OVERVIEW @ ptc

« Thingworx provides an option to choose a persistence provider

« Apache Cassandra designed to handle data workloads across multiple data
centers with no single point of failure

o Customer industries:
— Financial
— eCommerce
— Marketing
— Recommendation Engines
— Health Sciences
— Fraud Detection
— Sensor Data
— Online Games

WHAT IS DATASTAX ENTERPRISE? @ ptc

« DataStax delivers Apache Cassandra in a database platform purpose-built for the
performance and availability demands of Web, Mobile, and |IOT applications,
giving enterprises a secure always-on database that remains operationally simple
when scaled in a single datacenter or across multiple datacenters and clouds.

[
s
Certified Production Cassandra /.\ Strong Data Protection
Multi-Workload/Use Case Capable " RePlag, In-Memory OLTP/Analytics
Integrated OLTP, Analytics, Search ' DATASTAX® ‘ Point-and-Click/Automated Mgmt

ot i
\./

CASSANDRA CLIENTS — API&NATIVE DRIVER @ ptc

CQL (Cassandra Query Language) is the primary AP|

Clients that use the native driver also have access to various policies that enable
the client to intelligently route requests as required.

DataStax drivers: Java, Python, C#, C++, Ruby(much more to come and in the
community)

This includes:
— Load Balancing

Data Centre Aware

Latency Aware

Token Aware

Reconnection policies

Retry policies

Downgrading Consistency

Plus others.. e http://www.datastax.com/download/clientdrivers

WHY USE DSE®2 @ ptc

Massterless architecture.
— No Single Point of failure

— No Hadoop complexity — every node is built the same

« Continuous availability.

« Multi-data center and cloud availability zone support.

+ Flexible data model. € &) U’Q\U
Li | f 100,000) 200,000 S 400 oooq
nearscdie perormance. txns:/sec ‘ U txns:/sec U ‘ g txns:/sec 7;
« Operationally simple. ; K = D &
o y simp O Q V.Y

« CQL -SQL-like language.

WHY USE DSE?2 @ ptc

* Elastic scalability

- Always on architecture

» Fast linear-scale performance
 Flexible data storage

« Easy data distribution

« Operational simplicity

* Transaction support

* Requires no new equipment

CASSANDRA TERMINOLOGY @ ptc

 Node (Vnode)

» Cluster

« Datacenter
 Partfition

o GOossip

« Snitch

« Replication Factor

« Consistency

TERMINOLOGY @ ptc

Node: A computer server running Cassandra

Cluster: A group of Cassandra nodes working together
— Datais evenly distributed around the nodes

Datacenter: A set of Cassandra clusters, logical, physical, cloud-based

Parfitioning: Random — default and recommended
— Ordered Partitioning — stores column family row keys in sorted order across the nodes in a db
cluster

£ -UL\ Sy
: v Custome.' Column Faml ;y -,if""-"\»:) 7[:;"'
| —D D Nsme SSN_ DOB. U u
—

DATA DISTRIBUTION AND PARTITIONING @ ptc

Each node “owns” a set of tokens

A node’s token range is manually configured or randomly assigned when the
node joins the cluster

A partition key is defined for each table

The partitioner applies a hash function to convert a partition key to a token. This
determines which node(s) store that piece of data.

By default, Cassandra users the Murmur3Partitioner
— MurmurHash function. This hashing function creates a 64-bit hash value of the row key.
The possible range of hash values is from -263 to +263.

REPLICATION S ptc

« Replication is controlled by what is called the replication factor. A replication
factor of 1 means there is only one copy of a row in a cluster. A replication factor
of 2 means there are two copies of a row stored in a cluster

« Replication is controlled at the keyspace level in Cassandra

-~ | Original row
| o9
¥ Customer Column Family E ' ~—" ‘ '--" A
_[‘ ' ,_r—"_.v U
202
Copy of row

R EP I_l CAT' O N Simple Topology — Single Datacenter @ p-l-C

- Simple strategy Third Replice

Simple Topology — Single Datacenter Second Replica

RF=3

— First Repl_i 5

Second Replica
{'class' : 'SimpleStrategy', 'replication_factor' : 3 };
RF=2

DC1 DC2
RF=2 RF=3

_First Repl_i 2

{ 'class' : 'SimpleStrategy', 'replication_factor' : 2 };

CREATE KEYSPACE Test
WITH REPLICATION = {'class' : 'NetworkTopologyStrategy', 'DC1': 2, 'DC2" : 3};

SNITCH 2 ptc

e A snifch determines which data centers and racks are written to and read from.

e Snitches inform Cassandra about the network topology so that requests are
routed efficiently and allows Cassandra to distribute replicas by grouping machines

iInto data centers and racks.

« Cassandra does its best not to have more than one replica on the same rack.

SNITCH TYPE 2 ptc

SimpleSnitch
— Single-data center deployments (or single-zone in public clouds)

RackinferringSnitch
— Determines the location of nodes by rack and data center corresponding to the IP
addresses

PropertyFileSnitch
— User-defined description of the network details
. cassandra-topology.properties file

GossipingPropertyFileSnitch
— Defines a local node's data center and rack
— Uses gossip for propagating this information to other nodes
« cassandra-rackdc.properties

Amazon Snitches
— EC2Snitch

— EC2MultiRegionSnitch

GOSSIP = INTERNODE COMMUNICATIONS @ ptc

« Gossip is a peer-to-peer communication protocol in which nodes periodically
(every second) exchange information about themselves and about other nodes
they know about.

« Cassandra uses gossip to discover location and state information about the other
nodes participating in a Cassandra cluster

LOAD BALANCING @ ptc

Each node handles client requests, but the balancing policy is configurable

Round Robin

DC-Aware Round Robin
CLIENT

Token-Aware

local Remote

Remote nodes are used when local nodes cannot be reached.

VIRTUAL NODES @ ptc

* Instead of each node owning a single token range, Vnodes divide each node into
many ranges (256).

« Vnodes simplifty many tasks in Cassandra:
— You no longer have to calculate and assign tokens to each node.
— Rebalancing a cluster is no longer necessary when adding or removing nodes.
— Rebuilding a dead node is faster because it involves every other node in the cluster.

— Improves the use of heterogeneous machines in a cluster. You can assign a
proportional number of vnodes to smaller and larger machines.

READING AND WRITING TO CASSANDRA NODES @ ptc

« Cassandra has a ‘location independence’ architecture, which allows any user to
connect to any node in any data center and read/write the data they need

« All writes being partitioned and replicated for them automatically throughout the
cluster 0

/ l The coordinator
The client sends a mutation (s e

(insert/update/delete) to a to all replicas.

O 0
node in the cluster. /
RF=3 And tf78 coordinator

That node serves as the I sends a successful
response to the client.

coordinator for this /
RF=3 transaction The‘lrephcas \O/
acknowledge that RF=3

data was written.

RF=3

WHAT IF A NODE IS DOWN? @ ptc

N
9 Only two nodes respond.

The client gets to choose if

the write~wdg)successtul.

RF=3 Write Consistency (WC)

TUNABLE DATA CONSISTENCY @ ptc

%hoosedbe’rween sfrong and eventual consistency (one to all responding) depending on
e nee

Can be done on a per-operation basis, and for both reads and writes

Handles multi-data center operations

Consistency:

— ANY
« Returns data from any of the replica.

-- QUORUM
» Returns the most recent data from the maijority of replicas.

— LOCAL QUORUM

AL.I_ Returns the most recent data from the maijority of local replicas.

« Returns the most recent data from all replicas.

Read on consistency levels and Quorum . .
:h’lr’rp://docs.dc:’rc:s’rax.com/en/cossondro/Q.O/cossandrc:/dml/dml_conﬂg_conss’rency_c.h’r
m

QUORUM MEANS > 50% 2 ptc

What if two nodes are down?

9 WC = QUORUM :
B WC = QUORUM
Will thi ' ?
1L 'Swucceed Will this write succeed?
YES!!
= .- NO
RF=3 RF=3

A majority of replicas
received the mutation.

Failed to write a
majority of replicas.

RAPID READ PROTECTION AND WRITES @ ptc

« Cassandra performs only as many requests as necessary 1o meet the requested
Consistency Level. Cassandra routes requests to the most-responsive replicas.

» If areplica doesn’t respond quickly, Cassandra will fry another node. This is known
as an “eager retry”

« Datais first written to a commit log for durability. then written to a memtable in
memory. Once the memtable becomes full, it is flushed to a sorted strings
table(SSTable) Writes are atomic at the row level: all columns are written or
updated, or none are.Note:RDBMS-styled transactions are not supported

INSERT INTO...

LIMIT DATA PER NODE? @ ptc

 Depends on the rafe of operations.

 |f replication factoris above 1 and consistency level is not ALL, other replicas will
be able to respond quickly to read requests

MODELING A CLUSTER- NON GOALS @ ptc

 Minimize the Number of Writes

* Minimize Data Duplication

MODELING A CLUSTER - BASIC GOALS @ ptc

« Spread data evenly around the cluster

* Minimize the Number of Partitions Read
— Why is this important?

— Some notes on data limitations http://wiki.apache.org/cassandra/LargeDataSetConsiderations

SECURITY IN CASSANDRA

FEATURES

BENEFITS

Internal Authentication
Manages login IDs and
passwords inside the
database

+ Ensures only authorized
users can access a
database system using
internal validation

+ Simple to implement and
easy to understand

+ No learning curve from
the relational world

Object Permission
Management

controls who has access to
what and who can do what
in the database

-

Provides granular based
control over who can
add/change/delete/read
data

Uses familiar GRANT/
REVOKE from relational
systems

No learning curve

Client to Node
Encryption

protects data in flight to
and from a database
cluster

+ Ensures data cannot
be captured/stolen in
route to a server

+ Data is safe both in
flight from/to a
database and on the
database; complete
coverage is ensured

ADVANCED SECURITY @ ptc

2]
L O —"
g External Authentic.ation Transparent Data Data Auditing
j— Uuses external security Encryption provides trail of who did and
ﬁ software systems to control encrypts data at rest looked at what/when
B security
+ Only authorized users + Protects sensitive data + Supplies admins with an
have access to a database at rest from theft and audit trail of all accesses
N system using external from being read at the and changes
= validation file system level
L. + Granular control to audit
% + Uses most trusted external + No changes needed at only what's needed
1T security systems application level
m (Kerberos, LDAP, AD), + Uses log4j interface to
mainstays in government ensure performance and
and finance efficient audit operations
+ Single sign on to all data WQ_SMS
domains

Visual, browser-based user interface negates need to install client software
Administration tasks carried out in point-and-click fashion

Allows for visual rebalance of data across a cluster when new nodes are added
Contfains proactive alerts that warn of impending isSUes. g

Built-in external notification abilities

Visually perform and schedule backup operations

A new, 10-node DSE cluster with OpsCenter running on AWS in 3 mint

2 @

Welcome to DataStax OpsCenter Creato Cluster Build in Progress

Select one of the following options: Clovd Local

c"..k.' Chlustar Jso Fx 19 Clustor Psckage

Dal Nt - 1
Uatadax Lommunity i

Nodis (niwling defim ted

Node Credertials (sudo)

Drion

Cluster name

Test Cluster

THINGWORX @ ptc

« NOTE: ThingWorx 6.0 or later is required for this feature.

« DSE and ThingWorx Starting Landscape
— The starting landscape for a typical implementation of DSE and ThingWorx is shown

below.
fe & &

g \ Users t / Admi

I
[}
Data Center 1 Firewall / Load] \
Balancer 'I
) X

o w » (optional) Can be
sync'd to multi data
center duster for
disaster raecovery

ThingWerx

HIGH-LEVEL PROCESS STEPS FOR DSE IMPLEMENTATION @ ptc

The high level steps to implement DSE are as follows and are described in detail in our
documentation:

1. Determine if DSE is the right solution for your data. Refer to the sizing and planning sections.
2. Register and install DSE. This is all performed independently of the ThingWorx Platform.

3. Import the DSE persistence provider extension into ThingWorx. NOTE: Contact ThingWorx
Technical Support fo obtain this extension.

4T. Create a persistence provider instance in ThingWorx that will connect the Cassandra data
store.

5. Configure the seftings for the persistence provider in ThingWorx.
6. If necessary, migrate entities and data.

/. Monitor and maintain your DSE implementation. Best practices for creating a successful
maintenance plan are described in documentation/will be mentioned further.

BENEFITS OF USING DSE AS THE PERSISTENCE PROVIDER @ ptc

Higher rate of ingestion of data

Can have more than one data repository for runtime data

Elastic scaling properties.

Separates data processes from Platform processes

Cloud-friendly architecture

DSE PLANNING AND REFERENCE DEPLOYMENT ARCHITECTURE @ ptc

« Start with understanding its architecture and specifically, the differences
compared to regular Relational Databases.

* Free online courses offered by DataStax Academy:
— https://academy.datastax.com/courses/understanding-cassandra-architecture
— https://academy.datastax.com/courses/installing-and-configuring-cassandra

« The following section will guide you through some of the specifics:

— http://datastax.com/documentation/cassandra/2.0/cassandra/architecture/architec
turePlannin gAbout_c.html

https://academy.datastax.com/courses/understanding-cassandra-architecture
https://academy.datastax.com/courses/installing-and-configuring-cassandra

CASSANDRA SIZING/TESTING PERFORMED @ ptc

 Disk Sizing

« 18 to 20 bytes of disk space per message after compression to store integer
property.

« RF3, it will require total 60 bytes to store a single message.

* Inserting 1 million messages per second, db will use about 60mb every second.

« With the TTL of 30 days, the total number comes to around 150TB (60mb * 86400sec
* 30days)

« Have to provision double the disk space (300TB) for Cassandra compactions to
work efficiently.

DATA DISTRIBUTION/TESTING SETTINGS @ ptc

« Imillion things with 1 property each

Value Stream source buckets count 1000

Value Stream property buckets count 1000

Cassandra cluster size 30 nodes

Total throughput 300,000 requests/sec with 1 day TTL and O gc_grace_period

DATA DISTRIBUTION @ ptc

« Resulfs:
« Node with highest load was receiving 12k requests/sec

* Node with lowest load was receiving 9k requests/sec

Sample Standard Deviation, s 0.85354170857426 | Confidence Interval Approximations, If sampling distribution of the meai
Variance (Sample Standard), s° |0.72853344827586 | follows normal distribution

Population Standard Deviation, o |0.83919544803341

Confidence Level Range
Variance (Population Standard), 0 |0.704249 68.3%, SE; 10.133165317481 - 10.444834682519
Total Numbers, N 30 90%, 1.645SE, 10.032651947256 - 10.545348052744
Sum: 308.67 95%, 1.960SE; 9.9835640222624 - 10.594435977738
Mean (Average): 10.289 99%, 2 576SE, 9.8875698578305 - 10.690430142169

Standard Error of the Mean (SEg): |0.15583468251921| |99.9%, 3.291SE; |9.7761480598293 - 10.801851940171

99.99%, 3.891SE; |9.6826472503178 - 10.895352749682
99.999%, 4.417SE; |9.6006782073127 - 10.977321792687
99.9999%, 4.892SE; |9.526656733116 - 11.051343266884

THINGWORX DSE DEPLOYMENT

I Mew Entity

IMPORT
| |5 From File
g From Thingworx Storage

]j Source Control Entities

EXPORT
| |l ToFile
{ EE To ThingworxStorage

]j Source Control Entities

EXTENSIONS

[A Import
¥ Manage

Learnini

Type

ﬁ Thing
iy Thing
] Mashup

iy Thing

&)l Thing Template

" Model Tag Vacabulary

Modified

2017-08-03

2017-08-03

2017-08-03

2017-08-03

2017-08-03

2017-08-03

Import Extensions

Choose File | DsePersistenceProvider_ExtensionPackage.zip

Validation Results
DsePersistenceProvider_ExtensionPackage:1.1.2
Installation Results

DsePersistenceProvider_ExtensionPackage:1.1.2

PERSISTENCE PROVIDER @ ptc

‘ ﬁ'} H 2 TestPerPr % ‘
=
@ TestPerPr > IEB

ENTITY INFORMATION {csConfiguration for PersistenceProviders -

@ General Information

& Services Connection Information
Name Value

PERMISSIONS

@ visibility Cassandra Cluster Hosts 192.168.99.100

& Design Time

y Cassandra Cluster Port 9042

% Run Time

CHANGE HISTORY Cassandra User Name

45 Change History
Cassandra Password —

DEPENDENCIES

°18 Entity Depends On Cassandra Keyspace Name thingwarxnd

Uses This Enti

=BG Solr Cluster URL httpy//102.168.99.100
Solr Cluster Port 8083
Cassandra Keyspace Settings replication = {'class"'NetworkTopologyStrategy’, 'Cassandra™l, 'Solr:1}
Cassandra Consistency Levels {Cluster' : { 'read’ : "OME’, "write': "ONE }}
CQL Query Result Limit 5000
Keep Connection Alive rd
Connection Timeout (Millis) 30000
Compression Algorithm nane
Maximum Query Retries 3
Local Core Connections 4
Local Max Connections 16
Ramata Cars Crnnactinne 2

SELECT PERSISTENCE PROVIDER @ ptc

2 TestPerPr % 4i Mew Value Stream - =

New Thing 28 = R o>

Search Results 7 [njadvncea | ciar
INFORMATION @General Infor
Actions: = Persistence Provider
perties Name (3 Active (2| | [
nts 3 Recent o = ThingwonPersistenceProvider (i) Home Mashup |2 Seal
scriptions Description | 2
! TYPES Avatar | 2 E
ifiguration =
(5 PersistenceProviders
ne Mashup) a Published (2| []
Project |2 -
SIONS
bl Identifier |2
L Tags | 2.
ign Time ast Modified Date (2] Nod.
+ Time Thing Template | &
Value Stream | 2. Seal
Implemented Shapes | 2.
p—
Persistence Provider [I'Searc*' Persistence Providers /’

€Y 5.25, 6.1.2 available X NEW CLUSTER | ALERTS 0 SETTINGS = HELP =

Test Cluster: Dashboard Cassandra2 2 8 All agents connected Cluster Actions ~

1:10AM | ~ | to [2017-0808 ~ | Update | |[Giiment|

Add Graph || Add Widget +

Cluster Cluster Cluster

Datacenter datacenter1

NO DATA NO DATA

Free: 28 GB Total: 150 GB
1 0f 1 nodes

11:10AM 11 11:10AM 11:15AM M 11:25AM 11:10AM 11:15AM 11:20AM

M Cluster (Total)

Cluster

11:10AM 11:15AM

M Cluster {Avg)

TEST CASSANDRA ON WINDOWS WITHOUT COMMUNITY EDITION @ ptc

« Docker toolbox
« Note IP address when docker starts up, can also”inspect” later

« docker run --name some-cassandra -d cassandra:tag

« docker pull cassandra
run --name cassandra -p 9042:9042 -p 2160:9160 -d cassandra

* https://hub.docker.com/_/cassandra/

