

 Git Backup Extension

User Guide

Version 2.0.0

[GitBackup Extension User Guide]

 1

Software Change Log ... 2

Introduction and Installation ... 2

About the Git Backup Extension .. 3

Installing the Git Backup Extension ... 5

Configuration and Usage .. 6

Configuration .. 6

Usage .. 11

Known Limitations ... 21

Compatibility .. 22

Document Revision History .. 22

[GitBackup Extension User Guide]

 2

Software Change Log

Version
Release

Date
Changes Contributors

1.0 20/12/2017 Initial Release Vladimir Rosu

Pierre Tessier

Dumitru Zanfir

1.1 27/12/2017 Added support for Git Branches and Checkout Vladimir Rosu

1.2 25/01/2018 UI restyling and UX improvements; Added auto

AppKey Creation for Extension Import; Added

capability to Export to Source Control entities a

project from the Home Mashup; Updated

ExportExtensions Extension to version 1.0.19

Gabriel Bucur

Vladimir Rosu

Pierre Tessier

1.2.1 01/02/2018 Fixed Extension Import bug Vladimir Rosu

1.3.0 26/04/2018 Added new functionality: Git Status page shows

info equivalent to “git status” and formatted

diffs per file.

Added Utility service:

RemoveRemoveEntityHistoryInfo

Added DiffViewer widget which pretty prints

the file diff.

Vladimir Rosu

Moritz von Hasselbach

1.3.1 04/05/2018 Fixed Extension Import bug for ThingWorx

8.2.1 (“universal” attribute is not allowed to

appear in element Entities)

Vladimir Rosu

2.0.0 11/01/2019 Major UI restyling and UX improvements.

The extension has now a single page that offers

access to all the functionality of the extension.

Added support for querying and selecting the

Bitbucket repositories that a user has access.

Updated the ExtensionExportExtension.

Gabriel Bucur

Bogdan Mihaiciuc

Moritz von Hasselbach

Pierre Tessier

Note: Version 2.0.x is a major version and requires

removing any existing 1.x version (including existing

GitBackup Things)

Introduction and Installation

Extensibility is a core aspect of the architecture and design of ThingWorx. Partners, third parties, and

general ThingWorx users can easily add new functionality into the system, seamlessly. Extensions can be

in the form of Service (function/method) Libraries, Connector Templates, Widgets, and more.

This document provides installation and usage instructions for the Git Backup Extension.

[GitBackup Extension User Guide]

 3

About the Git Backup Extension

Git Backup Extension allows you to backup (push) and/or retrieve (pull) all artifacts related to a

ThingWorx application to/from a Git repository. “All artifacts” is defined as Entities (Things, DataTables,

etc), Data (the actual rows from a DataTable/Stream/ValueStream) and Extensions (Zip files that contain

Widgets/Java-based functionality and more).

The main purpose of the extension is to allow easy replication of ThingWorx artifacts from one

ThingWorx instance to another through a Git repository. Another use case is allowing easy access to these

artifacts for build systems like Jenkins.

It has been designed to also allow importing that application into a ThingWorx server from the provided

Mashups, providing an easier process than the out of the box import system.

This extension utilizes the jGit API. For more information, visit https://www.eclipse.org/jgit/

Note 1: The Git Backup Extension uses functionality from the ExportPlatformExt Extension for

Importing and Exporting Extensions to the snapshot. The Git Backup Extension can work without this

extension installed in the system, but you will not be able to Export/Import Extensions. For ease of use

this Extension is included in this package. Documentation for that Extension is not available in this

document.

Note 2: We include for convenience a File Repository called GitRepository. You can use this for storing

your projects, or you can use any other File Repository of your choosing.

Note 3: We include a GitBackup.Main.Mashup that offers a User Interface for interaction with the back-

end services. This mashup allows consumption of the services for non-scripted tasks. For automated tasks

please use directly in the script the services below.

Note 4: The Extension contains a pack of 5 extensions.

Extension name Version Description

DiffViewer 1.0.6 Provides pretty-print of diff output

Autocomplete 1.0.31 Provides the Autocomplete widget

InfotableSelector_Extension 2.0.0 Provides various infotable related

services

ExtensionExportExt 1.0.21 Provides the ability to export

extensions

GitBackup Extension 2.0.0 The core GitBackup Extension

You may already use versions of some of these extensions in your ThingWorx instance.

Ideally you should use the versions embedded in this package, but if you cannot, unpack the

GitBackupExtensionPack.zip file, remove the conflicting extension, zip the remaining extensions

again and try the import procedure one more time.

The Git Backup Extension offers the capability to create a Git Backup Thing in ThingWorx. The thing

houses the configuration information to the Git Backup Thing instance and provides the following

services:

Main services:

1. Push (Message): This service adds all the modified, removes all the deleted files, creates a new

commit with a specific message and pushes this to the remote. The current working directory is

[GitBackup Extension User Guide]

 4

the Repo path folder from the Repository selected in the Configuration tab. This method will also

initialize the Git repository if there is none.

2. Pull (Force): This service will execute a Pull from the Remote. It will create a local image of the

Remote repository. Setting to True the Force parameter will result in a Reset and Pull from the

Remote.

3. GetBranchList(): Returns the list of current branches that belong to a repository.

4. GetCommitList(): returns the list of commits specific to the current branch OR, if you’re in

detached head mode, to the initial branch configured in the Configuration section (typically

master)

5. GetCurrentBranch(): returns an infotable with one row and 2 columns: Branch Name or

Commit ID (String) and IsDetachedHead(boolean). If you’re on the current branch you will see

the name of the branch and false

Or the Commit ID and true

6. Checkout(BranchNameOrCommit): checks out a specific branch or commit. If you’re going to

a specific commit, then the GetCurrentBranch will also report a detached head and Push will fail.

7. DeleteLocalBranch(): deletes a local branch that can result from deleting/merging a remote

branch.

8. Status(): retrieves a list similar to the output of the command “git status”.

9. GetDiffPerFile(File): retrieves a diff string representing the diffs for a specific file. The input

parameter is in the format delivered by the Status() command.

Helper services:

1. DeleteLocalRepoContent: This service deletes the specific local folder corresponding to this

Repo. It has the same functionality as the DeleteFolder service from the File Repository, but it is

added here in order to bypass the need to switch to the Repository Thing and call that function.

2. GetConfigurationTableValue: This service returns a value of a configuration table parameter

for mashup use.

3. GetFilteredDirectoryListing: This service returns the directory structure from the folder

specified in the Configuration tab.

4. RemoveEntityHistoryInfo: this service removes the ConfigurationChanges and the

lastModifiedDate from each of the XML files exported by ThingWorx. It is not currently used in

[GitBackup Extension User Guide]

 5

the UI, but is useful for automation in older versions of ThingWorx when the system modifies the

lastModificationDate when you save an entity, but you changed nothing.

Installing the Git Backup Extension

1. From a web browser, launch

ThingWorx.

2. Log into ThingWorx as an

administrator.

3. Go to Import/Export > Import.

4. Click Choose File and select

GitBackupExtensionPack.zip

5. Click Import.

Note: If an Import Successful

message does not display, contact

your ThingWorx System

Administrator.

Note:

6. Click Yes to refresh Composer after

importing the final extension.

7. Confirm that the Extension has

been imported properly. Check the

Application Log for potential

problems.

[GitBackup Extension User Guide]

 6

Configuration and Usage

Usage of the Git Backup Extension requires creation and configuration of a Git Thing based on the

GitBackupTemplate in ThingWorx. Starting version 2.0.0, the preferred option to do all the operations is

via the newly provided UI, accessible via the GitBackup.Main.Mashup. The previous system that used the

Home Mashup for the GitBackup Things is no longer used.

Configuration
1. Access the GitBackup.Main.Mashup

Example URL:

https://localhost:8777/Thingworx/Runtime/index.html#master=GitBackup.Master&mashup=GitBackup.

Main.Mashup

[replace the localhost and port with your respective parameters]

In the following screens you will need to set several configuration parameters. They are described below.

Configuration

Field Name
Type Description

User STRING The Git repository username.

Password PASSWORD The Git repository password.

Commit Username STRING The Git username that will be used for commit purposes.

Commit Email STRING The Git email that will be used for commit purposes.

Git Repo URL STRING Git Repository URL

Example URLs:

For Bitbucket Online: https://bitbucket.org/vrosu/integritytest.git

or https://vrosu@bitbucket.org/vrosu/testrepo.git

For Other Git Repo types:
https://vrosu@dev.azure.com/vrosu/HelloWorld/_git/HelloWorld

http://roicentersvn.ptcnet.ptc.com/vrosu/GitBackupExtension.git

File Repository STRING Selected File Repository where you will store the selected Git

repository. For convenience the Extension already provides a

GitRepository that you can use without creating a new File

Repository. You can use the same FileRepository for multiple

GitBackup Things, you just need to modify the File Repository

Path.

File Repository Path STRING The path from within the File Repository where your repository

will be created and stored.

Initial Branch STRING The branch that will be used to get the commit list if you’re on

detached head.

https://localhost:8777/Thingworx/Runtime/index.html#master=GitBackup.Master&mashup=GitBackup.Main.Mashup
https://localhost:8777/Thingworx/Runtime/index.html#master=GitBackup.Master&mashup=GitBackup.Main.Mashup
https://bitbucket.org/vrosu/integritytest.git
https://vrosu@bitbucket.org/vrosu/testrepo.git
https://vrosu@dev.azure.com/vrosu/HelloWorld/_git/HelloWorld
http://roicentersvn.ptcnet.ptc.com/vrosu/GitBackupExtension.git

[GitBackup Extension User Guide]

 7

2. Click on the Plus button

3. The New Repo window appears. This is a wizard-type process with 2 screens.

There are 2 options available in this wizard: BitBucket or Other. If you choose Bitbucket, you

will benefit from user/password verification and automatic Git URL completion during the

add process.

[GitBackup Extension User Guide]

 8

3.1. The Bitbucket option (default). Complete the Git Thing Name (it can be any valid Thing Name

in the platform), Git User and Git Password. Pressing the Enter in the Git Account Password will

allow you to go to the next screen.

Note: In case the Bitbucket user and password are invalid, the system will display the following message:

You have a choice to continue, or to provide the correct information. This check is executed only in case

of an online BitBucket repository.

You will arrive in the second wizard screen. Fill in the required details: Committer Name, Commit e-

mail, GitRepo URL, File Repository Path and the Initial Branch. When filling the GitRepo URL you will

see search results as you type, based on the BitBucket repositories you have access to:

[GitBackup Extension User Guide]

 9

 Click with the mouse or select with the keyboard the needed repository

Click Add.

[GitBackup Extension User Guide]

 10

3.2. The Other Option. Complete the Git Thing Name (it can be any valid Thing Name in the

platform), Git User and Git Password. Pressing the Enter in the Git Account Password will allow

you to go to the next screen.

You will arrive in the second wizard screen. Fill in the required details: Committer Name,

Commit e-mail, GitRepo URL, File Repository Path and the Initial Branch:

[GitBackup Extension User Guide]

 11

Click Add.

Note: This functionality was tested with the Azure DevOps Git repository, using alternate

credentials.

Note that in this variant there is no user/password check or autocomplete available for the Git

URL.

Usage
The description of the services is presented in the About section.

In this section we will present 3 usecases:

Usecase 1: Working on a new ThingWorx application which was not previously stored in a Git

repository

This usecase assumes that you started development of a new ThingWorx app that you would like to store

in Git.

Prerequisites: create a new Git repository in a system of your choosing (eg: Bitbucket). Create a new

GitBackup Thing for this project using the GitBackup.Main.Mashup and configure it as per the

Configuration section above.

Step 1: Export to Source Control Entities your ThingWorx application. This functionality is embedded

in the GitBackup.Main.Mashup. Click on the Export button and then on the Export button from the

Entities section.

This process will export all the Entities in the folder from the repository that were configured for this

GitBackup Thing.

[GitBackup Extension User Guide]

 12

Step 2(optional): Export to File Data. This step is optional, meaning that if your solution does not use

DataTables/Streams/Blogs/Wikis/ValueStreams you don’t need to perform this operation. This

functionality is embedded in the GitBackup.Main.Mashup. Click on the Export button from the Entities

Export data section.

This will export all the data that belongs to the Data type entities above in a folder from the repository

that were configured for this GitBackup Thing.

Step3 (optional): Export Extensions. This functionality depends on the ExportPlatformExt_Extension. It

is optional.

This will export all the extensions that this server contains in a specific folder called “Extensions” in the

folder from the repository that was configured for this GitBackup Thing.

Fig 2. Exporting Extensions by using the Home Mashup

[GitBackup Extension User Guide]

 13

Step 4 (optional): Cleanup your Extensions. The Extension export process at Step 3 dumps all the

Extensions from the system. If your application only requires a small subset of that it is recommended to

go to the Extensions folder and remove the Extensions which are not needed. Use the Advanced tab from

the GitBackup Main Mashup.

Step 5: Check the Git status (optional). Press the Git Status button in order to understand what you are

pushing, what files changed, and to see the file diffs. The output of this screen is similar to the “git status”

command. You can use it from the Main tab of the GitBackup Main Mashup.

[GitBackup Extension User Guide]

 14

Step 6: Push your project to the Git remote. This will push all the contents of the folder selected in the

configuration section of the GitBackup Thing to the remote git repository.

Checkpoint: If you created an application that uses entities, data and custom extensions, you should see

three folders in the Advanced tab: the first is named like the DateTime and it contains the data, then a folder

named Extensions and a third one named like the Project that you exported, containing the entities. You

might not have the DateTime or the Extensions folder, if you did not export them, but the Project folder is

mandatory.

If you have more than a Date Time folder, delete the oldest one and keep only the most recent one.

Click on the Push button from the Main tab.

Provide a commit message in the popup then click Push. A progress window will appear while the push

will be in progress.You can check the push was successful in your git browser (Fig. 5).

[GitBackup Extension User Guide]

 15

Git Push progress window

Remote Git repository commit history

[GitBackup Extension User Guide]

 16

Usecase 2: Working on a ThingWorx application that is already stored in a Git repository

This use case assumes that there is an existing ThingWorx app which is stored in a Git repository that you

would like to download locally to work on it.

Prerequisites: have the URL of a Git repository and HTTP access credentials. Create a new GitBackup

Thing using the GitBackup.Main.Mashup.

Step 1: Pull the project locally from the repository.

Click the Pull button from the Main tab of the GitBackup.Main.Mashup.

Step 2. Importing Extensions (optional): if your project contains extensions that are not included in your

ThingWorx instance, it is mandatory to first install the extensions, the first step of a standard import

process.

This functionality is offered by the ExportPlatformExt Extension.

This makes it easier to install many individual extensions without leaving the mashup. Error or success

messages will be displayed in a grid that is displayed in the lower part of the display.

[GitBackup Extension User Guide]

 17

• Select the Extensions folder in the Advanced tab (mandatory step; the Import

functionality will not be visible in the interface without doing this step)

• Select the Extension

• Click on the “Import Extension” button.

• The result of the import will be visible in a panel in the lower part of the screen.

Installation of Extension via the Home Mashup interface

Step. 3. Importing the Entities

 This is achieved through the standard ThingWorx functionality Import / Source Control Entities.

 Manually select the correct Repository and path where the project was pulled.

Importing project entities

[GitBackup Extension User Guide]

 18

Step 4. Import Data (optional). If the project is using any kind of data which needs to be stored in

Streams/ValueStreams/DataTables/Blogs/Wikis you will need to import it. This is only possible if the data

was exported and pushed in the first phase.

It is easy to detect if the project contains such an export. Check if in the Advanced tab you see a folder with

a name like a DateTime stamp.

Data Export is present

If yes, then proceed to load the data using the standard ThingWorx User Interface. Note: there is a known

bug in ThingWorx 8.3 Next Gen Composer (NGC) that does not allow using it to import data from imported

Git Repositories.

[GitBackup Extension User Guide]

 19

Fig. 12. Import Data using the standard ThingWorx User Interface

Make sure to manually select the proper File Repository and path. If everything was done correctly and

there is a Data Export present, you will see the following screen. Click Import to initialize the Data import.

Fig. 13. Import Data

This is the end of the importing part of Usecase 2. After you have provided your own modifications you

can just follow the process from Usecase 1 to push your modifications back to the repository.

Usecase 3: Switching branches or commits

This is an advanced usecase and deals with checking out a specific branch or commit ID from the history

of commits.

The purpose of the Checkout is to:

-switch to a specific branch to allow importing it and continue pushing to that branch

-switch to a specific commit in the history of that branch so you can import old artifacts (Entities, Data,

Extensions). You won’t be able to push if you have checked out a specific commit. The Push button is

disabled in this case. Calling directly the Push service will result in an error.

Usecase 3.1 Checking out a specific branch

Step 1: Having Usecase 2 performed, select a Branch in the Main tab and press Checkout Branch.

It does not matter if you are selecting a remote or local branch. All local branches are remote tracking

branches. If you’re clicking on a remote branch that does not have a local branch, the extension will auto

create a local branch which tracks the remote one.

[GitBackup Extension User Guide]

 20

Select a branch and press Checkout Branch.

Step 2: You can now use the previous import procedure from Usecase2.

Note: the extension does not create remote branches. You need to have a remote branch already

created in your Git repository.

Usecase 3.1 Checking out a specific commit

Step 1: Having Usecase 2 performed, in the Main tab select a Commit and press Checkout Commit.

The list of commits is the one available for the current branch if you’re on branch, or for the initial branch

if your HEAD is detached.

The system will display in the left side of the screen the current commit ID:

In this mode, you won’t be able to push anything to the branch since your head is detached, and in the

interface the Push button is disabled to reflect this.

Step. 2 You can now use the previous import procedure from Usecase2.

[GitBackup Extension User Guide]

 21

Note: whenever you’re checking out a commit, you won’t be able to push. In the application log will

appear a message “nothing to push” characteristic to such situations. You need to checkout a branch

to push.

Checkout a branch to be able to push data back in that branch.

Note: importing an application might involve other operations besides importing extensions/entities

and data to make it work as it should.

Example of such operations are:

-setting each subsystem’s setting

-importing FileRepository contents

-adding additional Thing Shapes to the Session in the UserManagementSubsystem

-setting collection permissions (see the following support articles for more details:

https://www.ptc.com/en/support/article?n=CS199173 and

https://www.ptc.com/en/support/article?n=CS236842)

-making sure that the UserExtensions ThingShape contains the needed properties. Usually importing it

overrides it, but this might be an issue in case of multiple projects.

Known Limitations
The GitBackup Extension only supports Git repositories which use Basic Authentication (User and

Password). No SSH support is planned, but source code is available for modifications.

For any Git commands other than the provided Push, Pull and Checkout you must use locally the

Git client. This Extension is not intended to provide a full replacement for a Git client.

The extension is designed around exporting Projects. It can be used with manual exports that don’t

have a Project assigned, but certain steps in this guide might not apply. You should not mix exports

of entities based on a Project with exports based on a tag and no project.

Scenarios involving multiple users editing at the same time have not been tested.

If you’re trying to Push and the Remote contains a more recent Commit, Push will fail. Please

check the Application Log to see the detailed error. You might need to do a Pull, import the

changes then Export and Push.

In case there is an error in the Zip Ext process the GitBackup.Main.Mashup will not display any

error messages. Please check the Application Log.

The Export to Source Control Entities will fail if in the platform-settings.json you have a relative

path defined for your Storage section. Please replace the relative path with an absolute path and

restart the ThingWorx server.

The Import extension functionality will fail if the appKey expired. Please check if the AppKey is

still valid if the report which appears after clicking on the Import Extension button is empty.

If a remote branch was closed (for example by merging into master), it is required to manually run

“git remote prune origin”.

The extension does not create a remote branch. You need to have a branch created in your remote.

You can’t push new changes if you have checked out a specific commit (meaning if you’re on the

“Detached HEAD” state). You will receive a “nothing to push” error. When using the

GitBackup.Main.Mashup the PUSH button is disabled in such a situation.

https://www.ptc.com/en/support/article?n=CS199173
https://www.ptc.com/en/support/article?n=CS236842

[GitBackup Extension User Guide]

 22

Compatibility

This extension was tested for compatibility with the following ThingWorx Platform version(s) and

Operating System(s):

ThingWorx Platform Version ThingWorx 8.3.1, ThingWorx 8.2.3

OS Windows 10 64 bit

Document Revision History

Revision Date Version Description of Change

December 20, 2017 1.0 Initial version

December 27, 2017 1.1 Added documentation for Branch and Checkout related

functionality

January 25, 2018 1.2 Updated software changelog and known limitations

February 1st, 2018 1.2.1 Updated software changelog

April 26th, 2018 1.3.0 Added documentation for the Git Status functionality.

Updated software changelog.

04 May 2018 1.3.1 Updated software changelog

11 January 2019 2.0.0 Updated software changelog, updated guide with v. 2.0.0

UI, added contributor list to the changelog

