

IOT EDC Reference Benchmark:

Leveraging Dell and VMWare

for Asset Monitoring in

Connected Factories

Document Version 1.0

October 2020

1

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively

“PTC”) are subject to the copyright laws of the United States and other countries and are provided under a

license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to

the licensed software user the right to make copies in printed form of this documentation if provided on

software media, but only for internal/personal use and in accordance with the license agreement under

which the applicable software is licensed. Any copy made shall include the PTC copyright notice and any

other proprietary notice provided by PTC. Training materials may not be copied without the express written

consent of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form,

including electronic media, or transmitted or made publicly available by any means without the prior written

consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,

and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability

for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable

trade secrets and proprietary information, and is protected by the copyright laws of the United States and

other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used

in any manner not provided for in the software licenses agreement except with written prior approval from

PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL

PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not

tolerate the piracy of PTC software products, and we pursue (both civilly and criminally) those who do so

using all legal means available, including public and private surveillance resources. As part of these efforts,

PTC uses data monitoring and scouring technologies to obtain and transmit data on users of illegal copies of

our software. This data collection is not performed on users of legally licensed software from PTC and its

authorized distributors. If you are using an illegal copy of our software and do not consent to the collection

and transmission of such data (including to the United States), cease using the illegal version, and contact

PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright notice,

of your PTC software.

United States Governments Rights

PTC software products and software documentation are “commercial items” as that term is defined at 48

C.F.R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)

for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1 (a)

(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software

documentation) (FEB 2014) for the Department of Defense, PTC software products and software

documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,

duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the

applicable PTC software license agreement.

PTC Inc., 121 Seaport Boulevard, Boston, MA 02210 USA

2

Table of Contents

Document Version History... 2

Acknowledgements .. 2

What is a Reference Benchmark? ... 3

Scenario Overview .. 3

Use Case Overview ... 4

User Load .. 4

Edge Load .. 5

Simulation Parameters and KPIs ... 6

Simulation Scenario ... 7

Implementation Architecture... 7

ThingWorx Model Configuration .. 8

Kepware Server Configuration ... 8

Simulation Summary .. 9

Matrix 1 – 15 Second Slow Properties + 1 Second Fast Properties ... 9

Matrix 2 – 5 Second Slow Properties + 500 Millisecond Fast Properties 10

Matrix 3 – 1 Second Slow Properties + 200 Millisecond Fast Properties 11

Analysis and Conclusions .. 12

Document Version History

Revision Date Version Description of Change

October 2020 1.0 Initial document version

Acknowledgements

Please join us in thanking Bhagyashree Angadi, Brian Anzaldua, Todd Edmunds, Mike Hayes,

and the Dell Customer Solution Center team in Limerick, Ireland for working with the IOT

Enterprise Deployment Center on this benchmark.

3

What is a Reference Benchmark?

A great way to evaluate how an IOT implementation will perform is to compare it against a

known reference. This can help you to:

• Understand the results and limitations in a known reference scenario

• Identify what differences exist between the implementation and the reference

• Evaluate how those differences change the behavior of the system

The purpose of this document is to provide a known reference scenario that can be used

for these purposes and is targeted at a reader familiar with ThingWorx architecture and

implementations.

Scenario Overview

As an extension of our Connected Factory Reference Benchmark performed on Microsoft

Azure, PTC partnered with Dell Technologies to create a baseline that illustrates the

effectiveness of ThingWorx and Kepware combined with Dell and VMWare technologies to

create solutions for on-premises and hybrid Connected Factory implementations.

Like most asset monitoring use-cases, Edge size largely defines the scalability of a

Connected Factory scenario. Variations in Edge size are made by adjusting the number of

connected assets, the number of properties or data items per asset, and the frequency at

which these properties are sent to ThingWorx.

This Reference Benchmark will focus on the first two configurations in Figure 1 – smaller

Connected Factory implementations with one to three ThingWorx Kepware Server instances

connected to a single-node ThingWorx Foundation server. Future benchmarks will illustrate

the capabilities of combined high availability capabilities offered by Dell, VMWare and PTC.

Figure 1 – Common asset monitoring implementation scenarios in a Connected Factory

The business logic and variables used in this simulation are identical to the Connected

Factory benchmark performed on Microsoft Azure - the deployment architecture is held

constant throughout these tests to help demonstrate the limits of a given configuration.

Deployment changes that may improve the results of an unsuccessful simulation (such as

adding CPUs or Memory to a specific virtual machine) may be discussed but will not be

validated as part of this benchmark document.

https://community.ptc.com/t5/IoT-Tech-Tips/IOT-EDC-Reference-Benchmark-Remote-Monitoring-of-Assets-in/m-p/680380

4

Use Case Overview

The deployment architecture for a healthy Connected Factory implementation often looks

similar in design and function to a Connected Product scenario. Generally, there are fewer

individual edge devices in a Connected Factory, but each edge devices sends more

frequent property updates to the ThingWorx Foundation server.

Asset Monitoring is typically achieved through application logic that checks if one or more

changed property values indicate that an alarm should be triggered. These alarms are

added to a stream which is monitored by Operator users via ThingWorx mashups. In

addition, there is logic that runs once every 30 minutes to create a status roll-up of all

Factory Assets for Manager users.

The overall implementation must have enough resources to handle this steady state

workload, plus headroom for any brief spikes in either edge device or user activity. A

scenario is deemed unsuccessful when data loss or delays in event or user request

processing are observed.

Figure 2 - This infographic outlines the benchmark scenario. Variations come from changing the number of

assets (Y) per Factory (X), the number of properties per asset (Z), and the rate of property changes (R).

User Load

In a factory asset monitoring use-case, the typical user workload is to view historical device

data and respond to triggered alarms. However, the simulated use-case also includes a

real-time monitoring view, like seeing property values in a display as they come in (current

state of properties, included in the operator view), and status roll-ups which run less

frequently and depict the state of an entire line or factory (included in the manager view).

The operator mashup therefore contains real-time property information via the Property

Display widget and historical property information via the Time Series Chart widget (with

drop-down menus fueling both of these charts). There is also a Grid widget displaying all the

alarms for a particular Thing, and a List widget allowing operators to switch from one asset

to another. A secondary mashup can be opened from this which allows operators to add

5

notes, effectively acknowledging an alarm in the process. This mashup is called half as

often, and the updates to the alarm tracking stream occur only 20% of the time.

The manager mashup shows the status of the entire factory, including a query to sort by

factory and region (which does not apply in the first scenario) and a Grid widget containing

all of the information about each factory: how many of the total Things are connected (a

percent) and how many unacknowledged alarms there are. The roll-up logic for this runs

once per hour, populating a data table for more rapid querying.

In this Connected Factory simulation, is was assumed that the number of operators and

managers at the factory increases proportionally with in the number of assets. See Figure 2

above for a visual of the number of managers, the number of operators, and the

corresponding traffic which they generated via their various activity.

Edge Load

Two sets of properties were simulated in this Connected Factory scenario:

• “Fast” properties which had no logic upon ingestion, but high scan rates

• “Slow” properties with lower scan rates but have associated business logic runs upon

data change.

Assets
(Y)

Slow Prop
(𝑍𝑠𝑙𝑜𝑤)

Fast Prop
(𝑍𝑓𝑎𝑠𝑡)

Slow Freq.
 (𝑅𝑠𝑙𝑜𝑤)

Fast Freq.
(𝑅𝑓𝑎𝑠𝑡)

Series Count
(𝑇 𝑥 (𝑍𝑓𝑎𝑠𝑡 + 𝑍𝑠𝑙𝑜𝑤))

Expected WPS
(T × Z) ÷ R

100 25 5 15 sec 1 sec 3,000 660

100 25 5 5 sec 0.5 sec 3,000 1,500

100 25 5 1 sec 0.2 sec 3,000 5,000

100 50 10 15 sec 1 sec 6,000 1,300

100 50 10 5 sec 0.5 sec 6,000 3,000

… … … … … … …

250 50 10 5 sec 0.5 sec 15,000 7,500

250 75 15 15 sec 1 sec 22,500 5,000

… … … … … … …

500 75 15 15 sec 1 sec 45,000 10,000

Chart 1 – A sample of the tests; the ingestion rate was adjusted by the variables in Figure 2.

Note that the scan rate on the ThingWorx Foundation server was set two times faster to

protect against the possibility that tag value changes were missed between sample

intervals. For example, if a tag is expected to change once per second, scan rate should

be set to 500 milliseconds (to a fastest recommended scan rate of 100ms).

6

Simulation Parameters and KPIs

To confirm the success of the tests, the following KPIs were monitored:

 Ingestion Processing Visualization

Primary

KPI

Value Stream Writes

Per Second
Event Rate

HTTP Requests Per

Second

Secondary

KPIs

Value Stream Queue

Size

“Lost” data points

(failed writes)

Platform CPU Utilization

Event Queue Size (i.e.

backlog)

HTTP Request Response

times

“Bad” HTTP Requests

In addition to these KPIs, Kepware Server log output was reviewed to ensure that there were

no indications of lost data. Tests that failed with this pattern would contain an error

message similar to the following in the Kepware Server logs:

One or more value change updates lost due to insufficient space in the connection
buffer. | Number of lost updates = #####.

Each simulation consisted of a four-hour execution of various Edge configurations, with the

same business logic and user workload in place throughout.

7

Simulation Scenario

Implementation Architecture

With the support of Dell Technologies laboratory teams and equipment, the following

Connected Factory implementation was deployed using Dell hardware, with ThingWorx

Foundation and one or more Kepware Servers each deployed on VMWare virtual machines

within the same rack-mounted physical hardware.

As all virtual machines were implemented within the same physical system, network

bandwidth and latency considerations were not a factor in these results.

Figure 3 - The architecture: multiple Factory Assets from one Factory location connect to the Foundation

server via one or more Kepware Servers.

The results tables that follow are grouped by property update frequency: All slow properties

in that chart will use the larger “S” frequency, and all fast properties the smaller “F”

frequency, regardless of other variations.

8

ThingWorx Model Configuration

Kepware Server Configuration

For these tests, Kepware Server’s simulation driver was

used to create changing data to send to ThingWorx.

This provides a level of data throughput that can be

measured for these tests but note that this data does

not fully represent the real-world scenario of polling

industrial controllers and PLCs across a network.

Each simulation device in Kepware Server is analogous to a Thing in the Thing Model,

while each tag in Kepware Servers configuration represents a property for that Thing.

The tags were generated using an automated script run from a different server (with

specifications shown in Figure 3).

Figure 6 - A screenshot from Kepware Server showing the tag configuration. This run had 30 properties total,

5 fast and 25 slow. Note that while a scan rate can be set within Kepware Server, when integrated with

ThingWorx this value will be overridden by the Scan Rate set in the ThingWorx Model Configuration (as

shown in Figure 5).

Figure 4 - This image shows the property configuration within

ThingWorx.

Figure 5 – ThingWorx property

configuration. Note that the scan

rate is 2x faster, aligning with the

Kepware Server configuration in

Figure 6 below.

9

Simulation Summary

Matrix 1 – 15 Second Slow Properties + 1 Second Fast Properties

S: 15s
F: 1000ms

Frequency (R)

Number of Things (Y)

100 250 500

F
re

q
u

e
n

c
y

 (
R

)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

Z
) 2
5

 +
 5

WPS: 667

CPU Min/Avg/Max:

3% / 4% / 14%

Memory Min/Avg/Max:

11% / 11% / 12%

WPS: 1,667

CPU Min/Avg/Max:

7% / 8% / 19%

Memory Min/Avg/Max:

11% / 12% / 12%

WPS: 3,333

CPU Min/Avg/Max:

12% / 13% / 19%

Memory Min/Avg/Max:

38% / 39% / 39%

5
0

 +
 1

0
 WPS: 1,333

CPU Min/Avg/Max:

5% / 8% / 14%

Memory Min/Avg/Max:

28% / 28% / 28%

WPS: 3,333

CPU Min/Avg/Max:

13% / 14% / 20%

Memory Min/Avg/Max:

46% / 46% / 47%

WPS: 6,667

CPU Min/Avg/Max:

22% / 23% / 25%

Memory Min/Avg/Max:

12% / 12% / 13%

7
5

 +
 1

5
 WPS: 2,000

CPU Min/Avg/Max:

9% / 12% / 14%

Memory Min/Avg/Max:

38% / 38% / 38%

WPS: 5,000

CPU Min/Avg/Max:

16% / 18% / 23%

Memory Min/Avg/Max:

29% / 29% / 29%

WPS: 10,000

CPU Min/Avg/Max:

35% / 38% / 41%

Memory Min/Avg/Max:

26% / 58% / 61%

Matrix 1 Analysis

For the hardware configuration used in these simulations, all tests were successful.

The 10,000 WPS test configuration would represent a well-sized implementation under

steady state load, with headroom that could be used to implement more complex IOT

application logic for a specific use-case, and/or to handle spikes in activity from users or

edge devices.

The other test scenarios performed in this matrix were somewhat under-sized for the

hardware configuration selected and would likely be successful with fewer CPU and

Memory resources allocated to the ThingWorx Platform virtual machines.

10

Matrix 2 – 5 Second Slow Properties + 500 Millisecond Fast Properties

S: 5s
F: 500ms

Frequency (R)

Number of Things (Y)

100 250 500

F
re

q
u

e
n

c
y

 (
R

)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

Z
)

2
5

 +
 5

WPS: 1,500

CPU Min/Avg/Max:

7% / 8% / 26%

Memory Min/Avg/Max:

11% / 11% / 22%

WPS: 3,750

CPU Min/Avg/Max:

13% / 15% / 21%

Memory Min/Avg/Max:

12% / 13% / 13%

WPS: 7,500

CPU Min/Avg/Max:

24% / 26% / 30%

Memory Min/Avg/Max:

46% / 46% / 47%

5
0

 +
 1

0
 WPS: 3,000

CPU Min/Avg/Max:

13% / 14% / 27%

Memory Min/Avg/Max:

11% / 12% / 12%

WPS: 7,500

CPU Min/Avg/Max:

26% / 29% / 34%

Memory Min/Avg/Max:

28% / 28% / 28%

WPS: 14,650
(expected 15,000)

CPU Min/Avg/Max:

47% / 49% / 56%

Memory Min/Avg/Max:

46% / 61% / 66%

(Note: 2 Kepware Servers)

7
5

 +
 1

5
 WPS: 4,500

CPU Min/Avg/Max:

22% / 23% / 31%

Memory Min/Avg/Max:

15% / 16% / 16%

WPS: 11,250

CPU Min/Avg/Max:

43% / 45% / 51%

Memory Min/Avg/Max:

38% / 73% / 76%

(Note: 2 Kepware Servers)

WPS: 21,480
(expected 22,500)

CPU Min/Avg/Max:

85% / 88% / 90%

Memory Min/Avg/Max:

40% / 75% / 82%

(Note: 3 Kepware Servers)

Matrix 2 Analysis

The three runs over 10,000 WPS on this page all used more than one instance of Kepware to

distribute network communication and avoid bottlenecks. While Kepware Server can generally

handle 10,000 WPS in ideal network conditions, it is advisable to design your implementation with

enough headroom for spikes or less-than ideal network bandwidth or latency.

While the 11,250 WPS run was successful, memory utilization was above 70% under steady state

load. This configuration could be sensitive to spikes in edge or user activity.

The 21,480 WPS run was not successful. ThingWorx CPU utilization was above 80%, leaving too

little headroom for spikes in edge or user activity. Data loss was also reported in the Kepware

Server instances as ThingWorx struggled to keep up.

Thread dumps confirmed the high CPU was caused by the volume of business logic at these

data rates. Options to overcome this could include one or more of the following:

• Vertical scale (or "sizing up") by adding CPU and Memory to the ThingWorx Foundation VM. Faster

physical CPUs could also be considered if available.

Note: This same test is successful when executed with a 32-core, 64 GiB ThingWorx Foundation VM.

• Horizontal scale (or "sizing out") by deploying a ThingWorx cluster with multiple nodes operating in

parallel to distribute load (and also provide high availability options at a software level).

• If adjusting the hardware footprint is not possible, reducing the frequency or complexity of the

business logic within your ThingWorx application could also be considered (For example, trigger

more complex, multi-property rules on a timer, instead of automatically with every data change).

11

Matrix 3 – 1 Second Slow Properties + 200 Millisecond Fast Properties

S: 1s
F: 200ms

Frequency (R)

Number of Things (Y)

100 250 500

F
re

q
u

e
n

c
y

 (
R

)

P
ro

p
e

rt
ie

s
p

e
r

Th
in

g
 (

Z
)

2
5

 +
 5

WPS: 4,960

(expected 5,000)

CPU Min/Avg/Max:

20% / 22% / 28%

Memory Min/Avg/Max:

38% / 38% / 38%

WPS: 11,836

(expected 12,500)

CPU Min/Avg/Max:

42% / 43% / 51%

Memory Min/Avg/Max:

15% / 49% / 50%

(Note: 2 Kepware Servers)

Target WPS: 25,000

Not executed

(Requires 3 Kepware Servers +

larger Foundation instance)

5
0

 +
 1

0

WPS: 9,920

(expected 10,000)

CPU Min/Avg/Max:

44% / 45% / 49%

Memory Min/Avg/Max:

47% / 47% / 47%

Target WPS: 25,000

Not executed

(Requires 3 Kepware Servers +

larger Foundation instance)

Target WPS: 50,000

Not executed

(Requires 5-6 Kepware Servers +

larger Foundation instance)

7
5

 +
 1

5

WPS: 14,282

(expected 15,000)

CPU Min/Avg/Max:

65% / 66% / 68%

Memory Min/Avg/Max:

57% / 58% / 58%

(Note: 2 Kepware Servers)

Target WPS: 37,000

Not executed

(Requires 4 Kepware Servers +

larger Foundation instance)

Target WPS: 75,000

Not executed

(Requires 8 Kepware Servers +

larger Foundation instance)

Matrix 3 Analysis

While the observed writes-per-second in these tests was slightly below the expected value,

the Kepware Servers did not report data loss. Based on this, the tests are considered

successful as the slightly reduced rate is being caused by the simulation setup itself, not

Kepware Server or ThingWorx.

The 25,000+ WPS tests at this data rate were not executed as they would fail for the same

reasons as the 22,500 WPS test from the prior page without allocating additional hardware

resources.

12

Analysis and Conclusions

The deployment architecture selected for these simulations performed best on Edge

configurations between 9,000 and 11,250 writes per second.

As Edge data ingestion rates approached 12,000 WPS, ThingWorx Foundation CPU and

Memory consumption became the primary limiting factor. These limits were encountered

due to the amount and complexity of business logic being used as part of this simulation.

Increasing the CPU and Memory allocated to the ThingWorx Foundation virtual machine,

and/or reducing the complexity or frequency of business logic execution, would enable this

deployment to scale to higher data ingestion rates.

In a Dell/VMWare architecture, the close proximity of Kepware Server and ThingWorx

Foundation provides ideal conditions for network throughput between these components.

Combined with the ability to easily monitor and resize virtual machines as your business

needs evolve, these hardware configurations can be very effective in on-premises or hybrid

deployment scenarios.

