
1

• Thingworx provides an option to choose a persistence provider

• Apache Cassandra designed to handle data workloads across multiple data
centers with no single point of failure

• Customer industries:
– Financial
– eCommerce
– Marketing
– Recommendation Engines
– Health Sciences
– Fraud Detection
– Sensor Data
– Online Games

OVERVIEW

2

• DataStax delivers Apache Cassandra in a database platform purpose-built for the
performance and availability demands of Web, Mobile, and IOT applications,
giving enterprises a secure always-on database that remains operationally simple
when scaled in a single datacenter or across multiple datacenters and clouds.

WHAT IS DATASTAX ENTERPRISE?

3

• CQL (Cassandra Query Language) is the primary API

• Clients that use the native driver also have access to various policies that enable
the client to intelligently route requests as required.

• DataStax drivers: Java, Python, C#, C++, Ruby(much more to come and in the
community)

• This includes:
– Load Balancing
– Data Centre Aware
– Latency Aware
– Token Aware
– Reconnection policies
– Retry policies
– Downgrading Consistency
– Plus others.. • http://www.datastax.com/download/clientdrivers

CASSANDRA CLIENTS – API&NATIVE DRIVER

4

• Masterless architecture.
– No Single Point of failure
– No Hadoop complexity – every node is built the same

• Continuous availability.

• Multi-data center and cloud availability zone support.

• Flexible data model.

• Linear scale performance.

• Operationally simple.

• CQL – SQL-like language.

WHY USE DSE?

5

• Elastic scalability

• Always on architecture

• Fast linear-scale performance

• Flexible data storage

• Easy data distribution

• Operational simplicity

• Transaction support

• Requires no new equipment

WHY USE DSE?

6

• Node (Vnode)

• Cluster

• Datacenter

• Partition

• Gossip

• Snitch

• Replication Factor

• Consistency

CASSANDRA TERMINOLOGY

7

• Node: A computer server running Cassandra

• Cluster: A group of Cassandra nodes working together
– Data is evenly distributed around the nodes

• Datacenter: A set of Cassandra clusters, logical, physical, cloud-based

• Partitioning: Random – default and recommended
– Ordered Partitioning – stores column family row keys in sorted order across the nodes in a db

cluster

TERMINOLOGY

8

• Each node “owns” a set of tokens

• A node’s token range is manually configured or randomly assigned when the
node joins the cluster

• A partition key is defined for each table

• The partitioner applies a hash function to convert a partition key to a token. This
determines which node(s) store that piece of data.

• By default, Cassandra users the Murmur3Partitioner
– MurmurHash function. This hashing function creates a 64-bit hash value of the row key.

The possible range of hash values is from -263 to +263.

DATA DISTRIBUTION AND PARTITIONING

9

• Replication is controlled by what is called the replication factor. A replication
factor of 1 means there is only one copy of a row in a cluster. A replication factor
of 2 means there are two copies of a row stored in a cluster

• Replication is controlled at the keyspace level in Cassandra

REPLICATION

10

• Simple strategy

REPLICATION

11

• A snitch determines which data centers and racks are written to and read from.

• Snitches inform Cassandra about the network topology so that requests are
routed efficiently and allows Cassandra to distribute replicas by grouping machines
into data centers and racks.

• Cassandra does its best not to have more than one replica on the same rack.

SNITCH

12

• SimpleSnitch
– Single-data center deployments (or single-zone in public clouds)

• RackInferringSnitch
– Determines the location of nodes by rack and data center corresponding to the IP

addresses

• PropertyFileSnitch
– User-defined description of the network details

• cassandra-topology.properties file

• GossipingPropertyFileSnitch
– Defines a local node's data center and rack
– Uses gossip for propagating this information to other nodes

• cassandra-rackdc.properties

• Amazon Snitches
– EC2Snitch
– EC2MultiRegionSnitch

SNITCH TYPE

13

• Gossip is a peer-to-peer communication protocol in which nodes periodically
(every second) exchange information about themselves and about other nodes
they know about.

• Cassandra uses gossip to discover location and state information about the other
nodes participating in a Cassandra cluster

GOSSIP = INTERNODE COMMUNICATIONS

14

• Each node handles client requests, but the balancing policy is configurable

• Round Robin

• DC-Aware Round Robin

• Token-Aware

LOAD BALANCING

15

• Instead of each node owning a single token range, Vnodes divide each node into
many ranges (256).

• Vnodes simplify many tasks in Cassandra:
– You no longer have to calculate and assign tokens to each node.
– Rebalancing a cluster is no longer necessary when adding or removing nodes.
– Rebuilding a dead node is faster because it involves every other node in the cluster.
– Improves the use of heterogeneous machines in a cluster. You can assign a

proportional number of vnodes to smaller and larger machines.

VIRTUAL NODES

16

• Cassandra has a ‘location independence’ architecture, which allows any user to
connect to any node in any data center and read/write the data they need

• All writes being partitioned and replicated for them automatically throughout the
cluster

READING AND WRITING TO CASSANDRA NODES

17

•

WHAT IF A NODE IS DOWN?

18

• Choose between strong and eventual consistency (one to all responding) depending on
the need

• Can be done on a per-operation basis, and for both reads and writes

• Handles multi-data center operations

• Consistency:
– ANY

• Returns data from any of the replica.
-- QUORUM

• Returns the most recent data from the majority of replicas.
– LOCAL QUORUM

• Returns the most recent data from the majority of local replicas.
– ALL

• Returns the most recent data from all replicas.

• Read on consistency levels and Quorum
:http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.ht
ml

TUNABLE DATA CONSISTENCY

19

QUORUM MEANS > 50%

20

• Cassandra performs only as many requests as necessary to meet the requested
Consistency Level. Cassandra routes requests to the most-responsive replicas.

• If a replica doesn’t respond quickly, Cassandra will try another node. This is known
as an “eager retry”

• Data is first written to a commit log for durability. then written to a memtable in
memory. Once the memtable becomes full, it is flushed to a sorted strings
table(SSTable) Writes are atomic at the row level: all columns are written or
updated, or none are.Note:RDBMS-styled transactions are not supported

RAPID READ PROTECTION AND WRITES

21

• Depends on the rate of operations.

• If replication factor is above 1 and consistency level is not ALL, other replicas will
be able to respond quickly to read requests

LIMIT DATA PER NODE?

22

• Minimize the Number of Writes

• Minimize Data Duplication

MODELING A CLUSTER- NON GOALS

23

• Spread data evenly around the cluster

• Minimize the Number of Partitions Read
– Why is this important?

– Some notes on data limitations http://wiki.apache.org/cassandra/LargeDataSetConsiderations

MODELING A CLUSTER – BASIC GOALS

24

SECURITY IN CASSANDRA

25

ADVANCED SECURITY

26

• Visual, browser-based user interface negates need to install client software

• Administration tasks carried out in point-and-click fashion

• Allows for visual rebalance of data across a cluster when new nodes are added

• Contains proactive alerts that warn of impending issues.

• Built-in external notification abilities

• Visually perform and schedule backup operations

OPS CENTER

27

OPSCENTER

28

• NOTE: ThingWorx 6.0 or later is required for this feature.

• DSE and ThingWorx Starting Landscape
– The starting landscape for a typical implementation of DSE and ThingWorx is shown

below.

THINGWORX

29

The high level steps to implement DSE are as follows and are described in detail in our
documentation:

1. Determine if DSE is the right solution for your data. Refer to the sizing and planning sections.

2. Register and install DSE. This is all performed independently of the ThingWorx Platform.

3. Import the DSE persistence provider extension into ThingWorx. NOTE: Contact ThingWorx
Technical Support to obtain this extension.

4. Create a persistence provider instance in ThingWorx that will connect the Cassandra data
store.

5. Configure the settings for the persistence provider in ThingWorx.

6. If necessary, migrate entities and data.

7. Monitor and maintain your DSE implementation. Best practices for creating a successful
maintenance plan are described in documentation/will be mentioned further.

HIGH-LEVEL PROCESS STEPS FOR DSE IMPLEMENTATION

30

• Higher rate of ingestion of data

• Can have more than one data repository for runtime data

• Elastic scaling properties.

• Separates data processes from Platform processes

• Cloud-friendly architecture

BENEFITS OF USING DSE AS THE PERSISTENCE PROVIDER

31

• Start with understanding its architecture and specifically, the differences
compared to regular Relational Databases.

• Free online courses offered by DataStax Academy:
– https://academy.datastax.com/courses/understanding-cassandra-architecture
– https://academy.datastax.com/courses/installing-and-configuring-cassandra

• The following section will guide you through some of the specifics:
– http://datastax.com/documentation/cassandra/2.0/cassandra/architecture/architec

turePlannin gAbout_c.html

DSE PLANNING AND REFERENCE DEPLOYMENT ARCHITECTURE

https://academy.datastax.com/courses/understanding-cassandra-architecture
https://academy.datastax.com/courses/installing-and-configuring-cassandra

32

• Disk Sizing

• 18 to 20 bytes of disk space per message after compression to store integer
property.

• RF3, it will require total 60 bytes to store a single message.

• Inserting 1 million messages per second, db will use about 60mb every second.

• With the TTL of 30 days, the total number comes to around 150TB (60mb * 86400sec
* 30days)

• Have to provision double the disk space (300TB) for Cassandra compactions to
work efficiently.

CASSANDRA SIZING/TESTING PERFORMED

33

• 1million things with 1 property each

• Value Stream source buckets count 1000

• Value Stream property buckets count 1000

• Cassandra cluster size 30 nodes

• Total throughput 300,000 requests/sec with 1 day TTL and 0 gc_grace_period

DATA DISTRIBUTION/TESTING SETTINGS

34

• Results:

• Node with highest load was receiving 12k requests/sec

• Node with lowest load was receiving 9k requests/sec

DATA DISTRIBUTION

35

THINGWORX DSE DEPLOYMENT

36

PERSISTENCE PROVIDER

37

SELECT PERSISTENCE PROVIDER

38

ACCESS OPSCENTER

39

• Docker toolbox

• Note IP address when docker starts up, can also”inspect” later

• docker run --name some-cassandra -d cassandra:tag

• docker pull cassandra

run --name cassandra -p 9042:9042 -p 9160:9160 -d cassandra

• https://hub.docker.com/_/cassandra/

TEST CASSANDRA ON WINDOWS WITHOUT COMMUNITY EDITION

