Generic

The following code replaces all solid model instances in a drawing with its generic. Models are not replaced if the
generic model is already present in the drawing.

Imports System.IO
Imports pfcls

Public Class pfcDrawingExamples

 Public Sub replaceModels(ByRef session As IpfcBaseSession)
 Dim model As IpfcModel
 Dim models As IpfcModels
 Dim drawing As IpfcDrawing
 Dim solid As IpfcSolid
 Dim generic As IpfcSolid
 Dim i As Integer

 Try
'==
'Get the current model to create the drawing
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then
 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)
'==
'Visit the drawing models
'==
 models = drawing.ListModels()
'==
'Loop on all of the drawing models
'==
 For i = 0 To models.Count - 1
 solid = CType(models.Item(i), IpfcSolid)
 generic = solid.Parent

 If Not generic Is Nothing Then

'==
'Replace all instances with their generic
'==
 drawing.ReplaceModel(solid, generic, True)
 End If
 Next

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub

Drawing Sheets

A drawing sheet is represented by its number. Drawing sheets in the VB API are identified by the same sheet numbers
seen by a Pro/Engineer user.

Note:
These identifiers may change if the sheets are moved as a consequence of adding, removing or reordering sheets.

Drawing Sheet Information

Methods and Properties Introduced

● IpfcSheetOwner.GetSheetData()

● IpfcSheetOwner.GetSheetTransform()

● IpfcSheetOwner.GetSheetScale()

● IpfcSheetOwner.GetSheetFormat()

● IpfcSheetOwner.GetSheetFormatDescr()

● IpfcSheetOwner.GetSheetBackgroundView()

● IpfcSheetOwner.NumberOfSheets

● IpfcSheetOwner.CurrentSheetNumber

● IpfcSheetOwner.GetSheetUnits()

The method IpfcSheetOwner.GetSheetData() returns sheet data including the size, orientation, and units of the sheet
specified by the sheet number.

The method IpfcSheetOwner.GetSheetTransform() returns the transformation matrix for the sheet specified by the
sheet number. This transformation matrix includes the scaling needed to convert screen coordinates to drawing
coordinates (which use the designated drawing units).

The method IpfcSheetOwner.GetSheetScale() returns the scale of the drawing on a particular sheet based on the
drawing model used to measure the scale. If no models are used in the drawing then the default scale value is 1.0.

The method IpfcSheetOwner.GetSheetFormat() returns the drawing format used for the sheet specified by the sheet
number. It returns a null value if no format is assigned to the sheet.

The method IpfcSheetOwner.GetSheetFormatDescr() returns the model descriptor of the drawing format used for the
specified drawing sheet.

The method IpfcSheetOwner.GetSheetBackgroundView() returns the view object representing the background view
of the sheet specified by the sheet number.

The property IpfcSheetOwner.NumberOfSheets returns the number of sheets in the model.

The property IpfcSheetOwner.CurrentSheetNumber returns the current sheet number in the model.

Note:
The sheet numbers range from 1 to n, where n is the number of sheets.

The method IpfcSheetOwner.GetSheetUnits() returns the units used by the sheet specified by the sheet number.

Drawing Sheet Operations

Methods Introduced:

● IpfcSheetOwner.AddSheet()

● IpfcSheetOwner.DeleteSheet()

● IpfcSheetOwner.ReorderSheet()

● IpfcSheetOwner.RegenerateSheet()

● IpfcSheetOwner.SetSheetScale()

● IpfcSheetOwner.SetSheetFormat()

The method IpfcSheetOwner.AddSheet() adds a new sheet to the model and returns the number of the new sheet.

The method IpfcSheetOwner.DeleteSheet() removes the sheet specified by the sheet number from the model.

Use the method IpfcSheetOwner.ReorderSheet() to reorder the sheet from a specified sheet number to a new sheet
number.

Note:
The sheet number of other affected sheets also changes due to reordering or deletion.

The method IpfcSheetOwner.RegenerateSheet() regenerates the sheet specified by the sheet number.

Note:
You can regenerate a sheet only if it is displayed.

Use the method IpfcSheetOwner.SetSheetScale() to set the scale of a model on the sheet based on the drawing model
to scale and the scale to be used. Pass the value of the DrawingModel parameter as null to select the current drawing
model.

Use the method IpfcSheetOwner.SetSheetFormat() to apply the specified format to a drawing sheet based on the
drawing format, sheet number of the format, and the drawing model.

The sheet number of the format is specified by the FormatSheetNumber parameter. This number ranges from 1 to the

number of sheets in the format. Pass the value of this parameter as null to use the first format sheet.

The drawing model is specified by the DrawingModel parameter. Pass the value of this parameter as null to select the
current drawing model.

Example: Listing Drawing Sheets

The following example shows how to list the sheets in the current drawing. The information is placed in an external
browser window.

 Public Sub listSheets(ByRef session As IpfcBaseSession, ByVal fileName
 As String)
 Dim file As StreamWriter = Nothing
 Dim formatName As String
 Dim model As IpfcModel
 Dim drawing As IpfcDrawing
 Dim sheets As Integer
 Dim i As Integer
 Dim sheetData As IpfcSheetData
 Dim sheetFormat As IpfcDrawingFormat
 Dim unit As String

 Try
'==
'Create file to store information to be displayed
'==
 file = New StreamWriter(fileName)
 file.WriteLine("<html><head></head><body>")
'==
'Get current model and check that it is a drawing
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then
 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)
 sheets = drawing.NumberOfSheets

 For i = 1 To sheets
'==
'Get information about each sheet
'==
 sheetData = drawing.GetSheetData(i)
 sheetFormat = drawing.GetSheetFormat(i)

 unit = "unknown"

 Select Case sheetData.Units.GetType
 Case EpfcLengthUnitType.EpfcLENGTHUNIT_CM
 unit = "cm"
 Case EpfcLengthUnitType.EpfcLENGTHUNIT_FOOT
 unit = "feet"
 Case EpfcLengthUnitType.EpfcLENGTHUNIT_INCH

 unit = "inches"
 Case EpfcLengthUnitType.EpfcLENGTHUNIT_M
 unit = "m"
 Case EpfcLengthUnitType.EpfcLENGTHUNIT_MCM
 unit = "mcm"
 Case EpfcLengthUnitType.EpfcLENGTHUNIT_MM
 unit = "mm"
 End Select
'==
'Store sheet information
'==
 file.WriteLine("<h2>Sheet " + i.ToString + "</h2>")
 file.WriteLine("<table>")
 file.WriteLine(" <tr><td> Width </td><td> " +
 sheetData.Width.ToString + " </td></tr> ")
 file.WriteLine(" <tr><td> Height </td><td> " +
 sheetData.Height.ToString + " </td></tr> ")
 file.WriteLine(" <tr><td> Units </td><td> " + unit +
 " </td></tr> ")

 If (sheetFormat Is Nothing) Then
 formatName = "none"
 Else
 formatName = sheetFormat.FullName
 End If
 file.WriteLine(" <tr><td> Format </td><td> " + formatName
 + " </td></tr> ")
 file.WriteLine("</table>")
 file.WriteLine("
")
 Next

 file.WriteLine("</body></html>")
 file.Close()
 file = Nothing

 session.CurrentWindow.SetURL(fileName)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 If Not file Is Nothing Then
 file.Close()
 End If
 End Try

 End Sub

Drawing Views

A drawing view is represented by the interface IpfcView2D. All model views in the drawing are associative, that is, if
you change a dimensional value in one view, the system updates other drawing views accordingly. The model
automatically reflects any dimensional changes that you make to a drawing. In addition, corresponding drawings also
reflect any changes that you make to a model such as the addition or deletion of features and dimensional changes.

Creating Drawing Views

Method Introduced:

● IpfcModel2D.CreateView()

The method IpfcModel2D.CreateView() creates a new view in the drawing. Before calling this method, the drawing
must be displayed in a window.

The interface IpfcView2DCreateInstructions contains details on how to create the view. The types of drawing views
supported for creation are:

�❍ EpfcDRAWVIEW GENERAL--General drawing views
�❍ EpfcDRAWVIEW PROJECTION--Projected drawing views

General Drawing Views

The interface IpfcGeneralViewCreateInstructions contains details on how to create general drawing views.

Methods and Properties Introduced:

● CCpfcGeneralViewCreateInstructions.Create()

● IpfcGeneralViewCreateInstructions.ViewModel

● IpfcGeneralViewCreateInstructions.Location

● IpfcGeneralViewCreateInstructions.SheetNumber

● IpfcGeneralViewCreateInstructions.Orientation

● IpfcGeneralViewCreateInstructions.Exploded

● IpfcGeneralViewCreateInstructions.Scale

The method CCpfcGeneralViewCreateInstructions.Create() creates the IpfcGeneralViewCreateInstructions data
object used for creating general drawing views.

Use the property IpfcGeneralViewCreateInstructions.ViewModel to assign the solid model to display in the created
general drawing view.

Use the property IpfcGeneralViewCreateInstructions.Location to assign the location in a drawing sheet to place the
created general drawing view.

Use the property IpfcGeneralViewCreateInstructions.SheetNumber to set the number of the drawing sheet in which
the general drawing view is created.

The property IpfcGeneralViewCreateInstructions.Orientation assigns the orientation of the model in the general
drawing view in the form of the IpfcTransform3D data object. The transformation matrix must only consist of the
rotation to be applied to the model. It must not consist of any displacement or scale components. If necessary, set the
displacement to {0, 0, 0} using the method IpfcTransform3D.SetOrigin(), and remove any scaling factor by
normalizing the matrix.

Use the property IpfcGeneralViewCreateInstructions.Exploded to set the created general drawing view to be an
exploded view.

Use the property IpfcGeneralViewCreateInstructions.Scale to assign a scale to the created general drawing view.
This value is optional, if not assigned, the default drawing scale is used.

Projected Drawing Views

The interface IpfcProjectionViewCreateInstructions contains details on how to create general drawing views.

Methods and Properties Introduced:

● CCpfcProjectionViewCreateInstructions.Create()

● IpfcProjectionViewCreateInstructions.ParentView

● IpfcProjectionViewCreateInstructions.Location

● IpfcProjectionViewCreateInstructions.Exploded

The method CCpfcProjectionViewCreateInstructions.Create() creates the IpfcProjectionViewCreateInstructions
data object used for creating projected drawing views.

Use the property IpfcProjectionViewCreateInstructions.ParentView to assign the parent view for the projected
drawing view.

Use the property IpfcProjectionViewCreateInstructions.Location to assign the location of the projected drawing
view. This location determines how the drawing view will be oriented.

Use the property IpfcProjectionViewCreateInstructions.Exploded to set the created projected drawing view to be an
exploded view.

Example: Creating Drawing Views

The following example code adds a new sheet to a drawing and creates three views of a selected model.

 Public Sub createSheetAndViews(ByRef session As IpfcBaseSession, ByVal
 solidName As String)
 Dim model As IpfcModel
 Dim solidModel As IpfcModel
 Dim drawing As IpfcDrawing
 Dim sheetNo As Integer
 Dim modelDesc As IpfcModelDescriptor
 Dim matrix As CpfcMatrix3D
 Dim i, j As Integer
 Dim transF As IpfcTransform3D
 Dim pointLoc As IpfcPoint3D
 Dim genViewInstructions As IpfcGeneralViewCreateInstructions
 Dim proViewInstructions As IpfcProjectionViewCreateInstructions
 Dim view2D As IpfcView2D
 Dim outline As CpfcOutline3D

 Try
'==
'Get current model and check that it is a drawing
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then

 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)
'==
'Add new sheet to drawing
'==
 sheetNo = drawing.AddSheet()
 drawing.CurrentSheetNumber = sheetNo
'==
'Find the model in session or retrieve from disk
'==
 modelDesc = (New CCpfcModelDescriptor).CreateFromFileName(solidName)
 solidModel = session.GetModelFromDescr(modelDesc)

 If solidModel Is Nothing Then
 solidModel = session.RetrieveModel(modelDesc)
 If solidModel Is Nothing Then
 Throw New Exception("Unable to load Model " + solidName)
 End If
 End If
'==
'Add the model to drawing
'==
 Try
 drawing.AddModel(solidModel)
 Catch ex As Exception
 Throw New Exception("Unable to add Model " + solidName + "
 to drawing")
 End Try
'==
'Create a general view from the Z axis direction at a predefined
'Location
'==
 matrix = New CpfcMatrix3D
 For i = 0 To 3
 For j = 0 To 3
 If i = j Then
 matrix.Set(i, j, 1.0)
 Else
 matrix.Set(i, j, 0.0)
 End If
 Next
 Next
 transF = (New CCpfcTransform3D).Create(matrix)

 pointLoc = New CpfcPoint3D
 pointLoc.Set(0, 200.0)
 pointLoc.Set(1, 600.0)
 pointLoc.Set(2, 0.0)

 genViewInstructions = (New CCpfcGeneralViewCreateInstructions). _Create
(solidModel, sheetNo,
 pointLoc, transF)

 view2D = drawing.CreateView(genViewInstructions)
'==
'Get the position and size of the new view
'==
 outline = view2D.Outline

'==
'Create a projected view to the right of the general view
'==
 pointLoc.Set(0, outline.Item(1).Item(0) + (outline.Item(1).Item(0) _ - outline.Item
(0).Item(0)))
 pointLoc.Set(1, (outline.Item(0).Item(1) + outline.Item(1).Item(1)) / 2)

 proViewInstructions = (New CCpfcProjectionViewCreateInstructions). _Create(view2D,
pointLoc)
 drawing.CreateView(proViewInstructions)
'==
'Create a projected view bellow the general view
'==
 pointLoc.Set(0, (outline.Item(0).Item(0) + outline.Item(1).Item(0)) / 2)
 pointLoc.Set(1, outline.Item(0).Item(1) - (outline.Item(1).Item(1) _ - outline.Item
(0).Item(1)))

 proViewInstructions = (New CCpfcProjectionViewCreateInstructions). _Create(view2D,
pointLoc)
 drawing.CreateView(proViewInstructions)

 drawing.Regenerate()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub

Obtaining Drawing Views

Methods and Property Introduced:

● IpfcSelection.SelView2D

● IpfcModel2D.List2DViews()

● IpfcModel2D.GetViewByName()

● IpfcModel2D.GetViewDisplaying()

● IpfcSheetOwner.GetSheetBackgroundView()

The property IpfcSelection.SelView2D returns the selected drawing view (if the user selected an item from a drawing
view). It returns a null value if the selection does not contain a drawing view.

The method IpfcModel2D.List2DViews() lists and returns the drawing views found. This method does not include the
drawing sheet background views returned by the method IpfcSheetOwner.GetSheetBackgroundView().

The method IpfcModel2D.GetViewByName() returns the drawing view based on the name. This method returns a null
value if the specified view does not exist.

The method IpfcModel2D.GetViewDisplaying() returns the drawing view that displays a dimension. This method
returns a null value if the dimension is not displayed in the drawing.

Note:

This method works for solid and drawing dimensions.

The method IpfcSheetOwner.GetSheetBackgroundView() returns the drawing sheet background views.

Drawing View Information

Methods and Properties Introduced:

● IpfcChild.DBParent

● IpfcView2D.GetSheetNumber()

● IpfcView2D.IsBackground

● IpfcView2D.GetModel()

● IpfcView2D.Scale

● IpfcView2D.GetIsScaleUserdefined()

● IpfcView2D.Outline

● IpfcView2D.GetLayerDisplayStatus()

● IpfcView2D.IsViewdisplayLayerDependent

● IpfcView2D.Display

● IpfcView2D.GetTransform()

● IpfcView2D.Name

The inherited property IpfcChild.DBParent, when called on a IpfcView2D object, provides the drawing model which
owns the specified drawing view. The return value of the method can be downcast to a IpfcModel2D object.

The method IpfcView2D.GetSheetNumber() returns the sheet number of the sheet that contains the drawing view.

The property IpfcView2D.IsBackground returns a value that indicates whether the view is a background view or a
model view.

The method IpfcView2D.GetModel() returns the solid model displayed in the drawing view.

The property IpfcView2D.Scale returns the scale of the drawing view.

The method IpfcView2D.GetIsScaleUserdefined() specifies if the drawing has a user-defined scale.

The property IpfcView2D.Outline returns the position of the view in the sheet in world units.

The method IpfcView2D.GetLayerDisplayStatus() returns the display status of the specified layer in the drawing
view.

The property IpfcView2D.Display returns an output structure that describes the display settings of the drawing view.
The fields in the structure are as follows:

�❍ Style--Whether to display as wireframe, hidden lines, no hidden lines, or shaded
�❍ TangentStyle--Linestyle used for tangent edges
�❍ CableStyle--Linestyle used to display cables
�❍ RemoveQuiltHiddenLines--Whether or not to apply hidden-line-removal to quilts
�❍ ShowConceptModel--Whether or not to display the skeleton
�❍ ShowWeldXSection--Whether or not to include welds in the cross-section

The method IpfcView2D.GetTransform() returns a matrix that describes the transform between 3D solid coordinates
and 2D world units for that drawing view. The transformation matrix is a combination of the following factors:

�❍ The location of the view origin with respect to the drawing origin.
�❍ The scale of the view units with respect to the drawing units
�❍ The rotation of the model with respect to the drawing coordinate system.

The property IpfcView2D.Name returns the name of the specified view in the drawing.

Example: Listing the Views in a Drawing

The following example creates an information window about all the views in a drawing. The information is placed in an
external browser window

 Public Sub listViews(ByRef session As IpfcBaseSession, ByVal fileName
 As String)
 Dim file As StreamWriter = Nothing
 Dim model As IpfcModel
 Dim drawing As IpfcDrawing
 Dim view2Ds As IpfcView2Ds
 Dim i As Integer
 Dim view2D As IpfcView2D
 Dim viewName As String
 Dim sheetNo As Integer
 Dim solid As IpfcModel
 Dim solidDesc As IpfcModelDescriptor
 Dim outline As CpfcOutline3D
 Dim scale As Double
 Dim viewDisplay As IpfcViewDisplay
 Dim displayStyle As String

 Try
'==
'Create file to store information to be displayed
'==
 file = New StreamWriter(fileName)
 file.WriteLine("<html><head></head><body>")
'==
'Get current model and check that it is a drawing
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then
 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)

 view2Ds = drawing.List2DViews
 For i = 0 To view2Ds.Count - 1
'==
'Get information about each view such as name, model
'==
 view2D = view2Ds.Item(i)

 viewName = view2D.Name
 sheetNo = view2D.GetSheetNumber

 solid = view2D.GetModel
 solidDesc = solid.Descr

 outline = view2D.Outline
 scale = view2D.Scale
 viewDisplay = view2D.Display
 displayStyle = "unknown"

 Select Case viewDisplay.Style
 Case EpfcDisplayStyle.EpfcDISPSTYLE_DEFAULT
 displayStyle = "default"
 Case EpfcDisplayStyle.EpfcDISPSTYLE_HIDDEN_LINE
 displayStyle = "hidden line"
 Case EpfcDisplayStyle.EpfcDISPSTYLE_NO_HIDDEN
 displayStyle = "no hidden"
 Case EpfcDisplayStyle.EpfcDISPSTYLE_SHADED
 displayStyle = "shaded"
 Case EpfcDisplayStyle.EpfcDISPSTYLE_WIREFRAME
 displayStyle = "wireframe"
 End Select
'==
'Store the view information
'==

 file.WriteLine("<h2>View " + viewName + "</h2>")
 file.WriteLine("<table>")
 file.WriteLine(" <tr><td> Sheet </td><td> " + sheetNo.ToString + " </td></tr> ")
 file.WriteLine(" <tr><td> Model </td><td> " + solidDesc.GetFullName + " </td></tr>
")
 file.WriteLine(" <tr><td> Outline </td><td> ")
 file.WriteLine("<table><tr><td> <i>Lower left:</i> </td><td>")
 file.WriteLine(outline.Item(0).Item(0).ToString + ", " +
 _outline.Item(0).Item(1).ToString + ", " +
 _outline.Item(0).Item(2).ToString)
 file.WriteLine("</td></tr><tr><td> <i>Upper right:</i></td><td>")
 file.WriteLine(outline.Item(1).Item(0).ToString + ", " +
 _outline.Item(1).Item(1).ToString + ", " +
 _outline.Item(1).Item(2).ToString)
 file.WriteLine("</td></tr></table></td>")
 file.WriteLine(" <tr><td> Scale </td><td> " + scale.ToString + " </td></tr> ")
 file.WriteLine(" <tr><td> Display Style </td><td> " + displayStyle + " </td></tr>")
 file.WriteLine("</table>")
 file.WriteLine("
")

 Next

 file.WriteLine("</body></html>")
 file.Close()
 file = Nothing

 session.CurrentWindow.SetURL(fileName)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Finally
 If Not file Is Nothing Then
 file.Close()
 End If
 End Try

 End Sub

Drawing Views Operations

Methods Introduced:

● IpfcView2D.Translate()

● IpfcView2D.Delete()

● IpfcView2D.Regenerate()

● IpfcView2D.SetLayerDisplayStatus()

The method IpfcView2D.Translate() moves the drawing view by the specified transformation vector.

The method IpfcView2D.Delete() deletes a specified drawing view. Set the DeleteChildren parameter to true to delete
the children of the view. Set this parameter to false or null to prevent deletion of the view if it has children.

The method IpfcView2D.Regenerate() erases the displayed view of the current object, regenerates the view from the
current drawing, and redisplays the view.

The method IpfcView2D.SetLayerDisplayStatus() sets the display status for the layer in the drawing view.

Drawing Dimensions

This section describes the VB API methods that give access to the types of dimensions that can be created in the
drawing mode. They do not apply to dimensions created in the solid mode, either those created automatically as a result
of feature creation, or reference dimension created in a solid. A drawing dimension or a reference dimension shown in a
drawing is represented by the interface IpfcDimension2D.

Obtaining Drawing Dimensions

Methods and Property Introduced:

● IpfcModelItemOwner.ListItems()

● IpfcModelItemOwner.GetItemById()

● IpfcSelection.SelItem

The method IpfcModelItemOwner.ListItems() returns a list of drawing dimensions specified by the parameter Type or
returns null if no drawing dimensions of the specified type are found. This method lists only those dimensions created in

the drawing.

The values of the parameter Type for the drawing dimensions are:

�❍ ITEM_DIMENSION--Dimension
�❍ ITEM_REF_DIMENSION--Reference dimension

Set the parameter Type to the type of drawing dimension to retrieve. If this parameter is set to null, then all the
dimensions in the drawing are listed.

The method IpfcModelItemOwner.GetItemById() returns a drawing dimension based on the type and the integer
identifier. The method returns only those dimensions created in the drawing. It returns a null if a drawing dimension
with the specified attributes is not found.

The property IpfcSelection.SelItem returns the value of the selected drawing dimension.

Creating Drawing Dimensions

Methods Introduced:

● CCpfcDrawingDimCreateInstructions.Create()

● IpfcModel2D.CreateDrawingDimension()

● CCpfcEmptyDimensionSense.Create()

● CCpfcPointDimensionSense.Create()

● CCpfcSplinePointDimensionSense.Create()

● CCpfcTangentIndexDimensionSense.Create()

● CCpfcLinAOCTangentDimensionSense.Create()

● CCpfcAngleDimensionSense.Create()

● CCpfcPointToAngleDimensionSense.Create()

The method CCpfcDrawingDimCreateInstructions.Create() creates an instructions object that describes how to
create a drawing dimension using the method IpfcModel2D.CreateDrawingDimension().

The parameters of the instruction object are:

�❍ Attachments--The entities that the dimension is attached to. The selections should include the drawing model view.
�❍ IsRefDimension--True if the dimension is a reference dimension, otherwise null or false.
�❍ OrientationHint--Describes the orientation of the dimensions in cases where this cannot be deduced from the

attachments themselves.
�❍ Senses--Gives more information about how the dimension attaches to the entity, i.e., to what part of the entity and in

what direction the dimension runs. The types of dimension senses are as follows:
- EpfcDIMSENSE_NONE
- EpfcDIMSENSE_POINT
- EpfcDIMSENSE_SPLINE_PT
- EpfcDIMSENSE_TANGENT_INDEX
- EpfcDIMSENSE_LINEAR_TO_ARC_OR_CIRCLE_TANGENT
- EpfcDIMSENSE_ANGLE

- EpfcDIMSENSE_POINT_TO_ANGLE
�❍ TextLocation--The location of the dimension text, in world units.

The method IpfcModel2D.CreateDrawingDimension() creates a dimension in the drawing based on the instructions
data object that contains information needed to place the dimension. It takes as input an array of pfcSelection objects
and an array of pfcDimensionSense structures that describe the required attachments. The method returns the created
drawing dimension.

The method CCpfcEmptyDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE NONE. The "sense" field is set to Type. In this case no information such as location or direction is needed
to describe the attachment points. For example, if there is a single attachment which is a straight line, the dimension is
the length of the straight line. If the attachments are two parallel lines, the dimension is the distance between them.

The method CCpfcPointDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE POINT which specifies the part of the entity to which the dimension is attached. The "sense" field is set to
the value of the parameter PointType.

The possible values of PointType are:

�❍ EpfcDIMPOINT_END1-- The first end of the entity
�❍ EpfcDIMPOINT_END2--The second end of the entity
�❍ EpfcDIMPOINT_CENTER--The center of an arc or circle
�❍ EpfcDIMPOINT_NONE--No information such as location or direction of the attachment is specified. This is similar to

setting the PointType to DIMSENSE NONE.
�❍ EpfcDIMPOINT_MIDPOINT--The mid point of the entity

The method CCpfcSplinePointDimensionSense.Create() creates a dimension sense associated with the type
DIMSENSE_SPLINE_PT. This means that the attachment is to a point on a spline. The "sense" field is set to
SplinePointIndex i.e., the index of the spline point.

The method CCpfcTangentIndexDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE_TANGENT_INDEX. The attachment is to a tangent of the entity, which is an arc or a circle. The sense
field is set to TangentIndex, i.e., the index of the tangent of the entity.

The method CCpfcLinAOCTangentDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE_LINEAR_TO_ARC_OR_CIRCLE_TANGENT. The dimension is the perpendicular distance between the a
line and a tangent to an arc or a circle that is parallel to the line. The sense field is set to the value of the parameter
TangentType.

The possible values of TangentType are:

�❍ EpfcDIMLINAOCTANGENT_LEFT0--The tangent is to the left of the line, and is on the same side, of the center of
the arc or circle, as the line.

�❍ EpfcDIMLINAOCTANGENT_RIGHT0--The tangent is to the right of the line, and is on the same side, of the center of
the arc or circle, as the line.

�❍ EpfcDIMLINAOCTANGENT_LEFT1--The tangent is to the left of the line, and is on the opposite side of the line.
�❍ EpfcDIMLINAOCTANGENT_RIGHT1-- The tangent is to the right of the line, and is on the opposite side of the line.

The method CCpfcAngleDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE_ANGLE. The dimension is the angle between two straight entities. The "sense" field is set to the value of
the parameter AngleOptions.

The possible values of AngleOptions are:

�❍ IsFirst--Is set to TRUE if the angle dimension starts from the specified entity in a counterclockwise direction. Is set to
FALSE if the dimension ends at the specified entity. The value is TRUE for one entity and FALSE for the other entity
forming the angle.

�❍ ShouldFlip--If the value of ShouldFlip is FALSE, and the direction of the specified entity is away from the vertex of
the angle, then the dimension attaches directly to the entity. If the direction of the entity is away from the vertex of the
angle, then the dimension is attached to the a witness line. The witness line is in line with the entity but in the direction
opposite to the vertex of the angle. If the value of ShouldFlip is TRUE then the above cases are reversed.

The method CCpfcPointToAngleDimensionSense.Create() creates a new dimension sense associated with the type
DIMSENSE_POINT_TO_ANGLE. The dimension is the angle between a line entity and the tangent to a curved entity.
The curve attachment is of the type DIMSENSE_POINT_TO_ANGLE and the line attachment is of the type DIMSENSE
POINT. In this case both the "angle" and the "angle_sense" fields must be set. The field "sense" shows which end of the
curve the dimension is attached to and the field "angle_sense" shows the direction in which the dimension rotates and to
which side of the tangent it attaches.

Drawing Dimensions Information

Methods and Properties Introduced:

● IpfcDimension2D.IsAssociative

● IpfcDimension2D.GetIsReference()

● IpfcDimension2D.IsDisplayed

● IpfcDimension2D.GetAttachmentPoints()

● IpfcDimension2D.GetDimensionSenses()

● IpfcDimension2D.GetOrientationHint()

● IpfcDimension2D.GetBaselineDimension()

● IpfcDimension2D.Location

● IpfcDimension2D.GetView()

● IpfcDimension2D.GetTolerance()

● IpfcDimension2D.IsToleranceDisplayed

The property IpfcDimension2D.IsAssociative returns whether the dimension or reference dimension in a drawing is
associative.

The method IpfcDimension2D.GetIsReference() determines whether the drawing dimension is a reference dimension.

The method IpfcDimension2D.IsDisplayed determines whether the dimension will be displayed in the drawing.

The method IpfcDimension2D.GetAttachmentPoints() returns a sequence of attachment points. The dimension senses
array returned by the method IpfcDimension2D.GetDimensionSenses() gives more information on how these
attachments are interpreted.

The method IpfcDimension2D.GetDimensionSenses() returns a sequence of dimension senses, describing how the
dimension is attached to each attachment returned by the method IpfcDimension2D.GetAttachmentPoints().

The method IpfcDimension2D.GetOrientationHint() returns the orientation hint for placing the drawing dimensions.
The orientation hint determines how Pro/ENGINEER will orient the dimension with respect to the attachment points.

Note:
This methods described above are applicable only for dimensions created in the drawing mode. It does not
support dimensions created at intersection points of entities.

The method IpfcDimension2D.GetBaselineDimension() returns an ordinate baseline drawing dimension. It returns a
null value if the dimension is not an ordinate dimension.

Note:
The method updates the display of the dimension only if it is currently displayed.

The property IpfcDimension2D.Location returns the placement location of the dimension.

The method IpfcDimension2D.GetView() returns the drawing view in which the dimension is displayed. This method
applies to dimensions stored in the solid or in the drawing.

The method IpfcDimension2D.GetTolerance() retrieves the upper and lower tolerance limits of the drawing dimension
in the form of the IpfcDimTolerance object. A null value indicates a nominal tolerance.

Use the method IpfcDimension2D.IsToleranceDisplayed determines whether or not the dimension's tolerance is
displayed in the drawing.

Drawing Dimensions Operations

Methods Introduced:

● IpfcDimension2D.ConvertToLinear()

● IpfcDimension2D.ConvertToOrdinate()

● IpfcDimension2D.ConvertToBaseline()

● IpfcDimension2D.SwitchView()

● IpfcDimension2D.SetTolerance()

● IpfcDimension2D.EraseFromModel2D()

● IpfcModel2D.SetViewDisplaying()

The method IpfcDimension2D.ConvertToLinear() converts an ordinate drawing dimension to a linear drawing
dimension. The drawing containing the dimension must be displayed.

The method IpfcDimension2D.ConvertToOrdinate() converts a linear drawing dimension to an ordinate baseline
dimension.

The method IpfcDimension2D.ConvertToBaseline() converts a location on a linear drawing dimension to an ordinate
baseline dimension. The method returns the newly created baseline dimension.

Note:
The method updates the display of the dimension only if it is currently displayed.

The method IpfcDimension2D.SwitchView() changes the view where a dimension created in the drawing is displayed.

The method IpfcDimension2D.SetTolerance() assigns the upper and lower tolerance limits of the drawing dimension.

The method IpfcDimension2D.EraseFromModel2D() permanently erases the dimension from the drawing.

The method IpfcModel2D.SetViewDisplaying() changes the view where a dimension created in a solid model is
displayed.

Example: Command Creation of Dimensions from Model Datum Points

The example below shows a command which creates vertical and horizontal ordinate dimensions from each datum point
in a model in a drawing view to a selected coordinate system datum.

'==
 'Function : createPointDims
 'Purpose : This function creates vertical and horizontal ordinate
 ' dimensions from each datum point in a model in a
 ' drawing view to a selected coordinate system datum.
'==
 Public Sub createPointDims(ByRef session As IpfcBaseSession)

 Dim hBaseLine As IpfcDimension2D = Nothing
 Dim vBaseLine As IpfcDimension2D = Nothing
 Dim selectionOptions As IpfcSelectionOptions
 Dim selections As CpfcSelections
 Dim csysSelection As IpfcSelection
 Dim selItem As IpfcModelItem
 Dim selPath As IpfcComponentPath
 Dim selView As IpfcView2D
 Dim selPosition As CpfcPoint3D
 Dim drawing As IpfcModel2D
 Dim rootSolid As IpfcSolid
 Dim asmTransform As IpfcTransform3D
 Dim points As IpfcModelItems
 Dim csysPosition As CpfcPoint3D
 Dim viewTransform As IpfcTransform3D
 Dim csys3DPosition As CpfcVector2D
 Dim outline As IpfcOutline3D
 Dim senses As CpfcDimensionSenses
 Dim attachments As CpfcSelections
 Dim p As Integer
 Dim point As IpfcPoint
 Dim pointPosition As CpfcPoint3D
 Dim sense1 As IpfcPointDimensionSense
 Dim sense2 As IpfcPointDimensionSense
 Dim pointSelection As IpfcSelection
 Dim dimPosition As CpfcVector2D
 Dim createInstructions As IpfcDrawingDimCreateInstructions
 Dim showInstructions As IpfcDrawingDimensionShowInstructions
 Dim dimension As IpfcDimension2D

 Try

'==
 'Select a coordinate system. This defines the model (the top one
 'in that view), and the common attachments for the dimensions
'==
 selectionOptions = (New CCpfcSelectionOptions).Create("csys")
 selectionOptions.MaxNumSels = 1

 selections = session.Select(selectionOptions, Nothing)
 If (selections Is Nothing) Or (selections.Count) = 0 Then
 Throw New Exception("Nothing Selected")
 End If
'==
 'Extract the csys handle, and assembly path, and view handle
'==
 csysSelection = selections.Item(0)
 selItem = csysSelection.SelItem
 selPath = csysSelection.Path
 selView = csysSelection.SelView2D
 selPosition = csysSelection.Point

 If selView Is Nothing Then
 Throw New Exception("Must select coordinate system from a
 drawing view.")
 End If

'==
 'Get the root solid, and the transform from the root to the
 'component owning the csys
'==
 asmTransform = Nothing
 drawing = selView.DBParent
 rootSolid = selItem.DBParent
 If Not selPath Is Nothing Then
 rootSolid = selPath.Root
 asmTransform = selPath.GetTransform(True)
 End If

'==
 'Get a list of datum points in the model
'==
 points = rootSolid.ListItems(EpfcModelItemType.EpfcITEM_POINT)
 If (points Is Nothing) Or (points.Count = 0) Then
 Throw New Exception("Nothing Selected")
 End If

'==
 'Calculate where the csys is located on the drawing
'==
 csysPosition = selPosition
 If Not asmTransform Is Nothing Then
 csysPosition = asmTransform.TransformPoint(selPosition)
 End If
 viewTransform = selView.GetTransform
 csysPosition = viewTransform.TransformPoint(csysPosition)

 csys3DPosition = New CpfcVector2D
 csys3DPosition.Set(0, csysPosition.Item(0))
 csys3DPosition.Set(1, csysPosition.Item(1))

'==
 'Get the view outline
'==
 outline = selView.Outline

'==
 'Allocate the attachment arrays

'==
 senses = New CpfcDimensionSenses
 attachments = New CpfcSelections
'==
 'Loop through all the datum points
'==
 For p = 0 To points.Count - 1
'==
 'Calculate the position of the point on the drawing
'==
 point = points.Item(p)
 pointPosition = point.Point
 pointPosition = viewTransform.TransformPoint(pointPosition)

'==
 'Set up the "sense" information
'==
 sense1 = (New CCpfcPointDimensionSense). _
 Create(EpfcDimensionPointType.EpfcDIMPOINT_CENTER)
 senses.Set(0, sense1)
 sense2 = (New CCpfcPointDimensionSense). _
 Create(EpfcDimensionPointType.EpfcDIMPOINT_CENTER)
 senses.Set(1, sense2)

'==
 'Set the attachment information
'==
 pointSelection = (New
 CMpfcSelect).CreateModelItemSelection(point, Nothing)
 pointSelection.SelView2D = selView
 attachments.Set(0, pointSelection)
 attachments.Set(1, csysSelection)

'==
 'Calculate the dim position to be just to the left of the
 'drawing view, midway between the point and csys
'==
 dimPosition = New CpfcVector2D
 dimPosition.Set(0, outline.Item(0).Item(0) - 20.0)
 dimPosition.Set(1, (csysPosition.Item(1) +
 pointPosition.Item(1)) / 2)

'==
 'Create and display the dimension
'==
 createInstructions = (New
 CCpfcDrawingDimCreateInstructions).Create _
 (attachments, _
 senses, _
 dimPosition, _
 EpfcOrientationHint.EpfcORIENTHINT_VERTICAL)

 dimension = drawing.CreateDrawingDimension(createInstructions)
 showInstructions = (New CCpfcDrawingDimensionShowInstructions).Create _
 (selView, Nothing)

 CType(dimension, IpfcBaseDimension).Show(showInstructions)

'==

 'If this is the first vertical dim, create an ordinate base
 'line from it, else just convert it to ordinate

'==
 If (p = 0) Then
 vBaseLine = dimension.ConvertToBaseline(csys3DPosition)
 Else
 dimension.ConvertToOrdinate(vBaseLine)
 End If

'==
 'Set this dimension to be horizontal
'==

 createInstructions.OrientationHint = EpfcOrientationHint.
EpfcORIENTHINT_HORIZONTAL

'==
 'Calculate the dim position to be just to the bottom of the
 'drawing view, midway between the point and csys
'==
 dimPosition.Set(0, (csysPosition.Item(0) + pointPosition.Item(0)) / 2)
 dimPosition.Set(1, outline.Item(1).Item(1) - 20.0)
 createInstructions.TextLocation = dimPosition

'==
 'Create and display the dimension
'==
 dimension = drawing.CreateDrawingDimension(createInstructions)
 'dimension.Show(showInstructions)
 CType(dimension, IpfcBaseDimension).Show(showInstructions)

'==
 'If this is the first horizontal dim, create an ordinate base
 'line from it, else just convert it to ordinate
'==
 If (p = 0) Then
 hBaseLine = dimension.ConvertToBaseline(csys3DPosition)
 Else
 dimension.ConvertToOrdinate(hBaseLine)
 End If
 Next

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub

Drawing Tables

A drawing table in the VB API is represented by the interface IpfcTable. It is a child of the IpfcModelItem interface.

Some drawing table methods operate on specific rows or columns. The row and column numbers in the VB API begin
with 1 and range up to the total number of rows or columns in the table. Some drawing table methods operate on
specific table cells. The interface IpfcTableCell is used to represent a drawing table cell.

Creating Drawing Cells

Method Introduced:

● CCpfcTableCell.Create()

The method CCpfcTableCell.Create() creates the IpfcTableCell object representing a cell in the drawing table.

Some drawing table methods operate on specific drawing segment. A multisegmented drawing table contains 2 or more
areas in the drawing. Inserting or deleting rows in one segment of the table can affect the contents of other segments.
Table segments are numbered beginning with 0. If the table has only a single segment, use 0 as the segment id in the
relevant methods.

Selecting Drawing Tables and Cells

Methods and Properties Introduced:

● IpfcBaseSession.Select()

● IpfcSelection.SelItem

● IpfcSelection.SelTableCell

● IpfcSelection.SelTableSegment

Tables may be selected using the method IpfcBaseSession.Select(). Pass the filter dwg_table to select an entire table
and the filter table_cell to prompt the user to select a particular table cell.

The property IpfcSelection.SelItem returns the selected table handle. It is a model item that can be cast to a IpfcTable
object.

The property IpfcSelection.SelTableCell returns the row and column indices of the selected table cell.

The property IpfcSelection.SelTableSegment returns the table segment identifier for the selected table cell. If the table
consists of a single segment, this method returns the identifier 0.

Creating Drawing Tables

Methods Introduced:

● CCpfcTableCreateInstructions.Create()

● IpfcTableOwner.CreateTable()

The method CCpfcTableCreateInstructions.Create() creates the IpfcTableCreateInstructions data object that
describes how to construct a new table using the method IpfcTableOwner.CreateTable().

The parameters of the instructions data object are:

�❍ Origin--This parameter stores a three dimensional point specifying the location of the table origin. The origin is the
position of the top left corner of the table.

�❍ RowHeights--Specifies the height of each row of the table.
�❍ ColumnData--Specifies the width of each column of the table and its justification.
�❍ SizeTypes--Indicates the scale used to measure the column width and row height of the table.

The method IpfcTableOwner.CreateTable() creates a table in the drawing specified by the
IpfcTableCreateInstructions data object.

Retrieving Drawing Tables

Methods Introduced

● CCpfcTableRetrieveInstructions.Create()

● IpfcTableOwner.RetrieveTable()

The method CCpfcTableRetrieveInstructions.Create() creates the IpfcTableRetrieveInstructions data object that
describes how to retrieve a drawing table using the method IpfcTableOwner.RetrieveTable(). The method returns the
created instructions data object.

The parameters of the instruction object are:

�❍ FileName--Name of the file containing the drawing table.
�❍ Position--The location of left top corner of the retrieved table.

The method IpfcTableOwner.RetrieveTable() retrieves a table specified by the IpfcTableRetrieveInstructions data
object from a file on the disk. It returns the retrieved table. The data object contains information on the table to retrieve
and is returned by the method CCpfcTableRetrieveInstructions.Create().

Drawing Tables Information

Methods Introduced:

● IpfcTableOwner.ListTables()

● IpfcTableOwner.GetTable()

● IpfcTable.GetRowCount()

● IpfcTable.GetColumnCount()

● IpfcTable.CheckIfIsFromFormat()

● IpfcTable.GetRowSize()

● IpfcTable.GetColumnSize()

● IpfcTable.GetText()

● IpfcTable.GetCellNote()

The method IpfcTableOwner.ListTables() returns a sequence of tables found in the model.

The method IpfcTableOwner.GetTable() returns a table specified by the table identifier in the model. It returns a null
value if the table is not found.

The method IpfcTable.GetRowCount() returns the number of rows in the table.

The method IpfcTable.GetColumnCount() returns the number of columns in the table.

The method IpfcTable.CheckIfIsFromFormat() verifies if the drawing table was created using the format of the
drawing sheet specified by the sheet number. The method returns a true value if the table was created by applying the
drawing format.

The method IpfcTable.GetRowSize() returns the height of the drawing table row specified by the segment identifier
and the row number.

The method IpfcTable.GetColumnSize() returns the width of the drawing table column specified by the segment
identifier and the column number.

The method IpfcTable.GetText() returns the sequence of text in a drawing table cell. Set the value of the parameter
Mode to DWGTABLE_NORMAL to get the text as displayed on the screen. Set it to DWGTABLE_FULL to get
symbolic text, which includes the names of parameter references in the table text.

The method IpfcTable.GetCellNote() returns the detail note item contained in the table cell.

Drawing Tables Operations

Methods Introduced:

● IpfcTable.Erase()

● IpfcTable.Display()

● IpfcTable.RotateClockwise()

● IpfcTable.InsertRow()

● IpfcTable.InsertColumn()

● IpfcTable.MergeRegion()

● IpfcTable.SubdivideRegion()

● IpfcTable.DeleteRow()

● IpfcTable.DeleteColumn()

● IpfcTable.SetText()

● IpfcTableOwner.DeleteTable()

The method IpfcTable.Erase() erases the specified table temporarily from the display. It still exists in the drawing. The
erased table can be displayed again using the method IpfcTable.Display(). The table will also be redisplayed by a
window repaint or a regeneration of the drawing. Use these methods to hide a table from the display while you are
making multiple changes to the table.

The method IpfcTable.RotateClockwise() rotates a table clockwise by the specified amount of rotation.

The method IpfcTable.InsertRow() inserts a new row in the drawing table. Set the value of the parameter RowHeight
to specify the height of the row. Set the value of the parameter InsertAfterRow to specify the row number after which
the new row has to be inserted. Specify 0 to insert a new first row.

The method IpfcTable.InsertColumn() inserts a new column in the drawing table. Set the value of the parameter
ColumnWidth to specify the width of the column. Set the value of the parameter InsertAfterColumn to specify the
column number after which the new column has to be inserted. Specify 0 to insert a new first column.

The method IpfcTable.MergeRegion() merges table cells within a specified range of rows and columns to form a
single cell. The range is a rectangular region specified by the table cell on the upper left of the region and the table cell
on the lower right of the region.

The method IpfcTable.SubdivideRegion() removes merges from a region of table cells that were previously merged.
The region to remove merges is specified by the table cell on the upper left of the region and the table cell on the lower
right of the region.

The methods IpfcTable.DeleteRow() and IpfcTable.DeleteColumn() delete any specified row or column from the
table. The methods also remove the text from the affected cells.

The method IpfcTable.SetText() sets text in the table cell.

Use the method IpfcTableOwner.DeleteTable() to delete a specified drawing table from the model permanently. The
deleted table cannot be displayed again.

Note:
Many of the above methods provide a parameter Repaint. If this is set to true the table will be repainted after the
change. If set to false or null Pro/ENGINEER will delay the repaint, allowing you to perform several operations
before showing changes on the screen.

Example: Creation of a Table Listing Datum Points

The following example creates a drawing table that lists the datum points in a model shown in a drawing view.

 Public Sub createTableOfPoints(ByRef session As IpfcBaseSession)
 Dim widths(4) As Double
 Dim selectionOptions As IpfcSelectionOptions
 Dim selections As CpfcSelections
 Dim csysSelection As IpfcSelection
 Dim selItem As IpfcModelItem
 Dim selPath As IpfcComponentPath
 Dim selView As IpfcView2D
 Dim drawing As IpfcModel2D
 Dim csys As IpfcCoordSystem
 Dim csysTransform As IpfcTransform3D
 Dim csysName As String
 Dim rootSolid As IpfcSolid
 Dim asmTransform As IpfcTransform3D
 Dim points As IpfcModelItems
 Dim location As CpfcPoint3D
 Dim tableInstructions As IpfcTableCreateInstructions
 Dim columnInfo As CpfcColumnCreateOptions
 Dim column As IpfcColumnCreateOption
 Dim i As Integer
 Dim rowInfo As Crealseq
 Dim drawTable As IpfcTable
 Dim topLeft As IpfcTableCell
 Dim bottomRight As IpfcTableCell
 Dim p As Integer
 Dim geomPoint As IpfcPoint

 Dim trfPoint As IpfcPoint3D

 Try
 widths(0) = 8.0
 widths(1) = 10.0
 widths(2) = 10.0
 widths(3) = 10.0
'==
'Select a coordinate system. This defines the model (the top one
'in that view), and the common attachments for the dimensions
'==
 selectionOptions = (New CCpfcSelectionOptions).Create("csys")
 selectionOptions.MaxNumSels = 1
 selections = session.Select(selectionOptions, Nothing)
 If (selections Is Nothing) Or (selections.Count) = 0 Then
 Throw New Exception("Nothing Selected")
 End If
'==
 'Extract the csys handle, and assembly path, and view handle
'==
 csysSelection = selections.Item(0)
 selItem = csysSelection.SelItem
 selPath = csysSelection.Path
 selView = csysSelection.SelView2D

 If selView Is Nothing Then
 Throw New Exception("Must select coordinate system from a drawing view.")
 End If

 drawing = selView.DBParent
'==
'Extract the csys location (property CoordSys from class CoordSystem)
'==
 csys = CType(selItem, IpfcCoordSystem)
 csysTransform = csys.CoordSys
 csysTransform.Invert()
 csysName = selItem.GetName
'==
'Get the root solid, and the transform from the root to the
'component owning the csys
'==
 asmTransform = Nothing
 rootSolid = selItem.DBParent
 If Not selPath Is Nothing Then
 rootSolid = selPath.Root
 asmTransform = selPath.GetTransform(False)
 End If
'==
'Get a list of datum points in the model
'==
 points = rootSolid.ListItems(EpfcModelItemType.EpfcITEM_POINT)
 If (points Is Nothing) Or (points.Count = 0) Then
 Throw New Exception("Nothing Selected")
 End If
'==
'Set table position
'==
 location = New CpfcPoint3D
 location.Set(0, 500.0)

 location.Set(1, 500.0)
 location.Set(2, 0.0)
'==
'Setup the table creation instructions
'==
 tableInstructions = (New CCpfcTableCreateInstructions).Create(location)
 tableInstructions.SizeType = EpfcTableSizeType.EpfcTABLESIZE_BY_NUM_CHARS

 columnInfo = New CpfcColumnCreateOptions

 For i = 0 To widths.Length - 1
 column = (New CCpfcColumnCreateOption).Create _
 (EpfcColumnJustification.EpfcCOL_JUSTIFY_LEFT, widths(i))
 columnInfo.Insert(columnInfo.Count, column)
 Next

 tableInstructions.ColumnData = columnInfo

 rowInfo = New Crealseq
 For i = 0 To points.Count + 2
 rowInfo.Insert(rowInfo.Count, 1.0)
 Next

 tableInstructions.RowHeights = rowInfo
'==
'Create the table
'Merger the top row cells to form the header
'==
 drawTable = drawing.CreateTable(tableInstructions)

 topLeft = (New CCpfcTableCell).Create(1, 1)
 bottomRight = (New CCpfcTableCell).Create(1, 4)

 drawTable.MergeRegion(topLeft, bottomRight, Nothing)
'==
'Write Header and add sub headings to columns
'==
 writeTextInCell(drawTable, 1, 1, "Datum Points for " + rootSolid.FullName + _
 " w.r.t to csys " + csysName)
 writeTextInCell(drawTable, 2, 1, "Point")
 writeTextInCell(drawTable, 2, 2, "X")
 writeTextInCell(drawTable, 2, 3, "Y")
 writeTextInCell(drawTable, 2, 4, "Z")
'==
'Loop through all datum points
'==
 For p = 0 To points.Count - 1
'==
'Add the point name to column 1
'==
 geomPoint = points.Item(p)
 writeTextInCell(drawTable, p + 3, 1, geomPoint.GetName())
'==
'Transform location w.r.t. csys
'==
 trfPoint = geomPoint.Point
 If Not asmTransform Is Nothing Then
 trfPoint = asmTransform.TransformPoint(trfPoint)
 End If

 trfPoint = csysTransform.TransformPoint(trfPoint)
'==
'Adding X, Y, Z values
'==
 For i = 0 To 2
 writeTextInCell(drawTable, p + 3, 2 + i, Format(trfPoint.Item(i), "#,##0.00"))
 Next
 Next

 drawTable.Display()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub

 Private Sub writeTextInCell(ByRef table As IpfcTable, ByVal row As Integer, _
 ByVal col As Integer, ByVal text As String)
 Dim tableCell As IpfcTableCell
 Dim lines As New Cstringseq

 tableCell = (New CCpfcTableCell).Create(row, col)
 lines.Insert(0, text)

 table.SetText(tableCell, lines)

 End Sub

Drawing Table Segments

Drawing tables can be constructed with one or more segments. Each segment can be independently placed. The
segments are specified by an integer identifier starting with 0.

Methods and Property Introduced:

● IpfcSelection.SelTableSegment

● IpfcTable.GetSegmentCount()

● IpfcTable.GetSegmentSheet()

● IpfcTable.MoveSegment()

● IpfcTable.GetInfo()

The property IpfcSelection.SelTableSegment returns the value of the segment identifier of the selected table segment.
It returns a null value if the selection does not contain a segment identifier.

The method IpfcTable.GetSegmentCount() returns the number of segments in the table.

The method IpfcTable.GetSegmentSheet() determines the sheet number that contains a specified drawing table
segment.

The method IpfcTable.MoveSegment() moves a drawing table segment to a new location. Pass the co-ordinates of the
target position in the format x, y, z=0.

Note:
Set the value of the parameter Repaint to true to repaint the drawing with the changes. Set it to false or null to
delay the repaint.

To get information about a drawing table pass the value of the segment identifier as input to the method IpfcTable.
GetInfo(). The method returns the table information including the rotation, row and column information, and the 3D
outline.

Repeat Regions

Methods Introduced:

● IpfcTable.IsCommentCell()

● IpfcTable.GetCellComponentModel()

● IpfcTable.GetCellReferenceModel()

● IpfcTable.GetCellTopModel()

● IpfcTableOwner.UpdateTables()

The methods IpfcTable.IsCommentCell(), IpfcTable.GetCellComponentModel(), IpfcTable.
GetCellReferenceModel(), IpfcTable.GetCellTopModel(), and IpfcTableOwner.UpdateTables() apply to repeat
regions in drawing tables.

The method IpfcTable.IsCommentCell() tells you whether a cell in a repeat region contains a comment.

The method IpfcTable.GetCellComponentModel() returns the path to the assembly component model that is being
referenced by a cell in a repeat region of a drawing table. It does not return a valid path if the cell attribute is set to "NO
DUPLICATE" or "NO DUPLICATE/LEVEL".

The method IpfcTable.GetCellReferenceModel() returns the reference component that is being referred to by a cell in
a repeat region of a drawing table, even if cell attribute is set to "NO DUPLICATE" or "NO DUPLICATE/LEVEL".

The method IpfcTable.GetCellTopModel() returns the top model that is being referred to by a cell in a repeat region of
a drawing table, even if cell attribute is set to "NO DUPLICATE" or "NO DUPLICATE/LEVEL".

Use the method IpfcTableOwner.UpdateTables() to update the repeat regions in all the tables to account for changes
to the model. It is equivalent to the command Table, Repeat Region, Update.

Detail Items

The methods described in this section operate on detail items.

In the VB API you can create, delete and modify detail items, control their display, and query what detail items are
present in the drawing. The types of detail items available are:

�❍ Draft Entities--Contain graphical items created in Pro/Engineer. The items are as follows:
- Arc
- Ellipse
- Line
- Point
- Polygon
- Spline

�❍ Notes--Textual annotations
�❍ Symbol Definitions--Contained in the drawing's symbol gallery.
�❍ Symbol Instances--Instances of a symbol placed in a drawing.
�❍ Draft Groups--Groups of detail items that contain notes, symbol instances, and draft entities.
�❍ OLE objects--Object Linking and Embedding (OLE) objects embedded in the Pro/ENGINEER drawing file.

Listing Detail Items

Methods Introduced:

● IpfcModelItemOwner.ListItems()

● IpfcDetailItemOwner.ListDetailItems()

● IpfcModelItemOwner.GetItemById()

● IpfcDetailItemOwner.CreateDetailItem()

The method IpfcModelItemOwner.ListItems() returns a list of detail items specified by the parameter Type or returns
null if no detail items of the specified type are found.

The values of the parameter Type for detail items are:

�❍ EpfcITEM_DTL_ENTITY--Detail Entity
�❍ EpfcITEM_DTL_NOTE--Detail Note
�❍ EpfcITEM_DTL_GROUP--Draft Group
�❍ EpfcITEM_DTL_SYM_DEFINITION--Detail Symbol Definition
�❍ Epfc ITEM_DTL_SYM_INSTANCE--Detail Symbol Instance
�❍ EpfcITEM_DTL_OLE_OBJECT--Drawing embedded OLE object

If this parameter is set to null, then all the model items in the drawing are listed.

The method IpfcDetailItemOwner.ListDetailItems() also lists the detail items in the model. Pass the type of the detail
item and the sheet number that contains the specified detail items.

Set the input parameter Type to the type of detail item to be listed. Set it to null to return all the detail items. The input
parameter SheetNumber determines the sheet that contains the specified detail item. Pass null to search all the sheets.
This argument is ignored if the parameter Type is set to EpfcDETAIL_SYM_DEFINITION.

The method returns a sequence of detail items and returns a null if no items matching the input values are found.

The method IpfcModelItemOwner.GetItemById() returns a detail item based on the type of the detail item and its
integer identifier. The method returns a null if a detail item with the specified attributes is not found.

Creating a Detail Item

Methods Introduced:

● IpfcDetailItemOwner.CreateDetailItem()

● pfcDetail.pfcDetailGroupInstructions_Create

The method IpfcDetailItemOwner.CreateDetailItem() creates a new detail item based on the instruction data object
that describes the type and content of the new detail item. The instructions data object is returned by the method
pfcDetail.pfcDetailGroupInstructions_Create. The method returns the newly created detail item.

Detail Entities

A detail entity in the VB API is represented by the interface IpfcDetailEntityItem. It is a child of the IpfcDetailItem .

The interface IpfcDetailEntityInstructions contains specific information used to describe a detail entity item.

Instructions

Methods and Properties Introduced:

● CCpfcDetailEntityInstructions.Create()

● IpfcDetailEntityInstructions.Geometry

● IpfcDetailEntityInstructions.IsConstruction

● IpfcDetailEntityInstructions.Color

● IpfcDetailEntityInstructions.FontName

● IpfcDetailEntityInstructions.Width

● IpfcDetailEntityInstructions.View

The method CCpfcDetailEntityInstructions.Create() creates an instructions object that describes how to construct a
detail entity, for use in the methods IpfcDetailItemOwner.CreateDetailItem(), IpfcDetailSymbolDefItem.
CreateDetailItem(), and IpfcDetailEntityItem.Modify().

The instructions object is created based on the curve geometry and the drawing view associated with the entity. The
curve geometry describes the trajectory of the detail entity in world units. The drawing view can be a model view
returned by the method IpfcModel2D.List2DViews() or a drawing sheet background view returned by the method
IpfcSheetOwner.GetSheetBackgroundView(). The background view indicates that the entity is not associated with a
particular model view.

The method returns the created instructions object.

Note:
Changes to the values of a IpfcDetailEntityInstructions object do not take effect until that instructions object is
used to modify the entity using pfcDetail.DetailEntityItem.Modify.

The property IpfcDetailEntityInstructions.Geometry returns the geometry of the detail entity item.

For more information refer to Curve Descriptors.

The property IpfcDetailEntityInstructions.IsConstruction returns a value that specifies whether the entity is a
construction entity.

The property IpfcDetailEntityInstructions.Color returns the color of the detail entity item.

The property IpfcDetailEntityInstructions.FontName returns the line style used to draw the entity. The method
returns a null value if the default line style is used.

The property IpfcDetailEntityInstructions.Width returns the value of the width of the entity line. The method returns

a null value if the default line width is used.

The property IpfcDetailEntityInstructions.View returns the drawing view associated with the entity. The view can
either be a model view or a drawing sheet background view.

Example: Create a Draft Line with Predefined Color

The following example shows a utility that creates a draft line in one of the colors predefined in Pro/ENGINEER.

 Public Sub createLine(ByRef session As IpfcSession)
 Dim model As IpfcModel
 Dim rgbColour As IpfcColorRGB
 Dim drawing As IpfcDrawing
 Dim currSheet As Integer
 Dim view As IpfcView2D
 Dim mouse1 As IpfcMouseStatus
 Dim mouse2 As IpfcMouseStatus
 Dim start As IpfcPoint3D
 Dim finish As IpfcPoint3D
 Dim geom As IpfcLineDescriptor
 Dim lineInstructions As IpfcDetailEntityInstructions

 Try
'==
'Get the current drawing and its background view
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then
 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)

 currSheet = drawing.CurrentSheetNumber
 view = drawing.GetSheetBackgroundView(currSheet)
'==
'Set end points of the line
'==
 mouse1 = session.UIGetNextMousePick(EpfcMouseButton.EpfcMOUSE_BTN_LEFT)
 start = mouse1.Position

 mouse2 = session.UIGetNextMousePick(EpfcMouseButton.EpfcMOUSE_BTN_LEFT)
 finish = mouse2.Position
'==
'Allocate and initialize curve descriptor
'==
 geom = (New CCpfcLineDescriptor).Create(start, finish)

 rgbColour = session.GetRGBFromStdColor(EpfcStdColor.EpfcCOLOR_QUILT)
'==
'Allocate data for draft entity
'==
 lineInstructions = (New CCpfcDetailEntityInstructions).Create(geom, view)
 lineInstructions.Color = rgbColour

'==
'Create and display the line
'==
 drawing.CreateDetailItem(lineInstructions)
 session.CurrentWindow.Repaint()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub

Detail Entities Information

Methods and Property Introduced:

● IpfcDetailEntityItem.GetInstructions()

● IpfcDetailEntityItem.SymbolDef

The method IpfcDetailEntityItem.GetInstructions() returns the instructions data object that is used to construct the
detail entity item.

The property IpfcDetailEntityItem.SymbolDef returns the symbol definition that contains the entity. This property
returns a null value if the entity is not a part of a symbol definition.

Detail Entities Operations

Methods Introduced:

● IpfcDetailEntityItem.Draw()

● IpfcDetailEntityItem.Erase()

● IpfcDetailEntityItem.Modify()

The method IpfcDetailEntityItem.Draw() temporarily draws a detail entity item, so that it is removed during the next
draft regeneration.

The method IpfcDetailEntityItem.Erase() undraws a detail entity item temporarily, so that it is redrawn during the
next draft regeneration.

The method IpfcDetailEntityItem.Modify() modifies the definition of an entity item using the specified instructions
data object.

OLE Objects

An object linking and embedding (OLE) object is an external file, such as a document, graphics file, or video file that is
created using an external application and which can be inserted into another application, such as Pro/ENGINEER. You
can create and insert supported OLE objects into a two-dimensional Pro/ENGINEER file, such as a drawing, report,
format file, layout, or diagram. The functions described in this section enable you to identify and access OLE objects
embedded in drawings.

Methods and Properties Introduced:

● IpfcDetailOLEObject.ApplicationType

● IpfcDetailOLEObject.Outline

● IpfcDetailOLEObject.Path

● IpfcDetailOLEObject.Sheet

The method IpfcDetailOLEObject.ApplicationType returns the type of the OLE object as a string, for example,
"Microsoft Word Document".

The property IpfcDetailOLEObject.Outline returns the extent of the OLE object embedded in the drawing.

The property IpfcDetailOLEObject.Path returns the path to the external file for each OLE object, if it is linked to an
external file.

The property IpfcDetailOLEObject.Sheet returns the sheet number for the OLE object.

Detail Notes

A detail note in the VB API is represented by the interface IpfcDetailNoteItem. It is a child of the IpfcDetailItem
interface.

The interface IpfcDetailNoteInstructions contains specific information that describes a detail note.

Instructions

Methods and Properties Introduced:

● CCpfcDetailNoteInstructions.Create()

● IpfcDetailNoteInstructions.TextLines

● IpfcDetailNoteInstructions.IsDisplayed

● IpfcDetailNoteInstructions.IsReadOnly

● IpfcDetailNoteInstructions.IsMirrored

● IpfcDetailNoteInstructions.Horizontal

● IpfcDetailNoteInstructions.Vertical

● IpfcDetailNoteInstructions.Color

● IpfcDetailNoteInstructions.Leader

● IpfcDetailNoteInstructions.TextAngle

The method CCpfcDetailNoteInstructions.Create() creates a data object that describes how a detail note item should
be constructed when passed to the methods IpfcDetailItemOwner.CreateDetailItem(), IpfcDetailSymbolDefItem.
CreateDetailItem(), or IpfcDetailNoteItem.Modify(). The parameter inTextLines specifies the sequence of text line

data objects that describe the contents of the note.

Note:
Changes to the values of a IpfcDetailNoteInstructions object do not take effect until that instructions object is
used to modify the note using IpfcDetailNoteItem.Modify

The property IpfcDetailNoteInstructions.TextLines returns the description of text line contents in the note.

The property IpfcDetailNoteInstructions.IsDisplayed returns a boolean indicating if the note is currently displayed.

The property IpfcDetailNoteInstructions.IsReadOnly determines whether the note can be edited by the user.

The property IpfcDetailNoteInstructions.IsMirrored determines whether the note is mirrored.

The property IpfcDetailNoteInstructions.Horizontal returns the value of the horizontal justification of the note.

The property IpfcDetailNoteInstructions.Vertical returns the value of the vertical justification of the note.

The property IpfcDetailNoteInstructions.Color returns the color of the detail note item. The method returns a null
value to represent the default drawing color.

The property IpfcDetailNoteInstructions.Leader returns the locations of the detail note item and information about the
leaders.

The property IpfcDetailNoteInstructions.TextAngle returns the value of the angle of the text used in the note. The
method returns a null value if the angle is 0.0.

Example: Create Drawing Note at Specified Location with Leader to Surface and Surface Name

The following example creates a drawing note at a specified location, with a leader attached to a solid surface, and
displays the name of the surface.

 Public Sub createSurfaceNote(ByRef session As IpfcBaseSession)
 Dim model As IpfcModel
 Dim drawing As IpfcDrawing
 Dim selections As CpfcSelections
 Dim selectionOptions As IpfcSelectionOptions
 Dim selectSurface As IpfcSelection
 Dim item As IpfcModelItem
 Dim name As String
 Dim text As IpfcDetailText
 Dim texts As CpfcDetailTexts
 Dim textLine As IpfcDetailTextLine
 Dim textLines As CpfcDetailTextLines
 Dim drawingView As IpfcView2D
 Dim outline As IpfcOutline3D
 Dim textPosition As IpfcPoint3D
 Dim position As IpfcFreeAttachment
 Dim leadertoSurface As IpfcParametricAttachment
 Dim allAttachments As IpfcDetailLeaders
 Dim attachments As CpfcAttachments
 Dim noteInstructions As IpfcDetailNoteInstructions
 Dim note As IpfcDetailNoteItem

 Try

'==
Get the current drawing
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then
 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)
'==
Interactively select a surface
'==
 selectionOptions = (New CCpfcSelectionOptions).Create("surface")
 selectionOptions.MaxNumSels = 1
 selections = session.Select(selectionOptions, Nothing)

 selectSurface = selections.Item(0)
 item = selectSurface.SelItem

 If (Not item.GetName Is Nothing) AndAlso Not
 (item.GetName.ToString = "")
 Then
 name = item.GetName.ToString
 Else
 name = ("Surface Id: " + item.Id.ToString)
 End If
'==
'Allocate a text item and add it to a new text line
'==
 text = (New CCpfcDetailText).Create(name)
 texts = New CpfcDetailTexts
 texts.Insert(0, text)
 textLine = (New CCpfcDetailTextLine).Create(texts)
 textLines = New CpfcDetailTextLines
 textLines.Insert(0, textLine)
'==
'Set location of note text. The note is set to be slightly beyond view
'outline boundary
'==
 drawingView = selectSurface.SelView2D
 outline = drawingView.Outline
 textPosition = outline.Item(1)

 textPosition.Set(0, textPosition.Item(0) + 0.25 *
 _(textPosition.Item(0) - outline.Item(0).Item(0)))
 textPosition.Set(1, textPosition.Item(1) + 0.25 *
 _textPosition.Item(1) - outline.Item(0).Item(1)))
 position = (New CCpfcFreeAttachment).Create(textPosition)
 position.View = drawingView
'==
Set attachment for the note leader
'==
 leadertoSurface = (New CCpfcParametricAttachment).Create(selectSurface)
'==
'Set attachment structure
'==
 allAttachments = (New CCpfcDetailLeaders).Create()

 allAttachments.ItemAttachment = position

 attachments = New CpfcAttachments
 attachments.Insert(0, leadertoSurface)

 allAttachments.Leaders = attachments
'==
'Allocate a note description and set its properties
'==
 noteInstructions = (New CCpfcDetailNoteInstructions).Create(textLines)
 noteInstructions.Leader = allAttachments
'==
 'Create and display the note
'==
 note = drawing.CreateDetailItem(noteInstructions)
 note.Show()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try
 End Sub

Detail Notes Information

Methods and Property Introduced:

● IpfcDetailNoteItem.GetInstructions()

● IpfcDetailNoteItem.SymbolDef

● IpfcDetailNoteItem.GetLineEnvelope()

● IpfcDetailNoteItem.GetModelReference()

The method IpfcDetailNoteItem.GetInstructions() returns an instructions data object that describes how to construct
the detail note item. This method takes a ProBoolean argument, GiveParametersAsNames, which determines whether
symbolic representations of parameters and drawing properties in the note text should be displayed, or the actual text
seen by the user should be displayed.

Note:
Pro/ENGINEER does not resolve and replace symbolic callouts for notes which are not displayed. Therefore, if
the note is not displayed or is hidden in a layer, the text retrieved may contain symbolic callouts, even when
GiveParametersAsNames is false.

The property IpfcDetailNoteItem.SymbolDef returns the symbol definition that contains the note. The method returns
a null value if the note is not a part of a symbol definition.

The method IpfcDetailNoteItem.GetLineEnvelope() determines the screen coordinates of the envelope around the
detail note. This envelope is defined by four points. The following figure illustrates how the point order is determined.

The ordering of the points is maintained even if the notes are mirrored or are at an angle.

The method IpfcDetailNoteItem.GetModelReference() returns the model referenced by the parameterized text in a
note. The model is referenced based on the line number and the text index where the parameterized text appears.

Details Notes Operations

Methods Introduced:

● IpfcDetailNoteItem.Draw()

● IpfcDetailNoteItem.Show()

● IpfcDetailNoteItem.Erase()

● IpfcDetailNoteItem.Remove()

● IpfcDetailNoteItem.Modify()

The method IpfcDetailNoteItem.Draw() temporarily draws a detail note item, so that it is removed during the next
draft regeneration.

The method IpfcDetailNoteItem.Show() displays the note item, such that it is repainted during the next draft
regeneration.

The method IpfcDetailNoteItem.Erase() undraws a detail note item temporarily, so that it is redrawn during the next
draft regeneration.

The method IpfcDetailNoteItem.Remove() undraws a detail note item permanently, so that it is not redrawn during the
next draft regeneration.

The method IpfcDetailNoteItem.Modify() modifies the definition of an existing detail note item based on the
instructions object that describes the new detail note item.

Detail Groups

A detail group in the VB API is represented by the interface IpfcDetailGroupItem. It is a child of the IpfcDetailItem
interface.

The interface IpfcDetailGroupInstructions contains information used to describe a detail group item.

Instructions

Method and Properties Introduced:

● CCpfcDetailGroupInstructions.Create()

● IpfcDetailGroupInstructions.Name

● IpfcDetailGroupInstructions.Elements

● IpfcDetailGroupInstructions.IsDisplayed

The method CCpfcDetailGroupInstructions.Create() creates an instruction data object that describes how to construct
a detail group for use in IpfcDetailItemOwner.CreateDetailItem() and IpfcDetailGroupItem.Modify().

Note:
Changes to the values of a IpfcDetailGroupInstructions object do not take effect until that instructions object is
used to modify the group using IpfcDetailGroupItem.Modify.

The property IpfcDetailGroupInstructions.Name returns the name of the detail group.

The property IpfcDetailGroupInstructions.Elements returns the sequence of the detail items(notes, groups and
entities) contained in the group.

The property IpfcDetailGroupInstructions.IsDisplayed returns whether the detail group is displayed in the drawing.

Detail Groups Information

Method Introduced:

● IpfcDetailGroupItem.GetInstructions()

The method IpfcDetailGroupItem.GetInstructions() gets a data object that describes how to construct a detail group
item. The method returns the data object describing the detail group item.

Detail Groups Operations

Methods Introduced:

● IpfcDetailGroupItem.Draw()

● IpfcDetailGroupItem.Erase()

● IpfcDetailGroupItem.Modify()

The method IpfcDetailGroupItem.Draw() temporarily draws a detail group item, so that it is removed during the next
draft generation.

The method IpfcDetailGroupItem.Erase() temporarily undraws a detail group item, so that it is redrawn during the
next draft generation.

The method IpfcDetailGroupItem.Modify() changes the definition of a detail group item based on the data object that
describes how to construct a detail group item.

Example: Create New Group of Items

The following example creates a group from a set of selected detail items.

 Public Sub createGroup(ByRef session As IpfcBaseSession, ByVal
 groupName As String)

 Dim selections As CpfcSelections
 Dim selectionOptions As IpfcSelectionOptions
 Dim items As CpfcDetailItems
 Dim i As Integer
 Dim drawing As IpfcDrawing
 Dim groupInstructions As IpfcDetailGroupInstructions

 Try
'==
'Select notes, draft entities, symbol instances
'==
 selectionOptions = (New CCpfcSelectionOptions).Create("any_note,draft_ent,
dtl_symbol")
 selections = session.Select(selectionOptions, Nothing)

 If selections Is Nothing Or selections.Count = 0 Then
 Throw New Exception("No Detail tem selected")
 End If
'==
'Allocate and fill a sequence with the detail item handles
'==
 items = New CpfcDetailItems

 For i = 0 To selections.Count - 1
 items.Insert(items.Count, selections.Item(i).SelItem)
 Next
'==
'Get the drawing which owns the group
==
 drawing = items.Item(0).DBParent
'==
'Allocate group data and set group items
'==
 groupInstructions = (New CCpfcDetailGroupInstructions).Create(groupName, items)
 drawing.CreateDetailItem(groupInstructions)
 For i = 0 To selections.Count - 1
 selections.Item(i).UnHighlight()
 Next
 session.CurrentWindow.Repaint()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub

Detail Symbols

Detail Symbol Definitions

A detail symbol definition in the VB API is represented by the interface IpfcDetailSymbolDefItem. It is a child of the
IpfcDetailItem interface.

The interface IpfcDetailSymbolDefInstructions contains information that describes a symbol definition. It can be used
when creating symbol definition entities or while accessing existing symbol definition entities.

Instructions

Methods and Properties Introduced:

● CCpfcDetailSymbolDefInstructions.Create()

● IpfcDetailSymbolDefInstructions.SymbolHeight

● IpfcDetailSymbolDefInstructions.HasElbow

● IpfcDetailSymbolDefInstructions.IsTextAngleFixed

● IpfcDetailSymbolDefInstructions.ScaledHeight

● IpfcDetailSymbolDefInstructions.Attachments

● IpfcDetailSymbolDefInstructions.FullPath

● IpfcDetailSymbolDefInstructions.Reference

The method CCpfcDetailSymbolDefInstructions.Create() creates an instruction data object that describes how to
create a symbol definition based on the path and name of the symbol definition. The instructions object is passed to the
methods pfcDetailItemOwner.CreateDetailItem and pfcDetailSymbolDefItem.Modify.

Note:
Changes to the values of a IpfcDetailSymbolDefInstructions object do not take effect until that instructions
object is used to modify the definition using the method pfcDetail.DetailSymbolDefItem.Modify.

The property IpfcDetailSymbolDefInstructions.SymbolHeight returns the value of the height type for the symbol
definition. The symbol definition height options are as follows:

�❍ EpfcSYMDEF_FIXED--Symbol height is fixed.
�❍ EpfcSYMDEF_VARIABLE--Symbol height is variable.
�❍ EpfcSYMDEF_RELATIVE_TO_TEXT--Symbol height is determined relative to the text height.

The property IpfcDetailSymbolDefInstructions.HasElbow determines whether the symbol definition includes an
elbow.

The property IpfcDetailSymbolDefInstructions.IsTextAngleFixed returns whether the text of the angle is fixed.

The property IpfcDetailSymbolDefInstructions.ScaledHeight returns the height of the symbol definition in inches.

The property IpfcDetailSymbolDefInstructions.Attachments returns the value of the sequence of the possible
instance attachment points for the symbol definition.

The property IpfcDetailSymbolDefInstructions.FullPath returns the value of the complete path of the symbol
definition file.

The property IpfcDetailSymbolDefInstructions.Reference returns the text reference information for the symbol
definition. It returns a null value if the text reference is not used. The text reference identifies the text item used for a
symbol definition which has a height type of SYMDEF_TEXT_RELATED.

Detail Symbol Definitions Information

Methods Introduced:

● IpfcDetailSymbolDefItem.ListDetailItems()

● IpfcDetailSymbolDefItem.GetInstructions()

The method IpfcDetailSymbolDefItem.ListDetailItems() lists the detail items in the symbol definition based on the
type of the detail item.

The method IpfcDetailSymbolDefItem.GetInstructions() returns an instruction data object that describes how to
construct the symbol definition.

Detail Symbol Definitions Operations

Methods Introduced:

● IpfcDetailSymbolDefItem.CreateDetailItem()

● IpfcDetailSymbolDefItem.Modify()

The method IpfcDetailSymbolDefItem.CreateDetailItem() creates a detail item in the symbol definition based on the
instructions data object. The method returns the detail item in the symbol definition.

The method IpfcDetailSymbolDefItem.Modify() modifies a symbol definition based on the instructions data object
that contains information about the modifications to be made to the symbol definition.

Retrieving Symbol Definitions

Methods Introduced:

● IpfcDetailItemOwner.RetrieveSymbolDefinition()

The method IpfcDetailItemOwner.RetrieveSymbolDefinition() retrieves a symbol definition from the disk.

The input parameters of this method are:

�❍ FileName--Name of the symbol definition file
�❍ FilePath--Path to the symbol definition file. It is relative to the path specified by the option "pro_symbol_dir" in the

configuration file. A null value indicates that the function should search the current directory.
�❍ Version--Numerical version of the symbol definition file. A null value retrieves the latest version.
�❍ UpdateUnconditionally--True if Pro/ENGINEER should update existing instances of this symbol definition, or false to

quit the operation if the definition exists in the model.

The method returns the retrieved symbol definition.

Example : Create Symbol Definition

The following example creates a symbol definition which contains four line entities forming a box, a note at the middle
of the box, and a free attachment.

 Public Sub createBoxSymbolDef(ByRef session As IpfcBaseSession, _
 ByVal name As String, ByVal text As String)
 Dim model As IpfcModel

 Dim drawing As IpfcDrawing
 Dim symbolInstructions As IpfcDetailSymbolDefInstructions
 Dim origin As CpfcPoint3D
 Dim attachment As IpfcSymbolDefAttachment
 Dim attachments As CpfcSymbolDefAttachments
 Dim symbolDef As IpfcDetailSymbolDefItem
 Dim textHeight As Double
 Dim matrix As IpfcTransform3D
 Dim defHeight As Double
 Dim rgbColour As IpfcColorRGB
 Dim end1 As CpfcPoint3D
 Dim end2 As CpfcPoint3D

 Try
'==
'Get the current drawing
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then
 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)
'==
'Allocate symbol definition description data
'==
 symbolInstructions = (New CCpfcDetailSymbolDefInstructions).Create(name)
 symbolInstructions.Height = EpfcSymbolDefHeight.EpfcSYMDEF_FIXED
'==
 'Set a free attachment at the origin of the symbol
'==
 origin = New CpfcPoint3D
 origin.Set(0, 0.0)
 origin.Set(1, 0.0)
 origin.Set(2, 0.0)

 attachment = (New CCpfcSymbolDefAttachment).Create _(EpfcSymbolDefAttachmentType.
EpfcSYMDEFATTACH_FREE, origin)

 attachments = New CpfcSymbolDefAttachments
 attachments.Insert(0, attachment)
 symbolInstructions.Attachments = attachments
'==
'Create empty symbol
'==
 symbolDef = drawing.CreateDetailItem(symbolInstructions)

'==
'Calculate the default text height for the symbol based on the drawing
'text(height And transform)
'==
 textHeight = drawing.TextHeight
 matrix = drawing.GetSheetTransform(drawing.CurrentSheetNumber)
 defHeight = textHeight / matrix.Matrix.Item(0, 0)

 rgbColour = session.GetRGBFromStdColor(EpfcStdColor.EpfcCOLOR_QUILT)
'==

'Create four lines to form a box, twice the default text height,
'around the origin
'==
 end1 = New CpfcPoint3D
 end2 = New CpfcPoint3D
 end1.Set(0, -defHeight)
 end1.Set(1, -defHeight)
 end1.Set(2, 0.0)
 end2.Set(0, defHeight)
 end2.Set(1, -defHeight)
 end2.Set(2, 0.0)

 addLine(symbolDef, end1, end2, rgbColour)

 end2.Set(0, -defHeight)
 end2.Set(1, defHeight)

 addLine(symbolDef, end1, end2, rgbColour)

 end1.Set(0, defHeight)
 end1.Set(1, defHeight)

 addLine(symbolDef, end1, end2, rgbColour)

 end2.Set(0, defHeight)
 end2.Set(1, -defHeight)

 addLine(symbolDef, end1, end2, rgbColour)
'==
 'Add a note with the specified text at the origin
'==
 addNote(symbolDef, origin, text)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try
 End Sub

 Private Sub addLine(ByRef symDef As IpfcDetailSymbolDefItem,
 _ByVal start As IpfcPoint3D,
 ByVal finish As IpfcPoint3D,
 _ByVal colour As IpfcColorRGB)

 Dim geom As IpfcLineDescriptor
 Dim lineInstructions As IpfcDetailEntityInstructions
'==
'Allocate and initialize curve descriptor
'==
 geom = (New CCpfcLineDescriptor).Create(start, finish)
'==
'Allocate data for draft entity
'==
 lineInstructions = (New CCpfcDetailEntityInstructions).Create(geom, Nothing)
 lineInstructions.Color = colour
'==
'Create and display the line
'==
 symDef.CreateDetailItem(lineInstructions)

 End Sub

 Private Sub addNote(ByRef symDef As IpfcDetailSymbolDefItem,
 _ByVal location As IpfcPoint3D,
 _ByVal message As String)

 Dim text As IpfcDetailText
 Dim texts As CpfcDetailTexts
 Dim textLine As IpfcDetailTextLine
 Dim textLines As CpfcDetailTextLines
 Dim position As IpfcFreeAttachment
 Dim allAttachments As IpfcDetailLeaders
 Dim noteInstructions As IpfcDetailNoteInstructions
'==
'Allocate a text item and add it to a new text line
'==
 text = (New CCpfcDetailText).Create(message)
 texts = New CpfcDetailTexts
 texts.Insert(0, text)
 textLine = (New CCpfcDetailTextLine).Create(texts)
 textLines = New CpfcDetailTextLines
 textLines.Insert(0, textLine)
'==
'Set the location of the note text
'==
 position = (New CCpfcFreeAttachment).Create(location)
'==
'Set the attachment structure
'==
 allAttachments = (New CCpfcDetailLeaders).Create()
 allAttachments.ItemAttachment = position
'==
'Allocate note description
'==
 noteInstructions = (New CCpfcDetailNoteInstructions).Create(textLines)
 noteInstructions.Leader = allAttachments
 noteInstructions.Horizontal = EpfcHorizontalJustification.EpfcH_JUSTIFY_CENTER
 noteInstructions.Vertical = EpfcVerticalJustification.EpfcV_JUSTIFY_MIDDLE

 symDef.CreateDetailItem(noteInstructions)

 End Sub

Detail Symbol Instances

A detail symbol instance in the VB API is represented by the interface IpfcDetailSymbolInstItem. It is a child of the
IpfcDetailItem interface.

The interface IpfcDetailSymbolInstInstructions contains information that describes a symbol instance. It can be used
when creating symbol instances and while accessing existing groups.

Instructions

Methods and Properties Introduced:

● CCpfcDetailSymbolInstInstructions.Create()

● IpfcDetailSymbolInstInstructions.IsDisplayed

● IpfcDetailSymbolInstInstructions.Color

● IpfcDetailSymbolInstInstructions.SymbolDef

● IpfcDetailSymbolInstInstructions.AttachOnDefType

● IpfcDetailSymbolInstInstructions.DefAttachment

● IpfcDetailSymbolInstInstructions.InstAttachment

● IpfcDetailSymbolInstInstructions.Angle

● IpfcDetailSymbolInstInstructions.ScaledHeight

● IpfcDetailSymbolInstInstructions.TextValues

● IpfcDetailSymbolInstInstructions.CurrentTransform

● IpfcDetailSymbolInstInstructions.SetGroups()

The method CCpfcDetailSymbolInstInstructions.Create() creates a data object that contains information about the
placement of a symbol instance.

Note:
Changes to the values of a IpfcDetailSymbolInstInstructions object do not take effect until that instructions
object is used to modify the instance using IpfcDetailSymbolInstItem.Modify.

The property IpfcDetailSymbolInstInstructions.IsDisplayed returns a value that specifies whether the instance of the
symbol is displayed.

The property IpfcDetailSymbolInstInstructions.Color returns the color of the detail symbol instance. A null value
indicates that the default drawing color is used.

The property IpfcDetailSymbolInstInstructions.SymbolDef returns the symbol definition used for the instance.

The property IpfcDetailSymbolInstInstructions.AttachOnDefType returns the attachment type of the instance. The
method returns a null value if the attachment represents a free attachment. The attachment options are as follows:

�❍ EpfcSYMDEFATTACH_FREE--Attachment on a free point.
�❍ EpfcSYMDEFATTACH_LEFT_LEADER--Attachment via a leader on the left side of the symbol.
�❍ EpfcSYMDEFATTACH_RIGHT_LEADER-- Attachment via a leader on the right side of the symbol.
�❍ EpfcSYMDEFATTACH_RADIAL_LEADER--Attachment via a leader at a radial location.
�❍ EpfcSYMDEFATTACH_ON_ITEM--Attachment on an item in the symbol definition.
�❍ EpfcSYMDEFATTACH_NORMAL_TO_ITEM--Attachment normal to an item in the symbol definition.

The property IpfcDetailSymbolInstInstructions.DefAttachment returns the value that represents the way in which the
instance is attached to the symbol definition.

The property IpfcDetailSymbolInstInstructions.InstAttachment returns the value of the attachment of the instance
that includes location and leader information.

The property IpfcDetailSymbolInstInstructions.Angle returns the value of the angle at which the instance is placed.

The method returns a null value if the value of the angle is 0 degrees.

The property IpfcDetailSymbolInstInstructions.ScaledHeight returns the height of the symbol instance in the owner
drawing or model coordinates. This value is consistent with the height value shown for a symbol instance in the
Properties dialog box in the Pro/ENGINEER User Interface.

Note:
The scaled height obtained using the above property is partially based on the properties of the symbol definition
assigned using the property pfcDetail.DetailSymbolInstInstructions.GetSymbolDef. Changing the symbol
definition may change the calculated value for the scaled height.

The property IpfcDetailSymbolInstInstructions.TextValues returns the sequence of variant text values used while
placing the symbol instance.

The property IpfcDetailSymbolInstInstructions.CurrentTransform returns the coordinate transformation matrix to
place the symbol instance.

The method IpfcDetailSymbolInstInstructions.SetGroups() sets the IpfcDetailSymbolGroupOption argument for
displaying symbol groups in the symbol instance. This argument can have the following values:

�❍ EpfcDETAIL_SYMBOL_GROUP_INTERACTIVE--Symbol groups are interactively selected for display. This is the
default value in the GRAPHICS mode.

�❍ EpfcDETAIL_SYMBOL_GROUP_ALL--All non-exclusive symbol groups are included for display.
�❍ EpfcDETAIL_SYMBOL_GROUP_NONE--None of the non-exclusive symbol groups are included for display.
�❍ EpfcDETAIL_SYMBOL_GROUP_CUSTOM--Symbol groups specified by the application are displayed.

Refer to the section Detail Symbol Groups for more information on detail symbol groups.

Detail Symbol Instances Information

Method Introduced:

● IpfcDetailSymbolInstItem.GetInstructions()

The method IpfcDetailSymbolInstItem.GetInstructions() returns an instructions data object that describes how to
construct a symbol instance. This method takes a ProBoolean argument, GiveParametersAsNames, which determines
whether symbolic representations of parameters and drawing properties in the symbol instance should be displayed, or
the actual text seen by the user should be displayed.

Detail Symbol Instances Operations

Methods Introduced:

● IpfcDetailSymbolInstItem.Draw()

● IpfcDetailSymbolInstItem.Erase()

● IpfcDetailSymbolInstItem.Show()

● IpfcDetailSymbolInstItem.Remove()

● IpfcDetailSymbolInstItem.Modify()

The method IpfcDetailSymbolInstItem.Draw() draws a symbol instance temporarily to be removed on the next draft
regeneration.

The method IpfcDetailSymbolInstItem.Erase() undraws a symbol instance temporarily from the display to be redrawn
on the next draft generation.

The method IpfcDetailSymbolInstItem.Show() displays a symbol instance to be repainted on the next draft
regeneration.

The method IpfcDetailSymbolInstItem.Remove() deletes a symbol instance permanently.

The method IpfcDetailSymbolInstItem.Modify() modifies a symbol instance based on the instructions data object that
contains information about the modifications to be made to the symbol instance.

Example: Create a Free Instance of Symbol Definition

'Place free symbol instance
'==
'Function : placeSymbolInstance
'Purpose : This function creates a free instance of a symbol
' definition. A symbol is placed with no leaders at a
' specified location.
'==

Public Sub placeSymbolInstance(ByRef session As IpfcSession, _
 ByVal symbolName As String)

 Dim model As IpfcModel
 Dim drawing As IpfcDrawing
 Dim symbolDefinition As IpfcDetailSymbolDefItem
 Dim point As CpfcPoint3D
 Dim mouse As IpfcMouseStatus
 Dim symInstructions As IpfcDetailSymbolInstInstructions
 Dim position As IpfcFreeAttachment
 Dim allAttachments As IpfcDetailLeaders
 Dim symItem As IpfcDetailSymbolInstItem

 Try
'==
'Get the current drawing
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then
 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)
'==
'Retrieve symbol definition from system
'==
 symbolDefinition = drawing.RetrieveSymbolDefinition
(symbolName, _"./", _Nothing,
_Nothing)

'==
'Select location for symbol
'==
 point = New CpfcPoint3D

 mouse = session.UIGetNextMousePick(EpfcMouseButton.EpfcMOUSE_BTN_LEFT)
 point = mouse.Position
'==
'Allocate the symbol instance decription
'==
 symInstructions = (New CCpfcDetailSymbolInstInstructions).Create(symbolDefinition)
'==
'Set the location of the note text
'==
 position = (New CCpfcFreeAttachment).Create(point)
'==
'Set the attachment structure
'==
 allAttachments = (New CCpfcDetailLeaders).Create()
 allAttachments.ItemAttachment = position

 symInstructions.InstAttachment = allAttachments
'==
'Create and display the symbol
'==
 symItem = drawing.CreateDetailItem(symInstructions)
 symItem.Show()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub

 Example: Create a Free Instance of a Symbol Definition with drawing unit heights, variable text and
groups

'Place detail symbol instance
'==
 'Function : placeDetailSymbol
 'Purpose : This function creates a free instance of a symbol
 ' definition with drawing unit heights, variable text and
 ' groups. A symbol is placed with no leaders at a
 ' specified location.
'==
 Public Sub placeDetailSymbol(ByRef session As IpfcSession, ByVal
 groupName As String, _
 Optional ByVal variableText As String =
 Nothing, _
 Optional ByVal height As Double = 0)

 Dim model As IpfcModel
 Dim drawing As IpfcDrawing
 Dim symbolDefinition As IpfcDetailSymbolDefItem
 Dim point As CpfcPoint3D
 Dim mouse As IpfcMouseStatus
 Dim symInstructions As IpfcDetailSymbolInstInstructions
 Dim position As IpfcFreeAttachment
 Dim allAttachments As IpfcDetailLeaders
 Dim symItem As IpfcDetailSymbolInstItem

 Dim varTexts As IpfcDetailVariantTexts
 Dim varText As IpfcDetailVariantText

 Dim allGroups As IpfcDetailSymbolGroups
 Dim groups As IpfcDetailSymbolGroups
 Dim group As IpfcDetailSymbolGroup

 Try
 '==
 'Get the current drawing
 '==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If Not model.Type = EpfcModelType.EpfcMDL_DRAWING Then
 Throw New Exception("Model is not drawing")
 End If
 drawing = CType(model, IpfcDrawing)

 '==
 'Retrieve symbol definition from system
 '==
 symbolDefinition = drawing.RetrieveSymbolDefinition
 ("detail_symbol_example", _
 "./", _
 Nothing, Nothing)

'==
 'Select location for symbol
'==
 point = New CpfcPoint3D
 mouse =
 session.UIGetNextMousePick(EpfcMouseButton.EpfcMOUSE_BTN_LEFT)
 point = mouse.Position

'==
 'Allocate the symbol instance decription
'==
 symInstructions = (New
 CCpfcDetailSymbolInstInstructions).Create(symbolDefinition)

'==
 'Set the new values
'==
 If height > 0 Then
 symInstructions.ScaledHeight = 15.5
 End If

 If Not variableText Is Nothing Then
 varText = (New CCpfcDetailVariantText).Create("VAR_TEXT",
 variableText)
 varTexts = New CpfcDetailVariantTexts
 varTexts.Append(varText)

 symInstructions.TextValues = varTexts
 End If

 Select Case groupName
 Case "ALL"
 symInstructions.SetGroups(EpfcDetailSymbolGroupOption.EpfcDETAIL_SYMBOL_

 GROUP_ALL, Nothing)
 Case "NONE"

symInstructions.SetGroups(EpfcDetailSymbolGroupOption.EpfcDETAIL_SYMBOL_
 GROUP_NONE, Nothing)
 Case Else
 allGroups = symInstructions.SymbolDef.ListSubgroups
 group = getGroup(allGroups, groupName)
 If Not group Is Nothing Then
 groups = New CpfcDetailSymbolGroups
 groups.Append(group)

symInstructions.SetGroups(EpfcDetailSymbolGroupOption.EpfcDETAIL_SYMBOL_
 GROUP_CUSTOM, groups)
 End If
 End Select

'==
 'Set the location of the note text
'==
 position = (New CCpfcFreeAttachment).Create(point)

'==
 'Set the attachment structure
'==
 allAttachments = (New CCpfcDetailLeaders).Create()
 allAttachments.ItemAttachment = position

 symInstructions.InstAttachment = allAttachments

'==
 'Create and display the symbol
'==
 symItem = drawing.CreateDetailItem(symInstructions)
 symItem.Show()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try

 End Sub

 Private Function getGroup(ByRef groups As CpfcDetailSymbolGroups,
 ByVal groupName As String) As IpfcDetailSymbolGroup
 Dim group As IpfcDetailSymbolGroup
 Dim groupInstrs As IpfcDetailSymbolGroupInstructions
 Dim i As Integer

 If groups.Count = 0 Then
 Return Nothing
 End If

 For i = 0 To groups.Count - 1
 group = groups.Item(i)
 groupInstrs = group.GetInstructions()

 If groupInstrs.Name = groupName Then
 Return group
 End If

 Next

 Return Nothing

 End Function

Detail Symbol Groups

A detail symbol group in the VB API is represented by the interface IpfcDetailSymbolGroup. It is a child of the
IpfcObject interface. A detail symbol group is accessible only as a part of the contents of a detail symbol definition or
instance.

The interface IpfcDetailSymbolGroupInstructions contains information that describes a symbol group. It can be used
when creating new symbol groups, or while accessing or modifying existing groups.

Instructions

Methods and Properties Introduced:

● CCpfcDetailSymbolGroupInstructions.Create()

● IpfcDetailSymbolGroupInstructions.Items

● IpfcDetailSymbolGroupInstructions.Name

The method CCpfcDetailSymbolGroupInstructions.Create() creates the IpfcDetailSymbolGroupInstructions data
object that stores the name of the symbol group and the list of detail items to be included in the symbol group.

Note:
Changes to the values of the IpfcDetailSymbolGroupInstructions data object do not take effect until this object
is used to modify the instance using the method IpfcDetailSymbolGroup.Modify.

The property IpfcDetailSymbolGroupInstructions.Items returns the list of detail items included in the symbol group.

The property IpfcDetailSymbolGroupInstructions.Name returns the name of the symbol group.

Detail Symbol Group Information

Methods Introduced:

● IpfcDetailSymbolGroup.GetInstructions()

● IpfcDetailSymbolGroup.ParentGroup

● IpfcDetailSymbolGroup.ParentDefinition

● IpfcDetailSymbolGroup.ListChildren()

● IpfcDetailSymbolDefItem.ListSubgroups()

● IpfcDetailSymbolDefItem.IsSubgroupLevelExclusive()

● IpfcDetailSymbolInstItem.ListGroups()

The method IpfcDetailSymbolGroup.GetInstructions() returns the IpfcDetailSymbolGroupInstructions data object
that describes how to construct a symbol group.

The method IpfcDetailSymbolGroup.ParentGroup returns the parent symbol group to which a given symbol group
belongs.

The method IpfcDetailSymbolGroup.ParentDefinition returns the symbol definition of a given symbol group.

The method IpfcDetailSymbolGroup.ListChildren() lists the subgroups of a given symbol group.

The method IpfcDetailSymbolDefItem.ListSubgroups() lists the subgroups of a given symbol group stored in the
symbol definition at the indicated level.

The method IpfcDetailSymbolDefItem.IsSubgroupLevelExclusive() identifies if the subgroups of a given symbol
group stored in the symbol definition at the indicated level are exclusive or independent. If groups are exclusive, only
one of the groups at this level can be active in the model at any time. If groups are independent, any number of groups
can be active.

The method IpfcDetailSymbolInstItem.ListGroups() lists the symbol groups included in a symbol instance. The
IpfcSymbolGroupFilter argument determines the types of symbol groups that can be listed. It takes the following
values:

�❍ EpfcDTLSYMINST_ALL_GROUPS--Retrieves all groups in the definition of the symbol instance.
�❍ EpfcDTLSYMINST_ACTIVE_GROUPS--Retrieves only those groups that are actively shown in the symbol instance.
�❍ EpfcDTLSYMINST_INACTIVE_GROUPS--Retrieves only those groups that are not shown in the symbol instance.

Detail Symbol Group Operations

Methods Introduced:

● IpfcDetailSymbolGroup.Delete()

● IpfcDetailSymbolGroup.Modify()

● IpfcDetailSymbolDefItem.CreateSubgroup()

● IpfcDetailSymbolDefItem.SetSubgroupLevelExclusive()

● IpfcDetailSymbolDefItem.SetSubgroupLevelIndependent()

The method IpfcDetailSymbolGroup.Delete() deletes the specified symbol group from the symbol definition. This
method does not delete the entities contained in the group.

The method IpfcDetailSymbolGroup.Modify() modifies the specified symbol group based on the
IpfcDetailSymbolGroupInstructions data object that contains information about the modifications that can be made to
the symbol group.

The method IpfcDetailSymbolDefItem.CreateSubgroup() creates a new subgroup in the symbol definition at the
indicated level below the parent group.

The method IpfcDetailSymbolDefItem.SetSubgroupLevelExclusive() makes the subgroups of a symbol group
exclusive at the indicated level in the symbol definition.

Note:
After you set the subgroups of a symbol group as exclusive, only one of the groups at the indicated level can be

active in the model at any time.

The method IpfcDetailSymbolDefItem.SetSubgroupLevelIndependent() makes the subgroups of a symbol group
independent at the indicated level in the symbol definition.

Note:
After you set the subgroups of a symbol group as independent, any number of groups at the indicated level can
be active in the model at any time.

Detail Attachments

A detail attachment in VB API is represented by the interface IpfcAttachment. It is used for the following tasks:

�❍ The way in which a drawing note or a symbol instance is placed in a drawing.
�❍ The way in which a leader on a drawing note or symbol instance is attached.

Method Introduced:

● IpfcAttachment.GetType()

The method IpfcAttachment.GetType() returns the IpfcAttachmentType object containing the types of detail
attachments. The detail attachment types are as follows:

�❍ EpfcATTACH_FREE--The attachment is at a free point possibly with respect to a given drawing view.
�❍ EpfcATTACH_PARAMETRIC--The attachment is to a point on a surface or an edge of a solid.
�❍ EpfcATTACH_OFFSET--The attachment is offset to another drawing view, to a model item, or to a 3D model

annotation.
�❍ EpfcATTACH_TYPE_UNSUPPORTED--The attachment is to an item that cannot be represented in PFC at the current

time. However, you can still retrieve the location of the attachment.

Free Attachment

The EpfcATTACH_FREE detail attachment type is represented by the interface IpfcFreeAttachment. It is a child of
the IpfcAttachment interface.

Properties Introduced:

● IpfcFreeAttachment.AttachmentPoint

● IpfcFreeAttachment.View

The property IpfcFreeAttachment.AttachmentPoint returns the attachment point. This location is in screen
coordinates for drawing items, symbol instances and surface finishes on flat-to-screen annotation planes, and in model
coordinates for symbols and surface finishes on 3D model annotation planes.

The method IpfcFreeAttachment.View returns the drawing view to which the attachment is related. The attachment
point is relative to the drawing view, that is the attachment point moves when the drawing view is moved. This method
returns a NULL value, if the detail attachment is not related to a drawing view, but is placed at the specified location in
the drawing sheet, or if the attachment is offset to a model item or to a 3D model annotation.

Parametric Attachment

The EpfcATTACH_PARAMETRIC detail attachment type is represented by the interface IpfcParametricAttachment.
It is a child of the IpfcAttachment interface.

Property Introduced:

● IpfcParametricAttachment.AttachedGeometry

The property IpfcParametricAttachment.AttachedGeometry returns the IpfcSelection object representing the item to
which the detail attachment is attached. This includes the drawing view in which the attachment is made.

Offset Attachment

The EpfcATTACH_OFFSET detail attachment type is represented by the interface IpfcOffsetAttachment. It is a child
of the IpfcAttachment interface.

Properties Introduced:

● IpfcOffsetAttachment.AttachedGeometry

● IpfcOffsetAttachment.AttachmentPoint

The property IpfcOffsetAttachment.AttachedGeometry returns the IpfcSelection object representing the item to
which the detail attachment is attached. This includes the drawing view where the attachment is made, if the offset
reference is in a model.

The property IpfcOffsetAttachment.AttachmentPoint returns the attachment point. This location is in screen
coordinates for drawing items, symbol instances and surface finishes on flat-to-screen annotation planes, and in model
coordinates for symbols and surface finishes on 3D model annotation planes. The distance from the attachment point to
the location of the item to which the detail attachment is attached is saved as the offset distance.

Unsupported Attachment

The EpfcATTACH_TYPE_UNSUPPORTED detail attachment type is represented by the interface
IpfcUnsupportedAttachment. It is a child of the IpfcAttachment interface.

Property Introduced:

● IpfcUnsupportedAttachment.AttachmentPoint

The property IpfcUnsupportedAttachment.AttachmentPoint returns the attachment point. This location is in screen
coordinates for drawing items, symbol instances and surface finishes on flat-to-screen annotation planes, and in model
coordinates for symbols and surface finishes on 3D model annotation planes.

Solid

Most of the objects and methods in the VB API are used with solid models (parts and assemblies). Because solid
objects inherit from the interface IpfcModel, you can use any of the IpfcModel methods on any IpfcSolid,
IpfcPart, or IpfcAssembly object.

Topic

Getting a Solid Object
Solid Information
Solid Operations
Solid Units
Mass Properties
Annotations
Cross Sections
Materials

Getting a Solid Object

Methods and Properties Introduced:

● IpfcBaseSession.CreatePart()

● IpfcBaseSession.CreateAssembly()

● IpfcComponentPath.Root

● IpfcComponentPath.Leaf

● IpfcMFG.GetSolid()

The methods IpfcBaseSession.CreatePart() and IpfcBaseSession.CreateAssembly() create new solid models
with the names you specify.

The properties IpfcComponentPath.Root and IpfcComponentPath.Leaf specify the solid objects that make up
the component path of an assembly component model. You can get a component path object from any component
that has been interactively selected.

The method IpfcMFG.GetSolid() retrieves the storage solid in which the manufacturing model's features are
placed. In order to create a UDF group in the manufacturing model, call the method IpfcSolid.CreateUDFGroup
() on the storage solid.

Solid Information

Properties Introduced:

● IpfcSolid.RelativeAccuracy

● IpfcSolid.AbsoluteAccuracy

You can set the relative and absolute accuracy of any solid model using these methods. Relative accuracy is
relative to the size of the solid. For example, a relative accuracy of .01 specifies that the solid must be accurate to
within 1/100 of its size. Absolute accuracy is measured in absolute units (inches, centimeters, and so on).

Note:
For a change in accuracy to take effect, you must regenerate the model.

Solid Operations

Methods and Properties Introduced:

● IpfcSolid.Regenerate()

● CCpfcRegenInstructions.Create()

● IpfcRegenInstructions.AllowFixUI

● IpfcRegenInstructions.ForceRegen

● IpfcRegenInstructions.FromFeat

● IpfcRegenInstructions.RefreshModelTree

● IpfcRegenInstructions.ResumeExcludedComponents

● IpfcRegenInstructions.UpdateAssemblyOnly

● IpfcRegenInstructions.UpdateInstances

● IpfcSolid.GeomOutline

● IpfcSolid.EvalOutline()

● IpfcSolid.IsSkeleton

The method IpfcSolid.Regenerate() causes the solid model to regenerate according to the instructions provided in
the form of the IpfcRegenInstructions object. Passing a null value for the instructions argument causes an
automatic regeneration.

Pro/ENGINEER Wildfire 5.0 introduces the No-Resolve mode, wherein if a model and feature regeneration fails,
failed features and children of failed features are created and regeneration of other features continues. However,
VB API does not support regeneration in this mode. The method IpfcSolid.Regenerate() throws an exception
IpfcXtoolkitBadContext, if Pro/ENGINEER is running in the No-Resolve mode. To continue with the Pro/
ENGINEER Wildfire 4.0 behavior in the Resolve mode, set the configuration option
regen_failure_handling to resolve_mode in the Pro/ENGINEER session.

Note:
Setting the configuration option to switch to Resolve mode ensures the old behavior as long as you do not

retrieve the models saved under the No-Resolve mode. To consistently preserve the old behavior, use
Resolve mode from the beginning and throughout your Pro/ENGINEER session.

The IpfcRegenInstructions object contains the following input parameters:

�❍ AllowFixUI--Determines whether or not to activate the Fix Model user interface, if there is an error.

Use the property IpfcRegenInstructions.AllowFixUI to modify this parameter.
�❍ ForceRegen--Forces the solid model to fully regenerate. All the features in the model are regenerated. If this

parameter is false, Pro/ENGINEER determines which features to regenerate. By default, it is false.

Use the property IpfcRegenInstructions.ForceRegen to modify this parameter.
�❍ FromFeat--Not currently used. This parameter is reserved for future use.

Use the property IpfcRegenInstructions.FromFeat to modify this parameter.
�❍ RefreshModelTree--Refreshes the Pro/ENGINEER Model Tree after regeneration. The model must be active to

use this attribute. If this attribute is false, the Model Tree is not refreshed. By default, it is false.

Use the property IpfcRegenInstructions.RefreshModelTree to modify this parameter.
�❍ ResumeExcludedComponents--Enables Pro/ENGINEER to resume the available excluded components of the

simplified representation during regeneration. This results in a more accurate update of the simplified
representation.

Use the property IpfcRegenInstructions.ResumeExcludedComponents to modify this parameter.
�❍ UpdateAssemblyOnly--Updates the placements of an assembly and all its sub-assemblies, and regenerates the

assembly features and intersected parts. If the affected assembly is retrieved as a simplified representation, then
the locations of the components are updated. If this attribute is false, the component locations are not updated,
even if the simplified representation is retrieved. By default, it is false.

Use the property IpfcRegenInstructions.UpdateAssemblyOnly to modify this parameter.
�❍ UpdateInstances--Updates the instances of the solid model in memory. This may slow down the regeneration

process. By default, this attribute is false.

Use the property IpfcRegenInstructions.UpdateInstances to modify this parameter.

The property IpfcSolid.GeomOutline returns the three-dimensional bounding box for the specified solid. The
method IpfcSolid.EvalOutline() also returns a three-dimensional bounding box, but you can specify the
coordinate system used to compute the extents of the solid object.

The property IpfcSolid.IsSkeleton determines whether the part model is a skeleton or a concept model. It returns
a true value if the model is a skeleton, else it returns a false.

Solid Units

Each model has a basic system of units to ensure all material properties of that model are consistently measured
and defined. All models are defined on the basis of the system of units. A part can have only one system of unit.

The following types of quantities govern the definition of units of measurement:

�❍ Basic Quantities--The basic units and dimensions of the system of units. For example, consider the Centimeter
Gram Second (CGS) system of unit. The basic quantities for this system of units are:

- Length--cm
- Mass--g
- Force--dyne

- Time--sec
- Temperature--K

�❍ Derived Quantities--The derived units are those that are derived from the basic quantities. For example, consider
the Centimeter Gram Second (CGS) system of unit. The derived quantities for this system of unit are as follows:

- Area--cm^2
- Volume--cm^3
- Velocity--cm/sec

In the VB API, individual units in the model are represented by the interface pfcUnits.Unit.

Types of Unit Systems

The types of systems of units are as follows:

�❍ Pre-defined system of units--This system of unit is provided by default.
�❍ Custom-defined system of units--This system of unit is defined by the user only if the model does not contain

standard metric or nonmetric units, or if the material file contains units that cannot be derived from the predefined
system of units or both.

In Pro/ENGINEER, the system of units are categorized as follows:

�❍ Mass Length Time (MLT)--The following systems of units belong to this category:
- CGS --Centimeter Gram Second
- MKS--Meter Kilogram Second
- mmKS--millimeter Kilogram Second

�❍ Force Length Time (FLT)--The following systems of units belong to this category:
- Pro/ENGINEER Default--Inch lbm Second. This is the default system followed by Pro/ENGINEER.
- FPS--Foot Pound Second
- IPS--Inch Pound Second
- mmNS--Millimeter Newton Second

In the VB API, the system of units followed by the model is represented by the interface pfcUnits.UnitSystem.

Accessing Individual Units

Methods and Properties Introduced:

● IpfcSolid.ListUnits()

● IpfcSolid.GetUnit()

● IpfcUnit.Name

● IpfcUnit.Expression

● IpfcUnit.Type

● IpfcUnit.IsStandard

● IpfcUnit.ReferenceUnit

● IpfcUnit.ConversionFactor

● IpfcUnitConversionFactor.Offset

● IpfcUnitConversionFactor.Scale

The method IpfcSolid.ListUnits() returns the list of units available to the specified model.

The method IpfcSolid.GetUnit() retrieves the unit, based on its name or expression for the specified model in the
form of the IpfcUnit object.

The property IpfcUnit.Name returns the name of the unit.

The property IpfcUnit.Expression returns a user-friendly unit description in the form of the name (for example,
ksi) for ordinary units and the expression (for example, N/m^3) for system-generated units.

The property IpfcUnit.Type returns the type of quantity represented by the unit in terms of the IpfcUnitType
object. The types of units are as follows:

�❍ EpfcUNIT_LENGTH--Specifies length measurement units.
�❍ EpfcUNIT_MASS--Specifies mass measurement units.
�❍ EpfcUNIT_FORCE--Specifies force measurement units.
�❍ EpfcUNIT_TIME--Specifies time measurement units.
�❍ EpfcUNIT_TEMPERATURE--Specifies temperature measurement units.
�❍ EpfcUNIT_ANGLE--Specifies angle measurement units.

The property IpfcUnit.IsStandard identifies whether the unit is system-defined (if the property IsStandard is set
to true) or user-defined (if the property IsStandard is set to false).

The property IpfcUnit.ReferenceUnit returns a reference unit (one of the available system units) in terms of the
IpfcUnit object.

The property IpfcUnit.ConversionFactor identifies the relation of the unit to its reference unit in terms of the
IpfcUnitConversionFactor object. The unit conversion factors are as follows:

�❍ Offset--Specifies the offset value applied to the values in the reference unit.
�❍ Scale--Specifies the scale applied to the values in the reference unit to get the value in the actual unit.

Example - Consider the formula to convert temperature from Centigrade to Fahrenheit
F = a + (C * b)
where
F is the temperature in Fahrenheit
C is the temperature in Centigrade
a = 32 (constant signifying the offset value)
b = 9/5 (ratio signifying the scale of the unit)

Note:
Pro/ENGINEER scales the length dimensions of the model using the factors listed above. If the scale is
modified, the model is regenerated. When you scale the model, the model units are not changed. Imported
geometry cannot be scaled.

Use the properties IpfcUnitConversionFactor.Offset and IpfcUnitConversionFactor.Scale to retrieve the unit
conversion factors listed above.

Modifying Individual Units

Methods and Properties Introduced:

● IpfcUnit.Modify()

● IpfcUnit.Delete()

The method IpfcUnit.Modify() modifies the definition of a unit by applying a new conversion factor specified by
the IpfcUnitConversionFactor object and a reference unit.

The method IpfcUnit.Delete() deletes the unit.

Note:
You can delete only custom units and not standard units.

Creating a New Unit

Methods Introduced:

● IpfcSolid.CreateCustomUnit()

● CCpfcUnitConversionFactor.Create()

The method IpfcSolid.CreateCustomUnit() creates a custom unit based on the specified name, the conversion
factor given by the IpfcUnitConversionFactor object, and a reference unit.

The method CCpfcUnitConversionFactor.Create() creates the IpfcUnitConversionFactor object containing
the unit conversion factors.

Accessing Systems of Units

Methods and Properties Introduced:

● IpfcSolid.ListUnitSystems()

● IpfcSolid.GetPrincipalUnits()

● IpfcUnitSystem.GetUnit()

● IpfcUnitSystem.Name

● IpfcUnitSystem.Type

● IpfcUnitSystem.IsStandard

The method IpfcSolid.ListUnitSystems() returns the list of unit systems available to the specified model.

The method IpfcSolid.GetPrincipalUnits() returns the system of units assigned to the specified model in the
form of the IpfcUnitSystem object.

The method IpfcUnitSystem.GetUnit() retrieves the unit of a particular type used by the unit system.

The property IpfcUnitSystem.Name returns the name of the unit system.

The property IpfcUnitSystem.Type returns the type of the unit system in the form of the IpfcUnitSystemType
object. The types of unit systems are as follows:

�❍ EpfcUNIT_SYSTEM_MASS_LENGTH_TIME--Specifies the Mass Length Time (MLT) unit system.
�❍ EpfcUNIT_SYSTEM_FORCE_LENGTH_TIME--Specifies the Force Length Time (FLT) unit system.

For more information on these unit systems listed above, refer to the section Types of Unit Systems.

The property IpfcUnitSystem.IsStandard identifies whether the unit system is system-defined (if the property
IsStandard is set to true) or user-defined (if the property IsStandard is set to false).

Modifying Systems of Units

Method Introduced:

● IpfcUnitSystem.Delete()

The method IpfcUnitSystem.Delete() deletes a custom-defined system of units.

Note:
You can delete only a custom-defined system of units and not a standard system of units.

Creating a New System of Units

Method Introduced:

● IpfcSolid.CreateUnitSystem()

The method IpfcSolid.CreateUnitSystem() creates a new system of units in the model based on the specified
name, the type of unit system given by the IpfcUnitSystemType object, and the types of units specified by the
IpfcUnits sequence to use for each of the base measurement types (length, force or mass, and temperature).

Conversion to a New Unit System

Methods and Properties Introduced:

● IpfcSolid.SetPrincipalUnits()

● CCpfcUnitConversionOptions.Create()

● IpfcUnitConversionOptions.DimensionOption

● IpfcUnitConversionOptions.IgnoreParamUnits

The method IpfcSolid.SetPrincipalUnits() changes the principal system of units assigned to the solid model
based on the the unit conversion options specified by the IpfcUnitConversionOptions object. The method
CCpfcUnitConversionOptions.Create() creates the IpfcUnitConversionOptions object containing the unit
conversion options listed below.

The types of unit conversion options are as follows:

�❍ DimensionOption--Use the option while converting the dimensions of the model.

Use the property IpfcUnitConversionOptions.DimensionOption to modify this option.

This option can be of the following types:
- EpfcUNITCONVERT_SAME_DIMS--Specifies that unit conversion occurs by interpreting the unit
value in the new unit system. For example, 1 inch will equal to 1 millimeter.
- EpfcUNITCONVERT_SAME_SIZE--Specifies that unit conversion will occur by converting the unit
value in the new unit system. For example, 1 inch will equal to 25.4 millimeters.

�❍ IgnoreParamUnits--This boolean attribute determines whether or not ignore the parameter units. If it is null or
true, parameter values and units do not change when the unit system is changed. If it is false, parameter units are
converted according to the rule.

Use the property IpfcUnitConversionOptions.IgnoreParamUnits to modify this attribute.

Mass Properties

Method Introduced:

● IpfcSolid.GetMassProperty()

The function IpfcSolid.GetMassProperty() provides information about the distribution of mass in the part or
assembly. It can provide the information relative to a coordinate system datum, which you name, or the default
one if you provide null as the name. It returns an object containing the following fields:

�❍ The volume.
�❍ The surface area.
�❍ The density. The density value is 1.0, unless a material has been assigned.
�❍ The mass.
�❍ The center of gravity (COG).
�❍ The inertia matrix.
�❍ The inertia tensor.
�❍ The inertia about the COG.
�❍ The principal moments of inertia (the eigen values of the COG inertia).
�❍ The principal axes (the eigenvectors of the COG inertia).

Example Code: Retrieving a Mass Property Object

This method retrieves a MassProperty object from a specified solid model. The solid's mass, volume, and center
of gravity point are then printed.

Imports pfcls

Public Class pfcSolidExamples
 Public Sub printMassProperties(ByRef session As IpfcBaseSession)

 Dim model As IpfcModel
 Dim solid As IpfcSolid
 Dim solidProperties As IpfcMassProperty
 Dim gravityCentre As New CpfcPoint3D

 Try
'==
'Get the current solid
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If (Not model.Type = EpfcModelType.EpfcMDL_PART) And
 _(Not model.Type = EpfcModelType.EpfcMDL_ASSEMBLY) Then
 Throw New Exception("Model is not a solid")
 End If
 solid = CType(model, IpfcSolid)
'==
'Get the solid properties. Optional argument in this method is the name
'of the coordinate system to use. If null, uses default
'==
 solidProperties = solid.GetMassProperty(Nothing)
 gravityCentre = solidProperties.GravityCenter

 MsgBox("The solid mass is: " + solidProperties.Mass.ToString +
 Chr(13).ToString + _"The solid volume is: " +
 solidProperties.Volume.ToString +
 Chr(13).ToString + _"The Centre of Gravity is at: " +
 Chr(13).ToString + _"X : " +
 gravityCentre.Item(0).ToString + Chr(13).ToString +
 _"Y : " + gravityCentre.Item(1).ToString +
 Chr(13).ToString +
 _"Z : " + gravityCentre.Item(2).ToString +
 Chr(13).ToString)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try
 End Sub

End Class

Annotations

Methods and Properties Introduced:

● IpfcNote.Lines

● IpfcNote.URL

● IpfcNote.Display()

● IpfcNote.Delete()

● IpfcNote.GetOwner()

3D model notes are instance of ModelItem objects. They can be located and accessed using methods that locate
model items in solid models, and downcast to the Note interface to use the methods in this section.

The property IpfcNote.Lines returns the text contained in the 3D model note.

The property IpfcNote.URL returns the URL stored in the 3D model note.

The method IpfcNote.Display() forces the display of the model note.

The method IpfcNote.Delete() deletes a model note.

The method IpfcNote.GetOwner() returns the solid model owner of the note.

Cross Sections

Methods Introduced:

● IpfcSolid.ListCrossSections()

● IpfcSolid.GetCrossSection()

● IpfcXSection.GetName()

● IpfcXSection.SetName()

● IpfcXSection.GetXSecType()

● IpfcXSection.Delete()

● IpfcXSection.Display()

● IpfcXSection.Regenerate()

The method IpfcSolid.ListCrossSections() returns a sequence of cross section objects represented by the
Xsection interface. The method IpfcSolid.GetCrossSection() searches for a cross section given its name.

The method IpfcXSection.GetName() returns the name of the cross section in Pro/ENGINEER. The method
IpfcXSection.SetName() modifies the cross section name.

The method IpfcXSection.GetXSecType() returns the type of cross section, that is planar or offset, and the type
of item intersected by the cross section.

The method IpfcXSection.Delete() deletes a cross section.

The method IpfcXSection.Display() forces a display of the cross section in the window.

The method IpfcXSection.Regenerate() regenerates a cross section.

Materials

The VB API enables you to programmatically access the material types and properties of parts. Using the methods

and properties described in the following sections, you can perform the following actions:

�❍ Create or delete materials
�❍ Set the current material
�❍ Access and modify the material types and properties

Methods and Properties Introduced:

● IpfcMaterial.Save()

● IpfcMaterial.Delete()

● IpfcPart.CurrentMaterial

● IpfcPart.ListMaterials()

● IpfcPart.CreateMaterial()

● IpfcPart.RetrieveMaterial()

The method IpfcMaterial.Save() writes to a material file that can be imported into any Pro/ENGINEER part.

The method IpfcMaterial.Delete() removes material from the part.

The property IpfcPart.CurrentMaterial returns and sets the material assigned to the part.

Note:

- By default, while assigning a material to a sheetmetal part, the property IpfcPart.CurrentMaterial modifies the
values of the sheetmetal properties such as Y factor and bend table according to the material file definition. This
modification triggers a regeneration and a modification of the developed length calculations of the sheetmetal
part. However, you can avoid this behavior by setting the value of the configuration option
material_update_smt_bend_table to never_replace.
- The property IpfcPart.CurrentMaterial may change the model display, if the new material has a default
appearance assigned to it.
- The property may also change the family table, if the parameter PTC_MATERIAL_NAME is a part of the
family table.

The method IpfcPart.ListMaterials() returns a list of the materials available in the part.

The method IpfcPart.CreateMaterial() creates a new empty material in the specified part.

The method IpfcPart.RetrieveMaterial() imports a material file into the part. The name of the file read can be as
either:

�❍ <name>.mtl--Specifies the new material file format.
�❍ <name>.mat--Specifies the material file format prior to Pro/ENGINEER Wildfire 3.0.

If the material is not already in the part database, IpfcPart.RetrieveMaterial() adds the material to the database
after reading the material file. If the material is already in the database, the function replaces the material
properties in the database with those contained in the material file.

Accessing Material Types

and Properties Introduced:

● IpfcMaterial.StructuralMaterialType

● IpfcMaterial.ThermalMaterialType

● IpfcMaterial.SubType

● IpfcMaterial.PermittedSubTypes

The property IpfcMaterial.StructuralMaterialType sets the material type for the structural properties of the
material. The material types are as follows:

�❍ EpfcMTL_ISOTROPIC--Specifies a a material with an infinite number of planes of material symmetry, making
the properties equal in all directions.

�❍ EpfcMTL_ORTHOTROPIC--Specifies a material with symmetry relative to three mutually perpendicular planes.
�❍ EpfcMTL_TRANSVERSELY_ISOTROPIC--Specifies a material with rotational symmetry about an axis. The

properties are equal for all directions in the plane of isotropy.

The property IpfcMaterial.ThermalMaterialType sets the material type for the thermal properties of the
material. The material types are as follows:

�❍ EpfcMTL_ISOTROPIC--Specifies a material with an infinite number of planes of material symmetry, making the
properties equal in all directions.

�❍ EpfcMTL_ORTHOTROPIC--Specifies a material with symmetry relative to three mutually perpendicular planes.
�❍ EpfcMTL_TRANSVERSELY_ISOTROPIC--Specifies a material with rotational symmetry about an axis. The

properties are equal for all directions in the plane of isotropy.

The property IpfcMaterial.SubType returnssets the subtype for the EpfcMTL_ISOTROPIC material type.

Use the property IpfcMaterial.PermittedSubTypes to retrieve a list of the permitted string values for the
material subtype.

Accessing Material Properties

The methods and properties listed in this section enable you to access material properties.

Methods and Properties Introduced:

● CCpfcMaterialProperty.Create()

● IpfcMaterial.GetPropertyValue()

● IpfcMaterial.SetPropertyValue()

● IpfcMaterial.SetPropertyUnits()

● IpfcMaterial.RemoveProperty()

● IpfcMaterial.Description

● IpfcMaterial.FatigueType

● IpfcMaterial.PermittedFatigueTypes

● IpfcMaterial.FatigueMaterialType

● IpfcMaterial.PermittedFatigueMaterialTypes

● IpfcMaterial.FatigueMaterialFinish

● IpfcMaterial.PermittedFatigueMaterialFinishes

● IpfcMaterial.FailureCriterion

● IpfcMaterial.PermittedFailureCriteria

● IpfcMaterial.Hardness

● IpfcMaterial.HardnessType

● IpfcMaterial.Condition

● IpfcMaterial.BendTable

● IpfcMaterial.CrossHatchFile

● IpfcMaterial.MaterialModel

● IpfcMaterial.PermittedMaterialModels

● IpfcMaterial.ModelDefByTests

The method CCpfcMaterialProperty.Create() creates a new instance of a material property object.

All numerical material properties are accessed using the same set of APIs. You must provide a property type to
indicate the property you want to read or modify.

The method IpfcMaterial.GetPropertyValue() returns the value and the units of the material property.

Use the method IpfcMaterial.SetPropertyValue() to set the value and units of the material property. If the
property type does not exist for the material, then this method creates it.

Use the method IpfcMaterial.SetPropertyUnits() to set the units of the material property.

Use the method IpfcMaterial.RemoveProperty() to remove the material property.

Material properties that are non-numeric can be accessed using the following properties.

The property IpfcMaterial.Description sets the description string for the material.

The property IpfcMaterial.FatigueType and sets the valid fatigue type for the material.

Use the property IpfcMaterial.PermittedFatigueTypes to get a list of the permitted string values for the fatigue
type.

The property IpfcMaterial.FatigueMaterialTypesets the class of material when determining the effect of the
fatigue.

Use the property IpfcMaterial.PermittedFatigueMaterialTypes to retrieve a list of the permitted string values
for the fatigue material type.

The property IpfcMaterial.FatigueMaterialFinishsets the type of surface finish for the fatigue material.

Use the property IpfcMaterial.PermittedFatigueMaterialFinishes to retrieve a list of permitted string values for
the fatigue material finish.

The property IpfcMaterial.FailureCriterion sets the reduction factor for the failure strength of the material. This
factor is used to reduce the endurance limit of the material to account for unmodeled stress concentrations, such as
those found in welds. Use the property IpfcMaterial.PermittedFailureCriteria to retrieve a list of permitted
string values for the material failure criterion.

The property IpfcMaterial.Hardness sets the hardness for the specified material.

The property IpfcMaterial.HardnessType sets the hardness type for the specified material.

The property IpfcMaterial.Condition sets the condition for the specified material.

The property IpfcMaterial.BendTable sets the bend table for the specified material.

The property IpfcMaterial.CrossHatchFile sets the file containing the crosshatch pattern for the specified
material.

The property IpfcMaterial.MaterialModelsets the type of hyperelastic isotropic material model.

Use the property IpfcMaterial.PermittedMaterialModels to retrieve a list of the permitted string values for the
material model.

The property IpfcMaterial.ModelDefByTests determines whether the hyperelastic isotropic material model has
been defined using experimental data for stress and strain.

Accessing User-defined Material Properties

Materials permit assignment of user-defined parameters. These parameters allow you to place non-standard
properties on a given material. Therefore IpfcMaterial is a child of IpfcParameterOwner, which provides
access to user-defined parameters and properties of materials through the methods in that interface.

Windows and Views

The VB API provides access to Pro/ENGINEER windows and saved views. This section describes the methods that
provide this access.

Topic

Windows
Embedded Browser
Views
Coordinate Systems and Transformations

Windows

This section describes the VB API methods that access Window objects. The topics are as follows:

�❍ Getting a Window Object
�❍ Window Operations

Getting a Window Object

Methods and Property Introduced:

● IpfcBaseSession.CurrentWindow

● IpfcBaseSession.CreateModelWindow()

● IpfcModel.Display()

● IpfcBaseSession.ListWindows()

● IpfcBaseSession.GetWindow()

● IpfcBaseSession.OpenFile()

● IpfcBaseSession.GetModelWindow()

The property IpfcBaseSession.CurrentWindow provides access to the current active window in Pro/ENGINEER.

The method IpfcBaseSession.CreateModelWindow() creates a new window that contains the model that was passed
as an argument.

Note:
You must call the method IpfcModel.Display() for the model geometry to be displayed in the window.

Use the method IpfcBaseSession.ListWindows() to get a list of all the current windows in session.

The method IpfcBaseSession.GetWindow() gets the handle to a window given its integer identifier.

The method IpfcBaseSession.OpenFile() returns the handle to a newly created window that contains the opened model.

Note:
If a model is already open in a window the method returns a handle to the window.

The method IpfcBaseSession.GetModelWindow() returns the handle to the window that contains the opened model, if
it is displayed.

Window Operations

Methods and Properties Introduced:

● IpfcWindow.Height

● IpfcWindow.Width

● IpfcWindow.XPos

● IpfcWindow.YPos

● IpfcWindow.GraphicsAreaHeight

● IpfcWindow.GraphicsAreaWidth

● IpfcWindow.Clear()

● IpfcWindow.Repaint()

● IpfcWindow.Refresh()

● IpfcWindow.Close()

● IpfcWindow.Activate()

● IpfcWindow.GetId()

The properties IpfcWindow.Height, IpfcWindow.Width, IpfcWindow.XPos, and IpfcWindow.YPos retrieve the
height, width, x-position, and y-position of the window respectively. The values of these parameters are normalized
from 0 to 1.

The properties IpfcWindow.GraphicsAreaHeight and IpfcWindow.GraphicsAreaWidth retrieve the height and
width of the Pro/ENGINEER graphics area window without the border respectively. The values of these parameters are
normalized from 0 to 1. For both the window and graphics area sizes, if the object occupies the whole screen, the
window size returned is 1. For example, if the screen is 1024 pixels wide and the graphics area is 512 pixels, then the
width of the graphics area window is returned as 0.5.

The method IpfcWindow.Clear() removes geometry from the window.

Both IpfcWindow.Repaint() and IpfcWindow.Refresh() repaint solid geometry. However, the Refresh method does
not remove highlights from the screen and is used primarily to remove temporary geometry entities from the screen.

Use the method IpfcWindow.Close() to close the window. If the current window is the original window created when
Pro/ENGINEER started, this method clears the window. Otherwise, it removes the window from the screen.

The method IpfcWindow.Activate() activates a window. This function is available only in the asynchronous mode.

The method IpfcWindow.GetId() retrieves the ID of the Pro/ENGINEER window.

Embedded Browser

Methods Introduced:

● IpfcWindow.GetURL()

● IpfcWindow.SetURL()

● IpfcWindow.GetBrowserSize()

● IpfcWindow.SetBrowserSize()

The methods IpfcWindow.GetURL() and IpfcWindow.SetURL() enables you to find and change the URL displayed
in the embedded browser in the Pro/ENGINEER window.

The methods IpfcWindow.GetBrowserSize() and IpfcWindow.SetBrowserSize() enables you to find and change the
size of the embedded browser in the Pro/ENGINEER window.

Views

This section describes the the VB API methods that access IpfcView objects. The topics are as follows:

�❍ Getting a View Object
�❍ View Operations

Getting a View Object

Methods Introduced:

● IpfcViewOwner.RetrieveView()

● IpfcViewOwner.GetView()

● IpfcViewOwner.ListViews()

● IpfcViewOwner.GetCurrentView()

Any solid model inherits from the interface IpfcViewOwner. Thiswill enable you to use these methods on any solid
object.

The method IpfcViewOwner.RetrieveView() sets the current view to the orientation previously saved with a specified
name.

Use the method IpfcViewOwner.GetView() to get a handle to a named view without making any modifications.

The method IpfcViewOwner.ListViews() returns a list of all the views previously saved in the model.

The method IpfcViewOwner.GetCurrentView() returns a view handle that represents the current orientation.
Although this view does not have a name, you can use this view to find or modify the current orientation.

View Operations

Methods and Properties Introduced:

● IpfcView.Name

● IpfcView.IsCurrent

● IpfcView.Reset()

● IpfcViewOwner.SaveView()

To get the name of a view given its identifier, use the property IpfcView.Name.

The property IpfcView.IsCurrent determines if the View object represents the current view.

The IpfcView.Reset() method restores the current view to the default view.

To store the current view under the specified name, call the method IpfcViewOwner.SaveView().

Coordinate Systems and Transformations

This section describes the various coordinate systems used by Pro/ENGINEER and accessible from the VB API and
how to transform from one coordinate system to another.

Coordinate Systems

Pro/ENGINEER and the VB API use the following coordinate systems:

�❍ Solid Coordinate System
�❍ Screen Coordinate System
�❍ Window Coordinate System
�❍ Drawing Coordinate System
�❍ Drawing View Coordinate System
�❍ Assembly Coordinate System
�❍ Datum Coordinate System
�❍ Section Coordinate System

The following sections describe each of these coordinate systems.

Solid Coordinate System

The solid coordinate system is the three-dimensional, Cartesian coordinate system used to describe the geometry of a
Pro/ENGINEER solid model. In a part, the solid coordinate system describes the geometry of the surfaces and edges. In
an assembly, the solid coordinate system also describes the locations and orientations of the assembly members.

You can visualize the solid coordinate system in Pro/ENGINEER by creating a coordinate system datum with the
option Default. Distances measured in solid coordinates correspond to the values of dimensions as seen by the Pro/
ENGINEER user.

Solid coordinates are used by the VB API for all the methods that look at geometry and most of the methods that draw
three-dimensional graphics.

Screen Coordinate System

The screen coordinate system is two-dimensional coordinate system that describes locations in a Pro/ENGINEER
window. When the user zooms or pans the view, the screen coordinate system follows the display of the solid so a
particular point on the solid always maps to the same screen coordinate. The mapping changes only when the view
orientation is changed.

Screen coordinates are nominal pixel counts. The bottom, left corner of the default window is at (0, 0) and the top, right
corner is at (1000, 864).

Screen coordinates are used by some of the graphics methods, the mouse input methods, and all methods that draw
graphics or manipulate items on a drawing.

Window Coordinate System

The window coordinate system is similar to the screen coordinate system, except it is not affected by zoom and pan.
When an object is first displayed in a window, or the option View, Pan/Zoom, Reset is used, the screen and window
coordinates are the same.

Window coordinates are needed only if you take account of zoom and pan. For example, you can find out whether a
point on the solid is visible in the window or you can draw two-dimensional text in a particular window location,
regardless of pan and zoom.

Drawing Coordinate System

The drawing coordinate system is a two-dimensional system that describes the location on a drawing relative to the
bottom, left corner, and measured in drawing units. For example, on a U.S. letter-sized, landscape-format drawing sheet
that uses inches, the top, right-corner is (11, 8.5) in drawing coordinates.

The VB API methods and properties that manipulate drawings generally use screen coordinates.

Drawing View Coordinate System

The drawing view coordinate system is used to describe the locations of entities in a drawing view.

Assembly Coordinate System

An assembly has its own coordinate system that describes the positions and orientations of the member parts,
subassemblies, and the geometry of datum features created in the assembly.

When an assembly is retrieved into memory each member is also loaded and continues to use its own solid coordinate
system to describe its geometry.

This is important when you are analyzing the geometry of a subassembly and want to extract or display the results
relative to the coordinate system of the parent assembly.

Datum Coordinate System

A coordinate system datum can be created anywhere in any part or assembly, and represents a user-defined coordinate
system. It is often a requirement in a the VB API application to describe geometry relative to such a datum.

Section Coordinate System

Every sketch has a coordinate system used to locate entities in that sketch. Sketches used in features will use a
coordinate system different from that of the solid model.

Transformations

Methods and Properties Introduced:

● IpfcTransform3D.Invert()

● IpfcTransform3D.TransformPoint()

● IpfcTransform3D.TransformVector()

● IpfcTransform3D.Matrix

● IpfcTransform3D.GetOrigin()

● IpfcTransform3D.GetXAxis()

● IpfcTransform3D.GetYAxis()

● IpfcTransform3D.GetZAxis()

All coordinate systems are treated in the VB API as if they were three-dimensional. Therefore, a point in any of the
coordinate systems is always represented by the IpfcPoint3D class:

Vectors store the same data but are represented for clarity by the IpfcVector3D class.

Screen coordinates contain a z-value whose positive direction is outwards from the screen. The value of z is not
generally important when specifying a screen location as an input to a method, but it is useful in other situations. For
example, if you select a datum plane, you can find the direction of the plane by calculating the normal to the plane,
transforming to screen coordinates, then looking at the sign of the z-coordinate.

A transformation between two coordinate systems is represented by the IpfcTransform3D class. This class contains a
4x4 matrix that combines the conventional 3x3 matrix that describes the relative orientation of the two systems, and the
vector that describes the shift between them.

The 4x4 matrix used for transformations is as follows:

The utility method IpfcTransform3D.Invert() inverts a transformation matrix so that it can be used to transform points
in the opposite direction.

The VB API provides two utilities for performing coordinate transformations. The method IpfcTransform3D.
TransformPoint() transforms a three-dimensional point and IpfcTransform3D.TransformVector() transforms a three-
dimensional vector.

The following diagram summarizes the coordinate transformations needed when using the VB API and specifies the the
VB API methods that provide the transformation matrix.

Transforming to Screen Coordinates

Methods and Properties Introduced:

● IpfcView.Transform

● IpfcView.Rotate()

The view matrix describes the transformation from solid to screen coordinates. The property IpfcView.Transform
provides the view matrix for the specified view.

The method IpfcView.Rotate() rotates a view, relative to the X, Y, or Z axis, in the amount that you specifiy.

To transform from screen to solid coordinates, invert the transformation matrix using the method IpfcTransform3D.
Invert().

Transforming to Coordinate System Datum Coordinates

Property Introduced:

● IpfcCoordSystem.CoordSys

The property IpfcCoordSystem.CoordSys provides the location and orientation of the coordinate system datum in the
coordinate system of the solid that contains it. The location is in terms of the directions of the three axes and the
position of the origin.

Transforming Window Coordinates

Properties Introduced

● IpfcWindow.ScreenTransform

● IpfcScreenTransform.PanX

● IpfcScreenTransform.PanY

● IpfcScreenTransform.Zoom

You can alter the pan and zoom of a window by using a Screen Transform object. This object contains three attributes.
PanX and PanY represent the horizontal and vertical movement. Every increment of 1.0 moves the view point one
screen width or height. Zoom represents a scaling factor for the view. This number must be greater than zero.

Transforming Coordinates of an Assembly Member

Method Introduced:

● IpfcComponentPath.GetTransform()

The method IpfcComponentPath.GetTransform() provides the matrix for transforming from the solid coordinate
system of the assembly member to the solid coordinates of the parent assembly, or the reverse.

Example Code - Normalizing a Coordinate Transformation Matrix

The following example code uses two methods to transfer the view transformation from one view
to another. Imports pfcls

Public Class pfcViewExamples

 Public Function viewTransfer(ByVal view1 As IpfcView,
 _ByVal view2 As IpfcView) As IpfcView

 Dim transform As IpfcTransform3D
 Dim matrix As IpfcMatrix3D

 Try
 transform = view1.Transform
 matrix = transform.Matrix
 matrix = matrixNormalize(matrix)
 transform.Matrix = matrix
 view2.Transform = transform
 viewTransfer = view2

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try

 End Function
'==
'Function : matrixNormalize
'Purpose : This function normalizes a Matrix3D object
'==
 Private Function matrixNormalize(ByVal matrix As IpfcMatrix3D) As IpfcMatrix3D
 Dim scale As Double
 Dim row, col As Integer
'==
'Set bottom row to 0.0
'==
 matrix.Set(3, 0, 0.0)

 matrix.Set(3, 1, 0.0)
 matrix.Set(3, 2, 0.0)

 scale = Math.Sqrt(matrix.Item(0, 0) * matrix.Item(0, 0) +
 matrix.Item(0, 1) * _matrix.Item(0, 1) +
 matrix.Item(0, 2) * matrix.Item(0, 2))

 For row = 0 To 2
 For col = 0 To 2
 matrix.Set(row, col, matrix.Item(row, col) / scale)
 Next
 Next

 matrixNormalize = matrix

 End Function
End Class

ModelItem

This section describes the the VB API methods that enable you to access and
manipulate ModelItems.

Topic

Solid Geometry Traversal
Getting ModelItem Objects
ModelItem Information
Layer Objects

Solid Geometry Traversal

Solid models are made up of 11 distinct types of IpfcModelItem, as follows:

�❍ IpfcFeature
�❍ IpfcSurface
�❍ IpfcEdge
�❍ IpfcCurve (datum curve)
�❍ IpfcAxis (datum axis)
�❍ IpfcPoint (datum point)
�❍ IpfcQuilt (datum quilt)
�❍ IpfcLayer
�❍ IpfcNote
�❍ IpfcDimension
�❍ IpfcRefDimension

Each model item is assigned a unique identification number that will never change.
In addition, each model item can be assigned a string name. Layers, points, axes,
dimensions, and reference dimensions are automatically assigned a name that can
be changed.

Getting ModelItem Objects

Methods and Properties Introduced:

● IpfcModelItemOwner.ListItems()

● IpfcFeature.ListSubItems()

● IpfcLayer.ListItems()

● IpfcModelItemOwner.GetItemById()

● IpfcModelItemOwner.GetItemByName()

● IpfcFamColModelItem.RefItem

● IpfcSelection.SelItem

All models inherit from the interface IpfcModelItemOwner. The method
IpfcModelItemOwner.ListItems() returns a sequence of IpfcModelItems
contained in the model. You can specify which type of IpfcModelItem to collect
by passing in one of the enumerated EpfcModelItemType values, or you can
collect all IpfcModelItems by passing null as the model item type.

The methods IpfcFeature.ListSubItems() and IpfcLayer.ListItems() produce
similar results for specific features and layers. These methods return a list of
subitems in the feature or items in the layer.

To access specific model items, call the method IpfcModelItemOwner.
GetItemById(). This methods enables you to access the model item by identifier.

To access specific model items, call the method IpfcModelItemOwner.
GetItemByName(). This methods enables you to access the model item by name.

The property IpfcFamColModelItem.RefItem returns the dimension or feature
used as a header for a family table.

The property IpfcSelection.SelItem returns the item selected interactively by the
user.

ModelItem Information

Methods and Properties Introduced:

● IpfcModelItem.GetName()

● IpfcModelItem.SetName()

● IpfcModelItem.Id

● IpfcModelItem.Type

Certain IpfcModelItems also have a string name that can be changed at any time.
The methods GetName and SetName access this name.

The property Id returns the unique integer identifier for the IpfcModelItem.

The Type property returns an enumeration object that indicates the model item type
of the specified IpfcModelItem. See the sectio n "Solid Geometry Traversal for
the list of possible model item types.

Layer Objects

In the VB API, layers are instances of IpfcModelItem. The following sections
describe how to get layer objects and the operations you can perform on them.

Getting Layer Objects

Method Introduced:

● IpfcModel.CreateLayer()

The method IpfcModel.CreateLayer() returns a new layer with the name you
specify.

See the section "Getting ModelItem Objects" for other methods that can return
layer objects.

Layer Operations

Methods and Properties Introduced:

● IpfcLayer.Status

● IpfcLayer.ListItems()

● IpfcLayer.AddItem()

● IpfcLayer.RemoveItem()

● IpfcLayer.Delete()

The property IpfcLayer.Status enables you to access the display status of a layer.
The corresponding enumeration class is EpfcDisplayStatus and the possible
values are Normal, Displayed, Blank, or Hidden.

Use the methods IpfcLayer.ListItems(), IpfcLayer.AddItem(), and IpfcLayer.
RemoveItem() to control the contents of a layer.

The method IpfcLayer.Delete() removes the layer (but not the items it contains)
from the model.

Features

All Pro/ENGINEER solid models are made up of features. This section describes how to program on the feature level
using the VB API.

Topic

Access to Features
Feature Information
Feature Operations
Feature Groups and Patterns
User Defined Features
Creating Features from UDFs

Access to Features

Methods and Properties Introduced:

● IpfcFeature.ListChildren()

● IpfcFeature.ListParents()

● IpfcFeatureGroup.GroupLeader

● IpfcFeaturePattern.PatternLeader

● IpfcFeaturePattern.ListMembers()

● IpfcSolid.ListFailedFeatures()

● IpfcSolid.ListFeaturesByType()

● IpfcSolid.GetFeatureById()

The methods IpfcFeature.ListChildren() and IpfcFeature.ListParents() return a sequence of features that contain all
the children or parents of the specified feature.

To get the first feature in the specified group access the property IpfcFeatureGroup.GroupLeader.

The property IpfcFeaturePattern.PatternLeader and the method IpfcFeaturePattern.ListMembers() return
features that make up the specified feature pattern. See Feature Groups and Patterns for more information on feature
patterns.

The method IpfcSolid.ListFailedFeatures() returns a sequence that contains all the features that failed regeneration.

The method IpfcSolid.ListFeaturesByType() returns a sequence of features contained in the model. You can specify
which type of feature to collect by passing in one of the EpfcFeatureType enumeration objects, or you can collect all
features by passing void null as the type. If you list all features, the resulting sequence will include invisible features
that Pro/ENGINEER creates internally. Use the method's VisibleOnly argument to exclude them.

The method IpfcSolid.GetFeatureById() returns the feature object with the corresponding integer identifier.

Feature Information

Properties Introduced:

● IpfcFeature.FeatType

● IpfcFeature.Status

● IpfcFeature.IsVisible

● IpfcFeature.IsReadonly

● IpfcFeature.IsEmbedded

● IpfcFeature.Number

● IpfcFeature.FeatTypeName

● IpfcFeature.FeatSubType

● IpfcRoundFeat.IsAutoRoundMember

The enumeration classes EpfcFeatureType and EpfcFeatureStatus provide information for a specified feature.
The following properties specify this information:

�❍ IpfcFeature.FeatType--Returns the type of a feature.
�❍ IpfcFeature.Status--Returns whether the feature is suppressed, active, or failed regeneration.

The other properties that gather feature information include the following:

�❍ IpfcFeature.IsVisible--Identifies whether the specified feature will be visible on the screen.
�❍ IpfcFeature.IsReadonly--Identifies whether the specified feature can be modified.
�❍ IpfcFeature.GetIsEmbedded--Specifies whether the specified feature is an embedded datum.
�❍ IpfcFeature.Number--Returns the feature regeneration number. This method returns void null if the feature is

suppressed.

The property IpfcFeature.FeatTypeName returns a string representation of the feature type.

The property IpfcFeature.FeatSubType returns a string representation of the feature subtype, for example, "Extrude"
for a protrusion feature.

The property IpfcRoundFeat.IsAutoRoundMember determines whether the specified round feature is a member of
an Auto Round feature.

Feature Operations

Methods and Properties Introduced:

● IpfcSolid.ExecuteFeatureOps()

● IpfcFeature.CreateSuppressOp()

● IpfcSuppressOperation.Clip

● IpfcSuppressOperation.AllowGroupMembers

● IpfcSuppressOperation.AllowChildGroupMembers

● IpfcFeature.CreateDeleteOp()

● IpfcDeleteOperation.Clip

● IpfcDeleteOperation.AllowGroupMembers

● IpfcDeleteOperation.AllowChildGroupMembers

● IpfcDeleteOperation.KeepEmbeddedDatums

● IpfcFeature.CreateResumeOp()

● IpfcResumeOperation.WithParents

● IpfcFeature.CreateReorderBeforeOp()

● IpfcReorderBeforeOperation.BeforeFeat

● IpfcFeature.CreateReorderAfterOp()

● IpfcReorderAfterOperation.AfterFeat

The method IpfcSolid.ExecuteFeatureOps() causes a sequence of feature operations to run in order. Feature
operations include suppressing, resuming, reordering, and deleting features. The optional IpfcRegenInstructions
argument specifies whether the user will be allowed to fix the model if a regeneration failure occurs.

Note:
The method IpfcSolid.ExecuteFeatureOps() is not supported in the No-Resolve mode, introduced in Pro/
ENGINEER Wildfire 5.0. It throws an exception IpfcXtoolkitBadContext. To continue with the Pro/
ENGINEER Wildfire 4.0 behavior in the Resolve mode, set the configuration option regen_failure_handling to
resolve_mode in the Pro/ENGINEER session. Refer to the "Solid Operations" section in the "Solid" section for
more information on the No-Resolve mode.

You can create an operation that will delete, suppress, reorder, or resume certain features using the methods in the
class IpfcFeature. Each created operation must be passed as a member of the IpfcFeatureOperations object to the
method IpfcSolid.ExecuteFeatureOps().

Some of the operations have specific options that you can modify to control the behavior of the operation:

�❍ Clip--Specifies whether to delete or suppress all features after the selected feature. By default, this option is false.
Use the properties IpfcDeleteOperation.Clip and IpfcSuppressOperation.Clip to modify this option.

�❍ AllowGroupMembers--If this option is set to true and if the feature to be deleted or suppressed is a member of a
group, then the feature will be deleted or suppressed out of the group. If this option is set to false, then the entire group
containing the feature is deleted or suppressed. By default, this option is false. It can be set to true only if the option
Clip is set to true.
Use the properties IpfcSuppressOperation.AllowGroupMembers and IpfcDeleteOperation.AllowGroupMembers to

modify this option.
�❍ AllowChildGroupMembers--If this option is set to true and if the children of the feature to be deleted or suppressed

are members of a group, then the children of the feature will be individually deleted or suppressed out of the group. If
this option is set to false, then the entire group containing the feature and its children is deleted or suppressed. By
default, this option is false. It can be set to true only if the options Clip and AllowGroupMembers are set to true.
Use the properties IpfcSuppressOperation.AllowChildGroupMembers and IpfcDeleteOperation.
AllowChildGroupMembers to modify this option.

�❍ KeepEmbeddedDatums--Specifies whether to retain the embedded datums stored in a feature while deleting the
feature. By default, this option is false.
Use the property IpfcDeleteOperation.KeepEmbeddedDatums to modify this option.

�❍ WithParents--Specifies whether to resume the parents of the selected feature.
Use the property IpfcResumeOperation.WithParents to modify this option.

�❍ BeforeFeat--Specifies the feature before which you want to reorder the features.
Use the property IpfcReorderBeforeOperation.BeforeFeat to modify this option.

�❍ AfterFeat--Specifies the feature after which you want to reorder the features.
Use the property IpfcReorderAfterOperation.AfterFeat to modify this option.

Feature Groups and Patterns

Patterns are treated as features in Pro/ENGINEER Wildfire. A feature type, FEATTYPE_PATTERN_HEAD, is used
for the pattern header feature.

Note:
The pattern header feature is not treated as a leader or a member of the pattern by the methods described in the
following section.

Methods and Properties Introduced:

● IpfcFeature.Group

● IpfcFeature.Pattern

● IpfcSolid.CreateLocalGroup()

● IpfcFeatureGroup.Pattern

● IpfcFeatureGroup.GroupLeader

● IpfcFeaturePattern.PatternLeader

● IpfcFeaturePattern.ListMembers()

● IpfcFeaturePattern.Delete()

The property IpfcFeature.Group returns a handle to the local group that contains the specified feature.

To get the first feature in the specified group call the property IpfcFeatureGroup.GroupLeader.

The property IpfcFeaturePattern.PatternLeader and the method IpfcFeaturePattern.ListMembers() return
features that make up the specified feature pattern.

The properties IpfcFeature.Pattern and IpfcFeatureGroup.Pattern return the FeaturePattern object that contains
the corresponding Feature or FeatureGroup. Use the method IpfcSolid.CreateLocalGroup() to take a sequence of
features and create a local group with the specified name. To delete a FeaturePattern object, call the method

IpfcFeaturePattern.Delete().

Notes On Feature Groups

Feature groups have a group header feature, which shows up in the model information and feature list for the model.
This feature will be inserted in the regeneration list to a position just before the first feature in the group.

The results of the header feature are as follows:

�❍ Models that contain groups will get one extra feature in the regeneration list, of type EFeatureType.
FEATTYPE_GROUP_HEAD. This affects the feature numbers of all subsequent features, including those in the
group.

�❍ Each group automatically contains the header feature in the list of features returned from pfcFeature.FeatureGroup.
ListMembers.

�❍ Each group automatically gets the group head feature as the leader. This is returned from pfcFeature.FeatureGroup.
GetGroupLeader.

�❍ Each group pattern contains a series of groups, and each group in the pattern will be similarly constructed.

User Defined Features

Groups in Pro/ENGINEER represent sets of contiguous features that act as a single feature for specific operations.
Individual features are affected by most operations while some operations apply to an entire group:

�❍ Suppress
�❍ Delete
�❍ Layers
�❍ Patterning

User defined Features (UDFs) are groups of features that are stored in a file. When a UDF is placed in a new model the
created features are automatically assigned to a group. A local group is a set of features that have been specifically
assigned to a group to make modifications and patterning easier.

Note:
All methods in this section can be used for UDFs and local groups.

Read Access to Groups and User Defined Features

Methods and Properties Introduced:

● IpfcFeatureGroup.UDFName

● IpfcFeatureGroup.UDFInstanceName

● IpfcFeatureGroup.ListUDFDimensions()

● IpfcUDFDimension.UDFDimensionName

User defined features (UDF's) are groups of features that can be stored in a file and added to a new model. A local
group is similar to a UDF except it is available only in the model in which is was created.

The property IpfcFeatureGroup.UDFName provides the name of the group for the specified group instance. A
particular group definition can be used more than once in a particular model.

If the group is a family table instance, the property IpfcFeatureGroup.UDFInstanceName suppliesthe instance name.

The method IpfcFeatureGroup.ListUDFDimensions() traverses the dimensions that belong to the UDF. These
dimensions correspond to the dimensions specified as variables when the UDF was created. Dimensions of the original
features that were not variables in the UDF are not included unless the UDF was placed using the Independent option.

The property IpfcUDFDimension.UDFDimensionName provides access to the dimension name specified when the
UDF was created, and not the name of the dimension in the current model. This name is required to place the UDF
programmatically using the method IpfcSolid.CreateUDFGroup().

Creating Features from UDFs

Method Introduced:

● IpfcSolid.CreateUDFGroup()

The method IpfcSolid.CreateUDFGroup() is used to create new features by retrieving and applying the contents of an
existing UDF file. It is equivalent to the Pro/ENGINEER command Feature, Create, User Defined.

To understand the following explanation of this method, you must have a good knowledge and understanding of the
use of UDF's in Pro/ENGINEER. PTC recommends that you read about UDF's in the Pro/ENGINEER on-line help,
and practice defining and using UDF's in Pro/ENGINEER before you attempt to use this method.

When you create a UDF interactively, Pro/ENGINEER prompts you for the information it needs to fix the properties
of the resulting features. When you create a UDF from the VB API, you can provide some or all of this information
programmatically by filling several compact data classes that are inputs to the method IpfcSolid.CreateUDFGroup().

During the call to IpfcSolid.CreateUDFGroup(), Pro/ENGINEER prompts you for the following:

�❍ Information required by the UDF that was not provided in the input data structures.
�❍ Correct information to replace erroneous information

Such prompts are a useful way of diagnosing errors when you develop your application. This also means that, in
addition to creating UDF's programmatically to provide automatic synthesis of model geometry, you can also use
IpfcSolid.CreateUDFGroup() to create UDF's semi-interactively. This can simplify the interactions needed to place a
complex UDF making it easier for the user and less prone to error.

Creating UDFs

Creating a UDF requires the following information:

�❍ Name--The name of the UDF you are creating and the instance name if applicable.
�❍ Dependency--Specify if the UDF is independent of the UDF definition or is modified by the changers made to it.
�❍ Scale--How to scale the UDF relative to the placement model.
�❍ Variable Dimension--The new values of the variables dimensions and pattern parameters, those whose values can be

modified each time the UDF is created.
�❍ Dimension Display--Whether to show or blank non-variable dimensions created within the UDF group.
�❍ References--The geometrical elements that the UDF needs in order to relate the features it contains to the existing

models features. The elements correspond to the picks that Pro/ENGINEER prompts you for when you create a UDF
interactively using the prompts defined when the UDF was created. You cannot select an embedded datum as the UDF
reference.

�❍ Parts Intersection--When a UDF that is being created in an assembly contains features that modify the existing
geometry you must define which parts are affected or intersected. You also need to know at what level in an assembly
each intersection is going to be visible.

�❍ Orientations--When a UDF contains a feature with a direction that is defined in respect to a datum plane Pro/
ENGINEER must know what direction the new feature will point to. When you create such a UDF interactively Pro/

ENGINEER prompt you for this information with a flip arrow.
�❍ Quadrants--When a UDF contains a linearly placed feature that references two datum planes to define it's location in

the new model Pro/ENGINEER prompts you to pick the location of the new feature. This is determined by which side
of each datum plane the feature must lie. This selection is referred to as the quadrant because the are four possible
combinations for each linearly place feature.

To pass all the above values to Pro/ENGINEER, the VB API uses a special class that prepares and sets all the options
and passes them to Pro/ENGINEER.

Creating Interactively Defined UDFs

Method Introduced:

● CCpfcUDFPromptCreateInstructions.Create()

This static method is used to create an instructions object that can be used to prompt a user for the required values that
will create a UDF interactively.

Creating a Custom UDF

Method Introduced:

● CCpfcUDFCustomCreateInstructions.Create()

This method creates a UDFCustomCreateInstructions object with a specified name. To set the UDF creation
parameters programmatically you must modify this object as described below. The members of this class relate closely
to the prompts Pro/ENGINEER gives you when you create a UDF interactively. PTC recommends that you experiment
with creating the UDF interactively using Pro/ENGINEER before you write the the VB API code to fill the structure.

Setting the Family Table Instance Name

Property Introduced:

● IpfcUDFCustomCreateInstructions.InstanceName

If the UDF contains a family table, this field can be used to select the instance in the table. If the UDF does not contain
a family table, or if the generic instance is to be selected, the do not set the string.

Setting Dependency Type

Property Introduced:

● IpfcUDFCustomCreateInstructions.DependencyType

The EpfcUDFDependencyType object represents the dependency type of the UDF. The choices correspond to the
choices available when you create a UDF interactively. This enumerated type takes the following values:

�❍ EpfcUDFDEP_INDEPENDENT
�❍ EpfcUDFDEP_DRIVEN

Note:
EpfcUDFDEP_INDEPENDENT is the default value, if this option is not set.

Setting Scale and Scale Type

Properties Introduced:

● IpfcUDFCustomCreateInstructions.ScaleType

● IpfcUDFCustomCreateInstructions.Scale

The property ScaleType specifies the length units of the UDF in the form of the EpfcUDFScaleType object. This
enumerated type takes the following values:

�❍ EpfcUDFSCALE_SAME_SIZE
�❍ EpfcUDFSCALE_SAME_DIMS
�❍ EpfcUDFSCALE_CUSTOM
�❍ EpfcUDFSCALE_nil

Note:
The default value is UDFSCALE_SAME_SIZE if this option is not set.

The property Scale specifies the scale factor. If the ScaleType is set to EpfcUDFSCALE_CUSTOM, the property Scale
assigns the user defined scale factor. Otherwise, this attribute is ignored.

Setting the Appearance of the Non UDF Dimensions

Properties Introduced:

● IpfcUDFCustomCreateInstructions.DimDisplayType

The EpfcUDFDimensionDisplayType object sets the options in Pro/ENGINEER for determining the appearance in
the model of UDF dimensions and pattern parameters that were not variable in the UDF, and therefore cannot be
modified in the model. This enumerated type takes the following values:

�❍ EpfcUDFDISPLAY_NORMAL
�❍ EpfcUDFDISPLAY_READ_ONLY
�❍ EpfcUDFDISPLAY_BLANK

Note:
The default value is EpfcUDFDISPLAY_NORMAL if this option is not set.

Setting the Variable Dimensions and Parameters

Methods and Properties Introduced:

● IpfcUDFCustomCreateInstructions.VariantValues

● CCpfcUDFVariantDimension.Create()

● CCpfcUDFVariantPatternParam.Create()

IpfcUDFVariantValues class represents an array of variable dimensions and pattern parameters.

CCpfcUDFVariantDimension.Create() is a static method creating a IpfcUDFVariantDimension. It accepts the
following parameters:

�❍ Name--The symbol that the dimension had when the UDF was originally defined not the prompt that the UDF uses

when it is created interactively. To make this name easy to remember, before you define the UDF that you plan to
create with the VB API, you should modify the symbols of all the dimensions that you want to select to be variable. If
you get the name wrong, IpfcSolid.CreateUDFGroup will not recognize the dimension and prompts the user for the
value in the usual way does not modify the value.

�❍ DimensionValue--The new value.

If you do not remember the name, you can find it by creating the UDF interactively in a test model, then using the
IpfcFeatureGroup.ListUDFDimensions() and IpfcUDFDimension.UDFDimensionName to find out the name.

CCpfcUDFVariantPatternParam.Create() is a static method which creates a IpfcUDFVariantPatternParam. It
accepts the following parameters:

�❍ name--The string name that the pattern parameter had when the UDF was originally defined
�❍ patternparam--The new value.

After the IpfcUDFVariantValues object has been compiled, use IpfcUDFCustomCreateInstructions.
VariantValues to add the variable dimensions and parameters to the instructions.

Setting the User Defined References

Methods and Properties Introduced:

● CCpfcUDFReference.Create()

● IpfcUDFReference.IsExternal

● IpfcUDFReference.ReferenceItem

● IpfcUDFCustomCreateInstructions.References

The method CCpfcUDFReference.Create() is a static method creating a UDFReference object. It accepts the
following parameters:

�❍ PromptForReference--The prompt defined for this reference when the UDF was originally set up. It indicates which
reference this structure is providing. If you get the prompt wrong, IpfcSolid.CreateUDFGroup() will not recognize it
and prompts the user for the reference in the usual way.

�❍ ReferenceItem--Specifies the IpfcSelection object representing the referenced element. You can set Selection
programmatically or prompt the user for a selection separately. You cannot set an embedded datum as the UDF
refereence.

There are two types of reference:
- Internal--The referenced element belongs directly to the model that will contain the UDF. For an assembly,
this means that the element belongs to the top level.
- External--The referenced element belongs to an assembly member other than the placement member.

To set the reference type, use the property IpfcUDFReference.IsExternal.

To set the item to be used for reference, use the property IpfcUDFReference.ReferenceItem.

After the UDFReferences object has been set, use IpfcUDFCustomCreateInstructions.References to add the
program-defined references.

Setting the Assembly Intersections

Methods and Properties Introduced:

● CCpfcUDFAssemblyIntersection.Create()

● IpfcUDFAssemblyIntersection.InstanceNames

● IpfcUDFCustomCreateInstructions.Intersections

CCpfcUDFAssemblyIntersection.Create() is a static method creating a IpfcUDFReference object. It accepts the
following parameters:

�❍ ComponentPath--Is an intseq type object representing the component path of the part to be intersected.
�❍ Visibility level--The number that corresponds to the visibility level of the intersected part in the assembly. If the

number is equal to the length of the component path the feature is visible in the part that it intersects. If Visibility level
is 0, the feature is visible at the level of the assembly containing the UDF.

IpfcUDFAssemblyIntersection.InstanceNames sets an array of names for the new instances of parts created to
represent the intersection geometry. This property accepts the following parameters:

�❍ instance names--is a com.ptc.cipjava.stringseq type object representing the array of new instance names.

After the IpfcUDFAssemblyIntersections object has been set, use IpfcUDFCustomCreateInstructions.
Intersections to add the assembly intersections.

Setting Orientations

Properties Introduced:

● IpfcUDFCustomCreateInstructions.Orientations

IpfcUDFOrientations class represents an array of orientations that provide the answers to Pro/ENGINEER prompts
that use a flip arrow. Each term is a EpfcUDFOrientation object that takes the following values:

�❍ EpfcUDFORIENT_INTERACTIVE--Prompt for the orientation using a flip arrow.
�❍ EpfcUDFORIENT_NO_FLIP--Accept the default flip orientation.
�❍ EpfcUDFORIENT_FLIP--Invert the orientation from the default orientation.

The order of orientations should correspond to the order in which Pro/ENGINEER prompts for them when the UDF is
created interactively. If you do not provide an orientation that Pro/ENGINEER needs, it uses the default value
NO_FLIP.

After the IpfcUDFOrientations object has been set use IpfcUDFCustomCreateInstructions.Orientations to add
the orientations.

Setting Quadrants

Property Introduced:

● IpfcUDFCustomCreateInstructions.Quadrants

The property IpfcUDFCustomCreateInstructions.Quadrants sets an array of points, which provide the X, Y, and Z
coordinates that correspond to the picks answering the Pro/ENGINEER prompts for the feature positions. The order of
quadrants should correspond to the order in which Pro/ENGINEER prompts for them when the UDF is created
interactively.

Setting the External References

Property Introduced:

● IpfcUDFCustomCreateInstructions.ExtReferences

The property IpfcUDFCustomCreateInstructions.ExtReferences sets an external reference assembly to be used
when placing the UDF. This will be required when placing the UDF in the component using references outside of that
component. References could be to the top level assembly of another component.

Example Code

The example code places copies of a node UDF at a particular coordinate system location in a part. The node UDF is a
spherical cut centered at the coordinate system whose diameter is driven by the 'diam' argument to the method. The
method returns the FeatureGroup object created, or null if an error occurred.

Public Function createNodeUDFInPart(ByVal placementModel As IpfcSolid, _
 ByVal csysName As String, _
 ByVal diameter As Double) _
 As IpfcFeatureGroup

 Dim csys As IpfcCoordSystem = Nothing
 Dim cSystems As IpfcModelItems
 Dim i As Integer
 Dim udfInstructions As IpfcUDFCustomCreateInstructions
 Dim csysSelection As IpfcSelection
 Dim csysReference As IpfcUDFReference
 Dim references As CpfcUDFReferences
 Dim variantDims As IpfcUDFVariantDimension
 Dim variantVals As IpfcUDFVariantValues
 Dim group As IpfcFeatureGroup

 Try

 cSystems =
 placementModel.ListItems(EpfcModelItemType.EpfcITEM_COORD_SYS)

 For i = 0 To cSystems.Count - 1
 If (cSystems.Item(i).GetName.ToString = csysName) Then
 csys = cSystems.Item(i)
 Exit For
 End If
 Next

 If csys Is Nothing Then
 Throw New Exception("Coordinate System not found in
 current Solid")
 End If
'==
'Instructions for UDF creation
'==
 udfInstructions =
 (New CCpfcUDFCustomCreateInstructions).Create("node")

'==

'Make non variant dimensions blank to disable their display
==
 udfInstructions.DimDisplayType =
 EpfcUDFDimensionDisplayType.EpfcUDFDISPLAY_BLANK
'==
'Initialize the UDF reference and assign it to the instructions.
'The string argument is the reference prompt for the particular
'reference.
'==
 csysSelection =
 (New CMpfcSelect).CreateModelItemSelection(csys, Nothing)

 csysReference = (New CCpfcUDFReference).Create("REF_CSYS",
 csysSelection)

 references = New CpfcUDFReferences
 references.Set(0, csysReference)

 udfInstructions.References = references
'==
'Initialize the variant dimension and assign it to the instructions.
'The string argument is the dimension symbol for the variant dimension.
'==
 variantDims = (New CCpfcUDFVariantDimension).Create("d11",
 diameter)
 variantVals = New CpfcUDFVariantValues
 variantVals.Set(0, variantDims)

 udfInstructions.VariantValues = variantVals
'==
'We need the placement model for the UDF for the call to
'CreateUDFGroup(). If you were placing the UDF in a model other than
'the owner of the coordinate system, the placement would need to be
'provided separately.
'==

 group = placementModel.CreateUDFGroup(udfInstructions)

 Return group

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try

 End Function

 Example Code

This function places copies of a hole UDF at a particular location in an assembly. The hole is embedded in a surface of
one of the assembly's components, and placed a particular location away from two normal datum planes (the default
value for the dimension is used for this example). The UDF creation requires a quadrant determining the location for
the UDF (since it could be one of four areas) and intersection instructions for the assembly members (this example

makes the hole visible down to the part level). The method returns the FeatureGroup object created.

Public Function createHoleUDFInAssembly _
 (ByVal sideRefSurfaceIds() As Integer, _
 ByVal referencePath As IpfcComponentPath, _
 ByVal placementSurfaceId As Integer, _
 ByVal scale As Double, _
 ByVal quadrant As IpfcPoint3D) As IpfcFeatureGroup

 Dim udfInstructions As IpfcUDFCustomCreateInstructions
 Dim referenceModel As IpfcSolid
 Dim placementSurface As IpfcModelItem
 Dim surfaceSelection As IpfcSelection
 Dim datumSelection(2) As IpfcSelection
 Dim references As CpfcUDFReferences
 Dim reference1 As IpfcUDFReference
 Dim reference2 As IpfcUDFReference
 Dim reference3 As IpfcUDFReference
 Dim assembly As IpfcSolid
 Dim i As Integer
 Dim sideReference As IpfcModelItem
 Dim quadrants As CpfcPoint3Ds
 Dim intersections As CpfcUDFAssemblyIntersections
 Dim leafs As IpfcComponentPath()
 Dim ids As Cintseq
 Dim intersection As IpfcUDFAssemblyIntersection
 Dim group As IpfcFeatureGroup = Nothing

 Try

 If Not (sideRefSurfaceIds.Length = 2) Then
 Throw New Exception("Improper array size. Both side references must be given.")
 End If

 udfInstructions = (New CCpfcUDFCustomCreateInstructions).Create("hole_quadrant")

 If scale = 0 Then
 udfInstructions.ScaleType = EpfcUDFScaleType.EpfcUDFSCALE_SAME_SIZE
 Else
 udfInstructions.ScaleType = EpfcUDFScaleType.EpfcUDFSCALE_CUSTOM
 udfInstructions.Scale = scale
 End If
'==
'The first UDF reference is a surface from a component model in the
'assembly. This requires using the ComponentPath to initialize the
'Selection, and setting the IsExternal flag to true.
'==
 referenceModel = referencePath.Leaf

 placementSurface = referenceModel.GetItemById _
 (EpfcModelItemType.EpfcITEM_SURFACE, placementSurfaceId)

 If Not (TypeOf placementSurface Is IpfcSurface) Then
 Throw New Exception("Input Surface Id " + placementSurfaceId.ToString _ + " is not
surface")
 End If

 surfaceSelection = (New CMpfcSelect).CreateModelItemSelection _ (placementSurface,
referencePath)

 references = New CpfcUDFReferences()
 reference1 = (New CCpfcUDFReference).Create _
 ("embedding surface?", surfaceSelection)
 reference1.IsExternal = True

 references.Set(0, reference1)
'==
'The next two UDF references are expected to be Datum Plane features in
'the assembly. The reference is constructed using the Surface object
'contained in the Datum plane feature.
'==
 assembly = referencePath.Root

 For i = 0 To 1
 sideReference = assembly.GetItemById _
 (EpfcModelItemType.EpfcITEM_SURFACE, sideRefSurfaceIds(i))

 datumSelection(i) = (New CMpfcSelect).CreateModelItemSelection _
 (sideReference, Nothing)
 Next

 reference2 = (New CCpfcUDFReference).Create _
 ("right surface", datumSelection(0))
 references.Set(1, reference2)

 reference3 = (New CCpfcUDFReference).Create _
 ("front surface", datumSelection(1))
 references.Set(2, reference3)

 udfInstructions.References = references
'==
'If the UDF and the placement both use two normal datum planes as
'dimensioned references, Pro/ENGINEER prompts the user for a pick to
'define the quadrant where the UDF will be placed.
'==
 quadrants = New CpfcPoint3Ds
 quadrants.Set(0, quadrant)

 udfInstructions.Quadrants = quadrants
'==
'This hole UDF should be visible down to the component part level. To
'direct this, the UDFAssemblyIntersection should be created with the
'component ids, and the visibility level argument equal to the number
'of component levels. Alternatively, the visibility level could be 0
'to force the UDF to appear in the assembly only
'==
 intersections = New CpfcUDFAssemblyIntersections

 leafs = AssemblyUtilities.listEachLeafComponent(assembly)

 For i = 0 To leafs.Length - 1
 If Not leafs(i) Is Nothing Then
 ids = leafs(i).ComponentIds
 intersection = (New CCpfcUDFAssemblyIntersection).Create(ids, ids.Count)

 intersections.Set(i, intersection)
 End If
 Next

 udfInstructions.Intersections = intersections
'==
'Create the assembly group
'==
 group = assembly.CreateUDFGroup(udfInstructions)

 Return group

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try
 End Function
'==
'Class : AssemblyUtilities
'Purpose : This Class provides utility functions for assembly.
'==
 Private Class AssemblyUtilities
 Private Shared asm As IpfcAssembly
 Private Shared pathArray As ArrayList
'==
'Function : listEachLeafComponent
'Purpose : This function returns an array of all ComponentPath's
' to all component parts ('leafs') in an assembly.
'==
 Public Shared Function listEachLeafComponent(ByVal assembly As IpfcAssembly) _
 As IpfcComponentPath()
 Dim startLevel As New Cintseq
 Dim i As Integer

 asm = assembly
 pathArray = New ArrayList

 listSubAssemblyComponent(startLevel)
 Dim compPaths(pathArray.Count) As IpfcComponentPath

 For i = 0 To pathArray.Count - 1
 compPaths(i) = pathArray.Item(i)
 Next

 Return (compPaths)

 End Function
'==
'Function : listEachLeafComponent
'Purpose : This function This method is used to recursively visit
' all levels of the assembly structure.
'==
 Private Shared Sub listSubAssemblyComponent(ByVal currentLevel As Cintseq)

 Dim currentComponent As IpfcSolid
 Dim currentPath As IpfcComponentPath = Nothing
 Dim level As Integer
 Dim subComponents As IpfcFeatures

 Dim i, id As Integer
 Dim componentFeat As IpfcFeature

 level = currentLevel.Count
'==
'Special case, level is 0 for the top level assembly.
'==
 If (level > 0) Then
 currentPath = (New CMpfcAssembly).CreateComponentPath(asm, currentLevel)
 currentComponent = currentPath.Leaf
 Else
 currentComponent = asm
 End If

 If (currentComponent.Type = EpfcModelType.EpfcMDL_PART) And (level > 0) Then
 pathArray.Add(currentPath)
 Else
'==
'Find all component features in the current component object.
'Visit each (adjusting the component id paths accordingly).
'==

 subComponents = currentComponent.ListFeaturesByType _
 (True, EpfcFeatureType.EpfcFEATTYPE_COMPONENT)

 For i = 0 To subComponents.Count - 1
 componentFeat = subComponents.Item(i)
 id = componentFeat.Id

 currentLevel.Set(level, id)

 listSubAssemblyComponent(currentLevel)
 Next
 End If

'==
'Clean up current level of component ids before returning up one level.
'==
 If Not level = 0 Then
 currentLevel.Remove(level - 1, level)
 End If
 Return

 End Sub

 End Class

End Class

Datum Features

This section describes the VB API methods and properties that provide read access
to the properties of datum features.

Topic

Datum Plane Features
Datum Axis Features
General Datum Point Features
Datum Coordinate System Features

Datum Plane Features

The properties of the Datum Plane feature are defined in the
IpfcDatumPlaneFeat data object.

Methods and Properties Introduced:

● IpfcDatumPlaneFeat.Flip

● IpfcDatumPlaneFeat.Constraints

● IpfcDatumPlaneConstraint.ConstraintType

● CCpfcDatumPlaneThroughConstraint.Create()

● IpfcDatumPlaneThroughConstraint.ThroughRef

● CCpfcDatumPlaneNormalConstraint.Create()

● IpfcDatumPlaneNormalConstraint.NormalRef

● CCpfcDatumPlaneParallelConstraint.Create()

● IpfcDatumPlaneParallelConstraint.ParallelRef

● CCpfcDatumPlaneTangentConstraint.Create()

● IpfcDatumPlaneTangentConstraint.TangentRef

● CCpfcDatumPlaneOffsetConstraint.Create()

● IpfcDatumPlaneOffsetConstraint.OffsetRef

● IpfcDatumPlaneOffsetConstraint.OffsetValue

● CCpfcDatumPlaneOffsetCoordSysConstraint.Create()

● IpfcDatumPlaneOffsetCoordSysConstraint.CsysAxis

● CCpfcDatumPlaneAngleConstraint.Create()

● IpfcDatumPlaneAngleConstraint.AngleRef

● IpfcDatumPlaneAngleConstraint.AngleValue

● CCpfcDatumPlaneSectionConstraint.Create()

● IpfcDatumPlaneSectionConstraint.SectionRef

● IpfcDatumPlaneSectionConstraint.SectionIndex

● CCpfcDatumPlaneDefaultXConstraint.Create()

● CCpfcDatumPlaneDefaultYConstraint.Create()

● CCpfcDatumPlaneDefaultZConstraint.Create()

The properties of the IpfcDatumPlaneFeat object are described as follows:

�❍ Flip--Specifies whether the datum plane was flipped during creation. Use the
property IpfcDatumPlaneFeat.Flip to determine if the datum plane was flipped

during creation.
�❍ Constraints--Specifies a collection of constraints (given by the

IpfcDatumPlaneConstraint object). The property IpfcDatumPlaneFeat.Constraints
obtains the collection of constraints defined for the datum plane.

Use the property IpfcDatumPlaneConstraint.ConstraintType to obtain the type
of constraint. The type of constraint is given by the
EpfcDatumPlaneConstraintType enumerated type. The available types are as
follows:

�❍ EpfcDTMPLN_THRU--Specifies the Through constraint. The
IpfcDatumPlaneThroughConstraint object specifies this constraint. Use the method
CCpfcDatumPlaneThroughConstraint.Create() to create a new object. Use the
property IpfcDatumPlaneThroughConstraint.ThroughRef to get the reference
selection handle for the Through constraint.

�❍ EpfcDTMPLN_NORM--Specifies the Normal constraint. The
IpfcDatumPlaneNormalConstraint object specifies this constraint. Use the method
CCpfcDatumPlaneNormalConstraint.Create() to create a new object. Use the
property IpfcDatumPlaneNormalConstraint.NormalRef to get the reference
selection handle for the Normal constraint.

�❍ EpfcDTMPLN_PRL--Specifies the Parallel constraint. The
IpfcDatumPlaneParallelConstraint object specifies this constraint. Use the method
CCpfcDatumPlaneParallelConstraint.Create() to create a new object. Use the
property IpfcDatumPlaneParallelConstraint.ParallelRef to get the reference
selection handle for the Parallel constraint.

�❍ EpfcDTMPLN_TANG--Specifies the Tangent constraint. The
IpfcDatumPlaneTangentConstraint specifies this constraint. Use the method
CCpfcDatumPlaneTangentConstraint.Create() to create a new object. Use the
property IpfcDatumPlaneTangentConstraint.TangentRef to get the reference
selection handle for the Tangent constraint.

�❍ EpfcDTMPLN_OFFS--Specifies the Offset constraint. The
IpfcDatumPlaneOffsetConstraint object specifies this constraint. Use the method
CCpfcDatumPlaneOffsetConstraint.Create() to create a new object. Use the
property IpfcDatumPlaneOffsetConstraint.OffsetRef to get the reference selection
handle for the Offset constraint. Use the property IpfcDatumPlaneOffsetConstraint.
OffsetValue to get the offset value.
An Offset constraint where the offset reference is a coordinate system is given by
the IpfcDatumPlaneOffsetCoordSysConstraint object. Use the method
CCpfcDatumPlaneOffsetCoordSysConstraint.Create() to create a new object. Use
the property IpfcDatumPlaneOffsetCoordSysConstraint.CsysAxis to get the
reference coordinate axis.

�❍ EpfcDTMPLN_ANG--Specifies the Angle constraint. The
IpfcDatumPlaneAngleConstraint object specifies this constraint. Use the method

CCpfcDatumPlaneAngleConstraint.Create() to create a new object. Use the
property IpfcDatumPlaneAngleConstraint.AngleRef to get the reference selection
handle for the Angle constraint. Use the property IpfcDatumPlaneAngleConstraint.
AngleValue to get the angle value.

�❍ EpfcDTMPLN_SEC--Specifies the Section constraint. The
IpfcDatumPlaneSectionConstraint object specifies this constraint. Use the method
CCpfcDatumPlaneSectionConstraint.Create() to create a new object. Use the
property IpfcDatumPlaneSectionConstraint.SectionRef to get the reference
selection for the Section constraint. Use the property
IpfcDatumPlaneSectionConstraint.SectionIndex to get the section index.

�❍ EpfcDTMPLN_DEF_X--Specifies the default RIGHT constraint for the datum
plane. The IpfcDatumPlaneDefaultXConstraint object specifies this constraint. Use
the method CCpfcDatumPlaneDefaultXConstraint.Create() to create a new object.

�❍ EpfcDTMPLN_DEF_Y--Specifies the default TOP constraint for the datum plane.
The IpfcDatumPlaneDefaultYConstraint object specifies this constraint. Use the
method CCpfcDatumPlaneDefaultYConstraint.Create() to create a new object.

�❍ EpfcDTMPLN_DEF_Z--Specifies the default FRONT constraint for the datum
plane. The IpfcDatumPlaneDefaultZConstraint object specifies this constraint. Use
the method CCpfcDatumPlaneDefaultZConstraint.Create() to create a new object.

Datum Axis Features

The properties of the Datum Axis feature are defined in the IpfcDatumAxisFeat
data object.

Methods and Properties Introduced:

● IpfcDatumAxisFeat.Constraints

● CCpfcDatumAxisConstraint.Create()

● IpfcDatumAxisConstraint.ConstraintType

● IpfcDatumAxisConstraint.ConstraintRef

● IpfcDatumAxisFeat.DimConstraints

● CCpfcDatumAxisDimensionConstraint.Create()

● IpfcDatumAxisDimensionConstraint.DimOffset

● IpfcDatumAxisDimensionConstraint.DimRef

The properties of the IpfcDatumAxisFeat object are described as follows:

�❍ Constraints--Specifies a collection of constraints (given by the
IpfcDatumAxisConstraint object). The property IpfcDatumAxisFeat.Constraints
obtains the collection of constraints applied to the Datum Axis feature.

Use the method CCpfcDatumAxisConstraint.Create() to create a new
IpfcDatumAxisConstraint object. This object contains the following attributes:

- ConstraintType--Specifies the type of constraint in terms of the
EpfcDatumAxisConstraintType enumerated type. The constraint type
determines the type of datum axis. The constraint types are:

- EpfcDTMAXIS_NORMAL--Specifies the Normal datum
constraint.
- EpfcDTMAXIS_THRU--Specifies the Through datum constraint.
- EpfcDTMAXIS_TANGENT--Specifies the Tangent datum
constraint.
- EpfcDTMAXIS_CENTER--Specifies the Center datum constraint.

Use the property IpfcDatumAxisConstraint.ConstraintType to get the
constraint type.

- ConstraintRef--Specifies the reference selection for the constraint. Use the
property IpfcDatumAxisConstraint.ConstraintRef to get the reference
selection handle.

�❍ DimConstraints--Specifies a collection of dimension constraints (given by the
IpfcDatumAxisDimensionConstraint object). The property IpfcDatumAxisFeat.
DimConstraints obtains the collection of dimension constraints applied to the
Datum Axis feature.

Use the method CCpfcDatumAxisDimensionConstraint.Create() to create a new
IpfcDatumAxisDimensionConstraint object. This object contains the
following attributes:

- DimOffset--Specifies the offset value for the dimension constraint. Use
the property IpfcDatumAxisDimensionConstraint.DimOffset to get the
offset value.
- DimRef--Specifies the reference selection for the dimension constraint.
Use the property IpfcDatumAxisDimensionConstraint.DimRef to get the
reference selection handle.

General Datum Point Features

The properties of the General Datum Point feature are defined in the
IpfcDatumPointFeat data object.

Methods and Properties Introduced:

● IpfcDatumPointFeat.FeatName

● IpfcDatumPointFeat.GetPoints()

● IpfcGeneralDatumPoint.Name

● CCpfcDatumPointPlacementConstraint.Create()

● IpfcGeneralDatumPoint.PlaceConstraints

● CCpfcDatumPointDimensionConstraint.Create()

● IpfcGeneralDatumPoint.DimConstraints

● IpfcDatumPointConstraint.ConstraintRef

● IpfcDatumPointConstraint.ConstraintType

● IpfcDatumPointConstraint.Value

The properties of the IpfcDatumPointFeat object are described as follows:

�❍ FeatName--Specifies the name of the General Datum Point feature. Use the
property IpfcDatumPointFeat.FeatName to get the name.

�❍ GeneralDatumPoints--Specifies a collection of general datum points (given by the
IpfcGeneralDatumPoint object). Use the method IpfcDatumPointFeat.GetPoints()
to obtain the collection of general datum points. The IpfcGeneralDatumPoint
object consists of the following attributes:

- Name--Specifies the name of the general datum point. Use the property
IpfcGeneralDatumPoint.Name to get the name.
- PlaceConstraints--Specifies a collection of placement constraints (given by
the IpfcDatumPointPlacementConstraint object). Use the method

CCpfcDatumPointPlacementConstraint.Create() to create a new object. Use
the property IpfcGeneralDatumPoint.PlaceConstraints to obtain the
collection of placement constraints.
- DimConstraints--Specifies a collection of dimension constraints (given by
the IpfcDatumPointDimensionConstraint object). Use the method
CCpfcDatumPointDimensionConstraint.Create() to create a new object. Use
the property IpfcGeneralDatumPoint.DimConstraints to obtain the
collection of dimension constraints.

The constraints for a datum point are given by the IpfcDatumPointConstraint
object. This object contains the following attributes:

�❍ ConstraintRef--Specifies the reference selection for the datum point constraint. Use
the property IpfcDatumPointConstraint.ConstraintRef to get the reference selection
handle.

�❍ ConstraintType--Specifies the type of datum point constraint. in terms of the
EpfcDatumPointConstraintType enumerated type. Use the property
IpfcDatumPointConstraint.ConstraintType to get the constraint type.

�❍ Value--Specifies the constraint reference value with respect to the datum point.
Use the property IpfcDatumPointConstraint.Value to get the value of the constraint
reference with respect to the datum point.

The IpfcDatumPointPlacementConstraint and
IpfcDatumPointDimensionConstraint objects inherit from the
IpfcDatumPointConstraint object. Use the methods of the
IpfcDatumPointConstraint object for the inherited objects.

Datum Coordinate System Features

The properties of the Datum Coordinate System feature are defined in the
IpfcCoordSysFeat object.

Methods and Properties Introduced:

● IpfcCoordSysFeat.OriginConstraints

● CCpfcDatumCsysOriginConstraint.Create()

● IpfcDatumCsysOriginConstraint.OriginRef

● IpfcCoordSysFeat.DimensionConstraints

● CCpfcDatumCsysDimensionConstraint.Create()

● IpfcDatumCsysDimensionConstraint.DimRef

● IpfcDatumCsysDimensionConstraint.DimValue

● IpfcDatumCsysDimensionConstraint.DimConstraintType

● IpfcCoordSysFeat.OrientationConstraints

● CCpfcDatumCsysOrientMoveConstraint.Create()

● IpfcDatumCsysOrientMoveConstraint.OrientMoveConstraintType

● IpfcDatumCsysOrientMoveConstraint.OrientMoveValue

● IpfcCoordSysFeat.IsNormalToScreen

● IpfcCoordSysFeat.OffsetType

● IpfcCoordSysFeat.OnSurfaceType

● IpfcCoordSysFeat.OrientByMethod

The properties of the IpfcCoordSysFeat object are described as follows:

�❍ OriginConstraints--Specifies a collection of origin constraints (given by the
IpfcCDatumCsysOriginConstraint object). Use the property IpfcCoordSysFeat.
OriginConstraints to obtain the collection of origin constraints for the coordinate
system. Use the method CCpfcDatumCsysOriginConstraint.Create() to create a
new IpfcCDatumCsysOriginConstraint object. This object contains the following
attribute:

- OriginRef--Specifies the selection reference for the origin. Use the
property IpfcDatumCsysOriginConstraint.OriginRef to get the selection
reference handle.

�❍ DimensionConstraints--Specifies a collection of dimension constraints (given by
the IpfcDatumCsysDimensionConstraint object). Use the property

IpfcCoordSysFeat.DimensionConstraints to obtain the collection of dimension
constraints for the coordinate system. Use the method
CCpfcDatumCsysDimensionConstraint.Create() to create a new
IpfcDatumCsysDimensionConstraint object. This object contains the following
attributes:

- DimRef--Specifies the reference selection for the dimension constraint.
Use the property IpfcDatumCsysDimensionConstraint.DimRef to get the
reference selection handle.
- DimValue--Specifies the value of the reference. Use the property
IpfcDatumCsysDimensionConstraint.DimValue to get the value.
- DimConstraintType--Specifies the type of dimension constraint in terms
of the EpfcDatumCsysDimConstraintType enumerated type. Use the
property IpfcDatumCsysDimensionConstraint.DimConstraintType to get
the constraint type. The constraint types are:

- EpfcDTMCSYS_DIM_OFFSET--Specifies the offset type
constraint.
- EpfcDTMCSYS_DIM_ALIGN--Specifies the align type constraint.

�❍ OrientationConstraints--Specifies a collection of orientation constraints (given by
the IpfcDatumCsysOrientMoveConstraint object) Use the property
IpfcCoordSysFeat.OrientationConstraints to obtain the collection of orientation
constraints for the coordinate system. Use the method
CCpfcDatumCsysOrientMoveConstraint.Create() to create a new
IpfcDatumCsysOrientMoveConstraints object. This object contains the following
attributes:

- OrientMoveConstraintType--Specifies the type of orientation for the
constraint. The orientation type is given by the
EpfcDatumCsysOrientMoveConstraintType enumerated type. Use the
property IpfcDatumCsysOrientMoveConstraint.OrientMoveConstraintType
to get the orientation type.
- OrientMoveValue--Specifies the reference value for the constraint. Use
the property IpfcDatumCsysOrientMoveConstraint.OrientMoveValue to get
the reference value.

�❍ IsNormalToScreen--Specifies if the coordinate system is normal to screen. Use the
property IpfcCoordSysFeat.IsNormalToScreen to determine if the coordinate
system is normal to screen.

�❍ OffsetType--Specifies the offset type of the coordinate system in terms of the
EpfcDatumCsysOffsetType enumerated type. Use the property IpfcCoordSysFeat.
OffsetType to get the offset type. The offset types are:

- EpfcDTMCSYS_OFFSET_CARTESIAN--Specifies a cartesian
coordinate system that has been defined by setting the values for the
EpfcDTMCSYS_MOVE_TRAN_X, EpfcDTMCSYS_MOVE_TRAN_Y,
and EpfcDTMCSYS_MOVE_TRAN_Z or
EpfcDTMCSYS_MOVE_ROT_X, EpfcDTMCSYS_MOVE_ROT_Y, and

EpfcDTMCSYS_MOVE_ROT_Z orientation constants.
- EpfcDTMCSYS_OFFSET_CYLINDRICAL--Specifies a cylindrical
coordinate system that has been defined by setting the values for the
EpfcDTMCSYS_MOVE_RAD, EpfcDTMCSYS_MOVE_THETA, and
EpfcDTMCSYS_MOVE_TRAN_ZI orientation constants.
- EpfcDTMCSYS_OFFSET_SPHERICAL--Specifies a spherical
coordinate system that has been defined by setting the values for the
EpfcDTMCSYS_MOVE_RAD, EpfcDTMCSYS_MOVE_THETA, and
EpfcDTMCSYS_MOVE_TRAN_PHI orientation constants.

�❍ OnSurfaceType--Specifies the on surface type for the coordinate system in terms of
the EpfcDatumCsysOffsetType enumerated type. Use the property
IpfcCoordSysFeat.OnSurfaceType to get the on surface type property of the
coordinate system. The on surface types are:

- EpfcDTMCSYS_ONSURF_LINEAR--Specifies a coordinate system
placed on the selected surface by using two linear dimensions.
- EpfcDTMCSYS_ONSURF_RADIAL--Specifies a coordinate system
placed on the selected surface by using a linear dimension and an angular
dimension. The radius value is used to specify the linear dimension.
- EpfcDTMCSYS_ONSURF_DIAMETER--This type is similar to the
EpfcDTMCSYS_ONSURF_RADIAL type, except that the diameter value
is used to specify the linear dimension. It is available only when planar
surfaces are used as the reference.

�❍ OrientByMethod--Specifies the orientation method in terms of the
EpfcDatumCsysOrientByMethod enumerated type. Use the property
IpfcCoordSysFeat.OrientByMethod to get the orientation method. The available
orientation types are:

- EpfcDTMCSYS_ORIENT_BY_SEL_REFS--Specifies the orientation by
selected references.
- EpfcDTMCSYS_ORIENT_BY_SEL_CSYS_AXES--Specifies the
orientation by corordinate system axes.

Geometry Evaluation

This section describes geometry representation and discusses how to evaluate geometry using the VB API.

Topic

Geometry Traversal
Curves and Edges
Contours
Surfaces
Axes, Coordinate Systems, and Points
Interference

Geometry Traversal

Note:

�❍ A simple rectangular face has one contour and four edges.
�❍ A contour will traverse a boundary so that the part face is always on the right-hand side (RHS). For an external

contour the direction of traversal is clockwise. For an internal contour the direction of traversal is counterclockwise.
�❍ If a part is extruded from a sketch that has a U-shaped cross section there will be separate surfaces at each leg of the

U-channel.
�❍ If a part is extruded from a sketch that has a square-shaped cross section, and a slot feature is then cut into the part

to make it look like a U-channel, there will be one surface across the legs of the U-channel. The original surface of
the part is represented as one surface with a cut through it.

Geometry Terms

Following are definitions for some geometric terms:

�❍ Surface--An ideal geometric representation, that is, an infinite plane.
�❍ Face--A trimmed surface. A face has one or more contours.
�❍ Contour--A closed loop on a face. A contour consists of multiple edges. A contour can belong to one face only.
�❍ Edge--The boundary of a trimmed surface.

An edge of a solid is the intersection of two surfaces. The edge belongs to those two surfaces and to two contours.
An edge of a datum surface can be either the intersection of two datum surfaces or the external boundary of the
surface.

If the edge is the intersection of two datum surfaces it will belong to those two surfaces and to two contours. If the
edge is the external boundary of the datum surface it will belong to that surface alone and to a single contour.

Traversing the Geometry of a Solid Block

Methods Introduced:

● IpfcModelItemOwner.ListItems()

● IpfcSurface.ListContours()

● IpfcContour.ListElements()

To traverse the geometry, follow these steps:

1. Starting at the top-level model, use IpfcModelItemOwner.ListItems() with an argument of ModelItemType.
ITEM_SURFACE.

2. Use IpfcSurface.ListContours() to list the contours contained in a specified surface.

3. Use IpfcContour.ListElements() to list the edges contained in the contour.

Curves and Edges

Datum curves, surface edges, and solid edges are represented in the same way in the VB API. You can get edges
through geometry traversal or get a list of edges using the methods presented insection "ModelItem".

The t Parameter

The geometry of each edge or curve is represented as a set of three parametric equations that represent the values of
x, y, and z as functions of an independent parameter, t. The t parameter varies from 0.0 at the start of the curve to 1.0
at the end of it.

The following figure illustrates curve and edge parameterization.

Curve and Edge Types

Solid edges and datum curves can be any of the following types:

�❍ LINE--A straight line represented by the classinterface IpfcLine.
�❍ ARC--A circular curve represented by the classinterface IpfcArc.
�❍ SPLINE--A nonuniform cubic spline, represented by the classinterface IpfcSpline.
�❍ B-SPLINE--A nonuniform rational B-spline curve or edge, represented by the classinterface IpfcBSpline.
�❍ COMPOSITE CURVE--A combination of two or more curves, represented by the classinterface

IpfcCompositeCurve. This is used for datum curves only.

See the section, Geometry Representations,for the parameterization of each curve type. To determine what type of
curve a IpfcEdge or IpfcCurve object represents, use the instanceof operator.

Because each curve class inherits from IpfcGeomCurve, you can use all the evaluation methods in
IpfcGeomCurve on any edge or curve.

The following curve types are not used in solid geometry and are reserved for future expansion:

�❍ CIRCLE (Circle)
�❍ ELLIPSE (Ellipse)
�❍ POLYGON (Polygon)
�❍ ARROW (Arrow)
�❍ TEXT (Text)

Evaluation of Curves and Edges

Methods Introduced:

● IpfcGeomCurve.Eval3DData()

● IpfcGeomCurve.EvalFromLength()

● IpfcGeomCurve.EvalParameter()

● IpfcGeomCurve.EvalLength()

● IpfcGeomCurve.EvalLengthBetween()

The methods in IpfcGeomCurve provide information about any curve or edge.

The method IpfcGeomCurve.Eval3DData() returns a IpfcCurveXYZData object with information on the point
represented by the input parameter t. The method IpfcGeomCurve.EvalFromLength() returns a similar object with
information on the point that is a specified distance from the starting point.

The method IpfcGeomCurve.EvalParameter() returns the t parameter that represents the input IpfcPoint3D
object.

Both IpfcGeomCurve.EvalLength() and IpfcGeomCurve.EvalLengthBetween() return numerical values for the
length of the curve or edge.

Solid Edge Geometry

Methods and Properties Introduced:

● IpfcEdge.Surface1

● IpfcEdge.Surface2

● IpfcEdge.Edge1

● IpfcEdge.Edge2

● IpfcEdge.EvalUV()

● IpfcEdge.GetDirection()

Note:
The methods in the interface IpfcEdge provide information only for solid or surface edges.

The properties IpfcEdge.Surface1 and IpfcEdge.Surface2 return the surfaces bounded by this edge. The properties
IpfcEdge.Edge1 and IpfcEdge.Edge2 return the next edges in the two contours that contain this edge.

The method IpfcEdge.EvalUV() evaluates geometry information based on the UV parameters of one of the
bounding surfaces.

The method IpfcEdge.GetDirection() returns a positive 1 if the edge is parameterized in the same direction as the
containing contour, and -1 if the edge is parameterized opposite to the containing contour.

Curve Descriptors

A curve descriptor is a data object that describes the geometry of a curve or edge. A curve descriptor describes the
geometry of a curve without being a part of a specific model.

Methods Introduced:

● IpfcGeomCurve.GetCurveDescriptor()

● IpfcGeomCurve.GetNURBSRepresentation()

Note:
To get geometric information for an edge, access the IpfcCurveDescriptor object for one edge using
IpfcGetCurveDescriptor.

The method IpfcGeomCurve.GetCurveDescriptor() returns a curve's geometry as a data object.

The method IpfcGeomCurve.GetNURBSRepresentation() returns a Non-Uniform Rational B-Spline
Representation of a curve.

Contours

Methods and Properties Introduced:

● IpfcSurface.ListContours()

● IpfcContour.InternalTraversal

● IpfcContour.FindContainingContour()

● IpfcContour.EvalArea()

● IpfcContour.EvalOutline()

● IpfcContour.VerifyUV()

Contours are a series of edges that completely bound a surface. A contour is not a IpfcModelItem. You cannot get
contours using the methods that get different types of ModelItem. Use the method IpfcSurface.ListContours() to
get contours from their containing surfaces.

The property IpfcContour.InternalTraversal returns a EpfcContourTraversal enumerated type that identifies
whether a given contour is on the outside or inside of a containing surface.

Use the method IpfcContour.FindContainingContour() to find the contour that entirely encloses the specified
contour.

The method IpfcContour.EvalArea() provides the area enclosed by the contour.

The method IpfcContour.EvalOutline() returns the points that make up the bounding rectangle of the contour.

Use the method IpfcContour.VerifyUV() to determine whether the given IpfcUVParams argument lies inside the
contour, on the boundary, or outside the contour.

Surfaces

Using the VB API you access datum and solid surfaces in the same way.

UV Parameterization

A surface in Pro/ENGINEER is described as a series of parametric equations where two parameters, u and v,
determine the x, y, and z coordinates. Unlike the edge parameter, t, these parameters need not start at 0.0, nor are
they limited to 1.0.

The figure on the following page illustrates surface parameterization.

Surface Types

Surfaces within Pro/ENGINEER can be any of the following types:

�❍ PLANE--A planar surface represented by the classinterface IpfcPlane.
�❍ CYLINDER--A cylindrical surface represented by the classinterface IpfcCylinder.
�❍ CONE--A conic surface region represented by the classinterface IpfcCone.
�❍ TORUS--A toroidal surface region represented by the classinterface IpfcTorus.
�❍ REVOLVED SURFACE--Generated by revolving a curve about an axis. This is represented by the classinterface

IpfcRevSurface.
�❍ RULED SURFACE--Generated by interpolating linearly between two curve entities. This is represented by the

classinterface IpfcRuledSurface.
�❍ TABULATED CYLINDER--Generated by extruding a curve linearly. This is represented by the classinterface

IpfcTabulatedCylinder.
�❍ QUILT--A combination of two or more surfaces. This is represented by the classinterface IpfcQuilt.

Note:
This is used only for datum surfaces.

�❍ COONS PATCH--A coons patch is used to blend surfaces together. It is represented by the classinterface
IpfcCoonsPatch

�❍ FILLET SURFACE--A filleted surface is found where a round or fillet is placed on a curved edge or an edge with a
non-consistant arc radii. On a straight edge a cylinder is used to represent a fillet. This is represented by the
classinterface IpfcFilletedSurface.

�❍ SPLINE SURFACE-- A nonuniform bicubic spline surface that passes through a grid with tangent vectors given at
each point. This is represented by the classinterface IpfcSplineSurface.

�❍ NURBS SURFACE--A NURBS surface is defined by basic functions (in u and v), expandable arrays of knots,
weights, and control points. This is represented by the classinterface IpfcNURBSSurface.

�❍ CYLINDRICAL SPLINE SURFACE-- A cylindrical spline surface is a nonuniform bicubic spline surface that

passes through a grid with tangent vectors given at each point. This is represented by the class
IpfcCylindricalSplineSurface.

To determine which type of surface a IpfcSurface object represents, access the surface type using
IpfcGetSurfaceType .

Surface Information

Methods Introduced:

● IpfcSurface.GetSurfaceType()

● IpfcSurface.GetXYZExtents()

● IpfcSurface.GetUVExtents()

● IpfcSurface.GetOrientation()

Evaluation of Surfaces

Surface methods allow you to use multiple surface information to calculate, evaluate, determine, and examine
surface functions and problems.

Methods and Properties Introduced:

● IpfcSurface.OwnerQuilt

● IpfcSurface.EvalClosestPoint()

● IpfcSurface.EvalClosestPointOnSurface()

● IpfcSurface.Eval3DData()

● IpfcSurface.EvalParameters()

● IpfcSurface.EvalArea()

● IpfcSurface.EvalDiameter()

● IpfcSurface.EvalPrincipalCurv()

● IpfcSurface.VerifyUV()

● IpfcSurface.EvalMaximum()

● IpfcSurface.EvalMinimum()

● IpfcSurface.ListSameSurfaces()

The property IpfcSurface.OwnerQuilt returns the Quilt object that contains the datum surface.

The method IpfcSurface.EvalClosestPoint() projects a three-dimensional point onto the surface. Use the method
IpfcSurface.EvalClosestPointOnSurface() to determine whether the specified three-dimensional point is on the
surface, within the accuracy of the part. If it is, the method returns the point that is exactly on the surface. Otherwise
the method returns null.

The method IpfcSurface.Eval3DData() returns a IpfcSurfXYZData object that contains information about the
surface at the specified u and v parameters. The method IpfcSurface.EvalParameters() returns the u and v
parameters that correspond to the specified three-dimensional point.

The method IpfcSurface.EvalArea() returns the area of the surface, whereas IpfcSurface.EvalDiameter() returns
the diameter of the surface. If the diameter varies the optional IpfcUVParams argument identifies where the
diameter should be evaluated.

The method IpfcSurface.EvalPrincipalCurv() returns a IpfcCurvatureData object with information regarding
the curvature of the surface at the specified u and v parameters.

Use the method IpfcSurface.VerifyUV() to determine whether the IpfcUVParams are actually within the
boundary of the surface.

The methods IpfcSurface.EvalMaximum() and IpfcSurface.EvalMinimum() return the three-dimensional point
on the surface that is the furthest in the direction of (or away from) the specified vector.

The method IpfcSurface.ListSameSurfaces() identifies other surfaces that are tangent and connect to the given
surface.

Surface Descriptors

A surface descriptor is a data object that describes the shape and geometry of a specified surface. A surface
descriptor allows you to describe a surface in 3D without an owner ID.

Methods Introduced:

● IpfcSurface.GetSurfaceDescriptor()

● IpfcSurface.GetNURBSRepresentation()

The method IpfcSurface.GetSurfaceDescriptor() returns a surfaces geometry as a data object.

The method IpfcSurface.GetNURBSRepresentation() returns a Non-Uniform Rational B-Spline Representation of
a surface.

Axes, Coordinate Systems, and Points

Coordinate axes, datum points, and coordinate systems are all model items. Use the methods that return
IpfcModelItems to get one of these geometry objects. Refer tosection "ModelItem" foradditional information

Evaluation of ModelItems

Properties Introduced:

● IpfcAxis.Surf

● IpfcCoordSystem.CoordSys

● IpfcPoint.Point

The IpfcAxis.Surf returns the revolved surface that uses the axis.

The property IpfcCoordSystem.CoordSys returns the Transform3D object (which includes the origin and x-, y-,
and z- axes) that defines the coordinate system.

The property IpfcPoint.Point returns the xyz coordinates of the datum point.

Interference

Pro/ENGINEER assemblies can contain interferences between components when constraint by certain rules defined
by the user. The pfcInterference module allows the user to detect and analyze any interferences within the assembly.
The analysis of this functionality should be looked at from two standpoints: global and selection based analysis.

Methods and Properties Introduced:

● CMpfcInterference.CreateGlobalEvaluator()

● IpfcGlobalEvaluator.ComputeGlobalInterference()

● IpfcGlobalEvaluator.Assem

● IpfcGlobalEvaluator.Assem

● IpfcGlobalInterference.Volume

● IpfcGlobalInterference.SelParts

To compute all the interferences within an Assembly one has to call CMpfcInterference.CreateGlobalEvaluator()
with a IpfcAssembly object as an argument. This call returns a IpfcGlobalEvaluator object.

The property IpfcGlobalEvaluator.Assem accesses the assembly to be evaluated.

The method IpfcGlobalEvaluator.ComputeGlobalInterference() determines the set of all the interferences within
the assembly.

This method will return a sequence of IpfcGlobalInterference objects or null if there are no interfering parts. Each
object contains a pair of intersecting parts and an object representing the interference volume, which can be
extracted by using IpfcGlobalInterference.SelParts and IpfcGlobalInterference.Volume respectively.

Analyzing Interference Information

Methods and Properties Introduced:

● CCpfcSelectionPair.Create()

● CMpfcInterference.CreateSelectionEvaluator()

● IpfcSelectionEvaluator.Selections

● IpfcSelectionEvaluator.ComputeInterference()

● IpfcSelectionEvaluator.ComputeClearance()

● IpfcSelectionEvaluator.ComputeNearestCriticalDistance()

The method CCpfcSelectionPair.Create() creates a IpfcSelectionPair object using two IpfcSelection objects as
arguments.

A return from this method will serve as an argument to CMpfcInterference.CreateSelectionEvaluator(), which
will provide a way to determine the interference data between the two selections.

IpfcSelectionEvaluator.Selections will extract and set the object to be evaluated respectively.

IpfcSelectionEvaluator.ComputeInterference() determines the interfering information about the provided
selections. This method will return the IpfcInterferenceVolume object or null if the selections do no interfere.

IpfcSelectionEvaluator.ComputeClearance() computes the clearance data for the two selection. This method
returns a IpfcClearanceData object, which can be used to obtain and set clearance distance, nearest points between
selections, and a boolean IsInterferening variable.

IpfcSelectionEvaluator.ComputeNearestCriticalDistance() finds a critical point of the distance function between
two selections.

This method returns a IpfcCriticalDistanceData object, which is used to determine and set critical points,
surface parameters, and critical distance between points.

Analyzing Interference Volume

Methods and Properties Introduced:

● IpfcInterferenceVolume.ComputeVolume()

● IpfcInterferenceVolume.Highlight()

● IpfcInterferenceVolume.Boundaries

The method IpfcInterferenceVolume.ComputeVolume() will calculate a value for interfering volume.

The method IpfcInterferenceVolume.Highlight() will highlight the interfering volume with the color provided in
the argument to the function.

The property IpfcInterferenceVolume.Boundaries will return a set of boundary surface descriptors for the
interference volume.

Example Code

This application finds the interference in an assembly, highlights the interfering surfaces, and highlights calculates
the interference volume.

Imports pfcls

Public Class pfcGeometryExamples

 Public Sub showInterferences(ByRef session As IpfcBaseSession)

 Dim model As IpfcModel
 Dim assembly As IpfcAssembly
 Dim globalEval As IpfcGlobalEvaluator
 Dim globalInterferences As IpfcGlobalInterferences
 Dim globalInterference As IpfcGlobalInterference
 Dim selectionPair As IpfcSelectionPair
 Dim selection1, selection2 As IpfcSelection
 Dim interVolume As IpfcInterferenceVolume
 Dim totalVolume As Double
 Dim noInterferences As Integer
 Dim i As Integer

 Try
'==
'Get the current solid
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If (Not model.Type = EpfcModelType.EpfcMDL_ASSEMBLY) Then
 Throw New Exception("Model is not an assembly")
 End If
 assembly = CType(model, IpfcAssembly)

 globalEval = (New CMpfcInterference).CreateGlobalEvaluator(assembly)
'==
'Select the list of interferences in the assembly
'Setting parameter to true will select only solid geometry
'Setting it to false will through an exception
'==
 globalInterferences = globalEval.ComputeGlobalInterference(True)

 If globalInterferences Is Nothing Then
 Throw New Exception("No interference detected in assembly : " + assembly.FullName)
 Exit Sub
 End If
'==
'For each interference display interfering surfaces and calculate the
'interfering volume
'==
 noInterferences = globalInterferences.Count
 For i = 0 To noInterferences - 1
 globalInterference = globalInterferences.Item(i)

 selectionPair = globalInterference.SelParts
 selection1 = selectionPair.Sel1
 selection2 = selectionPair.Sel2
 selection1.Highlight(EpfcStdColor.EpfcCOLOR_HIGHLIGHT)
 selection2.Highlight(EpfcStdColor.EpfcCOLOR_HIGHLIGHT)

 interVolume = globalInterference.Volume
 totalVolume = interVolume.ComputeVolume()

 MsgBox("Interference " + i.ToString + " Volume : " + totalVolume.ToString)
 interVolume.Highlight(EpfcStdColor.EpfcCOLOR_ERROR)

 Next

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try
 End Sub

End Class

Dimensions and Parameters

This section describes the VB API methods and classes that affect dimensions and parameters.

Topic

Overview
The ParamValue Object
Parameter Objects
Dimension Objects

Overview

Dimensions and parameters in Pro/ENGINEER have similar characteristics but also have significant
differences. In the VB API, the similarities between dimensions and parameters are contained in the
IpfcBaseParameter interface. This interface allows access to the parameter or dimension value and to
information regarding a parameter's designation and modification. The differences between parameters and
dimensions are recognizable because IpfcDimension inherits from the interface IpfcModelItem, and can
be assigned tolerances, whereas parameters are not IpfcModelItems and cannot have tolerances.

The ParamValue Object

Both parameters and dimension objects contain an object of type IpfcParamValue. This object contains the
integer, real, string, or Boolean value of the parameter or dimension. Because of the different possible value
types that can be associated with a IpfcParamValue object there are different methods used to access each
value type and some methods will not be applicable for some IpfcParamValue objects. If you try to use an
incorrect method an exception will be thrown.

Accessing a ParamValue Object

Methods and Property Introduced:

● CMpfcModelItem.CreateIntParamValue()

● CMpfcModelItem.CreateDoubleParamValue()

● CMpfcModelItem.CreateStringParamValue()

● CMpfcModelItem.CreateBoolParamValue()

● CMpfcModelItem.CreateNoteParamValue()

● IpfcBaseParameter.Value

The CMpfcModelItem utility class contains methods for creating each type of IpfcParamValue object.

Once you have established the value type in the object, you can change it. The property IpfcBaseParameter.
Value returns the IpfcParamValue associated with a particular parameter or dimension.

A NoteIpfcParamValue is an integer value that refers to the ID of a specified note. To create a parameter of
this type the identified note must already exist in the model.

Accessing the ParamValue Value

Properties Introduced:

● IpfcParamValue.discr

● IpfcParamValue.IntValue

● IpfcParamValue.DoubleValue

● IpfcParamValue.StringValue

● IpfcParamValue.BoolValue

● IpfcParamValue.NoteId

The property IpfcParamValue.discr returns a enumeration object that identifies the type of value contained
in the IpfcParamValue object. Use this information with the specified properties to access the value. If you
use an incorrect property an exception of type pfcXBadGetParamValue will be thrown.

Parameter Objects

The following sections describe the VB API methods that access parameters. The topics are as follows:

�❍ Creating and Accessing Parameters
�❍ Parameter Selection Options
�❍ Parameter Information
�❍ Parameter Restrictions

Creating and Accessing Parameters

Methods and Property Introduced:

● IpfcParameterOwner.CreateParam()

● IpfcParameterOwner.CreateParamWithUnits()

● IpfcParameterOwner.GetParam()

● IpfcParameterOwner.ListParams()

● IpfcParameterOwner.SelectParam()

● IpfcParameterOwner.SelectParameters()

● IpfcFamColParam.RefParam

In the VB API, models, features, surfaces, and edges inherit from the IpfcParameterOwner interface,
because each of the objects can be assigned parameters in Pro/ENGINEER.

The method IpfcParameterOwner.GetParam() gets a parameter given its name.

The method IpfcParameterOwner.ListParams() returns a sequence of all parameters assigned to the object.

To create a new parameter with a name and a specific value, call the method IpfcParameterOwner.
CreateParam().

To create a new parameter with a name, a specific value, and units, call the method IpfcParameterOwner.
CreateParamWithUnits().

The method IpfcParameterOwner.SelectParam() allows you to select a parameter from the Pro/ENGINEER
user interface. The top model from which the parameters are selected must be displayed in the current
window.

The method IpfcParameterOwner.SelectParameters() allows you to interactively select parameters from the
Pro/ENGINEER Parameter dialog box based on the parameter selection options specified by the
IpfcParameterSelectionOptions object. The top model from which the parameters are selected must be
displayed in the current window. Refer to the section Parameter Selection Options for more information.

The property IpfcFamColParam.RefParam returns the reference parameter from the parameter column in a
family table.

Parameter Selection Options

Parameter selection options in the VB API are represented by the IpfcParameterSelectionOptions interface.

Methods and Properties Introduced:

● CCpfcParameterSelectionOptions.Create()

● IpfcParameterSelectionOptions.AllowContextSelection

● IpfcParameterSelectionOptions.Contexts

● IpfcParameterSelectionOptions.AllowMultipleSelections

● IpfcParameterSelectionOptions.SelectButtonLabel

The method CCpfcParameterSelectionOptions.Create() creates a new instance of the
IpfcParameterSelectionOptions object that is used by the method IpfcParameterOwner.SelectParameters
().

The parameter selection options are as follows:

�❍ AllowContextSelection--This boolean attribute indicates whether to allow parameter selection from multiple
contexts, or from the invoking parameter owner. By default, it is false and allows selection only from the
invoking parameter owner. If it is true and if specific selection contexts are not yet assigned, then you can
select the parameters from any context.
Use the property pfcModelItem.ParameteSelectionOptions.SetAllowContextSelection to modify the value of
this attribute.

�❍ Contexts--The permitted parameter selection contexts in the form of the IpfcParameterSelectionContexts
object. Use the property IpfcParameterSelectionOptions.Contexts to assign the parameter selection context.
By default, you can select parameters from any context.
The types of parameter selection contexts are as follows:

- EpfcPARAMSELECT_MODEL--Specifies that the top level model parameters can be selected.
- EpfcPARAMSELECT_PART--Specifies that any part's parameters (at any level of the top model)
can be selected.
- EpfcPARAMSELECT_ASM--Specifies that any assembly's parameters (at any level of the top
model) can be selected.
- EpfcPARAMSELECT_FEATURE--Specifies that any feature's parameters can be selected.
- EpfcPARAMSELECT_EDGE--Specifies that any edge's parameters can be selected.
- EpfcPARAMSELECT_SURFACE--Specifies that any surface's parameters can be selected.
- EpfcPARAMSELECT_QUILT--Specifies that any quilt's parameters can be selected.
- EpfcPARAMSELECT_CURVE--Specifies that any curve's parameters can be selected.
- EpfcPARAMSELECT_COMPOSITE_CURVE--Specifies that any composite curve's parameters can
be selected.
- EpfcPARAMSELECT_INHERITED--Specifies that any inheritance feature's parameters can be
selected.
- EpfcPARAMSELECT_SKELETON--Specifies that any skeleton's parameters can be selected.
- EpfcPARAMSELECT_COMPONENT--Specifies that any component's parameters can be selected.

�❍ AllowMultipleSelections--This boolean attribute indicates whether or not to allow multiple parameters to be
selected from the dialog box, or only a single parameter. By default, it is true and allows selection of multiple
parameters.
Use the property IpfcParameterSelectionOptions.AllowMultipleSelections to modify this attribute.

�❍ SelectButtonLabel--The visible label for the select button in the dialog box.
Use the property IpfcParameterSelectionOptions.SelectButtonLabel to set the label. If not set, the default
label in the language of the active Pro/ENGINEER session is displayed.

Parameter Information

Methods and Properties Introduced:

● IpfcBaseParameter.Value

● IpfcParameter.GetScaledValue()

● IpfcParameter.SetScaledValue()

● IpfcParameter.Units

● IpfcBaseParameter.IsDesignated

● IpfcBaseParameter.IsModified

● IpfcBaseParameter.ResetFromBackup()

● IpfcParameter.Description

● IpfcParameter.GetRestriction()

● IpfcParameter.GetDriverType()

● IpfcParameter.Reorder()

● IpfcParameter.Delete()

● IpfcNamedModelItem.Name

Parameters inherit methods from the IpfcBaseParameter, IpfcParameter, and IpfcNamedModelItem
interfaces.

The property IpfcBaseParameter.Value returns the value of the parameter or dimension.

The method IpfcParameter.GetScaledValue() returns the parameter value in the units of the parameter,
instead of the units of the owner model as returned by IpfcBaseParameter.Value.

The method IpfcParameter.SetScaledValue() assigns the parameter value in the units provided, instead of
using the units of the owner model as assumed by IpfcBaseParameter.Value.

The method IpfcParameter.Units returns the units assigned to the parameter.

You can access the designation status of the parameter using the property IpfcBaseParameter.IsDesignated.

The property IpfcBaseParameter.IsModified and the method IpfcBaseParameter.ResetFromBackup()
enable you to identify a modified parameter or dimension, and reset it to the last stored value. A parameter is
said to be "modified" when the value has been changed but the parameter's owner has not yet been
regenerated.

The property IpfcParameter.Description returns the parameter description, or null, if no description is
assigned.

The property IpfcParameter.Description assigns the parameter description.

The property IpfcParameter.GetRestriction() identifies if the parameter's value is restricted to a certain
range or enumeration. It returns the IpfcParameterRestriction object. Refer to the section Parameter
Restrictions for more information.

The property IpfcParameter.GetDriverType() returns the driver type for a material parameter. The driver
types are as follows:

�❍ EpfcPARAMDRIVER_PARAM--Specifies that the parameter value is driven by another parameter.
�❍ EpfcPARAMDRIVER_FUNCTION--Specifies that the parameter value is driven by a function.
�❍ EpfcPARAMDRIVER_RELATION--Specifies that the parameter value is driven by a relation. This is

equivalent to the value obtained using IpfcBaseParameter.IsRelationDriven for a parameter object type.

The method IpfcParameter.Reorder() reorders the given parameter to come immediately after the indicated
parameter in the Parameter dialog box and information files generated by Pro/ENGINEER.

The method IpfcParameter.Delete() permanently removes a specified parameter.

The property IpfcNamedModelItem.Name accesses the name of the specified parameter.

Parameter Restrictions

Pro/ENGINEER allows users to assign specified limitations to the value allowed for a given parameter
(wherever the parameter appears in the model). You can only read the details of the permitted restrictions
from the VB API, but not modify the permitted values or range of values. Parameter restrictions in the VB
API are represented by the interface IpfcParameterRestriction.

Method Introduced:

● IpfcParameterRestriction.Type

The method IpfcParameterRestriction.Type returns the IpfcRestrictionType object containing the types of
parameter restrictions. The parameter restrictions are of the following types:

�❍ EpfcPARAMSELECT_ENUMERATION--Specifies that the parameter is restricted to a list of permitted
values.

�❍ EpfcPARAMSELECT_RANGE--Specifies that the parameter is limited to a specified range of numeric
values.

Enumeration Restriction

The EpfcPARAMSELECT_ENUMERATION type of parameter restriction is represented by the interface
IpfcParameterEnumeration. It is a child of the IpfcParameterRestriction interface.

Property Introduced:

● IpfcParameterEnumeration.PermittedValues

The property IpfcParameterEnumeration.PermittedValues returns a list of permitted parameter values
allowed by this restriction in the form of a sequence of the IpfcParamValue objects.

Range Restriction

The EpfcPARAMSELECT_RANGE type of parameter restriction is represented by the interface
IpfcParameterRange. It is a child of the IpfcParameterRestriction interface.

Properties Introduced:

● IpfcParameterRange.Maximum

● IpfcParameterRange.Minimum

● IpfcParameterLimit.Type

● IpfcParameterLimit.Value

The property IpfcParameterRange.Maximum returns the maximum value limit for the parameter in the form
of the IpfcParameterLimit object.

The property IpfcParameterRange.Minimum returns the minimum value limit for the parameter in the form
of the IpfcParameterLimit object.

The property IpfcParameterLimit.Type returns the IpfcParameterLimitType containing the types of
parameter limits. The parameter limits are of the following types:

�❍ EpfcPARAMLIMIT_LESS_THAN--Specifies that the parameter must be less than the indicated value.
�❍ EpfcPARAMLIMIT_LESS_THAN_OR_EQUAL--Specifies that the parameter must be less than or equal to

the indicated value.
�❍ EpfcPARAMLIMIT_GREATER_THAN--Specifies that the parameter must be greater than the indicated

value.
�❍ EpfcPARAMLIMIT_GREATER_THAN_OR_EQUAL--Specifies that the parameter must be greater than or

equal to the indicated value.

The property IpfcParameterLimit.Value retruns the boundary value of the parameter limit in the form of the
IpfcParamValue object.

Example Code: Updating Model Parameters

The following example code contains a method that reads a "properties" file and creates or updates model
parameters for each property which exists in the file. Since each property value is returned as a String, a utility
method parses the String into int, double, or boolean values if possible

Imports pfcls

Public Class pfcDimensionAndParameterExamples
 Public Sub createParametersFromProperties(ByRef pOwner As IpfcParameterOwner, _
 ByVal propertiesFile As String)
 Dim file As IO.StreamReader = Nothing
 Dim s As String
 Dim split() As String
 Dim pv As IpfcParamValue
 Dim p As IpfcParameter

 Try
'==
'Use a stream reader to read the properties file
'==
 file = New IO.StreamReader(propertiesFile)
'==
'Read and parse line into key - value pairs. These are separated by
'":". Any line starting with # is ignored as comments
'==
 While Not file.EndOfStream
 s = file.ReadLine()
 If Not (s.Substring(0, 1) = "#") Then
 split = s.Split(":")
'==
'Invalid key - value pairs are ignored

'==
 If split.Length = 2 Then

 pv = createParamValueFromString(split(1).ToString)
 p = pOwner.GetParam(split(0).ToString)
 If p Is Nothing Then
 pOwner.CreateParam(split(0).ToString, pv)
 Else
 CType(p, IpfcBaseParameter).Value = pv
 End If
 End If
 End If

 End While

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Finally
 If Not file Is Nothing Then
 file.Close()
 End If
 End Try
 End Sub

'Create Parameters from string
'==
'Function : createParamValueFromString
'Purpose : This method parses a string into a ParamValue object.
' Useful for reading ParamValues from file or from UI text.
' This method checks if the value is a proper integer,
' double, or boolean, and if so, returns a value of that
' type. If the value is not a number or boolean, the
' method returns a String ParamValue.
'==
 Private Function createParamValueFromString(ByVal s As String) _
 As IpfcParamValue
 Try
 If (s.Equals("Y", StringComparison.OrdinalIgnoreCase)) Or
 _(s.Equals("true", StringComparison.OrdinalIgnoreCase))
 Then
 Return ((New CMpfcModelItem).CreateBoolParamValue(True))

 ElseIf (s.Equals("N", StringComparison.OrdinalIgnoreCase)) Or
 _s.Equals("false", StringComparison.OrdinalIgnoreCase))
 Then
 Return ((New CMpfcModelItem).CreateBoolParamValue(False))

 ElseIf IsDouble(s) Then
 Return ((New CMpfcModelItem).CreateDoubleParamValue
 (CType(s, Double)))
 ElseIf IsNumeric(s) Then
 Return ((New CMpfcModelItem).CreateIntParamValue(CType(s,
 Integer)))

 Else

 Return ((New CMpfcModelItem).CreateStringParamValue(s))

 End If

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try

 End Function
'==
'Function : IsDouble
'Purpose : Helper function to check if string is decimal
'==
 Private Function IsDouble(ByVal s As String) As Boolean
 Dim i As Integer

 If IsNumeric(s) Then
 For i = 0 To s.Length - 2
 If s.Substring(i, 1) = "." Then
 Return True
 End If
 Next
 End If

 Return False

 End Function

End Class

Dimension Objects

Dimension objects include standard Pro/ENGINEER dimensions as well as reference dimensions. Dimension
objects enable you to access dimension tolerances and enable you to set the value for the dimension.
Reference dimensions allow neither of these actions.

Getting Dimensions

Dimensions and reference dimensions are Pro/ENGINEER model items. Seefor methods that can return
IpfcDimension and IpfcRefDimension objects.

Dimension Information

Methods and Properties Introduced:

● IpfcBaseParameter.Value

● IpfcBaseDimension.DimValue

● IpfcBaseParameter.IsDesignated

● IpfcBaseParameter.IsModified

● IpfcBaseParameter.ResetFromBackup()

● IpfcBaseParameter.IsRelationDriven

● IpfcBaseDimension.DimType

● IpfcBaseDimension.Symbol

● IpfcBaseDimension.Texts

All the IpfcBaseParameter methods are accessible to Dimensions as well as Parameters. See
"Parameter Objects" for brief descriptions.

Note:
You cannot set the value or designation status of reference dimension objects.

The property IpfcBaseDimension.DimValue accesses the dimension value as a double. This property
provides a shortcut for accessing the dimensions' values without using a ParamValue object.

The IpfcBaseParameter.IsRelationDriven property identifies whether the part or assembly relations control
a dimension.

The property IpfcBaseDimension.DimType returns an enumeration object that identifies whether a
dimension is linear, radial, angular, or diametrical.

The property IpfcBaseDimension.Symbol returns the dimension or reference dimension symbol (that is, "d#"
or "rd#").

The property IpfcBaseDimension.Texts allows access to the text strings that precede or follow the dimension
value.

Dimension Tolerances

Methods and Properties Introduced:

● IpfcDimension.Tolerance

● CCpfcDimTolPlusMinus.Create()

● CCpfcDimTolSymmetric.Create()

● CCpfcDimTolLimits.Create()

● CCpfcDimTolSymSuperscript.Create()

● CCpfcDimTolISODIN.Create()

Only true dimension objects can have geometric tolerances.

The property IpfcDimension.Tolerance enables you to access the dimension tolerance. The object types for
the dimension tolerance are:

�❍ IpfcDimTolLimits--Displays dimension tolerances as upper and lower limits.

Note:
This format is not available when only the tolerance value for a dimension is displayed.

�❍ IpfcDimTolPlusMinus--Displays dimensions as nominal with plus-minus tolerances. The positive and
negative values are independent.

�❍ IpfcDimTolSymmetric--Displays dimensions as nominal with a single value for both the positive and the
negative tolerance.

�❍ IpfcDimTolSymSuperscript--Displays dimensions as nominal with a single value for positive and negative
tolerance. The text of the tolerance is displayed in a superscript format with respect to the dimension text.

�❍ IpfcDimTolISODIN--Displays the tolerance table type, table column, and table name, if the dimension
tolerance is set to a hole or shaft table (DIN/ISO standard).

A null value is similar to the nominal option in Pro/ENGINEER.

You can determine whether a given tolerance is plus/minus, symmetric, limits, or superscript using the
following example code.

If TypeOf (tolerance) Is IpfcDimTolLimits

 Example Code: Setting Tolerences to a Specified Range

The following example code shows a utility method that sets angular tolerances to a specified range. First, the
program determines whether the dimension passed to it is angular. If it is, the method gets the dimension value
and adds or subtracts the range to it to get the upper and lower limits.

Public Function setAngularToleranceToLimits(ByVal dimension As
 IpfcDimension, _
 ByVal range As Double) _
 As IpfcDimension

 Dim paramValue As IpfcParamValue
 Dim limits As IpfcDimTolLimits
 Dim dimValue As Double
 Dim upper, lower As Double

 Try
 If (dimension.DimType = EpfcDimensionType.EpfcDIM_ANGULAR) Then
 paramValue = dimension.Value
 dimValue = paramValue.DoubleValue()

 upper = dimValue + (range / 2)
 lower = dimValue - (range / 2)

 limits = (New CCpfcDimTolLimits).Create(upper, lower)

 dimension.Tolerance = limits

 End If

 setAngularToleranceToLimits = dimension

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try
End Function

Relations

This section describes how to access relations on all models and model items in Pro/ENGINEER
using the methods provided in theVB API.

Topic

Accessing Relations
Adding a Customized Function to the Relations Dialog Box in Pro/ENGINEER

Accessing Relations

In the VB API, the set of relations on any model or model item is represented by the
IpfcRelationOwner interface. Models, features, surfaces, and edges inherit from this interface,
because each object can be assigned relations in Pro/ENGINEER.

Methods and Properties Introduced:

● IpfcRelationOwner.RegenerateRelations()

● IpfcRelationOwner.DeleteRelations()

● IpfcRelationOwner.Relations

● IpfcRelationOwner.EvaluateExpression()

The method IpfcRelationOwner.RegenerateRelations() regenerates the relations assigned to the
owner item. It also determines whether the specified relation set is valid.

The method IpfcRelationOwner.DeleteRelations() deletes all the relations assigned to the owner
item.

The property IpfcRelationOwner.Relations returns the list of actual relations assigned to the owner
item as a sequence of strings.

The method IpfcRelationOwner.EvaluateExpression() evaluates the given relations-based
expression, and returns the resulting value in the form of the IpfcParamValue object. Refer to the
section, The ParamValue Object in the chapter, Dimensions and Parameters for more information on
this object.

Example 1: Adding Relations between Parameters in a Solid Model

Public Class pfcRelationsExamples2
 '==
 'Function : createParamDimRelation
 'Purpose : This function creates parameters for all dimensions in
 ' all features of a part model and adds relation between
 ' them.
'==
 Public Sub createParamDimRelation(ByRef features As IpfcFeatures)

 Dim items As IpfcModelItems
 Dim item As IpfcModelItem
 Dim feature As IpfcFeature
 Dim i, j As Integer
 Dim paramName As String
 Dim dimName As String
 Dim dimValue As Double
 Dim relations As Cstringseq
 Dim paramValue As IpfcParamValue
 Dim param As IpfcParameter
 Dim paramAdded As Boolean

 Try

 For i = 0 To features.Count - 1
 feature = features.Item(i)

'==
 'Get the dimensions in the current feature
'==
 items = feature.ListSubItems(EpfcModelItemType.EpfcITEM_DIMENSION)
 If items Is Nothing OrElse items.Count = 0 Then
 Continue For
 End If

 relations = New Cstringseq
'==
 'Loop through all the dimensions and create relations
'==
 For j = 0 To items.Count - 1
 item = items.Item(j)
 dimName = item.GetName()
 paramName = "PARAM_" + dimName
 dimValue = CType(item, IpfcBaseDimension).DimValue

 param = feature.GetParam(paramName)
 paramAdded = False
 If param Is Nothing Then
 paramValue = (New
 CMpfcModelItem).CreateDoubleParamValue(dimValue)
 feature.CreateParam(paramName, paramValue)

 paramAdded = True
 Else
 If param.Value.discr = EpfcParamValueType.EpfcPARAM_DOUBLE
 Then
 paramValue = (New
 CMpfcModelItem).CreateDoubleParamValue(dimValue)
 CType(param, IpfcBaseParameter).Value = paramValue
 paramAdded = True
 End If
 End If

 If paramAdded = True Then
 relations.Append(dimName + " = " + paramName)
 End If
 param = Nothing
 Next
 CType(feature, IpfcRelationOwner).Relations = relations
 Next
 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub
End Class

Adding a Customized Function to the Relations Dialog Box in Pro/
ENGINEER

Methods Introduced:

● IpfcBaseSession.RegisterRelationFunction()

The method IpfcBaseSession.RegisterRelationFunction() registers a custom function that is
included in the function list of the Relations dialog box in Pro/ENGINEER. You can add the custom
function to relations that are added to models, features, or other relation owners. The registration
method takes the following input arguments:

�❍ Name--The name of the custom function.
�❍ IpfcRelationFunctionOptions--This object contains the options that determine the behavior of the

custom relation function. Refer to the section `Relation Function Options' for more information.
�❍ IpfcRelationFunctionListener--This object contains the action listener methods for the

implementation of the custom function. Refer to the section `Relation Function Listeners' for more
information.

Note:
the VB API relation functions are valid only when the custom function has been registered by
the application. If the application is not running or not present, models that contain user-
defined relations cannot evaluate these relations. In this situation, the relations are marked as
errors. However, these errors can be commented until needed at a later time when the
relations functions are reactivated in a Pro/ENGINEEER session.

Relation Function Options

Methods and Properties Introduced:

● CCpfcRelationFunctionOptions.Create()

● IpfcRelationFunctionOptions.ArgumentTypes

● CCpfcRelationFunctionArgument.Create()

● IpfcRelationFunctionArgument.Type

● IpfcRelationFunctionArgument.IsOptional

● IpfcRelationFunctionOptions.EnableTypeChecking

● IpfcRelationFunctionOptions.EnableArgumentCheckMethod

● IpfcRelationFunctionOptions.EnableExpressionEvaluationMethod

● IpfcRelationFunctionOptions.EnableValueAssignmentMethod

Use the method CCpfcRelationFunctionOptions.Create() to create the
IpfcRelationFunctionOptions object containing the options to enable or disable various relation
function related features. Use the methods listed above to access and modify the options. These
options are as follows:

�❍ ArgumentTypes--The types of arguments in the form of the IpfcRelationFunctionArgument object.
By default, this parameter is null, indicating that no arguments are permitted.

Use the method CCpfcRelationFunctionArgument.Create() to create the
IpfcRelationFunctionArgument object containing the attributes of the arguments passed to the
custom relation function.

These attributes are as follows:
- Type--The type of argument value such as double, integer, and so on in the form of the
IpfcParamValueType object.
- IsOptional--This boolean attribute specifies whether the argument is optional, indicating that
it can be skipped when a call to the custom relation function is made. The optional arguments
must fall at the end of the argument list. By default, this attribute is false.

�❍ EnableTypeChecking--This boolean attribute determines whether or not to check the argument types
internally. By default, it is false. If this attribute is set to false, Pro/ENGINEER does not need to
know the contents of the arguments array. The custom function must handle all user errors in such a
situation.

�❍ EnableArgumentCheckMethod--This boolean attribute determines whether or not to enable the
arguments check listener function. By default, it is false.

�❍ EnableExpressionEvaluationMethod--This boolean attribute determines whether or not to enable the
evaluate listener function. By default, it is true.

�❍ EnableValueAssignmentMethod--This boolean attribute determines whether or not to enable the
value assignment listener function. By default, it is false.

Relation Function Listeners

The interface IpfcRelationFunctionListener provides the method signatures to implement a custom
relation function.

Methods Introduced:

● IpfcRelationFunctionListener.CheckArguments()

● IpfcRelationFunctionListener.AssignValue()

● IpfcRelationFunctionListener.EvaluateFunction()

The method IpfcRelationFunctionListener.CheckArguments() checks the validity of the
arguments passed to the custom function. This listener method takes the following input arguments:

�❍ The owner of the relation being evaluated
�❍ The custom function name
�❍ A sequence of arguments passed to the custom function

If the implementation of this method determines that the arguments are not valid for the custom
function, then the listener method returns false. Otherwise, it returns true.

The method IpfcRelationFunctionListener.EvaluateFunction() evaluates a custom relation
function invoked on the right hand side of a relation. This listener method takes the following input
arguments:

�❍ The owner of the relation being evaluated
�❍ The custom function name
�❍ A sequence of arguments passed to the custom function

You must return the computed result of the custom relation function.

The method IpfcRelationFunctionListener.AssignValue() evaluates a custom relation function
invoked on the left hand side of a relation. It allows you to initialize properties to be stored and used
by your application. This listener method takes the following input arguments:

�❍ The owner of the relation being evaluated
�❍ The custom function name
�❍ A sequence of arguments passed to the custom function
�❍ The value obtained by Pro/ENGINEER from evaluating the right hand side of the relation

Example 2: Adding and Implementing a New Custom Relation Function

The addRelation function in this example code, which defines the options for a new custom
relation function and registers it in the current session. The RelationListener class contains the
CheckArguments, AssignValue and EvaluateFunction listener methods that are called when the
custom relation function is used.

Public Class pfcRelationsExamples1
 Implements IpfcAsyncActionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Dim WithEvents eventTimer As Timers.Timer
 Dim exitFlag As Boolean = False
 Dim aC As pfcls.IpfcAsyncConnection

 Public Sub New(ByRef asyncConnection As pfcls.IpfcAsyncConnection)
 aC = asyncConnection
 End Sub

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcAsyncActionListener"
 End Function

 Public Sub OnTerminate(ByVal _Status As Integer) Implements
 pfcls.IpfcAsyncActionListener.OnTerminate
 aC.InterruptEventProcessing()
 exitFlag = True
 End Sub

'==
 'Function : timeElapsed
 'Purpose : This function handels the time elapsed event of timer
 ' which is fired at regular intervals
'==
 Private Sub timeElapsed(ByVal sender As Object, ByVal e As
 System.Timers.ElapsedEventArgs)
 If exitFlag = False Then
 aC.EventProcess()
 Else
 eventTimer.Enabled = False
 End If
 End Sub

'==
 'Function : addRelation
 'Purpose : This function adds new custom relation functions.
'==
 Public Sub addRelation()

 Dim listenerObj As RelationListener

 Dim setOptions As IpfcRelationFunctionOptions
 Dim getOptions As IpfcRelationFunctionOptions
 Dim getArgs As IpfcRelationFunctionArguments
 Dim getArg As IpfcRelationFunctionArgument

 Try
 listenerObj = New RelationListener()

'==
 'Start the timer to call EventProcess at regular intervals
'==
 eventTimer = New Timers.Timer(50)
 eventTimer.Enabled = True
 AddHandler eventTimer.Elapsed, AddressOf Me.timeElapsed

 setOptions = (New CCpfcRelationFunctionOptions).Create()
 setOptions.EnableArgumentCheckMethod = False
 setOptions.EnableExpressionEvaluationMethod = False
 setOptions.EnableTypeChecking = False
 setOptions.EnableValueAssignmentMethod = True

 aC.Session.RegisterRelationFunction("SET_A", listenerObj,
 setOptions)
 aC.Session.RegisterRelationFunction("SET_B", listenerObj,
 setOptions)

 getArgs = New CpfcRelationFunctionArguments
 getArg = (New
CCpfcRelationFunctionArgument).Create(EpfcParamValueType.EpfcPARAM_DOUBL)
 getArg.IsOptional = False

 getArgs.Append(getArg)

 getOptions = (New CCpfcRelationFunctionOptions).Create()
 getOptions.EnableTypeChecking = False
 getOptions.ArgumentTypes = getArgs

 aC.Session.RegisterRelationFunction("EVAL_AX_B", listenerObj,
 getOptions)

 aC.AddActionListener(Me)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub

'==
 'Class : RelationListener

 'Purpose : This class implements the IpfcRelationFunctionListener
 ' Interface along with the correct client interface name.
 ' The implemented method will be called when the custom
 ' relation function is used.
'==
 Private Class RelationListener
 Implements IpfcRelationFunctionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Dim aValue As Double = 1
 Dim bValue As Double = 0

 Public Function GetClientInterfaceName() As String Implements
 pfcls.ICIPClientObject.GetClientInterfaceName
 GetClientInterfaceName = "IpfcRelationFunctionListener"
 End Function

'==
 'Function : AssignValue
 'Purpose : Function called when value is assigned to custom
 ' relation function.
'==
 Public Sub AssignValue(ByVal _Owner As pfcls.IpfcRelationOwner,
 ByVal _FunctionName As String, ByVal _Arguments As pfcls.CpfcParamValues,
 ByVal _Assignment As pfcls.IpfcParamValue) Implements
 pfcls.IpfcRelationFunctionListener.AssignValue
 If Not _Assignment.discr = EpfcParamValueType.EpfcPARAM_DOUBLE
 Then
 Throw New Exception("Incorrect type")
 End If
 If _FunctionName = "SET_A" Then
 aValue = _Assignment.DoubleValue
 End If
 If _FunctionName = "SET_B" Then
 bValue = _Assignment.DoubleValue
 End If
 End Sub
'==
 'Function : CheckArguments
 'Purpose : Function called to check arguments supplied
 to custom relation function.
'==
 Public Function CheckArguments(ByVal _Owner As
 pfcls.IpfcRelationOwner, ByVal _FunctionName As String, ByVal _Arguments
 As pfcls.CpfcParamValues) As Boolean Implements
 pfcls.IpfcRelationFunctionListener.CheckArguments
 End Function
'==
 'Function : EvaluateFunction
 'Purpose : Function called when value is to be returned from

 ' custom relation function.
'==
 Public Function EvaluateFunction(ByVal _Owner As
 pfcls.IpfcRelationOwner, ByVal _FunctionName As String, ByVal _Arguments
 As pfcls.CpfcParamValues) As pfcls.IpfcParamValue Implements
 pfcls.IpfcRelationFunctionListener.EvaluateFunction

 Dim paramValue As IpfcParamValue
 Dim ret As Double

 If _FunctionName = "EVAL_AX_B" Then
 ret = (aValue * (_Arguments.Item(0).DoubleValue)) + bValue
 paramValue = (New
 CMpfcModelItem).CreateDoubleParamValue(ret)
 Return paramValue
 Else
 Return Nothing
 End If

 End Function
 End Class

End Class

Assemblies and Components

This section describes the the VB API functions that access the functions of a Pro/ENGINEER assembly. You
must be familiar with the following before you read this section:

�❍ The Selection Object
�❍ Coordinate Systems
�❍ The Geometry section

Topic

Structure of Assemblies and Assembly Objects
Assembling Components
Redefining and Rerouting Assembly Components
Exploded Assemblies
Skeleton Models

Structure of Assemblies and Assembly Objects

The object IpfcAssembly is an instance of IpfcSolid. The IpfcAssembly object can therefore be used as
input to any of the IpfcSolid and IpfcModel methods applicable to assemblies. However assemblies do not
contain solid geometry items. The only geometry in the assembly is datums (points, planes, axes, coordinate
systems, curves, and surfaces). Therefore solid assembly features such as holes and slots will not contain active
surfaces or edges in the assembly model.

The solid geometry of an assembly is contained in its components. A component is a feature of type
IpfcComponentFeat, which is a reference to a part or another assembly, and a set of parametric constraints for
determining its geometrical location within the parent assembly.

Assembly features that are solid, such as holes and slots, and therefore affect the solid geometry of parts in the
assembly hierarchy, do not themselves contain the geometry items that describe those modifications. These items
are always contained in the parts whose geometry is modified, within local features created for that purpose.

The important functions for assemblies are those that operate on the components of an assembly. The object
IpfcComponentFeat, which is an instance of IpfcFeature is defined for that purpose. Each assembly
component is treated as a variety of feature, and the integer identifier of the component is also the feature
identifier.

An assembly can contain a hierarchy of assemblies and parts at many levels, in which some assemblies and parts
may appear more than once. To identify the role of any database item in the context of the root assembly, it is
not sufficient to have the integer identifier of the item and the handle to its owning part or assembly, as would be
provided by its IpfcFeature description.

It is also necessary to give the full path of the assembly-component references down from the root assembly to
the part or assembly that owns the database item. This is the purpose of the object IComponentPath, which is
used as the input to the VB API assembly functions.

The following figure shows an assembly hierarchy with two examples of the contents of a IpfcComponentPath

object.

In the assembly shown in the figure, subassembly C is component identifier 11 within assembly A, Part B is
component identifier 3 within assembly AB, and so on. The subassembly AB occurs twice. To refer to the two
occurrences of part B, use the following:

(?)Component B' Component B"

ComponentIds.Item(0) = 2 ComponentIds.Item(1) = 11
ComponentIds.Item(1) = 2 ComponentIds.Item(2) = 6
ComponentIds.Item(2) = 5 ComponentIds.Item(3) = 12
ComponentIds.Item(3) = 2 ComponentIds.Item(4) = 3
ComponentIds.Item(4) = 3

The object IpfcComponentPath is one of the main portions of the IpfcSelection object.

Assembly Components

Methods and Properties Introduced:

● IpfcComponentFeat.IsBulkitem

● IpfcComponentFeat.IsSubstitute

● IpfcComponentFeat.CompType

● IpfcComponentFeat.ModelDescr

● IpfcComponentFeat.IsPlaced

● IpfcComponentFeat.IsPackaged

● IpfcComponentFeat.IsUnderconstrained

● IpfcComponentFeat.IsFrozen

● IpfcComponentFeat.Position

● IpfcComponentFeat.CopyTemplateContents()

● IpfcComponentFeat.CreateReplaceOp()

The property IpfcComponentFeat.IsBulkitem identifies whether an assembly component is a bulk item. A bulk
item is a non-geometric assembly feature that should appear in an assembly bill of materials.

The property IpfcComponentFeat.IsSubstitute returns a true value if the component is substituted, else it
returns a false. When you substitute a component in a simplified representation, you temporarily exclude the
substituted component and superimpose the substituting component in its place.

The property IpfcComponentFeat.CompType enables you to set the type of the assembly component. The
component type identifies the purpose of the component in a manufacturing assembly.

The property IpfcComponentFeat.ModelDescr returns the model descriptor of the component part or
subassembly.

Note:
From Pro/ENGINEER Wildfire 4.0 onwards, the property IpfcComponentFeat.ModelDescr throws an
exception IpfcXtoolkitCantOpen if called on an assembly component whose immediate generic is not in
session. Handle this exception and typecast the assembly component as IpfcSolid, which in turn can be
typecast as IpfcFamilyMember, and use the method IpfcFamilyMember.GetImmediateGenericInfo() to
get the model descriptor of the immediate generic model. If you wish to switch off this behavior and
continue to run legacy applications in the pre-Wildfire 4.0 mode, set the configuration option
retrieve_instance_dependencies to "instance_and_generic_deps".

The property IpfcComponentFeat.IsPlaced forces the component to be considered placed. The value of this
parameter is important in assembly Bill of Materials.

Note:
Once a component is constrained or packaged, it cannot be made unplaced again.

A component of an assembly that is either partially constrained or unconstrained is known as a packaged
component. Use the property IpfcComponentFeat.IsPackaged to determine if the specified component is
packaged.

The property IpfcComponentFeat.IsUnderconstrained determines if the specified component is
underconstrained, that is, it possesses some constraints but is not fully constrained.

The property IpfcComponentFeat.IsFrozen determines if the specified component is frozen. The frozen

component behaves similar to the packaged component and does not follow the constraints that you specify.

The property IpfcComponentFeat.Position retrieves the component's initial position before constraints and
movements have been applied. If the component is packaged this position is the same as the constraint's actual
position. This property modifies the assembly component data but does not regenerate the assembly component.
To regenerate the component, use the method IpfcComponentFeat.Regenerate().

The method IpfcComponentFeat.CopyTemplateContents() copies the template model into the model of the
specified component.

The method IpfcComponentFeat.CreateReplaceOp() creates a replacement operation used to swap a
component automatically with a related component. The replacement operation can be used as an argument to
IpfcSolid.ExecuteFeatureOps().

Example Code: Replacing Instances

The following example code contains a single static utility method. This method takes an assembly for an
argument. It searches through the assembly for all components that are instances of the model "bolt". It then
replaces all such occurrences with a different instance of bolt.

Imports pfcls

Public Class pfcAssembliesExamples

 Public Sub replaceInstance(ByRef session As IpfcBaseSession, _
 ByVal modelName As String, _
 ByVal oldInstance As String, _
 ByVal newInstance As String)

 Dim model As IpfcModel
 Dim assembly As IpfcAssembly
 Dim oldModel As IpfcSolid
 Dim newInstanceFamilyRow As IpfcFamilyTableRow
 Dim newModel As IpfcSolid
 Dim components As IpfcFeatures
 Dim component As IpfcComponentFeat
 Dim modelDesc As IpfcModelDescriptor
 Dim replace As IpfcCompModelReplace
 Dim replaceOperations As CpfcFeatureOperations
 Dim i As Integer

 Try
'==
'Get the current assembly
 '==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If (Not model.Type = EpfcModelType.EpfcMDL_ASSEMBLY) Then
 Throw New Exception("Model is not an assembly")
 End If
 assembly = CType(model, IpfcAssembly)

'==
'Get the model to be replaced
'==

 oldModel = session.GetModel(modelName,
 EpfcModelType.EpfcMDL_PART)
'==
'Create instance of new model
'==
 newInstanceFamilyRow = oldModel.GetRow(newInstance)
 newModel = newInstanceFamilyRow.CreateInstance()

 replaceOperations = New CpfcFeatureOperations
'==
'Loop through all the components and create replace operations for any
'instance of the model found
'==
 components = assembly.ListFeaturesByType(False, EpfcFeatureType.
EpfcFEATTYPE_COMPONENT)
 For i = 0 To components.Count - 1
 component = components.Item(i)
 modelDesc = component.ModelDescr
 If modelDesc.InstanceName = oldInstance Then
 replace = component.CreateReplaceOp(newModel)
 replaceOperations.Insert(0, replace)
 End If
 Next
'==
'Replace the model
'==

 assembly.ExecuteFeatureOps(replaceOperations, Nothing)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try
 End Sub
End Class

Regenerating an Assembly Component

Method Introduced:

● IpfcComponentFeat.Regenerate()

The method IpfcComponentFeat.Regenerate() regenerates an assembly component. The method regenerates
the assembly component just as in an interactive Pro/ENGINEER session.

Creating a Component Path

Methods Introduced

● CMpfcAssembly.CreateComponentPath()

The method CMpfcAssembly.CreateComponentPath() returns a component path object, given the Assembly
model and the integer id path to the desired component.

Component Path Information

Methods and Properties Introduced:

● IpfcComponentPath.Root

● IpfcComponentPath.ComponentIds

● IpfcComponentPath.Leaf

● IpfcComponentPath.GetTransform()

● IpfcComponentPath.SetTransform()

● IpfcComponentPath.GetIsVisible()

The property IpfcComponentPath.Root returns the assembly at the head of the component path object.

The property IpfcComponentPath.ComponentIds returns the sequence of ids which is the path to the particular
component.

The property IpfcComponentPath.Leaf returns the solid model at the end of the component path.

The method IpfcComponentPath.GetTransform() returns the coordinate system transformation between the
assembly and the particular component. It has an option to provide the transformation from bottom to top, or
from top to bottom. This method describes the current position and the orientation of the assembly component in
the root assembly.

The method IpfcComponentPath.SetTransform() applies a temporary transformation to the assembly
component, similar to the transformation that takes place in an exploded state. The transformation will only be
applied if the assembly is using DynamicPositioning.

The method IpfcComponentPath.GetIsVisible() identifies if a particular component is visible in any simplified
representation.

Assembling Components

Methods Introduced:

● IpfcAssembly.AssembleComponent()

● IpfcAssembly.AssembleByCopy()

● IpfcComponentFeat.GetConstraints()

● IpfcComponentFeat.SetConstraints()

The method IpfcAssembly.AssembleComponent() adds a specified component model to the assembly at the
specified initial position. The position is specified in the format defined by the interface IpfcTransform3D.
Specify the orientation of the three axes and the position of the origin of the component coordinate system, with
respect to the target assembly coordinate system.

The method IpfcAssembly.AssembleByCopy() creates a new component in the specified assembly by copying
from the specified component. If no model is specified, then the new component is created empty. The input
parameters for this method are:

�❍ LeaveUnplaced--If true the component is unplaced. If false the component is placed at a default location in the
assembly. Unplaced components belong to an assembly without being assembled or packaged. These
components appear in the model tree, but not in the graphic window. Unplaced components can be constrained
or packaged by selecting them from the model tree for redefinition. When its parent assembly is retrieved into
memory, an unplaced component is also retrieved.

�❍ ModelToCopy--Specify the model to be copied into the assembly
�❍ NewModelName--Specify a name for the copied model

The method IpfcComponentFeat.GetConstraints() retrieves the constraints for a given assembly component.

The method IpfcComponentFeat.SetConstraints() allows you to set the constraints for a specified assembly
component. The input parameters for this method are:

�❍ Constraints--Constraints for the assembly component. These constraints are explained in detail in the later
sections.

�❍ ReferenceAssembly--The path to the owner assembly, if the constraints have external references to other
members of the top level assembly. If the constraints are applied only to the assembly component then the value
of this parameter should be null.

This method modifies the component feature data but does not regenerate the assembly component. To
regenerate the assembly use the method IpfcSolid.Regenerate().

Constraint Attributes

Methods and Properties Introduced:

● CCpfcConstraintAttributes.Create()

● IpfcConstraintAttributes.Force

● IpfcConstraintAttributes.Ignore

The method CCpfcConstraintAttributes.Create() returns the constraint attributes object based on the values of
the following input parameters:

�❍ Ignore--Constraint is ignored during regeneration. Use this capability to store extra constraints on the
component, which allows you to quickly toggle between different constraints.

�❍ Force--Constraint has to be forced for line and point alignment.
�❍ None--No constraint attributes. This is the default value.

Assembling a Component Parametrically

You can position a component relative to its neighbors (components or assembly features) so that its position is

updated as its neighbors move or change. This is called parametric assembly. Pro/ENGINEER allows you to
specify constraints to determine how and where the component relates to the assembly. You can add as many
constraints as you need to make sure that the assembly meets the design intent.

Methods and Properties Introduced:

● CCpfcComponentConstraint.Create()

● IpfcComponentConstraint.Type

● IpfcComponentConstraint.AssemblyReference

● IpfcComponentConstraint.AssemblyDatumSide

● IpfcComponentConstraint.ComponentReference

● IpfcComponentConstraint.ComponentDatumSide

● IpfcComponentConstraint.Offset

● IpfcComponentConstraint.Attributes

● IpfcComponentConstraint.UserDefinedData

The method CCpfcComponentConstraint.Create() returns the component constraint object having the
following parameters:

�❍ ComponentConstraintType--Using the TYPE options, you can specify the placement constraint types. They are
as follows:

- EpfcASM_CONSTRAINT_MATE--Use this option to make two surfaces touch one another, that is
coincident and facing each other.
- EpfcASM_CONSTRAINT_MATE_OFF--Use this option to make two planar surfaces parallel and
facing each other.
- EpfcASM_CONSTRAINT_ALIGN--Use this option to make two planes coplanar, two axes coaxial
and two points coincident. You can also align revolved surfaces or edges.
- EpfcASM_CONSTRAINT_ALIGN_OFF--Use this option to align two planar surfaces at an offset.
- EpfcASM_CONSTRAINT_INSERT--Use this option to insert a ``male'' revolved surface into a
``female'' revolved surface, making their respective axes coaxial.
- EpfcASM_CONSTRAINT_ORIENT--Use this option to make two planar surfaces to be parallel in the
same direction.
- EpfcASM_CONSTRAINT_CSYS--Use this option to place a component in an assembly by aligning
the coordinate system of the component with the coordinate system of the assembly.
- EpfcASM_CONSTRAINT_TANGENT----Use this option to control the contact of two surfaces at their
tangents.
- EpfcASM_CONSTRAINT_PNT_ON_SRF--Use this option to control the contact of a surface with a
point.
- EpfcASM_CONSTRAINT_EDGE_ON_SRF--Use this option to control the contact of a surface with a
straight edge.
- EpfcASM_CONSTRAINT_DEF_PLACEMENT--Use this option to align the default coordinate
system of the component to the default coordinate system of the assembly.
- EpfcASM_CONSTRAINT_SUBSTITUTE--Use this option in simplified representations when a
component has been substituted with some other model
- EpfcASM_CONSTRAINT_PNT_ON_LINE--Use this option to control the contact of a line with a

point.
- EpfcASM_CONSTRAINT_FIX--Use this option to force the component to remain in its current
packaged position.
- EpfcASM_CONSTRAINT_AUTO--Use this option in the user interface to allow an automatic choice
of constraint type based upon the references.

�❍ AssemblyReference--A reference in the assembly.
�❍ AssemblyDatumSide--Orientation of the assembly. This can have the following values:

- Yellow--The primary side of the datum plane which is the default direction of the arrow.
- Red--The secondary side of the datum plane which is the direction opposite to that of the arrow.

�❍ ComponentReference--A reference on the placed component.
�❍ ComponentDatumSide--Orientation of the assembly component. This can have the following values:

- Yellow--The primary side of the datum plane which is the default direction of the arrow.
- Red--The secondary side of the datum plane which is the direction opposite to that of the arrow.

�❍ Offset--The mate or align offset value from the reference.
�❍ Attributes--Constraint attributes for a given constraint
�❍ UserDefinedData--A string that specifies user data for the given constraint.

Use the properties listed above to access the parameters of the component constraint object.

Redefining and Rerouting Assembly Components

These functions enable you to reroute previously assembled components, just as in an interactive Pro/
ENGINEER session.

Methods Introduced:

● IpfcComponentFeat.RedefineThroughUI()

● IpfcComponentFeat.MoveThroughUI()

The method IpfcComponentFeat.RedefineThroughUI() must be used in interactive VB applications. This
method displays the Pro/ENGINEER Constraint dialog box. This enables the end user to redefine the constraints
interactively. The control returns to the VB API application when the user selects OK or Cancel and the dialog
box is closed.

The method IpfcComponentFeat.MoveThroughUI() invokes a dialog box that prompts the user to interactively
reposition the components. This interface enables the user to specify the translation and rotation values. The
control returns to the VB API application when the user selects OK or Cancel and the dialog box is closed.

Example: Component Constraints

This function displays each constraint of the component visually on the screen, and includes a text explanation
for each constraint.

 Public Sub highlightConstraints(ByRef session As IpfcBaseSession)

 Dim model As IpfcModel
 Dim assembly As IpfcAssembly
 Dim options As IpfcSelectionOptions
 Dim selections As IpfcSelections
 Dim item As IpfcModelItem

 Dim feature As IpfcFeature
 Dim asmComp As IpfcComponentFeat
 Dim compConstraints As CpfcComponentConstraints
 Dim i As Integer
 Dim compConstraint As IpfcComponentConstraint
 Dim asmReference As IpfcSelection
 Dim compReference As IpfcSelection
 Dim offset As String
 Dim constraintType As String

 Try
 '==
'Get the current assembly
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If (Not model.Type = EpfcModelType.EpfcMDL_ASSEMBLY) Then
 Throw New Exception("Model is not an assembly")
 End If
 assembly = CType(model, IpfcAssembly)
'==
'Get constraints for the component
'==
 options = (New CCpfcSelectionOptions).Create("membfeat")
 options.MaxNumSels = 1

 selections = session.Select(options, Nothing)
 If selections Is Nothing OrElse selections.Count = 0 Then
 Throw New Exception("Nothing Selected")
 End If

 item = selections.Item(0).SelItem
 feature = CType(item, IpfcFeature)

 If Not feature.FeatType = EpfcFeatureType.EpfcFEATTYPE_COMPONENT Then
 Throw New Exception("Component not Selected")
 End If

 asmComp = CType(item, IpfcComponentFeat)
 compConstraints = asmComp.GetConstraints()
 If compConstraints Is Nothing OrElse compConstraints.Count = 0 Then
 Throw New Exception("No Constraints to display")
 End If
'==
'Loop through all the constraints
'==
 For i = 0 To compConstraints.Count - 1

 compConstraint = compConstraints.Item(i)
'==
'Highlight the assembly reference geometry
'==
 asmReference = compConstraint.AssemblyReference
 If Not asmReference Is Nothing Then

 asmReference.Highlight(EpfcStdColor.EpfcCOLOR_ERROR)
 End If
'==
'Highlight the component reference geometry
'==
 compReference = compConstraint.ComponentReference
 If Not asmReference Is Nothing Then
 compReference.Highlight(EpfcStdColor.EpfcCOLOR_WARNING)
 End If
'==
'Prepare and display the message text
'==
 offset = ""
 If Not compConstraint.Offset Is Nothing Then
 offset = ", offset of " + compConstraint.Offset.ToString
 End If
 constraintType = constraintTypeToString(compConstraint.Type)
 MsgBox("Showing constraint " + (i + 1).ToString + " of " + _
 compConstraints.Count.ToString + Chr(13).ToString + _
 constraintType + offset)
'==
'Clean up the UI for the next constraint
'==
 If Not asmReference Is Nothing Then
 asmReference.UnHighlight()
 End If

 If Not asmReference Is Nothing Then
 compReference.UnHighlight()
 End If
 Next

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try

 End Sub
'==
'Function : constraintTypeToString
'Purpose : This function converts constraint type to string.
'==
 Private Function constraintTypeToString(ByVal type As Integer) As String

 Select Case (type)
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_MATE
 Return ("(Mate)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_MATE_OFF
 Return ("(Mate Offset)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_ALIGN
 Return ("(Align)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_ALIGN_OFF
 Return ("(Align Offset)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_INSERT
 Return ("(Insert)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_ORIENT

 Return ("(Orient)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_CSYS
 Return ("(Csys)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_TANGENT
 Return ("(Tangent)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_PNT_ON_SRF
 Return ("(Point on Surf)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_EDGE_ON_SRF
 Return ("(Edge on Surf)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_DEF_PLACEMENT
 Return ("(Default)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_SUBSTITUTE
 Return ("(Substitute)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_PNT_ON_LINE
 Return ("(Point on Line)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_FIX
 Return ("(Fix)")
 Case EpfcComponentConstraintType.EpfcASM_CONSTRAINT_AUTO
 Return ("(Auto)")
 End Select
 Return ("Unrecognized Type")
End Function

 Example: Assembling Components

The following example demonstrates how to assemble a component into an assembly, and how to constrain the
component by aligning datum planes. If the complete set of datum planes is not found, the function will show the
component constraint dialog to the user to allow them to adjust the placement.

 Public Sub assembleByDatums(ByRef session As IpfcBaseSession, _
 ByVal componentFileName As String, _
 ByVal assemblyDatums() As String, _
 ByVal componentDatums() As String)

 Dim model As IpfcModel
 Dim assembly As IpfcAssembly
 Dim modelDesc As IpfcModelDescriptor
 Dim componentModel As IpfcSolid
 Dim asmcomp As IpfcComponentFeat
 Dim constraints As IpfcComponentConstraints
 Dim i As Integer
 Dim asmItem As IpfcModelItem
 Dim compItem As IpfcModelItem
 Dim ids As Cintseq
 Dim path As IpfcComponentPath
 Dim asmSelect As IpfcSelection
 Dim compSelect As IpfcSelection
 Dim constraint As IpfcComponentConstraint
 Dim errorCount As Integer

 Try
'==
'Get the current assembly and new component
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If (Not model.Type = EpfcModelType.EpfcMDL_ASSEMBLY) Then
 Throw New Exception("Model is not an assembly")
 End If
 assembly = CType(model, IpfcAssembly)

 modelDesc = (New CCpfcModelDescriptor).CreateFromFileName(componentFileName)
 componentModel = session.GetModelFromDescr(modelDesc)
 If componentModel Is Nothing Then
 componentModel = session.RetrieveModel(modelDesc)
 End If
'==
'Package the component initially
'==
 asmcomp = assembly.AssembleComponent(componentModel,
 nothing)
'==
'Prepare the constraints array
'==
 errorCount = 0
 constraints = New CpfcComponentConstraints
 For i = 0 To 2
'==
'Find the assembly datum
'==
 asmItem = assembly.GetItemByName(EpfcModelItemType.EpfcITEM_SURFACE,
 _assemblyDatums(i))
 If asmItem Is Nothing Then
 errorCount = errorCount + 1
 Continue For
 End If
'==
'Find the component datum
'==
 compItem = componentModel.GetItemByName(EpfcModelItemType.
EpfcITEM_SURFACE,
 _componentDatums(i))

 If compItem Is Nothing Then
 errorCount = errorCount + 1
 Continue For
 End If
'==
'For the assembly reference, initialize a component path.
'This is necessary even if the reference geometry is in the assembly
'==
 ids = New Cintseq
 path = (New CMpfcAssembly).CreateComponentPath(assembly,
 ids)

'==
'Allocate the references
'==
 asmSelect = (New CMpfcSelect).CreateModelItemSelection(asmItem, path)
 compSelect = (New CMpfcSelect).CreateModelItemSelection(compItem, Nothing)
'==
'Allocate and fill the constraint
'==
 constraint = (New CCpfcComponentConstraint).Create _
 (EpfcComponentConstraintType.EpfcASM_CONSTRAINT_ALIGN)
 constraint.AssemblyReference = asmSelect
 constraint.ComponentReference = compSelect
 constraints.Insert(constraints.Count, constraint)

 Next
'==
'Set the assembly component constraints and regenerate the assembly if
'atleast one constraint has been defined properly
'==
 If errorCount < 2 Then
 asmcomp.SetConstraints(constraints, Nothing)
 assembly.Regenerate(Nothing)
 session.GetModelWindow(assembly).Repaint()
 End If
'==
'If any of the expect datums was not found, prompt the user to constrain
'the new component
'==
 If errorCount > 0 Then
 MsgBox("Unable to locate all required datum references." +
 _
 "New component is packaged")
 asmcomp.RedefineThroughUI()
 End If

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try
 End Sub

Exploded Assemblies

These methods enable you to determine and change the explode status of the assembly object.

Methods and Properties Introduced:

● IpfcAssembly.IsExploded

● IpfcAssembly.Explode()

● IpfcAssembly.UnExplode()

● IpfcAssembly.GetActiveExplodedState()

● IpfcAssembly.GetDefaultExplodedState()

● IpfcExplodedState.Activate()

The methods IpfcAssembly.Explode() and IpfcAssembly.UnExplode() enable you to determine and change the
explode status of the assembly object.

The property IpfcAssembly.IsExploded reports whether the specified assembly is currently exploded.

The method IpfcAssembly.GetActiveExplodedState() returns the current active explode state.

The method IpfcAssembly.GetDefaultExplodedState() returns the default explode state.

The method IpfcExplodedState.Activate() activates the specified explode state representation.

Skeleton Models

Skeleton models are a 3-dimensional layout of the assembly. These models are holders or distributors of critical
design information, and can represent space requirements, important mounting locations, and motion.

Methods and Properties Introduced:

● IpfcAssembly.AssembleSkeleton()

● IpfcAssembly.AssembleSkeletonByCopy()

● IpfcAssembly.GetSkeleton()

● IpfcAssembly.DeleteSkeleton()

● IpfcSolid.IsSkeleton

The method IpfcAssembly.AssembleSkeleton() adds an existing skeleton model to the specified assembly.

The method IpfcAssembly.GetSkeleton() returns the skeleton model of the specified assembly.

The method IpfcAssembly.DeleteSkeleton() deletes a skeleton model component from the specified assembly.

The method IpfcAssembly.AssembleSkeletonByCopy() adds a specified skeleton model to the assembly. The
input parameters for this method are:

�❍ SkeletonToCopy--Specify the skeleton model to be copied into the assembly
�❍ NewSkeletonName--Specify a name for the copied skeleton model

The property IpfcSolid.IsSkeleton determines if the specified part model is a skeleton model or a concept
model. It returns a true if the model is a skeleton else it returns a false.

Family Tables

This section describes how to use the VB API classes and methods to access and manipulate family table
information.

Topic

Working with Family Tables
Creating Family Table Instances
Creating Family Table Columns

Working with Family Tables

The VB API provides several methods for accessing family table information. Because every model
inherits from the interface IpfcFamilyMember, every model can have a family table associated with it.

Accessing Instances

Methods and Properties Introduced:

● IpfcFamilyMember.Parent

● IpfcFamilyMember.GetImmediateGenericInfo()

● IpfcFamilyMember.GetTopGenericInfo()

● IpfcFamilyTableRow.CreateInstance()

● IpfcFamilyMember.ListRows()

● IpfcFamilyMember.GetRow()

● IpfcFamilyMember.RemoveRow()

● IpfcFamilyTableRow.InstanceName

● IpfcFamilyTableRow.IsLocked

To get the generic model for an instance, call the property IpfcFamilyMember.Parent.

From Pro/ENGINEER Wildfire 4.0 onwards, the behavior of the property IpfcFamilyMember.Parent
has changed as a result of performance improvement in family table retrieval mechanism. When you now
call the property pfcFamily.FamilyMember.GetParent, it throws an exception

IpfcXToolkitCantOpen, if the immediate generic of a model instance in a nested family table is
currently not in session. Handle this exception and use the method IpfcFamilyMember.
GetImmediateGenericInfo() to get the model descriptor of the immediate generic model. This
information can be used to retrieve the immediate generic model.

If you wish to switch off the above behavior and continue to run legacy applications in the pre-Wildfire
4.0 mode, set the configuration option retrieve_instance_dependencies to
"instance_and_generic_deps".

To get the model descriptor of the top generic model, call the method IpfcFamilyMember.
GetTopGenericInfo().

Similarly, the method IpfcFamilyTableRow.CreateInstance() returns an instance model created from
the information stored in the IpfcFamilyTableRow object.

The method IpfcFamilyMember.ListRows() returns a sequence of all rows in the family table, whereas
IpfcFamilyMember.GetRow() gets the row object with the name you specify.

Use the method IpfcFamilyMember.RemoveRow() to permanently delete the row from the family table.

The property IpfcFamilyTableRow.InstanceName returns the name that corresponds to the invoking
row object.

To control whether the instance can be changed or removed, call the property IpfcFamilyTableRow.
IsLocked.

Accessing Columns

Methods and Properties Introduced:

● IpfcFamilyMember.ListColumns()

● IpfcFamilyMember.GetColumn()

● IpfcFamilyMember.RemoveColumn()

● IpfcFamilyTableColumn.Symbol

● IpfcFamilyTableColumn.Type

● IpfcFamColModelItem.RefItem

● IpfcFamColParam.RefParam

The method IpfcFamilyMember.ListColumns() returns a sequence of all columns in the family table.

The method IpfcFamilyMember.GetColumn() returns a family table column, given its symbolic name.

To permanently delete the column from the family table and all changed values in all instances, call the

method IpfcFamilyMember.RemoveColumn().

The property IpfcFamilyTableColumn.Symbol returns the string symbol at the top of the column, such
as D4 or F5.

The property IpfcFamilyTableColumn.Type returns an enumerated value indicating the type of
parameter governed by the column in the family table.

The property IpfcFamColModelItem.RefItem returns the IModelItem (Feature or Dimension)
controlled by the column, whereas IpfcFamColParam.RefParam returns the Parameter controlled by
the column.

Accessing Cell Information

Methods and Properties Introduced:

● IpfcFamilyMember.GetCell()

● IpfcFamilyMember.GetCellIsDefault()

● IpfcFamilyMember.SetCell()

● IpfcParamValue.StringValue

● IpfcParamValue.IntValue

● IpfcParamValue.DoubleValue

● IpfcParamValue.BoolValue

The method IpfcFamilyMember.GetCell() returns a string IParamValue that corresponds to the cell at
the intersection of the row and column arguments. Use the method IpfcFamilyMember.GetCellIsDefault
() to check if the value of the specified cell is the default value, which is the value of the specified cell in
the generic model.

The method IpfcFamilyMember.SetCell() assigns a value to a column in a particular family table
instance.

The IpfcParamValue.StringValue, IpfcParamValue.IntValue, IpfcParamValue.DoubleValue, and
IpfcParamValue.BoolValue properties are used to get the different types of parameter values.

Creating Family Table Instances

Methods Introduced:

● IpfcFamilyMember.AddRow()

● CMpfcModelItem.CreateStringParamValue()

● CMpfcModelItem.CreateIntParamValue()

● CMpfcModelItem.CreateDoubleParamValue()

● CMpfcModelItem.CreateBoolParamValue()

Use the method IpfcFamilyMember.AddRow() to create a new instance with the specified name, and,
optionally, the specified values for each column. If you do not pass in a set of values, the value "*" will be
assigned to each column. This value indicates that the instance uses the generic value.

Creating Family Table Columns

Methods Introduced:

● IpfcFamilyMember.CreateDimensionColumn()

● IpfcFamilyMember.CreateParamColumn()

● IpfcFamilyMember.CreateFeatureColumn()

● IpfcFamilyMember.CreateComponentColumn()

● IpfcFamilyMember.CreateCompModelColumn()

● IpfcFamilyMember.CreateGroupColumn()

● IpfcFamilyMember.CreateMergePartColumn()

● IpfcFamilyMember.CreateColumn()

● IpfcFamilyMember.AddColumn()

● CMpfcModelItem.CreateStringParamValue()

The above methods initialize a column based on the input argument. These methods assign the proper
symbol to the column header.

The method IpfcFamilyMember.CreateColumn() creates a new column given a properly defined
symbol and column type. The results of this call should be passed to the method IpfcFamilyMember.
AddColumn() to add the column to the model's family table.

The method IpfcFamilyMember.AddColumn() adds the column to the family table. You can specify the
values; if you pass nothing for the values, the method assigns the value "*" to each instance to accept the
column's default value.

Example Code: Adding Dimensions to a Family Table

This function adds all the dimensions to a family table. The program lists the dependencies of the
assembly and loops through each dependency, assigning the model to a new FamColDimension column
object. All the dimensions, parameters, features, and components could be added to the family table using
a similar method.

Imports pfcls
Public Class pfcFamilyTablesExamples

 Public Sub addHoleDiameterColumns(ByRef session As IpfcBaseSession)

 Dim model As IpfcModel
 Dim solid As IpfcSolid
 Dim holeFeatures As IpfcFeatures
 Dim holeFeature As IpfcFeature
 Dim dimensions As IpfcModelItems
 Dim dimension As IpfcDimension
 Dim dimensionColumn As IpfcFamColDimension
 Dim i, j As Integer

 Try
 '==
 'Get the current assembly and new component
 '==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
 If (Not model.Type = EpfcModelType.EpfcMDL_PART) And _
 (Not model.Type = EpfcModelType.EpfcMDL_ASSEMBLY) Then
 Throw New Exception("Model is not a solid")
 End If
 solid = CType(model, IpfcSolid)

 '==
 'List all holes in the solid model
 '==
 holeFeatures = solid.ListFeaturesByType _
 (True, EpfcFeatureType.EpfcFEATTYPE_HOLE)

 For i = 0 To holeFeatures.Count - 1
 holeFeature = holeFeatures.Item(i)

 '==
 'List all dimensions in the feature
 '==
 dimensions = holeFeature.ListSubItems _
 (EpfcModelItemType.EpfcITEM_DIMENSION)

 For j = 0 To dimensions.Count - 1

 dimension = dimensions.Item(j)

 '==
 'Determine if dimension is diameter type
 '==
 If dimension.DimType = EpfcDimensionType.EpfcDIM_DIAMETER Then
 '==
 'Create family table column
 '==
 dimensionColumn = solid.CreateDimensionColumn(dimension)

 '==
 'Add the column to the Solid.
 'Instead of null, any array of ParamValues can be passed
 'for the initial column values
 '==
 solid.AddColumn(dimensionColumn, Nothing)

 End If

 Next
 Next

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Exit Sub
 End Try
 End Sub

End Class

Action Listeners

This section describes the VB API methods that enable you to use action listeners.

Topic

The VB API Action Listeners
Action Sources
Types of Action Listeners
Cancelling an ActionListener Operation

The VB API Action Listeners

An ActionListener is a class that is assigned to respond to certain events. In the
VB API, you can assign action listeners to respond to events involving the
following tasks:

�❍ Changing windows
�❍ Changing working directories
�❍ Model operations
�❍ Regenerating
�❍ Creating, deleting, and redefining features
�❍ Checking for regeneration failures

All action listeners in the VB API are defined by these classes:

�❍ Interface--Named <Object>ActionListener. This interface defines the methods that
can respond to various events.

�❍ Default class--Named Default<Object>ActionListener. This class has every
available method overridden by an empty implementation. You create your own
action listeners by extending the default class and overriding the methods for
events that interest you.

Action Sources

Methods introduced:

● IpfcActionSource.AddActionListener()

● IpfcActionSource.RemoveActionListener()

Many VB API classes inherit the IpfcActionSource interface, but only the
following classes currently make calls to the methods of registered
IpfcActionListeners:

�❍ IpfcSession
- Session Action Listener
- Model Action Listener
- Solid Action Listener
- Model Event Action Listener
- Feature Action Listener

�❍ IpfcUICommand
- UI Action Listener

�❍ IpfcModel (and it's subclasses)
- Model Action Listener
- Parameter Action Listener

�❍ IpfcSolid (and it's subclasses)
- Solid Action Listener
- Feature Action Listener

�❍ IpfcFeature (and it's subclasses)
- Feature Action Listener

Note:
Assigning an action listener to a source not related to it will not cause an
error but the listener method will never be called.

Types of Action Listeners

The following sections describe the different kinds of action listeners: session, UI
command, solid, and feature.

Session Level Action Listeners

Methods introduced:

● IpfcSessionActionListener.OnAfterDirectoryChange()

● IpfcSessionActionListener.OnAfterWindowChange()

● IpfcSessionActionListener.OnAfterModelDisplay()

● IpfcSessionActionListener.OnBeforeModelErase()

● IpfcSessionActionListener.OnBeforeModelDelete()

● IpfcSessionActionListener.OnBeforeModelRename()

● IpfcSessionActionListener.OnBeforeModelSave()

● IpfcSessionActionListener.OnBeforeModelPurge()

● IpfcSessionActionListener.OnBeforeModelCopy()

● IpfcSessionActionListener.OnAfterModelPurge()

The IpfcSessionActionListener.OnAfterDirectoryChange() method activates
after the user changes the working directory. This method takes the new directory
path as an argument.

The IpfcSessionActionListener.OnAfterWindowChange() method activates
when the user activates a window other than the current one. Pass the new window
to the method as an argument.

The IpfcSessionActionListener.OnAfterModelDisplay() method activates every
time a model is displayed in a window.

Note:
Model display events happen when windows are moved, opened and closed,
repainted, or the model is regenerated. The event can occur more than once
in succession.

The methods pfcSession.SessionActionListener.OnBeforeModelErase,
pfcSession.SessionActionListener.OnBeforeModelRename, pfcSession.
SessionActionListener.OnBeforeModelSave, and IpfcSessionActionListener.
OnBeforeModelCopy() take special arguments. They are designed to allow you to
fill in the arguments and pass this data back to Pro/ENGINEER. The model names

placed in the descriptors will be used by Pro/ENGINEER as the default names in
the user interface.

UI Command Action Listeners

Methods introduced:

● IpfcSession.UICreateCommand()

● IpfcUICommandActionListener.OnCommand()

The IpfcSession.UICreateCommand() method takes a
IpfcUICommandActionListener argument and returns a IpfcUICommand
action source with that action listener already registered. This UICommand object is
subsequently passed as an argument to the Session.AddUIButton method that adds
a command button to a Pro/ENGINEER menu. The
IpfcUICommandActionListener.OnCommand() method of the registered
IpfcUICommandActionListener is called whenever the command button is
clicked.

Model Level Action listeners

Methods introduced:

● IpfcModelActionListener.OnAfterModelSave()

● IpfcModelEventActionListener.OnAfterModelCopy()

● IpfcModelEventActionListener.OnAfterModelRename()

● IpfcModelEventActionListener.OnAfterModelErase()

● IpfcModelEventActionListener.OnAfterModelDelete()

● IpfcModelActionListener.OnAfterModelRetrieve()

● IpfcModelActionListener.OnBeforeModelDisplay()

● IpfcModelActionListener.OnAfterModelCreate()

● IpfcModelActionListener.OnAfterModelSaveAll()

● IpfcModelEventActionListener.OnAfterModelCopyAll()

● IpfcModelActionListener.OnAfterModelEraseAll()

● IpfcModelActionListener.OnAfterModelDeleteAll()

● IpfcModelActionListener.OnAfterModelRetrieveAll()

Methods ending in All are called after any event of the specified type. The call is
made even if the user did not explicitly request that the action take place. Methods
that do not end in All are only called when the user specifically requests that the
event occurs.

The method IpfcModelActionListener.OnAfterModelSave() is called after
successfully saving a model.

The method IpfcModelEventActionListener.OnAfterModelCopy() is called after
successfully copying a model.

The method IpfcModelEventActionListener.OnAfterModelRename() is called
after successfully renaming a model.

The method IpfcModelEventActionListener.OnAfterModelErase() is called
after successfully erasing a model.

The method IpfcModelEventActionListener.OnAfterModelDelete() is called
after successfully deleting a model.

The method IpfcModelActionListener.OnAfterModelRetrieve() is called after
successfully retrieving a model.

The method IpfcModelActionListener.OnBeforeModelDisplay() is called before
displaying a model.

The method IpfcModelActionListener.OnAfterModelCreate() is called after the
successful creation of a model.

Solid Level Action Listeners

Methods introduced:

● IpfcSolidActionListener.OnBeforeRegen()

● IpfcSolidActionListener.OnAfterRegen()

● IpfcSolidActionListener.OnBeforeUnitConvert()

● IpfcSolidActionListener.OnAfterUnitConvert()

● IpfcSolidActionListener.OnBeforeFeatureCreate()

● IpfcSolidActionListener.OnAfterFeatureCreate()

● IpfcSolidActionListener.OnAfterFeatureDelete()

The IpfcSolidActionListener.OnBeforeRegen() and IpfcSolidActionListener.
OnAfterRegen() methods occur when the user regenerates a solid object within the
IpfcActionSource to which the listener is assigned. These methods take the first
feature to be regenerated and a handle to the IpfcSolid object as arguments. In
addition, the method pfcSolid.SolidActionListener.OnAfterRegenerate includes
a Boolean argument that indicates whether regeneration was successful.

Note:

- It is not recommended to modify geometry or dimensions using the pfcSolid.
SolidActionListener.OnBeforeRegenerate method call.
- A regeneration that did not take place because nothing was modified is identified
as a regeneration failure.

The IpfcSolidActionListener.OnBeforeUnitConvert() and
IpfcSolidActionListener.OnAfterUnitConvert() methods activate when a user
modifies the unit scheme (by selecting the Pro/ENGINEER command Set Up,
Units). The methods receive the Solid object to be converted and a Boolean flag
that identifies whether the conversion changed the dimension values to keep the
object the same size.

Note:

IpfcSolidActionListeners can be registered with the session object so that its
methods are called when these events occur for any solid model that is in
session.

The IpfcSolidActionListener.OnBeforeFeatureCreate() method activates when
the user starts to create a feature that requires the Feature Creation dialog box.
Because this event occurs only after the dialog box is displayed, it will not occur at
all for datums and other features that do not use this dialog box. This method takes
two arguments: the solid model that will contain the feature and the
IpfcModelItem identifier.

The IpfcSolidActionListener.OnAfterFeatureCreate() method activates after any
feature, including datums, has been created. This method takes the new
IpfcFeature object as an argument.

The IpfcSolidActionListener.OnAfterFeatureDelete() method activates after any
feature has been deleted. The method receives the solid that contained the feature
and the (now defunct) IpfcModelItem identifier.

Feature Level Action Listeners

Methods introduced:

● IpfcFeatureActionListener.OnBeforeDelete()

● IpfcFeatureActionListener.OnBeforeSuppress()

● IpfcFeatureActionListener.OnAfterSuppress()

● IpfcFeatureActionListener.OnBeforeRegen()

● IpfcFeatureActionListener.OnAfterRegen()

● IpfcFeatureActionListener.OnRegenFailure()

● IpfcFeatureActionListener.OnBeforeRedefine()

● IpfcFeatureActionListener.OnAfterCopy()

● IpfcFeatureActionListener.OnBeforeParameterDelete()

Each method in IpfcFeatureActionListener takes as an argument the feature
that triggered the event.

IpfcFeatureActionListeners can be registered with the Session object so that
the action listener's methods are called whenever these events occur for any feature
that is in session or with a solid model to react to changes only in that model.

The method IpfcFeatureActionListener.OnBeforeDelete() is called before a
feature is deleted.

The method IpfcFeatureActionListener.OnBeforeSuppress() is called before a
feature is suppressed.

The method IpfcFeatureActionListener.OnAfterSuppress() is called after a
successful feature suppression.

The method IpfcFeatureActionListener.OnBeforeRegen() is called before a
feature is regenerated.

The method IpfcFeatureActionListener.OnAfterRegen() is called after a
successful feature regeneration.

The method IpfcFeatureActionListener.OnRegenFailure() is called when a
feature fails regeneration.

The method IpfcFeatureActionListener.OnBeforeRedefine() is called before a
feature is redefined.

The method IpfcFeatureActionListener.OnAfterCopy() is called after a feature
has been successfully copied.

The method IpfcFeatureActionListener.OnBeforeParameterDelete() is called
before a feature parameter is deleted.

Cancelling an ActionListener Operation

The VB API allows you to cancel certain notification events, registered by the
action listeners.

Methods Introduced:

● CCpfcXCancelProEAction.Throw()

The static method CCpfcXCancelProEAction.Throw() must be called from the
body of an action listener to cancel the impending Pro/ENGINEER operation.This
method will throw a The VB API exception signalling to Pro/ENGINEER to cancel
the listener event.

Note: Your application should not catch the The VB API exception, or should
rethrow it if caught, so that Pro/ENGINEER is forced to handle it.

The following events can be cancelled using this technique:

�❍ IpfcSessionActionListener.OnBeforeModelErase()
�❍ IpfcSessionActionListener.OnBeforeModelDelete()
�❍ IpfcSessionActionListener.OnBeforeModelRename()
�❍ IpfcSessionActionListener.OnBeforeModelSave()
�❍ IpfcSessionActionListener.OnBeforeModelPurge()
�❍ IpfcSessionActionListener.OnBeforeModelCopy()
�❍ IpfcModelActionListener.OnBeforeParameterCreate()
�❍ IpfcModelActionListener.OnBeforeParameterDelete()
�❍ IpfcModelActionListener.OnBeforeParameterModify()
�❍ IpfcFeatureActionListener.OnBeforeDelete()
�❍ IpfcFeatureActionListener.OnBeforeSuppress()
�❍ IpfcFeatureActionListener.OnBeforeParameterDelete()
�❍ IpfcFeatureActionListener.OnBeforeParameterCreate()
�❍ IpfcFeatureActionListener.OnBeforeRedefine()

Interface

This section describes various methods of importing and exporting files in the VB API.

Topic

Exporting Files and 2D Models
Exporting to PDF and U3D
Exporting 3D Geometry
Shrinkwrap Export
Importing Files
Importing 3D Geometry
Plotting Files
Printing Files
Solid Operations
Window Operations

Exporting Files and 2D Models

Method Introduced:

● IpfcModel.Export()

The method IpfcModel.Export() exports model data to a file. The exported files are placed in the current Pro/
ENGINEER working directory. The input parameters are:

�❍ filename--Output file name including extensions
�❍ exportdata--The pfcModel.ExportInstructions object that controls the export operation. The type of data that is

exported is given by the pfcModel.ExportType object.

There are four general categories of files to which you can export models:

�❍ File types whose instructions inherit from IpfcGeomExportInstructions.

These instructions export files that contain precise geometric information used by other CAD systems.
�❍ File types whose instructions inherit from IpfcCoordSysExportInstructions.

These instructions export files that contain coordinate information describing faceted, solid models (without datums
and surfaces).

�❍ File types whose instructions inherit from IpfcFeatIdExportInstructions.

These instructions export information about a specific feature.
�❍ General file types that inherit only from IpfcExportInstructions.

These instructions provide conversions to file types such as BOM (bill of materials).

For information on exporting to a specific format, see the VB API APIWizard and online help for the Pro/
ENGINEER interface.

Export Instructions

Methods Introduced:

● CCpfcRelationExportInstructions.Create()

● CCpfcModelInfoExportInstructions.Create()

● CCpfcProgramExportInstructions.Create()

● CCpfcIGESFileExportInstructions.Create()

● CCpfcDXFExportInstructions.Create()

● CCpfcRenderExportInstructions.Create()

● CCpfcSTLASCIIExportInstructions.Create()

● CCpfcSTLBinaryExportInstructions.Create()

● CCpfcBOMExportInstructions.Create()

● CCpfcDWGSetupExportInstructions.Create()

● CCpfcFeatInfoExportInstructions.Create()

● CCpfcMFGFeatCLExportInstructions.Create()

● CCpfcMFGOperCLExportInstructions.Create()

● CCpfcMaterialExportInstructions.Create()

● CCpfcCGMFILEExportInstructions.Create()

● CCpfcInventorExportInstructions.Create()

● CCpfcFIATExportInstructions.Create()

● CCpfcConnectorParamExportInstructions.Create()

● CCpfcCableParamsFileInstructions.Create()

● CCpfcCATIAFacetsExportInstructions.Create()

● CCpfcVRMLModelExportInstructions.Create()

● CCpfcSTEP2DExportInstructions.Create()

● CCpfcMedusaExportInstructions.Create()

● CCpfcCADDSExportInstructions.Create()

● CCpfcNEUTRALFileExportInstructions.Create()

● CCpfcProductViewExportInstructions.Create()

● IpfcBaseSession.ExportDirectVRML()

Export Instructions Table

Interface Used to Export

IpfcRelationExportInstructions A list of the relations and parameters in a part or assembly

IpfcModelInfoExportInstructions Information about a model, including units information, features, and children

IpfcProgramExportInstructions A program file for a part or assembly that can be edited to change the model

IpfcIGESExportInstructions A drawing in IGES format

IpfcDXFExportInstructions A drawing in DXF format

IpfcRenderExportInstructions A part or assembly in RENDER format

IpfcSTLASCIIExportInstructions A part or assembly to an ASCII STL file

IpfcSTLBinaryExportInstructions A part or assembly in a binary STL file

IpfcBOMExportInstructions A BOM for an assembly

IpfcDWGSetupExportInstructions A drawing setup file

IpfcFeatInfoExportInstructions Information about one feature in a part or assembly

IpfcMfgFeatCLExportInstructions A cutter location (CL) file for one NC sequence in a manufacturing assembly

IpfcMfgOperClExportInstructions A cutter location (CL) file for all the NC sequences in a manufacturing
assembly

IpfcMaterialExportInstructions A material from a part

IpfcCGMFILEExportInstructions A drawing in CGM format

IpfcInventorExportInstructions A part or assembly in Inventor format

IpfcFIATExportInstructions A part or assembly in FIAT format

IpfcConnectorParamExportInstructions The parameters of a connector to a text file

IpfcCableParamsFileInstructions Cable parameters from an assembly

IpfcCATIAFacetsExportInstructions A part or assembly in CATIA format (as a faceted model)

IpfcVRMLModelExportInstructions A part or assembly in VRML format

IpfcSTEP2DExportInstructions A two-dimensional STEP format file

IpfcMedusaExportInstructions A drawing in MEDUSA file

IpfcCADDSExportInstructions A CADDS5 solid model

IpfcNEUTRALFileExportInstructions A Pro/ENGINEER part to neutral format

IpfcProductViewExportInstructions A part, assembly, or drawing in ProductView format

Note:
The New Instruction Classes replace the following Deprecated Classes:

Deprecated Classes New Instruction Classes

IpfcIGES3DExportInstructions IpfcIGES3DNewExportInstructions

IpfcSTEPExportInstructions IpfcSTEP3DExportInstructions

IpfcVDAExportInstructions IpfcVDA3DExportInstructions

IpfcSETExportInstructions IpfcSET3DExportInstructions

IpfcCATIAExportInstructions IpfcCATIA3DExportInstructions

Exporting Drawing Sheets

The options required to export multiple sheets of a drawing are given by the IpfcExport2DOption object.

Methods and Properties Introduced:

● CCpfcExport2DOption.Create()

● IpfcExport2DOption.ExportSheetOption

● IpfcExport2DOption.ModelSpaceSheet

● IpfcExport2DOption.Sheets

The method pfcModel.pfcModel.Export2DOptions_Create creates a new instance of the IpfcExport2DOption
object. This object contains the following options:

�❍ ExportSheetOption--Specifies the option for exporting multiple drawing sheets. Use the property
IpfcExport2DOption.ExportSheetOption to set the option for exporting multiple drawing sheets. The options are
given by the EpfcExport2DSheetOption class and can be of the following types:

- EpfcEXPORT_CURRENT_TO_MODEL_SPACE--Exports only the drawing's current sheet as model
space to a single file. This is the default type.
- EpfcEXPORT_CURRENT_TO_PAPER_SPACE--Exports only the drawing's current sheet as paper space
to a single file. This type is the same as EpfcEXPORT_CURRENT_TO_MODEL_SPACE for formats that
do not support the concept of model space and paper space.
- EpfcEXPORT_ALL--Exports all the sheets in a drawing to a single file as paper space, if applicable for the
format type.
- EpfcEXPORT_SELECTED--Exports selected sheets in a drawing as paper space and one sheet as model
space.

�❍ ModelSpaceSheet--Specifies the sheet number that needs be exported as model space. This option is applicable only
if the export formats support the concept of model space and paper space and if ExportSheetOption is set to
EpfcEXPORT_SELECTED. Use the property IpfcExport2DOption.ModelSpaceSheet to set this option.

�❍ Sheets--Specifies the sheet numbers that need to be exported as paper space. This option is applicable only if
ExportSheetOption is set to EpfcEXPORT_SELECTED. Use the property IpfcExport2DOption.Sheets to set this
option.

Exporting to PDF and U3D

The methods and properties described in this section support the export of Pro/ENGINEER drawings and solid
models to Portable Document Format (PDF) and U3D format. You can export a drawing or a 2D model as a 2D
raster image embedded in a PDF file. You can export Pro/ENGINEER solid models in the following ways:

�❍ As a U3D model embedded in a one-page PDF file
�❍ As 2D raster images embedded in the pages of a PDF file representing saved views
�❍ As a standalone U3D file

While exporting multiple sheets of a Pro/ENGINEER drawing to a PDF file, you can choose to export all sheets, the
current sheet, or selected sheets.

These methods also allow you to insert a variety of non-geometric information to improve document content,
navigation, and search.

Methods and Properties Introduced:

● CCpfcPDFExportInstructions.Create()

● IpfcPDFExportInstructions.FilePath

● IpfcPDFExportInstructions.Options

● CCpfcPDFOption.Create()

● IpfcPDFOption.OptionType

● IpfcPDFOption.OptionValue

The method CCpfcPDFExportInstructions.Create() creates a new instance of the
IpfcPDFExportInstructions data object that describes how to export Pro/ENGINEER drawings or solid models
to the PDF and U3D formats. The options in this object are described as follows:

�❍ FilePath--Specifies the name of the output file. Use the property IpfcPDFExportInstructions.FilePath to set the name
of the output file.

�❍ Options--Specifies a collection of PDF export options of the type IpfcPDFOption. Create a new instance of this
object using the method pfcExport.pfcExport.PDFOption_Create. This object contains the following attributes:

- OptionType--Specifies the type of option in terms of the EpfcPDFOptionType enumerated class. Set this
option using the property pfcExport.PDFOption.SetOptionType.
- OptionValue--Specifies the value of the option in terms of the IpfcArgValue object. Set this option using
the property pfcExport.PDFOption.SetOptionValue.

Use the property IpfcPDFExportInstructions.Options to set the collection of PDF export options.

The types of options (given by the EpfcPDFOptionType enumerated class) available for export to PDF and U3D
formats are described as follows:

�❍ EpfcPDFOPT_FONT_STROKE--Allows you to switch between using TrueType fonts or "stroking" text in the
resulting document. This option is given by the EpfcPDFFontStrokeMode enumerated class and takes the following
values:

- EpfcPDF_USE_TRUE_TYPE_FONTS--Specifies TrueType fonts. This is the default type.
- EpfcPDF_STROKE_ALL_FONTS--Specifies the option to stroke all fonts.

�❍ EpfcPDFOPT_COLOR_DEPTH--Allows you to choose between color, grayscale, or monochrome output. This
option is given by the EpfcPDFColorDepth enumerated class and takes the following values:

- EpfcPDF_CD_COLOR--Specifies color output. This is the default value.
- EpfcPDF_CD_GRAY--Specifies grayscale output.
- EpfcPDF_CD_MONO--Specifies monochrome output.

�❍ EpfcPDFOPT_HIDDENLINE_MODE--Enables you to set the style for hidden lines in the resulting PDF document.
This option is given by the EpfcPDFHiddenLineMode enumerated class and takes the following values:

- EpfcPDF_HLM_SOLID--Specifies solid hidden lines.
- EpfcPDF_HLM_DASHED--Specifies dashed hidden lines. This is the default type.

�❍ EpfcPDFOPT_SEARCHABLE_TEXT--If true, stroked text is searchable. The default value is true.
�❍ EpfcPDFOPT_RASTER_DPI--Allows you to set the resolution for the output of any shaded views in DPI. It can

take a value between 100 and 600. The default value is 300.
�❍ EpfcPDFOPT_LAUNCH_VIEWER--If true, launches the Adobe Acrobat Reader. The default value is true.
�❍ EpfcPDFOPT_LAYER_MODE--Enables you to set the availability of layers in the document. It is given by the

EpfcPDFLayerMode enumerated class and takes the following values:
- EpfcPDF_LAYERS_ALL--Exports the visible layers and entities. This is the default.
- EpfcPDF_LAYERS_VISIBLE--Exports only visible layers in a drawing.
- EpfcPDF_LAYERS_NONE--Exports only the visible entities in the drawing, but not the layers on which
they are placed.

�❍ EpfcPDFOPT_PARAM_MODE--Enables you to set the availability of model parameters as searchable metadata in

the PDF document. It is given by the EpfcPDFParameterMode enumerated class and takes the following values:
- EpfcPDF_PARAMS_ALL--Exports the drawing and the model parameters to PDF. This is the default.
- EpfcPDF_PARAMS_DESIGNATED--Exports only the specified model parameters in the PDF metadata.
- EpfcPDF_PARAMS_NONE--Exports the drawing to PDF without the model parameters.

�❍ EpfcPDFOPT_HYPERLINKS--Sets hyperlinks to be exported as label text only or sets the underlying hyperlink
URLs as active. The default value is true, specifying that the hyperlinks are active.

�❍ EpfcPDFOPT_BOOKMARK_ZONES--If true, adds bookmarks to the PDF showing zoomed in regions or zones in
the drawing sheet. The zone on an A4-size drawing sheet is ignored.

�❍ EpfcPDFOPT_BOOKMARK_VIEWS--If true, adds bookmarks to the PDF document showing zoomed in views on
the drawing.

�❍ EpfcPDFOPT_BOOKMARK_SHEETS--If true, adds bookmarks to the PDF document showing each of the
drawing sheets.

�❍ EpfcPDFOPT_BOOKMARK_FLAG_NOTES--If true, adds bookmarks to the PDF document showing the text of
the flag note.

�❍ EpfcPDFOPT_TITLE--Specifies a title for the PDF document.
�❍ EpfcPDFOPT_AUTHOR--Specifies the name of the person generating the PDF document.
�❍ EpfcPDFOPT_SUBJECT--Specifies the subject of the PDF document.
�❍ EpfcPDFOPT_KEYWORDS--Specifies relevant keywords in the PDF document.
�❍ EpfcPDFOPT_PASSWORD_TO_OPEN--Sets a password to open the PDF document. By default, this option is

NULL, which means anyone can open the PDF document without a password.
�❍ EpfcPDFOPT_MASTER_PASSWORD--Sets a password to restrict or limit the operations that the viewer can

perform on the opened PDF document. By default, this option is NULL, which means you can make any changes to
the PDF document regardless of the settings of the modification flags EpfcPDFOPT_ALLOW_*.

�❍ EpfcPDFOPT_RESTRICT_OPERATIONS--If true, enables you to restrict or limit operations on the PDF
document. By default, is is false.

�❍ EpfcPDFOPT_ALLOW_MODE--Enables you to set the security settings for the PDF document. This option must
be set if EpfcPDFOPT_RESTRICT_OPERATIONS is set to true. It is given by the
EpfcPDFRestrictOperationsMode enumerated class and takes the following values:

- EpfcPDF_RESTRICT_NONE--Specifies that the user can perform any of the permitted viewer operations
on the PDF document. This is the default value.
- EpfcPDF_RESTRICT_FORMS_SIGNING--Restricts the user from adding digital signatures to the PDF
document.
- EpfcPDF_RESTRICT_INSERT_DELETE_ROTATE--Restricts the user from inserting, deleting, or
rotating the pages in the PDF document.
- EpfcPDF_RESTRICT_COMMENT_FORM_SIGNING--Restricts the user from adding or editing
comments in the PDF document.
- EpfcPDF_RESTRICT_EXTRACTING--Restricts the user from extracting pages from the PDF document.

�❍ EpfcPDFOPT_ALLOW_PRINTING--If true, allows you to print the PDF document. By default, it is true.
�❍ EpfcPDFOPT_ALLOW_PRINTING_MODE--Enables you to set the print resolution. It is given by the

EpfcPDFPrintingMode enumerated class and takes the following values:
- EpfcPDF_PRINTING_LOW_RES--Specifies low resolution for printing.
- EpfcPDF_PRINTING_HIGH_RES--Specifies high resolution for printing. This is the default value.

�❍ EpfcPDFOPT_ALLOW_COPYING--If true, allows you to copy content from the PDF document. By default, it is
true.

�❍ EpfcPDFOPT_ALLOW_ACCESSIBILITY--If true, enables visually-impaired screen reader devices to extract data
independent of the value given by the EpfcPDFRestrictOperationsMode enumerated class. The default value is true.

�❍ EpfcPDFOPT_PENTABLE--If true, uses the standard Pro/ENGINEER pentable to control the line weight, line
style, and line color of the exported geometry. The default value is false.

�❍ EpfcPDFOPT_LINECAP--Enables you to control the treatment of the ends of the geometry lines exported to PDF.
It is given by the EpfcPDFLinecap enumerated class and takes the following values:

- EpfcPDF_LINECAP_BUTT--Specifies the butt cap square end. This is the default value.
- EpfcPDF_LINECAP_ROUND--Specifies the round cap end.
- EpfcPDF_LINECAP_PROJECTING_SQUARE--Specifies the projecting square cap end.

�❍ EpfcPDFOPT_LINEJOIN--Enables you to control the treatment of the joined corners of connected lines exported to
PDF. It is given by the EpfcPDFLinejoin enumerated class and takes the following values:

- EpfcPDF_LINEJOIN_MITER--Specifies the miter join. This is the default.
- EpfcPDF_LINEJOIN_ROUND--Specifies the round join.

- EpfcPDF_LINEJOIN_BEVEL--Specifies the bevel join.
�❍ EpfcPDFOPT_SHEETS--Allows you to specify the sheets from a Pro/ENGINEER drawing that are to be exported

to PDF. It is given by the EpfcPrintSheets enumerated class and takes the following values:
- EpfcPRINT_CURRENT_SHEET--Only the current sheet is exported to PDF.
- EpfcPRINT_ALL_SHEETS--All the sheets are exported to PDF. This is the default value.
- EpfcPRINT_SELECTED_SHEETS--Sheets of a specified range are exported to PDF. If this value is
assigned, then the value of the option EpfcPDFOPT_SHEET_RANGE must also be known.

�❍ EpfcPDFOPT_SHEET_RANGE--Specifies the range of sheets in a drawing that are to be exported to PDF. If this
option is set, then the option EpfcPDFOPT_SHEETS must be set to the value EpfcPRINT_SELECTED_SHEETS.

�❍ EpfcPDFOPT_EXPORT_MODE--Enables you to select the object to be exported to PDF and the export format. It is
given by the EpfcPDFExportMode enumerated class and takes the following values:

- EpfcPDF_2D_DRAWING--Only drawings are exported to PDF. This is the default value.
- EpfcPDF_3D_AS_NAMED_VIEWS--3D models are exported as 2D raster images embedded in PDF files.
- EpfcPDF_3D_AS_U3D_PDF--3D models are exported as U3D models embedded in one-page PDF files.
- EpfcPDF_3D_AS_U3D--A 3D model is exported as a U3D (.u3d) file. This value ignores the options set
for the EpfcPDFOptionType enumerated class.

�❍ EpfcPDFOPT_LIGHT_DEFAULT--Enables you to set the default lighting style used while exporting 3D models in
the U3D format to a one-page PDF file, that is when the option EpfcPDFOPT_EXPORT_MODE is set to
EpfcPDF_3D_AS_U3D. The values for this option are given by the EpfcPDFU3DLightingMode enumerated class.

�❍ EpfcPDFOPT_RENDER_STYLE_DEFAULT--Enables you to set the default rendering style used while exporting
Pro/ENGINEER models in the U3D format to a one-page PDF file, that is when the option
EpfcPDFOPT_EXPORT_MODE is set to EpfcPDF_3D_AS_U3D. The values for this option are given by the
EpfcPDFU3DRenderMode enumerated class.

�❍ EpfcPDFOPT_SIZE--Allows you to specify the page size of the exported PDF file. The values for this option are
given by the EpfcPlotPaperSize enumerated class. If the value is set to EpfcVARIABLESIZEPLOT, you also need
to set the options EpfcPDFOPT_HEIGHT and EpfcPDFOPT_WIDTH.

�❍ EpfcPDFOPT_HEIGHT--Enables you to set the height for a user-defined page size of the exported PDF file. The
default value is 0.0.

�❍ EpfcPDFOPT_WIDTH--Enables you to set the width for a user-defined page size of the exported PDF file. The
default value is 0.0.

�❍ EpfcPDFOPT_ORIENTATION--Enables you to specify the orientation of the pages in the exported PDF file. It is
given by the EpfcSheetOrientation enumerated class.

- EpfcORIENT_PORTRAIT--Exports the pages in portrait orientation. This is the default value.
- EpfcORIENT_LANDSCAPE--Exports the pages in landscape orientation.

�❍ EpfcPDFOPT_TOP_MARGIN--Allows you to specify the top margin of the view port. The default value is 0.0.
�❍ EpfcPDFOPT_LEFT_MARGIN--Allows you to specify the left margin of the view port. The default value is 0.0.
�❍ EpfcPDFOPT_BACKGROUND_COLOR_RED--Specifies the default red background color that appears behind the

U3D model. You can set any value within the range of 0.0 to 1.0. The default value is 1.0.
�❍ EpfcPDFOPT_BACKGROUND_COLOR_GREEN--Specifies the default green background color that appears

behind the U3D model. You can set any value within the range of 0.0 to 1.0. The default value is 1.0.
�❍ EpfcPDFOPT_BACKGROUND_COLOR_BLUE--Specifies the default blue background color that appears behind

the U3D model. You can set any value within the range of 0.0 to 1.0. The default value is 1.0.
�❍ EpfcPDFOPT_ADD_VIEWS--If true, allows you to add view definitions to the U3D model from a file. By default,

it is true.
�❍ EpfcPDFOPT_VIEW_TO_EXPORT--Specifies the view or views to be exported to the PDF file. It is given by the

EpfcPDFSelectedViewMode enumerated class and takes the following values:
- EpfcPDF_VIEW_SELECT_CURRENT--Exports the current graphical area to a one-page PDF file.
- EpfcPDF_VIEW_SELECT_ALL--Exports all the views to a multi-page PDF file. Each page contains one
view with the view name displayed at the bottom center of the view port.
- EpfcPDF_VIEW_SELECT_BY_NAME--Exports the selected view to a one-page PDF file with the view
name printed at the bottom center of the view port. If this value is assigned, then the option
PDFOPT_SELECTED_VIEW must also be set.

�❍ EpfcPDFOPT_SELECTED_VIEW--Sets the option EpfcPDFOPT_VIEW_TO_EXPORT to the value
EpfcPDF_VIEW_SELECT_BY_NAME, if the corresponding view is successfully found.

Exporting 3D Geometry

The VB API allows you to export three dimensional geometry to various formats. Pass the instructions object
containing information about the desired export file to the method IpfcModel.Export().

Export Instructions

Methods and Properties Introduced:

● IpfcExport3DInstructions.Configuration

● IpfcExport3DInstructions.ReferenceSystem

● IpfcExport3DInstructions.Geometry

● IpfcExport3DInstructions.IncludedEntities

● IpfcExport3DInstructions.LayerOptions

● CCpfcGeometryFlags.Create()

● CCpfcInclusionFlags.Create()

● CCpfcLayerExportOptions.Create()

● CCpfcSTEP3DExportInstructions.Create()

● CCpfcSET3DExportInstructions.Create()

● CCpfcVDA3DExportInstructions.Create()

● CCpfcIGES3DNewExportInstructions.Create()

● CCpfcCATIA3DExportInstructions.Create()

● CCpfcCATIAModel3DExportInstructions.Create()

● CCpfcPDGS3DExportInstructions.Create()

● CCpfcACIS3DExportInstructions.Create()

● CCpfcCatiaPart3DExportInstructions.Create()

● CCpfcCatiaProduct3DExportInstructions.Create()

● CCpfcCatiaCGR3DExportInstructions.Create()

● CCpfcJT3DExportInstructions.Create()

● CCpfcParaSolid3DExportInstructions.Create()

● CCpfcUG3DExportInstructions.Create()

The interface IpfcExport3DInstructions contains data to export a part or an assembly to a specifed 3D format. The
fields of this interface are:

�❍ Configuration--While exporting an assembly you can specify the structure and contents of the output files. The
options are:

- EXPORT_ASM_FLAT_FILE--Exports all the geometry of the assembly to a single file as if it were a part.
- EXPORT_ASM_SINGLE_FILE--Exports an assembly structure to a file with external references to
component files. This file contains only top-level geometry.
- EXPORT_ASM_MULTI_FILE--Exports an assembly structure to a single file and the components to
component files. It creates component parts and subassemblies with their respective geometry and external
references. This option supports all levels of hierarchy.
- EXPORT_ASM_ASSEMBLY_FILE--Exports an assembly as multiple files containing geometry
information of its components and assembly features.

�❍ ReferenceSystem--The reference coordinate system used for export. If this value is null, the system uses the default
coordinate system.

�❍ Geometry--The object describing the type of geometry to export. The CCpfcGeometryFlags.Create() returns this
instruction object. The types of geometry supported by the export operation are:

- Wireframe--Export edges only.
- Solid--Export surfaces along with topology.
- Surfaces--Export all model surfaces.
- Quilts--Export as quilt.

�❍ IncludedEntities--The object returned by the method CCpfcInclusionFlags.Create() that determines whether to
include certain entities. The entities are:

- Datums--Determines whether datum curves are included when exporting files. If true the datum curve
information is included during export. The default value is false.
- Blanked--Determines whether entities on blanked layers are exported. If true entities on blanked layers are
exported. The default value is false.

�❍ LayerOptions--The instructions object returned by the method CCpfcLayerExportOptions.Create() that describes
how to export layers. To export layers you can specify the following:

- UseAutoId--Enables you to set or remove an interface layer ID. A layer is recognized with this ID when
exporting the file to a specified output format. If true, automatically assigns interface IDs to layers not
assigned IDs and exports them. The default value is false.
- LayerSetupFile--Specifies the name and complete path of the layer setup file. This file contains the layer
assignment information which includes the name of the layer, its display status, the interface ID and number
of sub layers.

Export 3D Instructions Table

Interface Used to Export

IpfcSTEP3DExportInstructions A part or assembly in STEP format

IpfcVDA3DExportInstructions A part or assembly in VDA format

IpfcSET3DExportInstructions A class that defines a ruled surface

IpfcIGES3DNewExportInstructions A part or assembly in IGES format

IpfcCATIA3DExportInstructions A part or assembly in CATIA format (as precise
geometry)

IpfcCATIAModel3DExportInstructions A part or assembly in CATIA MODEL format

IpfcPDGS3DExportInstructions A part or assembly in PDGS format

IpfcACIS3DExportInstructions A part or assembly in ACIS format

IpfcCatiaPart3DExportInstructions A part or assembly in CATIA PART format

IpfcCatiaProduct3DExportInstructions A part or assembly in CATIA PRODUCT format

IpfcCatiaCGR3DExportInstructions A part or assembly in CATIA CGR format

IpfcJT3DExportInstructions A part or assembly in JT format

IpfcParaSolid3DExportInstructions A part or assembly in PARASOLID format

IpfcUG3DExportInstructions A part or assembly in UG format

Export Utilities

Methods Introduced:

● IpfcBaseSession.IsConfigurationSupported()

● IpfcBaseSession.IsGeometryRepSupported()

The method IpfcBaseSession.IsConfigurationSupported() checks whether the specified assembly configuration is
valid for a particular model and the specified export format. The input parameters for this method are:

�❍ Configuration--Specifies the structure and content of the output files.
�❍ Type--Specifies the output file type to create.

The method returns a true value if the configuration is supported for the specified export type.

The method IpfcBaseSession.IsGeometryRepSupported() checks whether the specified geometric representation is
valid for a particular export format. The input parameters are :

�❍ Flags--The type of geometry supported by the export operation.
�❍ Type--The output file type to create.

The method returns a true value if the geometry combination is valid for the specified model and export type.

The methods pfcIpfcBaseSession.IsConfigurationSupported() and pfcIpfcBaseSession.
IsGeometryRepSupported() must be called before exporting an assembly to the specified export formats except for
the CADDS and STEP2D formats. The return values of both the methods must be true for the export operation to be
successful.

Use the method IpfcModel.Export() to export the assembly to the specified output format.

Shrinkwrap Export

To improve performance in a large assembly design, you can export lightweight representations of models called
shrinkwrap models. A shrinkwrap model is based on the external surfaces of the source part or asssembly model and
captures the outer shape of the source model.

You can create the following types of nonassociative exported shrinkwrap models:

�❍ Surface Subset--This type consists of a subset of the original model's surfaces.
�❍ Faceted Solid--This type is a faceted solid representing the original solid.
�❍ Merged Solid--The external components from the reference assembly model are merged into a single part

representing the solid geometry in all collected components.

Methods Introduced:

● IpfcSolid.ExportShrinkwrap()

You can export the specified solid model as a shrinkwrap model using the method IpfcSolid.ExportShrinkwrap().
This method takes the ShrinkwrapExportInstruction object as an argument.

Use the appropriate interface given in the following table to create the required type of shrinkwrap. All the interfaces
have their own static method to create an object of the specified type. The object created by these interfaces can be
used as an object of type ShrinkwrapExportInstructions or ShrinkwrapModelExportInstructions.

Type of Shrinkwrap Model Interface to Use

Surface Subset IpfcShrinkwrapSurfaceSubsetInstructions

Faceted Part IpfcShrinkwrapFacetedPartInstructions

Faceted VRML IpfcShrinkwrapFacetedVRMLInstructions

Faceted STL IpfcShrinkwrapFacetedSTLInstructions

Merged Solid IpfcShrinkwrapMergedSolidInstructions

Setting Shrinkwrap Options

The interface IpfcShrinkwrapModelExportInstructions contains the general methods available for all the types of
shrinkwrap models. The object created by any of the interfaces specified in the preceeding table can be used with
these methods.

Properties Introduced:

● IpfcShrinkwrapModelExportInstructions.Method

● IpfcShrinkwrapModelExportInstructions.Quality

● IpfcShrinkwrapModelExportInstructions.AutoHoleFilling

● IpfcShrinkwrapModelExportInstructions.IgnoreSkeleton

● IpfcShrinkwrapModelExportInstructions.IgnoreQuilts

● IpfcShrinkwrapModelExportInstructions.AssignMassProperties

● IpfcShrinkwrapModelExportInstructions.IgnoreSmallSurfaces

● IpfcShrinkwrapModelExportInstructions.SmallSurfPercentage

● IpfcShrinkwrapModelExportInstructions.DatumReferences

The property IpfcShrinkwrapModelExportInstructions.Method returns the method used to create the shrinkwrap.
The types of shrinkwrap methods are:

�❍ SWCREATE_SURF_SUBSET--Surface Subset
�❍ SWCREATE_FACETED_SOLID--Faceted Solid
�❍ SWCREATE_MERGED_SOLID--Merged Solid

The property IpfcShrinkwrapModelExportInstructions.Quality specifies the quality level for the system to use
when identifying surfaces or components that contribute to the shrinkwrap model. Quality ranges from 1 which
produces the coarsest representation of the model in the fastest time, to 10 which produces the most exact
representation. The default value is 1.

The property IpfcShrinkwrapModelExportInstructions.AutoHoleFilling sets a flag that forces Pro/ENGINEER
to identify all holes and surfaces that intersect a single surface and fills those holes during shrinkwrap. The default
value is true.

The property IpfcShrinkwrapModelExportInstructions.IgnoreSkeleton determine whether the skeleton model
geometry must be included in the shrinkwrap model.

The property IpfcShrinkwrapModelExportInstructions.IgnoreQuilts determines whether external quilts must be
included in the shrinkwrap model.

The property IpfcShrinkwrapModelExportInstructions.AssignMassProperties assigns mass properties to the
shrinkwrap model. The default value is false and the mass properties of the original model is assigned to the
shrinkwrap model. If the value is set to true, the user must assign a value for the mass properties.

The property IpfcShrinkwrapModelExportInstructions.IgnoreSmallSurfaces sets a flag that forces Pro/
ENGINEER to skip surfaces smaller than a certain size. The default value is false. The size of the surface is
specified as a percentage of the model's size. This size can be modified using the property
IpfcShrinkwrapModelExportInstructions.SmallSurfPercentage.

The property IpfcShrinkwrapModelExportInstructions.DatumReferences specifies and selects the datum planes,
points, curves, axes, and coordinate system references to be included in the shrinkwrap model.

Surface Subset Options

Methods and Properties Introduced:

● CCpfcShrinkwrapSurfaceSubsetInstructions.Create()

● IpfcShrinkwrapSurfaceSubsetInstructions.AdditionalSurfaces

● IpfcShrinkwrapSurfaceSubsetInstructions.OutputModel

The static method CCpfcShrinkwrapSurfaceSubsetInstructions.Create() returns an object used to create a
shrinkwrap model of surface subset type. Specify the name of the output model in which the shrinkwrap is to be
created as an input to this method.

The property IpfcShrinkwrapSurfaceSubsetInstructions.AdditionalSurfaces selects individual surfaces to be
included in the shrinkwrap model.

The property IpfcShrinkwrapSurfaceSubsetInstructions.OutputModel returns the template model where the
shrinkwrap geometry is to be created.

Faceted Solid Options

The IpfcShrinkwrapFacetedFormatInstructions interface consists of the following types:

�❍ SWFACETED_PART--Pro/ENGINEER part with normal geometry. This is the default format type.
�❍ SWFACETED_STL--An STL file.
�❍ SWFACETED_VRML--A VRML file.

Use the Create method to create the object of the specified type. Upcast the object to use the general methods
available in this interface.

Properties Intoduced:

● IpfcShrinkwrapFacetedFormatInstructions.Format

● IpfcShrinkwrapFacetedFormatInstructions.FramesFile

The property IpfcShrinkwrapFacetedFormatInstructions.Format returns the the output file format of the
shrinkwrap model.

The property IpfcShrinkwrapFacetedFormatInstructions.FramesFile enables you to select a frame file to create a
faceted solid motion envelope model that represents the full motion of the mechanism captured in the frame file.
Specify the name and complete path of the frame file.

Faceted Part Options

Methods and Properties Introduced:

● CCpfcShrinkwrapFacetedPartInstructions.Create()

● IpfcShrinkwrapFacetedPartInstructions.Lightweight

The static method CCpfcShrinkwrapFacetedPartInstructions.Create() returns an object used to create a
shrinkwrap model of shrinkwrap faceted type. The input parameters of this method are:

�❍ OutputModel--Specify the output model where the shrinkwrap must be created.
�❍ Lightweight--Specify this value as True if the shrinkwrap model is a Lightweight Pro/ENGINEER part.

The property IpfcShrinkwrapFacetedPartInstructions.Lightweight specifies if the Pro/ENGINEER part is
exported as a light weight faceted geometry.

VRML Export Options

Methods and Properties Introduced:

● CCpfcShrinkwrapVRMLInstructions.Create()

● IpfcShrinkwrapVRMLInstructions.OutputFile

The static method CCpfcShrinkwrapVRMLInstructions.Create() returns an object used to create a shrinkwrap
model of shrinkwrap VRML format. Specify the name of the output model as an input to this method.

The property IpfcShrinkwrapVRMLInstructions.OutputFile specifies the name of the output file to be created.

STL Export Options

Methods and Properties Introduced:

● CCpfcShrinkwrapVRMLInstructions.Create()

● IpfcShrinkwrapVRMLInstructions.OutputFile

The static method CCpfcShrinkwrapVRMLInstructions.Create() returns an object used to create a shrinkwrap
model of shrinkwrap STL format. Specify the name of the output model as an input to this method.

The property IpfcShrinkwrapSTLInstructions.OutputFile specifies the name of the output file to be created.

Merged Solid Options

Methods and Properties Introduced:

● CCpfcShrinkwrapMergedSolidInstructions.Create()

● IpfcShrinkwrapMergedSolidInstructions.AdditionalComponents

The static method CCpfcShrinkwrapMergedSolidInstructions.Create() returns an object used to create a
shrinkwrap model of merged solids format. Specify the name of the output model as an input to this method.

The property IpfcShrinkwrapMergedSolidInstructions.AdditionalComponents specifies individual components
of the assembly to be merged into the shrinkwrap model.

VRML Representation

Example Code

The following example code leverages the fact that when a model with a model program attached is erased or deleted
the stop method of the model program is called. This example code uses the stop method to produce a VRML
representation of the model in a standard directory for Web publishing.

Imports pfcls
Public Class pfcInterfaceExamples1
 Implements IpfcAsyncActionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Dim WithEvents eventTimer As Timers.Timer
 Dim exitFlag As Boolean = False
 Dim aC As pfcls.IpfcAsyncConnection

 Public Sub New(ByRef asyncConnection As pfcls.IpfcAsyncConnection)
 aC = asyncConnection
 End Sub

 Public Function GetClientInterfaceName() As String Implements pfcls.ICIPClientObject.
GetClientInterfaceName
 GetClientInterfaceName = "IpfcAsyncActionListener"
 End Function

 Public Sub OnTerminate(ByVal _Status As Integer) Implements pfcls.
IpfcAsyncActionListener.OnTerminate
 aC.InterruptEventProcessing()
 exitFlag = True
 End Sub

'VRML on erase
 '==
'Function : createVRMLOnErase
'Purpose : This function uses the listener OnBeforeModelErase
' to create VRML file in given directory.
' Note that this operates in Full Asynchronous Mode.
'==
 Public Sub createVRMLOnErase(ByVal dirPath As String)
 Dim listenerObj As New VRMLEventListener(dirPath)
 Try
'==
'Start the timer to call EventProcess at regular intervals
'==
 eventTimer = New Timers.Timer(500)
 eventTimer.Enabled = True
 AddHandler eventTimer.Elapsed, AddressOf Me.timeElapsed

 ac.Session.AddActionListener(listenerObj)
 aC.AddActionListener(Me)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub
 '==
'Function : timeElapsed
'Purpose : This function handels the time elapsed event of timer
' which is fired at regular intervals
'==
 Private Sub timeElapsed(ByVal sender As Object, ByVal e As
 System.Timers.ElapsedEventArgs)
 If exitFlag = False Then

 aC.EventProcess()
 Else
 eventTimer.Enabled = False
 End If
 End Sub
'==
'Class : VRMLEventListener
'Purpose : This class must implement the listner interface along
' with the correct client interface name. The implemented
' methods are called after corresponding actions on the
' model.
'==
 Private Class VRMLEventListener
 Implements IpfcSessionActionListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Dim outDir As String

 Public Sub New(ByVal dirPath As String)
 outDir = dirPath
 End Sub

 Public Function GetClientInterfaceName() As String _Implements ICIPClientObject.
GetClientInterfaceName
 GetClientInterfaceName = "IpfcSessionActionListener"
 End Function

 Public Sub OnBeforeModelErase() Implements pfcls.IpfcSessionActionListener.
OnBeforeModelErase
 Dim model As IpfcModel
 Dim cAC As New pfcls.CCpfcAsyncConnection
 Dim aC As pfcls.IpfcAsyncConnection
 Dim session As IpfcBaseSession
 Dim vrmlInstructions As IpfcVRMLModelExportInstructions
 Try

 aC = cAC.GetActiveConnection
 session = aC.Session
'==
'Get the current solid
'==
 model = session.CurrentModel
'==
'Do nothing if model is not a part
'==
 If model Is Nothing Then
 Return
 End If
 If (Not model.Type = EpfcModelType.EpfcMDL_PART) Then
 Return
 End If

 vrmlInstructions = (New CCpfcVRMLModelExportInstructions).Create(outDir)
 model.Export(Nothing, vrmlInstructions)
 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) +

 ex.StackTrace.ToString)
 End Try

 End Sub

 Public Sub OnAfterDirectoryChange(ByVal _Path As String) Implements pfcls.
IpfcSessionActionListener.OnAfterDirectoryChange

 End Sub

 Public Sub OnAfterModelDisplay() Implements pfcls.IpfcSessionActionListener.
OnAfterModelDisplay

 End Sub

 Public Sub OnAfterModelPurge(ByVal _Desrc As pfcls.IpfcModelDescriptor) Implements
pfcls.IpfcSessionActionListener.OnAfterModelPurge

 End Sub

 Public Sub OnAfterWindowChange(ByVal _NewWindow As Object) Implements pfcls.
IpfcSessionActionListener.OnAfterWindowChange

 End Sub

 Public Sub OnBeforeModelCopy(ByVal _Container As pfcls.IpfcDescriptorContainer2)
Implements pfcls.IpfcSessionActionListener.OnBeforeModelCopy

 End Sub

 Public Sub OnBeforeModelDelete() Implements pfcls.IpfcSessionActionListener.
OnBeforeModelDelete

 End Sub

 Public Sub OnBeforeModelPurge(ByVal _Container As pfcls.IpfcDescriptorContainer)
Implements pfcls.IpfcSessionActionListener.OnBeforeModelPurge

 End Sub

 Public Sub OnBeforeModelRename(ByVal _Container As pfcls.IpfcDescriptorContainer2)
Implements pfcls.IpfcSessionActionListener.OnBeforeModelRename

 End Sub

 Public Sub OnBeforeModelSave(ByVal _Container As pfcls.IpfcDescriptorContainer)
Implements pfcls.IpfcSessionActionListener.OnBeforeModelSave

 End Sub
 End Class
End Class

Importing Files

Method Introduced:

● IpfcModel.Import()

The method IpfcModel.Import() reads a file into Pro/ENGINEER. The format must be the same as it would be if
these files were created by Pro/ENGINEER. The parameters are:

�❍ FilePath--Absolute path of the file to be imported along with its extension.
�❍ ImportData--The ImportInstructions object that controls the import operation.

Import Instructions

Methods Introduced:

● CCpfcRelationImportInstructions.Create()

● CCpfcIGESSectionImportInstructions.Create()

● CCpfcProgramImportInstructions.Create()

● CCpfcConfigImportInstructions.Create()

● CCpfcDWGSetupImportInstructions.Create()

● CCpfcSpoolImportInstructions.Create()

● CCpfcConnectorParamsImportInstructions.Create()

● CCpfcASSEMTreeCFGImportInstructions.Create()

● CCpfcWireListImportInstructions.Create()

● CCpfcCableParamsImportInstructions.Create()

● CCpfcSTEPImport2DInstructions.Create()

● CCpfcIGESImport2DInstructions.Create()

● CCpfcDXFImport2DInstructions.Create()

● CCpfcDWGImport2DInstructions.Create()

● CCpfcSETImport2DInstructions.Create()

The methods described in this section create an instructions data object to import a file of a specified type into Pro/
ENGINEER. The details are as shown in the table below:

_

Interface Used to Import

IpfcRelationImportInstructions A list of relations and parameters in a part or assembly.

IpfcIGESSectionImportInstructions A section model in IGES format.

IpfcProgramImportInstructions A program file for a part or assembly that can be edited to change the
model.

IpfcConfigImportInstructions Configuration instructions.

IpfcDWGSetupImportInstructions A drawing s/u file.

IpfcSpoolImportInstructions Spool instructions.

IpfcConnectorParamsImportInstructions Connector parameter instructions.

IpfcASSEMTreeCFGImportInstructions Assembly tree CFG instructions.

IpfcWireListImportInstructions Wirelist instructions.

IpfcCableParamsImportInstructions Cable parameters from an assembly.

IpfcSTEPImport2DInstructions A part or assembly in STEP format.

IpfcIGESImport2DInstructions A part or assembly in IGES format.

IpfcDXFImport2DInstructions A drawing in DXF format.

IpfcDWGImport2DInstructions A drawing in DWG format.

IpfcSETImport2DInstructions A class that defines a ruled surface.

Note:

- The method IpfcModel.Import() does not support importing of CADAM type of files.
- If a model or the file type STEP, IGES, DWX, or SET already exists, the imported model is appended to the
current model. For more information on methods that return models of the types STEP, IGES, DWX, and SET, refer
to Getting a Model Object.

Importing 2D Models

Method Introduced:

● IpfcBaseSession.Import2DModel()

The method IpfcBaseSession.Import2DModel() imports a two dimensional model based on the following
parameters:

�❍ NewModelName--Specifies the name of the new model.
�❍ Type--Specifies the type of the model. The type can be one of the following:

- STEP
- IGES
- DXF
- DWG
- SET

�❍ FilePath--Specifies the location of the file to be imported along with the file extension
�❍ Instructions--Specifies the IpfcImport2DInstructions object that controls the import operation.

The interface IpfcImport2DInstructions contains the following attributes:
- Import2DViews--Defines whether to import 2D drawing views.
- ScaleToFit--If the current model has a different sheet size than that specified by the imported file, set the
parameter to true to retain the current sheet size. Set the parameter to false to retain the sheet size of the
imported file.
- FitToLeftCorner--If this parameter is set to true, the bottom left corner of the imported file is adjusted to the
bottom left corner of the current model. If it is set to false, the size of imported file is retained.

Note:
The method IpfcBaseSession.Import2DModel() does not support importing of CADAM type of files.

Importing 3D Geometry

Methods Introduced:

● IpfcBaseSession.GetImportSourceType()

● IpfcBaseSession.ImportNewModel()

For some input formats, the method IpfcBaseSession.GetImportSourceType() returns the type of model that can be
imported using a designated file. The input parameters of this method are:

�❍ FileToImport--Specifies the path of the file along with its name and extension
�❍ NewModelImportType--Specifies the type of model to be imported.

The method IpfcBaseSession.ImportNewModel() is used to import an external 3D format file and creates a new
model or set of models of type IpfcModel. The input parameters of this method are:

�❍ FileToImport--Specifies the path to the file along with its name and extension
�❍ EpfcNewModelImportType--Specifies the type of model to be imported. The types of models that can be imported

are as follows:
- EpfcIMPORT_NEW_IGES
- EpfcIMPORT_NEW_SET
- EpfcIMPORT_NEW_VDA
- EpfcIMPORT_NEW_NEUTRAL
- EpfcIMPORT_NEW_CADDS
- EpfcIMPORT_NEW_STEP
- EpfcIMPORT_NEW_STL
- EpfcIMPORT_NEW_VRML
- EpfcIMPORT_NEW_POLTXT

- EpfcIMPORT_NEW_CATIA_SESSION
- EpfcIMPORT_NEW_CATIA_MODEL
- EpfcIMPORT_NEW_DXF
- EpfcIMPORT_NEW_ACIS
- EpfcIMPORT_NEW_PARASOLID
- EpfcIMPORT_NEW_ICEM
- EpfcIMPORT_NEW_DESKTOP
- EpfcIMPORT_NEW_CATIA_PART
- EpfcIMPORT_NEW_UG
- EpfcIMPORT_NEW_PRODUCTVIEW
- EpfcIMPORT_NEW_CATIA_CGR
- EpfcIMPORT_NEW_JT

�❍ EpfcModelType--Specifies the type of the model. It can be a part, assembly or drawing.
�❍ NewModelName--Specifies a name for the imported model.
�❍ IpfcLayerImportFilter--Specifies the layer filter. This parameter is optional.

Plotting Files

From Pro/ENGINEER Wilfire 5.0 onwards, the IpfcPlotInstructions object containing the instructions for
plotting files has been deprecated. All the methods listed below for creating and accessing the instruction attributes
in IpfcPlotInstructions have also been deprecated. Use the new interface type IpfcPrinterInstructions
and its methods described in the next section.

Methods and Properties Deprecated:

● CCpfcPlotInstructions.Create()

● IpfcPlotInstructions.PlotterName

● IpfcPlotInstructions.OutputQuality

● IpfcPlotInstructions.UserScale

● IpfcPlotInstructions.PenSlew

● IpfcPlotInstructions.PenVelocityX

● IpfcPlotInstructions.PenVelocityY

● IpfcPlotInstructions.SegmentedOutput

● IpfcPlotInstructions.LabelPlot

● IpfcPlotInstructions.SeparatePlotFiles

● IpfcPlotInstructions.PaperSize

● IpfcPlotInstructions.PageRangeChoice

● IpfcPlotInstructions.PaperSizeX

● IpfcPlotInstructions.FirstPage

● IpfcPlotInstructions.LastPage

Printing Files

The printer instructions for printing a file are defined in IpfcPrinterInstructions data object.

Methods and Properties Introduced:

● CCpfcPrinterInstructions.Create()

● IpfcPrinterInstructions.PrinterOption

● IpfcPrinterInstructions.PlacementOption

● IpfcPrinterInstructions.ModelOption

● IpfcPrinterInstructions.WindowId

The method CCpfcPrinterInstructions.Create() creates a new instance of the IpfcPrinterInstructions
object. The object contains the following instruction attributes:

�❍ PrinterOption--Specifies the printer settings for printing a file in terms of the IpfcPrintPrinterOption object. Set this
attribute using the property pfcExport.PrinterInstructions.SetPrinterOption.

�❍ PlacementOption--Specifies the placement options for printing purpose in terms of the IpfcPrintMdlOption object.
Set this attribute using the property pfcExport.PrinterInstructions.SetPlacementOption.

�❍ ModelOption--Specifies the model options for printing purpose in terms of the IpfcPrintPlacementOption object. Set
this attribute using the property pfcExport.PrinterInstructions.SetModelOption.

�❍ WindowId--Specifies the current window identifier. Set this attribute using the property pfcExport.
PrinterInstructions.SetWindowId.

Printer Options

The printer settings for printing a file are defined in the IpfcPrintPrinterOption object.

Methods and Properties Introduced:

● CCpfcPrintPrinterOption.Create()

● IpfcBaseSession.GetPrintPrinterOptions()

● IpfcPrintPrinterOption.DeleteAfter

● IpfcPrintPrinterOption.FileName

● IpfcPrintPrinterOption.PaperSize

● CCpfcPrintSize.Create()

● IpfcPrintSize.Height

● IpfcPrintSize.Width

● IpfcPrintSize.PaperSize

● IpfcPrintPrinterOption.PenTable

● IpfcPrintPrinterOption.PrintCommand

● IpfcPrintPrinterOption.PrinterType

● IpfcPrintPrinterOption.Quantity

● IpfcPrintPrinterOption.RollMedia

● IpfcPrintPrinterOption.RotatePlot

● IpfcPrintPrinterOption.SaveMethod

● IpfcPrintPrinterOption.SaveToFile

● IpfcPrintPrinterOption.SendToPrinter

● IpfcPrintPrinterOption.Slew

● IpfcPrintPrinterOption.SwHandshake

● IpfcPrintPrinterOption.UseTtf

The method CCpfcPrintPrinterOption.Create() creates a new instance of the IpfcPrintPrinterOption object.

The method IpfcBaseSession.GetPrintPrinterOptions() retrieves the printer settings.

The IpfcPrintPrinterOption object contains the following options:

�❍ DeleteAfter--Determines if the file is deleted after printing. Set it to true to delete the file after printing. Use the
property IpfcPrintPrinterOption.DeleteAfter to assign this option.

�❍ FileName--Specifies the name of the file to be printed. Use the property IpfcPrintPrinterOption.FileName to set the
name.

�❍ PaperSize--Specifies the parameters of the paper to be printed in terms of the IpfcPrintSize object. The property
IpfcPrintPrinterOption.PaperSize assigns the PaperSize option. Use the method CCpfcPrintSize.Create() to create a
new instance of the IpfcPrintSize object. This object contains the following options:

- Height--Specifies the height of paper. Use the property IpfcPrintSize.Height to set the paper height.
- Width--Specifies the width of paper. Use the property IpfcPrintSize.Width to set the paper width.
- PaperSize--Specifies the size of the paper used for the plot in terms of the pfcModel.PlotPaperSize object.
Use the property IpfcPrintSize.PaperSize to set the paper size.

�❍ PenTable--Specifies the file containing the pen table. Use the property IpfcPrintPrinterOption.PenTable to set this
option.

�❍ PrintCommand--Specifies the command to be used for printing. Use the property IpfcPrintPrinterOption.
PrintCommand to set the command.

�❍ PrinterType--Specifies the printer type. Use the property IpfcPrintPrinterOption.PrinterType to assign the type.
�❍ Quantity--Specifies the number of copies to be printed. Use the property IpfcPrintPrinterOption.Quantity to assign

the quantity.
�❍ RollMedia--Determines if roll media is to be used for printing. Set it to true to use roll media. Use the property

IpfcPrintPrinterOption.RollMedia to assign this option.

�❍ RotatePlot--Determines if the plot is rotated by 90 degrees. Set it to true to rotate the plot. Use the property
IpfcPrintPrinterOption.RotatePlot to set this option.

�❍ SaveMethod--Specifies the save method in terms of the EpfcPrintSaveMethod enumerated class. Use the property
IpfcPrintPrinterOption.SaveMethod to specify the save method. The available methods are as follows:

- EpfcPRINT_SAVE_SINGLE_FILE--Plot is saved to a single file.
- EpfcPRINT_SAVE_MULTIPLE_FILE--Plot is saved to multiple files.
- EpfcPRINT_SAVE_APPEND_TO_FILE--Plot is appended to a file.

�❍ SaveToFile--Determines if the file is saved after printing. Set it to true to save the file after printing. Use the
property IpfcPrintPrinterOption.SaveToFile to assign this option.

�❍ SendToPrinter--Determines if the plot is directly sent to the printer. Set it to true to send the plot to the printer. Use
the property IpfcPrintPrinterOption.SendToPrinter to set this option.

�❍ Slew--Specifies the speed of the pen in centimeters per second in X and Y direction. Use the property
IpfcPrintPrinterOption.Slew to set this option.

�❍ SwHandshake--Determines if the software handshake method is to be used for printing. Set it to true to use the
software handshake method. Use the property IpfcPrintPrinterOption.SwHandshake to set this option.

�❍ UseTtf--Specifies whether TrueType fonts or stroked text is used for printing. Set this option to true to use
TrueType fonts and to false to stroke all text. Use the property IpfcPrintPrinterOption.UseTtf to set this option.

Placement Options

The placement options for printing purpose are defined in the IpfcPrintPlacementOption object.

Methods and Properties Introduced:

● CCpfcPrintPlacementOption.Create()

● IpfcBaseSession.GetPrintPlacementOptions()

● IpfcPrintPlacementOption.BottomOffset

● IpfcPrintPlacementOption.ClipPlot

● IpfcPrintPlacementOption.KeepPanzoom

● IpfcPrintPlacementOption.LabelHeight

● IpfcPrintPlacementOption.PlaceLabel

● IpfcPrintPlacementOption.Scale

● IpfcPrintPlacementOption.ShiftAllCorner

● IpfcPrintPlacementOption.SideOffset

● IpfcPrintPlacementOption.X1ClipPosition

● IpfcPrintPlacementOption.X2ClipPosition

● IpfcPrintPlacementOption.Y1ClipPosition

● IpfcPrintPlacementOption.Y2ClipPosition

The method CCpfcPrintPlacementOption.Create() creates a new instance of the IpfcPrintPlacementOption

object.

The method IpfcBaseSession.GetPrintPlacementOptions() retrieves the placement options.

The IpfcPrintPlacementOption object contains the following options:

�❍ BottomOffset--Specifies the offset from the lower-left corner of the plot. Use the property IpfcPrintPlacementOption.
BottomOffset to set this option.

�❍ ClipPlot--Specifies whether the plot is clipped. Set this option to true to clip the plot or to false to avoid clipping of
plot. Use the property IpfcPrintPlacementOption.ClipPlot to set this option.

�❍ KeepPanzoom--Determines whether pan and zoom values of the window are used. Set this option to true use pan
and zoom and false to skip them. Use the property IpfcPrintPlacementOption.KeepPanzoom to set this option.

�❍ LabelHeight--Specifies the height of the label in inches. Use the property IpfcPrintPlacementOption.LabelHeight to
set this option.

�❍ PlaceLabel--Specifies whether you want to place the label on the plot. Use the property IpfcPrintPlacementOption.
PlaceLabel to set this option.

�❍ Scale--Specifies the scale used for the plot. Use the property IpfcPrintPlacementOption.Scale to set this option.
�❍ ShiftAllCorner--Determines whether all corners are shifted.Set this option to true to shift all corners or to false to

skip shifting of corners. Use the property IpfcPrintPlacementOption.ShiftAllCorner to set this option.
�❍ SideOffset--Specifies the offset from the sides. Use the property IpfcPrintPlacementOption.SideOffset to set this

option.
�❍ X1ClipPosition--Specifies the first X parameter for defining the clip position. Use the property

IpfcPrintPlacementOption.X1ClipPosition to set this option.
�❍ X2ClipPosition--Specifies the second X parameter for defining the clip position. Use the property

IpfcPrintPlacementOption.X2ClipPosition to set this option.
�❍ Y1ClipPosition--Specifies the first Y parameter for defining the clip position. Use the property

IpfcPrintPlacementOption.Y1ClipPosition to set this option.
�❍ Y2ClipPosition--Specifies the second Y parameter for defining the clip position. Use the property

IpfcPrintPlacementOption.Y2ClipPosition to set this option.

Model Options

The model options for printing purpose are defined in the IpfcPrintMdlOption object.

Methods and Properties Introduced:

● CCpfcPrintMdlOption.Create()

● IpfcBaseSession.GetPrintMdlOptions()

● IpfcPrintMdlOption.DrawFormat

● IpfcPrintMdlOption.FirstPage

● IpfcPrintMdlOption.LastPage

● IpfcPrintMdlOption.LayerName

● IpfcPrintMdlOption.LayerOnly

● IpfcPrintMdlOption.Mdl

● IpfcPrintMdlOption.Quality

● IpfcPrintMdlOption.Segmented

● IpfcPrintMdlOption.Sheets

● IpfcPrintMdlOption.UseDrawingSize

● IpfcPrintMdlOption.UseSolidScale

The method CCpfcPrintMdlOption.Create() creates a new instance of the pfcExport.PrintMdlOption object.

The method IpfcBaseSession.GetPrintMdlOptions() retrieves the model options.

The IpfcPrintMdlOption object contains the following options:

�❍ DrawFormat--Displays the drawing format used for printing. Use the property IpfcPrintMdlOption.DrawFormat to
set this option.

�❍ FirstPage--Specifies the first page number. Use the property IpfcPrintMdlOption.FirstPage to set this option.
�❍ LastPage--Specifies the last page number. Use the property IpfcPrintMdlOption.LastPage to set this option.
�❍ LayerName--Specifies the name of the layer. Use the property IpfcPrintMdlOption.LayerName to set the name.
�❍ LayerOnly--Prints the specified layer only. Set this option to true to print the specified layer. Use the property

IpfcPrintMdlOption.LayerOnly to set this option.
�❍ Mdl--Specifies the model to be printed. Use the property IpfcPrintMdlOption.Mdl to set this option.
�❍ Quality--Determines the quality of the model to be printed. It checks for no line, no overlap, simple overlap, and

complex overlap. Use the property IpfcPrintMdlOption.Quality to set this option.
�❍ Segmented--If set to true, the printer prints the drawing in full size, but in segments that are compatible with the

selected paper size. This option is available only if you are plotting a single page. Use the property
IpfcPrintMdlOption.Segmented to set this option.

�❍ Sheets--Specifies the sheets that need to be printed in terms of the EpfcPrintSheets class. Use the property
IpfcPrintMdlOption.Sheets to specify the sheets. The sheets can be of the following types:

- EpfcPRINT_CURRENT_SHEET--Only the current sheet is printed.
- EpfcPRINT_ALL_SHEETS--All the sheets are printed.
- EpfcPRINT_SELECTED_SHEETS--Sheets of a specified range are printed.

�❍ UseDrawingSize--Overrides the paper size specified in the printer options with the drawing size. Set this option to
true to use the drawing size. Use the property IpfcPrintMdlOption.UseDrawingSize to set this option.

�❍ UseSolidScale--Prints with the scale used in the solid model. Set this option to true to use solid scale. Use the
property IpfcPrintMdlOption.UseSolidScale to set this option.

Plotter Configuration File (PCF) Options

The printing options for PCF file are defined in the IpfcPrinterPCFOptions object.

Methods and Properties Introduced:

● CCpfcPrinterPCFOptions.Create()

● IpfcPrinterPCFOptions.PrinterOption

● IpfcPrinterPCFOptions.PlacementOption

● IpfcPrinterPCFOptions.ModelOption

The method CCpfcPrinterPCFOptions.Create() creates a new instance of the IpfcPrinterPCFOptions object.

The IpfcPrinterPCFOptions object contains the following options:

�❍ PrinterOption--Specifies the printer settings for printing a file in terms of the IpfcPrintPrinterOption object. Set this
attribute using the property pfcExport.PrinterPCFOptions.SetPrinterOption.

�❍ PlacementOption--Specifies the placement options for printing purpose in terms of the IpfcPrintMdlOption object.
Set this attribute using the property pfcExport.PrinterPCFOptions.SetPlacementOption.

�❍ ModelOption--Specifies the model options for printing purpose in terms of the IpfcPrintPlacementOption object. Set
this attribute using the property pfcExport.PrinterPCFOptions.SetModelOption.

Solid Operations

Method Introduced:

● IpfcSolid.CreateImportFeat()

The method IpfcSolid.CreateImportFeat() creates a new import feature in the solid and takes the following input
arguments:

�❍ IntfData--The source of data from which to create the import feature. It is given by the pfcModel.IntfDataSource
object. The type of source data that can be imported is given by the EpfcIntfType class and can be of the following
types:

- EpfcINTF_NEUTRAL
- EpfcINTF_NEUTRAL_FILE
- EpfcINTF_IGES
- EpfcINTF_STEP
- EpfcINTF_VDA
- EpfcINTF_SET
- EpfcINTF_PDGS
- EpfcINTF_ICEM
- EpfcINTF_ACIS
- EpfcINTF_DXF
- EpfcINTF_CDRS
- EpfcINTF_STL
- EpfcINTF_VRML
- EpfcINTF_PARASOLID
- EpfcINTF_AI
- EpfcINTF_CATIA_PART
- EpfcINTF_UG
- EpfcINTF_PRODUCTVIEW
- EpfcINTF_CATIA_CGR
- EpfcINTF_JT

�❍ CoordSys--The pointer to a reference coordinate system. If this is NULL, the function uses the default coordinate
system.

�❍ FeatAttr--The attributes for creation of the new import feature given by the IpfcImportFeatAttr object. If this pointer
is NULL, the function uses the default attributes.

Example Code: Returning a Feature Object

This method will return a feature object when provided with a solid coordinate system name and an import feature's
file name. The method will find the coordinate system in the model, set the Import Feature Attributes, and create an
import feature. Then the feature is returned.

Public Function createImportFeatureFromDataFile(ByVal solid As IpfcSolid,

 _ByVal csys As String, _ByVal fileName As String,
 _ByVal type As EpfcIntfType) _As IpfcFeature

 Dim dataSource As IpfcIntfDataSource
 Dim cSystems As IpfcModelItems
 Dim cSystem As IpfcCoordSystem = Nothing
 Dim importFeature As IpfcFeature
 Dim featAttr As IpfcImportFeatAttr
 Dim i As Integer

 Try

 Select Case type
 Case EpfcIntfType.EpfcINTF_NEUTRAL
 dataSource = (New CCpfcIntfNeutralFile).
 Create(fileName)
 Case EpfcIntfType.EpfcINTF_IGES
 dataSource = (New CCpfcIntfIges).Create(fileName)
 Case EpfcIntfType.EpfcINTF_SET
 dataSource = (New CCpfcIntfSet).Create(fileName)
 Case EpfcIntfType.EpfcINTF_STEP
 dataSource = (New CCpfcIntfStep).Create(fileName)
 Case EpfcIntfType.EpfcINTF_VDA
 dataSource = (New CCpfcIntfVDA).Create(fileName)
 Case Else
 Throw New Exception("Unknown File Type")
 End Select

 cSystems = solid.ListItems
 (EpfcModelItemType.EpfcITEM_COORD_SYS)

 For i = 0 To cSystems.Count - 1
 If (cSystems.Item(i).GetName.ToString = csys) Then
 cSystem = cSystems.Item(i)
 Exit For
 End If
 Next

 If cSystem Is Nothing Then
 Throw New Exception("Coordinate System not found in current
 Solid")
 End If
'==
'Create the import ImportFeatAttr structure join surfaces, make solids
'from every closed quilt using the add operation
'==
 featAttr = (New CCpfcImportFeatAttr).Create()
 featAttr.JoinSurfs = True
 featAttr.MakeSolid = True
 featAttr.Operation = EpfcOperationType.EpfcADD_OPERATION

 importFeature = solid.CreateImportFeat(dataSource, cSystem,
 featAttr)
 Return importFeature

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)

 Return Nothing
 End Try
 End Function

Window Operations

Methods Introduced:

● IpfcWindow.ExportRasterImage()

The method IpfcWindow.ExportRasterImage() outputs a standard Pro/ENGINEER raster output file.

Example Code: Generating Raster Files

The following code is used to generate raster image files using a specified window and file type.

'Generating Raster Files
'==
'Function : outputImageWindow
'Purpose : This function takes a Window and outputs a raster image
' file depicting the window. This method takes as an
' argument the type of the raster file, but the size and
' image quality of the raster file are hardcoded.
'==
 Public Sub outputImageWindow(ByRef window As IpfcWindow,
 _ByVal type As Integer, _ByVal imageName As String)

 Dim instructions As IpfcRasterImageExportInstructions
 Dim imageExtension As String
 Dim rasterHeight As Double = 7.5
 Dim rasterWidth As Double = 10.0
 Dim dotsPerInch As Integer
 Dim imageDepth As Integer

 Try
 dotsPerInch = EpfcDotsPerInch.EpfcRASTERDPI_100
 imageDepth = EpfcRasterDepth.EpfcRASTERDEPTH_24

 instructions = getRasterInstructions(type, rasterWidth,
 _rasterHeight, dotsPerInch, _imageDepth)

 imageExtension = getRasterExtension(type)

 window.ExportRasterImage(imageName + imageExtension, instructions)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub
'==
'Function : outputImageScreen
'Purpose : This function takes a ProE Session and outputs a raster
' image file depicting the window. This method takes as an
' argument the type of the raster file, but the size and

' image quality of the raster file are hardcoded.
'==
 Public Sub outputImageScreen(ByRef session As IpfcBaseSession,
 _ByVal type As Integer,
 _ByVal imageName As String)

 Dim instructions As IpfcRasterImageExportInstructions
 Dim imageExtension As String
 Dim rasterHeight As Double = 7.5
 Dim rasterWidth As Double = 10.0
 Dim dotsPerInch As Integer
 Dim imageDepth As Integer

 Try
 dotsPerInch = EpfcDotsPerInch.EpfcRASTERDPI_100
 imageDepth = EpfcRasterDepth.EpfcRASTERDEPTH_24

 instructions = getRasterInstructions(type, rasterWidth,
 _rasterHeight, dotsPerInch, _imageDepth)

 imageExtension = getRasterExtension(type)

 session.ExportCurrentRasterImage(imageName + imageExtension, instructions)

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub
'==
'Function : getRasterInstructions
'Purpose : A helper method which creates a
' RasterImageExportInstructions object based on the type.
'==
 Private Function getRasterInstructions(ByVal type As Integer,
 _ByVal rasterWidth As Double,
 _ByVal rasterHeight As Double,
 _ByVal dotsPerInch As Integer,
 _ByVal imageDepth As Integer) As
 _IpfcRasterImageExportInstructions

 Dim instructions As IpfcRasterImageExportInstructions

 Select Case type

 Case EpfcRasterType.EpfcRASTER_BMP
 Dim bmpInstrs As IpfcBitmapImageExportInstructions
 bmpInstrs = (New CCpfcBitmapImageExportInstructions).Create(rasterWidth,
rasterHeight)
 instructions = bmpInstrs

 Case EpfcRasterType.EpfcRASTER_TIFF
 Dim tiffInstrs As IpfcTIFFImageExportInstructions
 tiffInstrs = (New CCpfcTIFFImageExportInstructions).Create(rasterWidth,
rasterHeight)
 instructions = tiffInstrs

 Case EpfcRasterType.EpfcRASTER_JPEG

 Dim jpegInstrs As IpfcJPEGImageExportInstructions
 jpegInstrs = (New CCpfcJPEGImageExportInstructions).Create(rasterWidth,
rasterHeight)
 instructions = jpegInstrs

 Case EpfcRasterType.EpfcRASTER_EPS
 Dim epsInstrs As IpfcEPSImageExportInstructions
 epsInstrs = (New CCpfcEPSImageExportInstructions).Create(rasterWidth,
rasterHeight)
 instructions = epsInstrs

 Case Else
 Throw New Exception("Unsupported Raster Type")
 End Select

 instructions.DotsPerInch = dotsPerInch
 instructions.ImageDepth = imageDepth

 Return instructions
 End Function
'==
'Function : getRasterExtension
'Purpose : A helper method to create file extension based on the
' Raster type.
'==
 Private Function getRasterExtension(ByVal type As Integer) As String

 Select Case type

 Case EpfcRasterType.EpfcRASTER_BMP
 Return ".bmp"

 Case EpfcRasterType.EpfcRASTER_TIFF
 Return ".tiff"

 Case EpfcRasterType.EpfcRASTER_JPEG
 Return ".jpg"

 Case EpfcRasterType.EpfcRASTER_EPS
 Return ".eps"

 Case Else
 Throw New Exception("Unsupported Raster Type")
 End Select

 End Function

Simplified Representations

The VB API gives programmatic access to all the simplified representation functionality of Pro/
ENGINEER. Create simplified representations either permanently or on the fly and save, retrieve,
or modify them by adding or deleting items.

Topic

Overview
Retrieving Simplified Representations
Creating and Deleting Simplified Representations
Extracting Information About Simplified Representations
Modifying Simplified Representations
Simplified Representation Utilities

Overview

Using the VB API, you can create and manipulate assembly simplified representations just as you
can using Pro/ENGINEER interactively.

Note:
The VB API supports simplified representation of assemblies only, not parts.

Simplified representations are identified by the IpfcSimRep class. This class is a child of
IpfcModelItem, so you can use the methods dealing with IpfcModelItems to collect, inspect, and
modify simplified representations.

The information required to create and modify a simplified representation is stored in a class
called IpfcSimpRepInstructions which contains several data objects and fields, including:

�❍ String--The name of the simplified representation
�❍ IpfcSimpRepAction--The rule that controls the default treatment of items in the simplified

representation.
�❍ IpfcSimpRepItem--An array of assembly components and the actions applied to them in the

simplified representation.

A IpfcSimpRepItem is identified by the assembly component path to that item. Each
IpfcSimpRepItem has it's own IpfcSimpRepAction assigned to it. IpfcSimpRepAction is a visible
data object that includes a field of type IpfcSimpRepActionType.

EpfcSimpActionType is an enumerated type that specifies the possible treatment of items in a
simplified representation. The possible values are as follows

Values Action

EpfcSIMPREP_NONE No action is specified.

EpfcSIMPREP_REVERSE Reverse the default rule for this component (for example, include it
if the default rule is exclude).

EpfcSIMPREP_INCLUDE Include this component in the simplified representation.

EpfcSIMPREP_EXCLUDE Exclude this component from the simplified representation.

EpfcSIMPREP_SUBSTITUTE Substitute the component in the simplified representation.

EpfcSIMPREP_GEOM Use only the geometrical representation of the component.

EpfcSIMPREP_GRAPHICS Use only the graphics representation of the component.

Retrieving Simplified Representations

Methods Introduced:

● IpfcBaseSession.RetrieveAssemSimpRep()

● IpfcBaseSession.RetrieveGeomSimpRep()

● IpfcBaseSession.RetrieveGraphicsSimpRep()

● IpfcBaseSession.RetrieveSymbolicSimpRep()

● CCpfcRetrieveExistingSimpRepInstructions.Create()

You can retrieve a named simplified representation from a model using the method
IpfcBaseSession.RetrieveAssemSimpRep(), which is analogous to the Assembly mode option
Retrieve Rep in the SIMPLFD REP menu. This method retrieves the object of an existing
simplified representation from an assembly without fetching the generic representation into
memory. The method takes two arguments, the name of the assembly and the simplified
representation data.

To retrieve an existing simplified representation, pass an instance of
CCpfcRetrieveExistingSimpRepInstructions.Create() and specify its name as the second
argument to this method. Pro/ENGINEER retrieves that representation and any active submodels
and returns the object to the simplified representation as a IpfcAssembly.Assembly object.

You can retrieve geometry, graphics, and symbolic simplified representations into session using
the methods IpfcBaseSession.RetrieveGeomSimpRep(), IpfcBaseSession.
RetrieveGraphicsSimpRep(), and IpfcBaseSession.RetrieveSymbolicSimpRep() respectively.
Like IpfcBaseSession.RetrieveAssemSimpRep(), these methods retrieve the simplified
representation without bringing the master representation into memory. Supply the name of the
assembly whose simplified representation is to be retrieved as the input parameter for these
methods. The methods output the assembly. They do not display the simplified representation.

Creating and Deleting Simplified Representations

Methods Introduced:

● CCpfcCreateNewSimpRepInstructions.Create()

● IpfcSolid.CreateSimpRep()

● IpfcSolid.DeleteSimpRep()

To create a simplified representation, you must allocate and fill a IpfcSimpRepInstructions
object by calling the method CCpfcCreateNewSimpRepInstructions.Create(). Specify the name
of the new simplified representation as an input to this method. You should also set the default
action type and add SimpRepItems to the object.

To generate the new simplified representation, call IpfcSolid.CreateSimpRep(). This method
returns the IpfcSimpRep object for the new representation.

The method IpfcSolid.DeleteSimpRep() deletes a simplified representation from its model owner.
The method requires only the IpfcSimpRep object as input.

Extracting Information About Simplified Representations

Methods and Properties Introduced:

● IpfcSimpRep.GetInstructions()

● IpfcSimpRepInstructions.DefaultAction

● IpfcCreateNewSimpRepInstructions.NewSimpName

● IpfcSimpRepInstructions.IsTemporary

● IpfcSimpRepInstructions.Items

Given the object to a simplified representation, IpfcSimpRep.GetInstructions() fills out the
IpfcSimpRepInstructions object.

The IpfcSimpRepInstructions.DefaultAction, IpfcCreateNewSimpRepInstructions.
NewSimpName, and IpfcSimpRepInstructions.IsTemporary methodsproperties return the
associated values contained in the IpfcSimpRepInstructions object.

The methodproperty IpfcSimpRepInstructions.Items returns all the items that make up the
simplified representation.

Example 1: Working with Simplified Representation

This code demonstrates the functionality used when working with existing simplified
representations in Pro/ENGINEER. This function matchSimpRepItem returns an array of
simplified representation matching a ComponentPath for a certain feature as well as the
SimpRepActionType for that item's action in the representation. If none are found the method
prints the <NOT FOUND> message and returns null.

Public Class pfcSimplifiedRepresentationExamples
 'Working with Simplified Representation

'==
 'Function : matchSimpRepItem
 'Purpose : This method will return an array of Simplified
 ' Representation matching a ComponentPath for a certain
 ' feature as well as the SimpRepActionType for that
 ' item's action in the Representation.
'==
 Public Function matchSimpRepItem(ByVal path As IpfcComponentPath, _
 ByVal type As EpfcSimpRepActionType) _
 As CpfcSimpReps

 Dim rootAssembly As IpfcAssembly
 Dim modelItems As IpfcModelItems
 Dim numSimpReps As Integer = 0
 Dim i, j As Integer
 Dim simRep As IpfcSimpRep
 Dim simRepInstrs As IpfcCreateNewSimpRepInstructions
 Dim simRepItems As CpfcSimpRepItems
 Dim numComponents As Integer
 Dim simRepItem As IpfcSimpRepItem
 Dim action As EpfcSimpRepActionType
 Dim found As Boolean = False

 Dim equalIntSeq As Boolean = False
 Dim itemPath As Cintseq
 Dim simpReps As CpfcSimpReps

 Try
'==
 'Get the root assembly and all the simplified representations
'==
 rootAssembly = path.Root
 modelItems =
 rootAssembly.ListItems(EpfcModelItemType.EpfcITEM_SIMPREP)
 numSimpReps = modelItems.Count
 If numSimpReps = 0 Then
 Throw New Exception("No Simplified Representations exist")
 End If

 simpReps = New CpfcSimpReps

'==
 'Loop through all the simp reps
'==
 For i = 0 To numSimpReps - 1
 simRep = modelItems.Item(i)
 simRepInstrs = simRep.GetInstructions()
 simRepItems = simRepInstrs.Items
 numComponents = simRepItems.Count
'==
 'Loop through all the items in each simp rep and check if
 any matches the inputs to the function.
'==
 For j = 0 To numComponents - 1
 simRepItem = simRepItems.Item(j)

 If TypeOf simRepItem.ItemPath Is
 IpfcSimpRepCompItemPath Then
 itemPath = CType(simRepItem.ItemPath,
 IpfcSimpRepCompItemPath).ItemPath
 If (compareSeq(itemPath, path.ComponentIds)) Then
 action = simRepItem.Action.GetType()
 If action = type Then
 simpReps.Insert(simpReps.Count, simRep)
 End If
 End If
 End If
 Next
 Next

 If simpReps.Count = 0 Then
 Return Nothing
 Else

 Return simpReps
 End If

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return Nothing
 End Try
 End Function

'==
 'Function : compareSeq
 'Purpose : This method compares two Cintseq objects.
'==
 Public Function compareSeq(ByVal seq1 As Cintseq, ByVal seq2 As
 Cintseq) _As Boolean

 Dim len1, len2 As Integer
 Dim i As Integer

 len1 = seq1.Count
 len2 = seq2.Count
 If Not len1 = len2 Then
 Return False
 Else
 For i = 0 To len1 - 1
 If Not seq1.Item(i) = seq2.Item(i) Then
 Return False
 End If
 Next
 End If

 Return True

 End Function

End Class

Modifying Simplified Representations

Methods and Properties Introduced:

● IpfcSimpRep.GetInstructions()

● IpfcSimpRep.SetInstructions()

● IpfcSimpRepInstructions.DefaultAction

● IpfcCreateNewSimpRepInstructions.NewSimpName

● IpfcSimpRepInstructions.IsTemporary

Using the VB API, you can modify the attributes of existing simplified representations. After you
create or retrieve a simplified representation, you can make calls to the set methods listed in this
section to designate new values for the fields in the IpfcSimpRepInstructions object.

To modify an existing simplified representation retrieve it and then get the
IpfcSimpRepInstructions object by calling IpfcSimpRep.GetInstructions(). If you created
the representation programmatically within the same application, the
IpfcSimpRepInstructions object is already available. Once you have modified the data
object, reassign it to the corresponding simplified representation by calling the method
IpfcSimpRep.SetInstructions().

Adding Items to and Deleting Items from a Simplified Representation

Methods and Properties Introduced:

● IpfcSimpRepInstructions.Items

● CCpfcSimpRepItem.Create()

● IpfcSimpRep.SetInstructions()

● CCpfcSimpRepReverse.Create()

● CCpfcSimpRepInclude.Create()

● CCpfcSimpRepExclude.Create()

● CCpfcSimpRepSubstitute.Create()

● CCpfcSimpRepGeom.Create()

● CCpfcSimpRepGraphics.Create()

You can add and delete items from the list of components in a simplified representation using the
VB API. If you created a simplified representation using the option Exclude as the default rule,
you would generate a list containing the items you want to include. Similarly, if the default rule for
a simplified representation is Include, you can add the items that you want to be excluded from
the simplified representation to the list, setting the value of the EpfcSimpRepActionType to
EpfcSIMPREP_EXCLUDE.

How to Add Items

1. Get the IpfcSimpRepInstructions object, as described in the previous section.

2. Specify the action to be applied to the item with a call to one of following methods.

3. Initialize a IpfcSimpRepItem object for the item by calling the method
CCpfcSimpRepItem.Create() .

4. Add the item to the IpfcSimpRepItem sequence. Put the new
IpfcSimpRepInstructions using IpfcSimpRepInstructions.Items .

5. Reassign the IpfcSimpRepInstructions object to the corresponding IpfcSimpRep
object by calling IpfcSimpRep.SetInstructions() .

How to Remove Items

Follow the procedure above, except remove the unwanted IpfcSimpRepItem from the sequence.

Simplified Representation Utilities

Methods Introduced:

● IpfcModelItemOwner.ListItems()

● IpfcModelItemOwner.GetItemById()

● IpfcSolid.GetSimpRep()

● IpfcSolid.SelectSimpRep()

● IpfcSolid.ActivateSimpRep()

● IpfcSolid.GetActiveSimpRep()

This section describes the utility methods that relate to simplified representations.

The method IpfcModelItemOwner.ListItems() can list all of the simplified representations in a
Solid.

The method IpfcModelItemOwner.GetItemById() initializes a pfcSimpRep.SimpRep object. It
takes an integer id.

Note:
The VB API supports simplified representation of Assemblies only, not Parts.

The method IpfcSolid.GetSimpRep() initializes a IpfcSimpRep object. The method takes the
following arguments:

�❍ SimpRepname-- The name of the simplified representation in the solid. If you specify this
argument, the method ignores the rep_id.

The method IpfcSolid.SelectSimpRep() creates a Pro/ENGINEER menu to enable interactive
selection. The method takes the owning solid as input, and outputs the object to the selected
simplified representation. If you choose the Quit menu button, the method throws an exception
XToolkitUserAbort.

The methods IpfcSolid.GetActiveSimpRep() and IpfcSolid.ActivateSimpRep() enable you to
find and get the currently active simplified representation, respectively. Given an assembly object,
IpfcSolid.Solid.GetActiveSimpRep() returns the object to the currently active simplified
representation. If the current representation is the master representation, the return is null.

The method IpfcSolid.ActivateSimpRep() activates the requested simplified representation.

To set a simplified representation to be the currently displayed model, you must also call
IpfcModelDisplay().

Task Based Application Libraries

Applications created using different Pro/ENGINEER API products are
interoperable. These products use Pro/ENGINEER as the medium of interaction,
eliminating the task of writing native-platform specific interactions between
different programming languages.

Application interoperability allows the VB API applications to call into Pro/
TOOLKIT from areas not covered in the native interface. It allows you to put a
VBA or VB.NET front end on legacy Pro/TOOLKIT applications, and also allows
you to use J-Link applications and listeners in conjunction with a Pro/Web.Link or
asynchronous J-Link application.

Topic

Managing Application Arguments
Launching a Pro/TOOLKIT DLL
Launching Tasks from J-Link Task Libraries

Managing Application Arguments

The VB API passes application data to and from tasks in other applications as
members of a sequence of IpfcArgument objects. Application arguments consist
of a label and a value. The value may be of any one of the following types:

�❍ Integer
�❍ Double
�❍ Boolean
�❍ ASCII string (a non-encoded string, provided for compatibility with arguments

provided from C applications)
�❍ String (a fully encoded string)
�❍ IpfcSelection (a selection of an item in a Pro/ENGINEER session)
�❍ IpfcTransform3D (a coordinate system transformation matrix)

Methods and Properties Introduced:

● CMpfcArgument.CreateIntArgValue()

● CMpfcArgument.CreateDoubleArgValue()

● CMpfcArgument.CreateBoolArgValue()

● CMpfcArgument.CreateASCIIStringArgValue()

● CMpfcArgument.CreateStringArgValue()

● CMpfcArgument.CreateSelectionArgValue()

● CMpfcArgument.CreateTransformArgValue()

● IpfcArgValue.discr

● IpfcArgValue.IntValue

● IpfcArgValue.DoubleValue

● IpfcArgValue.BoolValue

● IpfcArgValue.ASCIIStringValue

● IpfcArgValue.StringValue

● IpfcArgValue.SelectionValue

● IpfcArgValue.TransformValue

The class pfc.ArgValue contains one of the seven types of values. The VB API
provides different methods to create each of the seven types of argument values.

The IpfcArgValue.discr returns the type of value contained in the argument value
object.

Use the methods listed above to access and modify the argument values.

Modifying Arguments

Methods and Properties Introduced:

● CCpfcArgument.Create()

● IpfcArgument.Label

● IpfcArgument.Value

The method CCpfcArgument.Create() creates a new argument. Provide a name
and value as the input arguments of this method.

The property IpfcArgument.Label returns the label of the argument.

The property IpfcArgument.Value returns the value of the argument.

Launching a Pro/TOOLKIT DLL

The methods described in this section enable theVB API user to register and launch
a Pro/TOOLKIT DLL from a application. The ability to launch and control a Pro/
TOOLKIT application enables the following:

�❍ Reuse of existing Pro/TOOLKIT code with theVB API applications.
�❍ ATB operations.

Methods and Properties Introduced:

● IpfcBaseSession.LoadProToolkitDll()

● IpfcBaseSession.LoadProToolkitLegacyDll()

● IpfcBaseSession.GetProToolkitDll()

● IpfcDll.ExecuteFunction()

● IpfcDll.Id

● IpfcDll.IsActive()

● IpfcDll.Unload()

Use the method IpfcBaseSession.LoadProToolkitDll() to register and start a Pro/
TOOLKIT DLL. The input parameters of this method are similar to the fields of a
registry file and are as follows:

�❍ ApplicationName--The name of the application to initialize.
�❍ DllPath--The full path to the DLL binary file.
�❍ TextPath--The path to the application's message and user interface text files.
�❍ UserDisplay--Set this parameter to true to register the application in the Pro/

ENGINEER user interface and to see error messages if the application fails. If this
parameter is false, the application will be invisible to the user.

The application's user_initialize() function is called when the application is started.
The method returns a handle to the loaded Pro/TOOLKIT DLL.

In order to register and start a legacy Pro/TOOLKIT DLL that is not Unicode-
compliant, use the method IpfcBaseSession.LoadProToolkitLegacyDll(). This
method conveys to Pro/ENGINEER that the loaded DLL application is not
Unicode-compliant and built in the pre-Wildfire 4.0 environment. It takes the same
input parameters as the earlier method IpfcBaseSession.LoadProToolkitDll().

Note:
The method IpfcBaseSession.LoadProToolkitLegacyDll() must be used
only by a pre-Widlfire 4.0 VB API application to load a pre-Wildfire 4.0
Pro/TOOLKIT DLL.

Use the method IpfcBaseSession.GetProToolkitDll() to obtain a Pro/TOOLKIT
DLL handle. Specify the Application_Id, that is, the DLL's identifier string as the
input parameter of this method. The method returns the DLL object or null if the
DLL was not in session. The Application_Id can be determined as follows:

�❍ Use the function ProToolkitDllIdGet() within the DLL application to get a string
representation of the DLL application. Pass NULL to the first argument of
ProToolkitDllIdGet() to get the string identifier for the calling application.

�❍ Use the Get method for the Id attribute in the DLL interface. The method IpfcDll.
Id returns the DLL identifier string.

Use the method IpfcDll.ExecuteFunction() to call a properly designated function
in the Pro/TOOLKIT DLL library. The input parameters of this method are:

�❍ FunctionName--Name of the function in the Pro/TOOLKIT DLL application.

�❍ InputArguments--Input arguments to be passed to the library function.

The method returns an object of IpfcFunctionReturn. This interface contains data
returned by a Pro/TOOLKIT function call. The object contains the return value, as
integer, of the executed function and the output arguments passed back from the
function call.

The method IpfcDll.IsActive() determines whether a Pro/TOOLKIT DLL
previously loaded by the method IpfcBaseSession.LoadProToolkitDll() is still
active.

The method IpfcDll.Unload() is used to shutdown a Pro/TOOLKIT DLL
previously loaded by the method IpfcBaseSession.LoadProToolkitDll() and the
application's user_terminate() function is called.

Launching Tasks from J-Link Task Libraries

The methods described in this section allow you to launch tasks from a predefined J-
Link task library.

Methods Introduced:

● IpfcBaseSession.StartJLinkApplication()

● IpfcJLinkApplication.ExecuteTask()

● IpfcJLinkApplication.IsActive()

● IpfcJLinkApplication.Stop()

Use the method IpfcBaseSession.StartJLinkApplication() to start a J-Link
application. The input parameters of this method are similar to the fields of a
registry file and are as follows:

�❍ ApplicationName--Assigns a unique name to this J-Link application.
�❍ ClassName--Specifies the name of the Java class that contains the J-Link

application's start and stop method. This should be a fully qualified Java package
and class name.

�❍ StartMethod--Specifies the start method of the J-Link application.
�❍ StopMethod--Specifies the stop method of the J-Link application.

�❍ AdditionalClassPath--Specifies the locations of packages and classes that must be
loaded when starting this J-Link application. If this parameter is specified as null,
the default classpath locations are used.

�❍ TextPath--Specifies the application text path for menus and messages. If this
parameter is specified as null, the default text locations are used.

�❍ UserDisplay--Specifies whether to display the application in the Auxiliary
Applications dialog box in Pro/ENGINEER.

Upon starting the application, the static start() method is invoked. The method
returns a IpfcJLinkApplication referring to the J-Link application.

The method IpfcJLinkApplication.ExecuteTask() calls a registered task method
in a J-Link application. The input parameters of this method are:

�❍ Name of the task to be executed.
�❍ A sequence of name value pair arguments contained by the interface

IpfcArguments.

The method outputs an array of output arguments.

The method IpfcJLinkApplication.IsActive() returns a True value if the
application specified by the IpfcJLinkApplication object is active.

The method IpfcJLinkApplication.Stop() stops the application specified by the
IpfcJLinkApplication object. This method activates the application's static
Stop() method.

Graphics

This section covers the VB API Graphics including displaying lists, displaying text and using the mouse.

Topic

Overview
Getting Mouse Input
Displaying Graphics
Display Lists and Graphics

Overview

The methods described in this section allow you to draw temporary graphics in a display window. Methods that are
identified as 2D are used to draw entities (arcs, polygons, and text) in screen coordinates. Other entities may be drawn
using the current model's coordinate system or the screen coordinate system's lines, circles, and polylines. Methods are
also included for manipulating text properties and accessing mouse inputs.

Getting Mouse Input

The following methods are used to read the mouse position in screen coordinates with the mouse button depressed.
Each method outputs the position and an enumerated type description of which mouse button was pressed when the
mouse was at that position. These values are contained in the interface IpfcMouseStatus.

The enumerated values are defined in EpfcMouseButton and are as follows:

�❍ EpfcMOUSE_BTN_LEFT
�❍ EpfcMOUSE_BTN_RIGHT
�❍ EpfcMOUSE_BTN_MIDDLE
�❍ EpfcMOUSE_BTN_LEFT_DOUBLECLICK

Methods Introduced:

● IpfcSession.UIGetNextMousePick()

● IpfcSession.UIGetCurrentMouseStatus()

The method IpfcSession.UIGetNextMousePick() returns the mouse position when you press a mouse button. The
input argument is the mouse button that you expect the user to select.

The method IpfcSession.UIGetCurrentMouseStatus() returns a value whenever the mouse is moved or a button is
pressed. With this method a button does not have to be pressed for a value to be returned. You can use an input
argument to flag whether or not the returned positions are snapped to the window grid.

Drawing a Mouse Box

This method allows you to draw a mouse box.

Method Introduced:

● IpfcSession.UIPickMouseBox()

The method IpfcSession.UIPickMouseBox() draws a dynamic rectangle from a specified point in screen coordinates
to the current mouse position until the user presses the left mouse button. The return value for this method is of the type
IpfcOutline3D.

You can supply the first corner location programmatically or you can allow the user to select both corners of the box.

Displaying Graphics

All the methods in this section draw graphics in the Pro/ENGINEER current window and use the color and linestyle set
by calls to IpfcBaseSession.SetStdColorFromRGB() and IpfcBaseSession.SetLineStyle(). The methods draw the
graphics in the Pro/ENGINEER graphics color. The default graphics color is white.

The methods in this section are called using the interface IpfcDisplay. The Display interface is extended by the
IpfcBaseSession interface. This architecture allows you to call all these methods on any IpfcSession object.

Methods Introduced:

● IpfcDisplay.SetPenPosition()

● IpfcDisplay.DrawLine()

● IpfcDisplay.DrawPolyline()

● IpfcDisplay.DrawCircle()

● IpfcDisplay.DrawArc2D()

● IpfcDisplay.DrawPolygon2D()

The method IpfcDisplay.SetPenPosition() sets the point at which you want to start drawing a line. The method
IpfcDisplay.DrawLine() draws a line to the given point from the position given in the last call to either of the two
methods. Call pfcDisplay.Display.SetPenPosition() for the start of the polyline, and pfcDisplay.Display.DrawLine
for each vertex. If you use these methods in two-dimensional modes, use screen coordinates instead of solid
coordinates.

The method IpfcDisplay.DrawCircle() uses solid coordinates for the center of the circle and the radius value. The
circle will be placed to the XY plane of the model.

The method IpfcDisplay.DrawPolyline() also draws polylines, using an array to define the polyline.

In two-dimensional models the Display Graphics methods draw graphics at the specified screen coordinates.

The method IpfcDisplay.DrawPolygon2D() draws a polygon in screen coordinates. The method IpfcDisplay.
DrawArc2D() draws an arc in screen coordinates.

Controlling Graphics Display

Properties Introduced:

● IpfcDisplay.CurrentGraphicsColor

● IpfcDisplay.CurrentGraphicsMode

The property IpfcDisplay.CurrentGraphicsColor returns the Pro/ENGINEER standard color used to display
graphics. The Pro/ENGINEER default is EpfcCOLOR_DRAWING (white).

The property IpfcDisplay.CurrentGraphicsMode returns the mode used to draw graphics:

�❍ EpfcDRAW_GRAPHICS_NORMAL--Pro/ENGINEER draws graphics in the required color in each invocation.
�❍ EpfcDRAW_GRAPHICS_COMPLEMENT--Pro/ENGINEER draws graphics normally, but will erase graphics drawn

a second time in the same location. This allows you to create rubber band lines.

Example Code: Creating Graphics On Screen

This example demonstrates the use of mouse-tracking methods to draw graphics on the screen. The static method
DrawRubberbandLine prompts the user to pick a screen point. The example uses the `complement mode' to cause the
line to display and erase as the user moves the mouse around the window.

Note:
This example uses the method transformPosition to convert the coordinates into the 3D coordinate system of a
solid model, if one is displayed.

Imports pfcls

Public Class pfcGraphicsExamples

 Public Sub drawRubberbandLine(ByRef session As pfcls.IpfcSession)

 Dim mouse As IpfcMouseStatus
 Dim firstPosition As CpfcPoint3D
 Dim secondPosition As CpfcPoint3D
 Dim currentMode As EpfcGraphicsMode

 Try
 session.UIDisplayMessage("pfcGraphicsExamples.txt", _
 "Pick first location for rubberband line", Nothing)
'==
'Expect the user to pick with left button
'==
 mouse = session.UIGetNextMousePick(EpfcMouseButton.EpfcMOUSE_BTN_LEFT)

 session.UIDisplayMessage("pfcGraphicsExamples.txt", _
 "Click left mouse button to exit", Nothing)

'==
'Transform screen point to model location, if necessary
'==
 firstPosition = transformPosition(session, mouse.Position)
'==
'Set graphics mode to complement, so that graphics erase after use
'==
 currentMode = session.CurrentGraphicsMode
 session.CurrentGraphicsMode = EpfcGraphicsMode.EpfcDRAW_GRAPHICS_COMPLEMENT
'==
'Get mouse position and loop till left mouse button is not pressed
'==
 mouse = session.UIGetCurrentMouseStatus(False)

 While Not mouse.SelectedButton = EpfcMouseButton.EpfcMOUSE_BTN_LEFT
 session.SetPenPosition(firstPosition)
 secondPosition = transformPosition(session, mouse.Position)
'==
'Draw a rubberband line
'==
 session.DrawLine(secondPosition)
 mouse = session.UIGetCurrentMouseStatus(False)
'==
'Erase the previous line
'==
 session.SetPenPosition(firstPosition)
 session.DrawLine(secondPosition)

 End While

 session.CurrentGraphicsMode = currentMode

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)

 End Try
 End Sub
'==
'Function : transformPosition
'Purpose : This function transforms the 2D screen coordinates into
' 3D model coordinates, if necessary.
'==
 Private Function transformPosition(ByRef session As pfcls.IpfcSession, _
 ByVal inPosition As CpfcPoint3D) _
 As IpfcPoint3D
 Dim model As IpfcModel
 Dim currView As IpfcView
 Dim invOrient As IpfcTransform3D
 Dim outPosition As CpfcPoint3D

 model = session.CurrentModel
'==
'Skip transform if model does not exist or is not a 3D model
'==
 If model Is Nothing Then
 Return inPosition
 End If

 If (Not model.Type = EpfcModelType.EpfcMDL_PART) And _
 (Not model.Type = EpfcModelType.EpfcMDL_ASSEMBLY) And _
 (Not model.Type = EpfcModelType.EpfcMDL_MFG) Then
 Return inPosition
 End If
'==
'Get current view's orientation and invert it
'==
 currView = model.GetCurrentView()
 invOrient = currView.Transform
 invOrient.Invert()
'==
'Get the model point

'==
 outPosition = invOrient.TransformPoint(inPosition)
 Return outPosition

 End Function
End Class

 Display example text

#
#
Pick first location for rubberband line
Pick first location for rubberband line
#
#
Click left mouse button to exit
Click left mouse button to exit
#
#

Displaying Text in the Graphics Window

Method Introduced:

● IpfcDisplay.DrawText2D()

The method IpfcDisplay.DrawText2D() places text at a position specified in screen coordinates. If you want to add
text to a particular position on the solid, you must transform the solid coordinates into screen coordinates by using the
view matrix.

Text items drawn are not known to Pro/ENGINEER and therefore are not redrawn when you select View, Repaint. To
notify the Pro/ENGINEER of these objects, create them inside the OnDisplay() method of the Display Listener.

Controlling Text Attributes

Properties Introduced:

● IpfcDisplay.TextHeight

● IpfcDisplay.WidthFactor

● IpfcDisplay.RotationAngle

● IpfcDisplay.SlantAngle

These properties control the attributes of text added by calls to IpfcDisplay.DrawText2D().

You can accessthe following information:

�❍ Text height (in screen coordinates)
�❍ Width ratio of each character, including the gap, as a proportion of the height
�❍ Rotation angle of the whole text, in counterclockwise degrees
�❍ Slant angle of the text, in clockwise degrees

Controlling Text Fonts

Methods and Properties Introduced:

● IpfcDisplay.DefaultFont

● IpfcDisplay.CurrentFont

● IpfcDisplay.GetFontById()

● IpfcDisplay.GetFontByName()

The property IpfcDisplay.DefaultFont returns the default Pro/ENGINEER text font. The text fonts are identified in
Pro/ENGINEER by names and by integer identifiers. To find a specific font, use the methods IpfcDisplay.
GetFontById() or IpfcDisplay.GetFontByName().

Display Lists and Graphics

When generating a display of a solid in a window, Pro/ENGINEER maintains two display lists. A display list contains
a set of vectors that are used to represent the shape of the solid in the view. A 3D display list contains a set of three-
dimensional vectors that represent an approximation to the geometry of the edges of the solid. This list gets rebuilt
every time the solid is regenerated.

A 2D display list contains the two-dimensional projections of the edges of the solid 3D display list onto the current
window. It is rebuilt from the 3D display list when the orientation of the solid changes. The methods in this section
enable you to add your own vectors to the display lists, so that the graphics will be redisplayed automatically by Pro/
ENGINEER until the display lists are rebuilt.

When you add graphics items to the 2D display list, they will be regenerated after each repaint (when zooming and
panning) and will be included in plots created by Pro/ENGINEER. When you add graphics to the 3D display list, you
get the further benefit that the graphics survive a change to the orientation of the solid and are displayed even when you
spin the solid dynamically.

Methods Introduced:

● IpfcDisplayListener.OnDisplay()

● IpfcDisplay.CreateDisplayList2D()

● IpfcDisplay.CreateDisplayList3D()

● IpfcDisplayList2D.Display()

● IpfcDisplayList3D.Display()

● IpfcDisplayList2D.Delete()

● IpfcDisplayList3D.Delete()

A display listener is a class that acts similarly to an action listener. You must implement the method inherited from the
IpfcDisplay.DisplayListener interface. The implementation should provide calls to methods on the provided
IpfcDisplay.Display object to produce 2D or 3D graphics.

In order to create a display list in Pro/ENGINEER, you call IpfcDisplay.CreateDisplayList2D() or IpfcDisplay.
CreateDisplayList3D() to tell Pro/ENGINEER to use your listener to create the display list vectors.

IpfcDisplayList2D.Display() or IpfcDisplayList3D.Display() will display or redisplay the elements in your display
list. The application should delete the display list data when it is no longer needed.

The methods IpfcDisplayList2D.Delete() and the method IpfcDisplayList3D.Delete() will remove both the specified
display list from a session.

Note:
The method IpfcWindow.Refresh() does not cause either of the display lists to be regenerated, but simply
repaints the window using the 2-D display list.

Exceptions

Possible exceptions that might be thrown by displaying graphics methods are shown in the following table:

Exception Reason

XToolkitNotExist The display list is empty.

XToolkitNotFound The method could not find the display list or the font specified in a previous call to IpfcDisplay.
CurrentFont was not found.

XToolkitCantOpen The use of display lists is disabled.

XToolkitAbort The display was aborted.

XToolkitNotValid The specified display list is invalid.

XToolkitInvalidItem There is an invalid item in the display list.

XToolkitGeneralError The specified display list is already in the process of being displayed.

Example Code

This example demonstrates the use of pfcDisplay methods with 3D display lists. The static method AddCircleDisplay
() creates a new 3D display list whose graphics are generated by the code in the OnDisplay() method of the Display
Circles class. This display list places circles at all of the vertices of a part model on the screen.

 Dim list3D As IpfcDisplayList3D

 Public Sub addCircleDisplay(ByRef session As pfcls.IpfcSession)

 Dim drawCircles As New DisplayCircles

 Try

'==
 'Id is an arbitrary number but should be unique to the
 'application
'==
 list3D = session.CreateDisplayList3D(1, drawCircles)

 session.CurrentWindow.Repaint()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub
'==
'Function : deleteCircleDisplay
'Purpose : The method deletes the display list.
'==
 Public Sub deleteCircleDisplay(ByRef session As pfcls.IpfcSession)
 If Not list3D Is Nothing Then
 list3D.Delete()
 session.CurrentWindow.Repaint()
 End If
 End Sub
'==
 'Class : DisplayCircles
 'Purpose : Display list listener class - determines how the
 ' display list shows the graphics.
'==
 Private Class DisplayCircles
 Implements IpfcDisplayListener
 Implements ICIPClientObject
 Implements IpfcActionListener

 Public Function GetClientInterfaceName() As String Implements pfcls.ICIPClientObject.
GetClientInterfaceName
 GetClientInterfaceName = "IpfcDisplayListener"
 End Function

 Public Sub OnDisplay(ByVal _Display As pfcls.IpfcDisplay) Implements pfcls.
IpfcDisplayListener.OnDisplay
 Dim currColour As EpfcStdColor
 Dim session As IpfcSession
 Dim model As IpfcModel
 Dim edges As IpfcModelItems
 Dim i As Integer
 Dim edge As IpfcModelItem
 Dim vertex1, vertex2 As IpfcPoint3D
 Dim radius As Double = 0.5

 currColour = _Display.CurrentGraphicsColor
 _Display.CurrentGraphicsColor = EpfcStdColor.EpfcCOLOR_ERROR
'==
 'Get the current model and check that it is a part
'==
 session = CType(_Display, IpfcSession)
 model = session.CurrentModel

 If model Is Nothing OrElse (Not model.Type = EpfcModelType.EpfcMDL_PART) Then
 Return

 End If
'==
 'Circles on all vertices
'==
 edges = model.ListItems(EpfcModelItemType.EpfcITEM_EDGE)
 For i = 0 To edges.Count - 1
 edge = edges.Item(i)
 vertex1 = edge.Eval3DData(0.0).Point
 vertex2 = edge.Eval3DData(1.0).Point

 _Display.DrawCircle(vertex1, radius)
 _Display.DrawCircle(vertex2, radius)

 Next

 _Display.CurrentGraphicsColor = currColour

 End Sub

 End Class

External Data

This chapter explains using External Data in the VB API.

Topic

External Data
Exceptions

External Data

This chapter describes how to store and retrieve external data. External data enables a The VB API application to
store its own data in a Pro/ENGINEER database in such a way that it is invisible to the Pro/ENGINEER user.
This method is different from other means of storage accessible through the Pro/ENGINEER user interface.

Introduction to External Data

External data provides a way for the Pro/ENGINEER application to store its own private information about a Pro/
ENGINEER model within the model file. The data is built and interrogated by the application as a workspace
data structure. It is saved to the model file when the model is saved, and retrieved when the model is retrieved.
The external data is otherwise ignored by Pro/ENGINEER; the application has complete control over form and
content.

The external data for a specific Pro/ENGINEER model is broken down into classes and slots. A class is a named
``bin'' for your data, and identifies it as yours so no other Pro/ENGINEER API application (or other classes in
your own application) will use it by mistake. An application usually needs only one class. The class name should
be unique for each application and describe the role of the data in your application.

Each class contains a set of data slots. Each slot is identified by an identifier and optionally, a name. A slot
contains a single data item of one of the following types:

The VB API Type Data

EpfcEXTDATA_INTEGER integer

EpfcEXTDATA_DOUBLE double

EpfcEXTDATA_STRING string

The The VB API interfaces used to access external data in Pro/ENGINEER are:

The VB API Type Data Type

IpfcExternalDataAccess This is the top level object and is created when attempting to access external data.

IpfcExternalDataClass This is a class of external data and is identified by a unique name.

IpfcExternalDataSlot This is a container for one item of data. Each slot is stored in a class.

IpfcExternalData This is a compact data structure that contains either an integer, double or string
value.

Compatibility with Pro/TOOLKIT

The VB API and Pro/TOOLKIT share external data in the same manner. The VB API external data is accessible
by Pro/TOOLKIT and the reverse is also true. However, an error will result if The VB API attempts to access
external data previously stored by Pro/TOOLKIT as a stream.

Accessing External Data

Methods Introduced:

● IpfcModel.AccessExternalData()

● IpfcModel.TerminateExternalData()

● IpfcExternalDataAccess.IsValid()

The method IpfcModel.AccessExternalData() prepares Pro/ENGINEER to read external data from the model
file. It returns the IpfcExternalDataAccess object that is used to read and write data. This method should be
called only once for any given model in session.

The method IpfcModel.TerminateExternalData() stops Pro/ENGINEER from accessing external data in a
model. When you use this method all external data in the model will be removed. Permanent removal will occur
when the model is saved.

Note:
If you need to preserve the external data created in session, you must save the model before calling this
function. Otherwise, your data will be lost.

The method IpfcExternalDataAccess.IsValid() determines if the IpfcExternalDataAccess object can be used
to read and write data.

Storing External Data

Methods and Properties Introduced:

● IpfcExternalDataAccess.CreateClass()

● IpfcExternalDataClass.CreateSlot()

● IpfcExternalDataSlot.Value

The first step in storing external data in a new class and slot is to set up a class using the method
IpfcExternalDataAccess.CreateClass(), which provides the class name. The method outputs
pfcExternalDataClass, used by the application to reference the class.

The next step is to use IpfcExternalDataClass.CreateSlot() to create an empty data slot and input a slot name.
The method outputs a pfcExternalDataSlot object to identify the new slot.

Note:
Slot names cannot begin with a number.

The property IpfcExternalDataSlot.Value specifies the data type of a slot and writes an item of that type to the
slot. The input is a pfcExternalData object that you can create by calling any one of the methods in the next
section.

Example Code:

This function demonstrates the usage of external data. It provides utility methods to
convert a VB hashtable to a model's external data.
Imports pfcls

Public Class pfcExternalDataExamples
 Public Sub storeExternalData(ByRef session As IpfcBaseSession, _
 ByVal table As Hashtable, _
 ByVal className As String)

 Dim model As IpfcModel
 Dim dataAccess As IpfcExternalDataAccess
 Dim dataClass As IpfcExternalDataClass
 Dim row As DictionaryEntry
 Dim value As Object
 Dim data As IpfcExternalData
 Dim slot As IpfcExternalDataSlot

 Try
'==
'Get the current solid
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If
'==
'Get or create the external class
'==
 dataAccess = model.AccessExternalData()
 dataClass = getClassByName(dataAccess, className)

 If dataClass Is Nothing Then
 dataClass = dataAccess.CreateClass(className)
 End If
'==
'Loop on all the keys in the hash table
'==
 For Each row In table
'==
'Class name must be string
'==
 If Not row.Key.GetType.ToString = "System.String" Then
 Continue For
 End If
 value = row.Value
'==
'Create proper data type
'==
 If value.GetType.ToString = "System.Int16" Or _
 value.GetType.ToString = "System.Int32" Or _
 value.GetType.ToString = "System.Byte" Then

 data = (New CMpfcExternal). _
 CreateIntExternalData(CType(value, System.Int32))

 ElseIf value.GetType Is System.Type.GetType("System.Double") Then

 data = (New CMpfcExternal). _
 CreateDoubleExternalData(CType(value, System.Double))

 Else
 data = (New CMpfcExternal). _
 CreateStringExternalData(value.ToString)

 End If
'==
'Get or create the slot and assign the value
'==
 slot = getSlotByName(dataClass, row.Key.ToString)
 If slot Is Nothing Then
 slot = dataClass.CreateSlot(row.Key.ToString)
 End If
 slot.Value = data
 Next

 'model.Save()

 Catch ex As Exception
 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 End Try
 End Sub
End Class

Initializing Data Objects

Methods Introduced:

● CMpfcExternal.CreateIntExternalData()

● CMpfcExternal.CreateDoubleExternalData()

● CMpfcExternal.CreateStringExternalData()

These methods initialize a pfcExternalData object with the appropriate data inputs.

Retrieving External Data

Methods and Properties Introduced:

● IpfcExternalDataAccess.LoadAll()

● IpfcExternalDataAccess.ListClasses()

● IpfcExternalDataClass.ListSlots()

● IpfcExternalData.discr

● IpfcExternalData.IntegerValue

● IpfcExternalData.DoubleValue

● IpfcExternalData.StringValue

For improved performance, external data is not loaded automatically into memory with the model. When the
model is in session, call the method IpfcExternalDataAccess.LoadAll() to retrieve all the external data for the
specified model from the Pro/ENGINEER model file and put it in the workspace. The method needs to be called
only once to retrieve all the data.

The method IpfcExternalDataAccess.ListClasses() returns a sequence of IpfcExternalDataClasses registered
in the model. The method IpfcExternalDataClass.ListSlots() provide a sequence of IpfcExternalDataSlots
existing for each class.

To find out a data type of a IpfcExternalData, call IpfcExternalData.discr and then call one of these
properties to get the data, depending on the data type:

�❍ IpfcExternalData.IntegerValue
�❍ IpfcExternalData.DoubleValue
�❍ IpfcExternalData.StringValue

Example Code:

This function demonstrates the usage of external data. It provides utility methods to get a VB hashtable from a
model's external data.

 Public Function retrieveExternalData(ByRef session As IpfcBaseSession,

 _ByVal className As String) As
 Hashtable
 Dim model As IpfcModel
 Dim dataAccess As IpfcExternalDataAccess
 Dim dataClass As IpfcExternalDataClass
 Dim slots As IpfcExternalDataSlots
 Dim i As Integer
 Dim table As Hashtable
 Dim value As Object
 Dim data As IpfcExternalData
 Dim slot As IpfcExternalDataSlot

 Try
'==
'Get the current solid
'==
 model = session.CurrentModel
 If model Is Nothing Then
 Throw New Exception("Model not present")
 End If

 table = New Hashtable
'===
'Get the external data class
'==
 dataAccess = model.AccessExternalData()
 dataClass = getClassByName(dataAccess, className)

 If Not dataClass Is Nothing Then
 slots = dataClass.ListSlots()
'==
'Loop through all the slots
'==
 For i = 0 To slots.Count - 1
 value = Nothing
 slot = slots.Item(i)
'==
'Assign value to the object
'==
 data = slot.Value
 Select Case data.discr
 Case EpfcExternalDataType.EpfcEXTDATA_STRING
 value = CType(data.StringValue, Object)
 Case EpfcExternalDataType.EpfcEXTDATA_INTEGER
 value = CType(data.IntegerValue, Object)
 Case EpfcExternalDataType.EpfcEXTDATA_DOUBLE
 value = CType(data.DoubleValue, Object)
 End Select

 table.Add(slot.Name, value)
 Next
 End If

 Return table

 Catch ex As Exception

 MsgBox(ex.Message.ToString + Chr(13) + ex.StackTrace.ToString)
 Return nothing
 End Try
 End Function
'==
'Function : getClassByName
'Purpose : This utility method returns a class, given its name.
'==
 Private Function getClassByName(ByVal dataAccess As IpfcExternalDataAccess, _ByVal
className As String)
_As IpfcExternalDataClass

 Dim classes As IpfcExternalDataClasses
 Dim i As Integer

 classes = dataAccess.ListClasses()
 For i = 0 To classes.Count - 1
 If classes.Item(i).Name = className Then
 Return (classes.Item(i))
 End If
 Next
 Return nothing
 End Function
'==
'Function : getSlotByName
'Purpose : This utility method returns a slot, given its name.
'==
 Private Function getSlotByName(ByVal extClass As IpfcExternalDataClass, _ByVal
slotName As String) _As IpfcExternalDataSlot
 Dim extSlots As IpfcExternalDataSlots
 Dim i As Integer

 extSlots = extClass.ListSlots()

 For i = 0 To extSlots.Count - 1
 If extSlots.Item(i).Name = slotName Then
 Return (extSlots.Item(i))
 End If
 Next
 Return nothing
 End Function

Exceptions

Most exceptions thrown by external data methods in The VB API extend IpfcXExternalDataError, which is
a subclass of IpfcXToolkitError.

An additional exception thrown by external data methods is IpfcXBadExternalData. This exception signals
an error accessing data. For example, external data access might have been terminated or the model might
contain stream data from Pro/TOOLKIT.

The following table lists these exceptions.

Exception Cause

IpfcXExternalDataInvalidObject Generated when a model or class is invalid.

IpfcXExternalDataClassOrSlotExists Generated when creating a class or slot and the proposed class or slot
already exists.

IpfcXExternalDataNamesTooLong Generated when a class or slot name is too long.

IpfcXExternalDataSlotNotFound Generated when a specified class or slot does not exist.

IpfcXExternalDataEmptySlot Generated when the slot you are attempting to read is empty.

IpfcXExternalDataInvalidSlotName Generated when a specified slot name is invalid.

IpfcXBadGetExternalData
Generated when you try to access an incorrect data type in a
pfcExternalData object.

Windchill Connectivity APIs

Pro/ENGINEER has the capability to be directly connected to Windchill solutions,
including Windchill Foundation, ProjectLink, PDMLink, and Windchill ProductPoint
servers. This access allows users to manage and control the product data seamlessly
from within Pro/ENGINEER.

This section lists the VB APIs that support Windchill servers and server operations in a
connected Pro/ENGINEER session.

Topic

Introduction
Accessing a Windchill Server from a Pro/ENGINEER Session
Accessing Workspaces
Workflow to Register a Server
Aliased URL
Server Operations
Utility APIs
Sample Batch Workflow

Introduction

The methods introduced in this section provide support for the basic Windchill server
operations from within Pro/ENGINEER. With these methods, operations such as
registering a Windchill server, managing workspaces, and check in or check out of
objects will be possible via the VB API. The capabilities of these APIs are similar to
the operations available from within the Pro/ENGINEER Wildfire client, with some
restrictions.

Windchill ProductPoint does not have the concept of a workspace. New objects are
directly stored to a user-specified folder in the Windchill ProductPoint server. New
iteration of the objects are stored in the same folder as the previous iteration. Hence
some of the APIs related to Workspace operations may not be supported for
customizations using Windchill ProductPoint.

Non-Interactive Mode Operations

Some of the APIs specified in this section operate only in batch mode and cannot be
used in the normal Pro/ENGINEER interactive mode. This restriction is mainly
centered around the VB API registered servers, that is, servers registered by the VB
API are not available in the Pro/ENGINEER Server Registry or in other locations in
the Pro/ENGINEER user interface such as the Folder Navigator and embedded
browser. If a VB API customization requires the user to have interactive access to the
server, the server must be registered via the normal Pro/ENGINEER techniques, that is,
either by entry in the Server Registry or by automatic registration of a previously
registered server.

All of these APIs are supported from a non-interactive, that is, batch mode application
or asynchronous application. For more information about batch mode and
asynchronous mode, refer to the section "VB API Fundamentals:Controlling Pro/
ENGINEER".

Accessing a Windchill Server from a Pro/ENGINEER
Session

Pro/ENGINEER allows you to register Windchill servers as a connection between the
Windchill database and Pro/ENGINEER. Although the represented Windchill database
can be from Windchill Foundation, Windchill ProjectLink, Windchill PDMLink, or
Windchill ProductPoint, all types of databases are represented in the same way.

You can use the following identifiers when referring to Windchill servers in the VB
API:

�❍ Codebase URL--This is the root portion of the URL that is used to connect to a
Windchill server. For example http://wcserver.company.com/Windchill.

�❍ Server Alias--A server alias is used to refer to the server after it has been registered.
The alias is also used to construct paths to files in the server workspaces and
commonspaces. The server alias is chosen by the user or application and it need not
have any direct relationship to the codebase URL. An alias can be any normal name,
such as my_alias.

Accessing Information Before Registering a Server

To start working with a Windchill server, you must establish a connection by
registering the server in Pro/ENGINEER. The methods described in this section allow
you to connect to a Windchill server and access information related to the server.

Methods and Properties Introduced:

● IpfcBaseSession.AuthenticateBrowser()

● IpfcBaseSession.GetServerLocation()

● IpfcServerLocation.Class

● IpfcServerLocation.Location

● IpfcServerLocation.Version

● IpfcServerLocation.ListContexts()

● IpfcServerLocation.CollectWorkspaces()

Use the method IpfcBaseSession.AuthenticateBrowser() to set the authentication
context using a valid username and password. A successful call to this method allows
the Pro/ENGINEER session to register with any server that accepts the username and
password combination. A successful call to this method also ensures that an
authentication dialog box does not appear during the registration process. You can call
this method any number of times to set the authentication context for any number of
Windchill servers, provided that you register the appropriate servers or servers
immediately after setting the context.

The property IpfcServerLocation.Location specifies a pfcServer.
ServerLocation object representing the codebase URL for a possible server. The
server may not have been registered yet, but you can use this object and the methods it
contains to gather information about the server prior to registration.

The property IpfcServerLocation.Class specifies the class of the server or server
location. The values are:

�❍ Windchill--Denotes either a Windchill Classic PDM server or a Windchill PDMLink
server.

�❍ ProjectLink--Denotes Windchill ProjectLink type of servers.
�❍ productpoint--Denotes a Windchill ProductPoint server.

The property IpfcServerLocation.Version specifies the version of Windchill that is
configured on the server or server location, for example, "7.0" or "8.0." This method
accepts the server codebase URL as the input.

Note:
IpfcServerLocation.Version works only for Windchill servers and throws the

pfcExceptions.XToolkitUnsupported exception, if the server is not aWindchill
server.

The method IpfcServerLocation.ListContexts() gives a list of all the available
contexts for a specified server. A context is used to associate a workspace with a
product, project, or library.

The method IpfcServerLocation.CollectWorkspaces() returns the list of available
workspaces for the specified server. The workspace objects returned contain the name
of each workspace and its context.

Note:
This method is not supported for Windchill ProductPoint.

Registering and Activating a Server

The methods described in this section are restricted to the non-interactive mode only.
Refer to the section, Non-Interactive Mode Operations, for more information.

Methods Introduced:

● IpfcBaseSession.RegisterServer()

● IpfcServer.Activate()

● IpfcServer.Unregister()

The method IpfcBaseSession.RegisterServer() registers the specified server with the
codebase URL. A successful call to IpfcBaseSession.AuthenticateBrowser() with a
valid username and password is essential for pfcSession.BaseSession.RegisterServer
to register the server without launching the authentication dialog box. Registration of
the server establishes the server alias. You must designate an existing workspace to use
when registering the server. After the server has been registered, you may create a new
workspace.

Note:
While working with the Windchill ProductPoint server, specify the value of the
input argument WorkspaceName as NULL for this method.

The method IpfcServer.Activate() sets the specified server as the active server in the
Pro/ENGINEER session.

The method IpfcServer.Unregister() unregisters the specified server. This is similar to
Server Registry>Delete through the user interface.

Accessing Information From a Registered Server

Properties Introduced:

● IpfcServer.IsActive

● IpfcServer.Alias

● IpfcServer.Context

● IpfcWPPServer.GetServerTargetfolder()

● IpfcWPPServer.SetServerTargetfolder()

The property IpfcServer.IsActive specifies if the server is active.

The property IpfcServer.Alias returns the alias of a server if you specify the codebase
URL.

The property IpfcServer.Context returns the active context of the active server.

Note:
This function is not supported while working with a Windchill ProductPoint
server.

The method IpfcWPPServer.GetServerTargetfolder() returns a location on the
Windchill ProductPoint server where you can save new product items. Specify the
location of the target folder on the Windchill ProductPoint server using the method
IpfcWPPServer.SetServerTargetfolder(). These methods are applicable only when
working with a Windchill ProductPoint server.

Information on Servers in Session

Methods Introduced:

● IpfcBaseSession.GetActiveServer()

● IpfcBaseSession.GetServerByAlias()

● IpfcBaseSession.GetServerByUrl()

● IpfcBaseSession.ListServers()

The method IpfcBaseSession.GetActiveServer() returns returns the active server
handle.

The method IpfcBaseSession.GetServerByAlias() returns the handle to the server
matching the given server alias, if it exists in session.

The method IpfcBaseSession.GetServerByUrl() returns the handle to the server
matching the given server URL and workspace name, if it exists in session.

The method IpfcBaseSession.ListServers() returns a list of servers registered in this
session.

Accessing Workspaces

For every workspace, a new distinct storage location is maintained in the user's
personal folder on the server (server-side workspace) and on the client (client-side
workspace cache). Together, the server-side workspace and the client-side workspace
cache make up the workspace.

Note:
Windchill ProductPoint does not have the concept of a workspace or active
workspace. Therefore, many methods in this section are not applicable for this
product.

Methods and Properties Introduced:

● CCpfcWorkspaceDefinition.Create()

● IpfcWorkspaceDefinition.WorkspaceName

● IpfcWorkspaceDefinition.WorkspaceContext

The class IpfcWorkspaceDefinition contains the name and context of the workspace.
The method IpfcServerLocation.CollectWorkspaces() returns an array of workspace
data. Workspace data is also required for the method IpfcServer.CreateWorkspace()
to create a workspace with a given name and a specific context.

The method CCpfcWorkspaceDefinition.Create() creates a new workspace definition
object suitable for use when creating a new workspace on the server.

The property IpfcWorkspaceDefinition.WorkspaceName retrieves the name of the
workspace.

The property IpfcWorkspaceDefinition.WorkspaceContext retrieves the context of
the workspace.

Creating and Modifying the Workspace

Methods and Properties Introduced:

● IpfcServer.CreateWorkspace()

● IpfcServer.ActiveWorkspace

● IpfcServerLocation.DeleteWorkspace()

All methodsand properties described in this section, except IpfcServer.
ActiveWorkspace, are permitted only in the non-interactive mode. Refer to the
section, Non-Interactive Mode Operations, for more information.

The method IpfcServer.CreateWorkspace() creates and activates a new workspace.

The property IpfcServer.ActiveWorkspace retrieves the name of the active
workspace.

The method IpfcServerLocation.DeleteWorkspace() deletes the specified workspace.
The method deletes the workspace only if the following conditions are met:

�❍ The workspace is not the active workspace.
�❍ The workspace does not contain any checked out objects.

Use one of the following techniques to delete an active workspace:

�❍ Make the required workspace inactive using IpfcServer.ActiveWorkspace with the
name of some other workspace and then call pfcServer.ServerLocation.
DeleteWorkspace.

�❍ Unregister the server using IpfcServer.Unregister() and delete the workspace.

Workflow to Register a Server

To Register a Server with an Existing Workspace

Perform the following steps to register a Windchill server with an existing workspace:

1. Set the appropriate authentication context using the method IpfcBaseSession.
AuthenticateBrowser() with a valid username and password.

2. Look up the list of workspaces using the method IpfcServerLocation.
CollectWorkspaces(). If you already know the name of the workspace on the
server, then ignore this step.

3. Register the workspace using the method IpfcBaseSession.RegisterServer()
with an existing workspace name on the server.

4. Activate the server using the method IpfcServer.Activate().

To Register a Server with a New Workspace

Perform the following steps to register a Windchill server with a new workspace:

1. Perform steps 1 to 4 in the preceding section to register the Windchill server
with an existing workspace.

2. Use the method IpfcServerLocation.ListContexts() to choose the required
context for the server.

3. Create a new workspace with the required context using the method IpfcServer.
CreateWorkspace(). This method automatically makes the created workspace
active.

Note:
You can create a workspace only after the server is registered.

Aliased URL

An aliased URL serves as a handle to the server objects. You can access the server
objects in the commonspace (shared folders) and the workspace using an aliased URL.
An aliased URL is a unique identifier for the server object and its format is as follows:

�❍ Object in workspace has a prefix wtws

wtws://<server_alias>/<workspace_name>/<object_server_name>

where <object_server_name> includes <object_name>.<object_extension>

For example, wtws://my_server/my_workspace/abcd.prt, wtws://
my_server/my_workspace/intf_file.igs

where

<server_alias> is my_server

<workspace_name> is my_workspace
�❍ Object in commonspace has a prefix wtpub

wtpub://<server_alias>/<folder_location>/<object_server_name>

For example, wtpub://my_server/path/to/cs_folder/abcd.prt

where

<server_alias> is my_server

<folder_location> is path/to/cs_folder

Note:

● object_server_name must be in lowercase.
● The APIs are case-sensitive to the aliased URL.
● <object_extension> should not contain Pro/ENGINEER versions, for

example, .1 or .2, and so on.

�❍ For Windchill ProductPoint servers, you can specify a large number of URL variations
as long as the base server URL is included. For example,

- wpp://<Server_Alias>/ProdA/ProENGINEER/Document/jan.prt
- <Server_Alias>/ProdA/ProENGINEER/Documents/jan.prt

You can also specify only the part name and the object will be accessed from the
server, if the server is the default location being explored.

Server Operations

After registering the Windchill server with Pro/ENGINEER, you can start accessing
the data on the Windchill servers. The Pro/ENGINEER interaction with Windchill
servers leverages the following locations:

�❍ Commonspace (Shared folders)
�❍ Workspace (Server-side workspace)
�❍ Workspace local cache (Client-side workspace)
�❍ Pro/ENGINEER session
�❍ Local disk

The methods described in this section enable you to perform the basic server
operations. The following illustration shows how data is transferred among these
locations.

Save

Methods and Property Introduced:

● IpfcModel.Save()

● CCpfcServerSynchronizeConflict.Create()

● IpfcWPPServer.SynchronizeServer()

● IpfcServerSynchronizeConflict.Description

● IpfcWPPServer.GetServerSynchronizationState()

The method IpfcModel.Save() stores the object from the session in the local
workspace cache, when a server is active.For Windchill ProductPoint servers, this
method saves an existing model to the location from where it was retrieved. To save a
new object to a specified location on the ProductPoint server, first use the method
IpfcWPPServer.SetServerTargetfolder() to set the target folder location on the
server and then call the method pfcModel.Model.Save. If you do not set the target
folder location, the method pfcModel.Model.Save saves the new objects to the top-
level folder of the active product or context.

The method CCpfcServerSynchronizeConflict.Create() creates the
ServerSynchronizeConflicts object containing the description of the conflicts
encountered during server synchronization.

The method IpfcWPPServer.SynchronizeServer() synchronizes the objects in the
local cache with the contents in the Windchill ProductPoint server. Specify NULL as the
value of the input synchronization options. The method returns the synchronization
conflict object created by the method CCpfcServerSynchronizeConflict.Create().
Use the property IpfcServerSynchronizeConflict.Description to access the
description of the synchronization conflict.

The method IpfcWPPServer.GetServerSynchronizationState() specifies if the
contents of the Windchill ProductPoint server are synchronized with the local cache.
This method returns true if the server is synchronized, and false, if otherwise.

Upload

An upload transfers Pro/ENGINEER files and any other dependencies from the local

workspace cache to the server-side workspace.

Methods Introduced:

● IpfcServer.UploadObjects()

● IpfcServer.UploadObjectsWithOptions()

● CCpfcUploadOptions.Create()

The method IpfcServer.UploadObjects() uploads the object to the workspace. The
object to be uploaded must be present in the current Pro/ENGINEER session. You
must save the object to the workspace using pfcModel.Model.Save, or import it into
the workspace using IpfcBaseSession.ImportToCurrentWS() before attempting to
upload it.

The method IpfcServer.UploadObjectsWithOptions() uploads objects to the
workspace using the options specified in the IpfcUploadOptions interface. These
options allow you to upload the entire workspace, auto-resolve missing references, and
indicate the target folder location for the new content during the upload. You must save
the object to the workspace using pfcModel.Model.Save, or import it to the
workspace using IpfcBaseSession.ImportToCurrentWS() before attempting to
upload it.

Create the IpfcUploadOptions object using the method CCpfcUploadOptions.
Create().

The methods available for setting the upload options are described in the following
section.

CheckIn

After you have finished working on objects in your workspace, you can share the
design changes with other users. The checkin operation copies the information and files
associated with all changed objects from the workspace to the Windchill database.

Note:
The methods described in this section are not applicable to Windchill
ProductPoint server operations.

Methods and Properties Introduced:

● IpfcServer.CheckinObjects()

● CCpfcCheckinOptions.Create()

● IpfcUploadBaseOptions.DefaultFolder

● IpfcUploadBaseOptions.NonDefaultFolderAssignments

● IpfcUploadBaseOptions.AutoresolveOption

● IpfcCheckinOptions.BaselineName

● IpfcCheckinOptions.BaselineNumber

● IpfcCheckinOptions.BaselineLocation

● IpfcCheckinOptions.BaselineLifecycle

● IpfcCheckinOptions.KeepCheckedout

The method IpfcServer.CheckinObjects() checks in an object into the database. The
object to be checked in must be present in the current Pro/ENGINEER session.
Changes made to the object are not included unless you save the object to the
workspace using the method IpfcModel.Save() before you check it in.

If you pass NULL as the value of the options parameter, the checkin operation is similar
to the Auto Check-In option in Pro/ENGINEER. For more details on Auto Check-In,
refer to the online help for Pro/ENGINEER.

Use the method CCpfcCheckinOptions.Create() to create a new
IpfcCheckinOptions object.

By using an appropriately constructed options argument, you can control the checkin
operation. Use the APIs listed above to access and modify the checkin options. The
checkin options are as follows:

�❍ DefaultFolder--Specifies the default folder location on the server for the automatic
checkin operation.

�❍ NonDefaultFolderAssignment--Specifies the folder location on the server to which the
objects will be checked in.

�❍ AutoresolveOption--Specifies the option used for auto-resolving missing references.

These options are defined in the EpfcServerAutoresolveOption enumerated type, and
are as follows:

- EpfcSERVER_DONT_AUTORESOLVE--Model references missing from the
workspace are not automatically resolved. This may result in a conflict upon
checkin. This option is used by default.
- EpfcSERVER_AUTORESOLVE_IGNORE--Missing references are
automatically resolved by ignoring them.
- EpfcSERVER_AUTORESOLVE_UPDATE_IGNORE--
Missing references are automatically resolved by updating them in the database
and ignoring them if not found.

�❍ Baseline--Specifies the baseline information for the objects upon checkin. The baseline
information for a checkin operation is as follows:

- BaselineName--Specifies the name of the baseline.
- BaselineNumber--Specifies the number of the baseline.

The default format for the baseline name and baseline number is "Username + time
(GMT) in milliseconds"

- BaselineLocation--Specifies the location of the baseline.
- BaselineLifecycle--Specifies the name of the lifecycle.

�❍ KeepCheckedout--If the value specified is true, then the contents of the selected object
are checked into the Windchill server and automatically checked out again for further
modification.

Retrieval

Standard VB API provides several methods that are capable of retrieving models.
When using these methods with Windchill servers, remember that these methods do
not check out the object to allow modifications.

Methods Introduced:

● IpfcBaseSession.RetrieveModel()

● IpfcBaseSession.RetrieveModelWithOpts()

● IpfcBaseSession.OpenFile()

The methods IpfcBaseSession.RetrieveModel(), IpfcBaseSession.
RetrieveModelWithOpts(), and IpfcBaseSession.OpenFile() load an object into a
session given its name and type. The methods search for the object in the active
workspace, the local directory, and any other paths specified by the search_path
configuration option. For Windchill ProductPoint servers, the method pfcSession.
BaseSession.RetrieveModelWithOpts supports the instance<generic> notation

for the name of the object.

Checkout and Download

To modify an object from the commonspace, you must check out the object. The
process of checking out communicates your intention to modify a design to the
Windchill server. The object in the database is locked, so that other users can obtain
read-only copies of the object, and are prevented from modifying the object while you
have checked it out.

Checkout is often accompanied by a download action, where the objects are brought
from the server-side workspace to the local workspace cache. In The VB API, both
operations are covered by the same set of methods.

Note:
The methods described in this section are not applicable to Windchill
ProductPoint server operations.

Methods and Properties Introduced:

● IpfcServer.CheckoutObjects()

● IpfcServer.CheckoutMultipleObjects()

● CCpfcCheckoutOptions.Create()

● IpfcCheckoutOptions.Dependency

● IpfcCheckoutOptions.SelectedIncludes

● IpfcCheckoutOptions.IncludeInstances

● IpfcCheckoutOptions.Version

● IpfcCheckoutOptions.Download

● IpfcCheckoutOptions.Readonly

The method IpfcServer.CheckoutObjects() checks out and optionally downloads the
object to the workspace based on the configuration specifications of the workspace.
The input arguments of this method are as follows:

�❍ Mdl--Specifies the object to be checked out. This is applicable if the model has already
been retrieved without checking it out.

�❍ File--Specifies the top-level object to be checked out.
�❍ Checkout--The checkout flag. If you specify the value of this argument as true, the

selected object is checked out. Otherwise, the object is downloaded without being
checked out. The download action enables you to bring read-only copies of objects
into your workspace. This allows you to examine the object without locking it.

�❍ Options--Specifies the checkout options object. If you pass NULL as the value of this
argument, then the default Pro/ENGINEER checkout rules apply. Use the method
CCpfcCheckoutOptions.Create() to create a new IpfcCheckoutOptions object.

Use the method IpfcServer.CheckoutMultipleObjects() to check out and download
multiple objects to the workspace based on the configuration specifications of the
workspace. This method takes the same input arguments as listed above, except for
Mdl and File. Instead it takes the argument Files that specifies the sequence of the
objects to check out or download.

By using an appropriately constructed options argument in the above functions, you
can control the checkout operation. Use the APIs listed above to modify the checkout
options. The checkout options are as follows:

�❍ Dependency--Specifies the dependency rule used while checking out dependents of the
object selected for checkout. The types of dependencies given by the
EpfcServerDependency enumerated type are as follows:

- EpfcSERVER_DEPENDENCY_ALL--All objects that are dependent on the
selected object are checked out.
- EpfcSERVER_DEPENDENCY_REQUIRED--All models required to
successfully retrieve the originally selected model from the CAD application
are selected for checkout.
- EpfcSERVER_DEPENDENCY_NONE--None of the dependent objects are
checked out.

�❍ IncludeInstances--Specifies the rule for including instances from the family table
during checkout. The type of instances given by the EpfcServerIncludeInstances
enumerated type are as follows:

- EpfcSERVER_INCLUDE_ALL--All the instances of the selected object are
checked out.
- EpfcSERVER_INCLUDE_SELECTED--The application can select the
family table instance members to be included during checkout.
- EpfcSERVER_INCLUDE_NONE--No additional instances from the family
table are added to the object list.

�❍ SelectedIncludes--Specifies the sequence of URLs to the selected instances, if
IncludeInstances is of type EpfcSERVER_INCLUDE_SELECTED.

�❍ Version--Specifies the version of the checked out object. If this value is set to NULL,

the object is checked out according to the current workspace configuration.
�❍ Download--Specifies the checkout type as download or link. The value download

specifies that the object content is downloaded and checked out, while link specifies
that only the metadata is downloaded and checked out.

�❍ Readonly--Specifies the checkout type as a read-only checkout. This option is
applicable only if the checkout type is link.

The following truth table explains the dependencies of the different control factors in
the method IpfcServer.CheckoutObjects() and the effect of different combinations on
the end result.

Argument checkout
in IpfcServer.

CheckoutObjects()

pfcServer.
CheckoutOptions.

SetDownload

pfcServer.
CheckoutOptions.

SetReadonly
Result

true true NA

Object is
checked out
and its content
is downloaded.

true true NA

Object is
checked out
but content is
not
downloaded.

false NA true

Object is
downloaded
without
checkout.

false NA false Not supported

Undo Checkout

Method Introduced:

● IpfcServer.UndoCheckout()

Use the method IpfcServer.UndoCheckout() to undo a checkout of the specified
object. When you undo a checkout, the changes that you have made to the content and
metadata of the object are discarded and the content, as stored in the server, is
downloaded to the workspace. This method is applicable only for the model in the
active Pro/ENGINEER session.

Import and Export

The VB API provides you with the capability of transferring specified objects to and
from a workspace. Import and export operations must take place in a session with no
models. An import operation transfers a file from the local disk to the workspace.

Methods and Properties Introduced:

● IpfcWPPServer.SetWsimpexFolderoption()

● IpfcBaseSession.ExportFromCurrentWS()

● IpfcBaseSession.ImportToCurrentWS()

● IpfcWSImportExportMessage.Description

● IpfcWSImportExportMessage.FileName

● IpfcWSImportExportMessage.MessageType

● IpfcWSImportExportMessage.Resolution

● IpfcWSImportExportMessage.Succeeded

● IpfcBaseSession.SetWSExportOptions()

● CCpfcWSExportOptions.Create()

● IpfcWSExportOptions.IncludeSecondaryContent

The method IpfcWPPServer.SetWsimpexFolderoption() sets the target folder to
import data or the source folder to the Windchill ProductPoint servers or to export data
from these servers. Set the target folder location using this method before calls to
IpfcBaseSession.ExportFromCurrentWS() and IpfcBaseSession.

ImportToCurrentWS(). This function is used for Windchill ProductPoint servers
only.

The method IpfcBaseSession.ExportFromCurrentWS() exports the specified objects
from the current workspace to a disk in a linked session of Pro/ENGINEER. For
Windchill ProductPoint servers this function exports files from the specified source
folder location on the server to a disk.

The method IpfcBaseSession.ImportToCurrentWS() imports thespecified objects
from a disk to the current workspace in a linked session of Pro/ENGINEER. For
Windchill ProductPoint servers this method copies files from the local disk to the
specified target folder location on the server.

Both IpfcBaseSession.ExportFromCurrentWS() and IpfcBaseSession.
ImportToCurrentWS() allow you to specify a dependency criterion to process the
following items:

�❍ All external dependencies
�❍ Only required dependencies
�❍ No external dependencies

Both IpfcBaseSession.ExportFromCurrentWS() and IpfcBaseSession.
ImportToCurrentWS() return the messages generated during the export or import
operation in the form of the IpfcWSImportExportMessages object. Use the APIs
listed above to access the contents of a message. The message specified by the
IpfcWSImportExportMessage object contains the following items:

�❍ Description--Specifies the description of the problem or the message information.
�❍ FileName--Specifies the object name or the name of the object path.
�❍ MessageType--Specifies the severity of the message in the form of the

EpfcWSImportExportMessageType enumerated type. The severity is one of the
following types:

- EpfcWSIMPEX_MSG_INFO--Specifies an informational type of message.
- EpfcWSIMPEX_MSG_WARNING--Specifies a low severity problem that
can be resolved according to the configured rules.
- EpfcWSIMPEX_MSG_CONFLICT--Specifies a conflict that can be
overridden.
- EpfcWSIMPEX_MSG_ERROR--Specifies a conflict that cannot be
overridden or a serious problem that prevents processing of an object.

�❍ Resolution--Specifies the resolution applied to resolve a conflict that can be
overridden. This is applicable when the message is of the type
WSIMPEX_MSG_CONFLICT.

�❍ Succeeded--Determines whether the resolution succeeded or not. This is applicable
when the message is of the type EpfcWSIMPEX_MSG_CONFLICT.

The method IpfcBaseSession.SetWSExportOptions() sets the export options used
while exporting the objects from a workspace in the form of the
IpfcWSExportOptions object. Create this object using the method
CCpfcWSExportOptions.Create(). The export options are as follows:

- Include Secondary Content--Indicates whether or not to include secondary content
while exporting the primary Pro/ENGINEER model files. Use the property
IpfcWSExportOptions.IncludeSecondaryContent to set this option.

File Copy

The VB API provides you with the capability of copying a file from the workspace or
target folder to a location on the disk and vice-versa.

Methods Introduced:

● IpfcBaseSession.CopyFileToWS()

● IpfcBaseSession.CopyFileFromWS()

Use the method IpfcBaseSession.CopyFileToWS() to copy a file from the disk to the
workspace. The file can optionally be added as secondary content to a given workspace
file. For Windchill ProductPoint servers, use this method to copy a viewable file from
disk as a new item in the target folder specified by the method IpfcWPPServer.
SetServerTargetfolder(). If the viewable file is added as secondary content, a
dependency is created between the Pro/ENGINEER model and the viewable file.

Use the method IpfcBaseSession.CopyFileFromWS() to copy a file from the
workspace to a location on disk.For Windchill ProductPoint servers, use this method to
copy a single file from the current target folder specified by the method
IpfcWPPServer.SetServerTargetfolder() to the local disk.

When importing or exporting Pro/ENGINEER models, PTC recommends that you use
methods IpfcBaseSession.ImportToCurrentWS() and IpfcBaseSession.
ExportFromCurrentWS(), respectively, to perform the import or export operation.
Methods that copy individual files do not traverse Pro/ENGINEER model
dependencies, and therefore do not copy a fully retrievable set of models at the same
time.
Additionally, only the methods pfcSession.BaseSession.ImportToCurrentWS and
pfcSession.BaseSession.ExportFromCurrentWS provide full metadata exchange and
support. That means pfcSession.BaseSession.ImportToCurrentWS can communicate
all the Pro/ENGINEER designated parameters, dependencies, and family table

information to a PDM system while pfcSession.BaseSession.
ExportFromCurrentWS can update exported Pro/ENGINEER data with PDM system
changes to designated and system parameters, dependencies, and family table
information. Hence PTC recommends the use of IpfcBaseSession.CopyFileToWS()
and IpfcBaseSession.CopyFileFromWS() to process only non-Pro/ENGINEER files.

Server Object Status

Methods Introduced:

● IpfcServer.IsObjectCheckedOut()

● IpfcServer.IsObjectModified()

The methods described in this section verify the current status of the object in the
workspace. The method IpfcServer.IsObjectCheckedOut() specifies whether the
object is checked out for modification.

The method IpfcServer.IsObjectModified() specifies whether the object has been
modified since checkout. This method returns the value false if newly created objects
have not been uploaded.

Note:
These methods are not applicable for Windchill ProductPoint server operations.

Object Lock Status

In comparison with other Windchill servers, Windchill ProductPoint does not have the
concept of a workspace. This means that as soon as changes are saved to the server,
they are visible to all users with access to work-in-progress versions. The functions
described in this section enable you to establish an exclusive lock when modifying a
server-managed part in Pro/ENGINEER. The functions described in this section are
applicable only for Windchill ProductPoint server operations.

Methods and Properties Introduced:

● IpfcWPPServer.LockServerObjects()

● CCpfcServerLockConflict.Create()

● IpfcServerLockConflict.ObjectName

● IpfcServerLockConflict.ConflictMessage

● IpfcWPPServer.GetServerObjectLockStatus()

● IpfcWPPServer.GetServerObjectsLockStatus()

● CCpfcServerLockStat.Create()

● IpfcServerLockStat.ObjectName

● IpfcServerLockStat.Status

● IpfcServerLockStat.StatusMessage

● IpfcWPPServer.UnlockServerObjects()

The method IpfcWPPServer.LockServerObjects() establishes an explicit lock on the
specified objects on the server. Specify the full path, name, and extension for the input
objects. This method returns the IpfcServerLockConflict object that contains the
details of conflicts, if any, that occurred during the lock operation. Use the property
IpfcServerLockConflict.ObjectName to access the name of the object for which the
lock conflict occurred. Use the property IpfcServerLockConflict.ConflictMessage to
get details of the lock conflict.

The method IpfcWPPServer.GetServerObjectLockStatus() checks the lock status of
the specified object on the Windchill ProductPoint server. Specify the full path, name,
and extension for the input object. The method returns the IpfcServerLockStat
object that contains information regarding the lock status.

The method IpfcWPPServer.GetServerObjectsLockStatus() checks the lock status
of a set of objects on the Windchill ProductPoint server. Specify the full path, name,
and extension for the input objects. The method returns an array of
IpfcServerLockStat objects that contain information regarding the lock status of
the input objects.

Use the property IpfcServerLockStat.ObjectName to access the name of the object,
including the extension, for which the lock status is described.

Use the property IpfcServerLockStat.Status to access the status of the lock on the
object on the server.

�❍ PRO_OBJ_LOCK_STAT_UNSET--Specifies that no lock has been applied on the
object.

�❍ PRO_OBJ_LOCK_STAT_HARDLOCK--Specifies that objects are locked and that
the current user is not the owner of the locks. Therefore, this user cannot modify or
release the lock.

�❍ PRO_OBJ_LOCK_STAT_SOFTLOCK--Specifies that the objects are locked and the
current user is the owner of the locks. Therefore, this user can release the lock.

�❍ PRO_OBJ_LOCK_STAT_UNLOCKED--Specifies that the explicit or implicit lock
has been removed from the object and it is available for editing.

Use the property IpfcServerLockStat.StatusMessage to access the status of the object
on the server. It provides the name of the user who locked the object and the time of
locking.

The method IpfcWPPServer.UnlockServerObjects() unlocks a set of objects that
have been explicitly locked on the product server. This method returns the
IpfcServerLockConflict object that contains the details of conflicts, if any, that
occurred during the unlock operation.

Delete Objects

Method Introduced:

● IpfcServer.RemoveObjects()

The method IpfcServer.RemoveObjects() deletes the array of objects from the
workspace. When passed with the ModelNames array as NULL, this method removes all
the objects in the active workspace.

Conflicts During Server Operations

An exception is provided to capture the error condition while performing the following
server operations using the specified APIs:

Operation API

Checkin an object or
workspace IpfcServer.CheckinObjects()

Checkout an object IpfcServer.CheckoutObjects()

Undo checkout of an object IpfcServer.UndoCheckout()

Upload object IpfcServer.UploadObjects()

Download object
IpfcServer.CheckoutObjects() (with download as
true)

Delete workspace IpfcServerLocation.DeleteWorkspace()

Remove object IpfcServer.RemoveObjects()

These APIs throw a common exception XToolkitCheckoutConflict if an error is
encountered during server operations. The exception description will include the details
of the error condition. This description is similar to the description displayed by the
Pro/ENGINEER HTML user interface in the conflict report.

Utility APIs

The methods specified in this section enable you to obtain the handle to the server
objects to access them. The handle may be the aliased URL or the model name of the
http URL. These utilities enable the conversion of one type of handle to another.

Methods Introduced:

● IpfcServer.GetAliasedUrl()

● IpfcBaseSession.GetModelNameFromAliasedUrl()

● IpfcBaseSession.GetAliasFromAliasedUrl()

● IpfcBaseSession.GetUrlFromAliasedUrl()

The method IpfcServer.GetAliasedUrl() enables you to search for a server object by
its name. Specify the complete filename of the object as the input, for example,

test_part.prt. The method returns the aliased URL for a model on the server. For
more information regarding the aliased URL, refer to the section Aliased URL. During
the search operation, the workspace takes precedence over the shared space.

You can also use this method to search for files that are not in the Pro/ENGINEER
format. For example, my_text.txt, prodev.dat, intf_file.stp, and so on.

The method IpfcBaseSession.GetModelNameFromAliasedUrl() returns the name of
the object from the given aliased URL on the server.

The method IpfcBaseSession.GetUrlFromAliasedUrl() converts an aliased URL to a
standard URL for the objects on the server.

For example, wtws://my_alias/Wildfire/abcd.prt is converted to an
appropriate URL on the server as http://server.mycompany.com/Windchill.

For Windchill ProductPoint, the aliased URL wpp://<Server_Alias>/ProdA/
ProENGINEER/Document/jan.prt is converted to an appropriate URL on server, for
example, http://server.mycompany.com/.

The method IpfcBaseSession.GetAliasFromAliasedUrl() returns the server alias from
aliased URL.

Sample Batch Workflow

A typical workflow using the Windchill APIs for an asynchronous non-graphical
application is as follows:

1. Start a Pro/ENGINEER session using the method pfcAsyncConnection.
pfcAsyncConnection.AsyncConnection_Connect.

2. Authenticate the browser using the method IpfcBaseSession.
AuthenticateBrowser().

3. Register the server with the new workspace using the method IpfcBaseSession.
RegisterServer().

4. Activate the server using the method IpfcServer.Activate().

5. Check out and retrieve the model from the vault URL using the method
IpfcServer.CheckoutObjects() followed by IpfcBaseSession.RetrieveModel

().

6. Modify the model according to the application logic.

7. Save the model to the workspace using the method IpfcModel.Save().

8. Check in the modified model back to the server using the method IpfcServer.
CheckinObjects().

9. After processing all models, unregister from the server using the method
IpfcServer.Unregister().

10. Delete the workspace using IpfcServerLocation.DeleteWorkspace().

11. Stop Pro/ENGINEER using the method IpfcAsyncConnection.End().

Summary of Technical Changes

This section contains a list of new and enhanced capabilities for VB API for Pro/
ENGINEER Wildfire 5.0. See the APIWizard online browser for complete
descriptions of the functions.

Each release of VB API includes a README file in the loadpoint directory. Check
the README file for the most current information.

Topic

Critical Technical Changes
New Methods and Properties
Superseded Methods and Properties
Miscellaneous Technical Changes

Note:
Reference information on all capabilities is available in the VB API
APIWizard online browser. Use the APIWizard Search function to find
information on a function. See section "Online Documentation -- Pro/Web.
Link APIWizard" for information on the APIWizard.

Critical Technical Changes

This section describes the changes in Pro/ENGINEER Wildfire 5.0 and VB API
that might require alteration of existing VB API applications.

IpfcDetailSymbolInstItem.GetInstructions()

The method IpfcDetailSymbolInstItem.GetInstructions() now takes a new
Boolean argument GiveParametersAsNames. Set this argument to true to
display symbolic representations of parameters and drawing properties in the
symbol instance. Set it to false to display the actual text seen by the user. To
ensure that the compilation succeeds, rebuild your existing VB API applications
calling the method IpfcDetailSymbolInstItem.GetInstructions().

Printing Instructions

The interface IpfcPlotInstructions containing the instructions for plotting
files has been deprecated. Existing VB API methods and properties for creating and
accessing the instruction attributes have also been deprecated. Use the new
interface type IpfcPrinterInstructions and its methods and properties
instead. Refer to the Superseded Methods and Properties section for the complete
list of methods and properties that have been deprecated.

The following new interface types have also been added:

�❍ IpfcPrintPrinterOption for printer settings
�❍ IpfcPrintMdlOption for the definition of the model for printing
�❍ IpfcPrintPlacementOption for the placement options for use while printing
�❍ IpfcPrinterPCFOptions for the definition of the printing options for a Plotter

Configuration File (PCF)

No-Resolve Mode

Pro/ENGINEER Wildfire 5.0 introduces No-Resolve mode, wherein if a model and
feature regeneration fails, failed features and children of failed features are created
and the regeneration of other features continues. By default, Pro/ENGINEER
Wildfire 5.0 operates in No-Resolve mode. However, VB API does not support
regeneration in this mode. If Pro/ENGINEER is running in No-Resolve mode, the
methods IpfcSolid.Regenerate() and IpfcSolid.ExecuteFeatureOps() throw an
exception IpfcXToolkitBadContext.

To continue with the behavior of Pro/ENGINEER Wildfire 4.0 in Resolve mode,
set the configuration option regen_failure_handling to resolve_mode in the
Pro/ENGINEER session. Setting the configuration option to switch to Resolve
mode ensures the old behavior as long as you do not retrieve the models saved
under No-Resolve mode. To consistently preserve the old behavior, use Resolve
mode from the beginning and throughout your Pro/ENGINEER session.

New Methods and Properties

The following section describes the new VB API methods and properties.

2D Export

New Method or Property Description

CCpfcMedusaExportInstructions.Create
()

Creates a new instructions object for export
of a drawing in EXPORT_MEDUSA
format (using IpfcModel.Export()).

CCpfcExport2DOption.Create()

IpfcExport2DOption.ExportSheetOption

IpfcExport2DOption.ModelSpaceSheet

IpfcExport2DOption.Sheets

Accesses the options to export multiple
sheets of a drawing to 2D formats.

3D Export

New Method or Property Description

CCpfcCatiaPart3DExportInstructions.
Create()

CCpfcCatiaProduct3DExportInstructions.
Create()

CCpfcCatiaCGR3DExportInstructions.
Create()

CCpfcJT3DExportInstructions.Create()

CCpfcParaSolid3DExportInstructions.
Create()

CCpfcUG3DExportInstructions.Create()

Creates a new instructions object for
import of the following 3D import
formats:

�❍ EXPORT_CATIA_PART
�❍ EXPORT_CATIA_PRODUCT
�❍ EXPORT_CATIA_CGR
�❍ EXPORT_JT
�❍ EXPORT_PARASOLID
�❍ EXPORT_UG

Datum Features

New Method or Property Description

Datum Plane Feature

IpfcDatumPlaneFeat.Flip

IpfcDatumPlaneFeat.Constraints

IpfcDatumPlaneConstraint.ConstraintType

CCpfcDatumPlaneThroughConstraint.Create()

IpfcDatumPlaneThroughConstraint.ThroughRef

CCpfcDatumPlaneNormalConstraint.Create()

IpfcDatumPlaneNormalConstraint.NormalRef

CCpfcDatumPlaneParallelConstraint.Create()

IpfcDatumPlaneParallelConstraint.ParallelRef

CCpfcDatumPlaneTangentConstraint.Create()

IpfcDatumPlaneTangentConstraint.TangentRef

CCpfcDatumPlaneOffsetConstraint.Create()

IpfcDatumPlaneOffsetConstraint.OffsetRef

IpfcDatumPlaneOffsetConstraint.OffsetValue

CCpfcDatumPlaneOffsetCoordSysConstraint.Create()

IpfcDatumPlaneOffsetCoordSysConstraint.CsysAxis

Provides read
access to the
properties of the
Datum Plane
feature.

CCpfcDatumPlaneAngleConstraint.Create()

IpfcDatumPlaneAngleConstraint.AngleRef

IpfcDatumPlaneAngleConstraint.AngleValue

CCpfcDatumPlaneSectionConstraint.Create()

IpfcDatumPlaneSectionConstraint.SectionRef

IpfcDatumPlaneSectionConstraint.SectionIndex

CCpfcDatumPlaneDefaultXConstraint.Create()

CCpfcDatumPlaneDefaultYConstraint.Create()

CCpfcDatumPlaneDefaultZConstraint.Create()

Provides read
access to the
properties of the
Datum Plane
feature.

Datum Axis Feature

IpfcDatumAxisFeat.Constraints

CCpfcDatumAxisConstraint.Create()

IpfcDatumAxisConstraint.ConstraintType

IpfcDatumAxisConstraint.ConstraintRef

IpfcDatumAxisFeat.DimConstraints

CCpfcDatumAxisDimensionConstraint.Create()

IpfcDatumAxisDimensionConstraint.DimOffset

IpfcDatumAxisDimensionConstraint.DimRef

Provides read
access to the
properties of the
Datum Axis
feature.

General Datum Point Feature

IpfcDatumPointFeat.FeatName

IpfcDatumPointFeat.GetPoints()

IpfcGeneralDatumPoint.Name

CCpfcDatumPointPlacementConstraint.Create()

IpfcGeneralDatumPoint.PlaceConstraints

CCpfcDatumPointDimensionConstraint.Create()

IpfcGeneralDatumPoint.DimConstraints

IpfcDatumPointConstraint.ConstraintRef

IpfcDatumPointConstraint.ConstraintType

IpfcDatumPointConstraint.Value

Provides read
access to the
properties of the
General Datum
Point feature.

Datum Coordinate System Feature

IpfcCoordSysFeat.OriginConstraints

CCpfcDatumCsysOriginConstraint.Create()

IpfcDatumCsysOriginConstraint.OriginRef

IpfcCoordSysFeat.DimensionConstraints

CCpfcDatumCsysDimensionConstraint.Create()

IpfcDatumCsysDimensionConstraint.DimRef

IpfcDatumCsysDimensionConstraint.DimValue

Provides read
access to the
properties of the
Datum Coordinate
System feature.

IpfcDatumCsysDimensionConstraint.DimConstraintType

IpfcCoordSysFeat.OrientationConstraints

CCpfcDatumCsysOrientMoveConstraint.Create()

IpfcDatumCsysOrientMoveConstraint.
OrientMoveConstraintType

IpfcDatumCsysOrientMoveConstraint.OrientMoveValue

IpfcCoordSysFeat.IsNormalToScreen

IpfcCoordSysFeat.OffsetType

IpfcCoordSysFeat.OnSurfaceType

IpfcCoordSysFeat.OrientByMethod

Provides read
access to the
properties of the
Datum Coordinate
System feature.

Drawing Sheets

New Method or Property Description

IpfcSheetOwner.
GetSheetFormatDescr

Returns the model descriptor of the drawing
format used for the specified drawing sheet.

Export to PDF

New Method or Property Description

CCpfcPDFExportInstructions.Create
()

Creates a new instructions object for export to
PDF format (using IpfcModel.Export()).

IpfcPDFExportInstructions.FilePath

IpfcPDFExportInstructions.Options
Accesses the instructions for export to PDF.

CCpfcPDFOption.Create()

IpfcPDFOption.OptionType

IpfcPDFOption.OptionValue

Accesses the options required for export to
PDF.

Family Tables

New Method or Property Description

IpfcFamilyMember.GetImmediateGenericInfo
()

Returns the model descriptor of the
immediate generic model.

IpfcFamilyMember.GetTopGenericInfo() Returns the model descriptor of the
top generic model.

IpfcFamilyMember.GetCellIsDefault()

Determines if the item in the
specified cell has the default value.
The default value is the value of the
specified item in the generic model.

Models

New Method or Property Description

IpfcBaseSession.
GetActiveModel

Returns the active Pro/ENGINEER
model.

Printing Files

New Method or Property Description

Printing Instructions

CCpfcPrinterInstructions.Create()
Creates the IpfcPrinterInstructions
object.

IpfcPrinterInstructions.PrinterOption

IpfcPrinterInstructions.PlacementOption

IpfcPrinterInstructions.ModelOption

IpfcPrinterInstructions.WindowId

Accesses and modifies the plotting
instructions.

Printer Options

CCpfcPrintPrinterOption.Create()
Creates the IpfcPrintPrinterOption
object.

IpfcBaseSession.GetPrintPrinterOptions
()

Returns the IpfcPrintPrinterOption
object containing the printer options.

IpfcPrintPrinterOption.DeleteAfter

IpfcPrintPrinterOption.FileName

IpfcPrintPrinterOption.PaperSize

CCpfcPrintSize.Create()

IpfcPrintSize.Height

IpfcPrintSize.Width

IpfcPrintSize.PaperSize

IpfcPrintPrinterOption.PenTable

IpfcPrintPrinterOption.PrintCommand

IpfcPrintPrinterOption.PrinterType

IpfcPrintPrinterOption.Quantity

IpfcPrintPrinterOption.RollMedia

IpfcPrintPrinterOption.RotatePlot

IpfcPrintPrinterOption.SaveMethod

IpfcPrintPrinterOption.SaveToFile

IpfcPrintPrinterOption.SendToPrinter

IpfcPrintPrinterOption.Slew

IpfcPrintPrinterOption.SwHandshake

IpfcPrintPrinterOption.UseTtf

Accesses and modifies the options for a
specified printer.

Placement Options

CCpfcPrintPlacementOption.Create()
Creates the IpfcPrintPlacementOption
object.

IpfcBaseSession.
GetPrintPlacementOptions()

Returns the IpfcPrintPlacementOption
object containing the placement options.

IpfcPrintPlacementOption.BottomOffset

IpfcPrintPlacementOption.ClipPlot

IpfcPrintPlacementOption.
KeepPanzoom

IpfcPrintPlacementOption.LabelHeight

IpfcPrintPlacementOption.PlaceLabel

IpfcPrintPlacementOption.Scale

IpfcPrintPlacementOption.
ShiftAllCorner

IpfcPrintPlacementOption.SideOffset

IpfcPrintPlacementOption.
X1ClipPosition

IpfcPrintPlacementOption.
X2ClipPosition

IpfcPrintPlacementOption.
Y1ClipPosition

IpfcPrintPlacementOption.
Y2ClipPosition

Accesses and modifies the placement
options.

Model Options

CCpfcPrintMdlOption.Create() Creates the IpfcPrintMdlOption object.

IpfcBaseSession.GetPrintMdlOptions()
Returns the IpfcPrintMdlOption object
containing the model options for printing
purpose.

IpfcPrintMdlOption.DrawFormat

IpfcPrintMdlOption.FirstPage

IpfcPrintMdlOption.LastPage

IpfcPrintMdlOption.LayerName

IpfcPrintMdlOption.LayerOnly

IpfcPrintMdlOption.Mdl

IpfcPrintMdlOption.Quality

IpfcPrintMdlOption.Segmented

IpfcPrintMdlOption.Sheets

IpfcPrintMdlOption.UseDrawingSize

IpfcPrintMdlOption.UseSolidScale

Accesses and modifies the model options.

Plotter Configuration File (PCF) Option

CCpfcPrinterPCFOptions.Create()
Creates the IpfcPrinterPCFOptions
object.

IpfcBaseSession.GetPrintPCFOptions()
Returns the IpfcPrinterPCFOptions
object containing the printing options for a
Plotter Configuration File (PCF).

IpfcPrinterPCFOptions.PrinterOption

IpfcPrinterPCFOptions.
PlacementOption

IpfcPrinterPCFOptions.ModelOption

Accesses and modifies the printing options
for a Plotter Configuration File (PCF).

User Interface

New Method or Property Description

File > Open

IpfcBaseSession.UIRegisterFileOpen()

CCpfcFileOpenRegisterOptions.Create()

IpfcFileOpenRegisterOptions.FileDescription

IpfcFileOpenRegisterOptions.FileType

IpfcFileOpenRegisterListener.FileOpenAccess()

IpfcFileOpenRegisterListener.OnFileOpenRegister
()

Adds a new file type in the
Open dialog box.

File > Save

IpfcBaseSession.UIRegisterFileSave()

CCpfcFileSaveRegisterOptions.Create()

IpfcFileSaveRegisterOptions.FileDescription

IpfcFileSaveRegisterOptions.FileType

IpfcFileSaveRegisterListener.FileSaveAccess()

IpfcFileSaveRegisterListener.OnFileSaveRegister()

Adds a new file type in the Save
a Copy dialog box.

Navigation Area

IpfcSession.NavigatorPaneBrowserAdd()

IpfcSession.NavigatorPaneBrowserIconSet()

IpfcSession.NavigatorPaneBrowserURLSet()

Adds custom panes containing
custom Web pages to the
Navigation area.

Utility

New Method or Property Description

Pro/TOOLKIT DLL

IpfcBaseSession.LoadProToolkitLegacyDll
()

Registers and starts a legacy Pro/
TOOLKIT DLL that is not Unicode-
compliant and built in the pre-Wildfire
4.0 environment.

Pro/ENGINEER Window

New Method or Property Description

Window ID

IpfcWindow.GetId() Retrieves the ID of the Pro/ENGINEER
window.

Superseded Methods and Properties

The following table lists the superseded methods and properties in this release.

Superseded Method or Property New Method or Property

CCpfcPlotInstructions.Create()

IpfcPlotInstructions.PlotterName

IpfcPlotInstructions.OutputQuality

IpfcPlotInstructions.UserScale

IpfcPlotInstructions.PenSlew

IpfcPlotInstructions.PenVelocityX

IpfcPlotInstructions.PenVelocityY

IpfcPlotInstructions.SegmentedOutput

IpfcPlotInstructions.LabelPlot

IpfcPlotInstructions.SeparatePlotFiles

IpfcPlotInstructions.PaperSize

CCpfcPrinterInstructions.Create()

IpfcPrinterInstructions.PrinterOption

IpfcPrinterInstructions.
PlacementOption

IpfcPrinterInstructions.ModelOption

IpfcPrinterInstructions.WindowId

IpfcPlotInstructions.
PageRangeChoice

IpfcPlotInstructions.PaperSizeX

IpfcPlotInstructions.FirstPage

IpfcPlotInstructions.LastPage

Miscellaneous Technical Changes

The following changes in Pro/ENGINEER Wildfire 5.0 can affect functional
behavior in VB API. PTC does not anticipate that these changes cause critical
issues with existing VB API applications.

3D Import Formats

The enumerated type EpfcNewModelImportType now contains new 3D import
formats. The VB API method IpfcBaseSession.ImportNewModel() supports the
following new import formats:

�❍ EpfcIMPORT_NEW_CATIA_PART
�❍ EpfcIMPORT_NEW_UG
�❍ EpfcIMPORT_NEW_PRODUCTVIEW
�❍ EpfcIMPORT_NEW_CATIA_CGR
�❍ EpfcIMPORT_NEW_JT

The enumerated type EpfcIntfType also contains new 3D feature import formats.
The VB API method pfcSolid.CreateImportFeat() supports the following new
import formats:

�❍ EpfcINTF_ICEM
�❍ EpfcINTF_ACIS
�❍ EpfcINTF_DXF
�❍ EpfcINTF_CDRS
�❍ EpfcINTF_STL
�❍ EpfcINTF_VRML
�❍ EpfcINTF_PARASOLID

�❍ EpfcINTF_AI
�❍ EpfcINTF_CATIA_PART
�❍ EpfcINTF_UG
�❍ EpfcINTF_PRODUCTVIEW
�❍ EpfcINTF_CATIA_CGR
�❍ EpfcINTF_JT

Datum Features Properties

VB API now provides read access to the properties of Datum features. The table
below lists the Datum features supported and the new modules in which their
attributes and the corresponding methods and properties for reading have been
defined:

Datum Feature VB API Module

Datum Plane feature pfcDatumPlaneFeat

Datum Axis feature pfcDatumAxisFeat

Datum Point feature pfcDatumPointFeat

Coordinate System
feature

pfcCoordSysFeat

Export Formats

New export formats have been added to the enumerated type EpfcExportType.
The following table lists the new export formats and the new instructions interface
added for each format:

Export Format Interface

EpfcEXPORT_MEDUSA IpfcMedusaExportInstructions

EpfcEXPORT_CATIA_PART IpfcCatiaPart3DExportInstructions

EpfcEXPORT_CATIA_PRODUCT IpfcCatiaProduct3DExportInstructions

EpfcEXPORT_CATIA_CGR IpfcCatiaCGR3DExportInstructions

EpfcEXPORT_JT IpfcJT3DExportInstructions

EpfcEXPORT_PARASOLID IpfcParaSolid3DExportInstructions

EpfcEXPORT_UG IpfcUG3DexportInstructions

EpfcEXPORT_PDF IpfcPDFExportInstructions

Export to PDF and U3D

VB API now supports the export of Pro/ENGINEER drawings and solid models to
PDF and U3D formats. A drawing can be exported as a 2D raster image embedded
in a PDF file. The 3D models can be exported in the following ways:

�❍ As a U3D model embedded in a one-page PDF file
�❍ As 2D raster images representing saved views embedded in pages of a PDF file
�❍ As a standalone U3D file

A new interface IpfcPDFExportInstructions containing all the instructions for
export to PDF has been added. New PDF option types have also been defined in the
enumerated type EpfcPDFOptionType.

ProductView Export Formats

The VB API method pfcModel.Export() now supports export to any one of the

ProductView formats listed in the next table. These formats have been defined in a
new enumerated type EpfcProductViewFormat.

ProductView Format Type Constant

PVS EpfcPV_FORMAT_PVS

ED EpfcPV_FORMAT_ED

EDZ EpfcPV_FORMAT_EDZ

PVZ EpfcPV_FORMAT_PVZ

The attribute PVExportOptions has been added to the existing class
IpfcProductViewExportInstructions. The values taken by this attribute are
given by the new class IpfcProductViewExportOptions. This class contains
the attribute PVFormat, which can be set to any one of the ProductView formats
listed above.

New Types for IpfcBaseSession.ListFiles()

Starting with Pro/ENGINEER Wildfire 5.0 M040, the method IpfcBaseSession.
ListFiles() has been enhanced to return instance objects when accessing Windchill
workspaces or folders. A PDM location (for workspace or commonspace) must be
passed as the directory path. The following new types have been added under the
enumerated type EpfcFileListOpt:

�❍ EpfcFILE_LIST_ALL_INST--Same as the EpfcFILE_LIST_ALL option. It
returns instances only for PDM locations.

�❍ EpfcFILE_LIST_LATEST_INST--Same as the EpfcFILE_LIST_LATEST option.
It returns instances only for PDM locations.

Obsolete Data Exchange Formats

The following data exchange formats and the corresponding type constants are no

longer supported:

Data Exchange Format Type Constant

CADAM

EpfcCADAM_CPTR_FILE

EpfcCADAM_DIRECT_FILE

EpfcCADAM_FILE

EpfcIMPORT_2D_CADAM

PDGS EpfcEXPORT_PDGS

CATIA

EpfcEXPORT_CATIA

EpfcINTF_CATIA

EpfcIMPORT_NEW_CATIA

Sample Applications

This section lists the sample applications provided with the VB API.

Topic

Installing the VB API
Sample Applications

Installing the VB API

The VB API is available on the same CD as Pro/ENGINEER. When Pro/
ENGINEER is installed using PTC.SetUp, one of the optional components is "API
Toolkits". This includes Pro/TOOLKIT, J-Link, Pro/Web.Link, and Visual Basic
API.

If you select Visual Basic API, a directory called vbapi is created under the Pro/
ENGINEER loadpoint and the VB API is automatically installed in this directory.
This directory contains all the libraries, example applications, and documentation
specific to the VB API.

Sample Applications

The VB API sample applications are available in the directories vbapi_examples
and vbapi_appls under the root directory vbapi.

VBAPIExamples

Location Main Classes

vbapi/
vbapi_examples

formConnection and
formExamples

The vbapi_examples directory is a collection of all the VB.NET example source
files present in the VB API User's Guide. All the example source files are also
available along with a VB.NET solution called VB API Examples.sln and a
project file called VB API Examples.vbproj as a single VBAPIExamples.zip
file in the same directory.

Set up and run the examples using the following procedure:

1. Set the PRO_COMM_MSG_EXE environment variable to the full path of
the executable pro_comm_msg.exe for your application to communicate
with Pro/ENGINEER. Typically, the path to the executable is [Pro/E
loadpoint]/[machine type]/obj/pro_comm_msg.exe, where machine_type is
i486_nt for 32-bit Windows and x86_win64 for 64-bit Windows
installations.

2. Register the COM server by running the vb_api_register.bat file
located at [Pro/E loadpoint]/bin.

3. Unzip the VBAPIExamples.zip file in a local folder on your machine and
open the VB API Examples.sln solution in Microsoft Visual Studio.

4. Set the COM reference for your project to Pro/E VB API Type Library
for Pro/E Wildfire 4.0.

5. Build the solution and execute the VB API Examples.exe created in your
local folder. The VB API Examples - Connection form as shown in the
following figure is loaded.

6. Click Start to start a new Pro/ENGINEER session in the simple
asynchronous mode. You must specify the Pro/ENGINEER working
directory and executable path before attempting to start a new session. You
can also connect to an existing session in the simple asynchronous mode by
clicking Connect. Click Batch Mode to start a new Pro/ENGINEER
session in the batch mode, or click Full Async to start a new Pro/
ENGINEER session in the full asynchronous mode. Refer to the `VB API

Fundamentals:Controlling Pro/ENGINEER' chapter for more information
on the modes of communication.

7. Once you are connected to a Pro/ENGINEER session, the VB API
Examples form is loaded. You can execute all the examples available in the
vbapi_examples directory from this form.

Parameters and Dimensions

Location Main Class

vbapi/vbapi_appls/
vbparam FormPD

The parameters and dimensions example is an asynchronous mode VB.NET
application that allows you to access and modify the parameters and dimensions of
a Pro/ENGINEER model. All the VB source files for this application are available
along with a VB.NET solution called ParameterAndDimension.sln and a
project file called ParameterAndDimension.vbproj as a single VBParam.zip
file in the vbparam directory.

Set up and run this application using the following procedure:

1. Set the PRO_COMM_MSG_EXE environment variable to the full path of
the executable pro_comm_msg.exe for your application to communicate
with Pro/ENGINEER. Typically, the path to the executable is [Pro/E
loadpoint]/[machine type]/obj/pro_comm_msg.exe, where machine_type is
i486_nt for 32-bit Windows and x86_win64 for 64-bit Windows
installations.

2. Register the COM server by running the vb_api_register.bat file
located at [Pro/E loadpoint]/bin.

3. Unzip the VBParam.zip file in a local folder on your machine and open the
ParameterAndDimension.sln solution in Microsoft Visual Studio.

4. Set the COM reference for your project to Pro/E VB API Type Library
for Pro/E Wildfire 4.0.

5. Build the solution and execute the ParameterAndDimension.exe created
in your local folder. The Parameters and Dimensions form is loaded.

6. Start Pro/ENGINEER and open a PART model containing parameters and
dimensions.

7. Click the Connect button in the form to connect to the active Pro/
ENGINEER session in the simple asynchronous mode. Click the Add
button to connect in the full asynchronous mode, wherein a new PDMenu
menu gets added to the menubar in the Pro/ENGINEER user interface.

You can perform the same set of operations on parameters and dimensions
from the Parameters and Dimensions form in the simple asynchronous
mode and from the PDMenu menu in the full asynchronous mode.

8. Click Disconnect to disconnect from the current Pro/ENGINEER session.

You can perform the following operations on parameters from the Parameters and
Dimensions form:

�❍ Retrieve all the parameters of a PART model in the current Pro/ENGINEER
session inside the parameter table in the Parameters and Dimensions form.

�❍ Modify the unit, value, designated status, and description, except name and type
for each parameter.

�❍ Delete a parameter and all the values associated with it.
�❍ Save the updated list of parameters back in the model.
�❍ Save the list of parameters retrieved from the model in an XML file, or read the

parameters from a previously saved XML file in the form.

You can perform the following operations on dimensions from the Parameters and
Dimensions form:

�❍ Retrieve all the dimensions of a PART model in the current Pro/ENGINEER
session inside the dimensions table in the Parameters and Dimensions form.

�❍ Modify the name, nominal value, tolerance type, tolerance value 1, and tolerance
value 2, except ID and type for each dimension.

�❍ Save the updated list of dimensions back in the model.
�❍ Save the list of dimensions retrieved from the model in an XML file or read the

dimensions from a previously saved XML file in the form.

The Parameters and Dimensions form containing the parameters retrieved from a
PART model is shown in the following figure.

Digital Rights Management

This section describes the implications of DRM on the VB API applications.

Topic

Introduction
Implications of DRM on the VB API
Additional DRM Implications

Introduction

Digital Rights Management (DRM) helps to control access to your intellectual
property. Intellectual property could be sensitive design and engineering
information that you have stored within Pro/ENGINEER parts, assemblies, or
drawings. You can control access by applying policies to these Pro/ENGINEER
objects. Such objects remain protected by the policies even after they are
distributed or downloaded. Pro/ENGINEER objects for which you have applied
policies are called DRM-protected objects. For more information on the use of
DRM in Pro/ENGINEER Wildfire 4.0, refer to the DRM online help.

The following sections describe how the VB API applications deal with DRM-
protected objects.

Implications of DRM on the VB API

Any VB API application accessing DRM-protected objects can run only in
interactive Pro/ENGINEER sessions having COPY permissions. As the VB API
applications can extract content from models into an unprotected format, the VB
API applications will not run in a Pro/ENGINEER session lacking COPY
permission.

If the user tries to open a model lacking the COPY permission into a session with a
VB API application running, Pro/ENGINEER prompts the user to spawn a new
session. Also, new VB API applications will not be permitted to start when the Pro/
ENGINEER session lacks COPY permission.

If a VB API application tries to open a model lacking COPY permission from an
interactive Pro/ENGINEER session, the application throws the pfcExceptions.
XToolkitNoPermission exception.

When a VB API application tries to open a protected model from a non-interactive
or batch mode application, the session cannot prompt for DRM authentication,
instead the application throws the pfcExceptions.XToolkitAuthenticationFailure
exception.

Exception Types

Some VB API methods require specific permissions in order to operate on a DRM-
protected object. If these methods cannot proceed due to DRM restrictions, the
following exceptions are thrown:

�❍ pfcExceptions.XToolkitNoPermission--Thrown if the method cannot proceed due
to lack of needed permissions.

�❍ pfcExceptions.XToolkitAuthenticationFailure--Thrown if the object cannot be
opened because the policy server could not be contacted or if the user was unable
to interactively login to the server.

�❍ pfcExceptions.XToolkitUserAbort--Thrown if the object cannot be operated upon
because the user cancelled the action at some point.

The following table lists the methods along with the permission required and
implications of operating on DRM-protected objects.

Methods Permission
Required Implications

IpfcBaseSession.
RetrieveAssemSimpRep()

IpfcBaseSession.
CreateDrawingFromTemplate()

IpfcBaseSession.
RetrieveGraphicsSimpRep()

IpfcBaseSession.
RetrieveGeomSimpRep()

IpfcBaseSession.RetrieveModel()

IpfcBaseSession.
RetrieveModelWithOpts()

IpfcBaseSession.
RetrievePartSimpRep()

IpfcBaseSession.
RetrieveSymbolicSimpRep()

OPEN

�❍ If file has OPEN and COPY
permissions, model opens
after authentication.

�❍ Throws the pfcExceptions.
XToolkitNoPermission
exception otherwise.

IpfcModel.Rename() OPEN
�❍ File is saved with the

current policy to disk if it
has COPY permission.

IpfcModel.Backup()

IpfcModel.Copy()
SAVE

�❍ File is saved with the
current policy to disk if it
has SAVE and COPY
permissions.

�❍ Throws the pfcExceptions.
XToolkitNoPermission
exception if model has
COPY permission, but lacks
SAVE permission.

IpfcModel.Save() SAVE

�❍ File is saved with the
current policy to disk if it
has SAVE and COPY
permissions.

�❍ Throws the pfcExceptions.
XToolkitNoPermission
exception if model has
COPY permission, but lacks
SAVE permission.

�❍ Throws the pfcExceptions.
XToolkitNoPermission
exception if the assembly
file has models with COPY
permission, but lacking
SAVE permission.

IpfcModel.Export() for
PlotInstructions

IpfcModel.Export() for
ProductViewExportInstructions
(only if the input model is a
drawing)

IpfcBaseSession.
ExportCurrentRasterImage()

PRINT

�❍ Drawing file is printed if it
has PRINT permission.

�❍ Throws the pfcExceptions.
XToolkitNoPermission
exception if drawing file
lacks PRINT permission.

Copy Permission to Interactively Open Models

When the user tries to open protected content lacking COPY permission through
the Pro/ENGINEER user interface with a VB API application running in the same
session:

1. Pro/ENGINEER checks for the authentication credentials through the user
interface, if they are not already established.

2. If the user has permission to open the file, Pro/ENGINEER checks if the
permission level includes COPY. If the level includes COPY, Pro/
ENGINEER opens the file.

3. If COPY permission is not included, the following message is displayed:

4. If the user clicks Cancel, the file is not opened in the current Pro/
ENGINEER session and no new session is spawned.

5. If the user clicks OK, an additional session of Pro/ENGINEER is spawned
which does not permit any VB API application. VB API applications set to
automatically start by Pro/ENGINEER will not be started. Asynchronous
applications will be unable to connect to this session.

6. The new session of Pro/ENGINEER is automatically authenticated with the
same session credentials as were used in the previous session.

7. The model that Pro/ENGINEER was trying to load in the previous session
is loaded in this session.

8. Other models already open in the previous session will not be loaded in the
new session.

9. Session settings from the previous session will not be carried into the new
session.

10. The new session will be granted the licenses currently used by the previous
session. This means that the next time the user tries to do something in the
previous session, Pro/ENGINEER must obtain a new license from the
license server. If the license is not available, the action will be blocked with
an appropriate message.

Additional DRM Implications

�❍ The method IpfcModel.CheckIsSaveAllowed() returns false if prevented from save

by DRM restrictions.
�❍ The method IpfcBaseSession.CopyFileToWS() is designed to fail and throw the

pfcExceptions.XToolkitNoPermission exception if passed a DRM-protected Pro/
ENGINEER model file.

�❍ The method IpfcBaseSession.ImportToCurrentWS() reports a conflict in its output
text file and does not copy a DRM-protected Pro/ENGINEER model file to the
Workspace.

�❍ While erasing an active Pro/ENGINEER model with DRM restrictions, the
methods IpfcModel.Erase() and IpfcModel.EraseWithDependencies() do not clear
the data in the memory until the control returns to Pro/ENGINEER from the Pro/
TOOLKIT application. Thus, the Pro/ENGINEER session permissions may also
not be cleared immediately after these methods return.

Geometry Traversal

This section illustrates the relationships between faces, contours, and edges.
Examples E-1 through E-5 show some sample parts and list the information about
their surfaces, faces, contours, and edges.

Topic

Example 1
Example 2
Example 3
Example 4
Example 5

Example 1

This part has 6 faces.

�❍ Face A has 1 contour and 4 edges.
�❍ Edge E2 is the intersection of faces A and B.
�❍ Edge E2 is a component of contours C1 and C2.

Example 2

Face A has 2 contours and 6 edges.

Example 3

This part was extruded from a rectangular cross section. The feature on the top was
added later as an extruded protrusion in the shape of a semicircle.

�❍ Face A has 1 contour and 6 edges.
�❍ Face B has 2 contours and 8 edges.
�❍ Face C has 1 contour and 4 edges.

Example 4

This part was extruded from a cross section identical to Face A. In the Sketcher, the
top boundary was sketched with two lines and an arc. The sketch was then extruded
to form the base part, as shown.

�❍ Face A has 1 contour and 6 edges.
�❍ Face B has 1 contour and 4 edges.
�❍ Face C has 1 contour and 4 edges.
�❍ Face D has 1 contour and 4 edges.

Example 5

This part was extruded from a rectangular cross section. The slot and hole features
were added later.

�❍ Face A has 1 contour and 8 edges.
�❍ Face B has 3 contours and 10 edges.

Geometry Representations

This section describes the geometry representations of the data used by the VB API.

Topic

Surface Parameterization
Edge and Curve Parameterization

Surface Parameterization

A surface in Pro/ENGINEER contains data that describes the boundary of the surface,
and a pointer to the primitive surface on which it lies. The primitive surface is a three-
dimensional geometric surface parameterized by two variables (u and v). The surface
boundary consists of closed loops (contours) of edges. Each edge is attached to two
surfaces, and each edge contains the u and v values of the portion of the boundary that it
forms for both surfaces. Surface boundaries are traversed clockwise around the outside of
a surface, so an edge has a direction in each surface with respect to the direction of
traversal.

This section describes the surface parameterization. The surfaces are listed in order of
complexity. For ease of use, the alphabetical listing of the data structures is as follows:

�❍ Cone
�❍ Coons Patch
�❍ Cylinder
�❍ Cylindrical Spline Surface
�❍ Fillet Surface
�❍ General Surface of Revolution
�❍ NURBS Surface
�❍ Plane
�❍ Ruled Surface
�❍ Spline Surface
�❍ Tabulated Cylinder
�❍ Torus

Plane

The plane entity consists of two perpendicular unit vectors (e1 and e2), the normal to the
plane (e3), and the origin of the plane.

Data Format:

e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the plane

Parameterization:

(x, y, z) = u * e1 + v * e2 + origin

Cylinder

The generating curve of a cylinder is a line, parallel to the axis, at a distance R from the
axis. The radial distance of a point is constant, and the height of the point is v.

Data Format:

e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction

e3[3] Normal to the plane
origin[3] Origin of the cylinder
radius Radius of the cylinder

Parameterization:

(x, y, z) = radius * [cos(u) * e1 + sin(u) * e2] +
 v * e3 + origin

Engineering Notes:

For the cylinder, cone, torus, and general surface of revolution, a local coordinate system
is used that consists of three orthogonal unit vectors (e1, e2, and e3) and an origin. The
curve lies in the plane of e1 and e3, and is rotated in the direction from e1 to e2. The u
surface parameter determines the angle of rotation, and the v parameter determines the
position of the point on the generating curve.

Cone

The generating curve of a cone is a line at an angle alpha to the axis of revolution that
intersects the axis at the origin. The v parameter is the height of the point along the axis,
and the radial distance of the point is v * tan(alpha).

Data Format:

e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the cone
alpha Angle between the axis of the cone
 and the generating line

Parameterization:

(x, y, z) = v * tan(alpha) * [cos(u) * e1 +

sin(u) * e2] + v * e3 + origin

Torus

The generating curve of a torus is an arc of radius R2 with its center at a distance R1 from
the origin. The starting point of the generating arc is located at a distance R1 + R2 from
the origin, in the direction of the first vector of the local coordinate system. The radial
distance of a point on the torus is R1 + R2 * cos(v), and the height of the point along the
axis of revolution is R2 * sin(v).

Data Format:

e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the torus
radius1 Distance from the center of the
 generating arc to the axis of
 revolution
radius2 Radius of the generating arc

Parameterization:

(x, y, z) = (R1 + R2 * cos(v)) * [cos(u) * e1 +
 sin(u) * e2] + R2 * sin(v) * e3 +
 origin

General Surface of Revolution

A general surface of revolution is created by rotating a curve entity, usually a spline,
around an axis. The curve is evaluated at the normalized parameter v, and the resulting
point is rotated around the axis through an angle u. The surface of revolution data
structure consists of a local coordinate system and a curve structure.

Data Format:

e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the surface of revolution
curve Generating curve

Parameterization:

curve(v) = (c1, c2, c3) is a point on the curve.

(x, y, z) = [c1 * cos(u) - c2 * sin(u)] * e1 +
 [c1 * sin(u) + c2 * cos(u)] * e2 +
 c3 * e3 + origin

Ruled Surface

A ruled surface is the surface generated by interpolating linearly between corresponding
points of two curve entities. The u coordinate is the normalized parameter at which both
curves are evaluated, and the v coordinate is the linear parameter between the two points.
The curves are not defined in the local coordinate system of the part, so the resulting
point must be transformed by the local coordinate system of the surface.

Data Format:

e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane
origin[3] Origin of the ruled surface
curve_1 First generating curve
curve_2 Second generating curve

Parameterization:

(x', y', z') is the point in local coordinates.
(x', y', z') = (1 - v) * C1(u) + v * C2(u)
(x, y, z) = x' * e1 + y' * e2 + z' * e3 + origin

Tabulated Cylinder

A tabulated cylinder is calculated by projecting a curve linearly through space. The curve
is evaluated at the u parameter, and the z coordinate is offset by the v parameter. The
resulting point is expressed in local coordinates and must be transformed by the local
coordinate system to be expressed in part coordinates.

Data Format:

e1[3] Unit vector, in the u direction
e2[3] Unit vector, in the v direction
e3[3] Normal to the plane

origin[3] Origin of the tabulated cylinder
curve Generating curve

Parameterization:

(x', y', z') is the point in local coordinates.
(x', y', z') = C(u) + (0, 0, v)
(x, y, z) = x' * e1 + y' * e2 + z' * e3 + origin

Coons Patch

A Coons patch is used to blend surfaces together. For example, you would use a Coons
patch at a corner where three fillets (each of a different radius) meet.

Data Format:

le_curve u = 0 boundary
ri_curve u = 1 boundary
dn_curve v = 0 boundary
up_curve v = 1 boundary
point_matrix[2][2] Corner points
uvder_matrix[2][2] Corner mixed derivatives

Fillet Surface

A fillet surface is found where a round or a fillet is placed on a curved edge, or on an
edge with non-constant arc radii. On a straight edge, a cylinder would be used to
represent the fillet.

Data Format:

pnt_spline P(v) spline running along the u = 0 boundary
ctr_spline C(v) spline along the centers of the
 fillet arcs
tan_spline T(v) spline of unit tangents to the
 axis of the fillet arcs

Parameterization:

R(v) = P(v) - C(v)
(x,y,z) = C(v) + R(v) * cos(u) + T(v) X R(v) *
 sin(u)

Spline Surface

The parametric spline surface is a nonuniform bicubic spline surface that passes through
a grid with tangent vectors given at each point. The grid is curvilinear in uv space. Use
this for bicubic blending between corner points.

Data Format:

u_par_arr[] Point parameters, in the u
 direction, of size Nu
v_par_arr[] Point parameters, in the v
 direction, of size Nv
point_arr[][3] Array of interpolant points, of
 size Nu x Nv
u_tan_arr[][3] Array of u tangent vectors
 at interpolant points, of size
 Nu x Nv
v_tan_arr[][3] Array of v tangent vectors at
 interpolant points, of size
 Nu x Nv
uvder_arr[][3] Array of mixed derivatives at
 interpolant points, of size
 Nu x Nv

Engineering Notes:

�❍ Allows for a unique 3x3 polynomial around every patch.
�❍ There is second order continuity across patch boundaries.
�❍ The point and tangent vectors represent the ordering of an array of [i][j], where u varies

with i, and v varies with j. In walking through the point_arr[][3], you will find that the
innermost variable representing v(j) varies first.

NURBS Surface

The NURBS surface is defined by basis functions (in u and v), expandable arrays of
knots, weights, and control points.

Data Format:

deg[2] Degree of the basis
 functions (in u and v)
u_par_arr[] Array of knots on the
 parameter line u
v_par_arr[] Array of knots on the
 parameter line v
wghts[] Array of weights for
 rational NURBS, otherwise
 NULL
c_point_arr[][3] Array of control points

Definition:

k = degree in u
l = degree in v
N1 = (number of knots in u) - (degree in u) - 2
N2 = (number of knots in v) - (degree in v) - 2
Bi,k = basis function in u

Bj, l = basis function in v

wij = weights

Ci, j = control points (x,y,z) * wi,j

Engineering Notes:

The weights and c_points_arr arrays represent matrices of size wghts[N1+1] [N2+1] and
c_points_arr [N1+1] [N2+1]. Elements of the matrices are packed into arrays in row-
major order.

Cylindrical Spline Surface

The cylindrical spline surface is a nonuniform bicubic spline surface that passes through
a grid with tangent vectors given at each point. The grid is curvilinear in modeling space.

Data Format:

e1[3] x' vector of the local coordinate
 system
e2[3] y' vector of the local coordinate
 system
e3[3] z' vector of the local coordinate

 system, which corresponds to the
 axis of revolution of the surface
origin[3] Origin of the local coordinate
 system
splsrf Spline surface data structure

The spline surface data structure contains the following fields:

u_par_arr[] Point parameters, in the
 u direction, of size Nu
v_par_arr[] Point parameters, in the
 v direction, of size Nv
point_arr[][3] Array of points, in
 cylindrical coordinates,
 of size Nu x Nv. The array
 components are as follows:
 point_arr[i][0] - Radius
 point_arr[i][1] - Theta
 point_arr[i][2] - Z
u_tan_arr[][3] Array of u tangent vectors.
 in cylindrical coordinates,
 of size Nu x Nv
v_tan_arr[][3] Array of v tangent vectors,
 in cylindrical coordinates,
 of size Nu x Nv
uvder_arr[][3] Array of mixed derivatives,
 in cylindrical coordinates,
 of size Nu x Nv

Engineering Notes:

If the surface is represented in cylindrical coordinates (r, theta, z), the local coordinate
system values (x', y', z') are interpreted as follows:

x' = r cos (theta)
y' = r sin (theta)
z' = z

A cylindrical spline surface can be obtained, for example, by creating a smooth rotational
blend (shown in the figure).

In some cases, you can replace a cylindrical spline surface with a surface such as a plane,
cylinder, or cone. For example, in the figure, the cylindrical spline surface S1 was

replaced with a cone
(r1 = r2, r3 = r4, and r1 r3).

If a replacement cannot be done (such as for the surface S0 in the figure (ra rb or rc
 rd)), leave it as a cylindrical spline surface representation.

Edge and Curve Parameterization

This parameterization represents edges (line, arc, and spline) as well as the curves (line,
arc, spline, and NURBS) within the surfaces.

This section describes edges and curves, arranged in order of complexity. For ease of use,
the alphabetical listing is as follows:

�❍ Arc
�❍ Line
�❍ NURBS
�❍ Spline

Line

Data Format:

end1[3] Starting point of the line
end2[3] Ending point of the line

Parameterization:

(x, y, z) = (1 - t) * end1 + t * end2

Arc

The arc entity is defined by a plane in which the arc lies. The arc is centered at the origin,
and is parameterized by the angle of rotation from the first plane unit vector in the
direction of the second plane vector. The start and end angle parameters of the arc and the
radius are also given. The direction of the arc is counterclockwise if the start angle is less
than the end angle, otherwise it is clockwise.

Data Format:

vector1[3] First vector that defines the

 plane of the arc
vector2[3] Second vector that defines the
 plane of the arc
origin[3] Origin that defines the plane
 of the arc
start_angle Angular parameter of the starting
 point
end_angle Angular parameter of the ending
 point
radius Radius of the arc.

Parameterization:

t' (the unnormalized parameter) is
 (1 - t) * start_angle + t * end_angle
(x, y, z) = radius * [cos(t') * vector1 +
 sin(t') * vector2] + origin

Spline

The spline curve entity is a nonuniform cubic spline, defined by a series of three-
dimensional points, tangent vectors at each point, and an array of unnormalized spline
parameters at each point.

Data Format:

par_arr[] Array of spline parameters
 (t) at each point.
pnt_arr[][3] Array of spline interpolant points
tan_arr[][3] Array of tangent vectors at
 each point

Parameterization:

x, y, and z are a series of unique cubic functions, one per segment, fully determined by
the starting and ending points, and tangents of each segment.

Let p_max be the parameter of the last spline point. Then, t', the unnormalized parameter,
is t * p_max.

Locate the ith spline segment such that:

par_arr[i] < t' < par_arr[i+1]

(If t < 0 or t > +1, use the first or last segment.)

t0 = (t' - par_arr[i]) / (par_arr[i+1] - par_arr[i])
t1 = (par_arr[i+1] - t') / (par_arr[i+1] - par_arr[i])

NURBS

The NURBS (nonuniform rational B-spline) curve is defined by expandable arrays of
knots, weights, and control points.

Data Format:

degree Degree of the basis function
params[] Array of knots
weights[] Array of weights for rational
 NURBS, otherwise NULL.
c_pnts[][3] Array of control points

Definition:

k = degree of basis function

N = (number of knots) - (degree) - 2

wi = weights

Ci = control points (x, y, z) * wi

Bi,k = basis functions

By this equation, the number of control points equals N+1.

References:

Faux, I.D., M.J. Pratt. Computational Geometry for Design and Manufacture. Ellis
Harwood Publishers, 1983.

Mortenson, M.E. Geometric Modeling. John Wiley & Sons, 1985.

	The VB API User's Guide
	About This Guide
	Overview of the VB API
	VB API Fundamentals:Controlling Pro/ENGINEER
	The VB API Online Browser
	Session Objects
	Selection
	Menus, Commands, and Pop-up Menus
	Models
	Drawings
	Solid
	Windows and Views
	ModelItem
	Features
	Datum Features
	Geometry Evaluation
	Dimensions and Parameters
	Relations
	Assemblies and Components
	Family Tables
	Action Listeners
	Interface
	Simplified Representations
	Task Based Application Libraries
	Graphics
	External Data
	Windchill Connectivity APIs
	Summary of Technical Changes
	Sample Applications
	Digital Rights Management
	Geometry Traversal
	Geometry Representations

