>:< thingworx

Git Backup Extension
User Guide
Version 2.0.0

[GitBackup Extension User Guide]

: thingworx

Y0 T R O g TaTe I I o SRS 2
INtroduction and INSTAITALIONooii ittt et seeeree e e 2
ADbout the Git BaCKUP EXIENSIONcviiiiiiiiieieeieeeee e 3
Installing the Git BaCKUP EXIENSIONccvcviiiiiiii ittt st sre st e e e 5
ConfigUration AN USAQEccviiiiiiiieie ettt sttt ste st steese e besae et e sbeeseesbeeteenbesreensestesneenreares 6
CONTIGUIALION ...tk b bbbkt b bt bbbt e et e b e e bbb e bt e b n e 6
USBIOE ..ttt etttk bkt E e R R RS R R e e R AR e SR £ AR £ oA R AR e e R e Re e Re e Rt R e R e e R e eR e e Rt Rt ennenre s 11
KINOWN LIMITATIONS ...ttt sttt b e bbb e bt ens 21
(@001 o 1T]| 1y SRS 22
DocUMENE REVISION HISIOMYccuiiiiiiecic ettt sttt r e st et e st e e b e s beete e besbeeseesteaneesrenres 22

: thingworx

[GitBackup Extension User Guide]

Software Change Log

Version Release Changes Contributors
Date
1.0 20/12/2017 | Initial Release Vladimir Rosu
Pierre Tessier
Dumitru Zanfir
1.1 27/12/2017 | Added support for Git Branches and Checkout Vladimir Rosu
1.2 25/01/2018 | Ul restyling and UX improvements; Added auto
AppKey Creation for Extension Import; Added | Gabriel Bucur
capability to Export to Source Control entitiesa | Vladimir Rosu
project from the Home Mashup; Updated Pierre Tessier
ExportExtensions Extension to version 1.0.19
1.2.1 01/02/2018 | Fixed Extension Import bug Vladimir Rosu
1.3.0 26/04/2018 | Added new functionality: Git Status page shows
info equivalent to “git status” and formatted
diffs per file, Vladimir Rosu
Added Utility service:)
RemoveRem)(l)veEntityHistorylnfo Moritz von Hasselbach
Added DiffViewer widget which pretty prints
the file diff.
131 04/05/2018 | Fixed Extension Import bug for ThingWorx
8.2.1 (“universal” attribute is not allowed to Vladimir Rosu
appear in element Entities)
2.0.0 11/01/2019 | Major Ul restyling and UX improvements.
The extension has now a single page that offers | Gabriel Bucur
access to all the functionality of the extension. Bogdan Mihaiciuc
Added support for querying and selecting the Moritz von Hasselbach
Bitbucket repositories that a user has access. Pierre Tessier
Updated the ExtensionExportExtension.

Note: Version 2.0.x is a major version and requires
removing any existing 1.x version (including existing
GitBackup Things)

Introduction and Installation

Extensibility is a core aspect of the architecture and design of ThingWorx. Partners, third parties, and

general ThingWorx users can easily add new functionality into the system, seamlessly. Extensions can be

in the form of Service (function/method) Libraries, Connector Templates, Widgets, and more.
This document provides installation and usage instructions for the Git Backup Extension.

: thingworx

[GitBackup Extension User Guide]

About the Git Backup Extension

Git Backup Extension allows you to backup (push) and/or retrieve (pull) all artifacts related to a
ThingWorx application to/from a Git repository. “All artifacts” is defined as Entities (Things, DataTables,
etc), Data (the actual rows from a DataTable/Stream/ValueStream) and Extensions (Zip files that contain
Widgets/Java-based functionality and more).

The main purpose of the extension is to allow easy replication of ThingWorx artifacts from one
ThingWorx instance to another through a Git repository. Another use case is allowing easy access to these
artifacts for build systems like Jenkins.

It has been designed to also allow importing that application into a ThingWorx server from the provided
Mashups, providing an easier process than the out of the box import system.

This extension utilizes the jGit API. For more information, visit https://www.eclipse.org/jgit/

Note 1: The Git Backup Extension uses functionality from the ExportPlatformExt Extension for
Importing and Exporting Extensions to the snapshot. The Git Backup Extension can work without this
extension installed in the system, but you will not be able to Export/Import Extensions. For ease of use
this Extension is included in this package. Documentation for that Extension is not available in this
document.

Note 2: We include for convenience a File Repository called GitRepository. You can use this for storing
your projects, or you can use any other File Repository of your choosing.

Note 3: We include a GitBackup.Main.Mashup that offers a User Interface for interaction with the back-
end services. This mashup allows consumption of the services for non-scripted tasks. For automated tasks
please use directly in the script the services below.

Note 4: The Extension contains a pack of 5 extensions.

Extension name Version Description
DiffViewer 1.0.6 Provides pretty-print of diff output
Autocomplete 1.0.31 Provides the Autocomplete widget
InfotableSelector_Extension 2.0.0 Provides various infotable related
services

ExtensionExportExt 1.0.21 Provides the ability to export
extensions

GitBackup Extension 2.0.0 The core GitBackup Extension

You may already use versions of some of these extensions in your ThingWorx instance.

Ideally you should use the versions embedded in this package, but if you cannot, unpack the
GitBackupExtensionPack.zip file, remove the conflicting extension, zip the remaining extensions
again and try the import procedure one more time.

The Git Backup Extension offers the capability to create a Git Backup Thing in ThingWorx. The thing
houses the configuration information to the Git Backup Thing instance and provides the following
services:

Main services:

1. Push (Message): This service adds all the modified, removes all the deleted files, creates a new
commit with a specific message and pushes this to the remote. The current working directory is

: thingworx

[GitBackup Extension User Guide]

the Repo path folder from the Repository selected in the Configuration tab. This method will also
initialize the Git repository if there is none.

2. Pull (Force): This service will execute a Pull from the Remote. It will create a local image of the

Remote repository. Setting to True the Force parameter will result in a Reset and Pull from the

Remote.

GetBranchList(): Returns the list of current branches that belong to a repository.

4. GetCommitList(): returns the list of commits specific to the current branch OR, if you’re in
detached head mode, to the initial branch configured in the Configuration section (typically
master)

5. GetCurrentBranch(): returns an infotable with one row and 2 columns: Branch Name or
Commit ID (String) and IsDetachedHead(boolean). If you’re on the current branch you will see
the name of the branch and false

Current Branch Name (Or Commit) Is HEAD Detached?

master false

w

Or the Commit ID and true

Current Branch Name (Or Commit) Is HEAD Detached?

01f56efeb5fe1dca0d301 3b309964006640 7S

co

—+
3

b

6. Checkout(BranchNameOrCommit): checks out a specific branch or commit. If you’re going to
a specific commit, then the GetCurrentBranch will also report a detached head and Push will fail.

7. DeleteLocalBranch(): deletes a local branch that can result from deleting/merging a remote
branch.

8. Status(): retrieves a list similar to the output of the command “git status”.

File Status
StyleDefinitions,/DefaultChartStyle 11.xml Madified
ExtensionPackages/StatePanelWidget-extension.xm Madified
StyleDefinitions/PTC.Care.ChartStyle.xml Madified
Things/PTC.5CA.Common.AlertMotification. Motification DeliveryConfiguration.xm Madified
StyleDefinitions/PTC.Factory.Status.Warning.xml Madified

9. GetDiffPerFile(File): retrieves a diff string representing the diffs for a specific file. The input
parameter is in the format delivered by the Status() command.

Helper services:

1. DeleteLocalRepoContent: This service deletes the specific local folder corresponding to this
Repo. It has the same functionality as the DeleteFolder service from the File Repository, but it is
added here in order to bypass the need to switch to the Repository Thing and call that function.

2. GetConfigurationTableValue: This service returns a value of a configuration table parameter
for mashup use.

3. GetFilteredDirectoryListing: This service returns the directory structure from the folder
specified in the Configuration tab.

4. RemoveEntityHistorylInfo: this service removes the ConfigurationChanges and the
lastModifiedDate from each of the XML files exported by ThingWorx. It is not currently used in

: thingworx

[GitBackup Extension User Guide]

the Ul, but is useful for automation in older versions of ThingWorx when the system modifies the
lastModificationDate when you save an entity, but you changed nothing.

Installing the Git Backup Extension

1. From a web browser, launch
ThingWorx.

2. Log into ThingWorx as an
administrator.

3. Go to Import/Export > Import.

4. Click Choose File and select
GitBackupExtensionPack.zip

5. Click Import.

Note: If an Import Successful
message does not display, contact
your ThingWorx System
Administrator.

6. Click Yes to refresh Composer after
importing the final extension.

7. Confirm that the Extension has
been imported properly. Check the
Application Log for potential
problems.

<~ New Entity ~ & Import/Export ~

From File
=
&% From ThingworxStorage
%
=

Source Control Entities

g To File
& To ThingworxStorage

o Source Control Entities

A Import
M Manage

Note:

Import Extensions

Choose File | GitBackupExtensionPack.zip

Close Validate

Refresh Composer?

Extensions often include widgets. You will only be able to see the widgets if you refresh Composer.

: thingworx

[GitBackup Extension User Guide]

Configuration and Usage

Usage of the Git Backup Extension requires creation and configuration of a Git Thing based on the
GitBackupTemplate in ThingWorx. Starting version 2.0.0, the preferred option to do all the operations is
via the newly provided Ul, accessible via the GitBackup.Main.Mashup. The previous system that used the
Home Mashup for the GitBackup Things is no longer used.

Configuration
1. Access the GitBackup.Main.Mashup

Example URL:
https://localhost:8777/Thingworx/Runtime/index.html#master=GitBackup.Master&mashup=GitBackup.
Main.Mashup

[replace the localhost and port with your respective parameters]

In the following screens you will need to set several configuration parameters. They are described below.

Configuration

Field Name Type Description
User STRING The Git repository username.
Password PASSWORD | The Git repository password.
Commit Username | STRING The Git username that will be used for commit purposes.
Commit Email STRING The Git email that will be used for commit purposes.
Git Repo URL STRING Git Repository URL

Example URLs:

For Bitbucket Online: https://bitbucket.org/vrosu/integritytest.git
or https://vrosu@bitbucket.org/vrosu/testrepo.qgit

For Other Git Repo types:
https://vrosu@dev.azure.com/vrosu/HelloWorld/ git/HelloWorld
http://roicentersvn.ptcnet.ptc.com/vrosu/GitBackupExtension.git

File Repository STRING Selected File Repository where you will store the selected Git
repository. For convenience the Extension already provides a
GitRepository that you can use without creating a new File
Repository. You can use the same FileRepository for multiple
GitBackup Things, you just need to modify the File Repository

Path.

File Repository Path | STRING The path from within the File Repository where your repository
will be created and stored.

Initial Branch STRING The branch that will be used to get the commit list if you’re on

detached head.

: thingworx

https://localhost:8777/Thingworx/Runtime/index.html#master=GitBackup.Master&mashup=GitBackup.Main.Mashup
https://localhost:8777/Thingworx/Runtime/index.html#master=GitBackup.Master&mashup=GitBackup.Main.Mashup
https://bitbucket.org/vrosu/integritytest.git
https://vrosu@bitbucket.org/vrosu/testrepo.git
https://vrosu@dev.azure.com/vrosu/HelloWorld/_git/HelloWorld
http://roicentersvn.ptcnet.ptc.com/vrosu/GitBackupExtension.git

[GitBackup Extension User Guide]

2. Click on the Plus button

<« C @ localhost:3777/Thingworx/Runtime/index htmli#master=GitBackup.Master&imashup=GitBackup.Main Mashup&forceClose=true

No Git Backup Thing defined. Use the "+" button to define a new repository.

3. The New Repo window appears. This is a wizard-type process with 2 screens.
There are 2 options available in this wizard: BitBucket or Other. If you choose Bitbucket, you
will benefit from user/password verification and automatic Git URL completion during the
add process.

New Repo

1 2

Login Repo settings

Git thing name

Git server

m
m

()
o

m
T

Git username

Git account password

Cancel

>:< thingworx

[GitBackup Extension User Guide]

3.1. The Bitbucket option (default). Complete the Git Thing Name (it can be any valid Thing Name
in the platform), Git User and Git Password. Pressing the Enter in the Git Account Password will
allow you to go to the next screen.

New Repo - TestGitThing

1 2

Login Repo settings

Git thing name

TestGitThing

Git server

m
m
]

Git username

vrosu

Git account password

Cancel ﬂ

Note: In case the Bitbucket user and password are invalid, the system will display the following message:

Git username

Vrasu

Git account password

Username or password is invalid. Try again! Continue anyway

You have a choice to continue, or to provide the correct information. This check is executed only in case
of an online BitBucket repository.

You will arrive in the second wizard screen. Fill in the required details: Committer Name, Commit e-
mail, GitRepo URL, File Repository Path and the Initial Branch. When filling the GitRepo URL you will
see search results as you type, based on the BitBucket repositories you have access to:

>:< thingworx

[GitBackup Extension User Guide]

New Repo - TestGitThing

© :

Login Repo settings

Committer Name
Vladimir Rosu

Commit e-mail
vrosu@ptc.com

Gitrepo URL

https://vrosu@bitbucket.crg/partnerprog/autocompleteextension.g

File repository - UL
it repo

& GitRepository ®
test

File repository path
https: //vrosu@bitbucket.org/vrosu/ testrepo.git
Jautocompleteproject
https:/ /vrosu@bitbucket.org/vrosu/ test5.git

Initial branch i . .
https: //vrosu@bitbucket.org/ thingworxtechsales/ autowaretest. git

master
https: / /vrosu@bitbucket.org/ vrosu/ thingworxtest. git

https: //vrosu@bitbucket.org/ rotwx/android-ramp-up-test.git

Back Cancel m https: //vrosu@bitbucket.org/vrosu/integritytest. git

Click with the mouse or select with the keyboard the needed repository

Click Add.

>:< thingworx

[GitBackup Extension User Guide]

3.2. The Other Option. Complete the Git Thing Name (it can be any valid Thing Name in the
platform), Git User and Git Password. Pressing the Enter in the Git Account Password will allow
you to go to the next screen.

New Repo - AzureGitRepo

1 2

Login

Git thing name
AzureGitRepo
Git server
ucket Other
Git username
vrosu@ptc.com

Git account password

You will arrive in the second wizard screen. Fill in the required details: Committer Name,
Commit e-mail, GitRepo URL, File Repository Path and the Initial Branch:

New Repo - AzureGitRepo

o :

Login Repo settings

Committer Name
Vladimir Rosu
Commit e-mail
vrosu@ptc.com
Git repo URL
https://vrosu@dev.azure.com/vrosu/HelloWorld/_git/HelloWorld
File repository
& GitRepository H]
File repository path
JAzureGitRepo
Initial branch

master

BaCk Cance' m

o >:4 thingworx

[GitBackup Extension User Guide]

Click Add.

Note: This functionality was tested with the Azure DevOps Git repository, using alternate
credentials.

Note that in this variant there is no user/password check or autocomplete available for the Git
URL.

Usage
The description of the services is presented in the About section.
In this section we will present 3 usecases:

Usecase 1: Working on a new ThingWorx application which was not previously stored in a Git
repository

This usecase assumes that you started development of a new ThingWorx app that you would like to store
in Git.

Prerequisites: create a new Git repository in a system of your choosing (eg: Bitbucket). Create a new
GitBackup Thing for this project using the GitBackup.Main.Mashup and configure it as per the
Configuration section above.

Step 1: Export to Source Control Entities your ThingWorx application. This functionality is embedded
in the GitBackup.Main.Mashup. Click on the Export button and then on the Export button from the
Entities section.

This process will export all the Entities in the folder from the repository that were configured for this
GitBackup Thing.

Expaort to /smarttestgit

Export entities

kearch Projects |/] Include dependents

Export data

Search Projects

Export extensions fo zip files

>:< thingworx

11

[GitBackup Extension User Guide]

Step 2(optional): Export to File Data. This step is optional, meaning that if your solution does not use
DataTables/Streams/Blogs/Wikis/ValueStreams you don’t need to perform this operation. This
functionality is embedded in the GitBackup.Main.Mashup. Click on the Export button from the Entities

Export data section.
This will export all the data that belongs to the Data type entities above in a folder from the repository
that were configured for this GitBackup Thing.

Export extensions to zip files

Export to /smarttestgit
Export entities
Search Projects rd Include dependents m
Export data
Smart_Parking x m

Step3 (optional): Export Extensions. This functionality depends on the ExportPlatformExt_Extension. It
is optional.

This will export all the extensions that this server contains in a specific folder called “Extensions” in the
folder from the repository that was configured for this GitBackup Thing.

Export to /smarttestgit

Export entities

Search Projects re Include dependents m

Export data

Export extensions to zip files m

Fig 2. Exporting Extensions by using the Home Mashup

>:4 thingworx

12

[GitBackup Extension User Guide]

Step 4 (optional): Cleanup your Extensions. The Extension export process at Step 3 dumps all the
Extensions from the system. If your application only requires a small subset of that it is recommended to
go to the Extensions folder and remove the Extensions which are not needed. Use the Advanced tab from
the GitBackup Main Mashup.

gittest-smartparking.git

-
File tree repositary c

Import Extension

B smartesigit Path Size LastModifiedDate Downloadlink Name
git
“35< [smarttestgit/Extensions/Autocomplete_1.0.31.0_MinTWeNRgip 19689900 2019-01-15 14:59:22.156 Autocomplete_1.0310_MinTW6.0.1zip
Smart_Parking : g¢_2.04.0 NQTW7.0.02ip 48182800 2019-01-15 14:50:22.220 chartWidget ExtensionPackage 2,040 MinTWT 0.02ip
/smarttestgit/Extensions/DiffViewer_1.0.6.0_MinTW7.4.0zip 7334800 2019-01-15 14:59:22.245 DiffViewer_1.0.6.0_MinTW7.4.0.zip
Jsmarttestgit/Extensions/ExportPlatiormExt_Extension_1.0.21.0_MinTW5.1 019-01-15 14:59:22.257 ExportPlatformExt_Extension_1.0.21.0_MinTW5.1.0zip
ayout_§ kage_1.0.0_ MinTW4.1.02 019-01-15 14:59:22.263 Framelayout_ExtensionPackage_1.0.0_MinTW4.1.0.zip
/smarttestgit/Extensions/GitBackupExtension_20.340_MinTW8.1.0zip 019-01-15 14:59:22.427 GitBackupExtension_2.0.340_MinTW8.10zip.
g kage_1.1.0.0_MinTWG 019-01-15 14:59:22.454 GoogleWidgets_ExtensionPackage_1.1.0.0_MinTW65.0zip
Jsmarttestgit/Extensions/HTMLSVideo_1.03.0_MinTW4.0.0zip 019-01-15 14:59:22.461 HTMLSVideo_1.03.0 MinTWA0.0zip
3 kage 2.0.0_MinTW4.00zip 1120700 2019-01-15 145922467 infotableselector_ExtensionPackage_2.00_MinTWA.0.0.zip
fsmarttestgit/Extensions/MobileHeader Widget_1.00_MinTW4.1.0zip 307500 2019-01-15 145922473 MobileHeader_ Widget_1.0.0_MinTW4.1 0zip
Jemarttestgit/Extensions/QRCode Extensions 3.0.00_MinTWB.E0zip 53479200 2019-01-15 14:50:22.495 QRCode Extensions 3.00.0 MinTW8.60.zip
g q iget_Extension_0.1.1.0_MinTWT.2.0zip 1875200 2019-01-15 14:59:22.507 ThingWerkProgressBarWidget_Extension_0.1.1.0_MinTW7.2.

Step 5: Check the Git status (optional). Press the Git Status button in order to understand what you are
pushing, what files changed, and to see the file diffs. The output of this screen is similar to the “git status”
command. You can use it from the Main tab of the GitBackup Main Mashup.

File Status

Smart_Parking/Things/SmartCity.Parking.Spot_4647.xm Untracked
Smart_Parking/Things/SmartCity.Parking Spot_4744xm| Untracked
Smart_Parking/Things/SmartCity.Parking Spot_288levd xml Untracked
Smart_Parking/Things/SmartCity. Parking Spot_680lev3xml Untracked
Smart_Parking/Things/SmartCity.Parking Spot_398lev4 xml Untracked
Smart_Parking/Things/SmartCity.Parking Spot_4582xm| Untracked
Smart_Parking/Things/SmartCity.Parking.Spot_T98levxml Untracked
Smart_Parking/Things/SmartCity.Parking Spot_698.xml Untracked
Smart_Parking/Things/SmartCity.Parking.Spot_T85.xml Untracked
Smart_Parking/Things/SmartCity.Parking Spot_278levSxml Untracked

B Smart_Parking/Things/SmartCity.Parking.Spot_4647.xml |»

+ <?xml version="1.0" encoding="UTF-8"2>
+ <Entities
 + build="b4d1"

majorVersior

minorVersiol

modelPersistenceProviderPackage="H2PersistenceProviderPackage”

schemaVersion="1630"

=
=

=

+ revision="1"
=

+ universal="">
¥

<Things>

>:< thingworx

13

[GitBackup Extension User Guide]

Step 6: Push your project to the Git remote. This will push all the contents of the folder selected in the
configuration section of the GitBackup Thing to the remote git repository.

Checkpoint: If you created an application that uses entities, data and custom extensions, you should see
three folders in the Advanced tab: the first is named like the DateTime and it contains the data, then a folder
named Extensions and a third one named like the Project that you exported, containing the entities. You
might not have the DateTime or the Extensions folder, if you did not export them, but the Project folder is
mandatory.

gittest-smartparking.git

Main Advanced

File tree repository &

= sartosioi
B gil

- 20190115114438
- Extensions

- Smarl_Parking

If you have more than a Date Time folder, delete the oldest one and keep only the most recent one.

Click on the Push button from the Main tab.

Cancel

Provide a commit message in the popup then click Push. A progress window will appear while the push
will be in progress.You can check the push was successful in your git browser (Fig. 5).

>:< thingworx

14

[GitBackup Extension User Guide]

P,
./
i*ﬁ’i
Executing Push to Git...

Git Push progress window

1D Comment CommitTime

923eaade3b%b5691d795a3bd578f36c7 1bEb2a First Push 2019-01-15 15:01:56

Remote Git repository commit history

>:4 thingworx

15

[GitBackup Extension User Guide]

Usecase 2: Working on a ThingWorx application that is already stored in a Git repository
This use case assumes that there is an existing ThingWorx app which is stored in a Git repository that you
would like to download locally to work on it.
Prerequisites: have the URL of a Git repository and HTTP access credentials. Create a new GitBackup
Thing using the GitBackup.Main.Mashup.
Step 1: Pull the project locally from the repository.

Click the Pull button from the Main tab of the GitBackup.Main.Mashup.

u SmartParking SmartParkTest

smartparking.qgit

Main Advanced

1D Comment CommitTime

Branch [/ Commit

> master

master

Checkout branch

Step 2. Importing Extensions (optional): if your project contains extensions that are not included in your
ThingWorx instance, it is mandatory to first install the extensions, the first step of a standard import
process.

This functionality is offered by the ExportPlatformExt Extension.
This makes it easier to install many individual extensions without leaving the mashup. Error or success
messages will be displayed in a grid that is displayed in the lower part of the display.

>:< thingworx

16

[GitBackup Extension User Guide]

o Select the Extensions folder in the Advanced tab (mandatory step; the Import
functionality will not be visible in the interface without doing this step)

e Select the Extension

e Click on the “Import Extension” button.

e The result of the import will be visible in a panel in the lower part of the screen.

n SmartParking SmartParkTest

smartparking.qit

Main Advanced

File tree repository c & Download Import Extension

[l smaripark12341231 Path T
B .git

- Dashboards

[fsmartpark12341231/Extensions/chartWidget_ExtensionPackage_2.0.4.zip

fsmartpark12341231/Extensions/Framelayout_ExtensionPackage_1.0.zip

- Mashups
- MediaEntities fsmartpark12341231/Extensions/GoogleWidgets_ExtensionPackage_1.1.0.zip

- Menus
- Projects fsmartpark12341231/Extensions/HTML5Video_1.0.3.zip

Installation of Extension via the Home Mashup interface

Step. 3. Importing the Entities
This is achieved through the standard ThingWorx functionality Import / Source Control Entities.
Manually select the correct Repository and path where the project was pulled.

Import Option &

Source Control Entities W

|| Use default Persistence Provider (3

| Include Subsystems (%)

Source Contrel Repository (required)
‘C} GitRepository |

Path (%)

| ismartpark12341231

Importing project entities

>:< thingworx

17

[GitBackup Extension User Guide]

Step 4. Import Data (optional). If the project is using any kind of data which needs to be stored in
Streams/ValueStreams/DataTables/Blogs/Wikis you will need to import it. This is only possible if the data

was exported and pushed in the first phase.
It is easy to detect if the project contains such an export. Check if in the Advanced tab you see a folder with

a name like a DateTime stamp.

gittest-smartparking.git

Main Advanced

File tree repository C

=¥ smatesion|
- git

B 20190115114438
- Extensions

[+ Smart=F'arI-:ing

Data Export is present

If yes, then proceed to load the data using the standard ThingWorx User Interface. Note: there is a known
bug in ThingWorx 8.3 Next Gen Composer (NGC) that does not allow using it to import data from imported
Git Repositories.

Import From File

File Repository

#. GitRepository %

Single File

Repository: |2

Path: |z fmanufacturing

>:< thingworx

18

[GitBackup Extension User Guide]

Fig. 12. Import Data using the standard ThingWorx User Interface

Make sure to manually select the proper File Repository and path. If everything was done correctly and
there is a Data Export present, you will see the following screen. Click Import to initialize the Data import.

Import from File Repository

Select a file below to import
Name Size Last Modified
20171127151438 0 2017-12-20 20:24:00.325

Caace m

Fig. 13. Import Data

This is the end of the importing part of Usecase 2. After you have provided your own modifications you
can just follow the process from Usecase 1 to push your modifications back to the repository.

Usecase 3: Switching branches or commits

This is an advanced usecase and deals with checking out a specific branch or commit ID from the history
of commits.

The purpose of the Checkout is to:

-switch to a specific branch to allow importing it and continue pushing to that branch

-switch to a specific commit in the history of that branch so you can import old artifacts (Entities, Data,
Extensions). You won’t be able to push if you have checked out a specific commit. The Push button is
disabled in this case. Calling directly the Push service will result in an error.

Usecase 3.1 Checking out a specific branch

Step 1: Having Usecase 2 performed, select a Branch in the Main tab and press Checkout Branch.

It does not matter if you are selecting a remote or local branch. All local branches are remote tracking
branches. If you’re clicking on a remote branch that does not have a local branch, the extension will auto
create a local branch which tracks the remote one.

: thingworx

19

[GitBackup Extension User Guide]

Main Advanced

m Checkout Commit

1D

=

‘ D master «c12ce1dbe0723164370462%6cal 2h06c00de32b

P master

@ 20160817master
m €7181bebd88b362ab712d87500e 163 19a8918e5
4

Select a branch and press Checkout Branch.

v ‘

7385af36b8b673f524d02d653e0eacchf1a05e43

d01418c46bd75b02816b1da644974ad 187990 1b

Comment

updated to file transfer
Update version
Merge branch ‘master’ of https://bitbucket.org/thingworxtechsales/tpg-presales-demo

Updated instructions and updated entities needed for kepware auto discovery.

Step 2: You can now use the previous import procedure from Usecase2.
Note: the extension does not create remote branches. You need to have a remote branch already

created in your Git repository.

Usecase 3.1 Checking out a specific commit

Step 1: Having Usecase 2 performed, in the Main tab select a Commit and press Checkout Commit.
The list of commits is the one available for the current branch if you’re on branch, or for the initial branch

if your HEAD is detached.

Main Advanced

Checkout Commit

Branch { Commit

@ master

master

Checkout branch

D

12ce1dbe07a3164370462%6ca12b96c90de32b

385af36b8b673524d92d653e0eacchf1a05a43

Comment

updated to file transfer

Update version

d01418c46bd75b0e8fob1dab44974ad 187919910

Merge branch ‘master’ of https://bitbucket.org/thingwondtechsales/tpg-presales-demo

€7181bebd88b362ab712d87500e163c1928918e5
4

Updated instructions and updated entities needed for kepware auto discovery.

The system will display in the left side of the screen the current commit ID:
In this mode, you won’t be able to push anything to the branch since your head is detached, and in the
interface the Push button is disabled to reflect this.

Main Advanced

Branch / Commit

HEAD

d01418c46bd75b0e8f6b...

Checkout branch

Checkout Commit

1D

c12celdbel7a31643704629ebcal 2b96c90de32b

7385af36b8b673f524d02d653eBeacchilalted3

d01418c46bd75b0e8fob1dabd4974ad 18799910

e7181bebd88b362ab712d87500e163c1928918e5
4

Comment

updated to file transfer
Update versicn
Merge branch ‘master’ of hitps://bitbucket.org/thingworxtechsales/tpg-presales-demo

Updated instructions and updated entities needed for kepware auto discovery.

Step. 2 You can now use the previous import procedure from Usecase2.

20

>:4 thingworx

[GitBackup Extension User Guide]

Note: whenever you’re checking out a commit, you won’t be able to push. In the application log will
appear a message “nothing to push” characteristic to such situations. You need to checkout a branch
to push.

Checkout a branch to be able to push data back in that branch.

Note: importing an application might involve other operations besides importing extensions/entities
and data to make it work as it should.

Example of such operations are:

-setting each subsystem’s setting

-importing FileRepository contents

-adding additional Thing Shapes to the Session in the UserManagementSubsystem

-setting collection permissions (see the following support articles for more details:
https://www.ptc.com/en/support/article?n=CS199173 and
https://www.ptc.com/en/support/article?n=CS236842)

-making sure that the UserExtensions ThingShape contains the needed properties. Usually importing it
overrides it, but this might be an issue in case of multiple projects.

Known Limitations

The GitBackup Extension only supports Git repositories which use Basic Authentication (User and
Password). No SSH support is planned, but source code is available for modifications.

For any Git commands other than the provided Push, Pull and Checkout you must use locally the
Git client. This Extension is not intended to provide a full replacement for a Git client.

The extension is designed around exporting Projects. It can be used with manual exports that don’t
have a Project assigned, but certain steps in this guide might not apply. You should not mix exports
of entities based on a Project with exports based on a tag and no project.

Scenarios involving multiple users editing at the same time have not been tested.

If you’re trying to Push and the Remote contains a more recent Commit, Push will fail. Please
check the Application Log to see the detailed error. You might need to do a Pull, import the
changes then Export and Push.

In case there is an error in the Zip Ext process the GitBackup.Main.Mashup will not display any
error messages. Please check the Application Log.

The Export to Source Control Entities will fail if in the platform-settings.json you have a relative
path defined for your Storage section. Please replace the relative path with an absolute path and
restart the ThingWorx server.

The Import extension functionality will fail if the appKey expired. Please check if the AppKey is
still valid if the report which appears after clicking on the Import Extension button is empty.

If a remote branch was closed (for example by merging into master), it is required to manually run
“git remote prune origin”.

The extension does not create a remote branch. You need to have a branch created in your remote.
You can’t push new changes if you have checked out a specific commit (meaning if you’re on the
“Detached HEAD” state). You will receive a “nothing to push” error. When using the
GitBackup.Main.Mashup the PUSH button is disabled in such a situation.

: thingworx

21

https://www.ptc.com/en/support/article?n=CS199173
https://www.ptc.com/en/support/article?n=CS236842

[GitBackup Extension User Guide]

Compatibility

This extension was tested for compatibility with the following ThingWorx Platform version(s) and
Operating System(s):

ThingWorX Platform Version ThingWorx 8.3.1, ThingWorx 8.2.3

0S Windows 10 64 bit

Document Revision History

Revision Date Version Description of Change

December 20, 2017 1.0 Initial version

December 27, 2017 11 Added documentation for Branch and Checkout related
functionality

January 25, 2018 1.2 Updated software changelog and known limitations

February 1%, 2018 1.2.1 Updated software changelog

April 26", 2018 1.3.0 Added documentation for the Git Status functionality.
Updated software changelog.

04 May 2018 13.1 Updated software changelog

11 January 2019 2.0.0 Updated software changelog, updated guide with v. 2.0.0
Ul, added contributor list to the changelog

: thingworx

22

