

SCP Remote Monitoring of Assets

Reference Benchmark
Document Version 1.0

December 2019

1

Copyright © 2019 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively

“PTC”) are subject to the copyright laws of the United States and other countries and are provided under a

license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to

the licensed software user the right to make copies in printed form of this documentation if provided on

software media, but only for internal/personal use and in accordance with the license agreement under

which the applicable software is licensed. Any copy made shall include the PTC copyright notice and any

other proprietary notice provided by PTC. Training materials may not be copied without the express written

consent of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form,

including electronic media, or transmitted or made publicly available by any means without the prior written

consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,

and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability

for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable

trade secrets and proprietary information, and is protected by the copyright laws of the United States and

other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used

in any manner not provided for in the software licenses agreement except with written prior approval from

PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL

PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not

tolerate the piracy of PTC software products, and we pursue (both civilly and criminally) those who do so

using all legal means available, including public and private surveillance resources. As part of these efforts,

PTC uses data monitoring and scouring technologies to obtain and transmit data on users of illegal copies of

our software. This data collection is not performed on users of legally licensed software from PTC and its

authorized distributors. If you are using an illegal copy of our software and do not consent to the collection

and transmission of such data (including to the United States), cease using the illegal version, and contact

PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright notice,

of your PTC software.

United States Governments Rights

PTC software products and software documentation are “commercial items” as that term is defined at 48

C.F.R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)

for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1 (a)

(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software

documentation) (FEB 2014) for the Department of Defense, PTC software products and software

documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,

duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the

applicable PTC software license agreement.

PTC Inc., 121 Seaport Boulevard, Boston, MA 02210 USA

2

Document Revision History .. 2

What is a Reference Benchmark? ... 3

Benchmark Scenario Overview .. 3

Use-Case Overview .. 3

User Load ... 4

Edge Load ... 4

Business Logic, ThingModel and Property Set Approach ... 5

Implementation Architecture ... 7

Simulation Parameters and KPIs ... 8

Simulation Matrix 1 – 180 Second Transmission Frequency ... 9

Simulation Matrix 2 – 90 Second Transmission Frequency ... 10

Simulation Matrix 3 – 45 Second Transmission Frequency ... 11

Analysis and Conclusions .. 12

Document Revision History

Revision Date Version Description of Change

December 2019 1.0 Initial Version

3

What is a Reference Benchmark?

A great way to evaluate how an IOT implementation will perform for you is to compare

your own scenario against a reference:

• Understand the results and limitations in a known reference scenario

• Identify what differences exist between your scenario and that reference

• Evaluate how those differences change the behavior of the system

The purpose of this document is to provide a known reference scenario that can be

used for these purposes and is targeted at a reader familiar with ThingWorx architecture

and implementations.

Over time the IOT Enterprise Deployment Center will be publishing a series of these

Reference Benchmarks, starting from different use-cases and/or deployment

architectures. Over time, this collection of Reference Benchmarks will create a rich

catalog of baselines that can be used to inform the scalability of different field

implementations.

Benchmark Scenario Overview

The goal of this Reference Benchmark was to identify a specific implementation

architecture to handle a specific Remote Monitoring of Assets scenario.

Once that architecture was identified, it was then tested with different edge workload

configurations to illustrate the scalability limits of that specific architecture as the

number of edge devices or data properties is scaled.

While adjustments to the deployment architecture can typically solve many scale

challenges, they are intentionally not in scope for this document. The goal is to

establish a baseline reference for comparison. Modified deployment architectures for

similar use-cases would appear in separate Reference Benchmark documents.

Use-Case Overview

A healthy Remote Monitoring of Assets implementation balances parallel workloads of

ingesting edge data, rapid processing of business logic (checking data conditions or

thresholds to generate alarms and events), and user responsiveness to data

visualization requests.

In addition to handling these constant workloads, the system must have enough

capacity in reserve to handle spikes in activity without causing data loss or significant

delays in event processing or user requests.

4

User Load

In Remote Monitoring of Assets use-cases, typical user workload is to view historical

device data for human analysis, or to respond to a triggered alarm.

To simulate this scenario, a simple Device Mashup was used to query historical data for

a single asset into a table with 3-4 service calls. The load simulators then call this

mashup a total of 32 times each minute, with each call requesting a different device to

simulate many users working with the system in parallel.

Edge Load

The target edge configuration for this scenario was 15,000 assets, each with 200

properties per asset and a 3-minute (180 second) data refresh rate. These assets were

simulated using the ThingWorx Java SDK to connect.

Once the correct implementation architecture was identified for this target edge, a

total of 27 edge configurations were evaluated by varying the number of assets,

properties, or the transmission frequency as indicated below:

Number of Things
(T)

 Properties per Thing
(P)

 Frequency
(F)

5,000 50 45 seconds

* 15,000 100 90 seconds

30,000 * 200 * 180 seconds
Note: Asterisk (*) indicates target edge configuration used for deployment sizing

This variance created scenarios where the performance of similar edge data volumes

can be compared to see how performance changes.

For example, of the 27 possible scenarios with these three variables, five result in the

same expected Writes Per Second (WPS) from the Edge:

Things
(T)

Properties
(P)

Frequency
(F)

Series Count
(T × P)

Expected WPS
(T × P) ÷ F

15,000 50 45 sec 750 K 16,667

15,000 100 90 sec 1.5 M 16,667

* 15,000 * 200 * 180 sec 3.0 M 16,667

30,000 50 90 sec 1.5 M 16,667

30,000 100 180 sec 3.0 M 16,667
Note: Asterisk (*) indicates target edge configuration used for deployment sizing

5

Business Logic, ThingModel and Property Set Approach

In Remote Monitoring of Assets use-cases, it is common for ingested edge data to be

evaluated against thresholds (or if-then conditions) to determine if an alarm or event

should be triggered. To simulate this, a set of threshold checks were run against

incoming edge data, with a 5% chance of an event being triggered.

To simulate typical logic, some thresholds were based on multiple values. For example:

IF (X > 10) AND (Y < 5) THEN (Create an Alarm)

As both X and Y could change independently on the edge device, different business

logic approaches can yield different results:

Approach Description Pros Cons

Individual

Properties
Rules process as individual

data items are ingested

Works with existing edge

agents

Multi-property rules process

multiple times and in a

non-deterministic order

Transition false-positives

possible

Property

Sets

At the edge, changed

properties are

encapsulated in a JSON or

Infotable and processed

as a set on the server

Rules process once per

update from the edge

device

Transition false-positives not

possible

May require edge agent

logic to group changed

properties

Additional server business

logic to unpack and store

grouped data into

properties

Timer

Based

Execution

Rules process at a regular

time interval instead of

triggering by data arrival

Works with existing edge

agents

Decouples ingestion from

business logic

Delays based on ingestion

vs. execution frequency

Transition false-positives

possible

These execution ordering and transition state challenges become more apparent as

logic complexity increases. For example, if your logic uses five different properties to

determine an alarm, the quantity and order of executions can vary significantly.

6

This benchmark used a Property Set approach: rather than sending individual changes,

the edge agent would group any changed properties into an InfoTable and send that

object to the platform.

Upon receiving the InfoTable, the platform would process business rules against those

changes (pulling any unchanged or current values from memory), and “unpack” the

changed properties in the InfoTable into individual logged properties.

Figure 1 - High level illustration of ThingModel used for this benchmark.

This approach will not be the best choice for every IOT use-case or solution. The

complexity of your logic and edge connectivity are important factors to consider.

7

Implementation Architecture

The following deployment model was used for this simulation leveraging Microsoft

Azure, based on the size needed for the target edge configuration (15,000 assets, 200

properties per asset, 180 second transmission frequency) plus the expected business

logic and user load.

This simulation was performed using ThingWorx Platform version 8.4.4.

Figure 2 - Architecture diagram for this simulation

8

Simulation Parameters and KPIs

To check these three factors, the following KPIs were monitored:

 Ingestion Processing Visualization

Primary

KPI

Value Stream

Writes Per Second
Event Rate

HTTP Requests Per

Second

Secondary

KPIs

Value Stream

Queue Size

“Lost” data points

(failed writes)

Platform CPU

Utilization

Event Queue Size

(i.e. backlog)

HTTP Request

Response times

“Bad” HTTP

Requests

The simulation consisted of a four-hour execution of each edge configuration with the

same business logic and user workload in place.

In addition to the four-hour simulations, a seven-day simulation was conducted to

ensure the architecture remained stable with the target edge configuration (15,000

assets, 200 properties per asset, 180 second transmission frequency).

Figure 3 – Telemetry from seven-day “soak test” of 15,000 asset, 200 property, 180 second frequency simulation

 Note stable queue sizes, data ingestion at expected level and constant CPU utilization with headroom for spikes.

Mashup response times for mashup did increase as the number of rows returned grew,

but stabilized below 1.5 seconds as mashup query limits were reached.

9

Simulation Matrix 1 – 180 Second Transmission Frequency

180s
Frequency (F)

Number of Things (T)

5,000 15,000 30,000

F
re

q
u

e
n

c
y

 (
F)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

P
)

5
0

WPS: 1,389

CPU Min/Avg/Max:

6% / 15% / 19%

Memory Min/Avg/Max:

4% / 6% / 6%

WPS: 4,167

CPU Min/Avg/Max:

17% / 23% / 24%

Memory Min/Avg/Max:

7% / 21% / 22%

WPS: 8,333

CPU Min/Avg/Max:

47% / 50% / 55%

Memory Min/Avg/Max:

38% / 39% / 39%

1
0
0

WPS: 2,778

CPU Min/Avg/Max:

13% / 14% / 15%

Memory Min/Avg/Max:

9% / 20% / 30%

WPS: 8,333

CPU Min/Avg/Max:

23% / 31% / 33%

Memory Min/Avg/Max:

7% / 52% / 76%

WPS: 16,667

CPU Min/Avg/Max:

63% / 80% / 87%

Memory Min/Avg/Max:

30% / 79% / 82%

2
0
0

WPS: 5,556

CPU Min/Avg/Max:

5% / 19% / 21%

Memory Min/Avg/Max:

5% / 15% / 16%

WPS: 16,667

CPU Min/Avg/Max:

47% / 49% / 52%

Memory Min/Avg/Max:

21% / 78% / 81%

WPS: 24,387

(should be 33,333)

CPU Min/Avg/Max:

5% / 76% / 96%

Memory Min/Avg/Max:

11% / 78% / 84%

Analysis

The architecture is oversized for scenarios

below 7,500 writes-per-second (in blue

above). A smaller Azure VM size for the

platform (D8s_v3) may work, and InfluxDB

may not be needed if PostgreSQL is resized

to compensate.

Both 16,667 write-per-second scenarios

completed but CPU utilization on the

30,000 asset run (in yellow above) was

above 85% under steady load. This

indicates a bottleneck risk during a spike of

edge or user activity.

The failed run (in red above) did not reach

the expected writes-per-second, and did

not keep up with events due to insufficient

CPU. A larger Azure VM for the platform

(D32s_v3) would need to be tested.
Figure 4 - Runaway Event Queue in failed 30,000 asset scenario.

Note CPU 95+% until data loss begins, WPS never reaches 33K.

10

Simulation Matrix 2 – 90 Second Transmission Frequency

90s
Frequency (F)

Number of Things (T)

5,000 15,000 30,000

F
re

q
u

e
n

c
y

 (
F)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

P
)

5
0

WPS: 2,778

CPU Min/Avg/Max:

19% / 26% / 28%

Memory Min/Avg/Max:

6% / 6% / 6%

WPS: 8,333

CPU Min/Avg/Max:

44% / 46% / 52%

Memory Min/Avg/Max:

20% / 50% / 58%

WPS: 7.583

 (should be 33,333)

CPU Min/Avg/Max:

61% / 67% / 97%

Memory Min/Avg/Max:

26% / 67% / 83%

1
0
0

WPS: 5,556

CPU Min/Avg/Max:

23% / 26% / 37%

Memory Min/Avg/Max:

6% / 14% / 16%

WPS: 16,667

CPU Min/Avg/Max:

46% / 75% / 81%

Memory Min/Avg/Max:

30% / 79% / 82%

Not executed

2
0
0

WPS: 11,111

CPU Min/Avg/Max:

31% / 33% / 35%

Memory Min/Avg/Max:

15% / 55% / 79%

WPS: 25,070

 (should be 33,333)

CPU Min/Avg/Max:

74% / 77% / 97%

Memory Min/Avg/Max:

70% / 83% / 83%

Not executed

Analysis

Similar to the 180-second simulations, the scenarios below 7,500 writes-per-second might

run on the next smallest Azure VM size for the platform (D8s_v3) and may not require

InfluxDB if PostgreSQL is resized to compensate.

Also similar to the failed scenario from the 180-second simulations, the two 33,333 writes-

per-second scenarios exhibited a similar failure, each losing edge data and filling their

event queues within the first ten minutes of the simulation.

11

Simulation Matrix 3 – 45 Second Transmission Frequency

45s
Frequency (F)

Number of Things (T)

5,000 15,000 30,000

F
re

q
u

e
n

c
y

 (
F)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

P
) 5

0

WPS: 5,556

CPU Min/Avg/Max:

29% / 32% / 47%

Memory Min/Avg/Max:

4% / 40% / 43%

WPS: 8,233

 (should be 16,667)

CPU Min/Avg/Max:

61% / 66% / 97%

Memory Min/Avg/Max:

21% / 75% / 82%

Not executed

1
0
0

WPS: 11,111

CPU Min/Avg/Max:

43% / 48% / 53%

Memory Min/Avg/Max:

13% / 57% / 75%

Not executed Not executed

2
0
0

WPS: 22,222

CPU Min/Avg/Max:

70% / 79% / 87%

Memory Min/Avg/Max:

37% / 79% / 81%

Not executed Not executed

Analysis

The 22,222 writes-per-second scenario (in

yellow above) was successful during the

duration of the simulation, but showed an

increasing max CPU utilization and slowly

growing event queue backlog.

This scenario would likely fail during a spike

of edge activity or user requests and

could fail after several days of steady-

state workload based on the growing

backlog.

At this higher transmission frequency, the

16,667 writes-per-second simulation (in red

above) exhibited the same failure

signature as the 33,333 writes-per-second

scenarios on the prior tables: 95+%

platform CPU load with runaway event

queue growth and edge data loss.

Figure 5 - Telemetry from 22,222 WPS run. Note slowly

increasing CPU utilization and Event Queue Size.

Failure likely beyond four-hour simulation timeframe.

12

Analysis and Conclusions

The primary limiting factor for these simulations was platform CPU capacity required to

process business logic as data was being ingested.

When incoming data volume increased past a constant ~17,000 writes per second, this

deployment architecture was unable to keep up with the frequency and duration of

business logic execution and could not recover from the growing backlog.

To validate this conclusion, an additional run was performed using the “30,000 asset,

200 property, 180 sec. frequency” edge configuration with the same simulated business

logic and a larger D32s_v3 platform instance and additional InfluxDB Enterprise data

nodes.

This was successful for the duration of the simulation but may require additional

capacity and/or tuning for longer durations. This larger deployment architecture may

be explored in a follow-up benchmark document.

The complexity and timing of business logic operations performed on incoming data is

another variable to consider.

Limiting the amount of business logic conducted during data ingestion can help to

control this by moving more complex and/or less time-sensitive analytical operations to

a more scheduled model.

