
WebSocket-Based Edge
MicroServer and Lua Script

Resource Developer’s
Guide

Version 5.4.9
May 2020

Copyright © 2020 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies (collectively
"PTC") are subject to the copyright laws of the United States and other countries and are provided under a
license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the
licensed software user the right to make copies in printed form of this documentation if provided on software
media, but only for internal/personal use and in accordance with the license agreement under which the
applicable software is licensed. Any copy made shall include the PTC copyright notice and any other
proprietary notice provided by PTC. Training materials may not be copied without the express written consent
of PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent of
PTC and no authorization is granted to make copies for such purposes. Information described herein is
furnished for general information only, is subject to change without notice, and should not be construed as a
warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

PTC regards software piracy as the crime it is, and we view offenders accordingly. We do not tolerate the
piracy of PTC software products, and we pursue (both civilly and criminally) those who do so using all legal
means available, including public and private surveillance resources. As part of these efforts, PTC uses data
monitoring and scouring technologies to obtain and transmit data on users of illegal copies of our software.
This data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection and
transmission of such data (including to the United States), cease using the illegal version, and contact PTC to
obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or copyright
notice, of your PTC software.

UNITED STATES GOVERNMENT RIGHTS

PTC software products and software documentation are “commercial items” as that term is defined at 48 C.F.
R. 2.101. Pursuant to Federal Acquisition Regulation (FAR) 12.212 (a)-(b) (Computer Software) (MAY 2014)
for civilian agencies or the Defense Federal Acquisition Regulation Supplement (DFARS) at 227.7202-1(a)
(Policy) and 227.7202-3 (a) (Rights in commercial computer software or commercial computer software
documentation) (FEB 2014) for the Department of Defense, PTC software products and software
documentation are provided to the U.S. Government under the PTC commercial license agreement. Use,
duplication or disclosure by the U.S. Government is subject solely to the terms and conditions set forth in the
applicable PTC software license agreement.

PTC Inc., 121 Seaport Blvd, Boston, MA 02210 USA

Contents

Introducing the ThingWorx WS EMS...12
Features of the ThingWorx WS EMS ..13
WS EMS and ThingWorx Platform ...15

Getting Started with the ThingWorx WS EMS ..19
Components to Install ...20
Downloading and Installing the ThingWorx WS EMS and LSR20
Create an Application Key for WS EMS ..24
Configuring the WS EMS...26
Configuring Secure Connections (SSL/TLS) ...30
Authenticating and Binding ..49
Protecting Data with Encryption ...50
Running the ThingWorx WS EMS ..52
Verifying Your Connection ...57

Additional Configuration of WS EMS...58
Viewing All Configuration Options ...60
Configuring the Logger Group..60
Configuring the HTTP Server Group...63
Configuring the WebSocket Connection ...66
Configuring Duty Cycle Modulation ..69
Configuring a Proxy Server..72
Storing Messages Received While WS EMS Is Offline ..72
Configuring Automatic Binding for WS EMS..73
Auto-bound Gateways...75
Configuring File Transfers ...77
Best Practices for Transferring Large Files..80
Configuring Edge Settings for Tunneling...83
Configuring the WS EMS to Listen on IP Other Than localhost88
Example Configurations ..89

Using ThingWorx Asset Advisor with WS EMS and LSR...93
Features of ThingWorx Asset Advisor to Use with WS EMS and LSR94
Prerequisites to Setting Up a WS EMS Thing for Asset Advisor95
Administrator Tasks for Using Remote Access, File Transfers, and SCM in Asset
Advisor ...97

Setting Up a WS EMS or LSR Thing for the Remote Access and Control
Application.. 102

Setting Up to Use ThingWorx Software Content Management (SCM) with WS
EMS Devices .. 105

Lua Scripts and Software Content Management (SCM) 107

REST Web Services and WS EMS ... 113

3

Updating, Deleting, and Executing with REST Web Services................................ 115
Reading and Writing Properties Using the REST Web Services............................ 117
Transferring Files through the REST Web Services ... 119
REST Web Services Supported by WS EMS .. 121
Running RESTAPI Calls with Postman on WS EMS and LSR.............................. 134

Getting Started with the Lua Script Resource... 137

Configuring a Lua Script Resource ... 138
Configuring the Connnection from the LSR to the WS EMS.................................. 139
Configuring the HTTP Server for the LSR (SSL/TLS Certificate) 140
Configuring the Logger for the LSR .. 143
Configuring Edge Things... 145
Configuring the scanRateResolution .. 146

Running the Lua Script Resource ... 148

Configuring a Template for the Lua Script Resource... 150
Including a Data Shape ... 151
Configuring the Module Statement ... 151
Configuring Data Shapes .. 151
Defining Properties .. 152
Defining Services.. 155
Implementing Services Using the Lua Script Engine .. 156
Configuring Tasks ... 157

Examples of Configuring Secure Communications between the WS EMS and an
LSR .. 159
No Security — for Testing ONLY .. 160
Medium Security... 160
High Security.. 163

Troubleshooting the WS EMS and the LSR ... 166
Troubleshooting the WS EMS.. 167
Troubleshooting File Transfers When Using Automatic Binding 167
Running on a Windows-based Operating System.. 169
Troubleshooting the Lua Script Resource .. 169

Appendix A.ThingWorx Base Types.. 171
ThingWorx Base Types ... 172

Appendix B.Remote Things.. 174
About Remote Things ... 175
Remote Thing Configuration at the Device.. 175
Configure Properties for Remote Things... 176
Configure Services for Remote Things ... 177

4 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Document Revision History
Revision
Date

Version Description of Change

June 2020 5.4.9 Updated the instructions for creating a self-
signed certificate. Refer to Creating a Self-
Signed Certificate - for Testing Purposes
ONLY on page 41.

April 2020 5.4.8 Based on security fixes in this release, updated
related topics:
• Data security library:

○ Protecting Data with Encryption
on page 50: Formerly entitled
“Enabling Encryption”, this topic
provides details about automatic
encryption of WS EMS and LSR
configuration files on startup as well as
the how to enable encryption.

○ Encrypting Application Keys,
Passwords, and Passphrases on page 36

○ New topic, Certificate Fingerprint
Validation on page 45

• Configuring Secure Connections (SSL/
TLS)
on page 30

• Using a Custom Certificate and Private
Key
on page 40

• Configuring the HTTP Server Group on
page 63

November
2019

5.4.7 Changes related to upgrading to OpenSSL
1.1.1c.

June 2019 5.4.6 Changed version of Open SSL to 1.0.2r.
Also removed mention of AxTLSsince it is no
longer provided in the distribution bundle.

February 2019 5.4.5 Added chapter on setting up WS EMS to use
ThingWorx Asset Advisor for Remote Access,
File Transfers, and Software Content
Management (SCM). See Using ThingWorx
Asset Advisor with WS EMS and LSR

6

Revision
Date

Version Description of Change

on page 93. Also added a topic on creating an
application key for a WS EMS in ThingWorx
Composer. See Create an Application Key for
WS EMS
on page 24.

December
2018

5.4.5 Updated for removal of the built-in certificate.
Instructions for migrating to a custom
certificate from the built-in certificate on page
38 are provided for customers who have
previously used the built-in (“default”)
certificate. Added instructions for creating a
private key, self-signed certificate, CSR,
certificate chain, and Certificate Authority List
on page 40.
Updated for new configuration option to
specify cipher suites on page 37 set for the
Edge device to use when communicating with
the ThingWorx Platform.

October 2018 5.4.4 Changed the section, Configuring the
WebSocket Connection on page 66, to remove
the max_frame_size property.

September
2018

5.4.3 Changed the section on Duty Cycle
Modulation on page 69, based on the software
changes for the 5.4.3 release.

July 2018 5.4.2 Added new topic, Running RESTAPI Calls
with Postman on WS EMS and LSR on page
134, and updated the HTTP Server
configuration topics for the WS EMS and LSR
with the new parameters. See Configuring the
HTTP Server Group
on page 63 and Configuring the HTTP Server
for the LSR (SSL/TLS Certificate)
on page 140.
Added notes about using the colon (:)
character in a username to the topics
wherein a username is configured. This
includes notes in the topics in Updating,
Deleting, and Executing with REST Web
Services on page 113.

7

Revision
Date

Version Description of Change

May 2018 5.4.1 • Added information about support for
simplified infotables in the REST Web
Service services and a note in the TestPort
service on page 132 referring to this
information. See the Note in REST Web
Services Supported by WS EMS on page
121.

• Added information about the requirement
for setting the restart parameter in the
config.json file of the WS EMS. See
Setting an Option to Use the Restart REST
Service on page 60

• The chapter, Getting Started with the Lua
Script Resource on page 137, has a new
sub-section, called Configuring a Lua
Script Resource on page 138, that provides
security information for the LSR (HTTP
Server on page 140 and Connection to WS
EMS on page 139).

January 2018 5.4.0 Restored missing code example for Gateway
Mode with Explicitly-Defined Remote Things.
on page 90

November
2017

5.4.0 Revisions for change to support for OpenSSL
libraries, which are now the default security
libraries instead of axTLS. axTLS can still be
used, but is no longer the default. Added new
appendix with configuration examples for WS
EMS and LSR for different levels of security.

June 2017 5.3.4 Revisions for changes to log file, including
limitation for size of log files, log message
size, and size of chunk to write before flushing
to disk. Also the same format for both log
messages written to console and to persisted
log files. Both are all text. The timestamps
now show actual time instead of time that the
messages were written to the stream in the
logger thread (this affects WS EMS and LSR).

May 2017 5.3.3 Added information for new configuration
option, tick_resolution.

8

Revision
Date

Version Description of Change

:
Revised duty cycle description. Removed
MODBUS information.

February 2017 5.3.2, build 1693 Fixed config examples.
April 2016 5.3.2 Revised the contents of the distribution bundle

to reflect changes. .
Added section on using FIPS.
Added proxy configuration changes for Tunnel
Manager.

January and
February 2016

5.3.1 Added the REST Web Services for WS EMS
to this document.
Reorganized this document.
Updates for config.json.complete.
Added installation script information for WS
EMS.
Added the versions of libraries required for
supported Linux platforms.

October 2015 5.3.0 Initial version of this guide.

9

About This Guide
TheThingWorx WebSocket-based Edge MicroServer (WS EMS) is used to
provide a simple means for remote devices to connect quickly and securely to a
ThingWorx Platform.
This document describes how to install, configure and run the WS EMS and the
Lua Script Resource (LSR). It also explains how to set up, and use ThingWorx
Asset Adviisor with your WS EMS and LSR devices.

Audience
This document is intended for developers with at minimum a basic knowledge of
JSON and the Lua scripting language. In addition, you need to be familiar with
ThingWorx Platform, its concepts, and ThingWorx Composer.

Note
This document is accurate at the time of the software release. The content is
also available on the PTC ThingWorx Help Centers page of the PTC Support
site. From this page, follow the link to the ThingWorx WebSocket-based Edge
MicroServer (WS EMS) and Lua Script Resource (LSR)Help Centerr to see
the latest documentation (v.5.4.6 and later). This help center is updated if and
when additional information becomes available.

To see documentation from v.5.4.5 or earlier, go to the original ThingWorx
Edge SDKs and ThingWorx WebSocket-based Edge MicroServer Help Center.

Technical Support
Contact PTC Technical Support via the PTC Web site, phone, fax, or e-mail if you
encounter problems using your product or the product documentation.
For complete details, refer to Contacting Technical Support in the PTC Customer
Service Guide. This guide can be found under the Related Resources section of the
PTC Web site at http://www.ptc.com/support/
The PTC Web site also provides a search facility for technical documentation of
particular interest. To access this search facility, use the URL above and search the
knowledge base.
You must have a Service Contract Number (SCN) before you can receive
technical support. If you do not have an SCN, contact PTC Maintenance
Department using the instructions found in your PTC Customer Service Guide
under Contacting Your Maintenance Support Representative.

10

https://support.ptc.com/apps/help_center/brand=Thingworx?redirect=no
https://support.ptc.com/apps/help_center/brand=Thingworx?redirect=no
https://supportdev.ptc.com/help/edge_microserver/r5.4.6/en/#page/edge_microserver%2Fc_ems_wsems_help_center_welcome.html%23
https://supportdev.ptc.com/help/edge_microserver/r5.4.6/en/#page/edge_microserver%2Fc_ems_wsems_help_center_welcome.html%23
https://support.ptc.com/help/thingworx_edge_sdks_ems/wsems_545/en/
https://support.ptc.com/help/thingworx_edge_sdks_ems/wsems_545/en/
http://www.ptc.com/support/

Documentation for PTC ThingWorx Products
You can access PTC ThingWorx documentation, using the following resources:

• PTC ThingWorx help centers page, which provides links to all ThingWorx
help centers.

• ThingWorx Documentation Resources, which provides links to both
ThingWorx Help Centers and to ThingWorx PDF documents, including
release notes, support matrices, installation and administration, best practices,
and developer guides.

• PTC ThingWorx Reference Documentation — The Reference Documents
pages provide access to the PDF documents available for all PTC ThingWorx
products.

A Service Contract Number (SCN) is required to access the PTC
documentation from the Reference Documents website. If you do not know
your SCN, see “Preparing to contact TS” on the Processes tab of the PTC
Customer Support Guide for information about how to locate it: http://support.
ptc.com/appserver/support/csguide/csguide.jsp. When you enter a keyword in
the Search Our Knowledge field on the PTC eSupport portal, your search
results include both knowledge base articles and PDF guides.

Comments
PTC welcomes your suggestions and comments on our documentation. To submit
your feedback, you can:

• Send an email to documentation@ptc.com. To help us more quickly address
your concern, include the name of the PTC product and its release number
with your comments. If your comments are about a specific help topic or
book, include the title.

• Click the feedback icon in any PTC ThingWorx Help Center toolbar and
complete the feedback form. The title of the help topic you were viewing
when you clicked the icon is automatically included with your feedback.

11

https://www.ptc.com/en/support/help/Thingworx
https://www.ptc.com/en/support/help/thingworx_doc_resources
https://www.ptc.com/en/support/refdoc
http://support.ptc.com/appserver/support/csguide/csguide.jsp
http://support.ptc.com/appserver/support/csguide/csguide.jsp
mailto:documentation@ptc.com

1
Introducing the ThingWorx WS

EMS
Features of the ThingWorx WS EMS...13
WS EMS and ThingWorx Platform ..15

This section provides an overview of the ThingWorx WS EMS, explaining the
relationship between theWS EMS and a ThingWorx Platform instance, and
summarizes the purpose and key features of the WS EMS.

12 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Features of the ThingWorx WS EMS
This section presents an overview of the capabilities of the ThingWorx
WebSocket-based Edge MicroServer (WS EMS). The sections below describe the
features that enable your edge devices to communicate with the ThingWorx
Platform:

1. Connecting to ThingWorx on page 13
2. AlwaysOn™ Protocol on page 13
3. Security on page 14
4. Lua Script Resource (LSR) on page 15
5. HTTP Interface for REST Web Services on page 15
6. Support for ThingWorx SCM Extension in ThingWorx Asset Advisor on page

15

Connecting to ThingWorx
Your Edge devices collect data and respond to commands. How do you get that
data to the ThingWorx Platform? It is possible to use REST Web Services over
HTTP/HTTPS. However, that option tends to have a high connection overhead.
Another alternative is MQTT, which requires a server and additional open ports.
If you need a fast connection that stays on continuously and is always ready to
relay your data to the server and execute commands using existing open ports on
your firewall, the WS EMS and LSR can provide this connection for your devices.
The WS EMS uses the ThingWorx AlwaysOn protocol, which is based on the
Open WebSocket Standard RFC6455 (https://tools.ietf.org/html/rfc6455). If you
need to create an application for a resource-constrained devices, consider the
ThingWorx Edge C SDK. The C SDK also uses the AlwaysOn protocol and
enables you to write edge applications with minimal footprints.

AlwaysOn™ Protocol
The ThingWorx AlwaysOn protocol is a binary protocol that uses the WebSocket
protocol as its transport. The WS EMS uses the AlwaysOn protocol for
communications with WS EMS. This protocol provides a number of benefits:
• The devices that are running a WS EMS initiate all connections, which

eliminates the need to open ports for inbound connections if the edge devices
are deployed behind a firewall.

• The AlwaysOn protocol uses HTTP and the standard HTTP/HTTPS ports (80
and 443) to initiate and maintain connectivity, which eliminates the need for
opening secondary ports for outbound communications.

• The protocol supports the TLS standard for securing the connection to a
ThingWorx Platform. Refer to the section below, Security on page 14, for
more information.

Introducing the ThingWorx WS EMS 13

https://tools.ietf.org/html/rfc6455

• Once a connection is established, AlwaysOn binary messages are passed
between the Edge device and ThingWorx Platform. AlwaysOn binary
messages do not require re-initiating the HTTP connection for each request
and therefore do not require the additional overhead of the standard HTTP
messages. A ping/pong exchange of messages between a WS EMS and a
ThingWorx Platform keep the connection alive during periods when the
connection might be closed due to inactivity..

• The connections are persistent, which allows the WS EMS to make outbound
requests to an Edge device. ThingWorx Platform can send requests to read or
write properties, and to invoke services at the device, all with very low
latency.

For devices that need to be offline or that do not need to be constantly connected,
the WS EMS also supports duty cycle modulation. This feature allows developers
to configure the periods of time that the device running the WS EMS will be
online and offline. For more information, refer to Configuring Duty Cycle
Modulation on page 69.

Security
The following default settings for the configuration of WS EMS support secure
communications:
• Encryption — By default, the WS EMS always attempts to connect to a

ThingWorx Platform and communicate with it using TLS. The WS EMS and
Lua Script Resource use a data security library that provides automatic
encryption of sensitive configuration data, such as application keys and
passwords, on startup. For details, refer to Automatic Configuration
Encryption on page 52 in the topic, Protecting Data with Encryption on page
50. With this data security library, you no longer need to manually encrypt this
sensitive data and copy it into the config.json file of your WS EMS or the
config.lua file of your LSR.

• Certificates — By default, the WS EMS attempts to validate the certificate
presented by ThingWorx during TLS negotiation. For details, refer to Setting
Up Security for the WS EMS on page 31 and Using a Custom Certificate and
Private Key on page 40.

• The following additional security features are supported:
○ TLS Host Name Validation on page 36
○ Configuring the WS EMS to Use a Different Certificate Chain for Edge to

Edge Communications (Optional) on page 45
○ Certificate Fingerprint Validation on page 45

14 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Note
Starting with release 5.4.7 of the WS EMS, the distribution bundles for Linux and
Windows have version 1.1.1 of OpenSSL binaries for secure connections. This
version of OpenSSL implements TLS v.1.3, which you can between the WS EMS
and an LSR. Once the ThingWorx Platform is updated to support TLS v.1.3, you
will be able to use TLS v.1.3 between the WS EMS and the platform.

Lua Script Resource (LSR)
The optional Lua Script Resource (LSR) is a statically linked application that is
used to run Lua scripts and configure Things (devices) for integration with the
host system. The LSR supports secure HTTP connections, and as of release 5.4.0,
you can customize the certificate or private key that you want to use.

HTTP Interface for REST Web Services
In addition to the AlwaysOn interface, the WS EMS has an HTTP interface that
supports REST Web Service calls. This HTTP interface allows other applications
to interact with a ThingWorx Platform through the AlwaysOn connection of the
WS EMS. Since this other interface is HTTP, a custom application or the Lua
Script Resource can be on a machine that is separate from the WS EMS and still
communicate with it. The HTTP/REST interface of the WS EMS is a reflection of
the REST interface of WS EMS.

Support for ThingWorx SCM Extension in ThingWorx Asset Advisor
The WS EMS and LSR support the use of the file-based package feature of the
ThingWorx SCM Extension for the ThingWorx Platform. If you have this
extension and ThingWorx Asset Advisor installed (imported) on your ThingWorx
Platform, you can use SCM to send software and firmware updates to Edge
devices that are running WS EMS or the LSR. To set up SCM for your devices,
refer to Using ThingWorx Asset Advisor with WS EMS and LSR on page 93.

WS EMS and ThingWorx Platform
The WS EMS is a stand-alone application that you can install on a remote device.
Once configured and running, the WS EMS establishes ™AlwaysOn, bidirectional
communications between the device and the ThingWorx Platform. The WS EMS
uses a small footprint, and supports a variety of operating systems and
architectures. This flexibility allows the WS EMS to work with a large number of
devices to provide an easy way to establish communication between an Edge
device and a ThingWorx Platform instance. You can use ThingWorx Composer to

Introducing the ThingWorx WS EMS 15

interact with the Edge devices that are running the WS EMS, and using
ThingWorx Mashup Builder, you can build interactive, browser-based mashups
for users who monitor the devices..

The Connection Sequence
The process of connecting to a ThingWorx Platform instance consists of three
main steps: Connect, Authenticate, and Bind. The WS EMS performs the first two
steps. Then, the WS EMS works with the Lua Script Resource or a custom
application to perform the third step. Here are the steps in more detail:
1. Connect — The WS EMS opens a physical WebSocket to a ThingWorx

Platform instance, using the host and port specified in its configuration file. If
configured, SSL/TLS is negotiated at this time.

2. Authenticate — The WS EMS sends an authentication message to the
ThingWorx Platform instance. This message must contain an application key
that was previously generated by an administrator user.

Upon successful authentication, the WS EMS can interact with the ThingWorx
Platform instance, according to the permissions applied to its application key.
For the WS EMS, this implies that any client that makes HTTP calls to its
REST interface can access functionality on the ThingWorx Platform instance.
For this reason, the WS EMS is set by default to listen for HTTP connections
on localhost (port 8000). You can change this listening port in the
configuration file for the WS EMS.

At this point, the WS EMS can make requests to the ThingWorx Platform
instance and interact with it, much like an HTTP client can interact with the
REST interface of the platform instance, but the instance cannot direct
requests to the Edge device.

3. Bind — To enable the ThingWorx Platform instance to send requests to the
WS EMS, the WS EMS works with the Lua Script Resource (or custom
application) to send a BIND message to the ThingWorx Platform instance on
behalf of the devices. Note that this step is optional, if you do not want the
devices to receive and process requests from the platform instance. It is
required if you want to transfer files from the platform instance to your
devices or if you want to use tunneling.

The BIND message can contain one or more names or identifiers for the
devices. Note that corresponding Remote Things must have been created on
the ThingWorx Platform instance to represent your Edge devices. Remote
things are things that are created using the RemoteThing Thing Template (or
one of its derivatives) in ThingWorx platform. When it receives the BIND
message, the platform instance associates the matching Remote Things that it
has with the WebSocket that received the BIND message. This association

16 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

allows the instance to use the WebSocket to send requests to the Edge devices,
and update the isConnected and lastConnection time properties for the
corresponding Remote Things on the ThingWorx Platform instance.

The WS EMS can send an UNBIND message to the ThingWorx Platform
instance that removes the association between the Remote Things on the
instance and the WebSocket. The isConnected property is then updated to
false.

Deployment
Once you have properly configured and integrated the WS EMS and Lua Script
Resource (or your custom application), you can deploy them in one of the
following ways:
• Embedded Deployment — Integrate the WS EMS and Lua Script Resource

(or your custom application) directly into the application software stack of the
Edge device.

• Tethered Deployment — Deploy the WS EMS to a simple black-box that
connects to the diagnostic and sensor ports of an intelligent device. Deploy the
Lua Script Resource or your custom application either on the same black-box,
or on the intelligent device.

• Networked Gateway Deployment — Deploy the WS EMS on a simple server
appliance that exists on the same network as a set of intelligent devices (for
example, sensor networks or clusters of network-capable equipment),. Then,
deploy the Lua Script Resource or your custom application on other hardware
on the same local network.

Configuration Overview
To start connecting your Edge devices to a ThingWorx Platform instance, you
need to do the following:
1. Begin the initial configuration of the WS EMS, as described in Configuring

the WS EMS on page 26.
2. PTC strongly recommends that you configure and use SSL/TLS certificates

for communications between your Edge device that is running the WS EMS
and the ThingWorx Platform. If required, you can also use SSL/TLS
certificates for communications between your WS EMS and the Edge devices
that are running the Lua Script Resource (LSR). If you do not have SSL/TLS

Introducing the ThingWorx WS EMS 17

certificates, refer to Using a Custom Certificate and Private Key on page 40
for information on creating a custom certificate and private key and
configuring the WS EMS and LSR to use them.

Note
As of v.5.4.5 of the WS EMS, the built-in certificate is no longer provided.
You need to migrate to using a custom certificate. Refer to Migrating from the
WS EMS/LSR Built-in Certificates on page 38 for more informatinon.

3. Once you have successfully connected to the ThingWorx Platform instance,
complete the full configuration of the WS EMS according to your needs. Refer
to the section, Viewing All Configuration Options on page 60.

4. To use the Lua Configuration Script to host Remote Things for integration
with ThingWorx Platform, begin the initial configuration of the Lua Script
Resource, as described in Getting Started with the Lua Script Resource on
page 137.

18 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

2
Getting Started with the

ThingWorx WS EMS
Components to Install ..20
Downloading and Installing the ThingWorx WS EMS and LSR20
Create an Application Key for WS EMS...24
Configuring the WS EMS ...26
Configuring Secure Connections (SSL/TLS)..30
Authenticating and Binding...49
Protecting Data with Encryption..50
Running the ThingWorx WS EMS ..52
Verifying Your Connection ..57

This chapter provides an overview of how to install, initially configure, and run
the ThingWorx WS EMS .

19

Components to Install
To connect to and integrate with a ThingWorx Platform instance, you can install
two separate software components remotely on edge devices:
• ThingWorx WebSocket-based Edge MicroServer (WS EMS) — The WS EMS

is the communication conduit that provides a secure communication channel
to a ThingWorx Platform instance. The WS EMS is a separate process, so it
can support communications from one or more devices. In addition, the WS
EMS provides a RESTful HTTP interface, allowing other applications to
communicate with it. The WS EMS translates the REST Web Services into
AlwaysOn protocol messages that it then sends to a ThingWorx Platform
instance. For information about the REST interface, refer to REST Web
Services and WS EMS on page 113.

• Lua Script Resource — An application for host devices that uses the Lua
scripting language to integrate with them. The Lua Script Resource is an
optional component. You do not need it to run the WS EMS. As an alternative,
you can write your own application that uses HTTP and communicates
directly with the WS EMS. For information about the Lua Script Resource,
refer to Getting Started with the Lua Script Resource on page 137.

For instructions on downloading and installing the WS EMS, refer to
Downloading and Installing the ThingWorx WS EMS and LSR on page 20.

Downloading and Installing the
ThingWorx WS EMS and LSR
The ThingWorx WS EMS is available from PTC and is distributed as a .zip file.
To install the package, follow these steps:
1. The distribution bundle for WS EMS is available through the PTC Support

site, Order or Download Software Updates page, at https://support.ptc.com/
appserver/cs/software_update/swupdate.jsp. If you are not already logged in,
you are prompted to log in before access to this page is granted.

2. On the Order or Download Software Updates page, click the link appropriate
to your situation:
• Download Software by Sales Order Number — if you are downloading

for the first time and have your Sales Order Number (SON).
• Order or Download Software Updates — if you have a support agreement

with PTC that allows software downloads.
3. Either way, on the Customer Search page, enter your Customer Name and

Customer Number and click Next.
4. If you chose to download by SON, enter your SON in the page that appears,

and click Submit. Otherwise, continue to the next step.

20 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

https://support.ptc.com/appserver/cs/software_update/swupdate.jsp
https://support.ptc.com/appserver/cs/software_update/swupdate.jsp

5. On the PTC Software Download page, select the product family, THINGWORX
EDGE MICROSERVERS.

6. Click the plus sign to expand the latest major release, which is at the top of the
list (for example, 5.4).

7. Expand ThingWorx Edge MicroServers.
8. Expand Most Recent Datecode.
9. Choose and download the distribution bundle that is correct for the operating

system and platform that you want to use.

The distribution bundles provide only OpenSSL 1.1.1:
• microserver-linux-arm-hwfpu-version.zip

• microserver-linux-arm-version.zip

• microserver-linux-x86_32-version.zip

• microserver-linux-x86_64–version.zip
• microserver-windows-x86_32-version.zip

Note
As of WS EMS v.5.4.6, the distribution bundles no longer provide axTLS
libraries. Only the OpenSSL libraries are included in the distribution bundles.
Refer to the ThingWorx WebSocket-Based Edge MicroServer Support Matrix
for more information.

10. After downloading the distribution bundle, select a location for extracting it.
11. Unzip the distribution archive. You are ready to start configuring the WS EMS

on page 26.

ThingWorx WS EMS and LSR Distribution Contents
When unzipped, the WS EMS distribution creates the directory, <package_
name>/microserver on Linux. On Windows, it creates the directories,
<package_name>\microserver and <package_name>\lib, where the
lib directory contains DLLs for Windows.

Getting Started with the ThingWorx WS EMS 21

http://support.ptc.com/help/edge_microserver/r5.4.7/en/edge_microserver/c_wsems_support_matrix.html

The following table lists the files at the top level of the microserver directory,
followed by the subdirectories and their contents. Note that the paths use
Windows notation.
Item Description
Files
wsems.exe (Windows) or
wsems (Linux)

The WS EMS executable that is used to run the Edge MicroServer.

Note

Linux users must be granted permissions to the wsems file.
Linux -
libcrypto.so.1.1 and
libssl.so.1.1

OpenSSL shared libraries for Linux.

Windows - libcrypto-
1_1.dll and libssl-1_
1.dll

OpenSSL Shared Library DLLs (dynamic linked libraries) for Windows.

Windows -
luaScriptResour

ce.exe

Linux -
luaScriptResource

The Lua utility that is used to run Lua scripts, configure Remote Things, and
integrate with the host system..

Note

Linux users must be granted permissions to the luaScriptResource
file.

Subdirectories
\doc\ Directory that contains the release notes (PDF) and this document,

ThingWorx WebSocket-based Edge MicroServer (WS EMS) Developer’s
Guide for this release (also a PDF). Also contains the files for the luadoc that
provides assistance with the Lua Script Resource.

\doc\lua\ Subdirectory that contains the luadoc for the Lua Script Resource.
\etc\ Directory that contains configuration files and directories for the Lua Script

Resource utility.
\etc\

config.json.docu

mented

A REFERENCE file that contains all of the configuration options available
for the WS EMS plue comments to guide you through the options.

Caution

Do not attempt to use config.json.documented to run your WS EMS.
It is intended as a reference. It is NOT as a valid JSON file that you can use
to run WS EMS

\etc\

config.json.com

plete

Avalid JSON file that contains all the configuration options available for the
WS EMS.

\etc\

config.json.minimal

A reference file that contains the basic settings that are required to establish a
connection.

\etc\

config.lua.example

A reference file that contains a basic configuration for the
luaScriptResource utility. A config.lua file is required to run the Lua
engine.

\etc\community\ Directory from which third-party Lua libraries are deployed. Examples of

22 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Item Description
Files

these libraries include the Lua socket library and the Lua XML parser, .
\etc\custom\ Directory that will contain your custom scripts and templates.
\etc\custom\

scripts\

Directory from which custom integration scripts are deployed. It also
contains an example script, called sample.lua.

\etc\custom\

templates\

Directory that contains an example template, called
config.lua.example, and that is used to deploy custom templates.

\etc\thingworx\ Directory that contains WS EMS-specific Lua files that are used by the Lua
Script Resource (LSR). Do not modify this directory and its contents because
an upgrade will overwrite any changes.

\install_services\ Windows subdirectory that contains the following files install,
install.bat, tw_luaScriptResourced, and tw_
microServerd. The install scripts will register the WS EMS anad LSR as
services on Windows.

For a Linux installation, the following files are in this subdirectory:
ems.service, install, lua.service, tw_
luaScriptResourced, and tw_microServerd. The *.service scripts
will register the WS EMS and LSR as daemons on Linux.

For information on running the scripts, refer to Running WS EMS as a
Daemon (Linux) or as a Windows Service on page 54 or Running as a
Service on page 149.

Libraries for WS EMS on Linux
The WS EMS uses the following libraries on Linux platforms:
• libpthread
• libstdc++
• libgcc_s
• libc
• libm (math library)
The Lua Script Resource also has libdl (dynamic loader).

Versions of the Libraries for Supported Platforms
The following table shows the supported platforms for the WS EMS and the
versions of the libraries that you can use with them:
Platform libc libpthread libstdc++ libgcc libm libdl (LSR

only)
Linux ARM 2.9 (with gcc

version 4.3.3)
2.9 6.0.10 4.3.3 2.9 2.9

2.8 (with gcc 2.9 6.0.10 4.3.3 2.9 2.8

Getting Started with the ThingWorx WS EMS 23

Platform libc libpthread libstdc++ libgcc libm libdl (LSR
only)

version 4.6.0)
Linux ARM
HWFPU

2.8 2.8 6.0.15 4.6.0 2.8 2.8

Linux x86–
32

2.8 2.8 6.0.10 4.3.2 2.8 2.8

Linux x86–
64

2.8 2.8 6.0.15 4.6.0 2.8 2.8

Linux
coldfire

2.11.1 2.11.1 6.0.14 4.5.1 2.11.1 2.11.1

Win32 XP or later n/a n/1 n/a n/a n/a

Create an Application Key for WS EMS
When connecting to a ThingWorx Platform, the WS EMS needs to present an
application key for authentication. This application key needs to be associated
with a non-admin user. The sections below explain how to create the non-admin
user for a WS EMS and how to configure the application key.

Note
To be able to create a non-admin user or an application key, you must log in as an
Administrator of ThingWorx Platform or as a member of a user group that has
permissions and visibility to these security entities.

Creating a Non-Admin User in ThingWorx Composer
Follow these steps to create a non-admin user for the WS EMS application key:

1. Log in to ThingWorx Composer.
2. In the left navigation panel, select Browse and scroll down to Security.
3. Select Users to display the list of users currently configured in the platform.
4. In the bar just above the list, click +New.
5. In the General Information page, type a name for the WS EMS user account.

For example, wsemsUser. You will associate this user with an application
key for the WS EMS, so do not enter a password.

6. If desired, enter a Description for this user.
7. Check to make sure that the Enabled check box is selected, and click Save.
Follow these steps to configure an application key and a Thing for the WS EMS
asset in ThingWorx Composer:

24 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

1. From Security ▶▶ Application Keys ▶▶ , click ▶▶ New.
2. Enter the appropriate values:

a. Name—A name for the application key. For example, wsemsappkey23
b. User Name Reference— The name of a user account to associate with the

application key. You can select from a list by clicking the plus icon in this
field. A list from which you can select a user for the key appears:

In the example above, the wsems_user is selected. The permissions and
visibility assigned to this user account affect what the WS EMS can do on
the platform. For example, write new values to remote properties.

c. Expiration Date—A date in the future for the application key to expire,
based on your company policies. The default value is one day. Use the
calendar widget to select a date and the time widget to select a time.

3. Click Save.

Getting Started with the ThingWorx WS EMS 25

4. Create a Thing in ThingWorx for the asset that is running the WS EMS.
Depending on the features you want to use, choose one of the following Thing
Templates or a Thing Template that implements any of the following Thing
Templates:

• RemoteThingWithTunnelsAndFileTransfer —Use for assets for which
you want file transfers, SCM, and remote access capabilities.

• RemoteThingWithFileTransfer —Use for assets for which you want file
transfers (upload and download) and/or SCM capabilities, but not remote
access capabilities.

• RemoteThingWithTunnels —Use for assets for which you want to use
remote access capabilities but not file transfers or SCM.

5. Once you have an application key, follow the instructions for configuring your
WS EMS with an application key in Configuring the WS EMS on page 26.

Configuring the WS EMS
This topic takes you through the basic steps for a simple configuration that
establishes a connection to your ThingWorx Platform. First, you need to create the
configuration file on page 26 and then you configure the connection on page 28.

Create the WS EMS Configuration File
The configuration file of WS EMS is a text file that uses the JSON format. It is
separated into multiple groups. Each group contains sets of name/value pairs
(properties) that control different aspects of the configuration. To connect to a
ThingWorx Platform instance, only a few properties are required.

Tip
The WS EMS uses the cJSON library for JSON parsing. This library does not
parse json with case sensitivity by default. WS EMS v.5.4.8 and later
automatically encrypt sensitive data on startup and re-write the configuration file
to disk with the newly encrypted secrets. Since cJSON is reposible for that
parsing, any keys with uppercase letters are converted to lowercase.

26 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

https://github.com/DaveGamble/cJSON#case-sensitivity

To view an example of a basic configuration file and create your own
configuration file:
1. From the WS EMS installation directory, change to the directory, /etc. This

directory contains the following configuration files for WS EMS:
• config.json.complete—Avalid JSON file, with no comments. If

you want to use this file, you need to provide information relevant to your
environment for such properties as the application key (appkey), and the
ws_servers.host and ws_servers.port for the instance of
ThingWorx Platform to which the WS EMS will connect.

• config.json.documented—A copy of the
config.json.complete file with many comments to explain the
properties to set. This file is NOT a valid JSON file. Do NOT attempt to
run the WS EMS with this configuration file.

• config.json.minimal—A file that provides (in valid JSON) the
essential properties that need to be set to communicate with a ThingWorx
Platform.

The fourth configuration file in this directory is a sample configuration file for
the Lua Script Resource (config.lua.example). Refer to Configuring a
Lua Script Resource on page 138 for more information.

2. To run the WS EMS, you need to create a separate configuration file, called
config.json. To begin with a basic configuration, open
config.json.minimal in a text editor. This file contains the minimum
set of configuration settings required to connect to a ThingWorx Platform.

3. Create a new file in your editor, and save it as config.json.
4. Copy the settings from config.json.minimal into your

config.json file.
5. Follow the instructions in the next section to configure the connection

between the WS EMS and an instance of ThingWorx Platform.

Getting Started with the ThingWorx WS EMS 27

Configure the Connection to ThingWorx Platform
To connect to a ThingWorx Platform instance, you must configure the ws_
servers group in the configuration file. This group contains the properties that
define the connection between the WS EMS and a ThingWorx platform instance.
You need to provide an IP address or host name and port for one instance of
ThingWorx platform.

Note
Previous releases of the WS EMS allowed you to configure an array that
contained multiple addresses. However, the WS EMS no longer checks for
another address if it fails to connect with the first address in the array. If you
previously specified multiple addresses, you do NOT have to change your
configuration file. The WS EMS will use the first address in the ws_servers
array and ignore the rest.

As long as you have created your own config.json file, follow these steps to
set up the connection:
1. Copy the first two lines from the config.json.minimal file and paste

them in your file:
{

"ws_servers" : [{

You are ready to add the properties that define the connection.
2. Under "ws_servers", add the "host" and "port" properties. Then, for

the "host" property, replace "localhost" with the URL of your
ThingWorx Platform instance. For the "port" property, enter the number of
the port on the host to use for the connection. If the connection is to be secure,
use port 443. For example:
{

"ws_servers": [{

"host" : "some_host_url",

"port": 443

}

],

"resource": "/Thingworx/WS",

"appkey" : "some_encrypted_application_key",

For development purposes, you may want to use a ThingWorx Platform
instance that is running on the same computer where you installed your WS
EMS. "localhost" can be used as the value for "host" for these
purposes only.

28 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Next set the application key for the WS EMS to use to access the ThingWorx
Platform. A platform administrator can generate application keys using
ThingWorx Composer. The application key is associated with a user account
that determines the privileges that the WS EMS will have when accessing the
instance. Best security practices require encrypting the application key and
any passwords that you may be using. For example, the password for a
certificate or the passphrase for a private key.

Tip
If you are using WS EMS 5.4.8 or later, your version of WS EMS
automatically encrypts secret strings such as the application key or a
certificate password on the first startup. You can skip to Step 5. For
information on the automatic encryption, refer to Automatic Configuration
Encryption on page 52.

3. If you are using an earlier version of the WS EMS, you need to manually
encrypt the application key and passwords. To do this, open a shell or
command prompt, navigate to the WS EMS installation, and enter the
following:

wsems.exe -encrypt myPasswordString

where myPasswordString is the application key or a password.
4. Once the encryption generates output, copy the encrypted application key and

paste it so that it replaces the current value of the appkey property. Using the
example configuration properties shown in Step 2, replace some_
encrypted_application_key with the encrypted key you just
generated. Make sure that it is enclosed in the double quotation marks.

5. Save the configuration file.

If you want to try running the WS EMS to check the connection, refer to
Running the ThingWorx WS EMS on page 52 and then Verifying Your
Connection on page 57.

Getting Started with the ThingWorx WS EMS 29

Configuring Secure Connections (SSL/
TLS)
About SSL/TLS Certificates
Essentially, SSL/TLS certificates are used for either of two purposes:
• Establishing Trust — Trusted Certificate Authority (CA) certificates verify

other certificates. Typically, these files are found on a client that is attempting
to establish an SSL/TLS connection with a server. For example, store a valid
certificate in the home directory of your WS EMS. The valid certificate must
belong to the issuers of the certificates (Certificate Authority or “CA”) of the
ThingWorx Platform instance (“server”) with which the WS EMS
communicates. The CA certificates must be stored in the home directory of
WS EMS.

• Establishing Identity — Identity certificates with private keys provide a way
of communicating the unique identity of an SSL/TLS peer. Identity certificates
with private keys are typically used to show the identity of a server to a client.
When a server requires client authentication, Identity certificates are also
required on the client. In this latter case, the Trusted Certificate Authority
certificate would be required on the server (a ThingWorx Platform).

The requirements for products acting as clients, such as WS EMS, or servers, such
as a ThingWorx Platform, in SSL/TLS connections follow:
• A server must always have an Identity certificate. Optionally, if the product

acting as a server supports and is configured to use client authentication, the
server would need a Trusted Certificate Authority certificate.

• A client must always have a Trusted Certificate Authority (CA) certificate. An
example of a Trusted CA certificate name is SSLCACert.pem. Optionally, if
the product acting as a server supports and is configured to use client
authentication, the client would also need an Identity certificate. An example
of a client-side Identity certificate file name is SSLCert.pem, and an
example of its private key name is SSLPrivKey.pem.

The WS EMS can validate certificates that have been signed using the following
algorithms:
• MD5
• SHA-1
• SHA-256 digest

30 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Tip
Always configure a secure HTTP server. Otherwise, the WS EMS and LSR log
warning messages when SSL, authentication, or certificate validation is disabled
or if self-signed certificates are allowed.

As of version 5.4.5 of the WS EMS, FIPS mode is not supported.
As of version 5.4.6 of the WS EMS, the axTLS library is no longer provided in
the distribution bundle. Only OpenSSL libraries are provided in the distribution
bundle.
As of version 5.4.7 of the WS EMS, the OpenSSL v.1.1.1 libraries are provided in
the distribution bundle. Since OpenSSL v.1.1.1 includes TLS v.1.3,
communications between the WS EMS and LSR over TLS v.1.3 should work.
Once the ThingWorx Platform is updated for TLS v.1.3, communications between
the WS EMS and the Platform over TLS 1.3 will work.

Tip
The WS EMS provides a property called http_client_ca_certs that
allows the use of a separate Certificate Authority (CA) certificate file that will
only be used for Edge to Edge HTTPS connections. If this option is not used, the
default CA certificate list that is used to validate the platform connection will be
used. This parameter is in the certificates group in the WS EMS
configuration file. For more information, refer to Configuring the WS EMS to Use
a Different Certificate Chain for Edge to Edge Communications (Optional) on
page 45.

Setting Up Security for the WS EMS
If you are installing the WS EMS for the first time with v.5.4.5 or later and have
the custom certificates and private keys that you want to use for communications
between the WS EMS and the ThingWorx Platform and for communications
between the WS EMS and the LSR that is running on the devices behind the WS
EMS, this topic is for you. If you are migrating a previous release of the WS EMS
and LSR and were using the built-in certificate, refer to Migrating from the WS
EMS/LSR Built-in Certificates on page 38. If you do not have custom certificates
and private keys, refer to Using a Custom Certificates on page 40 before
continuing with the rest of this topic.
This topic provides the following information:

Getting Started with the ThingWorx WS EMS 31

• Setting Up WS EMS to Use Certificates on page 32

○ Properties to Set in config.json for Security on page 33 (table)
• TLS Host Name Validation on page 36
• Validation Criteria on page 35
• Encryption Application Keys, Passwords, and Passphrases on page 36
• Configuring the Cipher Suite Set on page 37
• A Note about Cipher Suites (Java 7) on page 37
• Configuring FIPS Mode on page 37

Setting Up WS EMS to Use Certificates
The properties in the certificates group of the configuration file specify
whether certificates are validated for the connection between the WS EMS and
your ThingWorx Platform instance. This group and its properties are shown here:

"certificates": {

"validate": true,

"allow_self_signed": false,

"disable_hostname_validation": false

"cert_chain": " /path/to/ca/cert/file",

"client_cert": "/path/to/client/cert/file",

"key_file": "/path/to/key/file",

"key_passphrase": "some_encrypted_passphrase",

"cipher_suite":

"ALL:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!DSS:!RC4:!SEED:!ADH:!I

DEA:!3DES:!SRP",

"http_client_ca_certs": "/path/to/ca/cert/file",

"validation_criteria": {

"Cert_Common_Name": "common name",

"Cert_Organization": "organization name",

"Cert_Organizational_Name": "organizational name",

"CA_Cert_Common_Name": "cert common name",

"CA_Cert_Organization": "cert organization",

"CA_Cert_Organizational_Name": "cert organizational name"

}

"http_client_ca_certs_: "/path/to/ca_cert/file"

"fingerprint_whitelist" : [

""E6:EF:5D:37:22:FC:EF:EA:4B:22:92:45:BD:49:D2:29:3D:84:19:BC:

C3:45:23:A1:22:A4:01:20:9D:03:E6:47",

"D1:BA:B0:17:66:6D:7F:42:7B:91:1E:22:7E:3A:27:D2:EF:5D:37:22:FC:E

F:EA:4B:22:92:45:BD:01:7E:92:52"

]

},

32 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Tip
If you are using v.5.4.8 or later of the WS EMS and LSR, secrets such as
passphrase, password, and application keys are automatically encrypted. For
details, refer to Automatic Configuration Encryption on page 52. If you are
using an older version of the WS EMS and LSR, refer to Encrypting
Application Keys, Passwords, and Passphrases on page 36.

For examples of secure configurations for communications between the WS
EMS and the LSR, refer to Examples of Configuring Secure Communications
between the WS EMS and an LSR on page 159. These examples are presented
in order of least secure (testing purposes ONLY) to most secure (strongly
recommended for production environments).

The following table describes the properties configuring SSL/TLS certificates.
Refer to the section below for definitions of the validation criteria.

Note
When specifying the paths to any certificate, use forward slashes (/) for a Linux
platform and either backslashes with escapes ("d:\\path\\to\\ca\\
cert\\file") or forward slashes ("d:/path/to/ca/cert/file") for
Windows platforms.

Properties to Set in config.json for Security

Property
ThingWorx Base
Type Description

validate BOOLEAN Whether or not to perform validation on certificates
presented by a ThingWorx Platform instance. The
default value of this property is true. For
production, enabling validation is strongly
recommended. If you set this property to true, you
must create and configure a Certificate Authority
(CA) list and specify the path to the file as the value
of the cert_chain property. Refer to Creating a
Custom CA Certificate List on page 44 for details on
creating a Certificate Authority list file.

allow_self_signed BOOLEAN Whether or not to permit self-signed certificates to be
used. The default value of this property is false.
For production, allowing self-signed certificates is
strongly discouraged. If you need to create a self-
signed certificate for testing purposes, refer to
Creating a Self-Signed Certificate on page 41.

disable_hostname_
validation

BOOLEAN Whether or not to use TLS host name validation. The
default value of this property is false, meaning that

Getting Started with the ThingWorx WS EMS 33

Properties to Set in config.json for Security (continued)

Property
ThingWorx Base
Type Description

this validation is enabled. If you want to disable it
(not recommended), set this property to true. For
more information, refer to TLS Host Name Validation
on page 36.

cert_chain STRING Certificate Authority list to be used to validate the
ThingWorx Platform ("server") certificate. Used if
allow_self_signed is false and validate
is true. You must specify the CA list here if you set
validate to true. Here is an example for a WS
EMS running on Linux:

"cert_chain": "/path/to/ca/cert/

file",

To learn how to create a Certificate Authority list,
refer to Creating a Custom CA Certificate List on
page 44.

Note
The cert_chain property expects a string that
specifies a single Certificate Authority list file. If you
want to load multiple certificates, add them to the
Certificate Authority file and specify the path to that
file, as shown above. The WS EMS will load multiple
certificates from that CA list file.

cipher_suite STRING The cipher suites for the Edge device to use when
communicating with the ThingWorx Platform. The
default setting is ALL. This option supports the
OpenSSL cipher list format, which you can find at
https://www.openssl.org/docs/man1.0.2/apps/ciphers.
html. Refer to Configuring the Cipher Suite Set on
page 37 below.

client_cert
(optional)

STRING The path to the X.509 certificate file for the client. If
you are using an X.509 certificate file, you need to set
the validation_criteria property. Refer to
Validation Criteria on page 35 below.

http_client_ca_certs STRING A list of Certificate Authority certificates to use when
validating TLS connections at the Edge. If left unset,
the CA certificates specified for the property, cert_
chain will be used. The CA Certificates are used if
allow_self_signed is set to false and
validate is set to true.

validation_criteria STRING Refer to the section below for details about this
property.

fingerprint_
whitelist

N/A Certificate fingerprint validation is a security feature
that allows a user to restrict HTTPS communication
to a known set of trusted server endpoints in addition
to TLS certificate validation. This feature is not
enabled by default.

34 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

https://www.openssl.org/docs/man1.0.2/apps/ciphers.html
https://www.openssl.org/docs/man1.0.2/apps/ciphers.html

Properties to Set in config.json for Security (continued)

Property
ThingWorx Base
Type Description

To enable this feature, you must add the
fingerprint_whitelist property with an array
of strings to the config.json file of each edge
microserver with which you want to communicate. If
you do not include this configuration option in the
config.json file, it is not enabled. Refer to
Certificate Fingerprint Validation for WS EMS and
LSR on page 45 for more details.

Note
Do not add an empty fingerprint_whitelist
property to the config.json file. This renders the
configuration file invalid. When the WS EMS starts,
it attempts to read the configuration file. If the
configuration file is invalid, the WS EMS stops. For
information on the startup process, refer to How the
Startup Process Works on page 52.

The following properties are all passed to the underlying C SDK and are not used by the WS EMS.
They are associated with the WebSocket connection
key_file (optional) STRING The path to the key file to load for client certificates

(supports .pem, .p8, and .p12 files). If you need to
create a private key file, refer to Creating a Private
Key on page 40.

key_passphrase
(optional)

STRING A string password for opening the key file. It is
strongly recommended that the passphrase be
encrypted. To encrypt this passphrase, refer to
Encrypting Application Keys, Passwords, and
Passphrases on page 36.

Validation Criteria
To validate a certificate, you can configure the fields of the certificate that should
be validated:
• Subject common name
• Subject organization name
• Subject organizational unit
• Issuer common name
• Issuer organization name
• Issuer organizational unit

Getting Started with the ThingWorx WS EMS 35

When creating a Certificate Signing Request (CSR), you are prompted for the
fields that need to be validated. The following definitions may help you determine
the values for these fields:
• Common Name — Typically, a combination of the host and domain names,

the value of these fields looks like “www.your_site.com” or “your_site.com”.
Certificates are specific to the Common Name that they have been issued to at
the Host level. This Common Name must be the same as the web address that
the WS EMS accesses when connecting to a ThingWorx Platform using SSL/
TLS. If the platform and the WS EMS are located on an intranet, the Common
Name can be just the name of the host machine of the platform.

• Organization Name — Typically, the name of the company.
• Organizational Unit — Typically, a department or other such unit within a

company. For example, IT.

TLS Host Name Validation
The WS EMS supports TLS host name validation. This security feature compares
the requested host name with subject identifiers in the server certificate, such as
the subject common name (CN) and subject alternative names. TLS host-name
validation occurs during the TLS Handshake. If the host name on the server
certificate does not exactly match the host provided in the WS EMS configuration,
the TLS handshake fails with the error, TW_SOCKET_INIT_ERROR, and the
connection to the ThingWorx Platform fails.
This feature is enabled by default. To disable it, add the disable_hostname_
validation property in the certificates group in the config.json file
for your WS EMS and set it to true, as shown here:

"certificates" : {
. . .
"disable_hostname_validation" = true
. . .

Encrypting Application Keys, Passwords, and Passphrases
The WS EMS and LSR, v.5.4.8 and later, use a different data security library for
encrypting data at rest than previous releases. The data security library uses the
XChaCha20-Poly1305 Cipher for encryption of data at rest. This library
automatically encrypts configuration files on the first startup of the WS EMS or
LSR. For details, refer to Protecting Data with Encryption on page 50. With this
library you can, but no longer need to, run the wsems.exe -encrypt
command to encrypt an application key, certificate password, or keystore
passphrase.
For versions prior to v.5.4.8, the legacy data at rest encryption, AES, is supported.
In addition, you can improve security for an application by encrypting the
application key, certificate password, and keystore passphrase before adding them
to the configuration file for WS EMS. Follow these steps:

36 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

1. Open a shell or command prompt, navigate to the WS EMS installation, and
enter the following:
wsems.exe -encrypt String_to_Encrypt

where String_to_Encrypt is the application key, password, or
passphrase to encrypt.

2. Once the output is generated, copy the encrypted string and paste it so that it
replaces the current value of the related property in the configuration file.
Make sure that the encrypted string is enclosed in double quotation marks.

For examples of medium and high security configurations for the WS EMS and
LSR, refer to Medium Security on page 160 and High Security on page 163.

Configuring the Cipher Suite Set
Starting with v.5.4.5 of the WS EMS, you can specify what cipher suites are used
by the Edge device when communicating with the ThingWorx Platform. This
configuration option supports the OpenSSL Cipher List form, as described at
https://www.openssl.org/docs/man1.1.0/apps/ciphers.html.
This configuration option should be placed in the certificates group in the
config.json file for your WS EMS:

"certificates": {

...

"cipher_suite":
"ALL:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!DSS:!RC4:!SEED:!ADH:!I
DEA:!3DES:!SRP",

...

},

A Note about Cipher Suites with ThingWorx Platform (Java 7)
If your application communicates with an instance of the ThingWorx Platform that
uses Java 7, the cipher suite list should include !kEDH (as shown below) to
disable ephemeral Diffie-Hellman ciphers .Otherwise, ephemeral Diffie-Hellman
(EDH) key exchange fails, and your WS EMS cannot connect to the platform.

<CipherSuites>DEFAULT:!kEDH</CipherSuites>

Configure FIPS Mode
Version 1.1.1 of OpenSSL is provided in the distribution bundle of the WS EMS
starting with version 5.4.7 of the WS EMS. This version of OpenSSL does not
support FIPS mode. If you require FIPS mode, make sure that you have
downloaded version 5.4.0 or earlier of the WS EMS that supports FIPS mode.

Getting Started with the ThingWorx WS EMS 37

https://www.openssl.org/docs/man1.1.0/apps/ciphers.html

Refer to the ThingWorx WebSocket-Based Edge MicroServer Support Matrix for
a table of versions of WS EMS and the versions of OpenSSL they support. The
rest of this section is for users of v.5.4.0 or earlier of the WS EMS.
By default FIPS mode is disabled. To enable FIPS mode, you need to set the FIPS
option in your config.json file. The WS EMS checks if FIPS mode is enabled
on startup.
In release 5.4.0, a “switch” was added in the form of a group and property to
enable or disable FIPS mode. If you created the config.json file for your WS
EMS using config.json.minimal as the starting point, you need to add the
group to your configuration file and change the value of the enabled property to
true, as follows:

"fips" " {
"enabled" : true

},

If you used config.json.complete as your config.json file, the group
and property are already present in the file. Set the value of the enabled
property to true to enable FIPS mode, as shown above.
Should you need to disable or enable FIPS mode at any time, open the
config.json file for your WS EMS, and locate the fips group. To disable
FIPS mode, set the enabled property to false, as shown here:

"fips" : {
"enabled" : false

},

Migrating from the WS EMS/LSR Built-in Certificates
The 5.4.5 release of the WS EMS and Lua Script Resource (LSR) removes the
built-in key and certificate that has existed in previous releases. This change
means that you will no longer be able to use the use_default_
certificate option in the WS EMS, or the script_resource_use_
default_certificate option in the LSR.
Both the WS EMS and LSR have built-in web servers that support communicating
over TLS. You are now required to provide your own certificate and private key
file when the WS EMS and Lua ScriptResource are configured to communicate
over TLS. This next two sections summarize the configuration changes for the
WS EMS and the LSR. For detailed information on creating a private key or a
certificate, using a certificate chain between the WS EMS and the LSR, or using a
Certificate Authority List for validation, refer to Using a Custom Certificate and
Private Key on page 40.

38 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

http://support.ptc.com/help/edge_microserver/r5.4.7/en/edge_microserver/c_wsems_support_matrix.html

Configuration Changes for WS EMS (config.json)
The use_default_certificate option has been removed from the http_
server group in config.json. You will now need to add three configuration
options when running with SSL

• certificate— Path to a PEM encoded certificate file. This can be a self-
signed certificate or a certificate chain, meaning it contains the end entity (that
is, the server) certificate, followed by n number of Intermediate Certificate
Authority certificates.

• private_key— Path to a PEM encoded, encrypted private key file.
• passphrase— The passphrase to decrypt the private key. This field should

be encrypted. To learn how, refer to Encrypting Application Keys, Passwords,
and Passphrases on page 36)

Below is an example configuration

Example

Changes to config.json

"http_server": {
"host": "localhost",
"port": 8443,
"ssl": true,
"certificate": "/path/to/certificate/file",
"private_key": "/path/to/private/key",
"passphrase": "some_encrypted_passphrase"

},

Configuration Changes to Lua ScriptResource (config.lua)
The changes for config.lua are:

• script_resource_certificate_chain—Path to a PEM encoded
certificate file. This can be a self-signed certificate or a certificate chain,
meaning it contains the end entity (that is, the server) certificate, followed by n
number of Intermediate Certificate Authority certificates.

• script_resource_private_key—Path to a PEM encoded, encrypted
private key file.

• script_resource_passphrase—The passphrase to decrypt the private
key. This field should be encrypted. For details on how to encrypt the
passphrase, refer to Encrypting Application Keys, Passwords, and Passphrases
on page 36.

Below is an example configuration

Getting Started with the ThingWorx WS EMS 39

Example

Changes to config.lua

scripts.script_resource_host = "127.0.0.1"
scripts.script_resource_port = 8443
scripts.script_resource_ssl = true
scripts.script_resource_certificate_chain = "/path/to/certificate/
file"
scripts.script_resource_private_key = "/path/to/private/key/file"
scripts.script_resource_passphrase = "some_encrypted_passphrase"

Using a Custom Certificate and Private Key
All commands contained in this section use OpenSSL. OpenSSL is typically
shipped with Linux systems, but can be downloaded if it is not installed on your
system from https://www.openssl.org/. This topic is written to work with Linux,
but should work with Windows as well. PTC recommends using Linux to create
the certificate and key because it is easier to obtain OpenSSL binaries and
configuration files required. On Windows you need either to build OpenSSL from
source, or to use a third-party installer (an informal list can be found here: https://
wiki.openssl.org/index.php/Binaries).
To use custom certificates, private keys, certificate chains, and Certificate
Authority list, refer to the following sections:

1. Creating a Private Key on page 40
2. Creating a Self-Signed Certificate — for Testing Purposes ONLYon page 41
3. Creating a Certificate Signing Request (CSR) on page 43
4. Creating a Certificate Authority (CA) on page 43
5. Creating a Custom Certificate Chain on page 44
6. Configuring the WS EMS and LSR to Use the Certificate Chain on page 44
7. Configuring the WS EMS to Use a Different Certificate Chain for Edge to

Edge Communications (Optional) on page 45

Creating a Private Key
A private key is used to identify the WS EMS when it communicates with the
LSR or other edge device. To create a private key, use the following command:
openssl genrsa -aes256 -out private_key.pem 2048

When prompted, as shown below, enter a passphrase to be used to decrypt the
private key:
openssl genrsa -aes256 -out private_key.pem 2048
Generating RSA private key, 2048 bit long modulus
...-
...++

40 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

https://www.openssl.org/
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries

..++
e is 65537 (0x10001)
Enter passphrase for private_key.pem:

Verifying - Enter passphrase for private_key.pem:

At this point you have a private key that can be used with the WS EMS or LSR.
You now have a couple of options for creating or acquiring a certificate

Creating a Self-Signed Certificate - for Testing Purposes ONLY

Caution
For testing purposes ONLY, you can create a self-signed certificate to use with the
WS EMS and Lua Script Resource (LSR). For security best practices, never use a
self-signed certificates in production because they cannot be validated.

Run the following command to create a new self-signed certificate using the
private key created in the preceding step:

openssl req -key private_key.pem -new -x509 -days 365 -out self_signed_
certificate.crt

Output similar to the following should be displayed when you run the command.
When prompted, fill in the passphrase for the private key and then the X509
identity information:

openssl req -key private_key.pem -new -x509 -days 365 -out self_signed_
certificate.crt
Enter pass phrase for key.pem:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a
DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:MA
Locality Name (eg, city) []:Boston
Organization Name (eg, company) [Internet Widgits Pty Ltd]:PTC
Organizational Unit Name (eg, section) []:Thingworx
Common Name (e.g. server FQDN or YOUR name) []:Example Certificate
Email Address []:example@ptc.com

Note that the -days 365 argument is used, which means this certificate is valid
for one year. Consult the OpenSSL user's guide for more details on how to
customize the length of time your certificate is valid.
You now have a self-signed certificate that you can use with the WS EMS and
LSR. To inspect the contents of the certificate, use the following command:

Getting Started with the ThingWorx WS EMS 41

https://www.openssl.org/docs/fips/UserGuide-2.0.pdf

openssl x509 -in self_signed_certificate.crt -text -noout

This command products output similar to the following, which shows the X509
identity information entered earlier in the Issuer and Subject fields:

openssl x509 -in self_signed_certificate.crt -text -noout
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 10278892931034865755 (0x8ea5f6a92e9b605b)

Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=MA, L=Boston, O=PTC, OU=Thingworx, CN=Example

Certificate/emailAddress=example@ptc.com
Validity

Not Before: Apr 20 20:46:33 2020 GMT
Not After : Apr 20 20:46:33 2021 GMT

Subject: C=US, ST=MA, L=Boston, O=PTC, OU=Thingworx, CN=Example
Certificate/emailAddress=example@ptc.com

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)
Modulus:

00:a4:ed:ba:e0:f7:97:21:ce:b3:97:0f:68:49:1f:
d7:fa:de:48:d8:98:37:38:a4:ef:72:5d:c0:1c:e8:
23:77:dc:b6:bc:8a:3d:b0:b0:5a:45:77:f7:d4:1e:
78:c9:f3:e0:4e:ce:4d:1d:47:6c:09:a2:18:b8:32:
df:16:ff:24:34:b6:84:3f:3e:eb:65:f7:96:77:a4:
ad:eb:e2:38:f6:3b:24:63:64:45:bb:37:1f:71:81:
59:9d:81:bb:d2:9e:f6:03:cc:d3:05:30:95:4d:94:
96:ba:35:df:c3:7b:25:12:5a:bd:a0:b6:51:47:a8:
54:5d:2f:18:e2:3e:e8:39:1c:a6:3c:cc:2c:b2:7f:
25:4a:12:8c:27:d5:73:c2:95:71:e6:ec:9a:9a:01:
70:c2:09:6f:15:f7:e4:ad:c2:dc:d1:9b:55:5f:b6:
d4:a8:ca:e3:a8:45:9a:f9:84:c7:dd:17:c7:a3:bb:
19:e3:ef:75:53:2c:24:01:5c:31:c6:ad:1a:bd:e3:
76:e5:57:6e:4d:4e:c6:8f:a9:52:cb:52:01:5d:c2:
3d:b4:3b:62:8f:dd:20:2f:e9:b3:2e:32:cb:f6:c0:
c0:38:e1:9b:16:4a:6d:45:45:24:c7:b4:a9:12:75:
9f:7c:df:a8:20:96:31:22:42:53:ae:8e:5b:0d:86:
a7:2b

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Subject Key Identifier:
60:24:2D:3F:C3:62:74:63:21:9E:71:06:4C:C3:8F:

D8:86:19:80:03
X509v3 Authority Key Identifier:

keyid:60:24:2D:3F:C3:62:74:63:21:9E:71:06:4C:C3:8F:
D8:86:19:80:03

X509v3 Basic Constraints:
CA:TRUE

Signature Algorithm: sha256WithRSAEncryption
6b:95:88:b4:6f:13:d6:2f:56:29:cb:1c:fb:3f:95:c0:a2:71:
32:96:1c:87:dd:47:7a:c8:71:26:c4:b6:cf:f6:2a:ac:ce:07:
03:51:b5:d4:b5:22:91:d4:4a:8c:12:7b:8e:1e:4c:4b:10:51:
da:d4:9e:c0:43:0d:bf:dd:08:60:b8:d0:35:10:d7:1a:7a:72:

42 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

e2:29:c3:9a:4c:89:20:53:f3:5e:5c:e8:87:d0:1c:bb:8f:67:
ab:d6:b2:ce:29:64:dc:27:bd:5d:a5:71:e4:6c:c2:f5:5e:0a:
9c:fd:c3:7a:f3:74:6c:ba:ae:bb:7b:86:95:e0:00:0d:e9:e2:
7a:18:3b:a5:39:c8:77:15:23:39:8e:1b:40:c1:2f:5c:fc:dc:
24:6a:e8:7b:f9:14:93:7d:1a:4b:f0:f5:54:34:a1:23:16:44:
f8:43:99:ba:52:cf:5c:67:70:94:e0:7d:2d:5f:d5:a3:95:ac:
b5:ad:2c:07:6e:05:c3:a7:37:8d:f4:7f:00:81:48:08:81:13:
45:ec:23:8c:0d:79:ce:da:68:c8:91:01:66:e4:53:7b:8f:f7:
0e:55:4e:08:91:77:d2:79:7b:df:05:40:f3:a6:9d:de:98:28:
3d:00:fa:c9:de:c5:f1:1e:d6:ef:43:05:a5:0b:f3:b5:cc:b2:
e2:ff:cc:65

Note
If you must use a self signed certificate for testing purposes, you must enable
self-signed certificate support in the config.json file for the WS EMS:

"certificates": {
. . .
"allow_self_signed": true
. . .

}

and in the config.lua file for the LuaScriptResource (LSR):

scripts.rap_deny_selfsigned = false

Do not use this configuration in production!

Creating a Certificate Signing Request (CSR)
If you are purchasing your certificate from a commercial organization or your
company runs its own certificate authority, you most likely have to create a
Certificate Signing Request (CSR) to acquire a certificate. This process should be
detailed by whoever manages the signing request.

Creating a Certificate Authority (CA)
Creating a Certificate Authority (CA) can be the most flexible, but also the most
complicated option, the details of which are outside the scope of this guide.
Creating your own CA allows you to control the entire chain of trust. A detailed
guide to accomplish this can be found here.

Getting Started with the ThingWorx WS EMS 43

https://jamielinux.com/docs/openssl-certificate-authority/introduction.html

Creating a Custom CA Certificate List
To validate that the ThingWorx Platform (server) with which it is communicating
is trusted, an Edge device (client) must have a list of trusted certificate authorities
that are expected from the ThingWorx Platform (server). This list is referred to as
a Certificate Authority list and as a certificate chain. The rest of this section uses
certificate chain.
To create a certificate chain, create a file that contains all the Certificate Authority
(CA) certificates that you want your agent to trust. This file will typically contain
the root and intermediate CA certificates that are used on the ThingWorx Platform
(server) with which the WS EMS (client) communicates, as well as the root and
intermediate CA certificates that were used to create the certificates used by the
WS EMS and the LSR. Here is an example of a Certificate Authority List:

-----BEGIN CERTIFICATE-----
(Root CA Certificate)
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
(Intermediate CA Certificate)
-----END CERTIFICATE-----

Store the chain in a PEM-encoded certificate file. This file allows the client to
validate each node in the certificate chain presented by the server during the TLS
handshake. If you have certificate validation enabled, you must create and
configure a certificate chain. If you are using a self-signed certificate, you do not
need to configure a chain.
Certificate validation requires that root keys be distributed independently, so the
self-signed certificate that specifies the root certificate authority may optionally be
omitted from the chain. In this case, it is assumed that the remote device must
already possess the root certificate authority in order to validate it.

Example

Certificate Chain Example

-----BEGIN CERTIFICATE-----
(Your EMS Server Certificate)
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
(The Intermediate CA Certificate of the issuer of the EMS Server
Certificate)
-----END CERTIFICATE-----

Configuring the WS EMS and LSR to Use the Certificate Chain
To use the certificate chain, you can enable it in the same way you would
configure a certificate, using the following options in config.json for the WS
EMS and in config.lua for the Lua Script Resource. The following examples
show what to add in both of these configuration files:

44 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Example

config.json

"certificates": {
. . .
"cert_chain": "/path/to/certificate_chain/file"
. . .

}

Example

config.lua

scripts.script_resource_certificate_chain = "/path/to/certificate_chain/
file"

Configuring the WS EMS to Use a Different Certificate Chain for Edge
to Edge Communications (Optional)
The WS EMS provides a parameter called http_client_ca_certs that
allows the use of a separate Certificate Authority (CA) certificate file that will
only be used for Edge-to-Edge HTTPS connections. If this option is not used, the
default CA certificate list set in the cert_chain property that is used to validate
the platform connection will be used. This parameter is in the certificates
group in the WS EMS configuration file.
Like the cert_chain property, the http_client_ca_certs is set in the
certificates group of the WS EMS configuration file.

"certificates": {
"cert_chain": "/path/to/ca_cert/file"
. . .
"http_client_ca_certs_: "/path/to/ca_cert/file"

}

Certificate Fingerprint Validation for WS EMS and
LSR
The WS EMS/LSR support a security feature called "certificate fingerprint
validation" that allows you to restrict HTTPS communication to a known set of
trusted HTTPS server endpoints at the Edge While TLS certificate validation
ensures that your Edge device is talking to a server endpoint that uses a certificate
issued by a trusted Certificate Authority (CA), certificate fingerprint validation
ensures that your Edge device is talking only to a subset of explicitly trusted
server endpoints.
The trusted HTTPS server endpoints can be REST endpoints that are configured
with auto_bind to access a ThingWorx Platform through the WS EMS. They
cannot be a ThingWorx Platform. The auto_bind feature provides a way of

Getting Started with the ThingWorx WS EMS 45

letting the WS EMS talk to HTTPS servers at the Edge that you want to represent
as Things in ThingWorx. When you configure auto_bind, you must supply a
REST endpoint for the WS EMS to communicate with. If the ThingWorx Platform
makes a request down to that device, the WS EMS makes an HTTPS connection
to the HTTPS server defined in the auto_bind configuration.

Note
Use of certificate fingerprint validation requires that SSL/TLS is enabled and
configured for the WS EMS and LSR.

How Does Certificate Fingerprint Validation Work?
When an Edge device communicates with a server using HTTPS, it first validates
that the server’s certificate is issued by a Certificate Authority that is trusted.
Next, it takes the SHA256 hash of the server’s certificate, referred to as the
certificate fingerprint, and compares it against an internal list of trusted
fingerprints. If the fingerprint is found in the list, the connection is allowed to
proceed. If it is not found, the connection is terminated.

Note
This feature is disabled by default. To enable it, you must generate certificate
fingerprints and then add the fingerprint_whitelist property and the
fingerprints to the configuration file. If you do not want to use it, do not add the
property to the configuration file, not even as a placeholder for future use. Adding
the property without adding fingerprint strings renders the configuration file
invalid. The WS EMS does not start as a result.

Is Certificate Fingerprint Validation Used for Secure WebSocket
Connections?
No, Certificate fingerprint validation is not supported on Secure WebSocket
Connections to the ThingWorx Platform. TLS certificate and host name validation
are used to confirm that the platform server endpoint is trusted.

Generating Certificate Fingerprints
The instructions for generating certificate fingerprints in this section apply to both
WS EMS and LSR.
You can use OpenSSL used to generate certificate fingerprint values for a given
certificate using the following command:

46 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

openssl x509 -noout -fingerprint -sha256 -inform pem -in
[certificate-file.crt]

Where [certificate-file.crt] is the path to your certificate. This
command produces strings similar to the output below.

C:\OpenSSL-Win32\bin>openssl x509 -noout -fingerprint -sha256
-inform pem -in c:\test\cert.cer
SHA256 Fingerprint=E6:EF:5D:37:22:FC:EF:EA:4B:22:92:45:BD:49:
D2:29:3D:84:19:BC:C3:45:23:A1:22:A4:01:20:9D:03:E6:47

Copy the fingerprint value that is printed to the console and place it into the WS
EMS or LSR configuration file. Fingerprints can contain the characters 0-9, A-F,
and :. The : character is optional and ignored when the value is read.
Using the example above, the fingerprint of the certificate to copy and place in
your configuration file would be

E6:EF:5D:37:22:FC:EF:EA:4B:22:92:45:BD:49:D2:29:3D:84:19:BC:
C3:45:23:A1:22:A4:01:20:9D:03:E6:47

Adding Certificate Fingerprints to the WS EMS Configuration File
To enable fingerprint validation, you must add the fingerprint_whitelist
property to the certificates group in the config.json configuration file
of the WS EMS. The fingerprint_whitelist must consist of an array of
strings in which each string contains a certificate fingerprint. For example:

{
"certificates": {

. . .
"fingerprint_whitelist" : [

"E6:EF:5D:37:22:FC:EF:EA:4B:22:92:45:BD:49:D2:29:3D:84:19:
BC:C3:45:23:A1:22:A4:01:20:9D:03:E6:47",

"D1:BA:B0:17:66:6D:7F:42:7B:91:1E:22:7E:3A:27:D2:
EF:5D:37:22:FC:EF:EA:4B:22:92:45:BD:01:7E:92:52"

]
. . .

}
}

Caution
If you leave this property in the configuration file without any fingerprint strings,
the config.json file is invalid, causing the WS EMS to stop when it attempts
to read this configuration file.

Getting Started with the ThingWorx WS EMS 47

Adding Certificate Fingerprints to the LSR Configuration File
To enable fingerprint validation for the LSR, you must add the fingerprint_
whitelist property to the certificates group in the config.lua
configuration file of the LSR. The fingerprint_whitelist must consist of
one or more strings, each string containing a certificate fingerprint. If multiple
strings are used, separate them using a comma, as shown here:

-- Single fingerprint
scripts.fingerprint_whitelist = "E6:EF:5D:37:22:FC:EF:
EA:4B:22:92:45:BD:49:D2:29:3D:84:19:BC:C3:45:23:A1:22:
A4:01:20:9D:03:E6:47"
-- Multiple Fingerprints
scripts.fingerprint_whitelist = "E6:EF:5D:37:22:FC:EF:
EA:4B:22:92:45:BD:49:D2:29:3D:84:19:BC:C3:45:23:A1:22:
A4:01:20:9D:03:E6:47,
D1:BA:B0:17:66:6D:7F:42:7B:91:1E:22:7E:3A:27:D2:EF:5D:37:22:FC:EF:
EA:4B:22:92:45:BD:01:7E:92:52"

Caution
If you leave this property in the configuration file without any fingerprint strings,
the config.lua file is invalid, causing the LSR to stop when it attempts to read
this configuration file.

Enabling Certificate Fingerprint Validation on Communications
Between WS EMS and LSR
To enable certificate fingerprint validation on communication between the WS
EMS and LSR, you must follow these steps:

1. Add the fingerprint of the certificate used by the HTTP server of the WS EMS
to the scripts.fingerprint_whitelist of the LSR. Recall that the
WS EMS HTTP server certificate is configured using http_
server.certificate.

2. Add the fingerprint of the certificate used by the HTTP server of the LSR to
thefingerprint_whitelist of the WS EMS. Recall that the LSR HTTP
server certificate is configured using scripts.script_resource_
certificate_chain.

48 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Tip
If the LSR or WS EMS inter-operates with any other devices on the local area
network using HTTPS, such as a device defined by an auto_bind
configuration, the fingerprint of the certificate used by that device must be
added to the fingerprint whitelist of the WS EMS and/or LSR

Authenticating and Binding
The appkey group of the configuration file is used for authentication. The WS
EMS must be authenticated to connect to a ThingWorx platform instance.
An application key is an authentication token that is generated by the ThingWorx
platform instance and that represents a specific user. The application key is sent
along with the connection request to authenticate the WS EMS with the
ThingWorx Platform instance, and apply the correct permissions that are
associated with the application key’s user account.

Tip
To encrypt your application key before copying it to the config.json file for
your WS EMS, refer to Encrypting Application Keys, Passwords, and Passphrases
on page 36.

The application key is set by a simple top-level key in the JSON structure.
"appkey": "some_encrypted_application_key",

Note
The code sample above is provided for example purposes only. Copy and paste the
application key that you generated and encrypted into the value side of
"appkey": "some_encrypted_application_key".

Getting Started with the ThingWorx WS EMS 49

Tip
Enabling authentication is an important component of a secure configuration. For
examples of secure configurations for communications between the WS EMS and
the LSR, refer to Examples of Configuring Secure Communications between the
WS EMS and an LSR on page 159 . These examples are presented in order of
least secure (testing purposes ONLY) to most secure (strongly recommended for
production environments).

Binding
Once another device registers with the WS EMS (by sending an auto bind
message), the WS EMS sends a BIND message to the ThingWorx Platform
instance on behalf of that device. The ThingWorx Platform instance then
associates the WebSocket on which WS EMS is communicating with a Remote
Thing on the platform instance whose name or identifier matches the name or
identifier sent by the WS EMS (the Remote Thing must have been created on the
platform instance, using the RemoteThing Thing Template or one of its derivative
templates). This association is the binding that must exist so that the platform
instance can send requests to the device that is communicating through the WS
EMS. For information about automatic binding and the WS EMS, refer to the
section, Configuring Automatic Binding for WS EMS on page 73. For
information about configuring the gateway option for automatic binding, refer to
Auto-bound Gateways on page 75.

Protecting Data with Encryption
The WS EMS and LSR use a data protection library that provides automated
encryption of application keys, passwords, and other sensitive information in
configuration files. Data is protected by a unique data protection key, dp.dat,
that is automatically created by the WS EMS or LSR the first time it runs. Any
existing encrypted data in configuration files is automatically converted to use the
updated encryption method.
This topic first explains how to enable and disable encryption for the WS EMS. It
then provides information about using the new data protection library for
automatic encryption with both the WS EMS and LSR, in the following sections:
• Automatic Configuration Encryption on page 52
• Modifying Encrypted Parameters on page 52
• Data Security Key on page 52

50 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

How to Enable and Disable Encryption
You enable or disable encryption in the ws_connection group of the
configuration file. By default, the WS EMS always attempts to connect to a
ThingWorx Platform instance, using SSL/TLS (that is, encryption is enabled).

Note
The code samples below are provided for example purposes only.

To enable encryption, specify the properties as shown below:

"ws_connection": {

"encryption" : "ssl"

}

To disable encryption (NOT recommended), specify the properties as shown
below:

"ws_connection": {

"encryption" : "none"

}

Tip
Always enable encryption. Otherwise, the WS EMS and LSR will log warning
message (console).

The ws_connection group contains the following property:
Property Description
encryption Whether or not encryption is enabled for communications with the

ThingWorx Platform instance, and the type of encryption used. Valid values
are:
• none

• ssl

Note

The previously available fips value has been replaced with a group
(fips) and a property (enabled. Refer to Configure FIPS Mode on page
37for information about configuring FIPS mode.

Getting Started with the ThingWorx WS EMS 51

Automatic Configuration Encryption
The WS EMS provides an automatic encryption feature that automatically
encrypts sensitive data in configuration files on start-up. This feature is designed
to make it easy to update existing configuration files that use either the legacy
encryption format, or no encryption at all. This feature is always enabled and
cannot be disabled. The data security library uses the XChaCha20-Poly1305
Cipher for encryption of data at rest.
When the WS EMS or LSR is started, all data previously encrypted with the
legacy encryption format (AES) is automatically updated to use the latest format.
Additionally, any plaintext values considered to be sensitive, such as application
keys, passwords, or passphrases for private keys are also automatically encrypted.

Modifying Encrypted Configuration Properties
You can replace a parameter that has been encrypted in a configuration file with a
new plaintext value, and it will be automatically encrypted when the WS EMS or
LSR starts.

Data Security Key
The WS EMS automatically appends a property, called "Data Security Key Hash",
to the configuration files for the WS EMS and LSR The WS EMS and LSR check
the value of this property to detect any potential modification to the data security
key between start ups. If this value is determined to be different than the value
expected, a warning message is written to the log. In addition, decryption may fail
if the key has changed.
This field should not be modified by users and can be ignored. The value appears
at the end or your configuration file

• data_security.key_hash in WS EMS config.json
• scripts.data_security_key_hash in LSR config.lua

Running the ThingWorx WS EMS
The ThingWorx WS EMS can be run either from a command line or as a Linux
daemon or Windows service on page 54 to establish a to ThingWorx Platform.

Running WS EMS from a Command Line
The WS EMS can be run from a command line as follows:

1. Open a command window or terminal session on the system or device that is
hosting the WS EMS.

2. Change to the directory, \microserver\etc.

52 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

3. For a basic configuration, copy the file, config.json.minimal, and
rename it to config.json. Even for a complex configuration, start with
your basic config.json file to ensure first that you can run the WS EMS.

Caution
Do not attempt to use config.json.documented as is to run your WS
EMS. It is intended as a reference, not as a valid JSON file that you can use to
run WS EMS. Instead, use config.json.complete to run WS EMS
using all available properties. Make sure that you save
config.json.complete as config.json , and set all of the
minimally required properties (refer to the next step).

4. Set the configuration properties:

• For a simple configuration that establishes a connection to ThingWorx
Platform, refer to the section, Creating a Configuration File on page 26.

• For a more complex configuration, start with the section, Creating a
Configuration File on page 26, and then continue to the section, Viewing
All Configuration Options on page 60.

5. Save the configuration file as config.json.

Note
The configuration file must be named config.json and reside in the
\microserver\etc directory.

6. Change directories back to the top-level directory, \microserver.
You are ready to run the WS EMS, as follows:

1. To run the WS EMS, enter the command, wsems.

As part of initialization, the WS EMS checks the configuration file settings.
Once initialized, the WS EMS prints its version number to the console and log
file, attempts to connect to ThingWorx Platform, and returns a message that
the connection was successful to the console. You can tell that WS EMS is
running and connected to ThingWorx platform by looking at the console
prompt — two plus signs (++) indicate that it is running and connected.

2. Should you need to shut down the WS EMS, press ENTER to display the
console prompt and type q.

Getting Started with the ThingWorx WS EMS 53

Note
The Windows-based operating systems have a tick resolution (15ms) that is higher
than the tick resolutions requested by the C SDK (5ms). For information about
achieving the best performance in a Windows-based operating system, refer to
Running on a Windows-based Operating System on page 169.

Running WS EMS as a Daemon (Linux) or as a Windows Service
To run WS EMS and the LSR as daemons or services, you first need to "install"
them and then you can start them as you would any other daemon or service.
Follow these steps:

1. Open a command window or terminal session on the system or device that is
hosting the WS EMS.

2. Change to the \microserver\etc directory.
3. For a basic configuration, copy the file, config.json.minimal, and

rename it to config.json. Even for a complex configuration, start with
your basic config.json file to ensure that you can run WS EMS.

Caution
Do not attempt to use config.json.documented as is to run your WS
EMS. It is intended as a reference, not as a valid JSON file that you can use to
run WS EMS. Instead, use config.json.complete to run WS EMS
using all available properties. Make sure that you save
config.json.complete as config.json , and set at least all of the
minimally required properties (refer to the next step).

4. Set the configuration properties:

• For a simple configuration that establishes a connection to ThingWorx
Platform, refer to Create the WS EMS Configuration File on page 26 and
Configure the Connection to ThingWorx Platform on page 28.

• For a more complex configuration, start with the section, Create the WS
EMS Configuration File on page 26, and then continue to the section,
Additional Configuration Options on page 58.

54 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

5. Save the configuration file as config.json.

Note
The configuration file must be named config.json and reside in the
\microserver\etc directory.

6. Follow the steps for your operating system:

• For Windows:

a. Change into the \microserver\install_services\
directory.

b. Run the following command to install WS EMS and LSR as Windows
services, with or without the options to create custom names:

install.bat [-wsems your_name_for_wsems_service_here]

[-lsr your_name_for_lsr_service_here]

Use only one hyphen (-) for the options. There is a space between the
option and the argument, but for Windows, you must use the full
option name.

• For Linux:

a. Change to the \microserver\install_services\ directory.
b. To make the install script executable, use the following command:

sudo chmod +x microserver/install_services/install

c. Run one of the following commands to install the WS EMS and LSR
as daemons:

○ Linux, using short names for the options
sudo ./microserver/install_services/install \

[-w your_name_for_ws_ems_service_here] \
[-l your_name_for_lsr_service_here]

Use only one hyphen (-) for the options. There is a space between
the option and the argument.

○ Linux, using long names for the options:
sudo ./microserver/install_services/install \

[--wsems=your_name_for_ws_ems_service_here] \
[--lsr=your_name_for_lsr_service_here]

Note that the long options require two hyphens (--) before the
option name, an equal sign following the name, and no space

Getting Started with the ThingWorx WS EMS 55

between the equal sign and the argument (your name for the
service).

Note
To uninstall the service, remove the service from /etc/init.d/
<Service Name>.

As part of initialization, the WS EMS checks the configuration file settings. Once
initialized, the WS EMS prints its version number to the console and log file,
attempts to connect to WS EMS, and returns a message that the connection was
successful to the console. You can tell that WS EMS is running and connected to
ThingWorx Platform by looking at the console prompt — two plus signs (++)
indicate that it is running and connected.

How the Startup Process Works and What May Happen
When the WS EMS starts, it attempts to read the config.json configuration
file. If the configuration file is invalid, the WS EMS stops. The configuration file
may be invalid because, for example, the fingerprint_whitelist property
was added without any content. When the WS EMS fails to start, it writes a
warning message to the log. By checking the log of the WS EMS, you can
determine that this empty property group was the cause of the problem

Note
The validation process is not necessarily done on every single configuration value
in the file. Only certain explicit values are checked.

If the WS EMS can read the configuration file, it starts to process it. If it
encounters a logical error, the WS EMS writes an error to the log and exits. For
example, you enabled SSL on your HTTP server but did not provide a path to a
certificates file.
If a connection to a server is rejected, you can determine the cause of the failure
by looking in the WS EMS log. If a connection is rejected because of a mismatch
in TLS host names or certificate fingerprint validation, a warning message is
written to the log. For fingerprint validation, no message is written to the log if it
succeeds.

56 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Tip
The data security library provided with v.5.4.8 and later of the WS EMS and LSR
uses the XChaCha20-Poly1305 Cipher for encryption of data at rest. For more
information about automatic encryption, refer to Automatic Configuration
Encryption on page 52. The legacy encryption method for WS EMS and LSR
v.5.4.7 and earlier is AES encryption for data at rest.

Verifying Your Connection
Following the initial message that indicates a successful connection to the
ThingWorx Platform instance, you can verify your connection as follows:
1. Open a web browser on the system or device that is hosting the WS EMS, and

enter the following URL in the address bar:
http://localhost:8000/Thingworx/Things/LocalEms/Properties/isConnected

This request returns an InfoTable that contains a single row that indicates
whether the WS EMS is online or offline.

2. If the result of this request is true, the WS EMS is online. To test that you can
access data on the ThingWorx Platform instance, enter the following URL in
the address bar:
http://localhost:8000/Thingworx/Things/SystemRepository/Properties/

name

This request returns an InfoTable that is serialized to JSON, where the
row of the InfoTable contains the name of the requested Thing,
“SystemRepository”.

3. If both of these tests succeed, the WS EMS is successfully connected to the
ThingWorx platform instance.

Getting Started with the ThingWorx WS EMS 57

3
Additional Configuration of WS

EMS
Viewing All Configuration Options ..60
Configuring the Logger Group ..60
Configuring the HTTP Server Group ...63
Configuring the WebSocket Connection ..66
Configuring Duty Cycle Modulation ...69
Configuring a Proxy Server ..72
Storing Messages Received While WS EMS Is Offline ...72
Configuring Automatic Binding for WS EMS ..73
Auto-bound Gateways ...75
Configuring File Transfers ..77
Best Practices for Transferring Large Files ..80
Configuring Edge Settings for Tunneling ...83
Configuring the WS EMS to Listen on IP Other Than localhost......................................88
Example Configurations...89

This section describes how to configure additional options of the WS EMS.
The config.json.complete and the config.json.documented files
provided in the WS EMS installation contains all possible configuration
properties. To allow you to run WS EMS using config.json.complete, all

58 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

of the comments have been removed from the file. Instead,
config.json.documented is provided as the reference file for configuration
information for all of the possible configuration properties for WS EMS.

Caution
Do not attempt to use config.json.documented as is to run your WS EMS.
It is intended as a reference, NOT as a valid JSON file that you can use to run WS
EMS. Instead, use config.json.complete to run WS EMS, using all of the
possible configuration properties.

Some properties in the config.json.complete file have default values that
you may not need to change. The rest of this section describes the properties that
are used most often.

Note
If you are using the Lua Script Resource (luaScriptResource.exe) to
communicate with one or more local devices, you also need a config.lua in
the /etc directory. This file tells the Lua process how to initialize and
communicate with ThingWorx Platform through the WS EMS. For more
information, refer to Configuring a Lua Script Resource on page 138.

Additional Configuration of WS EMS 59

Viewing All Configuration Options
The file, config.json.documented, is provided in the WS EMS
distribution. It contains all the possible options that you can configure for your
WS EMS plus a few comments to help you understand each group and property.
To view these options, follow these steps:
1. From the WS EMS installation directory, change to the directory, /etc.
2. Open the file, config.json.documented in a text editor.
3. Refer to this file while you read about the groups of the configuration file.
The comments in this file provide brief descriptions of the properties. The rest of
this section walks you through the properties that are used most often.

Caution
Do not attempt to use config.json.documented as is to run your WS EMS.
It is intended as a reference, not as a valid JSON file that you can use to run WS
EMS. Instead, if you want to copy all properties, open
config.json.complete in a text editor and save it as config.json.
Make sure that you preserve the original configuration files.

Setting an Option to Use the Restart REST Service
The Restart REST service on page 130 requires on a configuration option to be
added to the config.json file of the WS EMS so that any edge-side restart
requests work correctly. Otherwise, only requests from the ThingWorx platform
can restart the WS EMS. The restart configuration option is a top-level option in
config.json and should be set to one of the three values, as shown here:

"restart" : "any" // Allow anyone to restart the WS EMS (Local or

Server)

"restart" : "local" // Only allow local Edge devices to restart the WS

EMS

"restart" : "server" // Only allow the ThingWorx Platform to restart the

WS EMS

Configuring the Logger Group
Use the logger settings to configure a WS EMS to collect logging information.
Here is an example of this group:

"logger":{

"level": "WARN",

60 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

"audit_target": "file:// or http://",

"publish_directory":"/_tw_logs/",

"publish_level":"WARN",

"max_file_storage":2000000,

"auto_flush":true,

"flush_chunk_size":16384,

"buffer_size":4096

},

The following table lists and describes the properties of the logger element :

Use To Specify
level The level of information that you want to include in the audit log file.

The default level is WARN. Valid values include:
• AUDIT

• ERROR

• WARN

• INFO

• DEBUG

• TRACE

Tip

When troubleshooting a problem, set the level to TRACE so that you
can monitor all the activity. For production, set the level to ERROR if
you want to view error messages.

audit_target The path to the audit log file where audit events will be written
Alternatively, specify an HTTP address for the audit log file, where these
events will be sent using a POST command.

Audit events are also written to the normal log destination. If no target is
specified, no additional auditing takes place.

Valid values include:
• file://path_to_file

• http://hosted_location

publish_directory A location for writing to log files those log events that meet or exceed
the publish_level. If you do not specify a location for this property,
this logging information is not written to log files. The default value is
"publish_directory":"/_tw_logs/",

Caution

The LSR and WS EMS use the same naming scheme for log files.
Specify a directory that is different from the one specified in the
publish_directory property in the config.json file of the WS
EMS.

publish_level The level of information that you want to include in the alternate log

Additional Configuration of WS EMS 61

Use To Specify
files. The default value is logger:level, which tells WS EMS to use
the same level as set in the levelproperty. Valid values are the same as
for the logger.level property:
• AUDIT

• ERROR

• WARN

• INFO

• DEBUG

• TRACE
max_file_storage The maximum amount of space that log files can take up. Keep in mind

that there are two concurrent log files. The maximum size of each
individual log file is max_file_storage divided by 2. The default
value is 2000000 bytes.

auto_flush Whether WS EMS should flush every N bytes to the publish_
directory. The N value is defined by flush_chunk_size.

WS EMS also flushes the buffer if a message has not been written to the
log in the last second.

A setting of true for auto_flush forces WS EMS to flush every
16384 bytes by default.

flush_chunk_size The number of bytes to write before flushing to disk. The default setting
is 16KB..

Tip

It is strongly recommended that you keep the default setting . You cannot
effectively go lower than the value of your setting for the buffer_
size property. Although no limits are enforced, it strongly
recommended that you NOT use a value that is higher than the default
value.

buffer_size The maximum number of bytes that can be printed in a single logging
message. The default setting is 4096 bytes.

Tip

It is strongly recommended that you keep the default setting. Modify this
value only if you have issues with logging speed or other performance
issues, or if you are getting truncated messages in the log. If you expect
to have very long messages that you want logged, increase this value.

As of version 5.4.0, the actual time is no longer used in the logs for the WS EMS
and the Lua Script Resource (LSR). Instead, the logs use UTC timestamps.
As of version 5.3.4 of WS EMS, logging behavior changed, as follows:

62 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

• The same format is used in log messages written to the console (text) as in log
messages written to the persisted log files (formerly JSON). The log messages
are no longer wrapped in a JSON object. The persisted log files are just text
files. Their content will match what is printed out on the console.

• You can specify certain limitations for logging. The property, buffer_size,
allows you to specify the maximum number of bytes that can be printed in a
single log message. In addition, the property, flush_chunk_size, allows
you to specify a maximum of bytes to write before flushing to disk. If a
message has not been written to the log in the last second, the buffer is
flushed. These properties and their default values are shown in the
config.json.documented configuration file in the WS EMS
installation.

Caution
Do not attempt to use config.json.documented to run your WS EMS.
This file is intended as a reference. Instead, if you want to use all possible
properties, use config.json.complete. Be sure to save the file as
config.json before running WS EMS.

Configuring the HTTP Server Group
The http_server group is used to allow a WS EMS to accept local calls from
the machine or device code that may be running in a different process, such as the
Lua Script Resource.

Note
If you are connecting from the Lua Script Resource and have changed the host
and port properties for the WS EMS, you must update the config.lua file (in
the /microserver/etc directory) and modify the properties,
scripts.rap_host and scripts.rap.port.

Here is an example of the http_server group. Change the values of the
properties to fit your environment; do not use this example as is.

"http_server": {

"host" : "localhost",

"port": 8000,

"ssl": true,

"certificate" : "/path/to/certificate/file",

Additional Configuration of WS EMS 63

"private_key" : "/path/to/private/key",

"passphrase" : "password"

"authenticate" : true,

"user" : "johnsmith",

"password" : "some_encrypted_user_password",

"content_read_timeout": 20000

"ports_to_try" : 10

"max_clients" : 15

"enable_csrf_tokens" : true

"csrf_token_rotation_period" : 10

},

Caution
Always configure a secure HTTP server. Otherwise, the WS EMS and LSR will
log warning messages when SSL, authentication, or certificate validation is
disabled or when self-signed certificates are allowed. Starting with v.5.4.8 of the
WS EMS and LSR, application keys and passwords are automatically encrypted
on the first startup of the WS EMS or LSR. For information about automatic
encryption, refer to Automatic Configuration Encryption on page 52. For earlier
versions, you can learn how to encrypt these secrets in Encrypting Application
Keys, Passwords, and Passphrases on page 36.

For examples of secure configurations for communications between the WS EMS
and the LSR, refer to Setting Up Secure Communications for the WS EMS and
LSR on page 159. These examples are presented in order of least secure (testing
purposes ONLY) to most secure (strongly recommended for production
environments).

Tip
The WS EMS provides a parameter called http_client_ca_certs that
allows the use of a separate Certificate Authority (CA) certificate file that will
only be used for Edge to Edge HTTPS connections. If this option is not used, the
default CA certificate list that is used to validate the platform connection will be
used. This parameter is in the certificates group in the WS EMS
configuration file. For more information, refer to Using a Custom Certificate and
Private Key on page 45.

64 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

The following table lists and describes the properties in the http_server group
:
Property ThingWorx Base

Type
Description

host STRING The name of the host that the WS EMS listens to. The
default value is localhost, but this value means
IPV6 localhost and not 127.0.0.1. Change this
value to 127.0.0.1 to use IPV4 instead.

To configure an IP address other than localhost or
127.0.0.1 for REST Web Service calls, refer to
Configuring WS EMS to Listen on IP Other Than
localhost on page 88

port NUMBER The port number on which the WS EMS listens for
messages from clients running the LSR. Typically,
incoming messages on this port are from an LSR
instance/application, but it is possible for any other
application to send messages to the WS EMS HTTP
Server.. The default port is 8000.

ssl BOOLEAN Whether or not to use SSL/TLS for communications
between clients running the LSR and WS EMS. The
default value is true.

certficate STRING When ssl is true, specifies the complete path to the
certificate file that WS EMS will use when connecting
to LSR clients. The default value is an empty STRING.

Note

The file does not need to be located in the installation
directory for the WS EMS. However, you must specify
the full path to the certificate file, no matter where you
store the file.

private_key STRING When ssl is true, specifies the complete path to the
private key that WS EMS will use when connecting to
LSR clients.

Note

The file does not need to be located in the installation
directory for the WS EMS. However, you must specify
the full path to the private key file, no matter where you
store the file.

passphrase STRING When ssl is true and a private_key is used for
connections with LSR clients, specifies the password
defined for the private key. This value should be
encrypted for security. For information about encrypting
a passphrase, refer to Encrypting Application Keys,
Passwords, and Passphrases on page 36.

authenticate BOOLEAN Whether or not to enable authentication between the

Additional Configuration of WS EMS 65

Property ThingWorx Base
Type

Description

LSR clients and the WS EMS. The default value is
true.

user STRING The user name to pass to the HTTP server. The example
above shows a name as all lowercase and all one word.
However, there are no restrictions on the user name
other than it must be a valid STRING.

password STRING The encrypted password for the user named in the
user property. For information about encrypting
passwords, refer to Encrypting Application Keys,,
Passwords, and Passphrases on page 36.

content_read_

timeout
NUMBER The maximum amount of time (in milliseconds) that the

WS EMS will wait before timing out when it tries to
read a PUT or POST. The default value is 20000
milliseconds (20 seconds).

ports_to_try NUMBER The number of additional ports to try. If it cannot bind
on the configured port, WS EMS increments the port
number by 1. The default value is 10. For example, if
the configured port is 8000, the next port to try would
be 8001. If it could not bind to that port, the next port to
try would be 8002, and so on. Port retries continue until
the WS EMS binds to a port or until 10 ports plus the
configured port have been tried. In this example, a total
of 11 ports might be tried.

max_clients NUMBER The maximum number of clients that can be connected
to the WS EMS at the same time. In this context,
“clients” are devices that are running the LSR,
connected to the WS EMS, and communicating with a
ThingWorx Platform through the WS EMS. The default
value is 15 clients.

enable_csrf_

tokens
BOOLEAN A flag to enable (true)or disable (false) the use of

CSRF tokens with the REST services. By default the
use of CSRF tokens is enabled. For more information,
refer to Running RESTAPI Calls with Postman on WS
EMS and LSR on page 134.

csrf_token_

rotation_period
NUMBER The number of minutes between rotations of the CSRF

token for a given session. The default value is 10
minutes.

Configuring the WebSocket Connection
The ws_connection group is used to configure the WebSocket connection
between the WS EMS and the ThingWorx Platform. If the default settings meet
your needs, there is no need to include this group in the configuration file.

66 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

The code sample below is provided for example purposes only. It shows the group
as it appears in the config.json.complete file.

Caution
Do not attempt to use config.json.documented as is to run your WS EMS.
It is intended as a reference, not as a valid JSON file that you can use to run WS
EMS. Instead, use config.json.complete. All of the comments have been
removed from this file to enable you to run WS EMS using it.

"ws_connection": {
"encryption" : "ssl ",
"verbose" : false,
"msg_timeout" : 10000,
"ping_rate" : 55000,
"pingpong_timeout" : 10000,
"message_idle_time" : 50000,
"max_msg_size" : 1048576,
"message_chunk_size" : 8192,
"max_messages" : 500,
"connect_timeout" : 10000,
"connect_retry_interval" : 10000,
"max_threads" : 4,
"max_connect_delay" : 10000,
"socket_read_timeout" : 0,
"frame_read_timeout" : 10000,
"ssl_read_timeout" : 500,
"connect_retries" : -1,
"compression" : true

},

Note
As of v.5.4.3 of the WS EMS, duty-cycle modulation behavior and configuration
have changed. The configuration of duty cycle has its own group in the
config.json file. The two properties, connect_period and duty_
cycle, have been moved from the ws_connection group to the duty_
cycle group. A third property, delay_duty_cycle has been added. For
details, refer to Configuring Duty Cycle Modulation on page 69.

Additional Configuration of WS EMS 67

The following table lists and describes properties available to configure the
WebSocket connection, in alphabetical order:
Use To Specify
encryption Whether SSL/TLS is used for the WebSocket connection. The default value

is ssl. To disable SSL/TLS (NOT recommended), set this property to
none.

verbose Whether or not the WS EMS is in extremely verbose logging mode. The
default value is false.

msg_timeout The time in milliseconds to wait for a response to return from the
ThingWorx platform. The default value is 10000 milliseconds (10
seconds).

ping_rate The rate in milliseconds to send pings to the ThingWorx Platform. The
default value is 55000 milliseconds.

pingpong_timeout The amount of time in milliseconds to wait for a pong response after
sending a ping. A timeout initiates a reconnect. The default value is 10000
milliseconds.

message_idle_time The time in milliseconds to wait to refer to if messages are being sent
before disconnecting for the off time of the duty cycle. The default value is
50000 milliseconds.

max_msg_size The maximum size, in bytes, of a complete message, even if broken into
frames. The default value is 1048576 bytes (1 MB).

message_chunk_size The maximum size of a chunk — a piece of a large message that has been
broken up into chunks. The default value is 8192 bytes.

max_messages The maximum number of requests that can be waiting for a response at any
one time. The default value is 500 requests.

connect_timeout The maximum number of milliseconds, to wait for a connection to a
ThingWorx platform instance to be established. The default value is 10000
milliseconds (10 seconds).

connect_retry_

interval
The number of milliseconds, to wait between attempts to connect to a
ThingWorx platform instance. The default value is 10000 milliseconds (10
seconds).

max_threads The maximum number of incoming message handler threads to use. The
default value is 4.

max_connect_delay The maximum amount of random delay time, in milliseconds, to wait
before connecting. The default value is 10000 milliseconds (10 second
delay before connecting).

socket_read_timeout The maximum amount of time, in milliseconds, to wait for data before
timing out. To match the best practices recommendation for transferring
large files, the default value is 0 milliseconds.

If your WS EMS does not transfer large files, consider setting this property
to 100 ms. When set to a non-zero value, this property defines how long a
process is allowed to wait for data before it must try again. Another process
would be allowed to read from the socket between tries. A timeout does not
trigger an error. Refer to the Note above for frame_read_timeout.

frame_read_timeout The maximum amount of time, in milliseconds, to wait for a full SSL/TLS

68 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Use To Specify
frame during a socket read operation. The default value is 10000
milliseconds. A timeout occurs if the WS EMS requests something from the
ThingWorx platform and receives no data at all The timeout triggers an
error and causes a disconnect.

Note

The difference between socket_read_timeout (described below) and
frame_read timeout lies in the scope and context in which these
timeouts are used. The socket_read_timeout is used everywhere —
in tunnels, e.g. — and anywhere there is a raw socket read. The frame_
read timeout is used in one place only — twWs_Receive() and
then only after a WebSocket header has been received. After that, there is
an expectation that the remainder of the frame described in the header will
arrive in a timely manner. This specialized amount of time is the frame_
read_timeout.

ssl_read_timeout The maximum amount of time, in milliseconds, to wait for a full SSL/TLS
record during a socket read operation. The default value is 500
milliseconds. A timeout does not trigger an error. This property effectively
allows a read to continue after the socket_read_timeout is reached
IF a partial amount of the SSL/TLS record is received on the socket before
the socket_read_timeout expires.

connect_retries The number of times to retry the connection when it fails, as an INTEGER.
The default value, -1, causes the WS EMS to retry forever.

compression As of v.5.4.5, you can specify whether compression is enabled or disabled
for websocket connections. By default this property is set to true,
meaning that compression is enabled. Set this property to false to disable
compression.

Configuring Duty Cycle Modulation
Duty cycle modulation enables developers to control the time that a WS EMS is
connected to the ThingWorx Platform. It defines the frequency and duration of the
connection between a WS EMS and a ThingWorx Platform. If you need to
conserve power or bandwidth at the expense of availability/responsiveness, you
can use duty cycle modulation. This feature may be useful if you have critical
processes during which you want to disable communications for a device. By
configuring duty cycle modulation in the duty_cycle group in the
config.json file of your WS EMS, you can put the WS EMS into an offline
mode.
As of v.5.4.3, duty cycle modulation keeps the WebSocket connection alive as
long as there is activity within a configurable amount of time on the WS EMS (
delay_duty_cycle property). The WebSocket connection enters a duty cycle
OFF state only if there have not been any messages from the ThingWorx platform

Additional Configuration of WS EMS 69

in the configured number of seconds. For example, if a file transfer is in progress,
you may need to keep the connection open for an additional two minutes. The
duty cycle has a separate configuration group in config.json, as follows:

"duty_cycle" : {
"connect_period" " 60000,
"duty_cycle" " 100,
"delay_duty_cycle" : 60000

}

where
• connect_period—Defines the period of time set for duty cycle

intervals. A value of 0 means that the WS EMS is always connected. The
default rate is 60000 (one minute).

• duty_cycle—Determines what percentage of time during the connection
period that the WS EMS is connected to the ThingWorx Platform. The default
value is 100 percent, which means that the WS EMS is always connected. This
value is also the maximum value for this property. A value of 0 also means
that the WS EMS is always connected during the connection period.

• delay_duty_cycle—Defines the time interval (in milliseconds) for
which the duty cycle should not be entered after receiving a message from the
platform. The default value is 60000 milliseconds (one minute).

Note
If the config.json file does not have the "duty_cycle" group, the WS
EMS assumes that its connection is always on (that is, duty_cycle is set to 0 or
100 percent).

The following diagram illustrates the effects of the duty cycle parameters on the
connection between a WS EMS and a ThingWorx Platform:

In addition to the configuration file changes for duty cycle in v.5.4.3, the WS EMS
has changed to enable it to track file transfers and tunnels, as well as property and
service requests from the ThingWorx Platform. Duty cycle will not disconnect the
WS EMS from the platform if any of the following conditions are true:

70 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

• A message has been received from the platform during the last delay_
duty_cycle time interval.

• A message has been sent to the platform but no response has been received
yet.

• A file transfer is pending or in progress.
• A remote session (tunnel) is in progress (open).
Finally the WS EMS will not be disconnected from the ThingWorx platform
immediately after starting up. Instead, the WS EMS will disconnect at the next
Duty Cycle event after startup. The next Duty Cycle event is the next time when
the WS EMS should connect to or disconnect from the platform.
If the WS EMS is connected to the ThingWorx Platform, the next Duty Cycle
event is calculated as follows:
nextDutyCycleEvent = Current time + ((connect_period * duty_
cycle)/100)

For example, if the connect_period is one minute (60,000 ms) and the
duty_cycle is 30 percent, the WS EMS will disconnect after 18,000
milliseconds. That is, the WS EMS will remain connected for 30 percent of the
connect_period:
(30/100) * 60000 = 18000

If the WS EMS is disconnected from the platform, the next Duty Cycle event is
calculated as follows:
nextDutyCycleEvent = Current time + ((connect_period * (100 duty_
cycle))/100)

For example, if the connect_period is one minute (60,000 ms) and the
duty_cycle is 30 percent, the WS EMS will connect after 42,000 milliseconds.
That is, the WS EMS will remain disconnected for 70 percent of the connect_
period:
((100 = 30)/100) * 60000 = 42000

Duty cycle is considered to be enabled if the following conditions are true:

• The connect_period is greater than zero. That is, the total number of
milliseconds that the WebSocket will stay connected is greater than zero. The
value of 0 indicates “AlwaysOn”.

• The duty_cycle is less than 100 and greater than 0. That is the percentage
of the connect_period that the WS EMS remains connected to a
ThingWorx platform is less than 100 and greater than 0. A value of 100 or 0
indicates “AlwaysOn”.

If an LSR pushes data (e.g., property value changes) to a WS EMS while the WS
EMS is in the OFF state of a duty cycle, the data is stored in the offline message
store and sent to the ThingWorx Platform once the WS EMS is connected again
(duty cycle ON state).

Additional Configuration of WS EMS 71

Configuring a Proxy Server
The proxy group is used to configure the WS EMS to use a proxy server to
connect to a ThingWorx Platform. For authentication with a proxy server, the WS
EMS supports the following options:
• No authentication
• Basic authentication
• Digest authentication
• NTLM

Note
The code sample below is provided for example purposes only.

"proxy" : {

"host" : "localhost",

"port" : 3128,

"user" " "username",

"password" : "some_encrypted_password"

},

The following table lists and describes the properties for setting up a proxy server:
Use To Specify
host The host name of the proxy server used to connect to the ThingWorx Platform.

The value of the host property can be an IP address, or a host name.
port The port number used to communicate with the proxy server. The default value is

3128.
user The name of the user account that is used to connect with the proxy server. In

general, do NOT use the colon (:) character in user names.
password The password of the user account that is used to connect with the proxy server. If

you select to provide the user name and password for authentication with the
proxy server, it is recommended that you encrypt the password as shown in the
example above. To encrypt a password, refer to Encrypting Application Keys,
Passwords, and Passphrases on page 36.

Storing Messages Received While WS
EMS Is Offline
The offline_msg_store group is used to configure how the WS EMS
handles and stores messages that are received while it is offline.

72 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

The following example shows the default configuration. If you do not want to use
it, you do not have to change the configuration. When this feature is disabled, the
other settings are ignored. However, if you do want to use this store, make sure
you set the enabled property to true and add the appropriate directory for
storing messages. Depending on the space available on your system, you may also
want to change the max_size property.

"offline_msg_store": {

"enabled": true,

"directory" : "/path/to/offline/message/store/directory",

"max_size": 65535

},

The following table lists and describes the properties for storing messages that are
received while the WS EMS is offline; it also provides the default values:
Property Description
enabled Whether or not the store is enabled.

The default setting of true enables offline message store. Set this
property to false to disable it.

directory The path to the directory of the store where messages are stored.

The default value is "/path/to/offline/message/store/
directory". Here is an example:

directory: "/opt/thingworx"

where "/opt/thingworx" is the directory where the WS EMS
executable is installed (Linux).

max_size The maximum size (in bytes) of the directory where messages are
stored.

The default value is 65535 bytes.

Configuring Automatic Binding for WS
EMS
The automatic binding feature provides a way of letting the WS EMS talk to
HTTP servers at the Edge that you want to represent as Things in ThingWorx.
When you configure auto_bind you must supply a REST endpoint for the WS
EMS to communicate with. If the ThingWorx Platform makes a request down to
that device, the WS EMS makes an HTTPS connection to the server defined in the
auto_bind configuration group.
The auto_bind group is used to define specific local things that are always
expected to be bound through this WS EMS, or to define a WS EMS as a gateway.
For more information about configuring WS EMS as a gateway, refer to Auto-
bound Gateways on page 75.

Additional Configuration of WS EMS 73

Caution
When configuring the WS EMS for automatic binding, you can define only one
gateway.

The auto_bind property is an array, allowing you to statically define more than
one device or machine Thing.

Note
The code sample below is provided for example purposes only.

"auto_bind": [{

"name" : "EdgeThing001",

"host" : "localhost",

"port" : 8001,

"path" : "/",

"timeout" : 30000,

"protocol" : "http",

"user" : "username",

"password" : "some_encrypted_password",

"gateway" : false

}],

Best Practices
When configuring a host and a port for automatic binding, always use the same
host and port as for the http_server configuration. This best practice prevents
failure of a file transfer between the ThingWorx Platform, and a WS EMS. This
includes transfers of file-based SCM packages. Refer to Troubleshooting File
Transfers When Using Automatic Binding on page 167.
When using SSL/TLS between this device and the WS EMS, ensure optimal
security by adding certificate fingerprint validation to the WS EMS configuration
file. For details, refer to Certificate Fingerprint Validation for WS EMS and LSR
on page 45.
The following table lists and describes the properties for automatic binding:
Property Description
name REQUIRED. This property specifies the Thing Name of the entity as it exists on

the configured ThingWorx Platform instance. If an identifier is configured for the
Thing on the platform instance, you must specify that identifier here. For more
information, refer to the section, “Identifiers”, below.

host This property specifies the name of the host machine for the Thing. The default

74 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Property Description
value is localhost, but this likely means IPV6, and not 127.0.0.1.

port This property specifies the port number used by the Thing/device for
communications. The default value is 8001.

path This property specifies the path to prepend to the path received in the request from
the ThingWorx Platform instance.

timeout This property specifies the maximum amount of time to wait for a response from
the target, in milliseconds. The default value is 30000 milliseconds (30 seconds).

protocol This property specifies whether the protocol to use for communications is HTTP or
HTTPS. The default value is http.

user This property specifies the name of the user account to use for authentication when
connecting. In general, do not use the colon (:) character in user names.

password This property specifies the password for the user account specified for the user
property.

If you specify a user name and password, it is recommended that you encrypt the
password. For details, refer to Encrypting Application Keys, Passwords, and
Passphrases on page 36.

gateway This property specifies whether this automatically bound Thing is a gateway or
non-gateway Thing. By default, this property is set to false. To understand the
differences between these two settings, refer to Auto-bound Gateways on page 75.

Identifiers
Identifiers provide a way to specify an alternate name for a given Thing. An
identifier can be set for a Thing on the General Information tab of the Thing in
ThingWorx Composer. If a Thing has an identifier set, the ThingWorx Platform
must bind the Thing using the identifier. A typical use case for an identifier is the
serial number for a device, as opposed to an intuitive name.
You can use an identifier when dynamically registering a Thing or when
configuring the auto_bind group. To use an identifier, prepend an asterisk (*)
to the identifier and specify it as the value for the "name" property, as follows:
{

"name" : "*SN0012",
"host" : "localhost",
"port" : 9000,
"path" : "/"

}

Auto-bound Gateways
When you configure the auto_bind group of a WS EMS, it is very important to
note the difference between the settings, "gateway":true and
"gateway":false. When used with a valid "name" property, either value
results in the WS EMS attempting to bind the Thing with the ThingWorx

Additional Configuration of WS EMS 75

Platform. In addition, either value allows the WS EMS to respond to file transfer
and tunnel services that are related to the automatically bound things. However,
the similarities end here.

Gateway
An auto-bound gateway can be bound to a ThingWorx Platform instance
ephemerally if there is no Thing to bind with on the instance. Ephemeral binding
is a temporary association between a platform instance and the WS EMS that lasts
only until the WS EMS unbinds the gateway. In general, ephemeral things are
created on a ThingWorx Platform when no Remote Things with a matching Thing
Name exist on it.
When the WS EMS is attempting to bind a gateway, a Thing is automatically
created on the ThingWorx Platform, using the EMSGateway Thing Template. The
ThingWorx platform binds the auto-bound gateway with this ephemeral Thing.
This Thing is accessible only through the WS EMS REST Web Service. Once the
WS EMS unbinds the gateway, the ephemeral Thing is deleted
If you do not want the automatically bound gateway to be ephemeral, you can
create a Thing for it and choose the EMSGateway Thing Template in ThingWorx
Composer. If you do not choose this template for the Thing, the platform does not
bind the gateway with your Thing.
When used both normally and ephemerally, the EMSGateway template provides
some services that are specific to gateways. These services are not accessible to
things that are created with the RemoteThing (and derivatives) Thing templates.

Note
The devices for which a WS EMS acts as a gateway can be set up to identify
themselves to the WS EMS when they initialize and connect to it. Alternatively,
when these devices are well known, you may want to define them explicitly in the
WS EMS configuration. For examples of these two types of gateway
configurations for a WS EMS, refer to the section, Example Configurations on
page 89.

Non-Gateway
AThing that is automatically bound but is not a gateway has the following
requirements:
• For the WS EMS to respond to messages that are related to properties,

services, or events for a non-gateway, automatically bound Thing, a
LuaScriptResource must exist. Custom Lua scripts must exist within the LSR
to provide the capabilities to handle services, properties, and events.

76 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/#page/ThingWorx%2FHelp%2FComposer%2FThingTemplates%2FRemoteTemplates.html

• For the non-gateway Thing to bind successfully, you must first create a
corresponding Thing on ThingWorx Platform, using the RemoteThing Thing
Template (or any template derived from RemoteThing, such as
RemoteThingWithFileTransfer).

The most common use of this type of automatically bound Thing is to bind a
simple Thing that can handle file transfer and tunnel services but does not need
any custom services, properties, or events.

Note
For an example of a non-gateway configuration for WS EMS, refer to the section,
Example Configurations on page 89.

Configuring File Transfers
To execute a file transfer, you need to configure options for both your client
application and your ThingWorx instance. Transfers can be executed in either
direction: from the edge application to your ThingWorx Platform or from the
platform to the edge application.

Note
Keep in mind that the account associated with the application key must have the
correct Read/Write permissions to the target and destination directories for a file
transfer.

To transfer a file, the WS EMS must be configured with a set of virtual directories.
The paths that you specify for the virtual directories must be absolute; the paths
for the files must be relative to the virtual directories. For the WS EMS, these
properties might look like this:
"file": {

"virtual_dirs":[

{ "In" : "c:\\microserver_5.4.6-win32\\microserver\\in" },

{ "Out" : "c:\\microserver_5.4.6-win32\\microserver\\out" },

{ "staging" : "c:\\microserver_5.4.6-win32\\microserver\\staging" }

],

"staging_dir" : "staging"

}

Note that when specifying the virtual directory paths for a Windows system, the
backwards slash needs to be doubled (c:\\microserver_5.4.6-win32\\
microserver\\in

Additional Configuration of WS EMS 77

If you use the additional parameters available for the file group, it might look
like this:
"file": {

"buffer_size": 1024000,

"max_file_size": 8000000000,

"virtual_dirs":[

{ "In" : "c:\\microserver_5.4.6-win32\\microserver\\in" },

{ "Out" : "c:\\microserver_5.4.6-win32\\microserver\\out" }

],

"idle_timeout": 12000,

"staging_dir" : "c:\\microserver_5.4.6-win32\\microserver\\staging"

}

}

In this example, note in particular the value of the buffer_size property. This
value affects performance of file transfers. The default value of 1024000 is
recommended as a best practice to achieve optimal performance when transferring
large files.
The file group configuration is important because you must pass the names of
virtual directories in the parameters to the ThingWorx Copy service. As shown in
the example above, you must use absolute paths.
The following table lists and describes the properties for file transfers:
Property Description
buffer_size The size of the buffer used for the file transfer, in bytes. The default value is

1024000 bytes (1MB), which is recommended as a best practice to achieve
optimal performance when transferring large files.

Note

Setting the socket_read_timeout in the ws_connection group to
0 ms is also a best practice when transferring large files. Refer to the topic
for the the ws_connection group on page 66

max_file_size The maximum size of a file that can be transferred, in bytes. The default value is
8000000000 bytes (8GB).

virtual_dirs An array of virtual directories that are used when browsing and sending files to
the configured ThingWorx Platform. The directories are defined using absolute
paths, as shown in the example above.

78 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Property Description
idle_timeout The amount of time, in milliseconds, that the WS EMS waits before timing out a

file transfer when the transfer is idle. Note that this value must be larger than the
value of the frame_read_timeout property (in the ws_connection
group on page 66). If this property is not set, the actual default value is 1.2 times
the value of the frame_read_timeout. For example, if the frame_read_
timeout is set to its default value of 10000 milliseconds, the default value of
this property is 1.2 times 10000, or 120000 milliseconds (2 minutes).

staging_dir A directory to use as a staging directory for files that will be transferred to the
Edge device. As shown in the example above, this path must be an absolute
path.

Tip
You do not have to have LSR running to perform a file transfer using WS EMS.
However, you do need a bound Thing. In versions 8.3.5 and 8.4.x of the
ThingWorx Platform, a service call was introduced, called
GetSupportedChecksums. This service breaks previously working WS EMS
configurations that use auto_bind for identity but do not specify a host and
port. The workaround for this change is to make sure that your auto_bind
configuration specifies the host and port used by the http_server
configuration. Refer to Troubleshooting File Transfers When Using Automatic
Binding on page 167.

Example
This example uses the Copy service of the FileTransferSubsystem entity for a
file transfer. It makes the following assumptions:

• A RemoteThingWithFileTransfer named RT1 exists on the ThingWorx instance.
• The files are being transferred to/from the SystemRepository Thing.
• The WS EMS is installed in the directory, C:\microserver and that C:\

microserver\in, C:\microserver\out, and C:\microserver\
staging exist.

• The source file is located in the files directory of the SystemRepository
Thing.

• The source and destination directories MUST exist AND be accessible to the
WS EMS (Read/Write permissions).

In this example, the Copy service parameters to specify for a transfer from the
ThingWorx Platform to the Edge device would be:

Additional Configuration of WS EMS 79

• sourceRepo: SystemRepository // Name of the Thing to
transfer from

• targetRepo: RT1 // Name of the Thing to transfer to
• sourcePath: /files // Directory in the SystemRepository

(absolute path)
• targetPath: /in // The name of a virtual dir

In this case, it is pointing to C:\microserver\in. You can also specify
subdirectories.

• sourceFile: abc.json
• targetFile: abc.json // Optional
• The default name for the targetFile is the name of the sourceFile. You can

rename files during the transfer.
The paths on the WS EMS must be relative to a virtual directory that is registered
to the remote Thing (that is, they must start with the "/<virtual_dir>"). In
the case of a file repository on the ThingWorx Platform, the paths need to be
relative to the root directory of the file repository (must start with "/").
Note that the things must be instances of one of the following templates:
• FileRepository
• RemoteThingWithFileTransfer
• RemoteThingWithFileTransferAndTunneling

Also, as of versions 5.0 and later of the WS EMS, you do not need the Lua Script
Resource to do file transfers. You can add the auto_bind group to your
configuration file to specify the name of a Thing that will participate in file
transfers:

"auto_bind":[

{"name": "RT1" }

]

Best Practices for Transferring Large
Files
When transferring large files, following these best practices is critical to ensuring
optimal performance:
1. Set the block_size parameter to 1MB (1,024,000 bytes) for maximum bit

rate on average. The proper setting of this parameter is essential to improving
file transfer performance.

80 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

2. File transfer times depend on Internet bandwidth, which varies and increases
in load at certain times of the day. Choose a time of day when network traffic
is low to transfer large files from Edge devices to a ThingWorx platform.
When possible, improve the quality of your network. Testing has shown that
results vary by both time of day and the network being used. When network
performance degrades, the performance of large file transfers can be
negatively affected very quickly.

3. Removing any socket read timeouts also increases performance. Make sure to
set the socket_read_timeout to zero (0).

4. Make sure that log_level is not set to TRACE. A level of ERROR is
recommended.

Additional Configuration of WS EMS 81

5. Set up the File Transfer Subsystem (FTSS) on your ThingWorx Platform as
shown in the following screen shot. These settings have been tested and shown
to be optimal when transferring large files:

82 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Tip
The lower of the two block size values, namely for the WS EMS and the FTSS
of the ThingWorx Platform, is used at runtime. The platform is hard-coded
with a maximum block size of 1MB. To be safe, set both the FTSS and WS
EMS block sizes to 1MB. The platform FTSS configuration table currently
defaults to 128,000.

Configuring Edge Settings for Tunneling
Application tunnels allow for secure, firewall-transparent tunneling of TCP client/
server applications, such as VNC and SSH. As long as the WebSocket connection
between the edge device and a ThingWorx Platform is secure (for example, uses
an SSL/TLS certificate), the client/server applications can run securely. How is
this possible? The application opens a second WebSocket to the same host and
port that is used for other communications between the Edge device and the
platform. You do not need to open other ports in the firewall to run these
applications. However, it is important to note that it connects to a different URL
that is specifically for the tunnel.

Note
Only TCP client/instance applications are supported at this time. UDP is not
supported.

Configure tunneling for your WS EMS when you want to be able to access
remotely the Edge device that is running WS EMS. You can remotely access such
a device through a remote desktop session (for example, UltraVNC) or remote
terminal session (for example, SSH). By default, tunneling is enabled for the WS
EMS. For the most part, if you are using UltraVNC or SSH, the Platform sets the
values for timeouts when it sends a service call to the WS EMS. The only default
tunnel setting that you will find in config.json.complete follows:
// Default tunnel setting for tick_resolution
{

"tick_resolution": 5
}

You can modify the default tunnel setting by adding the property to the
config.json configuration file for your WS EMS. A service call from the
ThingWorx Platform may override it..
The following table lists and briefly describes the tunneling configuration
property:

Additional Configuration of WS EMS 83

Property Description
tick_resolution Tunnel performance can be greatly affected by tick resolution. The tick

resolution determines how fast a tunnel manager checks the status of its
managed tunnels. The smaller this value, the faster the tunnel responds. Tick
resolution is especially important when running multiple tunnels concurrently,
but be aware that a smaller tick resolution consumes more CPU resources. The
default value is 5 ms. Refer to Running on a Windows-based Operating System
on page 169.

Configuring Tunneling on the ThingWorx Platform
Side
The rest of the tunneling configuration takes place in the server side of the client/
server application (UltraVNC Server, for example) and on the ThingWorx
Platform through ThingWorx Composer.
The main steps for the built-in client/server application for the ThingWorx
Platform (UltraVNC) follow:
1. If you have not already, install UltraVNC Server on the edge device where the

WS EMS is running.
2. Access the Admin Properties configuration screen for UltraVNC Server and

make sure that the following configuration parameters are set:
• Allow loopback connections—Make sure that this check box is selected if

you want to test the connection on the Edge device itself (the VNC Viewer
is installed on the same machine as the VNC Server).

• VNC password— Type the password that VNC Viewer users must type to
access this Edge device remotely.

• Multi viewer connection— Select the option, Keep existing connections, so
that a new session with this Edge device does not disconnect any existing
VNC Viewer sessions.

The main steps in ThingWorx Composer follow:
1. In the Configuration page for the Tunneling Subsystem, check the field, Public

host name used for tunnel. If the IP address is a local network address, the
tunnel will not work. Set this field to the external host/IP address that tunnels
should use for connections. For more detail, refer to Required Setting for the
Tunneling Subsystem on page 87.

2. If you have not already, use the RemoteThingWithTunnels or the
RemoteThingWithFileTransferAndTunnels template to create a Remote Thing
to represent the edge device that is running WS EMS.

3. After creating the Thing, from the General Information page for the new
Thing, enable the template Override? setting for Enable Tunneling, as shown
below. By default, this setting is disabled.

84 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

4. Determine which remote applications will be used to access the Edge device
and whether you want to use the VNC client that is built into the ThingWorx
Platform. These applications may be any of the following types:
• Desktop remote sessions — VNC Server on the Edge devices and the

corresponding Viewer client on the user machines that will access the
device. The VNC Viewer is the built-in application available through the
ThingWorx instance. You might create a tunnel, using the name
vncClient.

• SSH — An SSH client/server application, such as PuTTY. For
information on OpenSSH, refer to http://www.openssh.com/ or http://
support.suso.com/supki/SSH_Tutorial_for_Linux. For information on
PuTTY, visit http://www.putty.org/.

• Microsoft RDP — Refer to the Microsoft web site, more specifically,
http://windows.microsoft.com/en-us/windows/connect-using-remote-
desktop-connection#connect-using-remote-desktop-connection=windows-
7.

• Custom client application that you have built
5. As long as you have enabled the template Override? setting for Enable

Tunneling in the General tab for the Remote Thing, configure the tunnels for
the Thing that you created:
a. Under ENTITY INFORMATION, select Configuration. If you are not in Edit

mode for the Thing, click Edit.
b. Under Configuration for RemoteThingWithTunnels, click Add My Tunnel

and in the displayed fields, enter the information for the client/server
application. Here are examples for VNC and SSH:

Additional Configuration of WS EMS 85

http://www.openssh.com/
http://support.suso.com/supki/SSH_Tutorial_for_Linux
http://support.suso.com/supki/SSH_Tutorial_for_Linux
http://www.putty.org/
http://windows.microsoft.com/en-us/windows/connect-using-remote-desktop-connection#connect-using-remote-desktop-connection=windows-7
http://windows.microsoft.com/en-us/windows/connect-using-remote-desktop-connection#connect-using-remote-desktop-connection=windows-7
http://windows.microsoft.com/en-us/windows/connect-using-remote-desktop-connection#connect-using-remote-desktop-connection=windows-7

Tip
When configuring a mashup for the Edge device, you will need to
provide the names that you assign to the tunnels. To access the list of
tunnel names available on a Thing, use the GetTunnelNames service.

Configure the Host and Port fields from the point of view of the Edge
device where the server component of the client/server application is
running. For example, when a user wants to access the Edge device
from VNC Viewer, the user would type the IP address of the device
and then the port number 5900. For SSH, you might enter 22 in the
field.

By default, the URL is the location of the VNC client application on
the ThingWorx Platform. If you are using SSH, make sure that supply
the port number and then make this field empty.

The values that are displayed for the # Connections and Protocol fields
are the default values and are the only values that are currently
supported.

6. Save the configuration of your new Thing.
7. When creating your mashup, add a Web Socket Tunnel widget if you are using

the built-in VNC viewer (client) that is provided with ThingWorx Mashup
Builder. At minimum, you need to set the following parameters for the Web
Socket Tunnel widget:
• RemoteThingName—You must supply the name of your Thing

(RemoteThingWithTunnels) that will use this tunnel (for example, the one
that was created in Step 2 or earlier).

• TunnelName— Enter the name that you assigned to the tunnel for the
built-in VNC Viewer in the configuration of the Thing.

• VNCPassword— Type the password that the VNC Server that is running
on the Edge device will expect from VNC Viewer.

86 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Note
If this widget is not displayed, you need to download and import the
WebSocketTunnel_ExtensionPackage.zip package into the
ThingWorx platform. Refer to the ThingWorx Help Center for your release of
the ThingWorx Platform, and search for the widget by name.

If you are NOT using the built-in VNC Viewer, add a RemoteAccess widget.
For example, you might use another type of TCP client/server application. For
the RemoteAccess widget, set the following parameters:

• RemoteThingName—You must supply the name of your Thing
(RemoteThingWithTunnels) that will use this tunnel (for example, the one
that was created in Step 2 or earlier).

• TunnelName— Enter the name that you assigned to the tunnel for the
other type of application in the configuration of the Thing (for example,
PuTTYor another SSH client/server application).

• ListenPort— Enter the number of the port that the Java Web Start
application will listen on when it starts up. For example, if you want to run
an SSH session and the listen port is 9005, you would connect your SSH
client to localhost:9005.

• AcceptSelfSignedCerts— If SSL/TLS is used for this connection and you
are testing with a self-signed certificate, select the check box.

For complete information about configuring the RemoteAccess widget, refer
to the ThingWorx Help Center for your release of the ThingWorx Platform and
search for “RemoteAccess widget”.

8. Save your mashup.
9. For the WS EMS, tunneling is enabled by default. As long as your WS EMS

is running and connected to a ThingWorx Platform, you can test your mashup.

Required Setting for the Tunneling Subsystem
When attempting to configure tunneling, you must check the configuration for the
Tunneling Subsystem of the ThingWorx instance. There is a field where you can
specify the host/IP of the end point for the tunnel, called Public host name used for
tunnel. The following figure shows the configuration parameters for the Tunneling
Subsystem, with this field highlighted:

Additional Configuration of WS EMS 87

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/
https://support.ptc.com/appserver/cs/help/help.jsp

Why do you need to configure this address? Suppose that you start up your
ThingWorx platform in Amazon EC2. The default IP address for the Tunneling
Subsystem when the ThingWorx instance is running in EC2 might be 10.128.0.x.
Unless you change that address, the Tunneling Subsystem will tell the clients to
attempt to connect to that address for the tunnel websocket. Since that IP address
is a local network address, the tunnel will not work. Therefore, you must populate
that configuration field with the external host/IP address that tunnels will use for
connections.

Configuring the WS EMS to Listen on IP
Other Than localhost
You can configure a WS EMS to listen on a specific IP address or on all IP
addresses available on the device, using the http_server group of the
configuration file. If a device has one network card and it is configured with an IP
address of 11.11.11.1, the device effectively has two IP addresses, 11.11.11.1 and
127.0.0.1 (localhost). To configure the specific IP address, set the host property,
as follows:
"http_server" : {
"host" : "11.11.11.1",
"port": 9010

}

In this configuration, any application must use the specific IP address to access the
device. “localhost” does not work.
If a device has two or more network cards with corresponding IP addresses and
you want users to access the device using any of the IP addresses available, use
0.0.0.0 for the host IP address, as follows:
"http_server" : {
"host": “0.0.0.0”,
"port": 9010

}

88 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Caution
When making a connection to a device, do NOT use the 0.0.0.0 address. Instead,
you MUST use one of the actual IP addresses to connect. This configuration
setting just makes it possible to connect on any of the possible IP addresses.

In either configuration, you can leave the port number as is or change it.
It is important to keep in mind that these configurations expose the REST
interface to any client on the network that wants to access the WS EMS. To
provide secure access, configure a user name and password for the HTTP server
as well as SSL, as shown here:
"http_server" : {

"user": "acmeAdmin”,
"password": "some_encrypted_password",

"ssl": true

}

To encrypt the user password, refer to Encrypting Application Keys, Passwords,
and Passphrases on page 36.

Example Configurations
This section provides examples of how the WS EMS can be configured for several
typical use cases:
• Gateway Mode with Self-Identifying Remote Things Example on page 89
• Gateway Mode with Explicitly-Defined Remote Things Example on page 90
• Non-Gateway Mode with Self-Identifying Remote Things Example on page

91

Gateway Mode with Self-Identifying Remote Things
Example
The WS EMS can be configured to run as a gateway, acting as the communication
conduit and providing message relaying services for one or more Remote Things.
The WS EMS keeps a registry of the Remote Things it acts as a gateway for. You
can set up the Remote Things to “self-identify” with the WS EMS. That is, when
the Remote Things initialize and connect to the WS EMS, they send the
information that uniquely identifies them to the WS EMS. This information is
stored in the registry of the WS EMS.

Additional Configuration of WS EMS 89

For more information on configuring the auto_bind group of the configuration
file, refer to the section, Configuring Automatic Binding for WS EMS on page 73
and to the section, AutoBound Gateways on page 75.
The example below illustrates how to configure the WS EMS for this scenario:

{
"ws_servers": [{

"host" : "acmeServer.mycompany.com",
"port": 443

},
{

"host" : "fallback_server.somewhere.com",
"port": 443

}]
"appkey" : "some_encrypted_application_key",
"ws_connection": {

"encryption" : "ssl"
},

"auto-bind": [{
"name" : "EdgeGateway001",
"gateway": true

},
{
"name" : "EdgeThing001",
"host" : "some_ip_address",
"port": 8443

}]
}

To encrypt an application key, refer to Encrypting Application Keys, Passwords,
and Passphrases on page 36.

Gateway Mode with Explicitly-Defined Remote
Things Example
Although Remote Things can be set to identify themselves to the WS EMS, in
many cases the remote things that connect to the WS EMS are well-known. In this
case, you can explicitly define them within the configuration of the WS EMS.
For more information on configuring the auto_bind group of the configuration
file, refer to the section, Configuring Automatic Binding for WS EMS on page 73
and to the section, AutoBound Gateways on page 75.
The example below illustrates how to configure the WS EMS for this scenario:

Note
In the example below, EdgeThing001 is an explicitly defined Remote Thing
that runs at a specified IPAddress and listens on port 8001.

90 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

{
"ws_servers":[{

"host":"",
"port":443

}]
"appkey":"some_encrypted_application_key",
"ws_connection":{

"encryption::"ssl"
},

"auto_bind"[{
"name":"EdgeGateway001",
"gateway":true
}
{
"name":"EdgeThing001",
"host":some_ip_address>",
"port":8001
}
]

}

To encrypt an application key, refer to Encrypting Application Keys, Passwords,
and Passphrases on page 36.

Non-Gateway Mode with Self-Identifying Remote
Things Example
The WS EMS can be configured to run in non-gateway mode, so things that attach
to the WS EMS will pro-actively identify themselves with its process.
The example below illustrates how the WS EMS can be configured for this
scenario:
{

"ws_servers":[{

"host" : "localhost",

"port" : 443

}

],

"appkey" : "some_encrypted_application_key",

"ws_connection":{

"encryption": "ssl"

},

"auto_bind": [{

"name" : "EdgeThing001",

"host" : "127.0.0.1”,
"port": 8001

}]

Additional Configuration of WS EMS 91

}

To learn how to encrypt the application key, refer to Encrypting Application Keys,
Passwords, and Passphrases on page 36.

92 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

4
Using ThingWorx Asset Advisor

with WS EMS and LSR
Features of ThingWorx Asset Advisor to Use with WS EMS and LSR94
Prerequisites to Setting Up a WS EMS Thing for Asset Advisor.....................................95
Administrator Tasks for Using Remote Access, File Transfers, and SCM in Asset
Advisor..97

Setting Up a WS EMS or LSR Thing for the Remote Access and Control
Application .. 102

Setting Up to Use ThingWorx Software Content Management (SCM) with WS EMS
Devices... 105

Lua Scripts and Software Content Management (SCM).. 107

This section provides the setup required for WS EMS and LSR Things in
ThingWorx to enable end users to access the devices remotely, download
packages to devices, and perform file transfers using ThingWorx Asset Advisor.
The emphasis here is on what you need to do using ThingWorx Composer.

93

Features of ThingWorx Asset Advisor to
Use with WS EMS and LSR
The ThingWorx Asset Advisor application provides file transfer and remote
access capabilities through its Asset Remoting Extension. Referred to as Remote
Access and Control, this application adds a set of optional features into
ThingWorx Composer. These features enable you to upload and download files to
a remote asset, and access the asset remotely to interact directly with its software
system from Asset Advisor.
In addition, Asset Advisor provides access to the ThingWorx Software Content
Management (SCM) Extension that enables you to create file-based packages that
can be downloaded to edge devices. Using the SCM and Remote Access and
Control features from Asset Advisor with your WS EMS and LSR devices, you
can upload and download files or access an asset remotely to interact directly with
its software.

Remote Access and Control Extension
The Remote Access and Control Extension includes the following optional Asset
Advisor features, which display on the detail page for an asset in Asset Advisor:
• Remote Access—Displays for WS EMS Things whose base Thing

Templates extend from the
RemoteThingWithTunnelsAndFileTransfer Thing Template, or
that implement the RemoteAccessible Thing Shape. If you have imported
the ThingWorx Remote Access Extension AND the Remote Access and
Control Extension for Asset Advisor into your ThingWorx Platform and your
WS EMS Things are based on the
RemoteThingWithTunnelsAndFileTransfer Thing Template, your
WS EMS Things should be ready to use Remote Access and Control.

• File Transfer—Displays for WS EMS Things whose base Thing templates
extend from the RemoteThingWithTunnelingAndFileTransfer
Thing Template.

• File Transfer History—Displays for WS EMS Things whose base Thing
templates extend from the
RemoteThingWithTunnelingAndFileTransfer Thing Template.

ThingWorx Software Content Management (SCM) Extension
The ThingWorx Software Content Management (SCM) Extension allows for the
creation of software content and distribution of that software content to a set of
target assets in a controlled manner. SCM automates the manually-intensive and
error prone process of distributing and installing new software to your assets.
SCM is comprised of the following high-level pieces:

• Package — The software content to be delivered.

94 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

• Deployment — A request to the ThingWorx Platform to deliver and
(optionally) execute the software content described in a Package to a set of
target Assets

• Assets — The Edge devices receiving the software content defined in the
Package and requested by a Deployment.

The ThingWorx SCM Extension supports the creation of file-based packages for
Edge devices running the WS EMS. These devices should be able to use non-
administrator application keys and still use SCM, as long as permissions are set up
correctly.

What's Next
First, read through the prerequisites on page 95 and make sure that your
environment and configuration files for WS EMS and LSR meet the requirements.
Next, a ThingWorx administrator should set the parameters for the subsystems as
explained in Administrator Tasks for Using Remote Access, File Transfers, and
SCM in Asset Advisor on page 97.
Depending on which features of Asset Advisor you want to use refer to one of the
following sections:

• Remote Access and Control — Setting Up a WS EMS or LSR Thing for the
Remote Access and Control Application on page 102

• SCM— Setting Up to Use ThingWorx Software Content Management (SCM)
with WS EMS Devices on page 105

For information on using these features in Asset Advisor, refer to the section,
Asset Advisor in the ThingWorx Apps Help Center.

Prerequisites to Setting Up a WS EMS
Thing for Asset Advisor
It is important to remember that WS EMS performs all transactions with the
ThingWorx Platform and passes any requests for an LSR device on to that device.
You need to configure your WS EMS and LSR, as follows:
• Using ThingWorx Composer, create a non-administrator user and an

application key for the WS EMS to use when connecting to a ThingWorx
Platform. When creating the application key, associate that non-administrator
user with the application key. For assistance, refer to application keys in the
ThingWorx Platform Help Center.

• Configure the WS EMS for file transfers. For assistance, refer to Configuring
File Transfers on page 77.

Using ThingWorx Asset Advisor with WS EMS and LSR 95

https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fasset_advisor.html%23
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FComposer%2FSecurity%2FApplicationKeys%2FApplicationKeys.html

• Configure the WS EMS for tunneling. For assistance, refer to Configuring
Edge Settings for Tunneling on page 83.

• Configure the parameters for the Lua Script Resource (LSR):
○ Connection to the WS EMS over HTTP or HTTPS Server (with an SSL/

TLS certificate) — Refer to Configuring the HTTP Server for the LSR
(SSL/TLS Certificate) on page 140

○ Edge Thing (asset) to which you want to bind the properties — Refer to
Configuring Edge Things on page 145. Make sure that you use the name of
the Thing here, not an Identifier.

Complete the following tasks using ThingWorx Composer, IN THE
FOLLOWING ORDER:
1. Make sure that ThingWorx Composer v.8.2.0 or higher is installed on your

ThingWorx platform.

Caution
If you are using ThingWorx v.8.4.0 or later, you MUST configure the platform
to allow the import of extensions and then restart the platform. For details,
refer to Importing Extensions, "Enabling Extension Import", and platform-
settings.json Configuration Details in the ThingWorx 8 Help Center for
complete details.

2. Import the ThingWorx Remote Access Extension into your ThingWorx
Platform. For more information about the import procedure, refer to Importing
Extensions in the ThingWorx Platform Help Center.

Note
This extension adds a new widget to Mashup Builder for remote sessions, the
RAClientLinker widget. If you want to use the new Remote Access
functionality and you have previously used the Remote Access Widget in a
mashup and want to continue using your mashup, you need to change the
widget in your mashup and configure it.

3. Import the ThingWorx Software Content Management (SCM) Extension into
your ThingWorx platform. For more information, refer to Importing
Extensions in the ThingWorx Platform Help Center.

4. Import the ThingWorx Apps Extension and the ThingWorx Asset Remoting
Extension into your ThingWorx Platform. For more information, refer to
Importing Extensions in the ThingWorx Platform Help Center.

96 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FImportingandExportinginThingWorx%2FImportingExtensions.html%23wwID0EAWVR
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FInstallingandUpgrading%2FInstallation%2Fplatform_settings_json_configuration_details.html%23wwID0EAUGR
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FInstallingandUpgrading%2FInstallation%2Fplatform_settings_json_configuration_details.html%23wwID0EAUGR
http://support.ptc.com/help/thingworx_platform/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FImportingandExportinginThingWorx%2FImportingExtensions.html%23
http://support.ptc.com/help/thingworx_platform/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FImportingandExportinginThingWorx%2FImportingExtensions.html%23
http://support.ptc.com/help/thingworx_platform/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FImportingandExportinginThingWorx%2FImportingExtensions.html%23
http://support.ptc.com/help/thingworx_platform/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FImportingandExportinginThingWorx%2FImportingExtensions.html%23
http://support.ptc.com/help/thingworx_platform/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FImportingandExportinginThingWorx%2FImportingExtensions.html%23

5. If you have not already done so, create a non-admin user and an application
key for the WS EMS to present for authentication with the ThingWorx
Platform. For details, refer to Create an Application Key for WS EMS on page
24.

6. Make sure that an Administrator has configured the settings for the
subsystems, as explained in Administrator Tasks for Using Remote Access,
File Transfers, and SCM in Asset Advisor on page 97.

For details about ThingWorx Apps, refer to the ThingWorx Apps 8.5 Help Center.

Administrator Tasks for Using Remote
Access, File Transfers, and SCM in Asset
Advisor
The following sections provide recommended configuration settings for the
TunnelSubsystem, WSCommunicationsSubsystem, and FileTransferSubsystem
can improve performance when performing remote sessions and file transfers for
EMS assets.

Note
The SCM application uses the File Transfer Subsystem, so the administrator tasks
for file transfers are required for using SCM in Asset Advisor.

Creating Users, User Groups, and Organizations
Depending on which application end users need to access and on which devices
they need to access, a ThingWorx administrator needs to create non-admin users,
user groups, and at least one organization. When you create a user group, you add
individual users to the group and then grant visibility and permissions to that user
group. If you have multiple user groups that require the same visibility and
permissions, consider creating an organization and adding user groups to it. You
would then grant the visibility and permissions at the organization level to all
users in the user groups within the organization.
To create these entities, follow these steps:

1. Log in to ThingWorx Composer, and use the navigation panel on the left to
expand Security and then select Users.

2. In the Users page, select +New, and enter the following information for the
user:

• Name— For example, cs_agent_boston for a customer service
agent..

Using ThingWorx Asset Advisor with WS EMS and LSR 97

https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2FWelcome.html%23

• Description— For example, user account for customer
service agents in Boston.

• Make sure the check box next to Enabled is checked.
3. Click Save.
4. To create additional users, click and repeat steps 1 through 3.

5. When ready to create a user group, click to return to the Browse list, and
under Security, select User Groups.

6. In the User Groups page, click +New.
7. In the General Information page, type a Name for the group. For example,

wsemsAgentsUserGroup, and click Save.
8. Click Manage Members, and under Available Members on the Manage

Members page, select the check box next to the name of the user(s) you just
created. Using the example, you would select the cs_agent_boston.
Then, click the right-facing arrow to add this user to the new User Group. The
end result should look similar to the following screen:

9. Click Save.
10. To create another user group, repeat Steps 5 through 8 for that user group and

assign the users who should be able to perform remote sessions to that group.
For example, you may want to create a user group for remote access
(raUserGroup) or for SCM (scmUserGroup).

11. From the navigation panel, click to return to the Browse list, and under
Security, select Organizations.

12. In the Organizations page, click +New.
13. In the General Information page, type a Name for the organization. For

example, wsemsOrg, raOrg, or scmOrg and click Save.
14. Click Organization and in the Organization page, click Unit1.
15. In the Unit 1 page, go to the Members field and click the plus icon to display a

list of user groups and users that you can add to the organization. From the
Search entity types drop-down list, select User Groups

98 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

16. As indicated in the figure above, select a user group. In the example above, it
is the wsemsAgentsUserGroup. The list of Members displays your
addition:

17. To save, click the checkmark icon in the upper right corner of the Unit 1 page.
The page closes and returns you to the Organization page.

18. To create another organization, repeat Steps 11 through 16 now.
19. Depending on how you want to set permissions, you can do so at the

Organization level, the User Group level, and the User level. To use the
Remote Access and Control application, users need visibility and permissions
to the Things that they either want to access through a remote session or to and
from which they want to transfer files. They also need permissions to run
(Service Execute permission) to the ThingWorx Copy service for file
transfers.

Using ThingWorx Asset Advisor with WS EMS and LSR 99

For information on visibility and permissions for SCM, refer to Setting Up to Use
ThingWorx Software Content Management (SCM) with WS EMS Devices on
page 105.
For more information on visibility and permissions in ThingWorx, refer to the
following topics in the ThingWorx Help Center:

• Visibility in Organizations — Visibility in Organizations
• Entity Permissions — Entity Permissions
• Inheriting Permissions from a Thing Template
• Collection Permissions — Collection Permissions

Recommended Settings for the Tunnel Subsystem
To set up the ThingWorx Platform for tunneling with WS EMS assets through
Asset Advisor, follow these steps:

1. In ThingWorx Composer, under System, click Subsystems.
2. In the list of subsystems, click TunnelSubsystem.
3. Under Configuration, set the following values:

•

○ Public host name used for tunnels — The URL for the host
computer of the ThingWorx Platform with which the device is
communicating. Do not use an IP address for the Tunnel Subsystem
configuration.

○ Public port used for tunnels — The number of the port on the public
host to use for tunnels. By default, this port number is a secure port,
8443. Although NOT recommended, if you need to use an insecure
port for testing, make sure that you change this port number before
attempting to connect through the Remote Access Client. Otherwise,
the platform will reject the request for a tunnel. The error message in
the Remote Access Client does not explain that reason for rejecting the
request.

Caution
To ensure that tunnels will work, you must set up a secure port if that is
what the WS EMS will use when communicating with the ThingWorx
platform.

100 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FSecurity%2FOrganizations%2FVisibilityinOrganizations.html%23
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FSecurity%2FUsers%2FEntityPermissions.html%23
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FSecurity%2FInheritingPermissionsfromaThingTemplate.html%23
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FSecurity%2FUsers%2FCollectionPermissions.html%23

○ Idle timeout (sec) —The number of seconds to allow the tunnel to
start. Both the WS EMS and Remote Access Client connect into the
tunnel endpoint. The default value is 90 seconds.

○ Tunnel startup timeout (sec) — The number of seconds to wait for
additional data to be transferred before shutting down the tunnel. By
default, if no data is transferred for 30 seconds, the platform shuts the
tunnel down.

4. Click Save.

Recommended Settings for the WSCommunications Subsystem
If file transfers are expected to involve large files (greater than 20mb in size),
increase the timeout value for request response messages to 180 seconds by
completing the following steps:
1. In ThingWorx Composer, under System, click Subsystems.
2. In the list of subsystems, click WSCommunicationsSubsystem.
3. Under Configuration, enter 100 in the Amount of time a request will wait for the

response message before timing out (secs) field.
4. Click Save.

Recommended Settings for the File Transfer Subsystem
To set up the File Transfer Subsystem for use by WS EMS devices, follow these
steps:
1. In ThingWorx Composer, under System, click Subsystems.
2. In the list of subsystems, click FileTransferSubsystem.
3. Under Configuration, enter the following recommended values for each file

transfer setting.

Field Value
Min Threads Allocated to File Transfer Pool 100
Max Threads Allocated to File Transfer Pool 100
Max Queue Entries Before Adding New Working
Thread

10000

Idle Thread Timeout (sec) 60
File Transfer Idle Timeout (sec) 300
Max FileTransfer size (bytes) 1000000000

4. Click Save.

Using ThingWorx Asset Advisor with WS EMS and LSR 101

Setting Up a WS EMS or LSR Thing for the
Remote Access and Control Application
For devices running the WS EMS or LSR to be available in ThingWorx Asset
Advisor, you need to set up Thing Templates for the types of devices. These Thing
Templates must implement the following Thing Shapes:

• PTC.Factory.PhysicalAssetThingShape
• PTC.SCA.SCO.AssetIdentifierThingShape
• PTC.SCA.SCO.StatusThingShape
• PTC.ISA95.IdentifierThingShape
• PTC.SCA.SCO.MonitoredPropertiesThingShape
For complete details, refer to the topic, Creating Custom Thing Templates for
Equipment Types in the ThingWorx Apps Help Center.
The Remote Access and Control application in Asset Advisor enables users to
create remote sessions with devices at remote sites and also to transfer files to and
from those remote devices. The next two sections explain the setup for a Thing in
ThingWorx Composer required to take advantage of these features.

Remote Access
The procedure below is focused on getting you started with a single WS EMS or
LSR Thing. For a large number of devices of the same models, create Thing
Templates for your models and apply the appropriate Thing Shapes and other
settings for to the Thing Templates. For details, refer to the topic, Creating
Custom Thing Templates for Equipment Types in the ThingWorx Apps Help
Center.

1. In ThingWorx Composer, navigate to the Thing and on the General
Information page, add the following Thing Shapes for Remote Access:

• PTC.SCA.SCO.FIleTransferHistoryHandlerThingShape
• RemoteAccessible
• PTC.SCA.SCO.RemoteTunnelingThingShape

For details, refer to Creating Custom Thing Templates for Equipment Types in
the ThingWorx Apps Help Center.

2. Click Save and select Properties | Alerts
3. On the Properties page, verify that isConnected or isReporting

property shows a value of a check mark (dimmed), as shown below:

102 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23
https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23
https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23
https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23
https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23
https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23
https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23

Note
The isReporting property was added for ThingWorx v.8.4.0, the Thing
Presence feature. Checking isConnected suffices for earlier versions of the
platform.

4. As indicated in the screen shot above, set the value of the providerName
property to ThingworxInternalRemoteAccessProvider.

5. Click Save and select Configuration.
6. On the Configuration page, select the Enable Tunneling check box and

make sure that the reportingStratey is AlwaysOnReporting.

7. Under Tunneling Destinations, click + Add. The Tunnels window appears.
Here is an example of a configured Tunnel:

Using ThingWorx Asset Advisor with WS EMS and LSR 103

a. Enter the Name that will be used to identify what tunnel to use.Choose a
name that indicates the type of remote interface. For example, vnc or
ssh.

b. Configure the Host and Port from the point of view of the Edge device
where the server component of the client/server application is running, not
the ThingWorx Platform. For example, when you want to access the Edge
device from an SSH client you would type the host name of the device,
and then the number of the port on which the WS EMS is listening.
Typically, this port is 22. If you have secure communications set up
between the WS EMS and the platform, the port might be 8443. The port
for a VNC tunnel is typically 5900.

c.

Note
The port should be any public port not already in use.

d. The Number of Connects and Protocol should retain their default values,
unless you have a reason to change them.

e. Click Save. The tunnel and the settings appear in the table of Tunneling
Destinations on the Configuration page:

8. Click Save.
To test the Remote Access functionality, download the ThingWorx Remote Access
Client (RAC) from the ThingWorx Remote Access Client Downloads page. This
tool works in conjunction with the RAClientLinker widget and the Remote Access
and Control application in Asset Advisor to establish a connection (tunnel) to use
for a remote session.

104 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

https://free-dl.ptc.com/thingworx/remote-access/client/inventory.html

Note
For any end user to connect to a remote device, the user needs to have a tunnel
created between the local machine and the remote device. The Remote Access
Client creates that tunnel.

Configuring a WS EMS Thing for File Transfer and File Transfer
History in Asset Advisor
The Remote Access and Control application of Asset Advisor provides file
transfer and file transfer history functionality. Assuming that you have configured
the WS EMS for file transfers, follow these steps to configure a WS EMS Thing
for file transfers and file transfer history in Asset Advisor:

1. Connect the Edge device to ThingWorx Platform.
2. Log in to ThingWorx Composer, navigate to the WS EMS Thing
3. Under General Information, set the Identifier.
4. Click Save.

Note
The File Transfer action in the Asset Advisor UI enables you to copy files from the
local system repository (TW>RSM.Thing.FileRepository) to a remote location
(a device), and from the remote location to the local system repository. For
information about setting up a custom file repository, refer to "Configuring a
Custom File Repository Location in the ThingWorx Help Center.

Setting Up to Use ThingWorx Software
Content Management (SCM) with WS EMS
Devices
For devices running the WS EMS or LSR to be available in the Asset Advisor,
you need to set up Thing Templates for the types of devices. These Thing
Templates must implement the following Thing Shapes:

• PTC.Factory.PhysicalAssetThingShape
• PTC.SCA.SCO.AssetIdentifierThingShape
• PTC.SCA.SCO.StatusThingShape

Using ThingWorx Asset Advisor with WS EMS and LSR 105

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FInstallingandUpgrading%2FConfiguringACustomFileRepositoryLocation.html
http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/en/#page/ThingWorx%2FHelp%2FGetting_Started%2FInstallingandUpgrading%2FConfiguringACustomFileRepositoryLocation.html

• PTC.ISA95.IdentifierThingShape
• PTC.SCA.SCO.MonitoredPropertiesThingShape
For complete details, refer to Creating Custom Thing Templates for Equipment
Types in the ThingWorx Apps Help Center.

Creating Security Entities and Granting Visibility and Permissions for
SCM
The procedure below explains how to set up the required security entities and then
assign the required visibility and permissions for using SCM with WS EMS and
LSR.
As long as the ThingWorx Software Content Management (SCM) Extension has
been imported into your ThingWorx Platform, follow these steps to set up the
required permissions for using SCM with WS EMS devices:

1. Create a new Organization. For example, SCMEdgeDevicesOrg.
2. Create a new User Group. For example, SCMEdgeDevicesGroup.
3. Add the SCMEdgeDevicesGroup to the SCMEdgeDevicesOrg.
4. Add the SCMEdgeDevicesGroup as a member of the TW.RSM.

RemoteAssets User Group.
5. Add the SCMEdgeDevicesOrg to the Visibility permissions of the following

things:

a. TW.RSM.SFW.SoftwareManager Thing
b. TW.RSM.SFW.SoftwareManager.DeliveryTarget Thing
c. TW.RSM.SFW.SoftwareManager.Campaign Thing
d. TW.RSM.SFW.SoftwareManager.Definition Thing

6. Add an override, giving the Service Invoke permission to
SCMEdgeDevicesGroup on the GetDataTableEntryByKey service of the
TW.RSM.SFW.SoftwareManager.DeliveryTarget Thing.

7. Add an override, giving the Service Invoke permission to
SCMEdgeDevicesGroup on the following services of TW.RSM.SFW.
SoftwareManager Thing:

a. UpdateState
b. CompleteDeliveryTarget
c. StartDownload

8. Assuming that you created a non-admin user for the WS EMS application key,
add that non-admin user to the TW.RSM.EdgeDevices user group. Using the
example in Create an Application Key for WS EMS on page 24, add the
wsemsUser to the TW.RSM.EdgeDevices user group.

106 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23
https://support.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fcreating_custom_thing_templates_for_equipment_types.html%23

Configuring WS EMS/LSR Things for Use in Software Content
Management (SCM)
For WS EMS/LSR Things to be available in the SCM module of Asset Advisor,
follow these steps;

1. In ThingWorx Composer, navigate to the Thing.
2. On the General Information page, add thee following Implemented Shapes:

• PTC.Asset.ManagedAsset
• TW.RSM.SFW.ThingShape.Updateable
• PTC.Resource.Asset.SCMResourceThingShape

3. Add PTC:AssetType to Tags.
4. Click Save.
For details on creating and deploying packages using the UI of the ThingWorx
SCM Extension, refer to the ThingWorx Utilities Help Center. For information on
using SCM via the ThingWorx Apps, refer to the Software Content Management
topic in the ThingWorx Apps 8.5 Help Center.

Lua Scripts and Software Content
Management (SCM)
SCM services on the Lua Script Resource (LSR) are provided by a pair of Lua
scripts

• softwareupdate.lua—A script that exposes services that can be used
to download and install a software package

• swupdate.lua—AThing Shape that wraps calls to
softwareupdate.lua. Needs to be extended from in a Thing Template
for a lua Thing to support SCM services..

RESTAPI
This section lists and briefly definies the RESTAPIs that you can use for SCM
with the LSR.

Trigger Update Action — Start

Description Starts a Software Update
URI scripts/Thingworx/[ThingName]/Services/

TriggerUpdateAction
Type POST

Headers Content-Type: application/json

Using ThingWorx Asset Advisor with WS EMS and LSR 107

https://support.ptc.com/help/thingworx_hc/thingworx_utilities_8_hc/en/
https://supportdev.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fsoftware_content_management.html%23
https://supportdev.ptc.com/help/thingworx_apps/r8.5/en/#page/thingworx_apps%2Fsoftware_content_management.html%23

Trigger Update Action — Start (continued)
Body {

"action" : "start",
"params" : {

"id" : 1234,
"name" : "Name",
"thing" : "Thing",
"repository" : "Repository",
"path" : "Path",
"script" : "Script",
"updateManager" : "updateManager"

},
}

Side Effects Sets internal state to notified, which will quickly transition
to waitingForDownload in the state machine.
Triggers a call to the UpdateState service on the
updateManager Thing to set the State property to 'notified'.

Trigger Update Action — Abort

Description Aborts a software update.
URI scripts/Thingworx/[ThingName]/Services/

TriggerUpdateAction
Type POST

Headers Content-Type: application/json
Body {

"action" : "abort"
"params" : {
"id" : 1234
}
}

Side Effects Sets internal state to aborted. Job metadata will be reset to
nil.
Triggers a call to the CompleteDeliveryTarget service on the
updateManager with failure metadata.

Trigger Update Action — Download

Description Notifies the LSR that a file is b eing downloaded.
URI scripts/Thingworx/[ThingName]/Services/

TriggerUpdateAction
Type POST

Headers Content-Type: application/json

108 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Trigger Update Action — Download (continued)
Body {

"action" : "download"
"params" : {
"id" : 1234
}
}

Side Effects Sets internal state to downloading.
Triggers a call to the UpdateState service on the
updateManager Thing to set the State property to
downloading.

Triggger Update Action — Downloaded

Description Notifies the LSR that a file has been downloaded
URI scripts/Thingworx/[ThingName]/Services/

TriggerUpdateAction
Type POST

Headers Content-Type: application/json
Body {

"action" : "downloaded"
"params" : {
"id" : 1234
}
}

Side Effects Sets internal state to downloaded, which will quickly
transition to waitForInstall in the state machine.
Triggers a call to the UpdateState service on the
updateManager Thing to set the State property to
downloaded.

Schedule Download

Description Schedules a software package ffor download.
URI scripts/Thingworx/[ThingName]/Services/

ScheduleDownload
Type POST

Headers Content-Type: application/json

Using ThingWorx Asset Advisor with WS EMS and LSR 109

Schedule Download (continued)
Body {

"time" : "123456789"}
}

Side Effects Sets the job.downloadTime property to time. While in the
waitForDownload state, the state machine will check each
tick to see if job.downloadTime has been reached. If it has,
it will call the StartDownload service on the updateManager
Thing.

Schedule Install

Description Schedules the installation of a package.
URI scripts/Thingworx/[ThingName]/

Services/ScheduleInstall
Type POST

Headers Content-Type: application/json
Body {

"time" : "123456789"}
}

Side Effects Sets the job.installTime property to time.
While in the waitForInstall state, the state
machine will check each tick to see if
job.installTime has been reached. If it has, it
will call the UpdateState service on the
updateManager Thing to set the State property to
installing.

Advanced REST Client Project
You can use Advanced Rest Client (ARC) for Chrome to send pre-configured
REST calls to the LSR by importing the Lua Script Resource Project. For
example:

110 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US

You must set the Thingname environment variable to the name of your lua
Thing.

SCM State Machine
The following diagram shows the states of a Software Update Package and how
the package may flow through them The red lines show the flow when an error
occurs or the Abort action is called. The black lines show the flow for a package
as each stage is successful, and finally the green line indicates that the package
was successfully downloaded and installed.

Using ThingWorx Asset Advisor with WS EMS and LSR 111

112 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

5
REST Web Services and WS EMS

Updating, Deleting, and Executing with REST Web Services 115
Reading and Writing Properties Using the REST Web Services 117
Transferring Files through the REST Web Services.. 119
REST Web Services Supported by WS EMS ... 121
Running RESTAPI Calls with Postman on WS EMS and LSR 134

REST (Representational State Transfer) is an important communication tool that
provides much of the communication functionality that Web Services are used for,
but without many of the complexities. As a result, REST is much easier to work
with and can be used by any client that is capable of making an HTTP request.

Note
The examples in this topic assume that you are familiar with executing HTTP
POST methods in your web development environment or application.

URL Pattern
The following URL pattern is used when communicating with a ThingWorx
platform:

<http|https>://<host>:<port>/Thingworx/<entity collection>/

<entity>/<characteristic collection>/<characteristic>?<query parameters>

You can use this URL pattern when you want to access information that is stored
on a ThingWorx Platform for a remote device or machine that is running a WS
MES. The pattern to use when you want to access the WS EMS that is running on
a remote device or machine is similar:
<http|https>://<host>:<port>/Thingworx/<entity collection>/

113

<entity>/<characteristic collection>/<characteristic>?<query parameters>

Note
Anything enclosed in angle brackets (< >) is information that you may need to
provide. Some user-supplied information in the URLs above is required, while
some is optional. The information that is required depends on the type of request
that is being made.

Example
The following REST Web Service call executes the service GetLogData that is
associated with the Thing called ACMElocking_valve.
http://localhost/Thingworx/Things/ACMElocking_valve/Services/GetLogData
{

"startDate": 1572566400,
"endDate": 1572652800,
"maxItems: 50

}

The REST method is GET for this example. To view the returned data in JSON
format, select the value application-json for the Accept Header in the
REST client.

Built-in Collection Values
The ThingWorx Platform has a finite list of entity collections. Each entity
collection contains entities (for example, Things) of the respective type (for
example, /Things contains all things). The WS EMS supports the Things
entity collection and the Properties and ThingName characteristic
collections. It also supports the File Transfer Subsystem and Services that are
associated with Things. For more information, refer to the section. REST Web
Services Supported by WS EMS on page 121.

114 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Updating, Deleting, and Executing with
REST Web Services
The following rules help to understand what is needed based on the type of
request being made.
Requested
Action

Notes Sample URL HTTPAction Content Type

UPDATE Updates require
specifying the entity
part (“thing_
name” in the
sample)

http://host/
Thingworx/
Things/thing_
name/

PUT application/json or
text/xml

DELETE Deletes require
specifying the entity
part as well

http://host/
Thingworx/
Things/thing_
name

DELETE n/a

INVOKING
SERVICES

Calling a service
requires specifying
the complete URL,
including the
specific
characteristic

http://host/
Thingworx/
Things/
MyThing/
Services/
myService

If your service
requires them, these
inputs should be
passed in the form
fields of your
POST.

POST application/json

Executing HTTP Requests
When executing HTTP requests, use UTF-8 encoding, and specify the optional
port value if required.

Tip
Use HTTPS in production or any time network integrity is in question.

Handling HTTP Response Codes
In most cases, you should expect to get back either content or the status code of
200, which indicates that the operation was successful. In the case of an error, you
receive an error message.

REST Web Services and WS EMS 115

Working with HTTP Content
If you are sending or receiving any HTTP content (JSON, XML, HTML [for
responses only]), set the request content-type header to the appropriate value
based on the HTTP content you are sending. The following table lists and briefly
describes the HTTP methods that are supported:

Supported HTTP Methods

Use To
GET Retrieve a value.
PUT Write a value or create new things or properties.
POST Execute a service.
DELETE Delete a Thing or property.

For Content Type In Accept Header, Use
JSON application/json

XML text/xml
HTML text/html (or omit Accept header)

Metadata
You can display the metadata of any specific Thing, Thing Template, or Data
Shape you build by going to the following URL in a web browser:
NameoftheThing/Metadata

Note
To view it, this information must be in JSON format.

Passing in Authentication with your REST Web Service Call
To authenticate with the ThingWorx Platform for a REST Web Service call, use an
application key that is associated with a user account that has the privileges to
perform the actions that you intend to invoke, using the REST Web Services. If
the HTTP Server configuration for your WS EMS has authentication enabled, you
need to include your credentials in basic authentication form.

Tip
Although you can pass in a username and password combination with your REST
call, the recommended best practice is to use an application key. Generate the key
in ThingWorx Composer and then pass it with your REST call. The user account
associated with the application key should have privileges to read/write properties
and run services on the related devices/machines in the ThingWorx Platform.

116 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

If you pass in a user name and password, note that username and password
are Base64 encoded in the Authorization Header. As the delimiter symbol is a ":"
(colon) between username and password (e.g. "ptc:ptc") the username
must not contain a ":" (colon) character. Otherwise, the requests will fail with an
error message, HTTP 401 Status - Authentication Required .

CSRF Tokens and REST Web Service Calls
When CSRF tokens are enabled, you need to add certain header values to your
requests. Upon the first successful authenticated request from the client to the WS
EMS/LSR, the WS EMS/LSR returns a response that includes a random CSRF
token in the x-csrf-token header The client must include this token in any
subsequent PUT, POST, or DELETE requests, or those requests are rejected as
not authenticated. This token value may be changed, or ‘rotated’, at a defined
interval.
For more information about using the REST services in Postman and the CSRF
token support provided in the RESTAPI for WS EMS and LSR as of v.5.4.2, refer
to Running RESTAPI Calls with Postman on WS EMS and LSR on page 134.

Reading and Writing Properties Using the
REST Web Services
This topic explains how to read a property value and how to write a property value
on page 118.

Reading a Property Value
To read a property from the local WS EMS, you can use a GET from the REST
client and the following URL:

http://localhost:8000/Thingworx/Things/thing_name/Properties/prop_name

Notice that you are pointing at the local WS EMS, on port 8000, to retrieve a
description. By default, the WS EMS listens on port 8000. Also by default, the
WS EMS accepts requests only from an application that is running on the same
machine as it is (i.e., localhost). You can configure a WS EMS to accept
requests from other IP addresses.
When you execute this request, the WS EMS pushes it to the ThingWorx
Platform. Keep in mind that the WS EMS has no state. It does not even know that
the property exists. It just takes the request URL, breaks it up and repackages it,
translates it into the AlwaysOn protocol, and forwards it to the ThingWorx
Platform. The platform responds with its current value for that property. The result
type is always of base type INFOTABLE, with the property name and current
value.

REST Web Services and WS EMS 117

Tip
To debug a problem with a property not updating or a service not executing,
set the level and publish_levelproperties (in the logger group of the
config.json file) to TRACE and in the ws_connection group, set the
verbose property to true. That way, you can monitor all the activity
passing between the WS EMS and the ThingWorx Platform.

For example, if the response appears to be returned slowly, by logging at the
TRACE level and setting verbose to true, you can check the timestamps for
the request and response to calculate the actual time. To match a request with a
response, locate the Request ID of the outgoing message and the Request
ID included in the incoming response message.

Writing a Property Value
To write a property value to the ThingWorx Platform through a WS EMS for an
Edge device managed by a Lua Script Resource, select the PUT method in the
REST client and use the same URL as a read (GET) for the property. For
example:

http://localhost:8000/Thingworx/things/thing_name/Properties/<prop_name>

Then, in the area provided in the client, enter the property name and value, using
JSON format:

{

"<prop_name>": "Hello World from Thingworx"

}

It is important to remember that the ThingWorx Platform recognizes the PUT as
coming from the Edge device and updates the value for the device and does not
attempt to write it to the device.
If you shut down the Lua Script Resource and execute the same PUT, the value is
written to the ThingWorx Platform for the device that is running WS EMS rather
than the LSR device. The distinction is between writing the value directly to the
platform, as opposed to writing the value through the WS EMS. In both instances
the value is accessibl through ThingWorx Composer and available to any
subscription or custom Javascript code you write to access the value.
You also need to set the Content-type for a write to the format you are using.
In this case, it is application/json. If the device for the property is a
Remote Thing, the property is also remote. If that device is not bound, you cannot
write the value to the property. If the device is connected through a WS EMS and

118 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Lua Script Resource and the WS EMS is running, you can start up the Lua Script
Resource that is configured for the Remote Thing. Once the Remote Thing is
bound, the ThingWorx Platform can send the write request to the WS EMS.
Note that the ThingWorx Platform instance does not change the property value
until the request has made the full round trip:
1. A request is sent from a REST client to the specified ThingWorx Platform.
2. The ThingWorx Platform recognizes it as a remote property and forwards to

the remote Thing.
3. If the Remote Thing is running a WS EMS, the WS EMS sends it to LSR,

which writes it internally.

At this point, the in-memory value on the ThingWorx Platform is still the old
value. The LSR should be set up to send the value back up to the platform.

4. Only after the LSR sends the new value back to the ThingWorx Platform does
the value change there.

Transferring Files through the REST Web
Services
To prepare for file transfers, set up the WS EMS with virtual directories to send
and receive files. If it is not already running, start the LSR for the device so that
the virtual Thing at the edge is up and running and the ThingWorx Platform
knows it is connected.
To invoke a file transfer from the platform, use the HTTP POST method and the
following URL:
http://<server_name>:<port>/Thingworx/Subsystems/FileTransferSubsystem/Services/
Copy

In the area provided in the REST client, enter the parameters for the Copy service
(in a JSON object), as indicated here:

{

"sourceRepo": "<Enter a Valid Repository"

"sourcePath": "<Enter a Valid Path>"

"sourceFile": "<Enter a Valid File>"

"targetRepo": "<Enter a Valid Thing>"

"targetPath": "<Enter a Valid Path>"

"targetFile": "<Enter a New Name for the file (optional>"

}

REST Web Services and WS EMS 119

The parameters are broken down by target and source (you can view the
parameters by looking at the definition for the Copy service in ThingWorx
Composer).

Note
Refer to the ThingWorxHelp Center for more information about the Copy
services, specifically the details concerning what is a valid file repository (that is,
which templates support file transfer).

When you run the request, you can view the results (in JSON) format in the REST
client. Scroll down until you locate the rows of the infotable. The value of the
state parameter is "validated" if the file was transferred successfully.
You can also execute a file transfer through the WS EMS, using the same
parameters and same POST, with the URL pointed at the local WS EMS:

http://localhost:8000/Thingworx/Subsystems/FileTransferSubsystem/Services/Copy

The headers for the WS EMS differ in that you have only the content-type
header for the WS EMS. The results are the same (except that the WS EMS puts
the rows at the top and the Data Shape at the bottom).
Why use the WS EMS or an SDK with the REST Web Service instead of just
calling the ThingWorx platform REST Web Services from an application? There
are some benefits to using the WS EMS or an SDK just to interact with the
ThingWorx Platform, using the REST Web Services:
• You can have a secure connection when you use a WS EMS or an SDK to

interact with a ThingWorx platform.
• The AlwaysOn protocol persists the connection between an application and a

configured ThingWorx platform.
• When a WS EMS or an SDK makes the REST calls instead of your

application, you save a lot in terms of resource usage on the ThingWorx
Platform. The platform could potentially have to handle hundreds of HTTP
requests coming from an application that is running on hundreds of devices,
all sending multiple requests. Typically, the most expensive part of HTTP
request is opening the socket — all the headers that are sent across the wire
and so forth. When you use a WS EMS or SDK, you eliminate the burden on
the ThingWorx Platform. The WebSocket connection is already set up (and
persisted), and the multiple requests for an application are sent over the single
WebSocket. In addition, the WS EMS and the SDKs send the requests using
binary data, which results in more efficient use of bandwidth (in terms of the
number of bytes that go across the wire).

120 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

http://support.ptc.com/help/thingworx_hc/thingworx_8_hc/

• With the WS EMS or an SDK, the step to set up the socket is eliminated.
Requests and responses can be exchanged more quickly. Especially if you
have multiple applications that are making multiple requests behind a WS
EMS, performance improvements are significant when you use the WS EMS
to pass REST requests instead of passing them directly to your ThingWorx
Platform.

REST Web Services Supported by WS
EMS
The WS EMS is built to reflect the ThingWorx REST Web Service, but it is not a
complete reflection. Rather, it is reflection of those Web Services that are most
useful at the Edge. For example, if you try to look at Resources, nothing is
returned. If you try to look at properties for a Thing that either is running the WS
EMS or that is registered with it (WS EMS is running as a gateway), you can view
all the properties. By default, the WS EMS returns data in JSON format.
For example, these Web Services do work with a WS EMS:
• /Thingworx/Things/thing_name/Properties
• /Thingworx/Things/thing_name/Properties/prop_name
where thing_name represents the name of any device that is connected to the
local WS EMS where you are using a REST Web Service, and prop_name
represents the name of any property for the specified device.

Note
As of v.5.4.2, support for CSRF tokens has been added to the RESTAPI for WS
EMS and LSR. It is enabled by default. Before using the RESTAPI, be sure to
read CSRF Token Support on page 135.

Browser-based Use of REST Web Services
The REST Web Services of the ThingWorx Platform can be used in a browser or
an application that supports the HTTP commands. However, the behavior of the
REST Web Services on a WS EMS is slightly different.
You cannot use a PUT through a query parameter of the REST Web Service in a
browser, as on a ThingWorx Platform. For example, the following use of PUT
works on a platform, but not on a WS EMS:

https://<server_ip/Thingworx/Things/<thing_name>/Properties/<property_name>/

method=put&<prop_name>=<value>

REST Web Services and WS EMS 121

You actually must do an HTTP PUT to the WS EMS, using a REST client that can
do an HTTP PUT.
Another difference with the ThingWorx REST Web Services lies in how a WS
EMS returns the information for a specific property. Both ThingWorx and a WS
EMS use an infotable to return the information. However, a WS EMS returns the
rows first and the Data Shape second. This order is the opposite from the order in
which the ThingWorx REST Web Services return the information.
Similarly, for services, the following use of a service such as GetDescription
works on a ThingWorx Platform, but not on a WS EMS:

https://<server_ip>/Thingworx/Things/thing_name/Services/GetDescription

For WS EMS, you must request to run services by using a POST through a client
that can do an HTTP POST.

Note
You cannot send POST commands using a web browser if CSRF tokens are
enabled (enabled by default and strongly recommended to keep enabled). You
must use POSTMAN or another REST client.

As long as you do not have any input parameters for the service and if CSRF
tokens are not enabled (strongly discouraged), you could do it this way from a
browser:

https://localhost:8000/Thingworx/Things/thing_name/Services/GetDescription/method=

POST

However, if you have parameters and leave CSRF tokens enabled, use a client that
can do an HTTP POST.
Here are a few of the REST Web Services of the ThingWorx that do not work with
WS EMS:
• /Thingworx/Things
• /Thingworx/Things/thing_name
• /Thingworx/Resources
By default, a WS EMS uses application/json for the Accept header.

122 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Note
As of v.5.4.2, support for CSRF tokens has been added to the RESTAPI for WS
EMS and LSR. It is enabled by default. Before using the RESTAPI, be sure to
read CSRF Token Support in RESTAPI for WS EMS and LSR on page 135.

Using a REST Client with a WS EMS
You can use a REST client such as Postman to run REST Web Services against a
WS EMS. You can save them and even set up collections of them. In addition, you
can export a collection and import them into a Javascript engine such as Node.js.

Note
Before using Postman, be sure to read Running RESTAPI Calls with Postman on
WS EMS and LSR on page 134 and in particular, the section, CSRF Token
Support in RESTAPI for WS EMS and LSR on page 135.

When you are using REST Web Services, it is important to set your headers
correctly:
• Accept— Specifies the format in which the data should be returned —

JSON for WS EMS. For ThingWorx Platform, you can also choose XML or
text.

• Application key (appkey) — Provides the authentication you need with the
platform. You do not need it when running a REST Web Service against a
local WS EMS.

Although the application key is strongly recommended when running a REST
Web Service against a remote WS EMS, you can use basic authentication. In
Postman, you can select Basic Authorization and specify a user name and
password to access the ThingWorx Platform.

• x-thingworx-session—Determines if your request will set up an
HTTP session with the ThingWorx instance. Having a session makes it
possible to send multiple requests from a browser to ThingWorx Composer
without having to authenticate with each request. When you set up a session,
the browser and Composer authenticate each request in the background.

However, in an application, you do not want a session because sessions take
up memory. For an application, set this header to false so that the
ThingWorx platform does not create a session every time that the application
sends a request. Sending the appkey with each request does not impact
memory.

REST Web Services and WS EMS 123

Note
If you use Basic authentication, you always get a session with the ThingWorx
Platform. With an application, use an appkey for authentication and set the
x-thingworx-session header to false.

• x-csrf-token—A random string used for Cross-Site Request Forgery
(CSRF) protection in the WS EMS. When authentication and CSRF tokens are
enabled on the WS EMS, the WS EMS will return a random CSRF token with
each response that must be used in the next client request. If this token is not
included or is incorrect, the request will fail with a 401 Unauthorized
error.

Using Services with a WS EMS
The following services work as REST Web Services with both a ThingWorx
Platform and a WS EMS:
• AddEdgeThing on page 125
• GetConfiguration on page 125
• GetEdgeThings on page 126
• GetLogData on page 127
• GetMicroserverVersion on page 127
• HasEdgeThing on page 128
• RemoveEdgeThing on page 128
• ReplaceConfiguration on page 129
• Restart on page 130
• StartFileLogging on page 131
• StopFileLogging on page 132
• TestPort on page 132
• UpdateConfiguration on page 133
The WS EMS also supports using the isConnected property with a REST Web
Service.

Note
As of v.5.4.2, support for CSRF tokens has been added to the RESTAPI for WS
EMS and LSR. It is enabled by default. Before using the RESTAPI, be sure to
read CSRF Token Support in RESTAPI for WS EMS and LSR on page 135.

124 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

AddEdgeThing
The AddEdgeThing service adds an Edge device to the devices that are currently
connected to the WS EMS.

Inputs
Pass in TW_INFOTABLE that has one row and two columns. The row object must
contain the following parameters:
• The name of the device (Thing) that you want to add. Keep in mind that the

device must exist on the ThingWorx Platform as a Thing that was created with
the RemoteThing Thing Template. For example:
"name":"NameOfThing",

• persist, which specifies whether the device should be added to the list of
devices that are automatically bound to the corresponding Thing on the
ThingWorx Platform. The format for this parameter is "persist": true |
false.

Outputs
This service returns an HTTP response only. If the operation was successful, it
returns HTTP 200. Otherwise, it returns an HTTP error.

Example
Here is an example of a REST call that adds an Edge Thing:

http://localhost:8000/Thingworx/Things/LocalEms/Services/AddEdgeThing

{

"name" : "acmeEdgeThing1",

"persist": true

}

GetConfiguration
The GetConfiguration service retrieves the configuration that the WS EMS is
currently using

REST Web Services and WS EMS 125

Note
This service does not return the current config.json file. Rather it returns the
configuration that is currently loaded into the WS EMS. For example, if you call
UpdateConfiguration but do not restart the WS EMS, the GetConfiguration
service returns the configuration parameters and their values that the WS EMS is
currently using, not the config.json file. The changes that were passed in
with UpdateConfiguration are not available until you restart the WS EMS.

Inputs
This service does not take any input parameters.

Outputs
This service returns a TW_INFOTABLE that contains a json object. The object
contains the configuration parameter/value pairs that are currently loaded in the
WS EMS.

Example
Here is an example of a REST call that retrieves the configuration of a WS EMS:

http://localhost:8000/Thingworx/Things/LocalEms/Services/GetConfiguration

GetEdgeThings
The GetEdgeThings service returns a list of edge things that are registered with
the WS EMS gateway.

Inputs
The name of the WS EMS gateway.

Outputs
This service returns a TW_INFOTABLE that contains the names of the Edge
things that are registered with the WS EMS gateway.

Example
Here is an example of the REST call that retrieves the names of the Edge things
that are registered with the WS EMS gateway:

http://localhost:8000/Thingworx/Things/LocalEms/Services/GetEdgeThings

126 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

GetLogData
The GetLogData service retrieves the log entries from the WS EMS.

Inputs
Pass in a TW_INFOTABLE that contains one row and three columns. The row
object must contain the following parameters;
• startDate— The oldest log entry to retrieve, as a DATETIME.
• endDate— The newest log entry to retrieve, as a DATETIME.
• maxItems— The maximum number of entries to retrieve, as an INTEGER.

Outputs
This service returns a TW_INFOTABLE that contains the log entries. (The related
Data Shape is logEntry.)

Example
Here is an example of a REST call that retrieves log entries for a WS EMS:

http://localhost:8000/Thingworx/Things/LocalEms/Services/GetLogData

{

"startDate": 1572566400,

"endDate":1572652800,

"maxItems":50

}

GetMicroserverVersion
The GetMicroserverVersion service returns the version of the WS EMS.

Inputs
None

Outputs
This service returns a string that contains the version of the WS EMS. For
example, 5.4.0

Example
Here is an example of a REST call that retrieves the version of a WS EMS:

http://localhost:8000/Thingworx/Things/LocalEms/Services/GetMicroserverVersion

REST Web Services and WS EMS 127

HasEdgeThing
The HasEdgeThing service checks whether a certain Thing is connected to the
WS EMS.

Inputs
You can pass in raw JSON or an infotable that contains the name of the Thing
whose connection you want to check:
• TW_INFOTABLE, that contains the name of the Thing to check. The infotable

can be passed in as raw json. For example, {"name":"ThingName"}

Outputs
• TW_INFOTABLE, which contains the result, as TW_BOOLEAN. Returns true

if the specified Thing is connected, false otherwise.

Example
Here is an example of a REST call that determines if a specified edge Thing is
connected to a WS EMS:

http://localhost:8000/Thingworx/Things/LocalEms/Services/HasEdgeThing

{

"name": "acmeEdgeThing1"

}

RemoveEdgeThing
The RemoveEdgeThing service removes the specified device from the set of
devices that are connected to the WS EMS. In addition, it removes the device
from the list of devices that should bind automatically when the WS EMS contacts
the ThingWorx platform.

Inputs
You pass in an infotable that contains the name of the Thing that you want to
remove from the WS EMS:
• TW_INFOTABLE, that contains the name of the Thing to remove. The

infotable can be passed in as raw json. For example, {"name" :
"ThingName"}

128 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Note
If the removal is permanent, make sure that you also delete the Thing on the
ThingWorx Platform side.

Outputs
This service returns an HTTP response only. If the operation was successful, it
returns HTTP 200. Otherwise, it returns an HTTP error.

Example
Here is an example of a REST call that deletes an Edge Thing from the list of
devices that should bind automatically when the WS EMS contacts the
ThingWorx platform:

http://localhost:8000/Thingworx/Things/LocalEms/Services/RemoveEdgeThing

{

"name" : "acmeEdgeThing1"

}

ReplaceConfiguration
The ReplaceConfiguration service allows you to replace the configuration file
for the WS EMS (config.json).

Tip
The new configuration file does not take effect until you restart the WS EMS. Use
the Restart on page 130 service to force the changes to take effect.

Inputs
Pass in a TW_INFOTABLE that contains a JSON object. This object must contain
• "config"—A JSON string that is used to replace the current configuration

file.

Outputs
This service returns an HTTP response only. If the operation was successful, it
returns HTTP 200. Otherwise, it returns an HTTP error.

REST Web Services and WS EMS 129

Example
Here is an example of a REST call that replaces the configuration of a WS EMS
that is running on your computer, using this service:

http://localhost:8000/Thingworx/Things/LocalEms/Services/ReplaceConfiguration

{

"ws_servers" {

"host":newServer.acme.com",

"port":80,

appkey="some_application_key"

}

"certificates" {

"disableCertValidation":true

}

}

Restart
The Restart service restarts the WS EMS.

Inputs
Pass in the following parameter:
• The name of the device (Thing) that you want to restart. For example:

{

"name": "NameOfThing"

}

Note
The Restart service requires that you set the restart property in the
config.json file of your WS EMS for any edge-side restart requests to work
correctly. Otherwise, only requests from the ThingWorx Platform can restart the
WS EMS. For more information, refer to Viewing All Configuration Options on
page 60.

Outputs
This service returns an HTTP response only. If the operation was successful, it
returns HTTP 200. Otherwise, it returns an HTTP error.

130 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Example
Here is an example of a REST call that restarts the WS EMS:

http://localhost:8000/Thingworx/Things/LocalEms/Services/Restart

{

"name": "NameOfThing"

}

StartFileLogging
The StartFileLogging service tells the WS EMS to begin writing log messages to
a file. The WS EMS generates log messages at the level defined by a call to this
service.

Inputs
You pass in TW_INFOTABLE that has one row and two columns. The row object
must contain the following parameters:
• The level of the log messages to write to a file. Choose among the

following levels: TRACE, DEBUG, WARN, INFO, or AUDIT, where TRACE
provides the most information.

• directory, which specifies the path to the file on the computer where the
WS EMS is running. Use the following format: /twx/wsems/logfiles/
directory.

Note
The TRACE level is useful when testing and troubleshooting. It provides both the
operational and functional log messages for a WS EMS.

Outputs
This service returns an HTTP response only. If the operation was successful, it
returns HTTP 200. Otherwise, it returns an HTTP error.

Example
Here is an example of a REST call that tells a WS EMS to start logging messages
that it generates to a file, with the log level set to TRACE:

http://localhost:8000/Thingworx/Things/LocalEms/Services/StartFileLogging

{

"level": "TRACE",

REST Web Services and WS EMS 131

"directory": "./ws_ems/logfiles"

}

StopFileLogging
The StopFileLogging service tells the WS EMS to stop writing log messages to a
file.

Inputs
You pass in the following parameter:
• "delete" : true | false. Set to true to stop the logging to a file, or

false to continue logging to a file.

Outputs
This service returns an HTTP response only. If the operation was successful, it
returns HTTP 200. Otherwise, it returns an HTTP error.

Example

StopFileLogging
Here is an example of a REST call that tells a WS EMS to stop logging messages
that it generates to a file and to delete the existing log file:

http://localhost:8000/Thingworx/Things/LocalEms/Services/StopFileLogging

{

"delete": true

}

TestPort
The TestPort service tests the connection to a specified ThingWorx instance and
port.

Inputs
Pass in the following, required parameters:
• host - The URL of the WS EMS instance to connect to (as a STRING)
• port - The number of the port to connect to (as an INTEGER)
As of v.5.4.1, the TestPort service supports simplified infotables. With that
release, support for additional, optional parameters was expanded. As a result, you
can pass in optional parameters as well as the required parameters. For example:

{

132 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

"host": "127.0.0.1", // Required
"port": "80", // Required
"useSSL": false, // Optional
"useProxy": false // Optional

}

Outputs
This service returns a true if the connection is successful, or false if it cannot
connect.

UpdateConfiguration
The UpdateConfiguration service of the WS EMS allows you to change or
replace its configuration file (config.json).

Tip
The changes or new configuration file that you pass in do not take effect until you
restart the WS EMS. Use the Restart on page 130 service to force the changes to
take effect.

Inputs
Pass in a TW_INFOTABLE that contains a JSON object. This object must contain
• "config"—A JSON string that is used to update or replace the current

configuration file.
• "replace"—A Boolean that determines whether to update the current

config.json file or to delete it entirely and replace it with the JSON string
specified with the "config" parameter.

Outputs
This service returns an HTTP response only. If the operation was successful, it
returns HTTP 200. Otherwise, it returns an HTTP error.

Example
Here is an example of a REST call that updates the configuration of a WS EMS
running on your computer, using this service:

http://localhost:8000/Thingworx/Things/LocalEms/Services/UpdateConfiguration

{

"config": "config.json",

"replace": true

REST Web Services and WS EMS 133

}

Running RESTAPI Calls with Postman on
WS EMS and LSR
• Calling RESTAPI calls directly on the ThingWorx Platform requires

authentication set, using the userid / password or appkey header.

Note
username and password are Base64 encoded in the Authorization Header.
As the delimiter symbol is a ":" (colon) between username and password
(e.g. "ptc:ptc" in the example above) the username must not contain a
":" (colon) character. Otherwise, the requests will fail with an error message,
HTTP 401 Status - Authentication Required .

• The EMS / LSR RESTAPI calls need to be called with the following
configuration:

○ Instead of supplying credentials in the Headers section in Postman, you
can use the Authorization tab.

○ The Type must be set to Basic Auth and a valid username.password
combination must be provided.

○ In the Headers, Content-Type and Accept must be present. Postman will
automatically add an Authorization key, based on the values provided in
the Authorization tab.

○ In the Headers, you must also include the x-csrf-token header. The
token is a random string used for Cross-Site Request Forgery (CSRF)
protction in the WS EMS. When authentication and CSRF tokens are
enabled on the WS EMS, the WS EMS will return a random CSRF token
with each response. That token must be used in the next client request. If
this token is not included or is incorrect, the request will fail with a 401
Unauthorized error.

As of v.5.4.2, CSRF token support is provided in the RESTAPI for the WS
EMS and LSR. This support is enabled by default. For more information, refer
to the section below, CSRF Token Support in RESTAPI for WS EMS and
LSR on page 135.

• Use the following URLs to test the authentication mechanism:

○ WS EMS—Verify the System Repository name property.

134 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

◆ https://<ems_host>:8000/Thingworx/Things/
SystemRepository/Properties/name.

◆ Should return "name": "SystemRepository".
○ WS EMS—Verify the isConnected property of the LocalEMS.

◆ https://<ems_host>:8000/Thingworx/Things/
LocalEms/Properties/isConnected.

◆ Should return "isConnected": true.
○ LSR—Verify that you get a 200 OK response when connecting to the

LSR.

◆ https://<lsr_host>:8000/
◆ Should return 200 OK HTTP response with no content in the body.

Note
It is highly recommended that you use a secure password with more than three
letters, as used in above example. For more information, refer to Password
policy.

To learn what REST services are available for the LSR, refer to the /help on
the LSR in a web browser.

CSRF Token Support in RESTAPI for WS EMS and LSR
As of v.5.4.2, CSRF token support is provided in the RESTAPI for the WS EMS
and LSR. The support for CSRF tokens requires any requests from a client that
can change state (such as POST, PUT or DELETE) include a CSRF token in the
headers of their request. This token will be provided by the server and put into the
response header with the key x-csrf-token. The client must include this same
header and token value with any request that can change state.
The token will change periodically based on the http_server_csrf_
token_rotation_period (WS EMS) and scripts.script_
resource_csrf_token_rotation_period (LSR) values set in
config.json and config.lua, respectively. The default period is every 10
minutes.
Neither the WS EMS nor the LSR require changes or configuration updates to
support CSRF tokens. The tokens are enabled by default. Applications that use the
REST interface of the WS EMS or LSR will need to be updated to include the
CSRF token, or CSRF protection must be disabled (not recommended). You can
disable CSRF protection by adding the line enable_csrf_tokens = false

REST Web Services and WS EMS 135

https://en.wikipedia.org/wiki/Password_policy
https://en.wikipedia.org/wiki/Password_policy

in the http_server struct of config.json (WS EMS) or
scripts.script_resource_enable_csrf_tokens = false` in
config.lua (LSR).
CSRF protection is enabled only when authentication is enabled as well. If
authentication is disabled, no token values will be used. PTC recommends always
using TLS, enabling authentication, and encrypting sensitive credentials in
configuration files.
In addition to the CSRF token support, changes have been made in v.5.4.2 to how
the Lua Script Resource’s /script and /scriptcontrol REST endpoints
work out-of-the-box. By default, you will not be able to use these endpoints to
dynamically create, update, delete, or restart scripts using the RESTAPI. Any
requests to these services will result in a 405 – Method Not Allowed error.
This feature can be enabled by adding the line scripts.script_resource_
enable_rest_services = true to your config.lua

136 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

6
Getting Started with the Lua Script

Resource
The following sections explain how to get started working with the Lua Script
Resource (LSR). It is assumed that you installed the LSR with your WS EMS.

• Create a Lua Script Resource configuration file to set logging preferences,
define Edge things that will run in the Lua Script Resource environment,
define any extensions, etc. For details, refer to Configuring a Lua Script
Resource on page 138.

• Create a Lua Script Resource Template File to define properties, services, and
tasks for Edge things. For more information, refer to Configuring a Template
for the Lua Script Resource on page 150.

• Run the LSR. For more information, refer to Running the Lua Script
Resource on page 148.

137

7
Configuring a Lua Script Resource
Configuring the Connnection from the LSR to the WS EMS .. 139
Configuring the HTTP Server for the LSR (SSL/TLS Certificate).................................. 140
Configuring the Logger for the LSR... 143
Configuring Edge Things.. 145
Configuring the scanRateResolution ... 146

When creating a Lua Script Resource (LSR), you create a configuration file, using
the name, config.lua. This configuration file should be modeled after the
example, config.lua.example. Your configuration file should be a text file
that is separated into groups, with a group that sets logging levels, another one that
configures edge things to run in the scripting environment, and a final one that
defines any Lua Script extensions that are to be used by the Lua Script Resource.
To view this example of an LSR configuration file:
1. Open a command window or terminal session on the system or device that is

hosting the Lua Script Resource.
2. Change into the \microserver\etc directory.
3. Open config.lua.example. Use this example as a reference while

reading about the various groups of the configuration file.
The example file shows the main sections for configuring a Lua Script Resource.
Follow the links below to read more about the properties of the configuration file:

• Logging on page 143
• HTTP Server Configuration on page 140 (SSL/TLS certificates)
• Configuring the Connection to the WS EMS on page 139
• Edge Thing on page 145

138 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Configuring the Connnection from the
LSR to the WS EMS
The sample configuration file, config.lua.example, for the Lua Script
Resource (LSR) shows the properties to set for the connection between the LSR
and the WS EMS. You should add these properties to your config.lua file:
scripts.rap_host = "<IP_address_for_WS_EMS>"
scripts.rap_port = "port_number_for_WS_EMS"
scripts.rap_ssl = true
scripts.rap_userid - "user_ID_for_WS_EMS_HTTP_Server"
scripts.rap_password = "some_encrypted_password"
scripts.rap_server_authenticate = true
scripts.fips_enabled = false
scripts.rap_cert_file = "path_to_CA_certificate_file"
scripts.rap_validate = true
scripts.rap_deny_selfsigned = true

Tip
For examples of secure configurations for communications between the WS
EMS and the LSR, refer to Setting Up Secure Communications for WS EMS
and LSR on page 159. These examples are presented in order of least secure
(testing purposes ONLY) to most secure (strongly recommended for
production environments).

As of v.5.4.8, encryption of application keys, passwords, and passphrases is
automatic on startup of the LSR. For details, refer to Automatic Configuration
Encryption on page 52. For previous versions of the LSR, you can manually
encrypt these configuration settings. Refer toEncrypting Application Keys,
Passwords, and Passphrases on page 36 to learn how.

Wherever rap appears in the config.lua file, the property is referring to
the WS EMS.

The following table briefly describes the properties:

Property Description
scripts.rap_
host

The host name or IP address of the machine that is running
the WS EMS.

scripts.rap_
port

The port on which the WS EMS listens for connections from
LSR clients.

scripts.rap_
ssl

Whether to enable the use of SSL/TLS for the connection to
the WS EMS. By default the value of this property is true.

scripts.rap_
userid

The user id to present to the HTTP Server of the WS EMS
for authentication.

Configuring a Lua Script Resource 139

Property Description
scripts.rap_
password

The password for that user, AES encrypted. For information
about encrypting passwords, refer to Encrypting Application
Keys, Passwords, and Passphrases on page 36.

scripts.rap_
server_
authenticate

Whether to require authentication

scripts.
fips_enabled

If ssl is true, whether FIPS is also used for the
connection. The default value is false. Note that if you
want to use FIPS, make sure that you download the WS
EMS distribution package that has fips in its name.

scripts.rap_
cert_file

The path to the CA certificate on the machine that is running
the LSR.

scripts.rap_
validate

Whether to enable certificate validation when the LSR
communicates with the WS EMS. The default value is
true.

scripts.rap_
deny_
selfsigned

When certificate validation is enabled and the LSR initiates
communication to the WS EMS, this property is checked. If
the value of this property is trueand the WS EMS is using
a self-signed certificate (such as the default one shipped
with the WS EMS), the LSR will refuse to connect and log
an error. The default value of this property is true.

Tip
In v.5.4.8 of the WS EMS and LSR, all sensitive data such as passwords is
encrypted on startupand a data security key property is appended to the end of the
configuration file. For details, refer to Automatic Configuration Encryption on
page 52.

Configuring the HTTP Server for the LSR
(SSL/TLS Certificate)
Suppose you want to set up a Lua Script Resource on a device that is external to
the WS EMS. To prevent external sources from sniffing packets on your network,
it is strongly recommended that you enable SSL/TLS on the HTTP servers on
both the WS EMS and the Lua Script Resource. You can also require a user name
and password for both HTTP server to ensure that only authenticated applications
can access the LSR model and WS EMS communication channels.

140 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Tip
Always configure a secure HTTP server. Otherwise, the WS EMS and LSR
will log warning messages when any one or more of the following conditions
is true:

• SSL is disabled. That is, the ssl property is set to false
• Authentication is disabled.
• Certificate validation is disabled.
• Self-signed certificates are allowed.

For examples of secure configurations for communications between the WS
EMS and the LSR, refer to Setting Up Secure Communications for WS EMS
and LSR on page 159. These examples are presented in order of least secure
(testing purposes ONLY) to most secure (strongly recommended for
production environments).

As of release 5.4.0 of the WS EMS, the Lua Script Resource (LSR) is configured
to secure HTTP connections by default.
To load a PEM-encoded certificate for use by the LSR’s HTTP server when TLS
is enabled, you need to configure the following properties in your config.lua
file:
-- HTTP Server Configuration
--
scripts.script_resource_host = "localhost"
scripts.script_resource_port = "8001"
scripts.script_resource_ssl = "true"
scripts.script_resource_certificate_chain = "/path/to/lsr_http_server_certificate_
chain/file"

scripts.script_resource_private_key = "/path/to/private/key"
scripts.script_resource_passphrase = "some_encrypted_passphrase"
scripts.script_resource_authenticate = "true"
scripts.script_resource_userid = "johnsmith"
scripts.script_resource_password = "some_encrypted_password"

scripts.script_resource_enable_csrf_tokens = true
scripts.script_resource_csrf_token_rotation_period = 10
scripts.script_resource_enable_rest_services = false

Note
The use of double quotation marks in config.lua is required only for Strings.
For numbers and Boolean values, you do not need to use them. The LSR will
work if you do use them for Booleans or numbers.

Configuring a Lua Script Resource 141

The port number is 8001 by default. You can choose whatever port is available for
the HTTP server of the LSR.
To encrypt the passphrase and password, refer to Encrypting Application Keys,
Passwords, and Passphrases on page 36.
The following table lists and briefly describes the properties for the HTTP Server
of the LSR:
Property Description
scripts.script_
resource_host

The host name or IP address of the machine where the LSR is running. The
default value is "localhost"

scripts.script_
resource_port

The number of the port used on the host for communicating with the WS
EMS. The default value is "8001". Choose whichever port is available on
the device for the HTTP Server of the LSR.

scripts.script_
resource_ssl

Whether to use SSL/TLS for communication (Boolean). The default value is
"true"

scripts.script_
resource_
certificate_chain

The path to the PEM-encoded certificate file. Use forward slashes when
specifying the path, regardless of the operating system of the device.

scripts.script_
resource_private_key

The path to the private key for the certificate. Use forward slashes when
specifying the path, regardless of the operating system of the device..

scripts.script_
resource_passphrase

The passphrase for the private key and certificate. Enclose the string in
double quotation marks. For best security,this property value should be
encrypted. If you are running v.5.4.8 or later, the encryption is automatically
done on startup. For earlier bersions, you can manually encrypt the
passphrase, as explained in Encrypting Application Keys, Passwords, and
Passphrases on page 36.

scripts.script_
resource_
authenticate

Whether to authenticate the sender of an incoming request (Boolean). The
default value is "true".

scripts.script_
resource_userid

The user name that will be presented for authentication when attempting to
access the LSR..

scripts.script_
resource_password

The encrypted password that should be presented when attempting to access
the LSR. For information about encryption, refer to Encrypting Application
Keys, Passwords, and Passphrases on page 36.

scripts.script_
resource_enable_
csrf_tokens = true

Flag that enables (true) or disables (false) the use of CSRF tokens for
RESTAPIs with the LSR. By default, use of CSRF tokens is enabled. Refer
to CSRF Token Support on page 135.

142 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Property Description
scripts.script_
resource_csrf_token_
rotation_period = 10

The number of minutes between changes to the CSRF token for a given
session. The default value is 10 minutes.

scripts.script_
resource_enable_
rest_services = false

Flag that enables (true) or disables (false) the use of REST services
with the LSR. By default, use of REST services is disabled.

Note
Changes were made for WS EMS/LSR v.5.4.2 to how the Lua Script
Resource’s /script and /scriptcontrol REST endpoints work out-
of-the-box. By default, you will not be able to use these endpoints to
dynamically create, update, delete, or restart scripts using the RESTAPI.
Any requests to these services will result in a 405 – Method Not
Allowed error. This feature can be enabled by adding the line
scripts.script_resource_enable_rest_services = true
to your config.lua, as shown here.

Configuring the Logger for the LSR
As of version 5.4.0, the Lua Script Resource provides the same logging
configuration properties as the WS EMS.
The scripts.log_level group (refer to the config.lua example
configuration file) is used to configure the Lua Script Resource to collect logging
information.
scripts.log_level = "INFO"

scripts.log_audit_target = "file:// or http:// "

scripts.log_publish_directory = "/_tw_logs/"

scripts.log_publish_level = "WARN"

scripts.log_max_file_storage = "2000000"

scripts.log_auto_flush = "true"

scripts.log_flush_chunk_size = "16384"

scripts.log_buffer_size = "4096"

Configuring a Lua Script Resource 143

Logging Properties
The following table lists and describes the properties of the logger element:
Property Description
scripts.log_level The level of information that you want to include in the audit log file.

Valid values include:
• FORCE

• ERROR

• WARN

• INFO (the default value)

• DEBUG

• TRACE

Tip

When troubleshooting a problem, set the level to TRACE so that you
can monitor all the activity. For production, set the level to ERROR if
you want to view error messages.

scripts.log_audit_

target
The path to the audit log file where audit events will be written.
Alternatively, specify an HTTP address for the audit log file, where these
events will be sent using a POST command.

Audit events are also written to the normal log destination . If no target is
specified, no additional auditing takes place.

Valid values include:
• file://path_to_file

• http://hosted_location

scripts.log_publish_

directory
A location for writing to log files those log events that meet or exceed
the publish_level. .

Caution

sThe LSR and WS EMS use the same naming scheme for log files.
Specify a directory that is different from the one specified in the
publish_directory property in the config.json file of the WS
EMS.

scripts.log_publish_

level
The level of information that you want to include in the alternate log
files. Valid values include:
• AUDIT

• ERROR

• WARN

• INFO

• DEBUG

• TRACE
scripts.log_max_file_ The maximum amount of space that log files can take up, in bytes. Keep

144 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Property Description
storage in mind that there are two concurrent log files. The maximum size of

each individual log file is max_file_storage divided by 2. The
default value is 2000000 bytes (2MB).

scripts.log_auto_flush Whether the LSR should flush every N bytes to the publish_
directory. The N is defined by flush_chunk_size. The LSR
also flushes the buffer if a message has not been written to the log in the
last second.

A setting of true forces the LSR to flush every N bytes.
scripts.log_flush_

chunk_size
The number of bytes to write before flushing to disk. The default setting
is 16384 bytes.

scripts.log_buffer_

size
The maximum number of bytes that can be printed in a single logging
message. The default setting is 4096 bytes.

Configuring Edge Things
The EdgeThing group is used to configure an Edge Thing to run in the Lua Script
Resource environment. Of all the parameters that can be included in the
EdgeThing group of the configuration file, only the file and template parameters
are required. All other parameters are optional and can be included anywhere
between the curly braces {}.

Note
The entry that defines the Thing.lua Edge Thing must exist in the configuration
file. You can define additional Edge things with their own EdgeThing statements.

scripts.EdgeThing = {

file = "Thing.lua",

template = "example",

}

Parameters
The EdgeThing group contains the following parameters:
Parameter Description
file Define an Edge Thing. This parameter is required.
template Specify the script identifying the information that you want to send from

the device to your Edge Thing. The template file defines the behavior of
the Edge Thing. This parameter is required.

The template file must be placed in the \microserver\etc\custom\
templates directory.

scanrate Specify how frequently to evaluate the properties and possibly push them

Configuring a Lua Script Resource 145

Parameter Description
to the ThingWorx platform, in milliseconds. The default value is 60000
milliseconds.

taskrate Specify how frequently to execute the tasks that are defined in the template
of the edge Thing, in milliseconds. The default value is 15000
milliseconds.

scanRateResolution Specify how long the main execution thread for this edge Thing pauses
between iterations, in milliseconds. Each iteration checks the scan rate and
task rate to determine if any properties are to be evaluated, or any tasks are
to be executed. The value must be less than the scan rate or task rate. The
default is 500 milliseconds. Refer to Configuring the scanRateResolution
on page 146.

register Specify whether or not the Edge Thing registers with the WS EMS. The
default value is true (recommended).

keepAliveRate Specify how frequently this edge Thing should renew its registration with
the WS EMS, in milliseconds.

If the WS EMS is restarted, this parameter controls the maximum amount
of time before this edge Thing is re-registered.

This value also controls how frequently the WS EMS performs a keep-
alive check on the Lua Script Resource. If the Lua Script Resource is
unavailable, the registered Thing is unbound from the ThingWorx Platform
and appears to be offline.

The default value is 60000 milliseconds.
requestTimeout Specify the amount of time to wait for a response to an HTTP request to

the WS EMS before timing out.
maxConcurrentPropertyUp
dates

Specify the maximum number of properties that can be included in a single
property update call to the ThingWorx Platform. This value can be
decreased if the overall size of the batch property pushes is larger than
what is supported by the WS EMS. The default value is 100 properties.

getpropertiesubscriptionsOnRe
connect

Specify whether or not the edge Thing re-requests its property
subscriptions when it reconnects to the WS EMS. This value is useful if the
Lua Script Resource is running on a different Edge device from the WS
EMS. The default value is true.

identifier Specify the identifier used to register the edge Thing with the WS EMS
and the ThingWorx platform.

useShapes Specify whether or not to use Data Shapes for property definitions. The
default value is true.

Configuring the scanRateResolution
The scanRateResolution setting controls the frequency at which the main
loop of a script for a Thing executes in the LSR. Once it is started, a script enters
into a loop that executes until the script resource is shut down. Each iteration of
this main loop takes a number of actions, potentially increasing CPU usage.

146 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

At a high level, a script takes the following actions:
1. Goes through all your configured properties. If the scanRate amount of

time for each property has expired, the property is evaluated to check whether
it should be pushed. To evaluate the property, the LSR calls the read method of
the property handler for each property. The new value is compared to the old
(if necessary). If it needs to be pushed to the ThingWorx instance, the property
and its value are added to a temporary list of properties to be pushed.

2. The temporary list of properties is pushed to the ThingWorx instance. If no
properties have been evaluated, or no properties need to be pushed, this list is
empty and nothing is pushed.

3. The registration of the Thing with the WS EMS is checked, using a call to the
WS EMS.

4. If the taskRate time has expired, configured tasks are executed.
5. GC (garbage collection) is run if five seconds or more have elapsed.
6. The thread then sleeps for the number of milliseconds specified in the

scanRateResolution parameter.
If you do not need the main loop to drive calls to the handlers that read your
properties, you could set your scanRateResolution fairly high. A high
setting would cause the main loop to sleep longer between iterations, which could
have a few side effects:

1. The registration check will happen at the scanRateResolution, unless
you adjust the keepAliveRate to be greater than the
scanRateResolution.

2. You will need to set your taskRate and scanRate parameters to be
greater than the scanRateResolution, or the script resource will
complain during startup. Since it controls the pause of the main loop, the
scanRateResolution is the main limiting factor in how often the main
loop actions occur.

3. Shutting down the script resource can be delayed by up to the number of
milliseconds specified for the scanRateResolution parameter, since the
main loop must exit for the script to shut down.

The default value for the scanRateResolution is 500 milliseconds. If
however, you do not require the loop to execute that often, consider setting this
value much higher, even 10,000 milliseconds or more, to slow the execution of the
loop and save CPU load.

Configuring a Lua Script Resource 147

8
Running the Lua Script Resource

The Lua Script Resource (LSR) can be run either from a command line or as a
service to host things on the remote device.

Running from a Command Line
To run the Lua Script Resource from a command line, follow these steps:
1. Open a command window or terminal session on the system or device that is

hosting the Lua Script Resource.
2. Change to the \microServer\etc\ directory.
3. Copy and rename the config.lua.example file to config.lua.
4. Configure the file as necessary. Refer to Configuring a Lua Script Resource

on page 138.
5. Change directories back to the to the top level \microserver directory.
6. Enter the luaScriptResource command to run the Lua Script Resource

executable. To include a specific configuration file, use a command similar to
the following:
luaScriptResource -cfg .\etc\config.lua

Note
If no configuration file is specified, the default file, etc\config.lua, is
used.

This command causes the Lua Script Resource to start listening on port 8001,
if the default values are used.

148 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

7. To access the interface of the extension, open a browser and enter the
following address to view a list of executing scripts:
http://localhost:8001/scripts

8. Should you need to shut down the Lua Script Resource, press ENTER to
display the console prompt and type q.

Running as a Service
To run the Lua Script Resource as a Windows service, follow these steps:
1. Open a command window or terminal session on the system or device that is

hosting the Lua Script Resource.
2. Change to the \microServer\etc directory.
3. Copy and rename the config.lua.example file to config.lua.
4. Configure the file as necessary. Refer to Configuring a Lua Script Resource

on page 138.
5. Run the following command:

C:\microserver\luaScriptResource.exe -cfg "C:\microserver\etc\config.lua"

-i "ThingWorx Script Resource"

Where:
cfg Specifies the full path to the location of the configuration file.
i Specifies the name to be used for the installed service.

Note
Run the luaScriptResource executable and the reference to the
configuration file using the full path (even if it is running from the
directory where the luaScriptResource.exe file is located).

Due to space constraints, the command shown above has the second
argument/value pair on a second line. Do NOT just copy and paste this
command without removing the extra line break and spaces.

6. Should you need to uninstall the service, run the following command:
C:\microserver\luaScriptResource -u "ThingWorx Script Resource"

Where:
u Specifies the name of the service to be un-installed. This name must exactly

match the name that you assigned to the Lua Script Resource service.

Running the Lua Script Resource 149

9
Configuring a Template for the Lua

Script Resource
Including a Data Shape.. 151
Configuring the Module Statement.. 151
Configuring Data Shapes ... 151
Defining Properties ... 152
Defining Services .. 155
Implementing Services Using the Lua Script Engine... 156
Configuring Tasks.. 157

The template file is a text file that is separated into groups. Each group is used to
define the overall behavior, properties, services, and tasks for edge things that
reference the template file. Template files must be placed in the
\microserver\etc\custom\templates directory.
To view an example of a template file:
1. Open a command window or terminal session on the system or device that is

hosting the Lua Script Resource.
2. Change into the directory, \microserver\etc\custom\templates.
3. Open the file, config.lua.example. Use this example as a reference

while reading about the various groups of the template file.

150 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Including a Data Shape
The require statement pulls the functionality of a Data Shape into the template.
A Data Shape can define properties, services, and tasks. If a template defines a
property, service, or task that has the same name as one defined in the shape file,
the definition in the shape file is ignored. Be careful that you do not have
duplicate names for these characteristics.
require "yourshape"

The following table describes the require parameter:
Use To
require Specify the name of the shape file that contains the properties, services, and

task definitions that are to be added to the template file configuration.

The shape file must be located in the directory, \microserver\etc\
custom\shapes.

Note

If you intend to use file transfer with this Edge device, you must
include the following statement:

require "thingworx.shapes.filetransfer"

Configuring the Module Statement
The module statement is required. This statement tells the software component
of the Edge device to operate according to the configuration instructions contained
in the template file that you specify.
module ("templates.example", thingworx.template.extend)

The following table describes the two parts of the module statement:
Part Description
Name of template file The first part of the module statement must contain the name of the template

file that contains the configuration for the software component of the Edge
device. For example, template.acmedevice.

Extension of the ThingWorx
template

The second part of the module statement,
thingworx.template.extend, identifies the file as a template file to
the system and extends the base ThingWorx template implementation. Do not
modify this part of the statement.

Configuring Data Shapes
The dataShapes group is used to define Data Shapes that describe the structure
of an infotable.

Configuring a Template for the Lua Script Resource 151

Data shapes that are declared can be used as input or output for services. In
addition, you can use Data Shapes to generate strongly typed data structures.
Each Data Shape is defined using a series of tables, with each table representing a
field within the Data Shape. These fields must have a name and base type, but
may also include other parameters. For example:
dataShapes.MeterReading(

{ name = "Temp", baseType = "INTEGER" },

{ name = "Amps", baseType = "NUMBER" },

{ name = "Status", baseType = "STRING", aspects = {defaultValue="Unknown"} },

{ name = "Readout", baseType = "TEXT" },

{ name = "Location", baseType = "LOCATION" }

The following table lists and describes these parameters:
Parameter Description
dataShape.nameOfDataShape Declares a Data Shape.
name Required. Specify the name of a field in the Data Shape.
baseType Required. Specify the WS EMS base type of the field in the Data

Shape. For a list of base types, refer to ThingWorx Base Types
on page 172.

description Provides a description of the Data Shape.
ordinal Specify the order.
aspects Specify a table that can provide additional information, such as a

default value, or a Data Shape if the base type of the field is
INFOTABLE.

Defining Properties
The properties group is used to define the properties associated with an Edge
Thing. While remote data properties can be read on demand, you can also define
data push rules so that the data does not have to be polled by the ThingWorx
Platform from the Edge device.
A property is defined by specifying a name, baseType, pushType, the
threshold for determining a data change push to the ThingWorx Platform, and any
other necessary parameters.

Note
When these properties are bound at the ThingWorx Platform, it respects the
template settings. However, if changes to the push and cache settings are made at
the platform, those settings override the local template settings.

properties.IParametersnMemory_Imagelink = { baseType="IMAGELINK", pushType=
"NEVER",

value="http://www.thingworx.com" }

152 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

properties.InMemory_InfoTable = { baseType="INFOTABLE", pushType="NEVER",
dataShape="AllPropertyBaseTypes" }

properties.InMemory_Integer = { baseType="INTEGER", pushType="NEVER", value=1
}
properties.InMemory_Json = { baseType="JSON", pushType="NEVER", value="{}"
}
properties.InMemory_Large_String = { baseType="STRING", pushType="NEVER",

value=string.rep("Lorem ipsum dolorsi ", 15000) .. "the end"
}
properties.InMemory_Location = { baseType="LOCATION", pushType="NEVER",

value = { latitude=40.03, longitude=-75.62, elevation=103 }, pushType=
"NEVER" }

The following table lists and describes the parameters for defining properties:
Use To
properties.nameOfProperty Declare a property.
baseType Required. Specify the base type of the property.
dataChangeType Provide a default value for the Data Change Type field of the

property definition on the ThingWorx Platform, if the property is
initially created using the Manage Bindings feature of ThingWorx
Composer. Valid values include:
• ALWAYS

• VALUE

• ON

• OFF

• NEVER
dataChangeThreshold Provide a default value for the Data Change Threshold field of

the property definition on the ThingWorx Platform, if the
property is initially created using the Manage Bindings feature of
ThingWorx Composer.

pushType Specify whether the property should push new values upon
change to the ThingWorx Platform. Valid values include:
• ALWAYS

• VALUE

• NEVER

The default is NEVER.

A pushType of NEVER does not push data to the platform, so
when a property with pushType=NEVER is queried on the
ThingWorx Platform, the platform queries the software of the
Edge device for the data value.

A pushType of ALWAYS pushes the data every time the
property is read at the Edge device, which is determined by the
scanRate parameter. If the scanRate is not set on the
property, the scanRate from the Lua Script Resource
configuration file is used. If not defined in either location, a
default of 60000 milliseconds (1 minute) is used. The Edge

Configuring a Template for the Lua Script Resource 153

Use To
device pushes all properties that have a pushType of ALWAYS
and the same scan rate in one call, rather than make individual
calls per property.

For NUMBER or INTEGER property types, a pushType of
VALUE pushes data to the ThingWorx Platform only when the
data value change exceeds the DataChangeThreshold
setting.

pushThreshold For properties with a baseType of NUMBER, and a pushType
of VALUE. specify how much a property value must change
before the new value is pushed to the ThingWorx Platform.

handler Specify the name of the handler to use for property reads/writes.
Valid values include:
• script

• inmemory

• http

• https

• generator

The default handler is inmemory. The script, http, and
https handlers use the key field to determine the endpoint
where their read/writes are to be executed.

Note

Custom handlers can specify other property attributes. When a
handler is used to read or write a property, the entire property
table is passed to the handler.

key Define a key that the handler can use to look up or set the value
of the property. In the case of a script handler, this key is a
URL path. For http or https handlers, this key should be a
URL and not the protocol.

This parameter is not required for inmemory or nil handlers.
value Specify the default value of the property. The value is updated as

the value changes on the Edge device. The default value is 0.
time Specify the last time the value of the property was updated, in

milliseconds since the beginning of the epoch.

When things are created from this template, the current time is set
automatically, unless a default value is provided in the definition
of the property.

quality Specify the quality of the value of the property. A default value
should be provided for the quality. Otherwise, the value defaults
to GOOD for properties without a handler, and UNKNOWN for
properties with a handler.

154 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Use To
scanRate Specify the frequency of checking the property for a change

event, in milliseconds. The default value is 5000 milliseconds
(every 5 seconds).

If you do not define a scanRate, the scanRate in the Lua
Script Resource configuration file is used. Defining the
scanRate within the property overrides the scanRate setting
in the configuration file. Refer to Configuring the
scanRateResolution on page 146.

cacheTime Initialize the cache time of the value for the property at the
ThingWorx Platform. The default value is –1 if the
dataChangeType is NEVER, and is 0 when
dataChangeType is ALWAYS or VALUE.

If a value that is greater than 0 is specified, it is used by the
ThingWorx Platform as the initial value for the cache time, and is
applied only when using the browse functionality of ThingWorx
Composer to bind the property.

Defining Services
The serviceDefinition group is used to provide metadata for a service that
is used when browsing services from the ThingWorx Platform.
A service definition is a separate entry in the template file from the actual
implementation of the service. The name of the service definition must match the
name of the service it is defining in order for the service to work as expected.
serviceDefinitions.Add(

input { name="p1", baseType="NUMBER", description="The first addend of the

operation" },

input { name="p2", baseType="NUMBER", description="The second addend of the

operation" },

output { baseType="NUMBER", description="The sum of the two parameters" },

description { "Add two numbers" }

)

serviceDefinitions.Subtract(

input { name="p1", baseType="NUMBER", description="The number to subtract from"

},

input { name="p2", baseType="NUMBER", description="The number to subtract from

p1" },

output { baseType="NUMBER", description="The difference of the two parameters"

},

description { "Subtract one number from another" }

Configuring a Template for the Lua Script Resource 155

Parameters
The following table lists and describes the parameters that you can use to define
services:
Use To
serviceDefinition.nameOfService Declare a Service Definition.
input Describe an input parameter to the service that is

referenced within the data table that is passed to the
service at runtime. Valid values include:
• name— The name of the input parameter.

• baseType— The type of input parameter used
by the service.

• description—A description of the input
parameter.

output Describes the output produced by the service. Valid
values include:
• baseType— The type of output that the

service produces.

• description—A description of the output
that the service produces.

description Provide information about the purpose and operation
of the service.

Implementing Services Using the Lua
Script Engine
Use the services group to implement the services that you declared when
defining services.
Once a service has been defined, you can implement custom logic for the service,
using the Lua Script engine. To speed implementation, you can use the add-ons of
the Lua community and ThingWorx-specific Web Services. The Web Services are
included in the WS EMS distribution to facilitate the development of custom
scripts.
Services are defined as Lua functions that can be executed remotely from the
ThingWorx Platform, and must provide a valid response in their return statement.
For example:
services.Add = function(me, headers, query, data)
if not data.p1 or not data.p2 then

return 400, "You must provide the parameters p1 and p2"
end
return 200, data.p1 + data.p2

end

services.Subtract = function(me, headers, query, data)
if not data.p1 or not data.p2 then

return 400, "You must provide the parameters p1 and p2"

156 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

end
return 200, data.p1 - data.p2

end

Parameters
The following table lists and describes the parameters that you can use to define a
service:
Parameter Description
services.nameOfService Implement a service. The name must match the name

that is specified for the service in the service
definition.

me Create a table that refers to the Thing.
headers Create a table of HTTP headers.
query Specify the query parameters from the HTTP

request.
data Create a Lua table that contains the parameters of the

service call.

A service function must return the following values, in the following order:
1. An HTTP return code (200 for success).
2. A table of HTTP response headers that should contain a valid Content-Type

header, typically with a value of application/json.
3. (Optional) A default table can easily be generated by calling tw_utils.RESP_

HEADERS().
4. The response data, in the form of a JSON string. This data can be generated

from a Lua table using json.encode, or tw_utils.encodeData().

Configuring Tasks
Use the task group to define Lua functions that are executed periodically by the
Lua Script Resource (LSR), such as background tasks, resource monitoring, event
firing, and so on. These tasks allow you to introduce any customized functionality
that you may need. You should follow the general pattern shown in the sample
below:
tasks.Compare = function(me)

-- Do task

end

Configuring a Template for the Lua Script Resource 157

The following table lists and describes the parameters that you can use to
configure tasks:
Parameter Description
task.nameOfTask Implement a task that is scheduled in the Lua Script Resource to run

periodically.
me Create a table that refers to the Thing.
end Define the end of the Lua function that defines the task.

158 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

10
Examples of Configuring Secure

Communications between the WS
EMS and an LSR

No Security — for Testing ONLY... 160
Medium Security ... 160
High Security .. 163

This section provides example security configurations for the connection between
the WS EMS and an LSR, from least secure (for testing purposes ONLY) to most
secure (strongly recommended for production environments). Remember that only
the most secure configuration is recommended for anything other than a testing
environment.
Included are examples of the following:

• No security — for testing purposes ONLY
• Configuring a custom certificate/private key for the WS EMS/LSR HTTP

server
• Configuring a certificate chain when using a certificate issued by a Certificate

Authority (CA)
• Configuring authorization for communication between the WS EMS and LSR

159

No Security — for Testing ONLY
This configuration disables all secure communication and authorization settings.
All communication will be transmitted in clear text, and the WS EMS and LSR
can be accessed by anyone. This configuration should be used for testing purposes
ONLY.

Insecure Configuration

WS EMS— config.json LSR— config.lua

"http_server": {

"host": "localhost",

"port": 8000,

"ssl": false,

"authenticate": false

},

"certificates": {

"validate": false,

"allow_self_signed": true,

"disable_hostname_validation"

: true

}

-- EMS Connection Configuration

scripts.rap_host = "localhost"

scripts.rap_port = 8000

-- EMS Connection TLS Configuration

scripts.rap_ssl = false

-- EMS Connection Authentication

-- Configuration

scripts.rap_server_authenticate = false

-- HTTP Server Configuration

scripts.script_resource_host =

localhost"

scripts.script_resource_port = 8001

-- HTTP Server TLS Configuration

scripts.script_resource_ssl = false

-- HTTP Server Authentication

-- Configuration

scripts.script_resource_authenticate =

false

Medium Security
The following examples provide a medium level of security. All communication
between the WS EMS and LSR are encrypted and require basic authentication to
be accessed. The examples use a self-signed certificate and private key.

160 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Note
This configuration allows self-signed certificates, which is strongly discouraged
for a production environment.

To fit the lines of configuration on the page, the lines have been broken up. If you
copy/paste the lines, make sure that you adjust the line breaks accordingly. For
example, the line containing the cert_chain property in the config.json
example has been broken with a CR and extra spaces. You need to remove that
line break and extra spaces after pasting it in your configuration file.
To learn about encrypting the passwords and passphrases, refer to Protecting Data
with Encryption on page 50.

Examples of Configuring Secure Communications between the WS EMS and an LSR 161

Security Configuration with Authentication, Validation, and Custom
Self-Signed Certificate / Key

WS EMS— config.json LSR— config.lua

"http_server": {

"host": "localhost",

"port": 8000,

"ssl": true,

"certificate": "/ path/to/

certificate/file.pem",

"private_key": "/path/to/

private/key.pem",

"passphrase": "some_encrypted_

passphrase",

"authenticate": true,

"user": "emsuser",

"password": "some_encrypted_

password""

},

"certificates": {

"validate": true,

"allow_self_signed": true,

"disable_hostname_validation":

true,

"cert_chain" : "/path/to/

ca/cert/list.pem"

}

-- EMS Connection Configuration

scripts.rap_host = "localhost"

scripts.rap_port = 8000

-- EMS Connection TLS Configuration

scripts.rap_ssl = true

scripts.rap_deny_selfsigned = false

scripts.rap_validate = true

scripts.rap_cert_file =

"/path/to/ca/cert/list.pem"

-- EMS Connection Authentication

-- Configuration

scripts.rap_server_authenticate =

true

scripts.rap_userid = "emsuser"

scripts.rap_password = "some_

encrypted_password"

-- HTTP Server Configuration

scripts.script_resource_host =

"localhost"

scripts.script_resource_port = 8001

-- HTTP Server TLS Configuration

scripts.script_resource_ssl = true

scripts.script_resource_

certificate_chain =

"/path/to/web/server/

certificate.pem"

scripts.script_resource_private_key

=

"/path/to/web/server/private/

key.pem"

scripts.script_resource_passphrase

= "some_encrypted_passphrase"

-- HTTP Server Authentication

-- Configuration

scripts.script_resource_

authenticate = true

162 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Security Configuration with Authentication, Validation, and Custom
Self-Signed Certificate / Key (continued)
WS EMS— config.json LSR— config.lua

scripts.script_resource_userid =

"luauser"

scripts.script_resource_password =

"some_encrypted_password"

High Security
The following examples provide a high level of security. All communication
between the WS EMS and LSR are encrypted and require basic authentication to
be accessed. The examples use a custom certificate and private key. The certificate
is validated against a custom CA list. This configuration disallows self-signed
certificates. This configuration is the recommended configuration for all
production systems.
To learn about encrypting passwords and passphrases, refer to Protecting Data
with Encryption on page 50.

Examples of Configuring Secure Communications between the WS EMS and an LSR 163

Highly Secure Configuration: Authentication, Validation, and Custom
Certificate / Key

WS EMS— config.json LSR— config.lua

"http_server": {

"host": "localhost",

"port": 8000,

"ssl": true,

"certificate":

"/pathto/cert/file.pem",

"private_key":

"/pathto/private/key.pem",

"passphrase": "some_encrypted_

passphrase",

"authenticate": true,

"user": "emsuser",

"password": "some_encrypted_

password"

},

"certificates": {

"validate": true,

"allow_self_signed": false,

"disable_hostname_validation":

false,

"cert_chain" :

"/path/to/ca/cert/list.pem",

"http_client_ca_certs"" : "/path/

to/ca/cert/client_list.pem"

}

-- EMS Connection Configuration

scripts.rap_host = "localhost"

scripts.rap_port = 8000

-- EMS Connection TLS Configuration

scripts.rap_ssl = true

scripts.rap_deny_selfsigned = true

scripts.rap_validate = true

scripts.rap_cert_file =

"/path/to/ca/cert/list.pem"

-- EMS Connection Authentication

-- Configuration

scripts.rap_server_authenticate =

true

scripts.rap_userid = "emsuser"

scripts.rap_password = "some_

encrypted_password"

-- HTTP Server Configuration

scripts.script_resource_host =

"localhost"

scripts.script_resource_port = 8001

-- HTTP Server TLS Configuration

scripts.script_resource_ssl = true

scripts.script_resource_

certificate_chain =

"/path/to/web/server/

certificate.pem"

scripts.script_resource_private_key

=

"/path/to/web/server/private/

key.pem"

scripts.script_resource_passphrase

= "some_encrypted_passphrase"

-- HTTP Server Authentication

-- Configuration

scripts.script_resource_

authenticate = true

164 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Highly Secure Configuration: Authentication, Validation, and Custom
Certificate / Key (continued)
WS EMS— config.json LSR— config.lua

scripts.script_resource_userid =

"luauser"

scripts.script_resource_password =

"some_encrypted_password"

Examples of Configuring Secure Communications between the WS EMS and an LSR 165

11
Troubleshooting the WS EMS and

the LSR
Troubleshooting the WS EMS... 167
Troubleshooting File Transfers When Using Automatic Binding................................... 167
Running on a Windows-based Operating System .. 169
Troubleshooting the Lua Script Resource ... 169

166 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

Troubleshooting the WS EMS
This section discusses issues that can arise when using the WS EMS, along with
recommended solutions.
Problem Possible Solution
The WS EMS connects, but reports a time-out error
when trying to authenticate.

Verify that you are running the required version of
Tomcat. Refer to the ThingWorx WebSocket-Based
Edge MicroServer Support Matrix in the help center.

The WS EMS is failing to connect to my local server. If your server is not configured to use HTTPS, set
the encryption option of the WS EMS to none.
Before deployment, set the option back to ssl.

I’ve started the WS EMS, made changes to
config.json, but these changes are not reflected
when I restart the WS EMS.

There is likely a syntax error (such as an extra
comma, or similar) in your config.json. If the
WS EMS is unable to start with the current
config.json, it will use the last known good
configuration file (config.json_booted).

To verify that the problem is in config.json,
delete the config.json_booted file and restart
the WS EMS. If it fails to start, check the
config.json for errors.

The WS EMS connects to a ThingWorx Platform,
authenticates successfully, but the Thing I specified
in the “auto_bind” group of my configuration file is
not being created on the THingWorx platform.

The “auto_bind” group is an array of objects. Verify
that you’ve enclosed the JSON object that represents
your Thing in square brackets as follows:

"auto_bind": [{
"name”:

"RemoteThing001",
"gateway": true

}]

Instead of this, which would lead to this Thing not
being created on ThingWorx Platform:

"auto_bind": {

"name" : "RemoteThing001",

"gateway": true

}

Troubleshooting File Transfers When
Using Automatic Binding
Problem
A download of a file to a WS EMS that is configured to use automatic binding
fails, with the following error messages:

Troubleshooting the WS EMS and the LSR 167

http://support.ptc.com/help/edge_microserver/r5.4.7/en/edge_microserver/c_wsems_support_matrix.html
http://support.ptc.com/help/edge_microserver/r5.4.7/en/edge_microserver/c_wsems_support_matrix.html

WS EMS Error Message During File Transfer

This failure can also occur if you download an SCM package from the ThingWorx
Platform to the WS EMS.
In addition, the ThingWorx Platform logs show a Gateway Timeout error

2019-04-16 14:04:08.235-0400 [L: ERROR] [O: E.c.t.s.s.f.e.FileCopyTask]
[I:]
[U: Administrator] [S:] [T: FileTransfer-3]
[context: Error occurred during transfer.: service execution failure
resultCode=STATUS_GATEWAY_TIMEOUT:
job=TransferJob [tid: 205bbb83-63c9-4e5f-8f4f-05f654cdc360, sourceRepo:
FileTransferThing,
sourcePath: \In\Welcab6.jpg, targetRepo: Repo2, targetPath: \new
\Welcab6.jpg,
partPath: \new\Welcab6.jpg.Repo2.part, sourceChecksum: , targetChecksum:
,
state: ACTIVE, code: 202,
message: Transfer request accepted, isAsync: false, isRestartEnabled:
true,
isComplete: false, bytesTransferred: 0, blockcount: 0, blocksize: 8192,
size: 1089448,
maxsize: 100000000, transferTime: 0, transferControl: platform,
reservationId: ,
isQueueable: false, enqueueTime: 0, enqueueCount: 0, metadata: null,
Job [id: 205bbb83-63c9-4e5f-8f4f-05f654cdc360, lastTouch: 1555437847173,
timeout: 30000,
TimedLock [createTime: 1555437847148, signalTime: 0, duration: 0,
signaled: false]]]]
2019-04-16 14:04:08.241-0400 [L: ERROR] [O: E.c.t.s.s.f.e.FileCopyTask]
[I:] [U:]

168 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

[S:] [T: FileTransfer-3] [context: Error occurred during transfer.]

Recommended Workaround
To perform a file transfer using WS EMS, you can but do not need to have an LSR
running. However, you do need a bound Thing. In versions 8.3.5 and 8.4.x of the
ThingWorx Platform, a service was introduced, called
GetSupportedChecksumAlgorithms. This service breaks previously working
WS EMS configurations that use auto_bind for identity but do not specify a
host and port. The workaround for this change is to make sure that your auto_
bind configuration specifies the host and port used by the http_server
configuration. This workaround resolves both file transfer and tunneling errors
that occur when auto_bind does not specify a host and port.

Caution
It is not recommended to use an auto_bind configuration without specifying a
host and port. The auto_bind configuration should be u sed to bind an existing
HTTP server on your LAN as a Remote Thing. Using auto_bind just to define
a Thing and have it show up in ThingWorx Composer without running an LSR
can cause problems when the platform sends requests to the Edge Thing and there
is nothing to which the WS EMS can route the request.

Running on a Windows-based Operating
System
When running the WS EMS on Windows-based operating systems, it is possible
for the Windows OS to have a tick resolution that is higher that the tick resolution
requested by WS EMS. For example, the default Windows tick resolution is 15ms
and the default tick resolution for WS EMS is 5ms. In this scenario WS EMS
executes only at the limit interval of 15ms instead of the requested 5ms interval.
To achieve the best performance, it is recommended that the Windows tick
resolution be changed, using the Windows API functions, to one half of the
maximum sampling rate (Nyquist Sampling). Note that some systems will
experience high CPU load due to the increased tick timer.

Troubleshooting the Lua Script Resource
The following table discusses issues that can arise when using the Lua Script
Resource, along with recommended solutions.

Troubleshooting the WS EMS and the LSR 169

Problem Possible Solution
I have a tunnel configured on my Thing (created
using the RemoteThing Thing Template) on the
ThingWorx Platform, but it is not working.

Verify that the Public Host and Public Port settings
of the Tunnel Subsystem's Configuration are set to
the externally available host name/IP and port.

The Thing that I have configured in config.lua
cannot communicate with my Thing on the
ThingWorx Platform.

Verify that the name of the Thing in your
config.lua matches the name of the Thing on the
ThingWorx Platform. You can also specify an
identifier, if using matching names is a problem.
Refer to Configuring File Transfers
on page 77.

The WS EMS connects to the ThingWorx Platform,
authenticates successfully, but the Thing that I
specified in the auto_bind group of my
config.lua file is not being created on the
platform.

The auto_bind group is an array of objects. Verify
that you enclosed the JSON object that represents
your Thing in square brackets as follows:

“auto_bind”: [{
“name”: “RemoteThing001”,
“gateway:” true

}]

vs. the following, which leads to this scenario:
"auto_bind": {
"name": "RemoteThing001",
"gateway": true

}

For more information about the auto_bind group and
setting the gateway parameter, refer to Configuring
Automatic Binding for WS EMS on page 73 and to
Auto-bound Gateways on page 75

170 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

A
ThingWorx Base Types

ThingWorx Base Types.. 172

This appendix provides a table of the ThingWorx Base Types.

171

ThingWorx Base Types
The following table lists and briefly describes the ThingWorx Base Types:

ThingWorx Base Types

Type Name Description
BASETYPENAME Avalid name of a Base Type.
BOOLEAN True or false values only
BLOB A Binary Large Object.
DASHBOARDNAME The name of a dashboard.
DATASHAPENAME A reference to a Data Shape in a model, and therefore has special handling.
DATETIME Date and time value
GROUPNAME ThingWorx Group Name
GUID Globally Unique IDentifier.

Note
If using GUID as the Base Type, it is recommended to set the GUID value.
Do not leave blank (default).

HTML HTML value
HYPERLINK Hyperlink value
IMAGE Image Value
IMAGELINK Image link value
INFOTABLE ThingWorx data structure used to define the results of a service or a set of

properties for a Thing
INTEGER 32–bit integer value
JSON JSON structure
LOCATION ThingWorx Location structure
MASHUPNAME ThingWorx Mashup name
MENUNAME ThingWorx Menu name
NOTHING No type (used for services to define void result)
NUMBER Double-precision value
PASSWORD A masked password value.
QUERY ThingWorx Query structure
SCHEDULE A CRON-based schedule (in ThingWorx Composer, can b e configured

using the Schedule Editor).
STRING Any amount of alphanumeric characters.
TAGs ThingWorx tag valaues.
TEXT Any amount of alphanumeric characters. The difference with strings is that

TEXT is indexed.
THINGCODE A numerical representation of a Thing containing a DomainID and

InstanceID. For example: 2:1.
THINGNAME A reference to a Thing and therefore has special handling.
THINGSHAPENAME A reference to a Thing Shape in the model, and therefore has special

handling.
THINGTEMPLATENAME The name of a Thing Template.
USERNAME A reference to a ThingWorx user defined in the system. In general to avoid

172 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

ThingWorx Base Types (continued)

Type Name Description
issues with RESTAPIs, do not use the colon (:) character in user names.

VEC2 A collection of two numbers. For example, 2D coordinates, x and y.
VEC3 A collection of three numbers. For example, 3D coordinates, x, y, and z.
VEC4 A collection of four numbers. For example, 4D coordinates, x, y, z, and w.
XML An XML snippet or document.

ThingWorx Base Types 173

B
Remote Things

About Remote Things .. 175
Remote Thing Configuration at the Device .. 175
Configure Properties for Remote Things.. 176
Configure Services for Remote Things .. 177

This section explains what Remote Things are, briefly describes some of the
templates available in ThingWorx Composer for Remote Things, and provides
information about configuring them and their properties and services.

• About Remote Things on page 175
• Remote Thing Configuration at the Device on page 175

174 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

About Remote Things
A Remote Thing is an Edge device or data source whose location is at a distance
from the location of the ThingWorx Platform. A Remote Thing accesses the
platform, and can itself be accessed, over the network (Intranet/Internet/WAN/
LAN). The device is represented on the platform by a Thing that is created using
the RemoteThing template, or one of the derivatives of that template (for example,
RemoteThingWithFileTransfer).
The default Thing templates that you can use to create things for remote devices
follow:
• RemoteThing—A basic Thing that provides the ability to interact with a

remote device.
• RemoteThingWithFileTransfer—A remote Thing that can also transfer files.
• RemoteThingWithTunnels—A Remote Thing that supports tunneling.
• RemoteThingWithTunnelsAndFileTransfer—A Remote Thing that supports

both file transfers and tunneling.
• RemoteDatabase—A remote OLE-DB data source
• EMSGateway—Addresses the WS EMS as a standalone Thing. This template

may be useful in situations where the WS EMS is running on a gateway
computer and is handling communication for one or more Remote Things,
which may reside on different IP addresses within a local area network

• SDKGateway— Similar to the EMSGateway template, but used when you are
using an SDK implementation as a gateway.

Use the RemoteThing, RemoteThingWithFileTransfer, RemoteThingWithTunnels,
and RemoteThingWithTunnelsAndFileTransfer templates for vendor-specific
devices. The recommended approach is to use one of these templates to create a
Thing for your vendor-specific device, and when you have added the properties,
services, and events for the Thing, save it as your own template. That way, you
can add more of the same devices quickly and easily by using your template as the
base.

Remote Thing Configuration at the Device
The Remote Thing at the device level is implemented using the Lua Script
Resource (luaScriptResource.exe). This component shares the configuration file
with the WSEMS (config.lua, or per your configuration). Make a copy of the file
and place it in the etc directory. The example configuration file is self-
documented.
scripts.MyEdgeThing = {

file = "Thing.lua",

template = "example",

Remote Things 175

This section defines a Thing, and references a Template = example. In this case,
that refers to a file named config.lua.example in the microserver\etc\
custom\templates directory. This file is installed with the WS EMS to be
used for reference. The template file is for defining properties, services, and tasks
at the edge software.
Any of the Remote Thing configuration parameters can be inserted between the
brackets { } defined by scripts.MyEdgeThing=.
The template setting is critical. The template file is the definition of the behavior
for this edge Thing. Each edge Thing utilizing the Lua script engine requires a
template file reference. The template file should be placed in the
\microserver\etc\custom\templates directory. An example file is
available after install.

Basic Configuration
The config.lua.example file has a section for module configuration.
The require statements pull a specified shape's functionality into the template. A
shape can define properties, services, and tasks, just like a template. If the
template defines a property, service, or task with the same name as one defined in
a shape, then the definition in the shape will be ignored. Therefore, you must take
care not to define characteristics with duplicate names. require "thingworx.shapes.
myshape”
The following line is required in all user-defined templates: 'template.example'
should be replaced with the name of template, for example: 'template.mydevice'.
module ("templates.example", thingworx.template.extend)

Shapes
A shape file is the same in structure as a template file. The idea is to create
building block files of properties, services, and tasks, and identify them as shapes,
which is consistent with the server model terminology. The expected location for
these shape files is the \microserver\etc\custom\shapes directory.
Using the require statement essentially adds the shape file configuration to the
configuration in the template

Configure Properties for Remote Things
It is possible to browse the configuration of a Remote Thing and "mass" bind its
remote properties. The ability to bind the properties of a remote device all at once
allows you to fully configure the Remote Thing on the ThingWorx Platform,
alleviating much of the manual configuration.
1. In ThingWorx Composer, on the Properties tab of the Remote Thing, click

Manage Bindings.
2. In the Manage Property Bindings dialog box, click the Remote tab.

176 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

3. YA list of the properties of the remote device appears on the left. You can
drag them individually to the Drag HERE to create new properties area) or click
Add All.

4. You can then individually edit the property details to suit your needs. You can
also bind the remote properties to properties that you have already defined on
the ThingWorx Platform. To bind remote properties to existing properties on
the platform, drag a remote property onto an existing platform property. When
you bind properties from the edge, the cache and push settings from the edge
are set based on the configuration settings of the Edge device. You can choose
to override them by changing the settings at the platform (using ThingWorx
Composer, for example).

You can also manually create the properties by using the standard property
configuration dialog box.

Configure Services for Remote Things
There are two types of services for Remote Things, as follows:
• Local (JavaScript) - JavaScript business logic executing on the server.
• Remote - a direct call to a remote service on a Remote Thing (such as a

custom-defined Lua script).

Remote Services and Binding
When you define a remote service, you are defining the metadata for the service
so that it can be properly consumed from the server. The definition includes the
service name at the server, the description, remote service name, and the inputs
and outputs of the service. This will bind the service to the remote service, and the
remote service is executed when the service runs. From a Mashup or REST Web
Service perspective, it will appear the same as a local service.
When the WSEMS opens a connection to a ThingWorx Platform, it goes through a
three step process:
1. Initiation: This establishes the physical WebSocket connection and prepares it

to handle inbound and outbound messages.
2. Authentication: The WS EMS can authenticate using an application key. All

communication that is passed over the connection from the WS EMS to the
ThingWorx Platform will run under the security context of this application
key. After authentication is complete applications can use the REST interface
of WS EMS to interact with the ThingWorx Platform.

3. Binding: After authentication, Remote Things on the ThingWorx Platform can
bind to the connection of the WS EMS. Binding is the process that notifies the
platform that a particular Remote Thing is associated with an established
connection. After a Thing is bound to a connection, the platform will indicate

Remote Things 177

a change in the value of its isConnected property to true and update its
lastConnection property. The platform can then send outbound requests to
Thing.

You can also directly browse and bind to remote services if the Remote Thing is
running and is connected. Click Browse Remote Services to view the services that
are currently defined for the Remote Thing. You can then add them to the local
service definitions through the drag and drop interface (similar to how you bind
remote data properties).
The process of registering a Thing with the WS EMS also causes the Thing to
bind. The de-registering of a Thing causes it to unbind.

178 WebSocket-Based Edge MicroServer and Lua Script Resource Developer’s Guide

	ThingWorx WebSocket-Based Edge MicroServer and Lua Script Resource Developer's Guide, v.5.4.9
	Contents
	Document Revision History
	About This Guide
	Introducing the ThingWorx WS EMS
	Features of the ThingWorx WS EMS
	WS EMS and ThingWorx Platform
	The Connection Sequence
	Deployment
	Configuration Overview

	Getting Started with the ThingWorx WS EMS
	Components to Install
	Downloading and Installing the ThingWorx WS EMS and LSR
	ThingWorx WS EMS and LSR Distribution Contents
	Libraries for WS EMS on Linux

	Create an Application Key for WS EMS
	Configuring the WS EMS
	Configuring Secure Connections (SSL/TLS)
	Setting Up Security for the WS EMS
	Migrating from the WS EMS/LSR Built-in Certificates
	Using a Custom Certificate and Private Key
	Certificate Fingerprint Validation for WS EMS and LSR

	Authenticating and Binding
	Protecting Data with Encryption
	Running the ThingWorx WS EMS
	Verifying Your Connection

	Additional Configuration of WS EMS
	Viewing All Configuration Options
	Configuring the Logger Group
	Configuring the HTTP Server Group
	Configuring the WebSocket Connection
	Configuring Duty Cycle Modulation
	Configuring a Proxy Server
	Storing Messages Received While WS EMS Is Offline
	Configuring Automatic Binding for WS EMS
	Auto-bound Gateways
	Configuring File Transfers
	Best Practices for Transferring Large Files
	Configuring Edge Settings for Tunneling
	Configuring Tunneling on the ThingWorx Platform Side

	Configuring the WS EMS to Listen on IP Other Than localhost
	Example Configurations
	Gateway Mode with Self-Identifying Remote Things Example
	Gateway Mode with Explicitly-Defined Remote Things Example
	Non-Gateway Mode with Self-Identifying Remote Things Example

	Using ThingWorx Asset Advisor with WS EMS and LSR
	Features of ThingWorx Asset Advisor to Use with WS EMS and LSR
	Prerequisites to Setting Up a WS EMS Thing for Asset Advisor
	Administrator Tasks for Using Remote Access, File Transfers, and SCM in Asset Advisor
	Setting Up a WS EMS or LSR Thing for the Remote Access and Control Application
	Setting Up to Use ThingWorx Software Content Management (SCM) with WS EMS Devices
	Lua Scripts and Software Content Management (SCM)

	REST Web Services and WS EMS
	Updating, Deleting, and Executing with REST Web Services
	Reading and Writing Properties Using the REST Web Services
	Transferring Files through the REST Web Services
	REST Web Services Supported by WS EMS
	AddEdgeThing
	GetConfiguration
	GetEdgeThings
	GetLogData
	GetMicroserverVersion
	HasEdgeThing
	RemoveEdgeThing
	ReplaceConfiguration
	Restart
	StartFileLogging
	StopFileLogging
	TestPort
	UpdateConfiguration

	Running REST API Calls with Postman on WS EMS and LSR

	Getting Started with the Lua Script Resource
	Configuring a Lua Script Resource
	Configuring the Connnection from the LSR to the WS EMS
	Configuring the HTTP Server for the LSR (SSL/TLS Certificate)
	Configuring the Logger for the LSR
	Configuring Edge Things
	Configuring the scanRateResolution

	Running the Lua Script Resource
	Configuring a Template for the Lua Script Resource
	Including a Data Shape
	Configuring the Module Statement
	Configuring Data Shapes
	Defining Properties
	Defining Services
	Implementing Services Using the Lua Script Engine
	Configuring Tasks

	Examples of Configuring Secure Communications between the WS EMS and an LSR
	No Security — for Testing ONLY
	Medium Security
	High Security

	Troubleshooting the WS EMS and the LSR
	Troubleshooting the WS EMS
	Troubleshooting File Transfers When Using Automatic Binding
	Running on a Windows-based Operating System
	Troubleshooting the Lua Script Resource

	ThingWorx Base Types
	Remote Things

