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Basic Introduction into Elasto-Plasticity 

Theoretical Foundations 
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 True elastic limit (1): 
– The lowest stress at which dislocations move 

– Has no practical importance 

 Proportionality limit (2): 
– Limit until which the stress-strain curve is a straight line  

characterized by Young's modulus, E 

 Elastic limit, yield strength or yield point (3): 
– Is the stress at which a material begins to deform plastically, means non-reversible (this is the 

lowest stress at which permanent deformation can be measured) 

– Before the yield point, the material deforms only elastically and will return to its original shape 

 Offset yield point or proof stress (4): 
– Since the true yield strength often cannot be measured easily, the offset yield point is arbitrarily 

defined by using the stress value at which we have 0.1 or 0.2 % remaining strain. It is therefore 

described with an index, e.g. Rp0.2 for 0.2 % remaining strain like shown in the image 

Elasto-Plastic Material Basics (1) 

The elasto-plastic stress-strain curve 
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A typical stress-strain curve 

for non-ferrous alloys [1] 
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 In stress-strain curves, usually the 

engineering stress =F/A0 vs. 

engineering strain =l/l0 is shown 

 If the material shows significant 

plastic behavior, the engineering 

stress  decreases when the 

specimen shows necking 

 The true stress *=F/A still 

increases, since there is a 

significant local reduction of area 

like shown in the right image 

 In many practical applications (up to 

 5 % elongation), the difference is 

negligible 

Elasto-Plastic Material Basics (2) 

Engineering and true stress  
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Stress-strain curve of a typical soft steel 

with engineering stress  and true stress * 

vs. engineering strain, modified from [3] 
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 Brittle material (a) shows rupture in 

the plane of the maximum principal 

stress 1 

 Ductile material (b) shows a crater-

shaped shear fracture under 45° to 

the maximum principal stress plane 

near the specimen surface.  

 Within the specimen, a brittle 

fracture shape can be observed, 

since inside the necked area we 

have a multiaxial stress state (c) 

with an acc. to [3] approximately 

equal axial, radial and tangential 

stress, which prevents yielding 

Elasto-Plastic Material Basics (3) 

Fracture shapes in uniaxial specimens 
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Fracture shapes and stress state in an 

uniaxial test specimen, modified from [3] 

a) b) c) 
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 Hardened steel,  

e.g. for spring applications (1) 

 Tempered steel (2) 

 Soft steel (3) 

 AlCuMg, hardened (4) 

 Gray cast iron GG 18 (5) 

 
 

Elasto-Plastic Material Basics (4) 

Typical uniaxial stress-strain curves [3] 
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 Proportionality limit and elastic limit 
– Note that for typical elasto-plastic material, there is often not a 

big difference between these two limits (points 2/3) 

– In opposite, for elastomers, such as rubber which can be 

idealized as hyperelastic, there is a big difference between 

these points: These have an elastic limit much higher than the 

proportionality limit, and an elastic limit is not specially taken into 

account in the hyperelastic material formulation 

 Compressibility and Poisson effect 
– Elastic strains in elasto-plastic materials usually appear with 

volume changes, the Poisson ratio is <0.5, e.g. 0.3 

– In general, plastic flow of metals occurs without volume change. 

Mathematically, this means the Poisson ratio for plastic strains is 

0.5 and pxxpyypzz=0 

– In opposite to this behavior, hyperelastic material does not 

change its compressibility during loading, so as Wildfire 4 user 

you should never try to “approximate” any elasto-plastic material 

curve with the hyperelastic model! 

Elasto-Plastic Material Basics (5) 

Comparison of elasto-plastic and hyperelastic material 
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A typical stress-strain curve for 

non-ferrous alloys [1] 
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Hyperelastic material 

stress-strain curve [2] 
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 The material laws are a one dimensional relation 

of stress versus plastic strain 

 Creo Simulate supports four material laws for 

describing plasticity: 
– elastic – perfectly plastic: Above the yield limit the stress 

(y=yield=yield stress) is constant independently of the 

plastic strain reached (a special case of the linear hardening 

model with Em=0) 

– „Linear hardening“: The relation between stress and plastic 

strain is constant („tangent modulus“ Em with slope 0<Em<E) 

– Power (Potential) law: 0<Em<E, 0<m≤1 

– Exponential law: 

m>0, limit >0 

Elasto-Plastic Material Laws in Simulate (1) 

Implemented Material Laws 

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 

 



11 

 This coefficient takes into account that the yield strength of a material falls 

with increasing temperature. It is regarded as a constant material parameter 

and allows to take into account temperature influence when analyzing 

plasticity. It is valid for all plasticity models supported. 

 The coefficient of thermal softening  is defined in Simulate as follows: 

 

 Herein, Y0 is the material yield strength entered in the material definition 

dialogue (Simulate assumes this is for the reference temperature T0), and  

(dimension 1/temperature) is the coefficient of thermal softening. Y1 is the 

yield strength at the model temperature T1. 

 Note: In order to prevent a negative yield stress, the condition *(T1 - T0)<1 

must be fulfilled! The engine issues an error and stops if this appears. 

Elasto-Plastic Material Laws in Simulate (2) 

Coefficient of thermal softening – CTS (1) 
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 In [6], there is a more general formulation of the thermal softening, which is 

based on the power (potential) plasticity law and also takes into account the 

strain rate (loading speed): 

 

 Herein, we have 5 material parameters A, B, n, C, m. 

                  is the dimensionless plastic strain rate for                    [6].  

T* is the homologous temperature, and  the von Mises flow stress. 

Expressed in formula letters more common in this presentation, we obtain 

 

 

 So, the CTS used in Simulate is a linearization of the temperature function 

given above, which is good for most cases. The strain rate has to be taken 

into account directly by modifying the material law parameters, if required. 
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Elasto-Plastic Material Laws in Simulate (3) 

Coefficient of thermal softening (2) 
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 The influence of thermal softening is depicted in [6] for various materials 

Elasto-Plastic Material Laws in Simulate (4) 

Coefficient of thermal softening (3) 
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 Simulate can automatically select the material law from linear least squared 

best-fit, if the user enters uniaxial tension test data 

 Manual selection/input is possible, too 

Defining Elasto-Plastic Material Laws – Curve Fitting (1) 

Stress-strain curves for materials beyond the elastic limit can be defined by tests 
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 The following slides show what happens behind the Simulate user dialogue 

when material test data is input  

 If we have an equation 

 

 

then the coefficients a and b can be evaluated from the following equations: 

 

 

 

 

 Here, n is the number of data points, (xi, yi) is the data pair and the 

summation goes from 1 to n 

Defining Elasto-Plastic Material Laws – Curve Fitting (2) 

Isotropic hardening laws using linear least squared fitting algorithm [4] 

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 

 

bxay 

 

  
  

 
   











22

22

2

ii

iiii

ii

iiiii

xxn

yxyxn
b

xxn

yxxxy
a



16 

 Linear plasticity 

 

 

or: 

 

 

 

Here: 

Defining Elasto-Plastic Material Laws – Curve Fitting (3) 

Application of linear least squared fitting algorithm to isotropic hardening laws [4] 
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 Power (potential) plasticity law 

 

 

or: 

 

Taking logs on either side to the base e: 

 

 

Here: 

 

Defining Elasto-Plastic Material Laws – Curve Fitting (4) 

Application of linear least squared fitting algorithm to isotropic hardening laws (cont‟d) 
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 Exponential plasticity law 

 

 

or: 

 

 

Taking derivatives on either side, with respect to X: 

 

 

 

Taking logs on either side to the base e: 

 

 

Defining Elasto-Plastic Material Laws – Curve Fitting (5) 

Application of linear least squared fitting algorithm to isotropic hardening laws (cont‟d) 

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 

 

  
  

mX

py

BeBAY

mXBAY

m







exp1

exp1lim 

  mXmBe
dX

AYd 


 
  mXmB

dX

AYd
ee 


loglog



19 

 Then, we obtain: 

 

 

 

 

 

 

 

After evaluating m (from b),  

we can evaluate B (from a) 

 

Defining Elasto-Plastic Material Laws – Curve Fitting (6) 

Application of linear least squared fitting algorithm to isotropic hardening laws (cont‟d) 
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 The material laws are a one dimensional relation of stress versus plastic 

strain. Only uniaxially tension loaded specimens are used for characterizing 

the elasto-plastic material behavior, where we have one yield point only. 

 In the three-dimensional space of the principal stresses (σ1, σ2, σ3), an 

infinite number of yield points form together the yield surface. 

 In real structures, we usually have biaxial stress states at the surface and  

– more or less – three-axial stress states within the structure. Hence, we 

need a suitable criteria to form an equivalent uniaxial, scalar comparative 

stress, called the yielding condition or yield criteria. 

 In literature, several different yield criteria can be found for isotropic 

materials. 

 The subsequent slide shows only the most popular criteria for yielding of 

isotropic, ductile materials. 

Multi-Axial Plasticity (1) 

Yield point and yield surfaces 
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 Maximum Shear Stress Theory (Tresca yield criterion) 
– Yield in ductile materials is usually caused by the slippage of crystal planes along the maximum 

shear stress surface.  

– The French scientist Henri Tresca assumed that yield occurs when the shear stress exceeds the 

uniaxial shear yield strength ys:  

 

 

 Distortion Energy Theory (von Mises yield criterion) 
– This theory proposes that the total strain energy can be separated into two components: the 

volumetric (hydrostatic) strain energy and the shape (distortion or shear) strain energy. It is 

assumed that yield occurs when the distortion component exceeds that at the yield point for a 

simple tensile test. The hydrostatic strain energy is ignored. 

 

 

– Based on a different theoretical derivation it is also referred to as “octahedral shear stress theory” 

– Simulate supports this yield criteria only, since it is most commonly used and often fits with 

experimental data of very ductile material 

Multi-Axial Plasticity (2) 

Classical isotropic yield criteria 

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 

 

ys


 



2

31
max

       22

13

2

32

2

21
2

1
y 



22 

 In the three-dimensional space of 

the principal stresses (σ1, σ2, σ3), an 

infinite number of yield points form 

together the yield surface. If the 

stress state is within this surface, no 

yielding appears. 

 The most popular criteria, Tresca 

and von Mises, 

 

 

 

 

look like shown right 

 The von Mises yield surface is 

therefore called the “yield cylinder” 

 

Multi-Axial Plasticity (3) 

Graphical representation of classical criteria 
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 Generalized Isotropic Yield Criterion (Hosford) 

 
 

 

– Experimental and theoretical data on yielding under combined stresses can be described by a 

single parameter, n, with 1 ≤ n ≤  

– For n=2, this equals the von Mises criterion 

– This criterion was proposed in 1972 by W. F. Hosford, Department of Materials and Metallurgical 

Engineering, The University of Michigan, Ann Arbor, Mich [7] 

 

 More criteria and deeper information can be found e.g. in [8] and [9] 

Multi-Axial Plasticity (4) 

Other Isotropic yield criteria 
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 Comparison of different popular criteria [9] 

 

 

 

 

 

 
 

 

a. IF-steel 

b. LC-steel 

c. Aluminum alloy 

Multi-Axial Plasticity (5) 

Graphical representation of some other isotropic yield criteria 
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 Note the von Mises yielding condition must always be satisfied: 

 

 This has some consequences, e.g.: 
– In a uniaxial stress state, the yield stress and the maximum principal stress will  always be the 

same – the maximum principal stress can never by greater than the von Mises stress! 

– In a biaxial stress state, it may happen that one or more principal stresses may well be above or 

below the uniaxial yield stress, so do not be surprised! 

– In equi-triaxial tension, yielding will never appear, since the principal stress differences are zero. 

The material will break if the principal stress reaches ultimate stress, while the von Mises stress 

will still be zero. A ductile material will behave brittle in this case, that means rupture appears 

suddenly without previous yielding! 

 In the following slides, we will examine some characteristic stress states 

with a small demonstration model for better understanding 

Examination of Typical Stress States (1) 

Von Mises Stress and Principal Stresses 
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 We use a unit volume with symmetry 

constraints 
– Loads can be applied with forces or enforced 

displacements in all principal directions 

– The mesh consists of one p-brick only 

– We have created measures for stress (true and 

engineering) and strain (log and engineering), equivalent 

plastic strain, reaction forces and absolute volume  

 Note: 
– Simulate uses exactly =0.5 for plastic (incompressible) 

strains, not 0.4995 like for incompressible hyperelastic 

material 

– In hyperelasticity, 0.5 can lead to “dilatational locking”, 

where the mesh acts too stiff for numerical reasons, and 

0.4995 fixes that. This problem does not occur in 

plasticity. 

Examination of Typical Stress States (2) 

Demonstration model 
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 Simple linear hardening and perfect plasticity 

model used 
– Very soft model steel with  

• E=200000 MPa 

• Yield strength = 100 MPa 

• Elastic Poisson ratio = 0.3 

• Tangent modulus (linear hardening only) = 2000 MPa 

– At its yield strength, the strain should be  

 

 

– The lateral strains are: 

 

 

– At the yield strength, the unit volume of V0=1 mm3 

increases  to 

 

– All subsequent analyses performed in LDA 

 

Examination of Typical Stress States (3) 

Material model used 
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 Perfect plasticity results 
– Axial stress stays constant at 100 MPa after yielding 

– Volume does not further increase when material yields, like expected 

Examination of Typical Stress States (4) 

Uniaxial Tension 
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 Linear hardening results 
– Axial stress = 1st principal stress increases with factor 100 reduced slope after yielding 

– Volume further increases when material yields: Elastic strain increases because stress 

increases during yielding, too! (Note: Analysis was performed in LDA, since SDA cannot  

capture this volume change very accurately) 

Examination of Typical Stress States (5) 

Uniaxial Tension 
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 We load the volume with the uniaxial yield limit 

strength:   
– Von Mises stress vs. equivalent plastic strain reflects the 

uniaxial linear hardening material input curve, like expected 

 

Examination of Typical Stress States (6) 

Pure Torque (1) 
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– The max. and min. principal stresses (= x and y-stress) 

show yielding much below the uniaxial yield strength of 

100 MPa! 

 

Examination of Typical Stress States (7) 

Pure Torque (2) 
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– The volume should not change for this loading state, just 

small numerical disturbances 

– Strain energy increases dramatically after von Mises stress 

reaches yield limit of 100 MPa 

 

Examination of Typical Stress States (8) 

Pure Torque (3) 
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– This biaxial, plane stress state allows to load the material 

well above the uniaxial yield limit without yielding! 

– Just above 1 = x = 115 MPa yielding takes place,  

15 % above the unixial limit 

 

Examination of Typical Stress States (9) 

Biaxial tension ratio: 1 = 1.2 Y0; 2 = 0.5 Y0; 3=0 
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– The graph Y-Stress vs. Y-strain shows a sharp bend, since 

negative incompressible Y-strain prevails after yielding! 

– The von Mises stress vs. X-strain shows the uniaxial 

material behavior, like expected 

 

Examination of Typical Stress States (10) 

Biaxial tension ratio: 1 = 1.2 Y0; 2 = 0.5 Y0; 3=0 
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 We load all directions, e.g. 
– Yielding never appears, since all principal stress differences are zero 

– In equitriaxial tension, the ductile material will suddenly break brittle 

when ultimate strength is reached, without previous yielding 

– Under hydrostatic pressure, yielding or even rupture in general will not 

appear under practical achievable pressures 

 

Examination of Typical Stress States (11) 

Equitriaxial tension 
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 Bauschinger effect 
– If a metallic material is loaded above its yield strength and 

the load is reversed, its yield strength in the reversed 

direction becomes reduced 

– This effect was described by Johann Bauschinger  

(1834-1893, Prof. for engineering mechanics at the  

Munich Polytechnikum) 

– The analogous model for this effect is shown right below:  

It consists of a spring K1 representing the elastic material 

behavior. In serial connection to K1 , there is a friction 

element FR and another spring K2 (usually K2 << K1) in 

parallel connection  

Hardening Models (1) 

Basics of material hardening 
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 Kinematic hardening (Bauschinger effect) 
– Ideal kinematic hardening means that the yield surface of 

the yield law is just offset, its size remains unchanged 

– The yield limit is constant, just the midpoint “m” of the yield 

locus changes 

 Isotropic hardening 
– For ideal isotropic hardening, the direction of the loading 

does not influence the yield limit 

– Here, the yield surface simply expands if the material is 

loaded above yield 

 Isotropic kinematic hardening 
– In reality, usually both models have to be combined to 

describe the material behavior.  

– The Bauschinger number describes the relation of kinematic 

and isotropic hardening 

Hardening Models (2) 

Basics of material hardening 
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Opportunities & Limitations 

Tips & Tricks 

Applying Simulate to Elasto-Plastic Problems 

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 

 

Part II 



39 

 Isotropic hardening 
– Creo Simulate supports isotropic 

hardening only, therefore currently the 

Bauschinger effect cannot be described 

 Example 
– Simple linear hardening material used 

 Load history: 

Isotropic Hardening (1) 

Application in Creo Simulate (1) 
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 Cyclic Loading 
– Since currently only isotropic hardening is supported, 

cyclic loading especially with the linear hardening or 

Power law is not realistic, because the material will 

“harden until infinity”. 

 Preferred Material Model 
– In this case, approximate with perfect plasticity or 

exponential hardening law (both have an upper limit). 

 Load history 

Isotropic Hardening (2) 

Application in Creo Simulate (2) 
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 Plastic material laws and test data 
– When entering the elasto-plastic material/test data into the data dialogue, note that you have to 

enter engineering stress vs. engineering plastic strain for SDA and true stress vs. logarithmic 

plastic strain for LDA. Subtract the elastic strain from the total strain to get the plastic strain 

required for input. Note the curves start with the yield limit stress, not at zero! 

– For all material laws except of perfect plasticity, the entered stress must be a strictly monotonic 

function of the engineering strain. A decrease of engineering stress at higher strains cannot be 

described in a SDA (see example 1 of part III for further details). 

– Only the exponential plasticity law allows to define an upper limit of plastic stress, which is 

approached asymptotic! 

– The material laws do not allow to calculate (accidently) necking under high loads in the plastic 

domain, if there is no imperfection in the model; so they do not allow to predict where failure will 

really appear (see again example 1 of part III for further details). 

 Stress and strain output 
– Note that Simulate will output engineering stress and strain in plasticity only if “calculate large 

displacements” (=LDA) is not activated. If an LDA is performed, since Creo 1.0 Simulate outputs 

logarithmic strain and true stress (until Wildfire 5, output is Almansi (Eulerian) strain). 

Working with Material Laws in Simulate (1) 

What do I have to take care about when I use a material law within Simulate? 
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Working with Material Laws in Simulate (2) 

Graphical representation of different strains [2]: 
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 Literature separates between “small strain” 

and “finite strain” plasticity 
– In small strain plasticity, just small deformations are 

allowed and the total deformations as well as the 

deformation increments are additively split into an  

elastic and plastic part, = e+p. This assumption is 

valid for strains up to a few percent, then it becomes 

inaccurate 

– In finite strain plasticity theory, the deformation 

gradient is split multiplicatively into an elastic and a 

plastic part. This allows to treat problems with very 

large deformations, like forging processes. 

– The mathematical methods especially of finite strain 

plasticity are very ambitious and far beyond the 

scope of this presentation. 

Small Strain and Finite Strain Plasticity (1) 

Small and finite strain plasticity 
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 Creo Elements / Pro Mechanica WF 5.0 supports small strain plasticity 
– Here, the relation between total strain and displacement is linear: Strains are output as 

engineering values.  

– Plasticity is limited to SDA (small displacement analysis) only, LDA  (large displacement 

analysis) therefore is not supported in this release 

 Creo Simulate 1.0 and 2.0 also support finite strain plasticity: 
– Finite strain is implemented for 3D models if LDA is activated. 

– In this case, the plastic (and elastic) strain is output as logarithmic strain: Simulate computes 

incremental strain at each load step and then integrates it to get total strain. This ends up with 

strain being logarithmic (see slide 42). 

– For 2D models (plane stress, strain & axial symmetric), still just small strain plasticity is 

supported. So if LDA is used with these model types even though, e.g. in combination with a 

contact analysis, hyperelastic material, or nonlinear spring, Simulate issues a warning if the 

strain becomes > 10 % 

– Internally, the engine still uses large displacement calculations in this case, but the strain 

calculations in the 2D elasto-plastic elements themselves are small strain. 

Small Strain and Finite Strain Plasticity (2) 

Mechanica WF 5.0 and Creo Simulate differ in plasticity models 
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 What can I do if a need finite strain calculations, but have a 2D problem?  
– In these cases (plane stress, plane strain or axial symmetric models), built up your model as  

3D segment with a small angle or thin slice using appropriate constraints and mesh controls 

– Example: An axial symmetric problem as 2D axial symmetric and as 3D segment model: 

 

 

 

 

 

 

 

 

 

 

 

– Plane strain models can be set up by using just one layer of elements over the constant “slice” 

thickness and use mirror symmetry constraints at the slice cutting surfaces, see [10]. 

Small Strain and Finite Strain Plasticity (3) 

Performing finite strain analyses  
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 How is the “equivalent plastic strain” being computed? 
– The computation uses the following variables: 

“effectiveStressPredictor”: current von Mises Stress 

“flowStress”: yield stress based on current plastic strain and strain-hardening curve 

“ShearModulus”: elastic shear modulus = E/(2*(1+nu)) where nu is the elastic Poisson’s ratio 

“dep”: incrememental equivalent plastic strain 

“dStress”: the slope of the work hardening curve 

– At each load increment, the incremental plastic strain “dep” is given by: 

dep = 0 

Loop until ddep stops changing: 

{ 

yieldFunction = effectiveStressPredictor - flowStress - 3.0*ShearModulus*dep 

denominator = 3.0*ShearModulus + dStress; 

ddep = yieldFunction/denominator; 

dep = dep +ddep; 

} 

– After this loop, the equivalent plastic strain “ep”, is incremented by “dep”. Note ep is logarithmic 

strain, like all strain quantities in LDA since Creo Simulate 1.0. 

Characteristic Measures in Plasticity (1) 

Equivalent plastic strain 
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 Von Mises Stress 
– Von Mises stress is derived under the assumption that 

distortion energy of any arbitrary loading state drives 

the damage of the material: 

 
 

– Per definition, in an uniaxial tension test case with just 

1 >0 and 2 = 3 =0 we obtain for the von Mises 

Stress: 

 

Characteristic Measures in Plasticity (2) 

Von Mises Stress and Strain 
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 Von Mises Strain in Simulate 
– Simulate currently uses this equation for von Mises 

Strain:  

 

 

– This equation is used in formal analogy to the von 

Mises stress only for computational reasons (same 

subroutine as for stress) and simplicity.  

– This strain will be analyzed on demand as measure 

output only for certain locations or over certain 

references. It is calculated at the end only and not used 

for any other result output. 

– Note that this von Mises strain definition cannot be 

used directly for comparison with the longitudinal strain 

in an uniaxial test. It must be modified, e.g. with help of 

a computed measure, like shown in the subsequent 

slides. 

Characteristic Measures in Plasticity (3) 

Von Mises Stress and Strain 
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 Von Mises Strain 
– In analogy to the von Mises stress, for comparing any three dimensional loading state with the 

state of uniaxial loading the von Mises strain definition in Simulate must be corrected: An 

additional factor 1/(1+´) should be taken into account, like e.g. used in [5]: 

 

 

– Herein, ‟ is the effective Poisson‟s ratio, which is 0.5 for plastic strains (incompressible) or the 

material Poisson‟s ratio for elastic and thermal strains 

– The following slides show that this equation reflects a scalar comparative strain for comparison 

with the longitudinal strain in a uniaxial test 

 Difficulties in von Mises strain correction 
– If the loading state of the material is just in the elastic domain, this correction can be easily 

applied, since the elastic Poisson‟s ratio is known 

– If the loading state is far in the plastic domain, the elastic deformation can be neglected and ´ 

becomes 0.5 

– The problem is the domain with small plastic deformations, since here it is not known which 

strain type prevails, so which fraction of the deformation is plastic and which is elastic 

Characteristic Measures in Plasticity (4) 

Von Mises Strain modification 
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 Hooke’s law 
– Hooke„s law for isotropic material expressed in principal stresses and strains: 

 

 

 
– In an uniaxial tensile test, we have just one positive principal stress 1,  

resulting in a three-dimensional strain state: 

 

 

 

 

 

 

– The von Mises comparative strain equation should deliver the same strain like the axial strain 1 

Characteristic Measures in Plasticity (5) 

Von Mises Strain definition in the uniaxial case 
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 Von Mises Strain 
– Let‟s examine if the corrected von Mises Strain definition works correct for uniaxial loading, 

where we have: 

 

 

 

 

– Putting this into the von Mises Strain equation, we obtain with  = ‟ : 

 

 

 

 

 

 

 

– So, per definition now the von Mises Strain equation delivers the uniaxial tensile strain 1 for the 

uniaxial loading state 

Characteristic Measures in Plasticity (6) 

Von Mises Strain definition in the uniaxial case 
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 Loading 
– Creo Simulate offers a powerful time history functionality 

using “dummy time” steps. 

– Load stepping is available in two ways: 

• The user can use default or self-defined functions, e.g. as 

tabular values. In this case, output steps should be kept 

“automatic”, then for all tabular time values a result will be 

computed 

• Output steps can also be set to “User defined”, with automatic 

or manual time stepping. 

– Simulate has a built-in automatic load step refinement in 

case of too big increments, but this should not be 

overstressed! 

– A good user load  

stepping can  

significantly increase 

performance! 

Load Stepping and Unloading (1) 

What do I have to take care about if I want to load my structure?  
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 Unloading 
– Unloading can be achieved by simply activating the button 

“include unloading”. 

– Alternatively, since Creo 1 unloading can be achieved by 

using the new load history function just described. 

– In addition, Creo 2.0 offers an engine command line option 

for advanced users called “lda_gradual_unloading” 

(unsupported for testing by advanced users only). This 

assures that unloading with the button “include unloading” 

is done not in one single, but a series of 10 consecutive 

steps. 

– The reason for this command line option is that unloading 

the structure in one single step may lead in some cases to 

inaccurate results. Usually, this can be clearly detected by 

checking the von Mises stress distribution: It will look noisy, 

having many randomly located “hot spots” that are 

obviously not reasonable. 

Load Stepping and Unloading (2) 

What do I have to take care about if I want to unload my structure?  

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 

 



54 

 Mesh controls 
– A good mesh in a nonlinear material analysis is much more 

important than in a linear analysis, because it helps the analysis 

to run faster or more accurate within the same time. 

– Especially problems with very large strains take benefit of a 

smooth, undistorted mesh with bricks and wedges instead of tets. 

– The new mesh controls for regular meshing should therefore be 

used whenever possible. 

 

Meshing 

When using elasto-plastic materials, what do I have to take care regarding meshing? 
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Application Examples 
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 Goals of the study:  
– Understand why a uniaxial tension test specimen made of 

ductile material breaks in the necked area under 45° at the 

outer surface and brittle in its center (see slide 7 or [3]) 

– Understand differences of SDA and LDA in plasticity 

– Understand the influence of necking in the true and 

engineering stress-strain curves 

 Remark:  
– The material laws in Simulate do not directly allow to 

simulate necking in a perfect specimen with regular mesh, 

which appears in reality at an accidental weak location of 

the tensile test specimen. 

– Therefore, we use a second cylindrical specimen in the 

LDA with a small imperfection modeled into the geometry 

like shown right: The cylinder radius is just locally 5/100 mm 

smaller than the nominal radius of 10 mm 

– We will analyze the perfect specimen in both SDA and LDA 

A Uniaxial Test Specimen with Necking (1) 

Study of a tensile test specimen with taking into account necking 
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 Model setup:  
– We use mapped meshing for the 

90° symmetry section to obtain a 

regular mesh just using bricks (and 

wedges only at the rotation axis). 

– From the reaction forces at the 

constraints, we analyze nominal 

engineering and true stress in the 

necked section with help of 

computed measures. 

– Engineering strain (not output in 

LDA) is computed by the specimen 

elongation divided by its initial 

length (computed measure). 

– We use an enforced displacement 

to apply the load, for better 

numerical stability in the region of 

high plastic strains. 

A Uniaxial Test Specimen with Necking (2) 

Study of a tensile test specimen with taking into account necking 
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 Used material:  
– We use steel (E=200 GPa, =0.27) with exponential material law (m=10) 

– Yield limit is 210 MPa, ultimate limit is 330 MPa (engineering stress) 

– Note that the material input data is interpreted as engineering stress vs. engineering strain in 

SDA and true stress vs. log (true) strain in LDA! 

A Uniaxial Test Specimen with Necking (3) 

Study of a tensile test specimen with taking into account necking 
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 Imperfect specimen showing equivalent plastic strain with 1:1 deformations 

A Uniaxial Test Specimen with Necking (4) 

Study of a tensile test specimen with taking into account necking 
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 Equivalent plastic strain and von Mises stress results animations 

A Uniaxial Test Specimen with Necking (5) 

Study of a tensile test specimen with taking into account necking 
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 Principal stress vector results at 

max. engineering strain in the 

necked cross section center 
– In the center of the necked region, a 

triaxial tensile stress state appears 

– In our example, the three principal 

stresses are not the same like stated in 

[3], but in the specimen center radial 

and circumferential stress have similar 

size and are approximately 60 % of the 

axial principal stress 

– Triaxial tension leads to brittle rupture in 

the specimen, whereas at the specimen 

surface we just have a two-axial stress 

state (radial stress=0): There, we have 

ductile behavior. 

A Uniaxial Test Specimen with Necking (6) 

Study of a tensile test specimen with taking into account necking 
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 True and engineering stress vs. engineering strain in SDA and LDA 

A Uniaxial Test Specimen with Necking (7) 

Study of a tensile test specimen with taking into account necking 
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necking 

starts 

Inflection point of true stress-

strain curve: Necking starts! 

Due to SDA theory simplifications, 

the volume change (lateral con-

traction) is overestimated, and the 

true stress becomes too high at 

strains >10% 

Note for shown curves: 

 

1) Eng strain is calculated 

by specimen elongation 

l / initial length l 

2) True stress in the 

imperfect specimen is an 

average value and  
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force / actual necked 

cross section area 

3) Engineering stress in the 
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shown green stress vs. 
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 Conclusions: 
– The subtraction of elastic strain from the measured curve is just a small correction. 

– Note that you may need different material data sets for SDA and LDA. 

– For small strains, it is sufficient to measure engineering stress vs. engineering strain and run 

an SDA analysis. 

– For bigger strains, e.g. 5% and more, true stress vs. true strain should be input into the 

material dialogue. Run an LDA analysis in this case! This is especially important if you want to 

do a metal forming analysis, where strains may rapidly become 30% and more. 

– True stress results from specimens in the necked region should not be taken into account, 

since they will falsify the material data curve. Take care that you input data just from the strain 

region without necking (true stress curve has an inflection point when necking starts)! 

– When necking appears, the axial strain along the specimen length is not constant any longer 

(see the animations on slide 60). A further increase of strain will just take place in the necked 

area. 

– As a result check, you may run an analysis with your tensile test specimen and compare 

material data input curve and analysis result like shown in the example. 

A Uniaxial Test Specimen with Necking (8) 

Study of a tensile test specimen with taking into account necking 

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 

 



64 

 Useful equations for uniaxial test data evaluation: 
– For translating stress data: 

 

 

– For translating strain data: 

 

 

 

 Summary of required stress/strain input in Simulate: 

A Uniaxial Test Specimen with Necking (9) 

Study of a tensile test specimen with taking into account necking 
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 Geometry: 
– Two ideal-elastic plates compress a soft Aluminum 

tube (displacement controlled) 

– Half symmetry model to increase speed 

 Material: 
– Power law used for elasto-plastic description 

 

Flattening of a Tube End (1) 

Model setup 
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Flattening of a Tube End (2) 

Displacement results animation (quick check only) 
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deformed shape 
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Flattening of a Tube End (3) 

Von Mises stress results animation (quick check only) 
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deformed shape with 

released forming plates 
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 Geometry: 
– A thin flat steel disk is formed to become a 

membrane 

– The steel disk is guided at the outer diameter with 

help of a ring 

– The displacement controlled grey piston forms the 

wave 

 Model: 
– For simplicity, the 2D axial symmetric model 

formulation is used. 

– Note this is just a coarse approximation since we 

expect log strains of >30 % and small strain 

plasticity is not accurate here. An alternative, 

better suitable  3D segment model supporting 

finite strain is shown on slide 45. 

– LDA is used for better contact modeling, since we 

have large deformations at the contacts.  

Forming of a Thin Membrane (1) 

Model setup 
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Forming of a Thin Membrane (2) 

Displacement results animation 
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deformed shape 
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Forming of a Thin Membrane (3) 

Equivalent plastic strain results animation 
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deformed shape with 

released piston 
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Questions? 

Thanks for your attention! 
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– dilatation – Dilatation, Ausdehnung 

– dislocation: Gitterfehler, Versetzung 

– elastic – perfectly plastic material law: ideal elastisch – ideal plastisches Materialgesetz 

– elongation without necking: Gleichmaßdehnung 

– elongation with necking: Einschnürdehnung 

– finite strain plasticity: Theorie der Plastizität großer Deformationen  

– gray cast iron: Grauguss 

– hardened steel: gehärteter Stahl 

– isotropic hardening: Isotrope Verfestigung 

– kinematic hardening: Kinematische Verfestigung 

– tempered steel: vergüteter Stahl 

– proof stress: Dehngrenze, Ersatzstreckgrenze 

– soft steel: weicher Stahl 

– small strain plasticity: Theorie der Plastizität kleiner Deformationen 

– stretch: Streckung ( = l1/l0 = 1+) 

– yield limit: Fließgrenze 

Technical Dictionary English-German 

Used vocabulary in this presentation 
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