
 

 

 

 

 

 

 

 

 

 

 

 
 

Persistent versus Logged Properties 

 
Document Version 1.0 

October 2021 



 

 
1 

 

Copyright © 2021 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved. 

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively 
“PTC”) are subject to the copyright laws of the United States and other countries and are provided under a license 
agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the licensed 
software user the right to make copies in printed form of this documentation if provided on software media, but 
only for internal/personal use and in accordance with the license agreement under which the applicable software 
is licensed. Any copy made shall include the PTC copyright notice and any other proprietary notice provided by 
PTC. Training materials may not be copied without the express written consent of PTC. This documentation may 
not be disclosed, transferred, modified, or reduced to any form, including electronic media, or transmitted or made 
publicly available by any means without the prior written consent of PTC and no authorization is granted to make 
copies for such purposes. 

Information described herein is furnished for general information only, is subject to change without notice, and 
should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability for any 
errors or inaccuracies that may appear in this document. 

The software described in this document is provided under written license agreement, contains valuable trade 
secrets and proprietary information, and is protected by the copyright laws of the United States and other 
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any 
manner not provided for in the software licenses agreement except with written prior approval from PTC. 

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND 
CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view offenders accordingly. We 
do not tolerate the piracy of PTC software products, and we pursue (both civilly and criminally) those who do so 
using all legal means available, including public and private surveillance resources. As part of these efforts, PTC 
uses data monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our 
software. This data collection is not performed on users of legally licensed software from PTC and its authorized 
distributors. If you are using an illegal copy of our software and do not consent to the collection and transmission 
of such data (including to the United States), cease using the illegal version, and contact PTC to obtain a legally 
licensed copy. 

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright notice, of 
your PTC software. 

United States Governments Rights 

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.R. 
2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014) for civilian 
agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1 (a) (Policy) and 
227.7202-3 (a) (Rights in commercial computer software or commercial computer software documentation) (FEB 
2014) for the Department of Defense, PTC software products and software documentation are provided to the 
U.S. Government under the PTC commercial license agreement. Use, duplication or disclosure by the U.S. 
Government is subject solely to the terms and conditions set forth in the applicable PTC software license 
agreement. 

PTC Inc., 121 Seaport Boulevard, Boston, MA 02210 USA   



 

 
2 

 

Table of Contents 

Document Version History ............................................................................................................................................................. 2 

Executive Summary ............................................................................................................................................................................ 3 

Introduction ............................................................................................................................................................................................... 4 

Example Scenario 1 – Simple Property Example ........................................................................................................... 5 

Example Scenario 2 - Monitoring a Large Connected Product Fleet ............................................................. 6 

When Should I Use Persistent Properties Then? ........................................................................................................... 7 

The Importance of a Data Retention Policy for Logged Properties at Scale ............................................. 7 

The Best – and Worst – of Both Worlds:  Persistent + Logged Properties .................................................. 8 

Using In-Memory Properties … With Caution! .................................................................................................................... 8 

Summary ..................................................................................................................................................................................................... 8 

 

 

Document Version History 

Revision Date Version Description of Change 

September 2021 0.2 Draft produced on EDC letterhead 

October 2021 0.9 Final Draft 

October 14th 1.0 Published to PTC Community 

 

 

 

 

  



 

 
3 

 

Executive Summary 

ThingWorx provides several different “aspects” (or storage options) for how property values are 
saved.  These options each have different implications for performance and scalability.  
Understanding those implications is important for designing a scalable IOT solution. 

 

Persistent Properties are best used for non-telemetry data which will change infrequently (for 
example only a few times in a day) and where historical values are not required.  When 
overused, Persistent properties can put significant pressure on the database layer of your 
ThingWorx implementation, leading to poor performance of your IOT application.  As the 
number of Things in your IOT application scales up, the quantity or frequency of persistent 
properties per Thing needs to be carefully considered. 

Logged Properties are best used for telemetry data where historical values need to be retained, 
but also for any other value that is expected to change frequently.  Logged properties can 
create some additional requirements: a process for handling null/default values after restarts, 
more disk space, and a data retention policy. There are benefits as well, though, like more 
flexibility and scalability for the ingestion of larger volumes of data. 

Persistent + Logged Properties perform database operations of both aspects.  Combined use 
should be very limited – only properties that update infrequently (a few times a day), and that 
must be in-memory in the event of a ThingWorx restart. 

In-Memory Only Properties are neither persistent nor logged – they are not stored to the 
database.  These properties can greatly improve scale for values that need to be available for 
the application to drive UIs or compute other derived values that will be stored.  However, high-
frequency updates of in-memory properties can create scale challenges in HA (high availability) 
ThingWorx configurations where memory state needs to be constantly shared between multiple 
ThingWorx nodes. 

 

  

Persistent
Logged

 

FEWER 
WRITES 

 

MORE 
WRITES 



 

 
4 

 

Introduction 

As the Enterprise Deployment Center has worked with a variety of teams on system design and 
optimization, it has become clear that the different options for storing property types, called 
“aspects”, impact scalability. One of the most impactful effects is the difference between a 
“persistent” and a “logged” property. Both property aspects result in the value of the changed 
property being stored in the database, but the way they are stored, as well as the effort required 
to store them, is quite different.   

Understanding these differences can help you make decisions on which is best for your use 
case, and what administration and/or application design considerations each option presents. 
The Thing Properties section of the ThingWorx Help Center provides details on how the 
different aspects behave.  This article will focus on the two most used options: 

Aspect Persistent Logged 
Ideal Use-Case Non-Telemetry: 

Accessed often 
Does not change often 
Latest value only (not time-series) 

Telemetry: 
Changes often 
Time-Series Data  

Where is it stored? 
Persistent Provider Database Value Stream … Data Provider Database 

When is it 
updated? Any and every value change with a newer 

timestamp 

Based on selected “Data Change Type”:  
Most commonly “Always” or “Value” (with 
optional threshold) 

How is it 
persisted? 

UPDATE TABLE property_vtq … INSERT INTO value_stream … 

ThingWorx 
Restart? 

Most-recent value loads into memory at 
startup automatically 

Default Value is used if configured until 
first new value is received 

Things to Consider 
 
• UPDATEs can be slower than INSERTs 
• Does not retain historical values 

 
• Dead/Ghost row cleanup needed in 

database (PostgreSQL or SQLServer) 

• Stores historical values 
• Latest value not automatically loaded 

into memory when ThingWorx starts 
 

• Data Retention Policy: How long to keep 
data before downsampling, archiving, or 
purging? 

 

From a scalability perspective, when comparing “persistent” and “logged”, it is important to think 
about how data flows from the edge through any busines logic your application applies as it is 
ingested before being stored.   

  

https://support.ptc.com/help/thingworx/platform/r9/en/index.html#page/ThingWorx/Help/Composer/Things/ThingProperties/ThingProperties.html


 

 
5 

 

Example Scenario 1 – Simple Property Example 

Let’s take the following data scenario as a simple example, and compare the database activity 
for this scenario with three different priority aspect configurations: 

• There is a fleet of 1,000 connected machines (“assets”) that send data every minute. 
• Assets send the isServicePanelOpen property every minute, whether changed or not. 
• On average, the service panel is opened and then closed twice per day on each asset. 

With “persistent”, each value from the edge triggers a database UPDATE, whether or not it is 
different than the previous value.  This scenario generates 1,440,000 UPDATEs per day. 

(1 𝑈𝑃𝐷𝐴𝑇𝐸) ×  (60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠) × (24 ℎ𝑜𝑢𝑟𝑠) × (1,000 𝑎𝑠𝑠𝑒𝑡𝑠) 

= 𝟏, 𝟒𝟒𝟎, 𝟎𝟎𝟎 𝑼𝑷𝑫𝑨𝑻𝑬𝒔 𝒑𝒆𝒓 𝒅𝒂𝒚 

Also remember that each UPDATE is treated like two database operations: a new row is added, 
and the old row is marked as a ghost row (in SQL Server terms) or dead tuple (in PostgreSQL 
terms) for later cleanup.  Think of this like the database applying an “immediate, zero data 
retention policy” – you are purging historical data from your system as quickly as the database 
engine can get to its maintenance tasks. 

That’s a lot of database activity for one property on a fairly small asset fleet.  This activity 
multiplies quickly as asset count, property count, and data frequency increase. 

Now, let’s change this scenario to a “logged” property set to the “Always” data change type.  This 
still generates 1,440,000 database operations per day, but now they are INSERTs. 

INSERTs are typically quicker than UPDATEs, as they do not result in creating a ghost row / 
dead tuple.  However, you are trading speed for storage; your value stream will grow by 
1,440,000 rows every day.  It is important to determine if this historical data has analytical value, 
how long it needs to be in “hot” storage within ThingWorx for your use-cases, and after that time 
if it should be archived to a secondary database, downsampled to reduce storage requirements, 
or simply deleted it from the system. 

Finally, let’s look at the third, and likely best option for this particular scenario: a “logged” 
property set to the “Value” data change type.  Now, no matter how many times the edge sends 
the same value for the same property, it will only be stored in the value stream if it has changed: 

(1 𝐼𝑁𝑆𝐸𝑅𝑇) ×  (𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 2 𝑜𝑝𝑒𝑛 + 2 𝑐𝑙𝑜𝑠𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦) × (1,000 𝑎𝑠𝑠𝑒𝑡𝑠) 

= 𝟒, 𝟎𝟎𝟎 𝑰𝑵𝑺𝑬𝑹𝑻𝒔 𝒑𝒆𝒓 𝒅𝒂𝒚 

We have gone from 1,440,000 database transactions down to 4,000, on average, per day. This 
is an enormous reduction in database activity, and yet none of the information that this specific 
sensor provides is lost in the process. 

  



 

 
6 

 

Example Scenario 2 - Monitoring a Large Connected Product Fleet 

Let’s apply this logic to a more complete scenario: a fleet of refrigerated vending machines that 
send data about operations (keeping the product cold) and consumables (drinks, coins, and bills) 
to plan service visits. 

75,000 Refrigerated Vending Machines 
Data Refresh Rate : All Properties in a Batch, once every 10 minutes 

Property Type Details 
1.  serialNumber String Unique identifier of this vending machine 
2.  locationAddress String Machine location for service 
3.  productid_1 

String Used to indicate which beverage type is 
stocked in the machine 

4.  productid_2 
5.  productid_3 
6.  productid_4 
7.  itemsRemaining_1 

Integer 
0 … 24 

Generate alert if running out of one product 
type 

8.  itemsRemaining_2 
9.  itemsRemaining_3 
10.  itemsRemaining_4 
11.  interiorTemperature 

Number Track product temperature and refrigerator 
operations. 12.  exteriorTemperature 

13.  runtimeSinceService Integer 
Seconds the machine’s cooling system has 
been active since last service  

14.  serviceDoorStatus String “Open”, “Closed”, “Locked” 
15.  numCoin_5 

Integer 
0 … 100 

Generate alert if machine has too much or too 
little of one currency type 

16.  numCoin_10 
17.  numCoin_25 
18.  numCoin_100 
19.  numBill_100 
20.  numBill_500 

 
As the devices send once every ten minutes, the average data rate is fairly low.   

(75,000 𝑎𝑠𝑠𝑒𝑡𝑠) ×
(20 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠)

(60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) × (10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
 = 2,500 𝑊𝑟𝑖𝑡𝑒𝑠 𝑝𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 

However, if several machines were to send updates at roughly the same time the server could 
see large pulses of data all at once, so we should still be thoughtful about how we store these 
properties to scale effectively. 

In this scenario, the only properties that likely should be “persistent” would be serialNumber 
and locationAddress as these will rarely, if ever change.  The others could potentially provide 
a different value every data update, so “logged” is the best choice. 

Depending on how often the type of drink in the machines is changed, the four 
productid_<num> fields could be “persistent” or “logged”, but having them as “logged” creates 
potential for analytical use later (for example, how did the rate of drink purchases increase over 
time for cola, root beer, or ginger ale)? 



 

 
7 

 

When Should I Use Persistent Properties Then? 

Persistent Properties make sense for properties that change *very* infrequently – typically non-
telemetry data that changes only a handful of times per day – and for use cases where the 
latest value for that property must always be in memory, including if ThingWorx has been 
restarted, for your application logic to function.   

If a property value changes more frequently than that, say once an hour for example, then you 
may have a more scalable solution if such a property is “logged”. Write your application business 
logic to handle the situation that the latest value may not be in memory if ThingWorx is restarted 
for some reason (i.e. the application logic should first check if the value is in memory, and if not, 
then query it from the database). 

Also, keep in mind the planned size of your asset fleet when looking at the quantity and 
frequency of persistent properties.  “10 Persistent properties that update once an hour” is likely 
fine if you only have dozens of connected assets… but if you plan to have hundreds or thousands 
of connected assets, this is likely to become a scale issue. 

The Importance of a Data Retention Policy for Logged Properties at Scale 

As the examples illustrated, logged properties will typically scale far more effectively for data 
that is expected to change.  However, by their nature logged properties will create additional 
application and infrastructure requirements that you need to address. 

As logged properties are a Value Stream (time-series data, i.e. a stream of time-stamped values), 
your database will now be storing multiple data points for each Thing-property pair, whereas 
with a persistent property it was overwriting or replacing the previous value.  If that time-series 
data is allowed to build up, it can lead to poor IOT application performance for query operations, 
as well as excessive disk space requirements. 

Defining your data retention policy becomes important as it helps you define how much data 
history your use case(s) require to deliver their business value. Once data ages past this point, 
you can: 

• Downsample: Could older “one data point every five minutes” data be replaced with a 
single value for the hour?  Could use the: Last value?  Highest or Lowest value?  

• Aggregate: Could older “one data point every five minutes” be reduced to a set of 
derived values?  Could use the: Minimum, Maximum, Median, Average… 

• Archive: If older data may still be needed in the future, where should it be transferred to?  
Perhaps a simple file or secondary data store/lake, something with better compression 
for long-term “cold storage”. 

• Purge: Once no longer needed and/or archived/moved elsewhere, how/when will data 
be removed from the system? 

Performing these types of data retention tasks will require some compute resources to perform 
the desired aggregation or data transfer/removal operations, but this type of data clean-up 
allows to do have much more control over the performance of your IOT application as the scale 
of your overall implementation increases. 



 

 
8 

 

The Best – and Worst – of Both Worlds:  Persistent + Logged Properties 

For scenarios where a property changes infrequently, but is used by business logic frequently, 
the “if in memory get, else query from database” approach may not be viable. In these scenarios, 
combining Persistent and Logged together appears to satisfy both of these requirements, but it 
is important to understand what is happening behind-the-scenes with this combination and its 
implications for scalability.   

Quite simply, a property marked as both persistent and logged will do both sets of database 
operations.  It will UPDATE the database table used to store persistent values, *and* it will 
INSERT into the database table used to store logged value stream data.  If “persistent+logged” is 
mistakenly used on a property where there is a high frequency of data change, this can result in 
significant scalability limitations. A “persistent+logged” property makes sense in similar scenarios 
as a “persistent only” property – the same “very infrequent data change” guidance would apply 
here (i.e. my business logic needs the current value of this property in memory at all times), with 
the added business requirement that the history of this property needs to also be retained. 

Using In-Memory Properties … With Caution! 

One alternative design pattern is a property that is *neither* persistent nor logged – stored in-
memory only, with a second “logged” property that stores data when necessary.  Then, in the 
event of a ThingWorx restart, a “pre-load” service can be written to run during the restart, read 
the latest values out of the “logged” property, and put them into the in-memory cache property. 

This approach can work for a small number of properties, helping to relieve database pressure 
at the cost of ThingWorx memory; more properties means greater memory requirements for the 
system.  At larger volumes, this approach could yield worse performance than the initial 
problem you were trying to solve – especially in HA (high availability) ThingWorx configurations. 
In a clustered (HA) ThingWorx implementation, this impact is multiplied by the fact that multiple 
nodes share a common memory state; the increase in memory and network traffic to replicate 
these changes across all ThingWorx and Ignite nodes can result in performance issues by itself. 

Summary 

The storage mechanism you choose for the properties in your ThingModel can have a large 
impact on the scalability of your solution as a whole.  For any data that will change frequently 
(more than a few times per day), logged properties are typically the most scalable solution. 
However, logged property values can require some additional thought towards your disk space 
and data retention requirements, as well as some additional handling within your application for 
scenarios where the value being requested has not been sent since the last ThingWorx restart. 
Once addressed, this approach uses the more efficient database operation to store values, and 
takes advantage of the ValueStream Subsystem, providing the most flexibility in terms of 
database options and tuning. 


