

Developing Great IoT Solutions
A Best Practice Guide for Designing Scalable and Maintainable Applications

Document Version 2.0

Copyright © 2021 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies
(collectively “PTC”) are subject to the copyright laws of the United States and other countries and are
provided under a license agreement that restricts copying, disclosure, and use of such
documentation. PTC hereby grants to the licensed software user the right to make copies in printed
form of this documentation if provided on software media, but only for internal/personal use and in
accordance with the license agreement under which the applicable software is licensed. Any copy
made shall include the PTC copyright notice and any other proprietary notice provided by PTC.
Training materials may not be copied without the express written consent of PTC. This
documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written
consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without
notice, and should not be construed as a warranty or commitment by PTC. PTC assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains
valuable trade secrets and proprietary information, and is protected by the copyright laws of the
United States and other countries. It may not be copied or distributed in any form or medium,
disclosed to third parties, or used in any manner not provided for in the software licenses agreement
except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES
AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders
accordingly. We do not tolerate the piracy of PTC software products, and we pursue (both civilly and
criminally) those who do so using all legal means available, including public and private surveillance
resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain
and transmit data on users of illegal copies of our software. This data collection is not performed on
users of legally licensed software from PTC and its authorized distributors. If you are using an illegal
copy of our software and do not consent to the collection and transmission of such data (including to
the United States), cease using the illegal version, and contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

United States Governments Rights

PTC software products and software documentation are “commercial items” as that term is defined
at 48 C.F.R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software)
(MAY 2014) for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS)
at 227.7202-1 (a) (Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial
computer software documentation) (FEB 2014) for the Department of Defense, PTC software
products and software documentation are provided to the U.S. Government under the PTC
commercial license agreement. Use, duplication or disclosure by the U.S. Government is subject
solely to the terms and conditions set forth in the applicable PTC software license agreement.

PTC Inc., 121 Seaport Boulevard, Boston, MA 02210 USA

Developing Great IoT Solutions

 1

Document Revision History ...2

Introduction .. 3

Overview of Design Areas .. 4

Example 1: Creating and Displaying Thousands of Things .. 11

Tutorial Section 1: Programmatically Create Many Things.. 12

Tutorial Section 2: Query Things Using Collection Widget ... 14

Tutorial Section 3: Query Things Using a Grid .. 18

Tutorial Section 4: Modify a Thing Template ... 19

Tutorial Section 5: Info Table Properties and Grids.. 23

Example Completion - Summary:.. 27

Example 2: Isolating Data Ingestion from User Influence ... 28

Tutorial Section 1: Create Data Shapes and Data Tables .. 29

Tutorial Section 2: Create Timer Subscriptions ... 31

Tutorial Section 3: Randomize Data Updates .. 33

Tutorial Section 4: Add Pop-Up Errors to Mashup ... 36

Example Completion – Summary: .. 38

Example 3: Smart Logging and Alerting .. 39

Tutorial Section 1: Add Smarter Logging ... 39

Tutorial Section 2: A Basic Rules Engine (Create Alarms) .. 41

Tutorial Section 3: Configure the Mailer, Add the Alarms, and Test ... 49

Example Completion – Summary: ... 53

Appendix I: Definition of Terms ... 53

Appendix II: Quick Tip Chart and References .. 56

Appendix III: Coffee Machine Demo App .. 60

Developing Great IoT Solutions

 2

Document Revision History

Revision Date Version Description of Change
August 1, 2019 1.0 First version
April 13, 2021 2.0 Reskinned document, updated to reflect ThingWorx

version 9.1 with a more developed sample app provided.

Developing Great IoT Solutions

 3

Introduction

ThingWorx is an incredibly powerful and versatile tool for developing IoT applications. It handles the
toughest of all, the back-end network building, like it’s no big deal, making even the most
complicated plans for interconnected devices seem simple. It allows for systematic creation of things
on the Platform, all which can connect easily through provided Edge software and be maintained and
monitored in real time. Designed around customization, the Platform can handle nearly any use case
with ease.

That said, development in ThingWorx, as with any Platform, can be entirely more challenging and
more delicate an endeavor than at first it seems. Writing any old application is fairly straight-forward;
throw together some Javascript services, create your remote devices, drag-and-drop some widgets
onto a mashup[1] to display the details to end users, and you've got a proof of concept (PoC). In
theory, it’s very simple! However, there are some things which must be considered early on in order
to make that transition from PoC to Go Live as seamless and straight-forward as it needs to be.

As with many forms of application development, there are specific approaches to application design
which lend well to developing IoT applications[2]. Considerations need to be made for the fact that
hundreds of thousands of things will often need to be connected in the end (scalability[3]), and that
even despite this, small tweaks to functionality should be possible when software improvements
become available (maintainability[4]). An enterprise ready application is one which is both scalable
and maintainable, and tested to ensure quality streaming from the Edge to the end user. This
requires a little IoT expertise on the part of the developers, and a lot of quality documentation on IoT
best practice.

This document was designed to provide that level of experience in the IoT world. The first section
contains overviews on each of the technical categories required in the design of a maintainable and
scalable application. It provides a high-level overview designed for the business folks and decision
makers to ensure that they know where time is best spent when prioritizing the application
requirements.

The second section provides a set of detailed examples. These step developers through the process
of writing a maintainable application, helping them to learn the skills required to build their own
applications from scratch later on. This section will get their heads in the right place when it comes to
thinking like an IoT architect. The audience is expected to be beginner level with ThingWorx, but to
have some experience developing web applications in the past. A familiarity with Javascript really
helps. These examples ensure that ThingWorx developers know exactly what they can do, and how
to best go about doing it.

The third section provides a reference guide, with links to best practice knowledgebase (KCS[5])
articles and helpful tips about the "do's" and "don'ts" of ThingWorx application development. Any
developer who completes the examples and makes use of this reference guide should be well on
their way to designing a maintainable and scalable IoT application. Furthermore, with this download
find an entity file that contains an entire sample application. Appendix III has documentation on this
sample application, which can be used as a guide for developing the guts of a custom application.

Developing Great IoT Solutions

 4

Overview of Design Areas

The fact that an application falls under the IoT umbrella most certainly does impact how components
of the application need to be designed. This is because in a traditional application, users or
customers access the website directly, and in ways which tend to be far less resource intensive,
requesting less data at a time and updating existing data more slowly and at a non-constant rate.

Within an IoT application, this is simply not the case. Edge devices[6] are often pushing property
updates to the Foundation server all at once, many hundreds (or even thousands) of things at a time.
Likewise, the amount of data that is collected is massive, requiring careful consideration when it
comes to the retrieval of this data for end user consumption. The more nodes[7] you have in a
network (the larger the number of connected devices hooked up to the Foundation server), the
harder it will be for the controller[8] of that network (the ThingWorx Foundation Server) to manage
the exchange of data between these many nodes. For this reason, careful consideration must be
given in a few key areas in order to ensure the scalability[3] and maintainability[4] of an IoT
application. Details on each key area are provided below.

Scripting

ThingWorx has many tools to help in the development process. Under the "Snippets" tab, developers
can find many services and Javascript functions[9] to help them accomplish their objectives. Some of
these are services provided by built-in resources or subsystems, like the "Copy" method, a common
service found on the FileTransferSubsystem, used to transfer files between repositories[10] or from
the Edge to the Foundation server (and vice versa). Some of these are Javascript functions to help
with development, and sometimes the snippets are just bits of code which help to provide the syntax
required to utilize ThingWorx-specific functionality (for instance, how to create or increment through
info tables).

It is always best to try to use a snippet instead of developing an algorithm from scratch (for example
for data aggregation or interpolation). This is because the snippets have been developed by
ThingWorx developers and are optimized for use in ThingWorx. Likewise, they will almost always be
supported in newer versions. Occasionally there may still be major functionality changes, as some
things become deprecated over time, but typically an alternative built-in function is provided in these
cases, allowing for very easy maintenance of services over time when the OOTB[11] (out of the box)
functions are used.

Under the "Entities" and "Me" tabs, developers can find all the services for specific things in
ThingWorx. This also allows them to utilize many services which do not appear in the service listings
on the things themselves, as well as eliminating the need to flip back and forth between things.
Some services can only be called by other services or loaded into mashups, but they can't be run on
their own. These same services would also appear in the REST API[12], under the ServiceDefinitions
view.

There are a wide variety of provided services on the Platform, and while some appear to have the
same function, sometimes the way in which they perform those functions can make a difference in
the end performance of an application. For instance, queries tend to be more performant than
searches when returning entities. If at any time you are concerned about which is the best way to
design a certain service, never hesitate to seek help on the PTC Community or from the ThingWorx

Technical Support team. It is always better to ask a question in advance than to run into performance
issues way down the line. PTC Technical Support is happy to provide proactive help and participate
actively in the planning process.

https://community.ptc.com/t5/IoT/ct-p/IoTAR
https://www.ptc.com/en/support/article?n=CS266895
https://www.ptc.com/en/support/article?n=CS266895

Developing Great IoT Solutions

 5

 When determining the best way to write a service, it is important to explore all of the relevant
snippets, and to consult the ThingWorx Best Practices Hub for more details.

When writing queries which obtain information for display on mashups, it is important to implement
just the query itself first. Then, provide some search parameters and see how the performance looks.
If the service takes a long time to return (say greater than 10 seconds), then perhaps consider an
alternative approach. Also keep in mind that for some use cases, long queries like this will be
unavoidable at times; in these cases, be sure to isolate the longer queries onto mashups of their own,
so other things can be monitored in real time, and use good user communication (loading bars and
animations) to reassure users that nothing has gone wrong on a webpage just because the queries
take quite a long time to complete.

There are times where very long queries with complex processing logic are needed, particularly
those which pull data from external sources, interpret it, and store it in Foundation data structures for
use on mashups and throughout the application. For long queries which are expected to effect
system performance, or if there are many, many smaller queries occurring at once and server
slowness or unresponsiveness results, then consider making use of the external Query
Microservice[25], functionality introduced in version 8.4.0 (the Help Center has overview information
and installation and configuration details).

When building queries, consider using the "source" field as a way to query information more quickly,
without having to apply a query after the full (and much larger) data set returns. For example, if data
is segmented by fiscal quarters and searching for data by quarters is a major part of the use case,
then consider assigning the quarter to the source field value or querying by data tag. Also, be sure to
provide timestamps to all queries, not within the query structure itself, but directly into the
parameters of the service (when available). This will greatly limit the amount of data returned from
the database, to which the query is then applied.

Likewise, consider how much logic the query service must perform before returning. If it is something
simple like modifying the syntax of one field (say from all caps to something prettier), then that is
probably fine to do, even on mashup load. However, copying information from one info table[13] to
another should almost never be done in a service meant for use on a mashup. Info tables are very
memory intensive and utilizing them too often can cause system performance issues once real users
get onto the mashups. As much as possible, avoid querying a data source in the same service where
it is updated to ensure there are no deadlocks[14] or race conditions[15] affecting server stability.

Looping

Loops in an IoT application should be used sparsely and wisely. Anytime a long list of data needs to
be analyzed line by line, the cost of that type of operation should be considered. Scrolling through an
info table of even a couple hundred lines can affect performance and stability drastically, especially
on mashup load. Poor use of loops can even affect the stability of the whole server, if the service is
called too often or by many things at once. Loops should be used carefully in services and avoided
wherever possible. However, they are often necessary, so it is important to bear in mind a few small
tips.

One important thing to keep in mind is, pulling large chunks of data from the main data source
repeatedly for use in different operations can add significant cost[16] to the overall load time of an
application. Cost in this case refers to the length of time a service takes to complete, the runtime.
Writing many services which pull the same data out of the database to process that data in different
ways is very expensive. It is always better to loop through the data one time, doing whatever
operations are necessary, pulling out data into smaller, more manageable data structures for further
processing if needed, something often referred to as “caching” or “batching” data requests.

https://www.ptc.com/en/support/article?n=CS266895
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FComposer%2FDataStorage%2FValueStreams%2Fquery_microservices.html

Developing Great IoT Solutions

 6

It is also important to avoid nested loops wherever possible. The cost of such operations is even
greater and must be taken into account. This is sometimes unavoidable, but it is worth considering
the design of the underlying data structure very carefully to try to avoid such requirements. For
instance, avoid putting info tables as fields in streams[17] or data tables[18]. If the information in an info
table needs to be stored for historical reference, consider giving it its own data table or stream
instead. Alternatively, pull the relevant info out of the info table and store it in an external data
structure.

As with all forms of scripting, testing small sections of code for performance is critically important.
Additionally, load testing[19], especially on services with many loops, is strongly encouraged before
any changes are considered finalized and ready for Production[20]. This means that many, many data
points should be created for testing purposes, and it is important that the data resembles that which
would be found in Production. This assures the scalability of the application, and therefore the
stability of the server before anything has a chance to cause trouble for end users.

Data Reference

This is the trickiest, and yet most important component in building a scalable and maintainable IoT
application. Choosing where to store data and how to reference it throughout the application is
critical. Look to the end of this rather long and technical subsection to see a high-level overview
comparing each structure. For a more detailed review of data structures and references, read on.

Memory in an IoT environment is very precious, and the cost of doing certain operations needs to be
considered carefully when architecting the solution. There are several ways to store data in
ThingWorx, in info tables, data tables, streams, value streams, or as properties on the things
themselves.

Info tables are quick and easy to access and adjust, but they are very memory intensive. They sit in
JVM memory[21] and eat up the resources needed to ensure the application runs smoothly. Info tables
should almost never be used as session variables[22], especially if they are expected to have more
than a hundred rows. If there are many users accessing mashups powered by info table session
variables at a time, then not only will the mashups perform poorly, but the entire Foundation server
may be at risk for instability and unexpected downtime. Likewise, info tables should not be written as
a single field to a stream or value stream (or marked as "Logged"), as this too will take up a lot of
memory and affect server stability.

This same concept will apply to info tables as properties on remote things. Info tables may be easy to
update and access, but if there are thousands of remote things, each with several info tables of many
hundreds of lines or more apiece, then the amount of memory required to sustain this environment
will be very high. This design would not be very efficient and special consideration would have to be
given to the amount of memory available to Foundation server. Instead, consider storing the data in
one central location, like a stream, value stream, or data table. This has its own nuances, however,
which will be discussed below.

Info tables are not really meant to keep track of historical data, instead being used for temporary
information with limited numbers of rows. For example, it isn't a good idea to use an info table
property to keep track of events happening on the edge devices. Who knows how many rows these
will eventually have? It is almost certainly high enough that storing the data in a centralized location
(like a stream) would be better. However, it would be perfectly fine to use an info table as a property
to keep track of which types of devices exist on the platform. In this case, the number of options is
limited, and the same info table can be referenced by many different resources. The info table with
the types of devices can then be bound to a list widget on an asset creation screen and referenced in
the scripts which create the assets.

Developing Great IoT Solutions

 7

For historical data specifically, consider streams and value streams. These are both very similar, the
main difference being that one is updated automatically when properties are marked as “Logged”
(value streams), and the other requiring manual updates or updates via subscription (streams). For
both of these, data should go in and rarely be modified. These reflect time series data primarily,
events, button clicks, property history information, etc.

However, their purposes differ in the grand scheme of the application design. Value streams are for
short-term storage of data, i.e. every property value update which happens for a thing over a short
period of time. Mechanisms on the Foundation server would then aggregate this data, converting it to
fewer data points and writing it to other streams. Streams are primarily designed for more long-term
storage of data, as places to keep track of say, the last 3 years’ worth of daily revenue information.
Using these data structures in this way isn’t necessary, but it is highly encouraged in order to
promote healthy maintenance of server data.

Having a purge mechanism becomes easy if this best practice is upheld. Then, all value stream data
can be purged safely after a number of days, and stream data can be stored for many years. For
instance, having 180 data points per hour for 2,000 things may be too much to store for more than a
few days, as a week’s worth of data gathered at this rate equates to roughly 60.5 million data points
in a single table (which can affect lookup times, cause the database to run out of transactions, and
backup the stream processors with requests). However, having 365 data points a year, even for tens
of thousands of things, is still not too bad.

This is why aggregation is so helpful. If you find ways of viewing the data such that a single entry with
several different values per day is enough (e.g. daily revenue, product energy usage for the day, etc.),
then years’ worth of data can safely be kept with minimal efforts required to maintain it. Use the value
streams for data ingestion, and consider Influx DB (a persistence provider designed for time-series
data, added in 8.4) if lots and lots of data comes in from many things at once. This data can be
reviewed on mashups (though it is best to try and keep queries against ingested data sources to a
minimum), but only query for small chunks of time at once, say for a display of several minutes of
data on one thing at a time. However, for anything considered historical, consider smoothing the
data, averaging several points together, and aggregating it down to much fewer points overall.
Consider that viewing hours of data at a time only requires one data point per minute or per half
minute, while viewing minutes worth of data at a time may need a data point per second, and these
functionalities can pull from different sources on a mashup to ensure performance and stability.

Data tables are more robust, operating like info tables, but existing as their own entities on the
Foundation server. These work more like conventional database tables (though not quite as robust),
permitting for an additional field to be indexed (beyond what comes standard) for faster lookups.
Data tables are row-locked, meaning that if a single row is updated at a time, the rest of the table is
still accessible. This is another reason why queries perform faster on data tables, even while they are
being updated by some other part of the application. Contrarily, stream-based queries often must
wait for the updates to be completed, according to a queue-based system of updates and requests.
Therefore, data tables are more efficient for data sources which are often manually modified by
small numbers of end users or which are updated and reviewed independent of timestamps.

Data tables may require purge mechanisms as well, and so do info tables (depending on usage). Info
tables should be limited to less than a couple hundred rows typically, sometimes even fewer than
this, while data tables can have up to 100,000 rows. Streams can store many more rows than this
(often in the 10s of millions), but remember, the more data there is to sort through, the slower the
queries will return, and the worse the mashups will seem to perform to end users. This is why limiting
the data which can be queried using date-time selector widgets should be considered a requirement
of well-built applications.

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FComposer%2FDataStorage%2FPersistenceProviders%2Fusing_influxdb_as_the_persistence_provider.html

Developing Great IoT Solutions

 8

An example use of data tables is provided in the second section of this document, where the
concepts of aggregation and efficient querying are explored in depth. One final note about data
tables is to be very careful where they are updated in the application; deadlocks are every server
admin’s worst nightmare, as the Foundation server slowly begins to crash and more and more data
gets lost. This can occur when many things are trying to update the same data table rows at the
same time. Try to build mashups so that if one person is modifying a data table manually, or if an
automatic process is updating it, others cannot also update that table at the same time.

Finally, storing information on the remote things themselves is a good practice. Using the built-in
GetProperties service allows for real-time updates on an individual remote asset level, so that when
a device in a grid is selected, a display can show what its properties are, including meta properties
(like the OS of the Edge device software, ID numbers, or device ownership information) as well as any
remote properties which are frequently updated by the Edge (like device energy usage or device
location, for example).

See the below chart for an overview of the different data structures.

Logging

Logging is incredibly important to the maintenance of an application. When things go wrong, and
things inevitably will go wrong, it is crucially important that technical support engineers can quickly
and easily diagnose the problem and restore the system. The better the logging, the lesser the
downtime. For many customers, downtime means a literal loss in revenue, so it is quite important to
consider.

The Foundation server allows you to adjust what level of logging is written to the logs. Not enough
logging, and technicians will not be able to diagnose the problem quickly. Too much logging, and the
server memory will be bloated with log output, resulting in performance issues, CPU alerts, and
potentially even server crashes, as log files take up all available memory and leave nothing for the
rest of the application. So, the important take-away from this category is “everything in moderation”,
and here are some guidelines to help get that balance right.

In Standard SCP (Smart and Connected Product) Solutions

Infotables are for
populating menus
and facilitating
service logic. They
hold temporary
information, and
should never get
too large.

Costly & inefficient,
but easy to use (for
impermanent data)

Data tables are for
populating grids or
trees on mashups.
Data may often:

•Update based on
property changes on
remote devices and/or

•Be updated by small
numbers of end users

Database tables for
permanent data, any
which users update

Streams are for
populating charts or
querying data by
timestamp. They
store aggregated
time series data for
years at a time, and
should make use of
an automatic purge
once each day (during
“off hours”).

What you would look at
from a distance, long-
standing, historical data

Value streams are
for ingesting
data.They store raw
data straight from
the edge devices, or
detailed property
info, for days or
weeks at a time,
requiring an
automatic purge.

Data ingestion which
needs frequent purges,
avoid use on mashups

Properties on
remote things are
for instant
reference (either
on mashups or in
other services),
and for triggering
data change
events and alerts.

Reliable instant
updates, but a bit
memory intensive

Less → More Transient Storage of Data

Developing Great IoT Solutions

 9

Logging statements should be put at the start and end of just about every service, using a setting
called “Trace”. This level of logging is the highest, including messages which you don’t normally see
nor care to see. When all is well, and the server is functioning as expected, the log setting would
normally be “Info” or even “Warn” level. The full order is:

Anything farther to the right of the setting in this image will be included, so “Trace” and “Debug” both
are used to try to determine the root cause of issues. “Info” is used if something slightly out of the
ordinary may or may not happen, and a server admin would like to know either way. “Warn” is for
when something might be an issue, but it isn’t clear, and “Error” is obvious: something has gone
wrong.

In addition to the “Trace” statements at the start and end of services, “Debug” statements can be
added when contained service calls are tricky, but not expected to fail (e.g. when adding a new
remote thing), or to note that some part of a service is working correctly. These are the kinds of
statements which log every time, no matter what happens within the service, and so they print many
times to the logs, even while there are fewer places within the services themselves in which to place
them (compared with errors, for instance).

“Info” can be used to note in the logs when a critical service completes successfully (like ones which
update or aggregate data and prepare it for consumption via mashups), and should print similar
information to the debug statements, but far less often, for instance inside of a check which
determines if something was successful. “Warn” statements are commonly used throughout the
various try and catch blocks, to denote if say an individual row of a table is not updating, even while
most updates succeeded. “Error” will pop up in services all over the place, almost always within a
try/catch block (unless “Warn” is used, as in the previous example), but ideally will log the least
number of times (which means things are working as expected).

Logging statements should take a specific format to enable easier access to them. Have each
statement start with something like “me.name: NameOfService:”, which will allow technicians and
admins to search by service. For example, if a technician wants to check that the 3 pm data update
timer ran as expected, or how often some property change triggered some other update, etc. then
they can just type the service or device name into the log sort mechanism, and see all related events
from that service or device.

Also, be sure your developers always include the source or the original error message in the logging
statement so that errors don’t get “swallowed up” by your application. When that happens, it can
double or triple the amount of time needed to diagnose the root cause! This means adding
something like “Message: ” + err.toString() to the logging function parameter (assuming the exception
is called “err”).

Ensure that there are clear and concise logging statements throughout the whole application, all
assigned the appropriate logging level, and all will be well. A technician or admin should be able to
glance at the logs to know exactly what is going on in the system. Runaway errors should be tracked
down and fixed, and the logs should not appear flooded with too many messages. Find the right
balance, and application maintenance will be a breeze.

Trace Debug Info Warn Error

Developing Great IoT Solutions

 10

Error Handling

In any application, when an error happens, it is sent to the logs, sometimes re-transmitted back to the
host site, and then, dismissed of importance. In an IoT application, the option exists to handle this
error in a slightly smarter fashion, instead storing its instance in a stream or perhaps displaying the
specifics of the error on a special dashboard designed for internal use only. This allows for those less
knowledgeable about the inner workings of the app (business users) to look at and maintain the edge
devices on their own, without always needing to consult more technical people for help.

Writing errors to the logs does help more technical administrators, and it certainly helps the
Technical Support Engineers (TSEs) at PTC who are happy to assist with troubleshooting and
diagnosing issues. However, it does nothing to assist the end user, and it requires that administrators
have a certain level of technical knowledge to be able to identify issues. A better approach,
especially for applications which are then resold to less experienced application owners, is to build
screens within the application which certain admin level users can access to review which issues
their users are having.

This might include information like: device downtime for devices which have disconnected an
abnormal number of times, metrics of performance from devices which seem to be operating
outside of acceptable standards, or issues within the Foundation application itself, like errors from
attempts to add new things, perform invalid queries, or update data sources for populating certain
mashups. Then, administrators can change configurations within their own processes, open informed
support cases on their own, and train their employees to use the application better, all in accordance
with whatever trends they see on their “error handling dashboard”.

Browser Tools and Post-Development Analysis

Browser Tools[23] is an application built-in to most browsers which provides for more detailed
information about network requests[24], i.e. the service calls which populate your mashups. The
different options here can measure query performance, aid with debugging issues, and enable more
detailed analysis of application performance. A detailed technical guide is provided at the end of the
first example.

Post-Development Analysis is important to ensuring the application transitions well from PoC (Proof
of Concept) to Production. It includes all forms of testing: QA, load testing, beta, etc. QA testing is
standard enough practice to almost not even mention, but it is important to ensure that all things do
what they are supposed to do and update or refresh as expected. Likewise, beta testing ensures that
your end customers know how to use the application, and that no documentation or use case gaps
exist. Regression testing should be a part of every stage of development to ensure nothing is broken
over the many months it takes to assemble the application.

Most important of all is load testing, which must be done before any application can be considered
complete. Load testing means creating many, many data points, which are similar in every way to
what would exist in Production, and seeing how the application would perform. It is also possible to
simulate that many devices are connected, which is critical for verifying the scalability and enterprise
readiness of data ingestion and processing.

Developing Great IoT Solutions

 11

Example 1: Creating and Displaying Thousands of Things

• Teaches how to:
o Create and delete thousands of things
o Write queries in ThingWorx
o Use collections and grids, textboxes and buttons
o Create basic mashups and interfaces for displaying a lot of data

• Covers:
o Setting up a data model
o Scripting services to interact with the model
o Querying data contained within the model
o Troubleshooting performance issues on mashups

Context

This example completely breaks down the mechanism for thing creation and deletion, while also
exploring how to access information from these things most efficiently. This example implementation
is broken down into segments with notes and checkpoints in between each section to help the
reader know when to take breaks and what to look for in each section. References throughout will
link to Appendix I: Quick Tip Chart and Notes for additional details on the do’s and don’ts of IoT
development.

Note that any code snippets should NOT be copied directly from this document, as PDF rendering
adds special characters that need to be removed before the service can be saved. Instead, take the
time to type out each line, comments can be skipped, and use this as an exercise in learning the
ThingWorx JavaScript syntax. Note that some are on two lines for display purposes and must be
combined to one line in order to run correctly. There is built-in linting in ThingWorx to help identify
these lines.

The purpose of this example is to exhibit some safe ways to build UIs which display thousands of
things. The collection widget will be contrasted against the grid widget in terms of performance and
capability, while the efficacy of different forms of queries and filters will be considered. Near the end,
Browser Tools will be used to dig even deeper into query performance analysis.

Developing Great IoT Solutions

 12

Tutorial Section 1: Programmatically Create Many Things

1. Create a thing template called DemoTT

a. Use the GenericThing parent template

b. Add a tag as desired (here called DemoApp)

c. Give the template two properties:

i. NumberProp with type NUMBER

ii. StringProp with type STRING

2. Create a GenericThing called DemoAppUtility

3. On DemoAppUtility, add a service called CreateNThings

a. This should take an integer input called "N", which can be given a default value of
1000 for this demo, and a thing template input called “thingTemplateName” here

b. This should return an integer

c. In the code block, input the following:

var counter = 0;

for(var i = 0; i < N; i++) {

 var thingName = thingTemplateName + "_Device";

 try {

 // Each new thing needs a unique name, so either

 // pass it in from a UI, or generate it like this

 thingName = thingName + i;

 // Create the thing

 var params = {

 name: thingName,

 description: "Automatically created demo thing",

 thingTemplateName: thingTemplateName,

 tags: "Applications:DemoApp",

 projectName: "DemoProject"

 };

 Resources["EntityServices"].CreateThing(params);

 // Need this part because they do not get enabled

 // on their own when created programmatically

 Things[thingName].EnableThing();

 Things[thingName].RestartThing();

Developing Great IoT Solutions

 13

 // Update the thing with initial information

 // Any code can go here, e.g.setting initial property values on the new

things

 Things[thingName].NumberProp = Math.random()*100;

 Things[thingName].StringProp = "I've said Hello World " + i + " times.";

 counter++;

 } catch(err) {

 // Note that for formatting reasons, there is a newline and indentation added

 // here. This will need to be removed before running the service (just move

 // the second line to the same line as the first). There may be more modifications

 // like these required in all of the services if they are copy and pasted directly

 logger.error(me.name + ": Could not create thing named " + thingName

 + "; Message: " + err);

 // As per KCS 198580, you MUST DELETE things created from runtime memory

 // straight away if they are not created successfully. Otherwise, you will

 // have ghost entities on the Platform //

 Resources["EntityServices"].DeleteThing({name: thingName});

 }

}

var result = counter;

d. Run this service after completing it with N = 1000

4. On DemoAppUtility, add a service called DeleteNThings

a. This should take a number input called "N", which can be given a default value of
1000 for this demo

b. This should return an integer

c. In the code block, put the following:

 var counter = 0;

for(var i = (N-1); i >= 0; i--) {

 var thingName = thingTemplateName + "_Device";

 try {

 thingName = thingName + i;

 Resources["EntityServices"].DeleteThing({name: thingName});

 counter++;

 } catch(err) {

 logger.error(me.name + ": Could not delete thing named " + thingName

+ "; Message: " + err);

 }

}

 var result = counter;

d. You don’t need to run this now; we need this service for later. If you ran it as a test,
recreate the things using the CreateNThings service before going into the next
section

Developing Great IoT Solutions

 14

End Section 1: Review

In this section, we learned how to create and delete things programmatically. Note how the services
EnableThing and RestartThing are called after thing creation. This is done to avoid ghost entities, or
entities which exist in JVM memory, but not in the database. Likewise note that the DeleteThing
service call is in a try-catch block. This is extremely important because if the service deleting the
things does not complete successfully, then none of the changes made on the JVM are pushed to
the database. This results in the creation of reverse ghost entities, or those which exist in the
database, but not on the Foundation server. Both this and the above issue can be resolved by an
extension, in the case that issues do happen. See the appendix for further details.

Tutorial Section 2: Query Things Using Collection Widget

1. Create an INTEGER property (marked as persistent) on DemoAppUtility called MaxItems;
set it to 2000

2. Create a service called QueryDemoThings on the DemoAppUtility thing

a. There is one required input parameter for the thing template name, same as
before

b. In the code block, put:

var params = {

 // This pulls from a property so as to not be a hard-coded max in each service

 // This way when more things are eventually added, this number can be increased

 // Leaving this blank will result in only 500 entries being returned

 maxItems: me.MaxItems,

 query: undefined /* QUERY */

};

var result =

ThingTemplates[thingTemplateName].QueryImplementingThingsWithData(params);

c. Leave the query
undefined for now

d. This should return an
infotable, but create the
datashape manually:

i. Run the service
after it is
complete, but while it is open so the “Inputs” and “Output” boxes are
visible beneath the service editor

ii. Then click "+ Data Shape"

Developing Great IoT Solutions

 15

iii. Name and tag your new datashape (DemoThingDS)

iv. Click to edit QueryDemoThings and add the data shape to the return
infotable

3. Create a mashup called InnerDemoMashup

a. This is not the same thing as the Collection Widget

i. This is the mashup which will be tied to the widget

ii. It will appear once for each thing returned by the data source bound to
the widget

b. In the past, this mashup was made static in size, something which is deprecated
as of ThingWorx 9.1+, so the size will instead be specified within each container
and within the Collection Widget on the outer mashup (all coming up)

c. Add a Mashup Parameter

i. Click the arrow in the top right corner

ii. You may have to select the mashup in the workspace to see the right
arrow

iii. Then click "Configure Mashup
Parameters"

iv. Next, click "Add Parameter" (black
button)

v. Call the mashup parameter
“thingName”

vi. Give it the basetype THINGNAME

vii. Click "Done"

d. Configure the widgets

i. Put a label at the top of the mashup,
but offset it, the thing name will populate and
expand it to the right

ii. On the layout tab, add another container; use a
fixed height for each

iii. Put a text field in this new container and set the
width property to 200

iv. Add another layout with a gauge in it, also with a
width of 200

v. Ensure the total mashup height is 275

Developing Great IoT Solutions

 16

e. Add and Bind Data

i. In the data panel, click to import a new service

ii. Search for DemoTT, and be sure to check "Dynamic"

iii. Find the GetProperties service, and select it with the arrow icon; be sure
to check the box labeled "Execute on Load" before you click “Done”

f. Highlight the GetProperties service in the
data panel and check the box with the check
mark icon labeled like “Automatically update
values”

i. Note that to get real-time property
updates using the automatic update
feature of GetProperties, the thing
template name cannot be
parameterized on this mashup. Instead, duplicate this mashup once for
each thing template in the application (which usually correspond to
different regions, if there are multiple regions on one ThingWorx instance)

ii. This works best when there is a small number of end users; otherwise,
consider alternative solutions to reduce the total number of internal
websockets the Platform needs to render webpages)

g. Expand GetProperties and bind StringProp to the textbox (select “Text” in the
popup) and NumberProp to the gauge (select “Data” in the popup)

h. Click in the workspace to select the mashup itself, and then bind the thingName
mashup parameter (by highlighting over the arrow in the top-right corner) to the
label widget (select “Text”) and the EntityName parameter of GetProperties

i. Select the mashup in the workspace, and check that the full bindings should look
like this:

j. Save and
tag the
mashup

4. Create another
mashup called
DemoThingMashup

Developing Great IoT Solutions

 17

a. Drag and drop a Collection Widget onto the mashup

b. Assign the Mashup property of the collection widget to InnerDemoMashup
(found under Properties on the bottom left-hand side of the screen)

c. In the data panel, search for services on the DemoAppUtility thing

d. Select QueryDemoThings with the arrow icon

e. Check the box for " Execute on Load"

f. Click "Done"

g. Bind "All Data" to the Collection (select “Data”)

h. Set the MashupHeight to 275 and MashupWidth to 200, then set the UIDField
and SortField to “name”

i. If the UIDField box doesn’t populate, then the data shape was not added
correctly in step 2c, part iv

i. Search for the MashupPropertyBinding property under the Collection Widget,
and click “Add”, then putting the following JSON in as the value: {"name":
"thingName"}

i. Note that this has the property name from this mashup on the left side,
and the name of the mashup parameter is on the right side

ii. If this is backwards, then no data will be sent via the mashup parameter,
so no label will appear, and no property information will populate, on the
inner mashup

iii. For now, hard code the thingTemplateName input property on this
service to be “DemoTT”.

iv. If multiple thing templates are on the same server, add to this mashup
some way for users to select which thing template they would like to
review.

v. This may mean selecting a region on another mashup which then opens
this one (in the case where each thing template corresponds to a region,
like in the Coffee Machine Example App), or it may mean
selecting a type of device, etc.

j. Save and tag the mashup

k. View DemoThingMashup

i. If nothing appears, there may be a permissions issue
on the thing or thing template level, as they are not
being returned (check logs for errors)

ii. If the widgets appear but not data, see if step i. above was done correctly

Developing Great IoT Solutions

 18

End Section 2: Review

In this section, we learned to create mashups and use several basic widgets, including the collection,
text box, gauge, and label widgets. We necessarily explored passing mashup parameters from one
mashup to another. There are a few best practice tips which demonstrate why using mashup
parameters instead of session variables wherever possible is a good idea, see the appendix for
details.

Many people use row-sized mashups in the collection widget to enable better rendering of charts
and images inside of grids. Using static size containers on mashups is a good idea when creating
custom grids in this way and when using mashups as pop-ups. However when possible, it is better to
use the dynamic sizing for web pages so that they render well on every screen size (see the
appendix for more details).

Tutorial Section 3: Query Things Using a Grid

1. Click to edit DemoThingMashup again

a. Add some layout boxes, one on top with a fixed width of 100px (and static positioning
if desired), and one to the right of the Collection Widget with an Advanced Grid in it

b. Then, in the header container, add a text field and a button; more text fields and drop-
down lists will be added to this container as the query becomes more complex

c. Bind the QueryDemoThings "All Data" target to the grid, and select which columns to
display

d. Click Save and view the mashup

2. Now it’s time to add a query to the QueryDemoThings service

a. Edit the service and add a new input called thingName, of
type THINGNAME

b. Add some error handling and a parametrized query

c. Here is the code:

// Put this above the params JSON Object

if(thingName === undefined || thingName === null) {

 // Have to do this or the query will return nothing because thing names cannot

be

 // null or undefined in ThingWorx

Developing Great IoT Solutions

 19

 thingName = "";

}

var myQuery = {

 "filters": {

 "fieldName": "name",

 "type": "LIKE",

 "value": "*" + thingName + "*"

 }

};

d. Don’t forget to add myQuery to the params, where previously it said undefined:

var params = {

 // This pulls from the properties so as to not be hard-coded in each service

 // This way when more things are eventually added, this number can be increased

 // Leaving this blank will result in only 500 entries being returned

 maxItems: me.MaxItems,

 query: myQuery

};

var result =

ThingTemplates[thingTemplateName].QueryImplementingThingsWithData(params);

e. Click “Done” and save the thing

3. Edit the DemoThingMashup again

a. Bind the text target of the text field to the thingName input of QueryDemoThings (it
might not appear without refreshing the mashup)

b. Bind the button “Clicked” event to the QueryDemoThings service

4. Save the mashup and view it

5. See how much slower the DemoThingMashup loads when a query is passed in by typing
some of a thing name in the new text field and clicking the button; if nothing appears, check
the myQuery JSON Object, where you may have put "EQ" instead of "LIKE"

End Section 3: Review

In this section, we learned how to add queries to ThingWorx services. Likewise, we stepped through
adding widgets to capture filter information and return search results. Note that in the Advanced Grid
widget, this process of sorting and searching is done even more easily (see the appendix for details).
Also note that the cut, copy, and paste feature used at the start does not copy cross-mashups, and it
can only keep track of the last thing removed, so use it carefully. Duplicate mashups before
beginning to make edits to ensure that no working functionality is broken by changes.

Tutorial Section 4: Modify a Thing Template

1. Next, run DeleteNThings so we can modify the properties they have and the data shape
which displays on the grid (where N = 1000)

Developing Great IoT Solutions

 20

a. Since we need to assign the value of the
data on thing creation, we have to delete
everything first

b. Normally, adding a property does not
require all existing things to be deleted,
as the property value is updated
elsewhere (like from the Edge)

2. Modify DemoTT

a. Add two new properties:

i. LastServiceDate - DATETIME
type – persistent

ii. ID - STRING – persistent

3. Modify the QueryDemoThings data shape (DemoThingDS)

a. Add two new fields:

i. LastServiceDate – DATETIME

ii. ID – STRING

4. Modify the DemoAppUtility thing, QueryDemoThings service

a. Add input parameters for the start date (to), end date (from), and ID

b. Add more query filters so the final query looks like this (this is not the full service, just
the portion with the query):

if(thingName === undefined || thingName === null) {

 // Have to do this or the query will return

 // nothing because thing names cannot be null or undefined

 // If the thing cannot be found, we want it to return everything

 thingName = "";

}

if(ID === undefined || ID === null)

 ID = "";

if(to === undefined || to === null)

 to = Date.now();

if(from === undefined || from === null)

 from = "0000-01-01T00:00:00.000-00:00"; // The start of time

var myQuery = {

 "filters": {

 "type": "AND",

 "filters": [

 {

 "fieldName": "name",

 "type": "LIKE",

 "value": "*" + thingName + "*"

 },

Best Practice Note:
When templates are saved, all

implementing things are restarted at once.

The restart of all things should be avoided

in production, especially if they are remote

things receiving data. Saving a thing

template in production can cause the entire

platform to crash. It is better to import new

changes into production outside of business

hours, using the built-in import

functionality, and not a process of manual

changes.

Developing Great IoT Solutions

 21

 {

 "fieldName": "ID",

 "type": "LIKE",

 "value": "*" + ID + "*"

 },

 {

 "fieldName": "LastServiceDate",

 "type": "BETWEEN",

 "from": from,

 "to": to

 }

]

 }

};

c. You have to give defaults to queries, or they will fail to return correct values (do
not pass in undefined), and the star symbols are required with the “LIKE” or
“CONTAINS” searches

5. Modify the CreateNThings service on the DemoAppUtility thing

a. Add lines to update the datetime with a random value and the ID with a string

b. Code to add in:

// Add this after the other properties are set but before the counter increments

// Convert random number to days by multiplying by 100 to get, then 24 hours per

// day, 60 minutes per hour, 60 seconds per minute, and 1000 milliseconds per second

Things[thingName].LastServiceDate = Date.now() - (Math.random()*100*24*60*60*1000);

 Things[thingName].ID = "AutoDT" + i;

c. Full code:

var counter = 1;

var thingTemplateName = "DemoTT";

for(var i = 0; i < N; i++) {

 var thingName = "DemoThing";

 try {

 // Each new thing needs a unique name, so either pass it in from a UI,

 // or generate it like this

 thingName = thingName + i;

 // Create the thing //

 var params = {

 name: thingName,

 description: "Automatically created demo thing",

 thingTemplateName: thingTemplateName,

 tags: "Applications:ModelReferenceBestPractice"

 };

 Resources["EntityServices"].CreateThing(params);

 // Need this part because they do not get enabled on their own when created

 // programmatically //

 Things[thingName].EnableThing();

 Things[thingName].RestartThing();

 // Update the thing with initial information //

Developing Great IoT Solutions

 22

 // Any code can go here, for example, setting initial property values

 // on the new things //

 Things[thingName].NumberProp = Math.random()*100;

 Things[thingName].StringProp = "I've said Hello World " + i + " times.";

 // Add this after other properties are set but before the counter increments

 // Convert the random number to days by multiplying by 100 to get a number,

 // 24 hours per day, 60 minutes per hour, 60 seconds per minute, and 1000

 // milliseconds per second

 Things[thingName].LastServiceDate = Date.now()-

 (Math.random()*100*24*60*60*1000);

 Things[thingName].ID = "AutoDT" + i;

 counter++;

 } catch(err) {

 logger.error(me.name + ": CreateNThings: Could not create thing named " +

 thingName + "; Message: " + err);

 // As per KCS 198580, you MUST DELETE things created from runtime memory

 // straight away if they are not created successfully //

 // Otherwise, you will have ghost entities on the Platform //

 Resources["EntityServices"].DeleteThing({name: thingName});

 }

}

var result = counter;

6. Save DemoAppUtility

7. Create the things again by calling CreateNThings (N = 1000)

8. Modify the DemoThingMashup

a. Add another text field

b. Add 2 datetime picker widgets

c. Modify the properties of the datetime picker widgets and deselect the check box for
initializeWithCurrentDateTime (you may want to change the formats of the dates as
well)

d. Add 3 labels, two which can be configured within the text fields, and 1 which needs to
be dragged as a new widget onto the mashup (the “to” label between the datetime
pickers)

e. Lay them out as desired, modifying the text properties and labels, etc.

f. Bind the ID textbox “text” target to the input property for QueryDemoThings

Developing Great IoT Solutions

 23

g. Bind the datetime widgets' DateTime target to the to and from fields

h. Save the mashup

9. View DemoThingMashup

a. Play around with the filters and datetime boxes to see how they work

b. Things should run slower, but still not be too bad

End Section 4: Review

In this section, we learn how to add more complex queries to data sources, and how to modify thing
templates after they have already been implemented. Note the importance of never saving a thing
template in a production environment. It has the potential to cause outages and data loss on the
Foundation server (see appendix). We also learned how to generate dummy dates using random
numbers in ThingWorx, which is simple since the random functionality is built right into JavaScript.

Tutorial Section 5: Info Table Properties and Grids

1. Next, delete all things again using DeleteNThings on
the DemoAppUtility thing (N = 1000)

2. Create another data shape called InfotablePropDS
with two fields, "Field1" and "Field2", both NUMBER
type properties (this is a new DS separate from
existing ones)

3. Modify DemoTT

a. This time do NOT modify the DemoThingDS

b. Add an info table property with the data shape
InfotablePropDS called InfotableProp

c. Save the DemoTT thing template

4. Modify DemoAppUtility, CreateNThings service

Best Practice Note:
Not including info tables in data

shapes will ensure mashups never

receive them. Rendering info tables

in grids can be very slow,

depending on the number of lines.

For similar reasons, never mark an

info table as logged. Info tables are

very memory intensive and should

be considered “expensive”.

Developing Great IoT Solutions

 24

a. Add an input parameter with type INTEGER: numRowsITProp
(give it a default value of 20)

b. Add code to create and populate the info table with random
data, and place it under the other property updates:

// Create an infotable with the InfotablePropDS //

var it =

Resources["InfoTableFunctions"].CreateInfoTableFromDataShape({

 infoTableName : "InfoTable",

 dataShapeName : "InfotablePropDS"

});

// Populate fields with random numbers and add several rows //

for(var j = 0; j < numRowsITProp; j++) {

 var newEntry = new Object();

 newEntry.Field2 = Math.random()*100;

 newEntry.Field1 = Math.random()*100;

 it.AddRow(newEntry);

}

Things[thingName].InfotableProp = it;

c. The full service code should now look like this:

var counter = 1;

var thingTemplateName = "DemoTT";

for(var i = 0; i < N; i++) {

 var thingName = "DemoThing";

 try {

 // Each new thing needs a unique

 // name, so either pass it in from a

 // UI, or generate it like this

 thingName = thingName + i;

 // Create the thing //

 var params = {

 name: thingName,

 description: "Automatically created demo thing",

 thingTemplateName: thingTemplateName,

 tags: "Applications:ModelReferenceBestPractice"

 };

 Resources["EntityServices"].CreateThing(params);

 // Need this part because they do not get enabled on their own when created

 // programmatically //

 Things[thingName].EnableThing();

 Things[thingName].RestartThing();

 // Update the thing with initial information //

 Things[thingName].NumberProp = Math.random()*100;

 Things[thingName].StringProp = "I've said Hello World " + i + " times.";

 // Convert random number to days by multiplying by 100 to get a number, then

 // 24 hours per day, 60 minutes per hour, 60 seconds per minute, and 1000

 // milliseconds per second

 Things[thingName].LastServiceDate = Date.now()-(Math.random()

 *100*24*60*60*1000);

 Things[thingName].ID = "AutoDT" + i;

 // Create an infotable with the InfotablePropDS //

Developing Great IoT Solutions

 25

 var it = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape({

 infoTableName : "InfoTable",

 dataShapeName : "InfotablePropDS"

 });

 // Populate the fields with random numbers and add several rows //

 for(var j = 0; j < numRowsITProp; j++) {

 var newEntry = new Object();

 newEntry.Field2 = Math.random()*100;

 newEntry.Field1 = Math.random()*100;

 it.AddRow(newEntry);

 }

 Things[thingName].InfotableProp = it;

 counter++;

 } catch(err) {

 logger.error(me.name + ": CreateNThings: Could not create thing named " +

 thingName + "; Message: " + err);

 // As per KCS 198580, you MUST DELETE things created from runtime memory

 // straight away if they are not created successfully //

 // Otherwise, you will have ghost entities on the Platform //

 Resources["EntityServices"].DeleteThing({name: thingName});

 }

}

var result = counter;

5. Run CreateNThings to create things with info table properties

6. Open the DemoThingMashup mashup and see how long it takes to query now

a. Open the “Platform Subsystem” and see how the memory in use changes between
scenarios

i. Go to “Monitoring > Subsystems” in the navigation bar

ii. When the things are deleted, the memory use climbs as the GC cleans out
the JVM, and then drops accordingly

iii. When things are created, the amount of memory used climbs depending on
the number of things and the number (and size) of info tables per thing, since
info tables eat up a lot of the JVM’s memory and are very costly (See the
appendix for details)

b. Call DeleteNThings for N things

c. Set numRowsITProp to 100 and run CreateNThings to see how this affects
performance

d. Modify the InnerDemoMashup to display the InfotableProp in a grid, and note that
performance is even slower (this modification is not included in the mashup provided
here, as this is not a good design choice and is only for demonstrating how runtime is
effected)

e. Call DeleteNThings again, and then call CreateNThings, but this time add 2000
things, still with info table properties as configured in step c (note that more than this
will not be queried unless DemoAppUtility.MaxItems is increased)

Developing Great IoT Solutions

 26

f. Refresh the mashup and see how the mashup loading affects the memory (in bytes)
on the Platform Subsystem (memory usage should go up a bit)

g. Now, open the same mashup in two different browsers, refresh them at the same
time, and then observe the effect on memory (memory usage should increase
substantially)

7. Note that this trend will continue

a. The more properties you have, particularly memory intensive ones like info tables
(especially those with more than a hundred rows), the worse this query will perform

b. This is especially so once data ingestion is added into the equation.

i. Remote properties being updated by the Edge every 30 seconds or so
(sometimes less) will result in more limited access to these properties

ii. More things, more properties, more bandwidth, worse performance

iii. Browser Tools (hit F12 in most browsers) helps identify mashup performance
issues

iv. Especially useful is the
Network tab, which
shows which services
were called, and when
they completed, as
well as their status
codes, payload
information, request
headers, and other
details about each
request and response

v. If the service has not
returned after several seconds or more, then it may need to be optimized.
Also consider using data tables or streams in place of info tables, storing data
somewhere other than on the things themselves if it needs to be modified by
users or queried frequently. If the query returns, and yet the data takes a
while to render on the mashup, then this is likely not performance related, but
widget rendering related (so consider opening a TS case).

End Section 5: Review

In this section, we learned how to generate info tables with random information, and we observed
the effect of info table properties on overall system performance. Note that the need for limiting the
size of info tables is directly related to the amount of memory available to the JVM. Purge
mechanisms need to be in place to keep data low, whether it is purged when new data comes in, or
periodically in a timer subscription. Best practice is to limit info table properties to under 100 rows,
using them to store static information about the server (like the names of different types of assets) or
information only needed for short periods of time, during service execution.

https://www.ptc.com/en/support/

Developing Great IoT Solutions

 27

We also learned how to review status information about memory usage on the Platform in the
subsystem monitor, as well as how to use Browser Tools to determine if services are completing in a
timely fashion. The first step to troubleshooting any sort of performance issue should be to open
Browser Tools and look for service completion times. To be certain, logging statements can also be
added to the start and end of every service so that the exact time stamps appear in the logs.

Example Completion - Summary:

This concludes the first example in this document. You should now know how to:

• Create and delete thousands of things easily and programmatically without creating
ghost entities in the process

• Generate and assign dummy data to thing properties
• Create mashups to display this data, using both collections and grids
• Create and utilize mashup parameters (which are more performant than session

variables, as discussed in the appendix)
• Create queries which take in various types of search criteria
• Efficiently query against many things at once on an overview of things mashup
• Create the UI necessary for enabling filtering in a grid

Developing Great IoT Solutions

 28

Example 2: Isolating Data Ingestion from User Influence

• Teaches how to:
o Safely access a data table
o Fuel mashups with pre-processed data sources to improve performance
o Simulate data updates using random numbers
o Write queries for data tables
o Index fields for data tables

• Covers:
o Developing a more complex and stable data model
o Separating the data ingestion process from the data rendering on mashups
o Using timers to fuel updates on the Foundation server
o Using expressions to build more complicated mashups

Context

All approaches to querying data on mashups boil down to the same ideology: don’t pull or modify
the data coming in from the Edge as it comes in, i.e. separate the use of the data from the ingestion
of the data, wherever possible. Sometimes, if there is enough data, querying on mashups can result
in poor performance. There are many solutions to this problem, but the one discussed here involves
populating a data table (which can have its own downsides, so consider the overview in the
introduction carefully).

Say that the end requirement was to have a table showing overview information about each asset.
The data doesn’t need to be 100% real-time, refreshing to within a minute or so, for about 2000
things. End users (mechanics and admins) would then need to be able to query the connected
assets, and sort them by which are theirs on the mashup. Here, we need to design a mechanism
which periodically updates the data table with fresh information from new and existing entities. We
only want to give the mashup exactly what it needs to load the grid in an effort to limit any
unnecessary use of memory. The separation of the ingestion from the data usage here will ensure
that nothing can damage the stability of the data coming in, which should be considered a very high
priority for most customers, because data loss often corresponds with revenue loss.

Note that this approach is not real-time. Typically, there would be separate, much simpler alarm
protocols tied to remote property change events for real-time notifications (covered in Example 3). If
a real-time display of many, many things at once is needed, then one option is to consider using an
optimized ingestion application, like Kepware or InfluxDB. Other options include limiting how much data
a mashup can retrieve at a time while still using the ingested data source, or only allowing users to
view real-time data for one thing at a time. Also consider limiting the amount of information coming in
from the Edge, redesigning based around the question “how much data do we really need?”

In line with this same question, consider using separate streams to aggregate the data (i.e. to reduce
it by some common algorithm, often called “smoothing”). These can be updated periodically such
that more historical data can be kept for longer, and with fewer existing data points to slow down
query and mashup performance. This is a common mechanism found throughout database
architecture.

Finally, rely upon listing thing names (using the much faster GetImplementingThings without data
call) instead of real-time data on overview mashups. Selecting from this list can then load another
mashup, where GetProperties is used to show real-time updates for one thing at a time . Rarely does
a human user need to know real-time info for all of the assets at once in an IoT application.

https://www.kepware.com/en-us/products/kepserverex/
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FComposer%2FDataStorage%2FPersistenceProviders%2Fusing_influxdb_as_the_persistence_provider.html

Developing Great IoT Solutions

 29

Tutorial Section 1: Create Data Shapes and Data Tables

1. Start by creating a data shape, with a primary key (required for data tables) called
DemoThingRollUpDS

2. Add whatever fields you wish to
appear in the grid on the mashup

a. In this example, we will use
only the custom fields we
created previously (not the
info tables)

b. Be sure to check "Is
Primary Key" for the ID field

3. Create a data table called
DemoThingRollUpDT which uses
this data shape

a. Choose the default type of table

b. Fill out the name and tags

4. Add a service to this data table for updating entries, with any custom logic required

a. Call it CustomAddOrUpdate, with inputs for each of the properties to display on the
mashup (ID, DateIn, StringIn, NumberIn, and NameIn as seen below), and the result
type set to BOOLEAN

b. Here is the code:

var success = -1;

// Don't want invalid dates //

if(DateIn === null || DateIn === undefined)

 DateIn = Date.now();

// Need a valid ID, or else this entry is new //

if(ID === null || ID === undefined || ID === "")

 ID = "ManualDT" + dateFormat(DateIn, "mmddyy-hhmmss");

// Don't want negative numbers //

if(NumberIn === null || NumberIn === undefined || NumberIn < 0)

 logger.warn(me.name + ": Cannot update/add entry with ID \"" + ID

 + "\"; Message: NumberIn cannot be negative.");

else {

 var values = me.CreateValues();

 values.LastServiceDate = DateIn; //DATETIME

 values.StringProp = StringIn; //STRING

 values.ID = ID; //STRING [Primary Key]

 values.NumberProp = NumberIn; //NUMBER

 var params = {

 sourceType: "STRING",

 values: values,

 // This field is also indexed, and we want to search by name later

Developing Great IoT Solutions

 30

 source: "ServiceAdded: " + NameIn

 };

 try {

 success = me.AddOrUpdateDataTableEntry(params);

 } catch(err) {

 logger.error(me.name + ": Could not add or update entry with ID " + ID

 + "; Message: " + err);

 }

}

var result = false;

if(success >= 0) {

 // Avoid making statements like this "info" level or lower, as blowing up the

 // logs with statements can hurt performance

 logger.debug(me.name + ": Successfully added new entry with ID: " + ID);

 result = true;

} else {

 logger.warn(me.name + ": Failed to add new entry with ID: " + ID);

}

c. Change this to suit the use case of each, what values are and are not permitted (for
instance, a check to see if the date is in the past or the future could be added, etc.)

5. Create another service called UpdateAllDataTableEntries on the same
DemoThingRollUpDT thing

a. This service should call the other service a number of times, based on what input is
given

b. In this case, we are assuming the data is coming from Edge devices, and we just want
to display the most recent values on each device and return the total number
updated

c. We could just as easily want to calculate or process the data in some way, and this
would be the place to do that, with more fields added to store any such new
information

d. Here is a script which pulls up each thing in turn and merely copies its properties into
the table using the service we just wrote, then returning how many rows were
updated:

 // This returns faster than QueryImplementingThingsWithData, and allows us to still
 // retrieve the data off every thing with no arbitrary, hard-coded limits. Doing it

 // this way instead of looping through the table ensures new things get added
 // Consider adding thingTemplateName as a parameter as seen in the first example

 var allThings = ThingTemplates["DemoTT"].QueryImplementingThings({

 maxItems: Things["DemoAppUtility"].MaxItems});

 var counter = 0;

 for(var i = 0; i < allThings.rows.length; i++) {

var thing = Things[allThings.getRow(i).name];

 var success = me.CustomAddOrUpdate({DateIn: thing.LastServiceDate, NumberIn:

 thing.NumberProp, ID: thing.ID, StringIn: thing.StringProp, NameIn: thing.name});

 if(success)

 counter++;

}

var result = counter; // The number of things added or updated successfully

Developing Great IoT Solutions

 31

// Note that this service does not account for things being deleted

// The best thing for runtime is to have whatever mechanism deletes the thing itself

// to remove it from the DT. Alternatives include implementing a purge mechanism, or

// appending this service to include such logic (but the best place for it is from a

// mashup dedicated solely to deleting assets from TWX)

End Section 1: Review

In this section, we learned how to create data shapes and data tables. Note that data tables are
different than info tables in that their data shapes need to have a primary key specified. This means
that in addition to the source column being indexed, a second field can be indexed to improve
search performance. We also learned how to create services to update individual rows, or the entire
data table at once. There is no purge mechanism built here, because ideally, whatever service
deletes the thing from the Foundation server would also remove it from the data table. Since
mashups allowing for thing creation and deletion are not created as a part of this tutorial, details on
how to do this particular type of purge have been left out.

Note that if the application is very complex, requiring multiple data tables, and updates like this on
each, then it may be better to use relational databases instead of built-in data sources, or to
generally rethink the design of the overall application. This solution only
works because the application is very simple.

Tutorial Section 2: Create Timer Subscriptions

1. Now we need to create a timer thing (DemoRollUpRefreshTimer)

a. Create a new thing and use the Timer thing template

b. Here, we will have the timer subscribe to itself, so go to the
Subscriptions tab and click “Add” (call it “DataRefresh”)

c. Under the Event tab, select “Timer” for the event type

d. Here is the code:

logger.trace("Entering UpdateAllDataTableEntries. Updating DemoThingRollUpDT...");

var updatedCount = Things["DemoThingRollUpDT"].UpdateAllDataTableEntries();

logger.debug("Updated " + updatedCount + " things in DemoThingRollUpDT.");

e. This is a basic amount of logging helpful for debugging purposes

i. Note that there were also errors and warnings throughout the contained
services too

ii. More on “smart logging” to come (in Example 3)

f. Be sure to check the box to enable the subscription on the “Subscription Info” tab

Best Practice Note:
Subscriptions which run on a
thing will result in higher
memory usage in the Event
Processing Subsystem, which
is typically also responsible
for data ingestion.
Subscriptions on timers
themselves hit the Platform
Subsystem, pulling from a
much larger pool of memory
in a subsystem which usually
has much less to do.

Developing Great IoT Solutions

 32

2. Swap back to the “General Information” tab and scroll down to updated the “Run As User” to
Administrator (for now, since this is just a demo app) and “Update Rate” to 30 seconds

a. Change the 60000 milliseconds (the default) to 30000 milliseconds

b. Note that if the data has to be processed or reformatted, say if there are complex
calculations or queries against historical data required here, then this value may need
to be increased to account for that

c. If there are many, many devices, consider using more than one data table like this,
one per each thing template, and one thing template per region or per device type,
whatever makes the most sense, to keep the data stores small enough for updates
and queries to complete most quickly

d. It is always better to separate the ingestion (how the data is brought into the
Foundation server) from the services which populate the mashups, meaning that
remote service calls here should be avoided at all costs; remote service calls can
take ages, even with timeouts configured

e. Write the query logic and use print statements at the start and end to see how long it
takes to run on average (be sure to do this in an environment with a load comparable
to Production). If the service takes longer than 30 seconds to complete at any time,
be sure to reconfigure this timer so updates do not overlap (or deadlocks can occur)

3. Now, open DemoThingMashup from the previous to add the new service

a. Add the service GetDataTableEntries from the DemoThingRollUpDT

b. Bind it to the grid on the right-hand side of the screen (deleting the other binding)

c. Click View Mashup and note how much quicker the grid loads over the collection

d. Note that a little extra work is required to get the query filters working for this, namely
a wrapper service like QueryDemoThings which queries against the data table
instead of all things

4. None of the data changes at present, so we can’t see if refresh on the grid side. Next, we will
add a timer to generate random values for these fields so that the updates can be seen here

End Section 2: Review

In this section, we learned how to create timers and subscribe to their timer events. Subscriptions to
timer events which occur on the timer itself hit a different memory pool in their service execution
than those located on other entities. This is important because updating sources of data can
sometimes take a few minutes to complete. Having the Platform Subsystem handle these changes
ensures that the data ingestion process, ordinarily centered around property updates and event

Developing Great IoT Solutions

 33

triggers, can continue uninterrupted by data reorganization or aggregation processes (as the Stream
or Value Stream Subsystem handle the ingestion, and the Event Subsystem, the alerts). We also saw
that retrieving data from a data table is faster than querying all implementing things, and this effect is
more pronounced the more things and the more properties per thing which exist on the Foundation
server. Even though we didn’t implement a query against the data table in this example, it is
recommended to do so, creating a wrapper service that uses the same query creation logic as
QueryDemoThings. Then the same mashup fields can be used to query against the data table too,
showing directly that the data table is faster.

Tutorial Section 3: Randomize Data Updates

1. To add randomized data updates, we will create a thing
template level timer

a. Since we are only updating local properties, or
those located on the thing with the subscription,
this is relatively safe for a demonstration app.

b. It is always safer to push changes from the Edge
than to pull them from the Foundation (see the
appendix).

2. Add a service to DemoTT called
UpdateLocalPropertiesRandom:

logger.debug("Updating local properties for " + me.name);

try {

 // Random strings for the StringProp

 var stringArr = ["dog", "cat", "monkey", "elephant", "pig"];

 // Choose a random index from 0 to the size of the array above for the StringProp

 var index = Math.floor((Math.random() * stringArr.length));

 me.StringProp = stringArr[index];

 // Choose any random number for the NumberProp

 me.NumberProp = Math.random()*100;

 // Choose any random day in the past 60 days for LastServiceData (convert the random

 // number to days too)

 me.LastServiceDate = Date.now() - Math.floor(Math.random()*60)*24*60*60*3600;

 // The ID field does not vary, and is assigned only once when the thing is created

 // So the updates are done!

} catch(err) {

 logger.error("Could not update properties for " + me.name + "; Message: " + err);

}

logger.debug("Successfully updated local properties for " + me.name);

3. Add a new thing using the timer template again (called
DemoThingRandomPropertyUpdateTimer here), with the same 30000 milliseconds and
“Run As User” configured

4. Back on the DemoTT thing template, add a subscription

a. On the “Subscription Info” tab, check the “Other entity” option

Best Practice Note:
If updates to local properties are
required, update them when the
Edge properties update as data
change subscriptions, only setting
the data change to occur when
the value actually changes on the
Edge property (“value”). If all
devices need to be updated at
once, use a scheduler to do the
change outside of business hours.

Developing Great IoT Solutions

 34

b. Supply the name used for the
timer in the previous step and be
sure to check the enabled check
box

c. Once you supply the name of the
thing, switch to the Inputs tab and
select “Timer” in the drop-down
box

d. The only code in this subscription
is a line to call the service we just
wrote:
me.UpdateLocalPropertiesRandom();

e. Now, every 30 seconds, each
device will update its properties

i. Note that this technique should rarely be employed in a real application

ii. These are quick updates to local properties in a contained demo system, but
consider alternative approaches for a production system, like pushing
updates from the Edge as needed, only when the values actually change

f. Review how this additional service affects performance

i. Look back at the Platform Subsystem once this subscription is enabled to see
how it affects the system (Monitoring > Subsystems > Platform Subsystem)

ii. The memory usage spikes very high when the updates are performed, and
drops once the garbage collection has completed

5. Back on the DemoThingMashup, add an auto-refresh
function in the panel under the data panel on the
bottom right side of the screen, binding its Refresh
event to the data source for the grid

6. View the mashup again, and watch for it to auto-update
the data after 30 seconds

a. Note that the data will automatically update in
the collection because of the GetProperties
service and its option to auto update, which we enabled previously

b. Notice that one refresh is real-time, and the other on a 30 second interval

Developing Great IoT Solutions

 35

c. The real-time updates are more memory intensive, and may see performance issues
if there are many end users, many things, and many properties per thing

7. Remember that the query filters will not work unless you create a wrapper service, called
CustomQueryEntries on the data table provided with the entities here. The query is the
same, and so are the bindings, save for the auto refresh which the collection doesn’t need:

a. In order to allow for partial matches of thing names in
searches, we have to rely on a “like” query applied
after the data table entries are retrieved, which can be
costly and memory intensive. If we wanted, however,
we could use the source name to pinpoint a specific
entry by name without having to perform a query at all

b. Use the source field in this example by searching for
“ServiceAdded: <thingName>” if a specific thing is
needed; this is a great option if manual user updates
to one row at a time are possible, especially
considering that data tables lock and unlock one row
at a time

End Section 3: Review

In this section, we learned how to simulate random property updates for many things. We also
learned how to implement timer subscriptions on the thing template level, and why it is normally
better to avoid such implementations, instead pushing property changes from the Edge (and not
pulling them from the Foundation server). We also learned how to check the performance of periodic

Best Practice Note:
Any filter sent into a query inside of
the query parameter itself will not
be applied until after the query
returns its results. This results in
higher memory consumption per
user on the mashup, resulting in
potential service crashes. Send in a
valid source, to date, and from date,
or a max items, to limit results.

Developing Great IoT Solutions

 36

updates by reviewing the way the memory is consumed in the subsystem monitor. Finally, we
covered how to use queries with data tables, and the importance of prioritizing the properties that
get sent into a query service itself (like the source field) over the query string (since it’s applied after
the data is returned).

Note that the Advanced Grid widget has a sort capacity of its own which can be used to limit what
appears, but not what is returned into the table. If for some reason both of these are desired side-by-
side, then simply pass in the query parameter from the Advanced Grid (called QueryFilter) to the
service, and if it has a value, use that input instead of the inputs from the other widgets.

Sometimes, the query needs to be checked in advance of being sent to the data source, because
some specific formatting is required for the input. Sometimes, an error message is desired when the
formatting isn’t given correctly, even before the query button is clicked. This error could be made to
appear on the screen or show up in a pop-up box, all in an effort to help the user fill out the form.
Building something like this requires using mashup functions to check the data in the text box
widgets before it is sent into the query service, as the next example shows.

Tutorial Section 4: Add Pop-Up Errors to Mashup

1. Open the DemoThingMashup and in the data panel, click on “Functions”

a. Click on the plus icon at the top of the little box, and a pop-up appears

b. Select “expression” for “Function Type”, and name it ID_input_val

c. Add a parameter for the ID text field input

d. Since the IDs are all assigned with the same format, we can verify the given ID has
that correct format, so here put an expression like:

if(ID === null || ID === undefined || ID === "" ||

 ID.toLowerCase().startsWith("autodt"))

 result = "";

else

 result = "ID looks like AutoDT followed by a number (matches the name).";

e. Check “Auto Evaluate”, change the “Data Change Type” to “Always”, change the
“Output Base Type” to “String”

Developing Great IoT Solutions

 37

f. Click “Done”

g. Bind the “Text” target of the ID textbox to the input parameter of the expression

2. Add a label widget to the mashup, below the date time selectors

a. Make sure that the label is long enough to fit the whole message once it appears

b. Bind the output of the expression above to label widget’s Text target

3. View the mashup and type in the ID text field to see the message appear

a. In older versions, it may not appear the minute someone begins typing, as the box
wasn’t considered updated until it lost focus.

b. Things like this can always be modified with custom events using ThingWorx widget
extensibility (with details found in the ThingWorx Extension Development Guide) The
message should only go away when a person types “AutoDT” (not case sensitive) into
the box or erases its value completely

c. Notice how clicking on the Query button will cause the message to appear to help a
person know why the data they entered is not valid as well

https://www.ptc.com/support/-/media/FFF75A096E3245C8BA1E42E1C47C04CD.pdf?sc_lang=en

Developing Great IoT Solutions

 38

End Section 4: Review

In this example, we learned how to use an expression function to make an error message or
formatting tip pop-up on the screen. This expression function, as well as the validator function, can
be used to validate input from text fields, calculate whether or not to display certain labels (such as
error messages or confirmations), or determine if other widgets should appear at all (for instance to
determine that a drop-down list should only display if a certain option is checked). These functions
enable the creation of interactive and intelligent mashups, centered around the end user experience.

Example Completion – Summary:

This concludes the second example in this document. You should now know how to:

• Create timers
• Subscribe to timers on either the thing template level or the timer itself
• Determine when it is a bad idea to subscribe to a timer on a thing template
• Create data tables and data shapes for data tables (different than for info tables)
• Index data tables using the primary key and source fields
• Build queries for data tables
• Implement random data generation mechanisms
• Check on system performance after implementing a new data table update mechanism
• Use the expression widget on a mashup to alter or validate what gets displayed

Developing Great IoT Solutions

 39

Example 3: Smart Logging and Alerting

• Teaches how to:
o Create events, subscriptions, and alarms (things which notify end users via email)
o Utilize the Mail Extension
o Add events to streams
o Build a basic rules engine for alarms

• Covers:
o Creating a data shape for an event
o Subscribing to a data change event vs. a manually created event
o Configuring the Mail Extension to use a Gmail account

Context:

If something goes wrong in the application, and all that happens is a debug statement gets printed to
the logs, then the end users still don’t really know what is going on. These business-side users may
or may not have access to the logs, and they may or may not have the ability to parse through them.
In this case, system administrators would be needed. They could turn up the logging if need be to
ensure debug statements are captured in the logs, then review the logs to see what is going on. This
is an arduous and intensive process, and one which will almost certainly also involve technical
support.

For some types of failures, it may be an option to reduce the level of the logging so that instead of
printing as a debug statement, the issue is printed as an error or a warning instead. However, if
something fails often, it can spam the logs and make it impossible to find anything else (potentially
hiding the more important issues from view), also leading to a support nightmare. To avoid situations
like this, it is prudent to use smarter logging methods which don’t involve getting technical
assistance, or even system administrators, at all.

For some types of failures, this will involve pop-up error messages or alerts, or basic things which the
user can react to on the UI. But what about errors that happen in the background, like issues updating
entries in a data table every few minutes? It wouldn’t make sense to have pop-up errors for these, so
how can we alert the end user there is something wrong (so they know, for example, that data is not
refreshing in their charts)?

There are a few ways to do this, but most will involve developing what is called a rules engine. This
example will help you build a basic rules engine, which can then be used to store errors in streams or
send alerts to business users. There will be fewer pictures in this example as it builds off of the
previous examples, which are meant to be done first and will teach many of the basic skills used
here.

Tutorial Section 1: Add Smarter Logging

1. On DemoThingRollUpDT, click to modify the custom service called UpdateAllDataTableEntries.

2. Right now, this service has no error handling.

a) The inner service (CustomAddOrUpdate) has a debug print statement for failures.

i) It’s likely that these errors will happen often, and we don’t want to overcrowd the logs
with errors every time they happen

Developing Great IoT Solutions

 40

ii) These are still helpful, though, in case we want to know exactly which times failed and
when for debugging the application and fixing the underlying issues

b) However, these errors don’t help at all if the thing does not exist on the Foundation server

i) If the thing doesn’t exist, an exception will be thrown when the properties are accessed in
the inner service call

ii) This means that the service will fail, but no one on the application-side will know why

iii) Putting both statements into the try-catch will allow for smarter logging.

c) Adjust your code to add a try-catch block, so that it looks like this:

// This returns faster than QueryImplementingThingsWithData, and allows us to still

// retrieve the data off every

// thing with no arbitrary, hard-coded limits. Doing it this way instead of looping

// through the table ensures newly created things get added to the table

var allThings = ThingTemplates["DemoTT"].QueryImplementingThings({maxItems:

 Things["DemoAppUtility"].MaxItems});

var counter = 0;

for(var i = 0; i < allThings.rows.length; i++) {

 var thingName = allThings.getRow(i).name;

 try {

 var thing = Things[thingName];

 var success = me.CustomAddOrUpdate({DateIn: thing.LastServiceDate, NumberIn:

 thing.NumberProp, ID: thing.ID, StringIn: thing.StringProp, NameIn:

 thing.name});

 if(success)

 counter++;

 else

 throw "Thing existed, properties could be found, but still entry was"

 + "not updated in DT.";

 } catch(err) {

 logger.error(me.name + ": UpdateAllDataTableEntries: Could not update "

 + thingName + "; Message: " + err.toString());

 //(OPTIONAL TODO) Could also log this issue to a stream, which can then be

 // displayed and queried on a mashup

 // Note: ensure any errors occurring here are not caused by permission issues

 // and that the user has access to property read on the thing template level

 // Also note: this is not atomic; if one row fails, the rest will still update

 }

}

var result = counter; // Represents the number of things added or updated successfully

d) Notice how the error message is printing, with the name of the entity calling the service,
followed by the name of the service itself, followed by the actual exception

i) This ensures errors are searchable in the logs, and can be traced back to their causes
easily

ii) Likewise, printing the actual exception like this ensures that the error is not “swallowed”
by our code, printing something which makes no sense or isn’t really related in the logs

Developing Great IoT Solutions

 41

iii) This is error message best practice (see the appendix)

e) One last important note on database transactions in ThingWorx:

i) ThingWorx will not be aware of any issues if the outer service does not throw an
exception from within the catch of the inner service, and so will not roll back any
database commits

ii) This can result in duplicate entries if a unique ID field or key is not used for the add or
update, which is why in this example, the ID field is a unique property on each thing

iii) For atomic updates, where either everything is updated or nothing is, or in the case
where updates center around field values, but not unique identifiers, then the catch
should always throw an exception so that the Foundation server and database are in
consistent states

iv) So, our service here uses a try-catch within a loop to ensure that if one row fails, the rest
still update. Logging this failure to the logs is good (what we do here), though storing it in
a stream that can be reviewed by administrative-type end users (who don’t have backend
server access, but still want to know what issues there are and why) would be better

End Section 1: Review

In this section we wrote to the logs a more specific error message, something better for
communicating the problem to the server admins. We also identified the proper location to insert the
error into a stream. If we wanted to go all the way with this error handling, then we would create a
mashup for administrative users of the application to view, which presents the error stream in a grid,
along with a button for acknowledging errors. Then we could configure whether the alarm appears
acknowledged by using state-based formatting on the status field.

This would enable any user of the application, whether they have a technical background or not, to
review and potentially resolve issues on their own, especially if the issue is caused by data entry on
another mashup, where things can be created or deleted by end users. This is especially beneficial
for end customers of partners, who often resell the application to less technically experienced users.

Tutorial Section 2: A Basic Rules Engine (Create Alarms)

1. Create a new data shape for alarm information called AlarmNotificationDataShape with 8 fields:

a) AlarmName – STRING

b) AlarmDescription – STRING

c) AlarmPriority – STRING

d) AlarmTimestamp – DATETIME

e) NotificationStatus – STRING

Developing Great IoT Solutions

 42

f) Notes – STRING

g) GroupToNotify – STRING

h) NotifyManagers – BOOLEAN

i) Don’t forget to tag the entity and add it to the right project (these entities will be provided for
download and import down below, as some of them are quite complex, and as such, they
have the same DemoProject, but an additional tag: “Applications:RulesEngine”)

2. Create two new streams called DemoTT_AlarmStream and DemoTT_EventStream to store and
allow triggered alarms and events to be reviewed

a) Use AlarmNotificationDataShape for the data shape for both of these

b) Don’t forget to tag these and add them to the right project once again

c) Note: these are named this way for a reason; in the provided Rules Engine code (steps 4b and
4c below), the name of the alarm and event streams are derived from the thing template
name, where it is assumed that each thing template will correspond to a different region or
type of device, etc. An alarm is anything which has a configured rule, whether notifications
are enabled or not for that rule. An event is any other trigger (an alarm with “EVENT” for
NotificationStatus)

3. Next, we need a data table to store alarm rules, called AlarmDataTable

a) This will be used to store the rules themselves, which describe the frequency an alarm must
be triggered before a notification is sent, e.g. 8 times in 1 hour, or every day for a week, etc.

b) This is a complicated entity with services designed to function on a mashup discussed in the
next section. Therefore, this and other supporting entities have been provided

c) Import the provided RulesEngine.xml file to get these entities, all tagged with the following:
Applications:RulesEngine (this should not override any existing entities)

d) The relevant services on the AlarmDataTable are referenced throughout the coming steps

4. Create a new thing shape called RulesEngineThingShape and be sure to tag it and set the
project

a) This thing shape will have all of the services and subscriptions required to generate alarms
and events and send notifications to end users

b) In the next example, a much more complicated version of this is provided to demonstrate a
more complete application. The idea here is that each thing shape represents a different type
of device while each thing template represents a different region for devices

5. Modify the RulesEngineThingShape so that alarms can be checked and triggered

a) Add a new service called CheckForAlarmNotification

i) This should take in two inputs:

(1) AlarmName– STRING – required

Developing Great IoT Solutions

 43

(2) AlarmTimestamp – DATETIME – not required

ii) This should return an INFOTABLE; ds: AlarmNotificationDataShape

iii) Here is the code:
logger.trace(me.name + ": Entering CheckForAlarmNotification... ");

var flag = false;

var time;

var notificationStatus = "";

// Have to initialize the result here so we can set it within each if-else scope below, and we

need an infotable to convert the JSON object to a valid return type.

var result = "", resultIT =

Resources["InfoTableFunctions"].CreateInfoTableFromDataShape({infoTableName: "InfoTable",

dataShapeName: "AlarmNotificationDataShape"});

if(AlarmTimestamp === null || AlarmTimestamp === undefined)

 time = Date.now();

else

 time = AlarmTimestamp;

var alarm_it = Things["AlarmDataTable"].GetAlarmInfo({AlarmName: AlarmName});

// We want to reduce the number of total queries, so here is where we convert the AlarmName into

// an actual alarm infotable with all its fields populated. If there is nothing in this entry,

// as in the length is 0, then we know the alarm is not in the table at all (so return false).

var alarmFoundFlag = alarm_it.length>0;

logger.trace(me.name + ": CheckForAlarmNotification: Alarm Info Found for " + AlarmName + "? "

 + alarmFoundFlag);

if(alarm_it.length > 0) {

 for(var a = 0; a < alarm_it.length; a++) {

 // This loop enables multiple notification rules to be configured for the same alarm name

 var alarmInfo = alarm_it[a];

 notificationStatus = "ACKNOWLEDGED";

 // Have to create a fresh object and not pass in AlarmDetails directly, or the

 // info table doesn't capture the data for some reason

 var currentAlarm = new Object();

 currentAlarm.AlarmName = AlarmName;

 currentAlarm.AlarmDescription = alarmInfo.Description;

 currentAlarm.AlarmTimestamp = time;

 currentAlarm.AlarmPriority = alarmInfo.Priority;

 currentAlarm.NotificationStatus = notificationStatus;

 currentAlarm.GroupToNotify = alarmInfo.GroupToNotify;

 currentAlarm.NotifyManagers = alarmInfo.NotifyManagers;

 logger.trace(me.name + ": CheckForAlarmNotification: Alarm enabled "+alarmInfo.Enabled);

 if(alarmInfo.Enabled) { // Alarm is in the table, and it is enabled

 // Check if notification should be sent this time or not

 if(alarmInfo.Occurs > 0) {

 // Then there are additional rules to check

 var counter_o = 1; // Start at 1 to include the current alarm

 var counter_cd = 0;

 // Increment down, and keep track of where we last were

 var leftOff = me.AlarmTable.length-1;

 do {

 // Which day it is based on consecutive days

 var cd_threshold = time-counter_cd*24*60*60*1000;

 // First, calculate the threshold based on the units and consecutive day

 var threshold = 0;

 if(alarmInfo.Units === "Days")

 threshold = cd_threshold-alarmInfo.Every*24*60*60*1000;

 else if(alarmInfo.Units === "Hours")

 threshold = cd_threshold-alarmInfo.Every*60*60*1000;

 else if(alarmInfo.Units === "Years")

Developing Great IoT Solutions

 44

 threshold = cd_threshold-alarmInfo.Every*365*24*60*60*1000;

 // Then increment backwards through the alarm table until the threshold

 // is hit to look for occurrences

 for(var i = leftOff; i >= 0; i--) {

 var row = me.AlarmTable.getRow(i);

 // We only care about the entries that have the same name as the

 // current alarm, but instead of querying for them, go through the

 // main AlarmTable anyway so old entries can be purged in one loop

 if(row.AlarmName === AlarmName) {

 // The row datetime goes down in ms. When it equals the threshold

 // (in ms) or is lower than it, then we increment the cd counter

 if(time <= threshold) {

 if (counter_cd < alarmInfo.ConsecutiveDays) {

 // If there are more days to go, reset to start counting

 // occurrences over for the next cd

 counter_o = 0;

 // But remember where we left off

 leftOff = i;

 // This will break the loop completely if it is the last

 // time, or reset for the next consecutive day otherwise

 counter_cd++;

 break;

 } else {

 // Delete all remaining entries as they are outdated

 logger.debug(me.name + ": CheckForAlarmNotification: Found

 and removed old entry in AlarmTable

 for AlarmName " + row.AlarmName);

 me.AlarmTable.Delete(row);

 }

 } else {

 // Occurrence for this day is detected; increment o counter

 counter_o++;

 // If there are no older entries in the table, then this is

 // it for the loop, and the above timestamp check will never

 // hit. So, here we have to update the flag if the counter

 // has incremented enough so that the alarm will notify

 if(counter_o >= alarmInfo.Occurs

 && counter_cd === alarmInfo.ConsecutiveDays)

 flag = true;

 }

 }

 }

 } while(counter_cd < alarmInfo.ConsecutiveDays);

 if(!flag) {

 // If after all this, the conditions to fire the alert are not met, then no

 // alarm is needed.

 notificationStatus = "NO NOTIFICATION NEEDED";

 } else {

 // Flag was true, so notification will be sent

 notificationStatus = "NOTIFICATION PENDING";

 }

 } else {

 // If Occurs is 0, notify every time

 notificationStatus = "NOTIFICATION PENDING";

 }

 } else {

 // If Alarm is in the table, but not enabled

 notificationStatus = "NOTIFICATIONS DISABLED";

 }

 // Finally, add the current alarm to the alarm table

 currentAlarm.NotificationStatus = notificationStatus;

 // Don't need to add the alarm if it isn't enabled

 if(notificationStatus !== "NOTIFICATIONS DISABLED")

Developing Great IoT Solutions

 45

 me.AlarmTable.AddRow(currentAlarm);

 resultIT.AddRow(currentAlarm);

 }

 // And return the updated alarm details, which we only do once, so outside of the a loop

 result = resultIT;

} else {

 // Alarm is not in the table, so it will be added to the event stream

 var currentEvent = new Object();

 currentEvent.AlarmName = AlarmName;

 currentEvent.AlarmTimestamp = time;

 currentEvent.NotificationStatus = "EVENT";

 resultIT.AddRow(currentEvent);

 result = resultIT;

}

b) Add a new service called AddAlarmToStream

i) One input: AlarmInfo – INFOTABLE ds: AlarmNotificationDataShape – Required

ii) There is no return for this service

iii) Notice that in the source field, both the name of this thing and the name of the alarm are
given. This allows for queries to make use of the indexed “source” field, resulting in faster
queries with better performance on mashups (see appendix for details on best practice)

iv) Here is the code:
logger.trace(me.name + ": Entering AddAlarmToStream...");

// This is in accordance with the DemoAppUtility create userbase naming conventions:

var alarmStreamSuffix = "_AlarmStream";

var streamName = me.GetThingTemplate().name + alarmStreamSuffix;

// This field is set to null for unacknowledged alarms, which are acknowledged

// when someone adds notes manually from a mashup

AlarmInfo.Notes = "";

// Just use now as default if nothing is given since it is required for some reason

if(AlarmInfo.AlarmTimestamp === null || AlarmInfo.AlarmTimestamp === undefined)

 AlarmInfo.AlarmTimestamp = Date.now();

var params = {

 values: AlarmInfo,

 source: me.name,

 timestamp: AlarmInfo.AlarmTimestamp

};

try {

 Things[streamName].AddStreamEntry(params);

 logger.trace(me.name + ":AddAlarmToStream: Added with source field "

 + params.source);

} catch(err) {

 logger.warn(me.name + ": AddAlarmToStream: Could not add to alarm stream entry

 with source:" + params.source + "; Message: " + err.ToString());

}

c) Add a new service called AddEventToStream
i) One input: AlarmInfo – INFOTABLE ds: AlarmNotificationDataShape – Required

ii) There is no return for this service

iii) Notice the same in the source field here, for the same reasons

Developing Great IoT Solutions

 46

iv) The code is a little different this time, but not much:

logger.trace(me.name + ": Entering AddEventToStream...");

// This is in accordance with the DemoAppUtility create userbase naming conventions:

var eventStreamSuffix = "_EventStream";

var streamName = me.GetThingTemplate().name + eventStreamSuffix;

// Just use now as default if nothing is given since it is required for some reason

if(AlarmInfo.AlarmTimestamp === null || AlarmInfo.AlarmTimestamp === undefined)

 AlarmInfo.AlarmTimestamp = Date.now();

var params = {

 values: AlarmInfo,

 source: me.name + ": " + AlarmInfo.AlarmName,

 timestamp: AlarmInfo.AlarmTimestamp

};

try {

 Things[streamName].AddStreamEntry(params);

 logger.trace(me.name + ":AddEventToStream: Added with source field "

 + params.source);

} catch(err) {

 logger.warn(me.name + ": AddEventToStream: Could not add to event stream entry with

 source:" + params.source + "; Message: " + err.ToString());

}

d) Add an info table property called AlarmTable with the AlarmNotificationDataShape

i) It should be marked as persistent.

ii) This is normally something to avoid when creating info
table properties, but in this case, the info table should
never contain more than the number of rules times
the number of occurrences times the number of days.
Since the number of occurrences will usually be a
small number (let’s say 5), and the number of days will
usually be a small number (let’s say 3), and the
number of rules is kept to something like 20 total,
then that is 20*5*3 = 300 entries maximum, and that is
assuming that every rule uses the number of
occurrences over many days (see appendix for details
on best practices here).

e) Add a service called PurgeAlarmTable

i) This should take one input: AlarmName – STRING – required

ii) There is no return for this service.

iii) Here is the code:

var size = me.AlarmTable.length;

// Increment through the AlarmTable backwards and remove anything which matches the

// given alarm name

for(var i = size-1; i >= 0; i--) {

 var row = me.AlarmTable.getRow(i);

 if(row.AlarmName === AlarmName)

 me.AlarmTable.RemoveRow(i);

Best Practice Note:
An info table property can
typically handle on the order of
hundreds of rows without too
much of a performance hit,
though it is worth it to consider
how this many numbers of
rows times the total number of
things will affect performance,
and to ensure the Foundation
server has enough memory
allocated to handle the load.

Developing Great IoT Solutions

 47

}

f) Add an event called TriggerAlarm using AlarmNotificationDataShape, though the only field
we care about here is AlarmName

i) This alarm is triggered by the data change events (which we will add below)

ii) The data change event subscription doesn’t do this code directly as there may be other
triggers for the same alarm throughout the application, including calls from the Edge
itself, so that’s why we put this event here, to create a more versatile application.

g) Create a subscription to TriggerAlarm

i) It should appear as an option in the Event drop-down box on the Inputs tab.

ii) Give the alarm a name on the Subscription Info tab, which is also where you enable it.

iii) Here is the code:
logger.trace(me.name + ": Entering TriggerAlarmSubscription...");

var updatedAlarmDetails = me.CheckForAlarmNotification({AlarmTimestamp:

eventData.AlarmTimestamp, AlarmName: eventData.AlarmName});

logger.trace(me.name + " TriggerAlarmSubscription: Check for Alarm Notification Result

has " + updatedAlarmDetails.length + " row(s).");

for(var a = 0; a < updatedAlarmDetails.length; a++) {

 // We need to copy the row into an infotable to send it into the

 // stream update services below

 var alarmDetailsIT = Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(

{infoTableName: "InfoTable",

dataShapeName: "AlarmNotificationDataShape"});

 var alarmDetailsRow = updatedAlarmDetails.getRow(a);

 logger.debug(me.name + " TriggerAlarmSubscription: Alarm Name " +

alarmDetailsRow.AlarmName + "; Notification Status: " +

alarmDetailsRow.NotificationStatus);

 // If the alarm requires a notification

 if(alarmDetailsRow.NotificationStatus === "NOTIFICATION PENDING") {

 alarmDetailsRow.NotificationStatus = "NOTIFYING";

 var group = "";

 var notifyManagers = false;

 // Determine group to notify and if managers need notification as well:

 if(eventData.GroupToNotify !== null && eventData.GroupToNotify !== undefined)

 group = eventData.GroupToNotify;

 else

 group = alarmDetailsRow.GroupToNotify;

 if(group === "Regional") // Then parse thing template name per DemoAppUtility

 group = me.GetThingTemplate().name + "_Group"; // naming conventions

 if(eventData.NotifyManagers !== null && eventData.NotifyManagers !== undefined)

 notifyManagers = eventData.NotifyManagers;

 else

 notifyManagers = alarmDetailsRow.NotifyManagers;

 // Then create the email

 var params = {

 subject: alarmDetailsRow.AlarmName + " alarm fired on " +

me.name + "; Priority: " + alarmDetailsRow.AlarmPriority,

 body: "Asset Name: " + me.name + "; " + "

Alarm Description: " +

alarmDetailsRow.AlarmDescription + "

Alarm Time: " +

alarmDetailsRow.AlarmTimestamp,

 GroupToNotify: group,

 NotifyManagers: notifyManagers

Developing Great IoT Solutions

 48

 };

 // And send it (we will add this service below, after importing the mail

 // extension, so to test in the meantime, comment this out)

 alarmDetailsRow.NotificationStatus =

Things["AlarmNotifier"].SendEmailForAlarm(params);

 logger.debug(me.name + ": TriggerAlarmSubscription notification status after

send: " + alarmDetailsRow.NotificationStatus);

 // Then remove the previous alarms from the AlarmTable to reset for next time

 me.PurgeAlarmTable({AlarmName: alarmDetailsRow.AlarmName});

 // Finally, add the alarm with the results of the send attempt to alarm stream.

 // We do this in the loop because we don't want to add every single alert, only

 // those alerts which notify users because the rules are satisfied (alarms).

 // Have to copy it into an info table to be able to pass it as a parameter below

 alarmDetailsIT.AddRow(alarmDetailsRow);

 me.AddAlarmToStream({AlarmInfo: alarmDetailsIT});

 } else if(alarmDetailsRow.NotificationStatus === "EVENT") {

 // Have to copy it into an info table to be able to pass it as a parameter below

 alarmDetailsIT.AddRow(alarmDetailsRow);

 me.AddEventToStream({AlarmInfo: alarmDetailsIT});

 } else if(alarmDetailsRow.NotificationStatus === "NOTIFICATIONS DISABLED") {

 // We still might want to review alarms that occur, even if no notifications

 // Have to copy it into an info table to be able to pass it as a parameter below

 alarmDetailsIT.AddRow(alarmDetailsRow);

 me.AddAlarmToStream({AlarmInfo: alarmDetailsIT});

 } else {

 logger.warn(me.name + ": TriggerAlarmSubscription: Unknown Notification Status

after CheckForAlarmNotification service call: " +

alarmDetailsRow.NotificationStatus);

 }

}

logger.trace(me.name + ": Leaving TriggerAlarmSubscription.");

h) Lastly, trigger the TriggerAlarm
event in response to property
updates

i) Move the NumberProp and
StringProp properties to the
thing shape so we can
subscribe to their data
change events

ii) Use an arbitrary threshold
for the number property,
subscribing to its data
change event as seen in this
image:

iii) Here is the code:
var threshold_r = 5;

var threshold_top = eventData.oldValue.value + threshold_r;

var threshold_bottom = eventData.oldValue.value - threshold_r;

if(eventData.newValue.value > threshold_top || eventData.newValue.value <

 threshold_bottom)

 me.TriggerAlarm({AlarmName: "Number Prop Alarm", AlarmTimestamp: eventTime});

6. We will test this below, after adding one more service (which is referenced in the subscription
SendEmailForAlarm) on a MailThing that we haven’t yet created for sending emails.

Developing Great IoT Solutions

 49

End Section 2: Review

In this section, we learned how to create a data shape for an event, which we also used for a stream.
Then we created the rules engine service, which has comments to step through the process of
verifying if an alarm needs to be sent or not. We added the service to update the alarm and event
streams, as well as adding to the alarm info table property for keeping track of how many times an
event has happened in the near past. As mentioned above, we can use the info table type data
storage for this reason because the table is never allowed to grow too large, and instant updates and
retrievals of data are needed, so there is no other choice (see appendix for details).

The purge happens in two places: within the check for the alarm, to see if it needs to send a
notification and for any entries too old to matter as of right now; and within the notification service, to
remove recent entries after the notification is sent, so the count can start again. We added the purge
service above, but there is no mechanism implemented yet which reduces the amount of spam sent
overall. Right now, if the issue happens 3 times in a minute, then an email will be sent out every
minute. An additional query against the streams themselves could be used for advanced
customization like this.

Finally, we created the event trigger for the data change event and demonstrated how to trigger the
alarm, and subsequently, send a notification. We don’t send the notification in the property
subscription itself, as that would require us to repeat the same code in many subscriptions to many
different properties. Instead, we subscribe to our created event, and then trigger this from wherever
we would like. Here we use a data change event subscription, but we could just as easily trigger the
event from the Edge device in response to its listening there, or from anywhere else which fits the
use case. The code for the notification is repeated just once, and therefore, it is easier to maintain.

Tutorial Section 3: Configure the Mailer, Add the Alarms, and Test

1. Now, create the notification mechanism by importing the Email Extension

a) First, find and download the Mail Extension, following the steps in the Help Center

b) Once you have successfully imported the latest version of the Email Extension, create a new
thing using the MailServer thing template (called “AlarmNotifier” here)

i) Note that there is additional configuration required for importing entities in the newer
versions of ThingWorx, involving updates to the “platform-settings.json” file

ii) For details on how to enable extension imports, see the Help Center

c) Next, configure the AlarmNotifier

i) Use the MailServer thing template which was added in the import

ii) For Gmail, use this information on the Configuration tab:

(1) SMTP server: SMTP.gmail.com

(2) SMTP Server Port: 465

https://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/index.html#page/ThingWorx/Help/Extensibility/Mail.html
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/index.html#page/ThingWorx%2FHelp%2FGetting_Started%2FImportingandExportinginThingWorx%2FImportingExtensions.html%23

Developing Great IoT Solutions

 50

(3) POP3 Server: POP.gmail.com

(4) POP3 Server Port: 995

(5) Use TLS: not checked

(6) Use SSL: checked

iii) You must provide a valid email address and account password for ThingWorx to be able
to send emails on behalf of that account (and there may be requirements on the email
server side as well, see KCS Article CS200624 for details regarding Gmail)

iv) An admin or “DO_NOT_REPLY” address is recommended for use, though what appears in
the “sender” field can be modified independently in the service itself

d) Once configured, add a service called SendEmailForAlarm to the AlarmNotifier thing to
send the email

i) Take in 4 parameters: subject, body, and GroupToNotify (STRING, required) and
NotifyManagers (BOOLEAN, not required)

ii) Set the output to type STRING

iii) Under the “me” tab, find the SendMessage snippet

iv) Fill out the “from” field with the desired sender display name

v) Fill out the “subject” and “body” fields with the input parameters

vi) For now, hard code the “to” field for an address you can check

vii) Eventually, you will want to determine which users should be sent which alerts, perhaps
having a separate data table to store which alerts go to which groups, groups which can
then contain specific users (whose email addresses can be obtained for use in this
service)

e) Here is the full code of the SendEmailForAlarm service:
if(GroupToNotify === null || GroupToNotify === undefined || GroupToNotify === "" ||

 GroupToNotify === “Regional”) {

 // Need to replace "Regional" with the group name before entering this service, which

 // doesn't know which thing template is being used, and therefore which group to use

 GroupToNotify = "Administrators";

 body = "NOTICE: NO GROUP TO NOTIFY SPECIFIED. Sent to Administrators. " + body;

}

var usersToNotify = Groups[GroupToNotify].GetGroupMembers();

// To notify managers, the group naming convention goes like "templateName_AdminGroup"

// We know the group name, though, so we have to do some string modifications here

if(NotifyManagers && GroupToNotify !== "Administrators") {

 var templateName = GroupToNotify.split("_")[0];

 var adminGroupName = templateName + "_AdminGroup";

 var adminsToNotify = Groups[adminGroupName].GetGroupMembers();

 usersToNotify = Resources["InfoTableFunctions"].Union({t1: usersToNotify,

 t2:adminsToNotify});

}

var failures = "";

https://www.ptc.com/en/support/article?n=CS200624

Developing Great IoT Solutions

 51

for(var a = 0; a < usersToNotify.rows.length; a++) {

 var username = usersToNotify.GetRow(a);

 var params = {

 subject: subject,

 from: "DO_NOT_REPLY@ptc.com",

 to: Users[username].emailAddress,

 body: body

 };

 try {

 me.SendMessage(params);

 } catch(err) {

 failures += username + "; ";

 }

}

if(failures !== "")

 result = "Failed to send to: " + failures;

else

 result = "Everyone notified successfully.";

2. Now you will want to create a mashup to enable adding the alarms from within the application,
and reviewing the alarms and responding to them once they are triggered

a) Since this would be complicated to describe in detail, a mashup has been provided in the
import from the previous section (called NotificationRulesMashup)

b) On the provided mashup, select the “New” checkbox before typing

i) Note that this will clear what has been typed in the other boxes, so check this before
entering the new name and description

ii) This box must be checked because the row in the grid cannot easily be deselected at
present

iii) Whatever row is selected will be overwritten if the “New” checkbox isn’t checked

c) From the import in the previous section, find the mashup called NotificationRulesMashup, or
create the rules manually by adding rows to AlarmDataTable

d) Note that the name for the alarm needed here (based on the code in step 5h in section 2
above) is “Number Prop Alarm”, spelled exactly this way, with caps and all

e) If the alarm is not listed in the table, it will be considered an event, so to create events instead
of alarms, use any AlarmName not listed in the table in the data change event subscriptions

f) If you plan to create the mashup manually for practice, see the screenshot shown here for
details about what features will be required:

Developing Great IoT Solutions

 52

3. Since there is a timer to update the NumberProp with random numbers, this alarm should hit
frequently (this was created in Example 2, Section 3)

a) Once the alarm is added to the data table as shown in the previous step, then the rules
engine should be working

i) You should delete all but a handful of the DemoThings before turning on the alarm, as it
will trigger emails be sent for each thing

ii) This means that if there are 1000 DemoThings, as many as 1000 emails may be received
at one time; test this out with only a handful of DemoThings

b) Check that the AlarmTable property on a thing implementing the DemoTT thing template is
updating, and that the emails are being received

c) Try different rules to ensure everything works as expected

d) To manually fire the alert events, change the value of the NumberProp on a given DemoTT
type thing to any number larger or smaller than 5 plus the previous value

e) Create a mashup called AlarmReviewMashup where the stream entries from the
DemoTT_AlarmStream can be reviewed; create one for events as well or use the same, or
check out Appendix III for a Coffee Machine Demo App that includes this plus other
advanced features.

End Section 3: Review

In this section, we learned how to configure the mailer with Gmail account information and added the
service for sending the email to the end user. Notice how we pull the group to notify from the data
table that stores the rules, so that administrators of the application can configure which groups get
which alerts manually from the provided mashup. Likewise, multiple entries with the same alarm
name can be added to the AlarmDataTable to enable the same notification going to multiple groups.

At this point, the application is complete from end to end. There is a thing shape with all of the
notification and rules logic, there is a mashup for adding rules and a data table to store them. There is
a timer which updates all of the DemoThings for simulation purposes but making these into actual

Developing Great IoT Solutions

 53

remote things is simple: use the RemoteThing template, apply the same thing shapes, and send the
property updates from the Edge. Don’t forget to use the DemoAppUtility thing to generate users and
user permissions (modify the service InitializeUserbaseAndPermissions for new templates and
mashups).

Example Completion – Summary:

This concludes the third example in this document. You should now know how to:

• Create data shapes for events
• Create streams to store past events
• Send emails when events occur
• Subscribe to data change events
• Build a basic rules engine

Appendix I: Definition of Terms

[1] Mashups – Essentially webpages to which end users (employees or customers, depending on the use
case) can navigate in order to review information about the assets and use the application.

[2] IoT Application – Any application built primarily for machine-to-machine, or thing-to-thing, interaction,
where machines can notify other machines of their statuses, order stock on their own, schedule
maintenance, etc., with very limited human interaction required for many features. Humans often use the
application only to review things are working as expected.

[3] Scalability – The ability of an application to go from a very small, demo-like environment (called Proof
of Concept, or PoC) to a very large, fully live environment (called Go Live, or Production). Total number of
things desired should be considered during the design phase, and never overlooked in order to just “get
something working”.

[4] Maintainability – The ability of an application to be upgraded over time, and improved with new
features, including the plan for upgrades and improvements, which should be thought out and considered
during the initial design phase.

[5] KCS – PTC’s Searchable Knowledgebase and first stop shop for all things documentation. Look for the
box which says “Search the Knowledgebase” on the PTC Support Home Page.

[6] Edge devices – Collection of assets, products or devices of some kind which are then sold or rented
out to end customers. These are the fleet of devices which sit out there in the world somewhere, hooking
up to the Foundation via the internet.

[7] Nodes – In a Network, nodes are any device which connects to other devices, which would therefore
include both the fleet of Edge devices, the Foundation, and any other components which utilize the
Foundation server (like external applications).

[8] Controller – In the traditional MVC model for web applications, the Controller is what retrieves data
from the Model and sends it to the View, and vice versa. ThingWorx contains the potential to fulfill all three
components, with the mashups being the View, the Foundation server itself being the Controller, and the
embedded or accompanying database being the Model. Edge devices hook up to the Foundation, the
Controller, which then siphons data from each device into the Model (the database), so it can later be
retrieved on the View (the mashups). For this reason, ThingWorx is said to be a “service provider” at times,
when other external components are used, for example when Windchill is the “resource provider”, taking
on the role of the Model while the Model built into ThingWorx goes unused.

https://www.ptc.com/en/support/article?n=CS266895

Developing Great IoT Solutions

 54

[9] Javascript functions – Javascript (or JS) is a web language which is very versatile and easy to use.
Javascript functions are stored as services in ThingWorx, allowing for developers to build applications very
simply and without much experience.

[10] Repositories – The location on the Foundation server where files are stored (there can be many
repositories).

[11] OOTB – Stands for “Out of the Box”, meaning that the functionality is built-in and should work with little
extra effort.

[12] REST API – REST is a protocol (like a language) used to structure messages sent across the internet. It
is very common for web applications, typically being used to request information from one node to
another. ThingWorx has a REST API built-in, meaning there are a bunch of commands which can be used
to return information independent of the use of a browser, allowing for easier integration of 3rd party apps
which just need to pull data from ThingWorx.

[13] Info Tables – An info table is a JSON object, which just refers to the structure of the message. In
ThingWorx, info tables are used to keep track of temporary information, often being the return result of
services. They can then be iterated through (like a list) and manipulated in some way before being
returned again, or parsed and stored in memory somewhere.

[14] Deadlocks – This occurs when information in a database is “locked” to other processes because of
updates, but the lock won’t release until one of the other processes completes (which it can’t do, because
it needs the lock to open); a catch 22.

[15] Race Conditions – When information is updated from multiple locations in an application, resulting in
incorrect data being stored or displayed, and sometimes even deadlocks depending on the design.

[16] Cost – In Software, the cost of an operation refers to the length of time that operation takes to
complete.

[17] Streams (or Value Streams) – Data structures designed for time series data, which typically update
from data ingestion (value streams) or from processes which then aggregate the ingested data to make it
consumable on mashups (streams).

[18] Data Tables – Data structures which are very much like classical database tables, for information
which will be updated frequently. It is important to ensure the number of things which update the data
table at once are limited (or it will deadlock).

[19] Load Testing – An important step in ensuring an application is ready to go from PoC to Production.
Many devices are created virtually to test how the Foundation will look when many things are connected
at once, and data is created which perfectly mimics the type of data found in Production to prove the
application handles real data correctly (done in Sandbox).

[20] Production – The server on which the public-facing application runs, i.e. the one which customers or
employees use.

[21] JVM Memory – JVM stands for “Java Virtual Machine”, the component of the ThingWorx Foundation
server which actually runs all of the services and allocates the memory required for the application to
function. This has a limited amount of memory, as configured in the Tomcat Java Options (see the
installation guide for details), which should be considered precious.

[22] Session Variables – These are allocations of memory that the JVM uses to keep track of information
throughout a particular user’s session (i.e. the time when they are logged into the Foundation). These take
up memory on both the server and the end user side, and so should be considered expensive.

https://www.ptc.com/en/support/article?n=CS229835

Developing Great IoT Solutions

 55

[23] Developer Tools – This is an application built-in to most browsers which allows for advanced
debugging and performance analysis techniques, as well as assistance with mashup style and layout
development, though that is not discussed here.

[24] Network Requests – These are calls from webpages (mashups) to the various parts of a web
application (the Foundation) requesting specific information for display. Binding data to a widget will result
in a network request upon mashup load.

[25] Query Microservice – This is used to offload the ThingWorx server by allowing query execution to
occur in a separate process on the same or on a different physical machine. Query Microservice is
recommended when the system uses queries that load and retrieve a very large amount of data in-
memory, resulting in slowness or system crashes or when the system experiences slowness and
unresponsiveness due to a large volume of queries executed as part of processing (even if the queries
themselves are actually small, the load can add up). Read more about how to use this feature in the Help
Center.

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FComposer%2FDataStorage%2FValueStreams%2Fquery_microservices.html
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FComposer%2FDataStorage%2FValueStreams%2Fquery_microservices.html

Developing Great IoT Solutions

 56

Appendix II: Quick Tip Chart and References

These topics are listed in the order they are referred to in the document above, with some exceptions
where things are mentioned multiple times. The last entry is a link to the ThingWorx Best Practice Hub, an
excellent resource for all topics not covered here.

Topic Best Practice Note Documentation

Ghost Entities

Call the services EnableThing and
RestartThing after creating a new thing,
and ensure that if an error has occurred,
the thing is deleted using DeleteThing
before the service execution completes.
There is an extension to delete ghost
entities in case they do occur, but this
should prevent them from happening.

KCS Article – ghost entities
Marketplace Extension

Session Variables vs.
Mashup Parameters

Session variables utilize both server-side
and end-user-side memory, and so are
very expensive and if used too much,
can cause performance issues. Try to
avoid info tables as session variables, as
these can be quite large at times.
Mashup parameters store data only on
the end-user-side, and so do not have
the same potential to interfere with
server stability.

KCS Article – sessions variable
best practice with links using
session and mashup parameters
KCS Article – info tables and
memory usage

Collection Widget

So long as the inner mashup makes use
of mashup parameters and is relatively
simple, this can be quite performant.
Likewise, there are configuration options
to improve load performance. Use this
widget to build more advanced grids
which contain charts and other things
unable to be rendered in ordinary grids.

KCS Article – how to use
collection widget
Help Center – configuration
options and properties

Responsive Mashups
for Dynamic Web Pages

Using dynamic mashups as opposed to
static enables the mashup to take up
whatever size is available to the screen,
improving how the mashup looks on a
variety of screens. In Composer, there
are options to view the mashup at
different screen sizes for testing
purposes. To ensure some things are
always placed at the same point on the
screen regardless of screen size, use a
panel within a panel.

PTC Community Thread – build
dynamic mashups
PTC Community Thread –
panels in panels and widget
positioning

Advanced Grid

The Advanced Grid now comes standard
with ThingWorx and has generally
improved performance. The sort feature
allows for a search bar to appear on the
grid itself. When typing into this search
bar, the information passed in is utilized
immediately, and the result is a nice
search aesthetic which can query
against multiple columns at once. The
sort must be manually constructed,
though, so be sure to check out the Help
Center.

Help Center

https://www.ptc.com/en/support/article?n=CS266895
https://www.ptc.com/en/support/article?n=CS198580
https://marketplace.ptc.com/apps/193068/ghost-entities-cleaner#!overview
https://www.ptc.com/en/support/article?n=CS232199
https://www.ptc.com/en/support/article?n=CS266583
https://www.ptc.com/en/support/article?n=CS282939
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/index.html#page/ThingWorx/Help/Mashup_Builder/Widgets/CollectionWidget.html
https://community.ptc.com/t5/ThingWorx-Developers/Mashup-resolution/td-p/520484
https://community.ptc.com/t5/ThingWorx-Developers/Widget-and-screen-resolution/td-p/521800
https://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/index.html#page/ThingWorx/Help/Mashup_Builder/Widgets/AdvancedGrids.html

Developing Great IoT Solutions

 57

Updating Production
Entities (Saving Thing
Templates in Prod)

Never save Thing Templates in
Production during regular business
hours. When a Thing Template is saved,
all Things implementing that Template
must be restarted. If these are Edge
devices, then the logs will be flooded
with errors as these things fail to
connect to their Foundation
counterparts (while the restart is in
process). This can result in a ton of errors
to the logs, server instability, failures to
reconnect, and loss of data (if there is no
failover and things don’t go well). The
best method for updating production
entities is to import the changes all at
once by file or import from storage,
outside of peak business hours (on a
weekend, at night, etc.).

KCS Article – change
management in ThingWorx

Java Runtime Memory
(JVM) – Memory Usage

In Java, Garbage Collection (GC) is
automatic and happens at set intervals.
The ThingWorx Foundation is built on
Java, and so the JVM manages when to
clear out old memory blocks to make
room for new ones. This can mean that
the memory in the PlatformSubsystem
will climb as things are deleted or data
entries removed until the GC is
triggered, and the old memory blocks
removed. It is important to ensure the
Foundation server has enough memory
to run the essential functions and still
grow in size during GC.

KCS Article – Java heap settings
explained and overview of flags

Data Storage in
ThingWorx

There are 4 primary ways to store data,
and each with its own specific purpose
in mind: info tables are for very transient
data, being very memory intensive, and
should be purged often; data tables are
for permanent data stores which are
updated often and from many locations;
streams are for storing aggregated,
historical data; and value streams are for
storing data as it is ingested into the
Foundation server. Purging mechanisms
should be considered required, and data
ingestion should be separated from data
use on mashups as much as possible.

PTC Community Post – where
should I store my TWX data?
KCS Article – technical
distinction (streams, VSs, DTs)
KCS Article – info tables and
memory usage
KCS Article – when to choose
which, data exporting
KCS Article – tuning stream
performance/stream processing
KCS Article – foreign keys (DTs)
KCS Article – purging data
KCS Article – data aggregation

Influx DB

This is a persistence provider option
(introduced in 8.4) which can be
configured alongside the PostgreSQL
database (which handles the property
and entity persistence) to handle the
data itself, the data table, value stream,
and stream content. This data is then
stored in an external database, designed
specifically for ingesting and querying
time-series data in real-time (with purge
and aggregation support on the

Help Center – overview,
installation, configuration details
provided here
PTC Community Post – walk
through with pictures
KCS Article – roadmap does
include further capabilities of
Influx within ThingWorx

https://www.ptc.com/en/support/article?n=CS271995
https://www.ptc.com/en/support/article?n=CS237833
https://community.ptc.com/t5/IoT-Tech-Tips/Where-Should-I-Store-My-Thingworx-Data/m-p/534582
https://www.ptc.com/en/support/article?n=CS204091
https://www.ptc.com/en/support/article?n=CS266583
https://www.ptc.com/en/support/article?n=CS254922
https://www.ptc.com/en/support/article?n=CS240607
https://www.ptc.com/en/support/article?n=CS242572
https://www.ptc.com/en/support/article?n=CS271772
https://www.ptc.com/en/support/article?n=CS277447
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FComposer%2FDataStorage%2FPersistenceProviders%2Fusing_influxdb_as_the_persistence_provider.html
https://community.ptc.com/t5/IoT-Tech-Tips/Using-InfluxDB-as-ThingWorx-8-4-Persistence-Provider/td-p/590112
https://www.ptc.com/en/support/article?n=CS294038

Developing Great IoT Solutions

 58

roadmap). Influx DB is not supported in
Windows and is set up independently
from the Foundation. Export functionality
is currently not supported for Influx (in
version 8.4).

Timers and Schedulers

Whenever possible, do not subscribe to
timers/schedulers on Thing Template
(TT) level, and there should almost never
be a reason to query in TT subscriptions
even if they do prove necessary. Do
subscribe to the timer event on the timer
itself to avoid hitting the event processor
as hard (the PlatformSubsystem is hit
instead, and it is better equipped to
handle the operation). If a query is
needed, do it on the timer itself, and
only once at the start of the subscription.

PTC Community Post – best
practice and when to use

Edge Property Updates

It is almost always better to push
updates from the Edge than to pull them
from the Foundation server. This is
because any communications from the
Edge come from a designated
communications subsystem, separate
from the main memory pull. ThingWorx
is always listening, so may as well put
that memory to work!

KCS Article – property overview
and configuration
KCS Article – subscribed
properties and remote property
updates in TWX

Queries

The query parameter in any service
which retrieves data in ThingWorx is
applied only after the entire data set
(based on the other parameters) is
returned. For this reason, use the
indexed datetime and source fields to
return a limited amount of data (and
improve performance). In Data Tables,
there is the option to index an additional
field (the primary key), as well as make
use of the “id” field for much faster
lookups. For massive queries (those
which store a lot of data in-memory), or
for fixing performance issues when there
is a large volume of queries, consider
using the external Query Microservice,
introduced in 8.4.

Help Center – on queries
Help Center – on data tables,
including indexing fields
Help Center – query
microservice overview and
installation details

Logging Error Messages

To ensure that all things which print to
the logs come from an identifiable
source, format error messages using a
particular formula. This will save so
many headaches later on, when
someone on the team cannot remember
which service possessed the logging
statements (for debugging purposes)
which are now spamming the logs.
Irresponsible logging can prevent other
issues from being resolved quickly at
best, and at worst, cause the server to
crash when the logs are bloated and the
server memory used up. The right

KCS Article – how to use logging
statements and view logs

https://community.ptc.com/t5/IoT-Tech-Tips/Timers-and-Schedulers-Best-Practice/m-p/534667
https://www.ptc.com/en/support/article?n=CS252792
https://www.ptc.com/en/support/article?n=CS254010
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/index.html#page/ThingWorx%2FHelp%2FComposer%2FDataStorage%2FValueStreams%2FUsingTheQueryPropertyHistoryService.html%23
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/index.html#page/ThingWorx/Help/Composer/DataStorage/DataTables/DataTables.html
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FComposer%2FDataStorage%2FValueStreams%2Fquery_microservices.html
https://www.ptc.com/en/support/article?n=CS225420

Developing Great IoT Solutions

 59

format is (where there is an exception err
being caught): logger.warn(me.name
+ ": serviceName: error

message; Exception: " +

err.toString())

Also, note that trace and debug
statements will be the most common,
only turned on and used when things go
very wrong, followed by info statements
(which will normally be visible), and warn
and error, which should always be
visible. A good service will print
something if it is successful (if it is not
run very often) and when something
fails.

Always print the actual error message,
from the exception itself, to ensure that
information isn’t “swallowed” by the log.
Also include the service name and thing
name so that it can be traced back to its
source quickly and efficiently.

Smart Error Logging

Store errors into streams and use rules
engines to keep track of sending
notifications. Streams can be viewed and
interacted with on mashups, providing
the potential for an acknowledgement
mashup, with accompanying email
notification. This prevents administrators
from needing to get into the logs to deal
with application-based or expected
issues. Be careful with using streams for
this purpose, though, since updates are
not immediate and depend on the
stream processor to complete.

KCS Article – How to build a
basic rules engine in ThingWorx
(noting how AddStreamEntry
does not add entries right away)

Data Change Events

Data Change events hit the event
processing subsystem, which has fewer
threads allocated to it than the platform
or stream subsystems. Therefore,
queries within data change events
should be kept to a minimum to ensure
that they complete quickly and release
their threads. Deadlocks in these
subscriptions can and will bring down
the entire server. Limit the number of
total times and the overall runtime of
any queries used for data updates.
Never use long remote service timeouts
in data change events, and avoid remote
service calls altogether.

KCS Article – how to do
complicated event calculations
PTC Community – performance
design, pitfalls, troubleshooting

ThingWorx Best
Practice Article Hub

This KCS Article is kept up-to-date by
ThingWorx technical support with recent
additions to the knowledgebase on the
topic of best practice. Many topics are in
this article which were not mentioned
here.

KCS Article – ThingWorx Best
Practice Hub

https://www.ptc.com/en/support/article?n=CS277057
https://www.ptc.com/en/support/article?n=CS276373
https://community.ptc.com/t5/IoT-Tech-Tips/Performance-Design-Pitfalls-and-Troubleshooting/td-p/535165
https://www.ptc.com/en/support/article?n=CS266895

Developing Great IoT Solutions

 60

Appendix III: Coffee Machine Demo App

Within this download there are three entity files: DemoApp.xml, RulesEngine.xml, and
CoffeeMachineDemoApp.xml. The first of these is simply all of the entities that are created in the
tutorials provided here, save for the rules engine portion, which is found in the second download.
Separating these two components this way allows for the customization of the demo app from the
start, without any risk of overriding those changes when importing the logic for the rules engine later
on.

The third of these files hasn’t been referenced here yet, but it is a complete application designed to
show the best practice for alarms and events tracking in a Smart and Connected Products scenario.
The provided application is not designed to be used directly in production environments. It is instead
designed to demonstrate one of the easiest ways to develop a notifications-based IoT application.

Each region in this coffee machine demo app should correspond to a thing template, and the type of
device should be specified by the applied thing shape. In other words, CoffeeMachineTS replaces
the RulesEngineThingShape on the thing template, but the thing template in this case should be
named like “RegionX_DeviceTypeN” (so for the Coffee Machine App here, you might name one
template “Region1_CoffeeMachine01”). The template also has to be tagged to be picked up by the
roll up logic, with the default tag used here being “Applications:CoffeeDemoApp”.

ln a real application designed like this, you would typically have each thing template refer to a region
or a factory, and then have different thing shapes with different properties and events as needed, but
with similar handling for generating alarms and events. Usually, rules would be shared across all
regions, and to send the emails to different groups based on region in this application, set the
GroupToNotify to “Regional” (the default setting). The subscription to the triggered alarm, located on
the thing shape, can then use the default naming conventions mentioned above. Note that the
initialization services, especially for creating and assigning user permissions, within the
DemoAppUtility thing will need to be modified manually to work with the new entities introduced
here.

The CoffeeMachineTS has lots of services that were not created as a part of the tutorials. These are
all used within the provided mashups. IndividualCoffeeMachineMashup simulates a cash register
interface that would be used both by baristas using the machine, and by those looking at the
machine’s details and alarms and events for analysis and maintenance. Servicing can be requested
or is considered required if parts are malfunctioning, and drinks can be ordered. Note that in order for
this example to be self-contained, none of the properties are updated remotely here. That can be
changed if a remote thing template is used, and the properties are updated by the Edge instead of
upon button click when a drink is ordered. The order button can then just pull the property info from
the Edge, or the property info can be pushed whenever it changes, however it makes the most sense
in your application.

This mashup can be opened from the Administrator view: OverviewCoffeeMachineMashup. This
mashup shows a roll up of all coffee machines with general status information and statistics, as well
as whether or not they are connected and functioning correctly. Double clicking the grid opens a
mashup with the alarms displayed, and entering a note there is how alarms are acknowledged in this
application. The roll up logic runs on a timer also included with this application
(CoffeeMachineRollUpTimer), updating the drink distribution, percent uptime, and longest service
request info every 30 seconds. Clicking the drill down button will open the
IndividualCoffeeMachineMashup for the selected thing.

