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What is a Reference Benchmark? 

A great way to evaluate how an IOT implementation will perform for you is to compare 

your own scenario against a reference: 

• Understand the results and limitations in a known reference scenario 

• Identify what differences exist between your scenario and that reference 

• Evaluate how those differences change the behavior of the system  

The purpose of this document is to provide a known reference scenario that can be 

used for these purposes and is targeted at a reader familiar with ThingWorx architecture 

and implementations. 

Over time the IOT Enterprise Deployment Center will be publishing a series of these 

Reference Benchmarks, starting from different use-cases and/or deployment 

architectures.  Over time, this collection of Reference Benchmarks will create a rich 

catalog of baselines that can be used to inform the scalability of different field 

implementations. 

Benchmark Scenario Overview 

The goal of this Reference Benchmark was to identify a specific implementation 

architecture to handle a specific Remote Monitoring of Assets scenario. 

Once that architecture was identified, it was then tested with different edge workload 

configurations to illustrate the scalability limits of that specific architecture as the 

number of edge devices or data properties is scaled. 

While adjustments to the deployment architecture can typically solve many scale 

challenges, they are intentionally not in scope for this document.  The goal is to 

establish a baseline reference for comparison.  Modified deployment architectures for 

similar use-cases would appear in separate Reference Benchmark documents. 

Use-Case Overview 

A healthy Remote Monitoring of Assets implementation balances parallel workloads of 

ingesting edge data, rapid processing of business logic (checking data conditions or 

thresholds to generate alarms and events), and user responsiveness to data 

visualization requests.   

In addition to handling these constant workloads, the system must have enough 

capacity in reserve to handle spikes in activity without causing data loss or significant 

delays in event processing or user requests. 
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User Load 

In Remote Monitoring of Assets use-cases, typical user workload is to view historical 

device data for human analysis, or to respond to a triggered alarm.   

To simulate this scenario, a simple Device Mashup was used to query historical data for 

a single asset into a table with 3-4 service calls.  The load simulators then call this 

mashup a total of 32 times each minute, with each call requesting a different device to 

simulate many users working with the system in parallel. 

Edge Load 

The target edge configuration for this scenario was 15,000 assets, each with 200 

properties per asset and a 3-minute (180 second) data refresh rate.  These assets were 

simulated using the ThingWorx Java SDK to connect. 

Once the correct implementation architecture was identified for this target edge, a 

total of 27 edge configurations were evaluated by varying the number of assets, 

properties, or the transmission frequency as indicated below: 

 

Number of Things 
( T ) 

 Properties per Thing 
( P ) 

 Frequency 
( F ) 

5,000  50  45 seconds 

* 15,000  100  90 seconds 

30,000  * 200  * 180 seconds 
Note: Asterisk (*) indicates target edge configuration used for deployment sizing 

 

This variance created scenarios where the performance of similar edge data volumes 

can be compared to see how performance changes. 

For example, of the 27 possible scenarios with these three variables, five result in the 

same expected Writes Per Second (WPS) from the Edge: 

 

Things 
( T ) 

Properties 
( P ) 

Frequency 
( F ) 

Series Count 
( T × P ) 

Expected WPS 
( T × P ) ÷ F  

15,000 50 45 sec 750 K 16,667 

15,000 100 90 sec 1.5 M 16,667 

* 15,000 * 200 * 180 sec 3.0 M 16,667 

30,000 50 90 sec 1.5 M 16,667 

30,000 100 180 sec 3.0 M 16,667 
Note: Asterisk (*) indicates target edge configuration used for deployment sizing 
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Business Logic, ThingModel and Property Set Approach 

In Remote Monitoring of Assets use-cases, it is common for ingested edge data to be 

evaluated against thresholds (or if-then conditions) to determine if an alarm or event 

should be triggered.  To simulate this, a set of threshold checks were run against 

incoming edge data, with a 5% chance of an event being triggered. 

To simulate typical logic, some thresholds were based on multiple values.  For example: 

IF ( X > 10 ) AND ( Y < 5 ) THEN ( Create an Alarm ) 

As both X and Y could change independently on the edge device, different business 

logic approaches can yield different results: 

Approach Description Pros Cons 

Individual 

Properties 
Rules process as individual 

data items are ingested 

Works with existing edge 

agents 

Multi-property rules process 

multiple times and in a 

non-deterministic order  

Transition false-positives 

possible 

Property 

Sets 

At the edge, changed 

properties are 

encapsulated in a JSON or 

Infotable and processed 

as a set on the server 

Rules process once per 

update from the edge 

device 

Transition false-positives not 

possible 

May require edge agent 

logic to group changed 

properties 

Additional server business 

logic to unpack and store 

grouped data into 

properties 

Timer 

Based 

Execution 

Rules process at a regular 

time interval instead of 

triggering by data arrival 

Works with existing edge 

agents 

Decouples ingestion from 

business logic 

Delays based on ingestion 

vs. execution frequency 

Transition false-positives 

possible 

 

These execution ordering and transition state challenges become more apparent as 

logic complexity increases.  For example, if your logic uses five different properties to 

determine an alarm, the quantity and order of executions can vary significantly. 
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This benchmark used a Property Set approach: rather than sending individual changes, 

the edge agent would group any changed properties into an InfoTable and send that 

object to the platform.  

Upon receiving the InfoTable, the platform would process business rules against those 

changes (pulling any unchanged or current values from memory), and “unpack” the 

changed properties in the InfoTable into individual logged properties.  

 

Figure 1 - High level illustration of ThingModel used for this benchmark. 

 

This approach will not be the best choice for every IOT use-case or solution.  The 

complexity of your logic and edge connectivity are important factors to consider. 
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Implementation Architecture 

The following deployment model was used for this simulation leveraging Microsoft 

Azure, based on the size needed for the target edge configuration (15,000 assets, 200 

properties per asset, 180 second transmission frequency) plus the expected business 

logic and user load. 

This simulation was performed using ThingWorx Platform version 8.4.4. 

 

Figure 2 - Architecture diagram for this simulation 
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Simulation Parameters and KPIs 

To check these three factors, the following KPIs were monitored:  

 Ingestion Processing Visualization 

Primary 

KPI 

Value Stream 

Writes Per Second 
Event Rate 

HTTP Requests Per 

Second 

Secondary 

KPIs 

Value Stream 

Queue Size 

“Lost” data points 

(failed writes) 

Platform CPU 

Utilization 

Event Queue Size 

(i.e. backlog) 

HTTP Request 

Response times 

“Bad” HTTP 

Requests 
 

The simulation consisted of a four-hour execution of each edge configuration with the 

same business logic and user workload in place. 

In addition to the four-hour simulations, a seven-day simulation was conducted to 

ensure the architecture remained stable with the target edge configuration (15,000 

assets, 200 properties per asset, 180 second transmission frequency).  

 

Figure 3 – Telemetry from seven-day “soak test” of 15,000 asset, 200 property, 180 second frequency simulation 

 Note stable queue sizes, data ingestion at expected level and constant CPU utilization with headroom for spikes. 

Mashup response times for mashup did increase as the number of rows returned grew, 

but stabilized below 1.5 seconds as mashup query limits were reached. 
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Simulation Matrix 1 – 180 Second Transmission Frequency 

180s 
Frequency (F) 

Number of Things (T) 

5,000 15,000 30,000 

F
re

q
u

e
n

c
y

 (
F)

 

P
ro

p
e

rt
ie

s 
p

e
r 

Th
in

g
 (

P
) 

5
0
 

WPS: 1,389 

CPU Min/Avg/Max: 

6% / 15% / 19% 

Memory Min/Avg/Max: 

4% / 6% / 6% 

WPS: 4,167 

CPU Min/Avg/Max: 

17% / 23% / 24% 

Memory Min/Avg/Max: 

7% / 21% / 22% 

WPS: 8,333 

CPU Min/Avg/Max: 

47% / 50% / 55% 

Memory Min/Avg/Max: 

38% / 39% / 39% 

1
0
0
 

WPS: 2,778 

CPU Min/Avg/Max: 

13% / 14% / 15% 

Memory Min/Avg/Max: 

9% / 20% / 30% 

WPS: 8,333 

CPU Min/Avg/Max: 

23% / 31% / 33% 

Memory Min/Avg/Max: 

7% / 52% / 76% 

WPS: 16,667 

CPU Min/Avg/Max: 

63% / 80% / 87% 

Memory Min/Avg/Max: 

30% / 79% / 82% 

2
0
0
 

WPS: 5,556 

CPU Min/Avg/Max: 

5% / 19% / 21% 

Memory Min/Avg/Max: 

5% / 15% / 16% 

WPS: 16,667 

CPU Min/Avg/Max: 

47% / 49% / 52% 

Memory Min/Avg/Max: 

21% / 78% / 81% 

WPS: 24,387 

(should be 33,333) 

CPU Min/Avg/Max: 

5% / 76% / 96% 

Memory Min/Avg/Max: 

11% / 78% / 84% 
 

Analysis 

The architecture is oversized for scenarios 

below 7,500 writes-per-second (in blue 

above).  A smaller Azure VM size for the 

platform (D8s_v3) may work, and InfluxDB 

may not be needed if PostgreSQL is resized 

to compensate. 

Both 16,667 write-per-second scenarios 

completed but CPU utilization on the 

30,000 asset run (in yellow above) was 

above 85% under steady load.  This 

indicates a bottleneck risk during a spike of 

edge or user activity. 

The failed run (in red above) did not reach 

the expected writes-per-second, and did 

not keep up with events due to insufficient 

CPU.  A larger Azure VM for the platform 

(D32s_v3) would need to be tested.    
Figure 4 - Runaway Event Queue in failed 30,000 asset scenario.  

Note CPU 95+% until data loss begins, WPS never reaches 33K. 
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Simulation Matrix 2 – 90 Second Transmission Frequency 

90s 
Frequency (F) 

Number of Things (T) 

5,000 15,000 30,000 

F
re

q
u

e
n

c
y

 (
F)

 

P
ro

p
e

rt
ie

s 
p

e
r 

Th
in

g
 (

P
) 

5
0
 

WPS: 2,778 

CPU Min/Avg/Max: 

19% / 26% / 28% 

Memory Min/Avg/Max: 

6% / 6% / 6% 

WPS: 8,333 

CPU Min/Avg/Max: 

44% / 46% / 52% 

Memory Min/Avg/Max: 

20% / 50% / 58% 

WPS: 7.583 

  (should be 33,333) 

CPU Min/Avg/Max: 

61% / 67% / 97% 

Memory Min/Avg/Max: 

26% / 67% / 83% 

1
0
0
 

WPS: 5,556 

CPU Min/Avg/Max: 

23% / 26% / 37% 

Memory Min/Avg/Max: 

6% / 14% / 16% 

WPS: 16,667 

CPU Min/Avg/Max: 

46% / 75% / 81% 

Memory Min/Avg/Max: 

30% / 79% / 82% 

Not executed 

2
0
0
 

WPS: 11,111 

CPU Min/Avg/Max: 

31% / 33% / 35% 

Memory Min/Avg/Max: 

15% / 55% / 79% 

WPS: 25,070 

  (should be 33,333) 

CPU Min/Avg/Max: 

74% / 77% / 97% 

Memory Min/Avg/Max: 

70% / 83% / 83% 

Not executed 

 

Analysis 

Similar to the 180-second simulations, the scenarios below 7,500 writes-per-second might 

run on the next smallest Azure VM size for the platform (D8s_v3) and may not require 

InfluxDB if PostgreSQL is resized to compensate. 

Also similar to the failed scenario from the 180-second simulations, the two 33,333 writes-

per-second scenarios exhibited a similar failure, each losing edge data and filling their 

event queues within the first ten minutes of the simulation.  

 

  

  



 

 
11 

 

Simulation Matrix 3 – 45 Second Transmission Frequency 

45s 
Frequency (F) 

Number of Things (T) 

5,000 15,000 30,000 

F
re

q
u

e
n

c
y

 (
F)

 

P
ro

p
e

rt
ie

s 
p

e
r 

Th
in

g
 (

P
) 5

0
 

WPS: 5,556 

CPU Min/Avg/Max: 

29% / 32% / 47% 

Memory Min/Avg/Max: 

4% / 40% / 43% 

WPS: 8,233 

  (should be 16,667) 

CPU Min/Avg/Max: 

61% / 66% / 97% 

Memory Min/Avg/Max: 

21% / 75% / 82% 

Not executed 

1
0
0
 

WPS: 11,111 

CPU Min/Avg/Max: 

43% / 48% / 53% 

Memory Min/Avg/Max: 

13% / 57% / 75% 

Not executed Not executed 

2
0
0
 

WPS: 22,222 

CPU Min/Avg/Max: 

70% / 79% / 87% 

Memory Min/Avg/Max: 

37% / 79% / 81% 

Not executed Not executed 

 

Analysis 

The 22,222 writes-per-second scenario (in 

yellow above) was successful during the 

duration of the simulation, but showed an 

increasing max CPU utilization and slowly 

growing event queue backlog.   

This scenario would likely fail during a spike 

of edge activity or user requests and 

could fail after several days of steady-

state workload based on the growing 

backlog. 

At this higher transmission frequency, the 

16,667 writes-per-second simulation (in red 

above) exhibited the same failure 

signature as the 33,333 writes-per-second 

scenarios on the prior tables: 95+% 

platform CPU load with runaway event 

queue growth and edge data loss. 

 
Figure 5 - Telemetry from 22,222 WPS run.  Note slowly 

increasing CPU utilization and Event Queue Size. 

Failure likely beyond four-hour simulation timeframe. 
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Analysis and Conclusions 

The primary limiting factor for these simulations was platform CPU capacity required to 

process business logic as data was being ingested. 

When incoming data volume increased past a constant ~17,000 writes per second, this 

deployment architecture was unable to keep up with the frequency and duration of 

business logic execution and could not recover from the growing backlog. 

To validate this conclusion, an additional run was performed using the “30,000 asset, 

200 property, 180 sec. frequency” edge configuration with the same simulated business 

logic and a larger D32s_v3 platform instance and additional InfluxDB Enterprise data 

nodes.   

This was successful for the duration of the simulation but may require additional 

capacity and/or tuning for longer durations.  This larger deployment architecture may 

be explored in a follow-up benchmark document. 

The complexity and timing of business logic operations performed on incoming data is 

another variable to consider.   

Limiting the amount of business logic conducted during data ingestion can help to 

control this by moving more complex and/or less time-sensitive analytical operations to 

a more scheduled model. 

 


