Exemple 1 : Mesure d’un assemblage boulonné soumis à effort axial

Simulation de l’assemblage de deux plaques d’épaisseur 10 mm, assemblés avec un boulon Ø10, un précharge est appliquée de 8000N.
Assemblages filetés, enjeux, conception, calculs

Exemples CREO 5.0

La simulation a été faite en « non linéaire » ce qui permet d’appliquer l’effort de manière progressive :

Measure_deplacement: -0.00215982
Fastener1_axial_force: 8002.65

\[\text{Pente} = \frac{(X_b - X_a)}{(Y_b - Y_a)} = \frac{(-0.00163558 - (-0.00215982))}{(8414.39 - 8002.65)} = \frac{0.000523}{411.74} = 787266 \text{ N/mm} \]

La pente de la courbe est de 787266 Newtons par mm.

Si on calcule la raideur du boulon en rapport avec le cours sur les ressorts, on fait une modélisation d’une vis par un ressort :

\[\text{On sait que : } \sigma = E \cdot \varepsilon, \text{ que } \varepsilon = \frac{\Delta l}{l_0} \text{ et que } \sigma = \frac{F}{S}, \text{ on a donc } \frac{F}{S} = E \cdot \frac{\Delta l}{l_0}, \text{ on sait que la relation dans un ressort } F = K_{boulon} \cdot \Delta l \]

On peut donc à partir de \[\frac{F}{S} = E \cdot \frac{\Delta l}{l_0} \]

\[F = \frac{S \cdot E}{l_0} \cdot \Delta l \text{ et par indentification avec } F = K_{boulon} \cdot \Delta l \]

\[K_{boulon} = \frac{S \cdot E}{l_0}, \text{ s : section de la poutre } = \frac{\pi d^2}{4} \]

\[K_{boulon} = \frac{\frac{\pi d^2}{4} \cdot E}{l_0} = \frac{3.14 \times 10^2 \times 2000000}{20} = 785000 \text{ N/mm} \]

Entre le calcul qui donne une raideur de 785000 N/mm et la simulation qui donne 787266 N/mm retrouve des valeurs pratiquement identique, rassurant...
En termes d’effort :

On retrouve bien les bonnes valeurs :
\[F_B = F_E + F_p \]
\[8414 \text{ N} = 5000 \text{ N} + 3414 \text{ N} \]

La précharge est de 8000 N

On retrouve bien les bonnes valeurs :
\[F_B = F_E + F_p \]
\[8414 \text{ N} = 5000 \text{ N} + 3414 \text{ N} \]

Conclusion sur les efforts :

La force de 5000 N, décompresse les plaques qui étaient comprimées avec la précontrainte de 8000 N